WO2023115759A1 - 一种白云石资源化深度利用的成套处理系统和方法 - Google Patents

一种白云石资源化深度利用的成套处理系统和方法 Download PDF

Info

Publication number
WO2023115759A1
WO2023115759A1 PCT/CN2022/086671 CN2022086671W WO2023115759A1 WO 2023115759 A1 WO2023115759 A1 WO 2023115759A1 CN 2022086671 W CN2022086671 W CN 2022086671W WO 2023115759 A1 WO2023115759 A1 WO 2023115759A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
dolomite
calcination
liquid
Prior art date
Application number
PCT/CN2022/086671
Other languages
English (en)
French (fr)
Inventor
柴立元
王庆伟
史美清
闵小波
李青竹
陶柏润
吴鸽鸣
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111595132.XA external-priority patent/CN113998905B/zh
Priority claimed from CN202111595493.4A external-priority patent/CN113998908B/zh
Priority claimed from CN202111595131.5A external-priority patent/CN113996247B/zh
Priority claimed from CN202111595478.XA external-priority patent/CN113998907B/zh
Application filed by 中南大学 filed Critical 中南大学
Priority to US18/072,329 priority Critical patent/US11866803B2/en
Publication of WO2023115759A1 publication Critical patent/WO2023115759A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • C04B2/06Slaking with addition of substances, e.g. hydrophobic agents ; Slaking in the presence of other compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • C04B2/08Devices therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/12Preheating, burning calcining or cooling in shaft or vertical furnaces

Definitions

  • the invention relates to resource utilization of dolomite, in particular to a complete processing system and method for deep utilization of dolomite resource.
  • Dolomite is an important calcium and magnesium resource. When dolomite is calcined, it will lose carbon dioxide and become a mixture of calcium oxide and magnesium oxide. It is often called light-burned dolomite or calcined white in the industry. Calcined white is the production of high-quality magnesium carbonate from dolomite mines. , calcium and high-quality magnesium oxide, or important direct and intermediate products used in various fields such as metallurgy, new materials, agriculture, and environmental protection.
  • the main methods to obtain calcium and magnesium materials from dolomite are carbonization, acid hydrolysis, ammonium leaching and halogenation; among them, the carbonization method is particularly valued because of its low production cost and stable production process.
  • the basic process of the dolomite carbonization method includes: after crushing the dolomite ore, calcining to obtain calcined white containing active calcium oxide and magnesium oxide (that is, lightly calcined dolomite); after digesting and removing impurities from the calcined white, a digestive emulsion can be obtained; The digested emulsion is transferred to the carbonization tower. After the carbon dioxide is introduced, the calcium hydroxide in the digested emulsion first undergoes a precipitation reaction to form calcium carbonate.
  • the magnesium hydroxide With the continuous addition of carbon dioxide, the magnesium hydroxide is converted into soluble magnesium bicarbonate; when the magnesium hydroxide is completely When converting, stop carbonization, filter the reaction solution, the filtrate is heavy magnesium water (i.e. magnesium bicarbonate solution), and the filter residue is calcium carbonate containing heterogeneous; pyrolyzing the above filtrate can obtain basic magnesium carbonate precipitation, which is calcined Magnesium oxide is available.
  • the Chinese invention patent with the notification number CN105271845B discloses a method for preparing magnesia for high-performance silicon steel from dolomite. Firstly, the dolomite is calcined, combined with water, carbonized in a carbonization tower, and then separated by filtration. Solid calcium carbonate and magnesium bicarbonate aqueous solution. The obtained magnesium bicarbonate aqueous solution is pyrolyzed and filtered to obtain magnesium carbonate, which is then calcined step by step. After airflow crushing and packaging, high-performance magnesium oxide for silicon steel can be obtained.
  • the dolomite in this patent is processed by the carbonization method to obtain high-performance magnesia for silicon steel, it only obtains performance improvement through repeated calcination and purification, and does not obtain high-purity magnesia in the dolomite calcination process.
  • the flue gas of carbon dioxide increases the waste of resources and energy consumption in the whole process.
  • the Chinese invention patent with the notification number CN103145166B discloses a calcium and magnesium separation method used in the dolomite carbonization process, including: feeding carbon dioxide into the digested emulsion until the pH is 12.5-9.5 to obtain a preliminary carbonization system; Add acetylacetone to the preliminary carbonization system, and mix to obtain a mixed system; pass carbon dioxide into the mixed system until the pH is 9.5-7.5 to produce calcium carbonate solids, and after the solids are separated, the liquid phase is refined heavy magnesium water, which realizes efficient calcium carbonate Magnesium isolated. But the use of acetylacetone is increased in this patented technical solution, which not only increases the cost, but also acetylacetone is a toxic substance.
  • the main purpose of the present invention is to provide a complete set of treatment system for deep utilization of dolomite resources, aiming at solving the above technical problems.
  • the present invention provides a complete treatment system for the deep utilization of dolomite resources, which is characterized in that it includes a primary calcination device, a carbon dioxide capture device, a digestion device, a carbonization separation device, a pyrolysis device and a secondary calcination device device: where,
  • the primary calcination device includes a dolomite calcination furnace for indirect processing of dolomite, a plurality of shrouds and gas collection pipes, the connection between the shroud and the top of the furnace of the dolomite calcination furnace and the outer wall of the blanking bin
  • An exhaust chamber is formed around the dolomite calciner, and the feed port of the dolomite calciner, the blanking port of the blanking bin and the exhaust port of the dolomite calciner are all communicated with the exhaust chamber, so The exhaust chamber communicates with the air inlet of the carbon dioxide capture device through the gas capture pipeline;
  • the carbon dioxide capture device includes a first gas outlet, a second gas outlet, a recovery system, a first recovery pipeline and a second recovery pipeline, and the second gas outlet communicates with the recovery system;
  • the carbonization separation device includes a carbonization reaction tank, the air inlet of the carbonization reaction tank communicates with the carbon dioxide capture device through the first gas outlet;
  • the pyrolysis device includes a pyrolysis tank and a vacuum pump, the vacuum pump communicates with the pyrolysis tank, and the first recovery pipeline communicates with the gas outlet of the pyrolysis tank and the air inlet of the carbon dioxide capture device; Wherein, the decomposed mother liquor after the pyrolysis reaction of the pyrolysis device is returned to the liquid inlet of the digestion device through the decomposed mother liquor return pipeline;
  • the secondary calcination device includes a magnesium carbonate calcination furnace, and the flue gas outlet of the magnesium carbonate calcination furnace is connected to the gas inlet of the carbon dioxide capture device through the second recovery pipeline.
  • the dolomite calciner includes a blanking bin, a furnace, and a discharging bin arranged sequentially from top to bottom;
  • the outer wall of the furnace is covered with an insulating layer, the blanking bin is arranged above the feed port of the furnace, the blanking port of the blanking bin is correspondingly set through the feed port, and the falling The size of the feed port is smaller than the size of the feed port, and the feed port also serves as the exhaust port of the furnace;
  • the outer wall of the blanking bin and the outer wall of the furnace body are surrounded by the shroud to form the exhaust chamber, and the exhaust chamber communicates with the interior of the furnace through the feeding port.
  • a circulating water cooling assembly is provided on the outer wall of the discharge bin
  • the hot water outlet of the circulating water cooling assembly is connected with the water bath hot water inlet of the pyrolysis kettle through a circulating water return pipe, and the heated circulating water is used to supply heat to the pyrolysis kettle.
  • the circulating water-cooling assembly includes a water-cooling clamping wall, and a water-cooling chamber is formed around the water-cooling clamping wall and the outer wall of the discharge bin.
  • the carbonization separation device includes the carbonization reaction tank, a gas-liquid mixing reactor and a circulation pump;
  • the top of the carbonization reaction tank is provided with a feeding port and a gas circuit circulation outlet;
  • the bottom of the carbonization reaction tank is provided with a water circuit circulation outlet and a drainage port, and a drainage valve is installed at the drainage port;
  • the gas-liquid mixing reactor includes a gas-liquid mixing pipe, a feed pipe and an air injection pipe; wherein, the gas-liquid mixing pipe is installed inside the carbonization reaction tank, and the upper part of the side wall of the gas-liquid mixing pipe is provided with An air injection pipe installation port, the lower end of the gas-liquid mixing pipe communicates with the interior of the carbonization reaction tank;
  • the feed pipe passes through the top of the carbonization reaction tank and the top of the gas-liquid mixing pipe from top to bottom, and then extends into the inside of the gas-liquid mixing pipe, and the outlet of the feed pipe It is located below the installation port of the air injection pipe, wherein the interface between the gas-liquid mixing pipe and the feed pipe is sealed by a seal;
  • the air inlet of the air injection pipe is in communication with the first air outlet and the air circuit circulation outlet at the same time, and the exhaust port of the air injection pipe is installed at the installation port of the air injection pipe;
  • the liquid inlet of the circulation pump communicates with the water circuit circulation outlet, and the liquid outlet of the circulation pump communicates with the feed port of the feed pipe.
  • the gas-liquid mixing reactor also includes a convective mixing injection pipe connected to the outlet of the gas-liquid mixing pipe and the carbonization reaction tank, the convective mixing injection pipe is arranged below the gas-liquid mixing pipe, And the convective mixing jet tube is provided with a forward flow mixer and a reverse flow mixer sequentially from top to bottom.
  • the pyrolysis kettle is equipped with a ribbon stirrer to prevent material from depositing on the wall.
  • the carbon dioxide capture device also includes a compressed buffer gas tank assembly and a carbon dioxide circulation subsystem
  • the air inlet of the compressed buffer gas tank assembly communicates with the exhaust chamber through the gas collection pipe, and the compressed buffer gas tank assembly includes the first gas outlet and the second gas outlet;
  • the carbon dioxide circulation subsystem includes a gas transmission pipeline, the first recovery pipeline, the second recovery pipeline, a carbon dioxide water vapor recovery pipe, and a gas-liquid separator;
  • the carbon dioxide water vapor recovery pipe is connected to the flue gas outlet of the pyrolysis tank and the air inlet of the gas-liquid separator, and the gas outlet of the gas-liquid separator is connected to the air inlet of the carbon dioxide capture device .
  • the present invention also provides a method for utilizing dolomite resources by adopting the complete processing system for deep utilization of dolomite resources as described in any one of the above.
  • the carbon dioxide capture device is turned on to recover and recycle carbon dioxide.
  • the decomposition temperature of the magnesium carbonate is 600-700°C.
  • the inhibitors include one or more of ethylenediaminetetraacetic acid, sodium hexametaphosphate, polyacrylic acid, polymaleic acid, and nitrilotriacetic acid;
  • the dispersant including one or more of methanol, alcohol, glycerin, polyacrylamide, cellulose derivatives, and water glass;
  • the first batch of calcined white in the digestion device is digested with water, and the remaining batches of calcined white are digested with the uncooled decomposed mother liquor;
  • the solid-to-liquid ratio of the calcined white to the water or the decomposed mother liquor in the digestion device is 1kg:10-30L; the first batch of calcined white is digested using the water at 50-80°C.
  • the added amount of the dispersant is 0.1%-2% by volume of the calcium-containing heavy magnesium aqueous solution.
  • the present invention also provides a dolomite calcination furnace, comprising: a gas collection pipe and a furnace body, the furnace body including a blanking bin, a furnace and a discharge bin arranged sequentially from top to bottom;
  • At least one vertical calcination area is formed inside the furnace, and the furnace body also includes a heating device for supplying heat to the materials in the furnace through heat conduction; the top of the furnace is provided with a closed The sealing plate of the furnace mouth of the furnace, and at least one communication port is opened on the sealing plate;
  • the blanking bin is arranged above the sealing plate, the blanking port of the blanking bin communicates with the calcination area through the communication port, and the size of the blanking port is smaller than the size of the communication port;
  • An exhaust chamber is formed between the outer wall of the blanking bin and the sealing plate through a coaming plate, and the exhaust chamber communicates with the calcination area through the communication port;
  • the gas collection pipeline communicates with the exhaust chamber to discharge the gas generated in the calcination zone to the external carbon dioxide through the communication port, the exhaust chamber and the gas collection pipeline in sequence. in the trapping device.
  • the heating device includes an electric heating plate and an electric heating rod; wherein, each of the calcination areas is surrounded by an electric heating plate, and an electric heating element extending into the calcination area is also fixed on the sealing plate.
  • At least one electric heating rod is correspondingly provided in each of the calcination zones.
  • the blanking bin includes a bin body and a plurality of binning hoppers arranged at the lower part of the bin body, and each of the binning bins is provided with the feeding port; the number of the communicating ports is the same as that of the dropping bin The matching setting of the feed port.
  • the outer wall of the furnace is covered with an insulating layer; the outer wall of the discharge bin is provided with a circulating water cooling assembly for cooling water to flow.
  • the calciner also includes a feeding mechanism arranged above the blanking bin, and a conveying mechanism arranged under the discharging bin;
  • both the feeding mechanism and the conveying mechanism are arranged parallel to the furnace body, and a level controller is installed on the feeding mechanism or the falling bin, and the level controller monitors the falling The position of the feeding bin and controlling the feeding mechanism to feed materials into the dropping bin, so as to realize the interlock control between the dropping bin and the feeding mechanism.
  • the present invention also provides a clean and environment-friendly calcination method for indirect processing of dolomite, comprising the steps of:
  • the preset temperature is 900-1050°C.
  • the first preset time corresponds to the calcination temperature of dolomite rising to the decomposition temperature of magnesium carbonate.
  • the first preset time is when the calcination temperature of dolomite rises to 600-700°C.
  • the second preset time is 3-6 hours; the calcination method also includes the steps of:
  • the residence time of the added dolomite in the calcination area is controlled to be 2-4 hours.
  • the method also includes the step of: returning the base material produced for the first time to the blanking bin again, so as to complete the full calcination of the base material.
  • the present invention also provides a carbonization separation device, including a carbonization reaction tank, a gas-liquid mixing reactor and a circulating pump; wherein,
  • the top of the carbonization reaction tank is provided with a feeding port for the digestive emulsion to enter and a gas circuit circulation outlet, and the bottom of the carbonization reaction tank is provided with a water circuit circulation outlet and a drainage port;
  • the gas-liquid mixing reactor includes a gas-liquid mixing pipe, a feed pipe, an air injection pipe and a convective mixing injection pipe; wherein, the feed port of the feed pipe is located outside the carbonization reaction tank, and the feed pipe of the feed pipe The outlet end is inserted into the inside of the gas-liquid mixing tube from the top of the gas-liquid mixing tube; the gas-liquid mixing tube is installed in the inside of the carbonization reaction tank, and the gas-liquid mixing tube and the feeding tube The interface is sealed by a seal, and an air inlet is provided on the side wall of the gas-liquid mixing pipe; the air inlet end of the air injection pipe is simultaneously connected with the carbon dioxide pressure supply device and the gas circulation outlet, and the The exhaust end of the jet pipe is fixedly installed with the air inlet; the vertical position of the outlet of the feed pipe is lower than the air inlet;
  • the convective mixing injection pipe is arranged below the gas-liquid mixing pipe, and vertically communicates with the outlet of the gas-liquid mixing pipe and the carbonization reaction tank, and the convective mixing injection pipe is arranged sequentially from top to bottom.
  • the forward flow mixer includes a first tube body and a first helical protrusion protruding from the inner wall of the lumen of the first tube body
  • the reverse flow mixer includes a second tube body and a first spiral protrusion protruding from the inner wall of the lumen of the first tube body.
  • the second helical protrusion on the inner wall of the lumen of the second tubular body, the helical direction of the first helical protrusion and the second helical protrusion are opposite;
  • the liquid inlet of the circulation pump communicates with the water circuit circulation outlet, and the liquid outlet of the circulation pump communicates with the feed port of the feed pipe.
  • both the first helical protrusion and the second helical protrusion have a double helical structure.
  • a decompression valve is provided between the air inlet of the air injection pipe and the carbon dioxide pressure supply device, and an air circulation unit is provided between the air inlet of the air injection pipe and the air circulation outlet. to the valve.
  • the inner diameter of the lumen at the lower part of the feeding tube decreases gradually.
  • the tube diameter of the gas-liquid mixing tube gradually decreases downward from the position of the air inlet.
  • a nozzle is connected to the outlet of the reverse flow mixer, and the free end of the nozzle is located below the middle of the carbonization reaction tank.
  • the present invention also provides a dolomite calcined white digestion and separation method, comprising the steps of:
  • the inhibitor includes one or more of ethylenediaminetetraacetic acid, sodium hexametaphosphate, polyacrylic acid, polymaleic acid, and nitrilotriacetic acid ;
  • the digestive emulsion added with the inhibitor is passed through the feeding port, and the CO with pressure is sent into the separation device according to any one of claims 27-32 through the gas injection pipe for carbonization reaction to separate calcium and magnesium.
  • S40 when the pH of the carbonized slurry in the carbonization reaction tank is 7.0-7.8, take out the carbonized slurry and perform solid-liquid separation to obtain calcium carbonate precipitate and magnesium bicarbonate solution.
  • the addition ratio of the calcined white to water in the first batch, and the solid-to-liquid ratio of the calcined white to the decomposed mother liquor in subsequent batches are both 1kg:10-30L.
  • the added amount of the inhibitor is 0.01-0.05% of the mass fraction of the digestive emulsion.
  • the present invention also provides a dolomite calcined carbon dioxide purification and recycling device, including: a recovery chamber assembly, a dust removal assembly, a compressed buffer gas tank assembly, a carbon dioxide purification and recovery subsystem, and a carbon dioxide circulation subsystem;
  • the recovery chamber assembly includes a plurality of shrouds, which form an exhaust chamber between the top of the hearth of the indirectly heated dolomite calciner and the outer wall of the blanking bin, and the dolomite calciner
  • the feed inlet, the blanking port of the blanking bin and the exhaust port of the dolomite calciner are all in communication with the exhaust chamber;
  • the exhaust chamber is connected to the dust removal assembly through a gas collection pipeline connected;
  • the air inlet of the compressed buffer gas tank assembly communicates with the outlet of the dust removal assembly, and compresses and stores the CO2 gas, and the compressed buffer gas tank assembly includes a first gas outlet and a second gas outlet;
  • the carbon dioxide purification and recovery subsystem communicates with the second gas outlet
  • the carbon dioxide circulation subsystem includes a gas transmission pipeline, a carbon dioxide water vapor recovery pipe, a gas-liquid separator, a first recovery pipeline, and a second recovery pipeline; wherein, the gas transmission pipeline communicates with the first gas outlet and dolomite calcined calcium Carbonization separation device for magnesium separation process;
  • the carbon dioxide water vapor recovery pipe is connected to the flue gas outlet of the heavy magnesium hydropyrolysis reactor of the dolomite calcined calcium and magnesium separation process and the gas inlet of the gas-liquid separator, and the first recovery pipeline is connected to the gas The air outlet of the liquid separator and the air inlet of the compressed buffer gas tank assembly;
  • the second recovery pipeline is connected with the flue gas outlet of the magnesium carbonate calciner of the dolomite calcined calcium and magnesium separation process and the air inlet of the dust removal assembly.
  • the dust removal assembly includes a process bag filter, and an induced draft fan is provided on the process bag filter, and the process bag filter introduces the carbon dioxide gas generated in the dolomite calciner into the In the bag filter of the above process.
  • the compressed buffer gas tank assembly includes a screw compressor, a heat exchanger, and a buffer gas tank; the carbon dioxide gas processed by the dust removal component is compressed by the screw compressor, and the screw compressor compresses The carbon dioxide gas is heated to normal temperature by the heat exchanger and then transported to the buffer gas tank for storage.
  • the carbon dioxide purification and recovery subsystem includes a primary purification component, a secondary purification component, a temporary storage component, and a rectification component;
  • the primary purification component is used for sequentially compressing, condensing and gas-liquid separating the carbon dioxide gas stored in the compressed buffer gas tank component to obtain the carbon dioxide liquid and the gas to be purified after the first separation;
  • the secondary purification component is used to receive the gas to be purified obtained after the first separation, and sequentially compress, condense and separate the gas to be purified after the first separation to obtain the carbon dioxide liquid after the secondary separation , gas to be purified and gas to be discharged; the gas outlet to be purified of the secondary purification component is communicated with the air inlet of the primary purification component, so that the gas to be purified obtained after the secondary separation is passed through the primary The purification component is processed again; the waste gas exhaust port of the secondary purification component communicates with the outside to discharge the gas to be discharged obtained after the secondary separation;
  • the temporary storage assembly includes a first cooling storage tank and a pressure regulating valve, the first cooling storage tank is used for temporarily storing the carbon dioxide liquid obtained after the first separation and the second separation, and the pressure regulating valve is used for regulating the pressure of the first cooling storage tank;
  • the rectification assembly includes a rectification tower and a second cooling storage tank, the rectification tower is used to receive the pressure-regulated carbon dioxide liquid in the first cooling storage tank, and perform rectification treatment on the received carbon dioxide liquid to obtain purified carbon dioxide, and the second cooling storage tank is used for cooling and temporarily storing the purified carbon dioxide.
  • the primary purification assembly includes a first compressor, a first condenser, and a first gas-liquid separator;
  • the secondary purification assembly includes a second compressor, a second condenser, and a second gas-liquid separator;
  • the first compressor compresses the carbon dioxide gas stored in the compressed buffer gas tank assembly; the first condenser condenses the carbon dioxide gas compressed by the first compressor to obtain carbon dioxide liquid and Gas to be separated; the first gas-liquid separator performs gas-liquid separation on the gas to be separated in the first condenser to obtain carbon dioxide liquid and gas to be purified; the first condenser and the first gas The carbon dioxide liquid in the liquid separator is discharged to the temporary storage assembly;
  • the second compressor compresses the gas to be purified in the first gas-liquid separator; the second condenser condenses the carbon dioxide gas compressed by the second compressor to obtain carbon dioxide liquid, The gas to be discharged and the gas to be separated; the second gas-liquid separator performs gas-liquid separation on the gas to be separated in the second condenser to obtain carbon dioxide liquid and gas to be purified;
  • the gas to be discharged in the second condenser is discharged to the factory chimney, the carbon dioxide liquid in the second condenser and the second gas-liquid separator is discharged to the temporary storage component, and the second gas The gas to be purified in the liquid separator is discharged to the first condenser.
  • the carbon dioxide purification and recovery subsystem also includes a first booster pump, a second booster pump and a liquefied carbon dioxide storage tank;
  • the carbon dioxide liquid in the first condenser, the first gas-liquid separator, the second condenser, and the second gas-liquid separator is all pressurized by the first booster pump and discharged to In the first cooling storage tank;
  • the purified carbon dioxide in the second cooling storage tank is pressurized by the second booster pump and then transported to the liquefied carbon dioxide storage tank for storage.
  • the carbon dioxide purification and recycling device also includes a ring collection dust removal mechanism, the ring collection dust removal mechanism is used to collect the ore powder dust gas generated during the calcination feed process, and to remove dust from the collected ore powder dust gas deal with.
  • the feed port of the dolomite calciner and the exhaust port of the dolomite calciner are the same opening.
  • the present invention also provides a purification and recycling method of dolomite calcined carbon dioxide, which is characterized in that the purification and recycling device as described in any one of the above is used to purify, separate and recycle the carbon dioxide.
  • the present invention can make the separation of calcium and magnesium more thorough, and obtain high-purity light carbonic acid and light magnesium oxide.
  • the magnesium content of light calcium carbonate, one of the products produced can be controlled at less than 1%, which meets the requirements of "HG/T2226- 2010" standard; the second product produced is high-purity light magnesium oxide with a purity of more than 98%, which meets the "HG/T2573-2012" standard.
  • the present invention drives the inflow of carbon dioxide gas through the high-speed flowing digestive emulsion, and cuts the carbon dioxide gas into micro-bubbles, which can improve the mixing degree of carbon dioxide gas and digestive emulsion, and promote the carbonization reaction; by combining carbon dioxide gas and digestive emulsion Convective mixing of the gas-liquid mixture can promote the further combination of carbon dioxide and digested emulsion; by introducing the inhibitor in the carbonization reaction of the carbonization reaction section, it can inhibit the generated calcium carbonate from being converted into calcium bicarbonate, avoiding calcium dissolution.
  • the present invention can ensure that the boiling point temperature in the pyrolysis kettle is between the pyrolysis temperature of calcium bicarbonate and magnesium bicarbonate by carrying out negative pressure adjustment in the pyrolysis section, avoiding the pyrolysis of calcium bicarbonate and ensuring The purity of magnesium carbonate is improved; By introducing the dispersant in the pyrolysis section, the formation of magnesium carbonate can be promoted.
  • the present invention ensures that the gas in the flue gas only comes from the decomposition of dolomite by controlling the dolomite from direct contact with the outside during the calcination process and setting up an independent exhaust system; the present invention can increase the carbon dioxide content in the flue gas. Purity, so that the purity of carbon dioxide in the flue gas is about 85%.
  • the present invention starts gas recovery when the dolomite is heated to 650-750°C, so that the opening time of the carbon dioxide capture device is consistent with the initial decomposition time of magnesium carbonate, which can not only reduce energy consumption, but also It can provide a buffer time for the preheating and drying of dolomite, avoiding the mixing of a large amount of water vapor in the flue gas; and, part of the heat in the subsequent calcination zone will be transferred to the dolomite to be calcined through material accumulation and gas flow, therefore, the subsequent Dolomite produces less water vapor during the calcination process, which will not cause the flue gas to be mixed with a large amount of water vapor during the subsequent calcination process.
  • the present invention can improve resource utilization and reduce energy consumption.
  • the heat is mainly concentrated in the calcination area of the furnace, and a small amount of dissipated heat can only be transferred upwards to the dolomite to be calcined through material accumulation and gas flow, or downwards to the cooling water in the circulating cooling assembly.
  • the heated cooling water can be used as a heat source in the pyrolysis section; in addition, by using the decomposition mother liquor produced in the pyrolysis section for digestion in the digestion section, not only can the recycling of the inhibitor be realized, but also the Reuse of heat, that is, heat is transferred from dolomite calcination area to cooling water, then from heated cooling water to pyrolysis section, and finally from decomposition mother liquor in pyrolysis section to digestion section.
  • the present invention can improve the quality and activity of calcined white.
  • the sealing plate, the blanking bin, and the coaming plate and the setting of the exhaust chamber even if the outer wall of the furnace is heated, Due to the accumulation of materials in the falling bin and the effect of the coaming plate and the sealing plate, it is also possible to avoid direct contact with dolomite by coal combustion and combustion-supporting air, ensuring that dolomite is in the calcination process During this process, functions such as dolomite feeding, airtight exhaust and heat exchange can also be realized; by using the electric heating plate and the electric heating rod to heat and calcinate the dolomite, it can ensure Further development of clean calcination.
  • the present invention can improve the purity of carbon dioxide in flue gas.
  • An independent exhaust system can be formed through the communication port, the exhaust chamber and the gas collection pipe to ensure that the flue gas discharged from the calcining area will not be mixed with impurities, but completely from the Dolomite is calcined and decomposed, and the purity of carbon dioxide is high.
  • the present invention can reduce the water vapor content of carbon dioxide in flue gas.
  • An exhaust chamber is formed between the outer wall of the blanking bin and the sealing plate through a coaming plate, and the smoke in the exhaust chamber can preheat the materials in the blanking bin, which can not only recover Utilizing energy, it is also possible to first evaporate the moisture in the material in the material bin, and control the opening time of the carbon dioxide capture device to keep it consistent with the initial decomposition node (600-700°C) of magnesium carbonate.
  • the decomposition time of carbon dioxide is adapted, and it can also provide a buffer time for the preheating and drying of dolomite, avoiding a large amount of water vapor mixed in the flue gas; and, in the follow-up process, due to the heat in the calcination area, some materials will accumulate and gas Flow and transport to the dolomite to be calcined, therefore, the subsequent dolomite will generate less water vapor during the calcining process, and will not mix a large amount of water vapor in the flue gas.
  • the present invention can reduce the energy consumption required for dolomite calcination.
  • the heat is mainly concentrated in the calcination area of the furnace, and a small amount of dissipated heat can only be transferred upward or downward.
  • the heat in the process of upward transmission, due to the setting of the blanking port and the connecting port, the heat can be transferred to the blanking bin through material accumulation, so that the dolomite to be calcined is preheated and dried; in addition, due to the It will also carry some heat.
  • the exhaust system and the blanking system share a communication port, and the exhaust chamber in the exhaust system is set around the blanking bin, the heat carried in the flue gas will also be transferred through the blanking bin.
  • the present invention can make the separation of calcium and magnesium more thorough at a lower cost.
  • the mechanical energy is converted into The surface energy of gas-liquid, carbon dioxide is cut into micro-bubbles.
  • the gas-liquid mixing tube has a relatively high injection force, driven by the injection force, the gas-liquid mixture is vertically sprayed into the convective mixing injection tube, and the high-speed flow of the gas-liquid mixture and the reverse convection effect in the convective mixing injection tube can significantly increase the contact frequency of carbon dioxide and digested emulsion in a short time; and because the convective mixing injection tube is located inside the carbonization reaction tank, high frequency
  • the contacted gas-liquid mixture can immediately enter and be sprayed into the carbonization reaction tank, thereby continuously maintaining the tightness between gas and liquid.
  • the gas-liquid mixing pipe, the feed pipe and the air injection pipe make the carbon dioxide be cut into microbubbles, and under the action of vertical jet force and reverse convection, the contact of the microbubbles with the digestive emulsion
  • the frequency can be instantly increased countless times.
  • the gas-liquid mixing tube and the convective mixing tube are arranged up and down, which can avoid the weakening of the injection force; and, the diameter of the lower part of the gas-liquid mixing tube is gradually reduced, which can further ensure that the gas-liquid mixture enters
  • the process in the convective mixing injection tube has a higher injection speed to ensure that the contact frequency between gas and liquid can be instantly increased, thereby improving the efficiency of carbonization reaction.
  • the conversion of calcium carbonate to calcium bicarbonate can be inhibited, and the calcium and magnesium in the system can be completely separated; at the same time, subsequent batches of digestion
  • the emulsion is digested with decomposed mother liquor, and most of the inhibitors can be recycled, which greatly reduces the production cost and realizes green production.
  • the present invention can realize the purification and recycling of carbon dioxide in the deep processing of dolomite.
  • First of all by setting the recovery chamber assembly, the feed inlet and the exhaust chamber form a closed exhaust system, thereby constructing a purification and recovery path for carbon dioxide in the primary calcination section, and the exhaust system can avoid flue gas Contact with the outside makes the flue gas in a relatively independent environment from generation to collection, ensuring the initial purity of carbon dioxide;
  • the time node of flue gas recovery the starting time of flue gas recovery is the same as that in dolomite
  • the initial decomposition time of magnesium carbonate is consistent, which provides a buffer time for the preheating and drying of dolomite, and avoids the inclusion of a large amount of water vapor in the recovered carbon dioxide.
  • a purification and recovery path for carbon dioxide in the pyrolysis section is constructed; by setting the second recovery pipeline, the The second recovery pipeline communicates with the dedusting assembly to construct a purification and recovery pathway for carbon dioxide in the secondary calcination section; by arranging the gas transmission pipeline communicated with the carbonization system and the compressed buffer gas tank assembly at the same time, constructing
  • the resource utilization path of carbon dioxide; in particular, the carbonization section, the pyrolysis section and the secondary calcination section are connected through pipelines, which also constitutes a carbon loop and forms a carbon cycle.
  • Fig. 1 is the module schematic diagram of complete treatment system among the present invention
  • Fig. 2 is the elevation schematic diagram of dolomite calciner among the present invention
  • Fig. 3 is the schematic plan view of dolomite calciner among the present invention.
  • Fig. 4 is a schematic diagram of the relative positions of the blanking bin and the gas collection pipeline in the present invention.
  • FIG. 5 is a schematic diagram of the relative positions of the exhaust chamber and the gas collection pipeline in the present invention.
  • Figure 6 is a cutaway view of the exhaust chamber and the blanking bin in the present invention.
  • Fig. 7 is a schematic diagram of another relative position of the blanking bin and the gas collection pipeline in the present invention.
  • Fig. 8 is the structural representation of the carbonization separation device in the present invention.
  • Fig. 9 is the structural representation of the gas-liquid mixing reactor in the present invention.
  • Fig. 10 is a schematic structural view of a convective mixing jet tube in the present invention.
  • Fig. 11 is a schematic flow sheet of the dolomite calcined white digestion and separation method in the present invention.
  • Fig. 12 is a schematic structural view of the purification and recycling device in the present invention.
  • Fig. 13 is another schematic structural view of the purification and recycling device in the present invention.
  • Fig. 14 is a schematic structural view of the recovery cavity assembly in the present invention.
  • Fig. 15 is a schematic structural view of the combination of dolomite calciner and recovery cavity assembly in the present invention.
  • Exhaust passage 10 exhaust chamber 11; process bag filter 12; screw compressor 13; heat exchanger 14; buffer gas tank 15; first compressor 16; first condenser 17; first gas-liquid separator 18; the second compressor 19; the second condenser 20; the second gas-liquid separator 21; the first booster pump 22; the first cooling storage tank 23; the rectification tower 24; the second cooling storage tank 25; Booster pump 26; Liquefied carbon dioxide storage tank 27;
  • Dolomite calcination furnace 100 ring collection dust cover 101; ring collection bag filter 102; factory chimney 103; dust removal assembly 104; compressed buffer gas tank assembly 105; carbon dioxide purification and recovery subsystem 106;
  • Primary calcination device 201 digestion device 202; carbonization separation device 203; pyrolysis device 204; secondary calcination device 205; recovery cavity assembly 206; gas-liquid separation assembly 207; first gas outlet 208; Pipeline 210; carbon dioxide water vapor recovery pipe 211; first recovery pipeline 212; second recovery pipeline 213; circulating water return pipeline 214; decomposed mother liquor return pipeline 215; carbon dioxide capture device 216;
  • Belt conveyor 301 mobile unloading vehicle 302; blanking bin 303; blanking hopper 304; baffle plate 305; level controller 306; gas collection pipe 307; exhaust chamber 308; Port 311; calcining area 312; heating rod 313; heating plate 314; insulation layer 315;
  • Carbonization reaction tank 401 feeding port 402; gas circulation outlet 403; water circulation outlet 404; drain outlet 405; temperature display interface 406; pressure display interface 407; liquid level display interface 408; inspection port 409; gas-liquid mixing reactor 410; feed pipe 411; jet pipe 412; decompression valve 413; gas path circulation check valve 414; gas-liquid mixing pipe 415; convective mixing injection pipe 416; circulation pump 419; circulation pump inlet valve 420; circulation pump outlet valve 421.
  • the present invention provides a complete treatment system for the deep utilization of dolomite resources, including a primary calcination device 201, a carbon dioxide capture device 216, a digestion device 202, a carbonization separation device 203, and a pyrolysis device 204 And secondary calcining device 205.
  • the primary calcination device 201 includes a dolomite calcination furnace for indirect calcination of dolomite, a plurality of shrouds 309 and a gas collection pipeline 307 .
  • the exhaust chamber 308 is formed around the surrounding plate 309 and the top of the furnace body of the dolomite calciner and the outer wall of the blanking bin 303.
  • the exhaust port of the dolomite calciner is all communicated with the exhaust chamber 308; the exhaust chamber 308 communicates with the air inlet of the carbon dioxide capture device 216 through the gas collection pipeline 307 .
  • the feed port of the dolomite calciner and the exhaust port of the dolomite calciner may be the same opening, collectively referred to as the communication port 311 .
  • the dolomite calcination furnace that performs indirect calcination treatment on dolomite can use electricity or gas as the energy source for calcination to perform indirect calcination on the dolomite to obtain calcined white and carbon dioxide gas; and through the The accumulation of dolomite in the dolomite calcination furnace and the flow of carbon dioxide gas are used to preheat and dry the uncalcined dolomite.
  • the primary calcination device 201 is described below with a specific example.
  • the dolomite calcination furnace for indirect calcination treatment of dolomite is a shaft furnace or a shaft kiln.
  • the dolomite calciner includes a blanking bin 303 , a furnace, and a discharging bin 317 arranged sequentially from top to bottom.
  • the top of the furnace is provided with a sealing plate 310 for closing the furnace mouth of the furnace and having at least one communication port 311 .
  • the outer wall of the furnace is covered with an insulating layer 315, and at least one calcining area 312 surrounded by a heating plate 314 is formed inside the furnace, and at least one The heating rods 313 extending into the calcining area 312; generally, a plurality of the heating rods 313 are uniformly arranged in each calcining area 312 to uniformly heat the dolomite in the calcining area 312. calcined.
  • the distance between adjacent heating rods 313 and between the heating rods 313 and the heating plate 314 can be determined according to the actual situation. As a better choice, it can be set at 100 ⁇ 500mm.
  • the blanking bin 303 is arranged above the sealing plate 310, at least one blanking port of the blanking bin 303 communicates with the calcining area 312 through the communication port 311, and the size of the blanking port is smaller than The size of the communicating port 311.
  • a sealed exhaust chamber 308 is formed around the surrounding plate 309, the outer wall of the blanking bin 303 and the sealing plate 310, and the exhaust chamber 308 communicates with the exhaust chamber 308 through the communication port 311.
  • the calcining zone 312 is connected. Wherein, the discharge opening may be flush with the communication opening 311, or may slightly protrude into the calcining zone 312, so as to prevent the communication opening 311 from being completely blocked by dolomite.
  • the discharge bin 317 is arranged below the furnace, so that the dolomite material in the calcining zone 312 passes through the discharge bin 317 and then is discharged onto the conveying mechanism.
  • the gas collection pipeline 307 is communicated with the exhaust chamber 308 and the carbon dioxide capture device 216 at the same time, so that the gas generated in the calcination area 312 passes through the communication port 311, the exhaust chamber 308 and the gas capture pipeline 307 are discharged into the carbon dioxide capture device 216 .
  • the coaming plate 309 can be fixedly connected with the outer wall of the blanking bin 303 and the sealing plate 310 by means of welding or flange connection, so as to connect the outer wall of the blanking bin 303 to the outer wall of the blanking bin 303.
  • the gap between the sealing plates 310 is closed.
  • the coaming plate 3099 can also be integrated with the blanking bin 3033, and the bottom of the coaming plate 309 can be held against the top of the furnace body by adjusting the height of the blanking bin 303.
  • the magnesium carbonate in the dolomite (generally when the dolomite is heated to about 700 degrees) begins to decompose, then the induced draft fan in the carbon dioxide capture device 216 is turned on, so that the calcining zone 312 The gas generated inside is sent to the carbon dioxide capture device 216 .
  • dolomite contains water
  • the temperature of the material is about 700°C
  • the water in the dolomite is basically evaporated at this time, so the recovered carbon dioxide will contain less water.
  • the subsequent carbon dioxide produced contains less water.
  • a valve may also be provided at the connection between the gas collection pipeline 307 and the exhaust chamber 308 to prevent the moisture generated in the early stage from entering the gas collection pipeline 307, and the valve may communicate with an external controller connect.
  • a level controller 306 can be installed on the dropping bin 303 or on the feeding mechanism, and the level controller 306 can be a sound wave level control device 306 or a tuning fork level controller 306, the feeding mechanism can be a belt conveyor 301 with a mobile unloading vehicle 302; the level controller 306 monitors the position of the falling bin 303 and controls The mobile unloading vehicle 302 feeds materials into the blanking bin 303, so as to realize the interlocking control between the blanking bin 303 and the belt conveyor 301.
  • the blanking bin 303 may include multiple blanking hoppers 304 provided with the blanking openings, and the blanking hoppers 304 are funnel-shaped.
  • the blanking bin 303 may be composed of a plurality of
  • the lower part of the blanking bin 303 can also be composed of a plurality of the blanking bins 304 , and the upper part of the blanking bin 303 can be surrounded by a baffle plate 305 .
  • each of the blanking hoppers 304 is provided with one of the blanking openings, between the tops of the side walls of two adjacent blanking hoppers 304, and between the blanking hoppers 304 and the surrounding boards 309, all need
  • the airtight connection ensures the airtightness of the exhaust chamber 308 .
  • the material level controller 306 can also be installed on the hopper 304 or the baffle plate 305 to realize the control of the storage position in each of the hoppers 304, of course, the material level The controller 306 is arranged on the mobile unloading vehicle 302 to achieve this purpose.
  • a vibrator 316 is provided on the outer wall of the discharging bin 317 to make the discharge of the dolomite material more uniform and stable.
  • the outer wall of the discharge bin 317 is provided with a circulating water cooling assembly 318 , for cooling the calcined white produced after calcination, the conveying mechanism may be a plate conveyor 319 .
  • the circulating water-cooling assembly 318 can be arranged in the middle and lower part of the discharge bin 317, and the circulating water-cooling assembly 318 can be a water-cooled sandwich wall, and the water-cooled sandwich wall and the outer wall of the discharge bin 317
  • the room can be surrounded by a water-cooled chamber for the entry of cooling water and discharge after heating.
  • the hot water outlet of the circulating water cooling assembly communicates with the water bath hot water inlet of the pyrolysis kettle through the circulating water return pipeline 214, and the heated hot water in the water cooling chamber is used to supply the pyrolysis kettle hot.
  • the primary calcination device 201 is mainly for dolomite calcination and gas recovery.
  • the dolomite calcination furnace is used to replace the traditional kiln. This furnace does not need to add pulverized coal, coke or heavy oil and other fuel auxiliary materials to calcine dolomite, and uses clean electric energy Or gas indirect treatment, which solves the pollution of fly ash, tar and other substances to light-burned dolomite at the front end. Therefore, the light-burned dolomite produced by this furnace has high purity, good activity, and no pollution, which can effectively reduce the impurity removal in subsequent sections.
  • the furnace also has the characteristics of not needing to blow a large amount of combustion-supporting air during the calcination process, so the CO 2 gas decomposed by calcination is of high purity and does not contain SO2, CO, H2S, etc., and the furnace gas composition is about 85% CO 2 , 11.85% N2 and 3.15% O2, which can be directly dedusted and then compressed into the intermediate gas bag cache through secondary compression for use in the carbonization section, without waste gas and carbon dioxide emissions.
  • the dolomite calcination furnace can adopt electric indirect heating or gas burner to provide hot air indirect heating.
  • the dolomite ore is broken to 5-10 cm and put into the inner furnace.
  • the heating rod 313 and the heating plate 314 use electricity as the energy source to heat the calcining zone 312; when gas heating is used, the heat source is heated on the outer wall of the furnace, because the blanking bin, the coaming and the
  • the structural design of the sealing plate and the setting of the exhaust chamber can avoid the contact of the material in the calcining area with the heat source and the combustion-supporting air in the case of piling up dolomite, ensuring the cleanliness of the material.
  • the dolomite calciner not only realizes the heat exchange between gas and materials and between materials under the premise of ensuring the airtight recovery of gas, but also has a further energy-saving effect.
  • the outer wall of the furnace is provided with the insulation layer 315, therefore, the heat inside the furnace can only be transferred upwards or downwards, and because there is a gap between the gas material and the material above the furnace.
  • the heat transferred upwards will be fully utilized by the dolomite in the falling silo 303, and in addition, since the circulating water cooling assembly 318 is provided on the outer wall of the discharging silo 317, a small part is transferred downwards The heat will be absorbed by the cooling water in the circulating water cooling assembly 318, and the cooling water can be used in other processes of dolomite after heating up, so as to improve the utilization rate of heat.
  • the carbon dioxide capture device 216 includes a compressed buffer gas tank assembly, a carbon dioxide circulation subsystem, and a recovery system.
  • the buffer gas tank assembly includes a first gas outlet 208 and a second gas outlet 209, the second gas outlet 209 communicates with the recovery system, and the carbon dioxide circulation subsystem includes a gas transmission pipeline, a first recovery pipeline 212 and a second recovery system. pipeline 213.
  • the compressed buffer gas tank assembly can discharge part of the carbon dioxide to the carbonization separation device 203 through the first gas outlet 208, so as to complete the carbonization reaction.
  • the second gas outlet 209 can discharge another part of excess carbon dioxide to the recovery system for storage, and the recovery system can specifically include a carbon dioxide purification and recovery subsystem 106 to deeply purify excess carbon dioxide; due to dolomite processing There is always decomposition of carbon dioxide in the process, and carbon dioxide can be recycled, so excess carbon dioxide can be stored in the recovery system.
  • the digestion device 202 can digest the calcined white by adding an aqueous solution through a rotary digester to obtain a digested emulsion; the digested emulsion is cooled by a rotary cooler to obtain a cooled digested emulsion.
  • the aqueous solution in the digestion section includes water or the decomposed mother liquor obtained after the pyrolysis device 204 reacts, and inhibitors can be added to the digested emulsion obtained after water digestion to ensure the separation of calcium and magnesium.
  • the inhibitor includes one or more of ethylenediaminetetraacetic acid, sodium hexametaphosphate, polyacrylic acid, polymaleic acid, nitrilotriacetic acid, and the added amount of the inhibitor can be the amount of the digestive emulsion 0.01 to 0.05% of the mass fraction.
  • the solid-to-liquid ratio of the calcined white to the water or the decomposed mother liquor is 1kg:10-30L; the first batch of the calcined white is digested with water at 50-80°C, and the remaining batches of the calcined white Digestion is carried out with the uncooled mother liquor of the decomposition.
  • the present invention uses the decomposed mother liquor after the solid-liquid separation in the pyrolysis section to digest the digested emulsion in the rotary digester, and the heat released during the digestion process can make it unnecessary to consider the consumption of digested water during continuous production. heating.
  • a rotary cooler with high and low steps is installed behind the rotary digester.
  • the digested emulsion overflows to the rotary cooler to complete cooling, and is cooled to about 30°C and enters the carbonization reactor in the carbonization section through a pump; "GB/T14684-2011" construction sand standard, can be used as building materials for sale, no waste residue is generated or discharged, all washing water is returned to the digester for recycling, and there is no waste water discharge.
  • Using the rotary digester and rotary cooler to replace the traditional agitated digester and cooling tank can well avoid serious calcium deposition in the digested slurry, blockage of equipment and pipelines, and other problems that affect normal production.
  • the carbonization separation device 203 includes a carbonization reaction tank 401 , the air inlet of the carbonization reaction tank 401 communicates with the first gas outlet 208 of the compressed buffer gas tank assembly.
  • the carbonization separation device 203 can be a water ring carbonization reactor, specifically, including: the carbonization reaction tank 401, gas-liquid mixing reactor 410 and circulation pump 419; of course , may also include a plurality of communicating pipelines for transporting digestive emulsion or carbon dioxide.
  • the top of the carbonization reaction tank 401 is provided with a feeding port 402 and a gas circuit circulation outlet 403; the bottom of the carbonization reaction tank 401 is provided with a water circuit circulation outlet 404 and a drainage port 405, and the drainage port 405 is equipped with a drainage
  • the carbonization reaction tank 401 can also be provided with a temperature display interface 406, a pressure display interface 407, a liquid level display interface 408, and an inspection port 409, so that the staff can monitor the carbonization reaction and check the carbonization reaction.
  • Tank 401 is maintained.
  • the gas-liquid mixing reactor 410 includes a gas-liquid mixing pipe 415, a feed pipe 411 and an air injection pipe 412; wherein, the gas-liquid mixing pipe 415 is installed inside the carbonization reaction tank 401, specifically, it can be installed in the The upper part of the carbonization reaction tank 401, thereby reserving sufficient accommodating space in the carbonization reaction tank 401, so that the carbonization reaction can be fully carried out.
  • the top of the gas-liquid mixing tube 415 is provided with a seal, and the upper part of the side wall of the gas-liquid mixing tube 415 is provided with an air injection tube 412 installation port. Internal connectivity settings.
  • the feed pipe 411 In order to mix the digestive emulsion with the carbon dioxide component, the feed pipe 411 passes through the top of the carbonization reaction tank 401 and the top of the gas-liquid mixing pipe 415 from top to bottom, and then extends into the gas-liquid mixing pipe 415 and the outlet of the feed pipe 411 is located below the installation port of the air injection pipe 412, and the interface between the gas-liquid mixing pipe 415 and the feed pipe 411 is sealed by a seal.
  • the air inlet of the air injection pipe 412 communicates with the air supply device (that is, the first air outlet 208 ) and the air circuit circulation outlet 403 at the same time, and the exhaust port of the air injection pipe 412 is installed on the air injection pipe 412 At the position of the installation port, it is set in communication with the gas-liquid mixing tube 415; so that carbon dioxide enters the gas-liquid mixing tube 415 driven by the high-speed flowing digestive emulsion, and is cut into microbubbles by the digestive emulsion .
  • the gas-liquid mixing reactor 410 also includes the convective gas-liquid mixing reactor 410 communicated with the lower end of the gas-liquid mixing pipe 415 and the carbonization reaction tank 401 respectively.
  • Mixing injection pipe 416, the convective mixing injection pipe 416 is arranged below the gas-liquid mixing pipe 415, and the convective mixing injection pipe 416 is sequentially provided with a forward flow mixer 417 and a reverse flow mixing device 418.
  • the convective mixing injection pipe 416 and the gas-liquid mixing pipe 415 can be integrally arranged, or can be fixedly connected, and the gas-liquid mixture obtained in the gas-liquid mixing pipe 415 enters the gas-liquid mixing pipe 415 from the lower end opening of the gas-liquid mixing pipe 415.
  • the convective mixing tube and through the convective mixing of the forward flow mixer 417 and the reverse flow mixer 418, it is sprayed into the carbonization reaction tank 401.
  • the forward flow mixer 417 is mainly used to generate forward rotation of the gas-liquid mixture flowing down
  • the device 418 is mainly used to reverse the rotation of the gas-liquid mixture flowing down.
  • the forward rotation and the reverse rotation are relative concepts, and only the rotation direction between the two is opposite. Generally speaking, the The forward rotation can be understood as clockwise rotation, and the reverse rotation can be understood as counterclockwise rotation.
  • the forward flow mixer 417 includes a first tube body and a first spiral protrusion protruding from the inner wall of the lumen of the first tube body
  • the reverse flow mixer 418 includes a second tube body
  • the helical directions of the first helical protrusion and the second helical protrusion are opposite to those of the second helical protrusion protruding from the inner wall of the lumen of the second tubular body.
  • the first pipe body and the second pipe body may be integrally arranged, or fixedly connected by a fixing member.
  • the helical direction of the first helical protrusion may be clockwise
  • the helical direction of the second helical protrusion may be counterclockwise
  • the helical protrusions can all be of a double helix structure, of course, they can also be of a single helix structure.
  • the forward flow mixer 417 and the reverse flow mixer 418 can form a high-speed convection of gas and liquid, so that the mixing reaction is more complete and the reaction is more efficient.
  • the tube at the lower part of the feed pipe 411 The inner diameter of the cavity gradually decreases, and the inner diameter of the lower lumen of the pair of gas-liquid mixing pipes 415 can also be gradually reduced.
  • a pressure reducing valve 413 is provided between the air inlet of the gas injection pipe 412 and the gas supply device, to The carbon dioxide provided by the gas supply device is adjusted in air pressure, and a gas circuit circulation check valve 414 is provided between the air inlet of the gas injection pipe 412 and the gas circuit circulation outlet 403 to prevent the carbon dioxide provided by the gas supply device Carbon dioxide is split during the intake process.
  • the pressure reducing valve 413 and its corresponding pipeline can be connected with the gas circulation check valve 414 and The corresponding pipelines are set in parallel.
  • the normal working pressure of the carbonization reaction tank 401 is about 20-40KPa.
  • the pressure reducing valve 413 can be used in conjunction with a constant pressure valve, and the constant pressure valve can be arranged on the feeding pipe 411, or can be arranged on the feeding pipe 411 and the pressure reducing valve. On the connecting pipeline of valve 413.
  • the liquid inlet of the circulation pump 419 is communicated with the water circuit circulation outlet 404, and the liquid outlet of the circulation pump 419 is communicated with the feed port of the feed pipe 411, so as to
  • the digested emulsion in the carbonization reaction tank 401 is pumped at high speed as in the feed pipe 411, so that the digested emulsion entering the feed pipe 411 enters the gas from top to bottom at a higher flow rate.
  • the carbon dioxide gas is cut.
  • a circulation pump inlet valve 420 is provided between the circulation pump 419 and the water circuit circulation outlet 404
  • a circulation pump outlet valve 421 is provided between the circulation pump 419 and the feeding port of the feeding pipe 411 . To control the liquid in the circulation.
  • the above-mentioned carbonization separation device 203 adopts the gas-liquid mixing reactor 410, and the carbonization separation device 203 performs liquid circulation through the circulation pump 419 under the condition of being completely closed and pressurized,
  • the gas-liquid two-phase cycle not only makes the carbon dioxide separated into microbubbles by the digestive emulsion, but also produces spiral convection.
  • the circulation gas path generated in the carbonization separation device 203 can also make the CO gas that is not fully absorbed once enter the gas-liquid mixing reactor 410 for the second time through the negative pressure generated by the circulation pump 419, and then gas-liquid mixing and carbonization until Absorbs completely.
  • the carbonization separation device 203 in the present invention not only has high efficiency, but also does not cause leakage and waste of CO 2 reaction gas.
  • the carbonization temperature is lower than 35°C, and a small amount of light calcium carbonate will decompose and dissolve into heavy magnesium water (magnesium bicarbonate solution), which will affect the purity of the product. Therefore, adding 0.01-0.05% inhibitor in the digestive emulsion during the high-temperature production period can effectively control the dissolution of calcium bicarbonate during the carbonization process.
  • the pyrolysis device 204 includes a pyrolysis kettle and a vacuum pump, and the vacuum pump communicates with the pyrolysis kettle to maintain the negative pressure state in the pyrolysis kettle so that the calcium-containing heavy magnesium aqueous solution in the pyrolysis kettle
  • the boiling point is between the pyrolysis temperature of magnesium bicarbonate and the pyrolysis temperature of calcium bicarbonate;
  • the decomposition mother liquor after the pyrolysis reaction of the pyrolysis unit 204 is returned to the digestion unit 202 through the decomposition mother liquor return pipeline 215 Liquid inlet.
  • the first recovery pipeline 212 communicates with the gas outlet of the pyrolysis tank and the inlet of the carbon dioxide capture device 216 .
  • the pyrolysis device 204 extracts the gas in the pyrolysis kettle by a vacuum pump, and controls the boiling point of the magnesium bicarbonate to be between the pyrolysis temperature of magnesium bicarbonate and the pyrolysis temperature of calcium bicarbonate, so that the bicarbonate
  • the magnesium solution is pyrolyzed in the said pyrolysis tank under negative pressure to obtain decomposition mother liquor, magnesium carbonate precipitation and carbon dioxide gas.
  • a negative pressure is formed inside the vacuum pyrolysis kettle by a vacuum pump, which can reduce the temperature required for the pyrolysis treatment, and it can also extract the ribbon vacuum.
  • the pyrolysis kettle in the pyrolysis section when the pyrolysis kettle in the pyrolysis section operates, it will produce high-concentration CO2 gas with a certain amount of water vapor, which is drawn out by the negative pressure water ring vacuum pump equipped with the reaction kettle, and the negative pressure pressure control is generally Less than 0.02MPa.
  • the moisture contained in the high-concentration CO2 gas containing a certain amount of water vapor will be enriched in the water ring vacuum pump water tank, and the CO2- rich gas will enter the carbon dioxide capture device 216 after being separated by a gas-liquid separator, It can be used for the carbonization reaction or the collection of carbon dioxide in the carbonization section.
  • the dispersant includes one or more of methanol, alcohol, glycerin, polyacrylamide, cellulose derivatives, water glass.
  • the added amount of the dispersant may be 0.1%-2% by volume of the magnesium bicarbonate solution.
  • the pyrolysis kettle can be a ribbon pyrolysis kettle, and a ribbon agitator can be provided in the ribbon pyrolysis kettle to prevent material deposition and wall formation, so as to avoid material deposition and wall formation and reduce the thermal stress on the heat. Solve the heating effect of the kettle.
  • the above embodiment uses the vacuum pyrolysis kettle with the ribbon stirrer for pyrolysis, the outer wall of the reactor is provided with a heating jacket, and the heating heat source in the jacket comes from the primary calcination section.
  • the circulating cooling water in the circulating water cooling assembly 318; the ribbon agitator arranged in the pyrolysis kettle is used to prevent the material from depositing and forming walls in the kettle to reduce the thermal conductivity and increase the energy consumption, and to accelerate the process of heavy magnesium Water decomposition reaction.
  • the reactor is also equipped with a water ring vacuum pump.
  • the water ring vacuum pump provides negative pressure to form a vacuum inside, so as to reduce the decomposition temperature of heavy magnesium water in the reactor, and combined with the addition of dispersant, the While the decomposition speed of magnesium bicarbonate is greatly accelerated, the crystals of magnesium carbonate are finer and regular in shape, with higher purity.
  • the moisture contained in a large amount of high-concentration CO2 gas produced by pyrolysis is enriched in the water ring vacuum pump water tank, and the separated CO2 - rich gas enters the carbon dioxide capture device 216 of the calcination section through the gas-liquid separator, and then re- use.
  • the complete set of treatment system for deep utilization of dolomite resource utilization can further include pressure filtration and drying section devices: respectively filter, wash, and dry the calcium carbonate precipitate and the magnesium carbonate precipitate in sequence to obtain Light calcium carbonate and light magnesium carbonate.
  • a fully automatic vertical filter press/belt filter that integrates functions such as filtration, filter cake washing, extrusion, air drying, automatic unloading, and automatic filter cloth cleaning can be used.
  • the filter press replaces the traditional plate and frame filter press.
  • the light calcium carbonate produced in the carbonization section and the light magnesium carbonate produced in the pyrolysis section are filtered by separate machines.
  • Spin flash dryer the fast spin flash dryer has its own dispersing function, continuous and stable feeding without bridging, good air tightness, can dry the final moisture of light calcium carbonate to less than 0.1%, and make Light magnesium carbonate is dried to a final moisture content of less than 20%.
  • the obtained light calcium carbonate can be packaged for sale, and the light magnesium carbonate enters the secondary calcination section to prepare light magnesium oxide.
  • the above-mentioned fully automatic vertical filter press has the function of automatically cleaning the filter belt and filter cake, which makes the filter press more thorough and at the same time improves the product recovery rate by cleaning the filter cake.
  • Light magnesium carbonate and light calcium carbonate, which are the filter press materials are crystalline substances with high water absorption.
  • the traditional plate and frame filter press has a maximum of 0.18MPa and it is difficult to filter out too much water, which will affect the subsequent drying production.
  • the vertical filter press has the function of automatic pressure maintenance, the maximum filtration pressure can reach 1.6MPa, and the automatic air drying system configured by it can realize further drying of the product.
  • the secondary calcination device 205 performs indirect calcination on the light magnesium carbonate to decompose the light magnesium carbonate into light magnesium oxide and carbon dioxide gas.
  • the secondary calcination device 205 includes a magnesium carbonate calcination furnace, and the flue gas outlet of the magnesium carbonate calcination furnace is connected to the gas inlet of the carbon dioxide capture device 216 through the second recovery pipeline 213 .
  • the secondary calciner section can be calcined in an indirect heating rotary calciner. That is, the indirect calcining rotary furnace is adopted, and the rotary furnace adopts a closed screw feed, and the calcined material light magnesium carbonate is placed in the inner furnace, and then the outer wall of the inner furnace is heated by a gas flame. contact to ensure the cleanliness of calcined materials.
  • a bag dust collector for filtering dust in the gas is installed behind the settling chamber, so that the CO 2 gas can be incorporated into the carbon dioxide capture device 216 in the calcination section after being filtered of a small amount of dust, so as to realize the recycling of carbon dioxide and ensure no pollution. Carbon dioxide and exhaust emissions.
  • the discharge of the indirect heating rotary furnace is discharged by a closed screw conveyor with cooling function, and a micro-negative pressure suction filter is installed at the discharge discharge port, and part of the light magnesium oxide dust can be recovered through the cyclone and cloth bag.
  • the carbon dioxide gas in the carbonization section includes the carbon dioxide gas obtained by calcining dolomite in the primary calcination section, and the carbon dioxide gas obtained by pyrolyzing the magnesium bicarbonate solution in the pyrolysis section. carbon dioxide gas, and the carbon dioxide gas obtained by calcining the light magnesium carbonate in the secondary calcination section, so as to ensure the full utilization of carbon dioxide and avoid waste discharge.
  • the pressure of pressurized carbonization in the carbonization section comes from the CO2 furnace gas compressed gas bag of the carbon dioxide capture device 216, and the CO2 furnace gas pressure stored in the CO2 furnace gas compressed gas bag is 0.8MPa, so
  • the CO2 produced in the primary calcination section, the pyrolysis section, and the secondary calcination section can first enter the CO2 furnace gas compression bag of the carbon dioxide capture device 216, and then be used for the carbonization Carbonization reaction in the workshop.
  • the patented technology adopts brand-new or new-style complete sets of equipment, which have the advantages of high degree of automation, less one-time investment, stable operation, simple maintenance, no waste gas and carbon dioxide emissions, etc.
  • the purity of light calcium carbonate, one of the products can reach more than 98%, and the magnesium content can be controlled at less than 1%, and the purity of high-purity light magnesium oxide, the second product, can reach more than 98%.
  • the above-mentioned embodiment may specifically include:
  • the dolomite After the dolomite is crushed to 5-10 cm, it enters the calcination zone 312 of the dolomite calcination furnace through the feeding mechanism, and the hot gas in the calcination zone 312 rises and enters the blanking bin 303 to preheat raw materials to fully utilize Waste heat; when the dolomite ore in the calcination area 312 is heated to about 700°C, the carbon dioxide capture device 216 is turned on, and the collected CO 2 furnace gas is purified and pressurized to 0.8 MPa to enter the CO 2 furnace gas compressed gas Store in bag. The final calcination temperature is controlled within the material temperature of 1050°C.
  • the temperature is raised for about 30 minutes, and the temperature is kept for about 1 to 2.5 hours. Then, by controlling the transport speed of the apron conveyor 319 for discharging materials at the bottom of the indirect calcination shaft furnace, control The materials in the furnace stay for about 2.5 hours.
  • the calcined white obtained after calcination is continuously input into the rotary digester through the plate conveyor 319, and the rotary digester is fully digested in about 15 minutes per pass.
  • the digested digested emulsion enters the rotary cooler arranged in steps through overflow, and is pumped into the carbonization reaction tank 401 after cooling for about 30-45 minutes to about 30°C; the digested filter residue obtained during digestion enters the After being washed by the sand washing machine, the sand can be sold as construction sand, and all the washing water is returned to the rotary digester.
  • the digested emulsion enters the carbonization reaction tank 401, and at the same time, the CO2 gas in the CO2 furnace gas compressed gas bag (ie, the intermediate gas bag) is decompressed to about 40KPa by the pressure reducing valve 413, and then passes through the configured constant pressure valve inlet Entering the jet pipe 412, under the operation of the hydraulic circulation pump 419 configured in the carbonization separation device 203, the pH of the emulsion can reach between 7.5 and 8.0 after a carbonization reaction time of about 30 Min. During the process, about 0.01-0.05% inhibitor is added according to the actual production environment and control parameters.
  • the material is discharged into the automatic belt filter press for pressure filtration, and the filter cake enters the rotary flash dryer through the conveyor and is dried to obtain light calcium carbonate packaging for sale; the filtrate is heavy magnesium water, which enters the pyrolysis section through the pump The pyrolysis tank; after the dry water vapor is condensed, it can be returned to the rotary digester for use.
  • the liner of the pyrolysis kettle Before the heavy magnesium water enters the pyrolysis kettle, the liner of the pyrolysis kettle has been heated to a certain temperature by the circulating water in the heating jacket from the circulating cooling assembly in the calcination section. After the heavy magnesium water enters, the low-speed ribbon mixer in the pyrolysis kettle is turned on, and the supporting water ring vacuum pump is turned on at the same time to draw negative pressure to below 0.02MPa. At this moment, heavy magnesium water begins to be decomposed into magnesium carbonate, CO 2 and decomposition mother liquor, and CO contains a small amount of water vapor and enters the gas-liquid separator through the water ring vacuum pump for separation and then returns to the carbon dioxide capture device 216; the decomposition mother liquor can be used for digestion Digestion in the workshop.
  • the filter press and drying section are set up in two areas.
  • the filter press and drying of calcium carbonate and magnesium carbonate do not use the same equipment, and the filter press and drying of calcium carbonate have been completed in the front.
  • Magnesium carbonate enters the automatic vertical filter press through the pump for pressure filtration, and the filter cake enters the rotary flash dryer through the conveyor, and then enters the secondary calcination section through the closed screw conveyor after drying; the filtrate and dry water vapor are all returned to the digestion section after condensation .
  • the rotary calciner Before the dried magnesium carbonate enters the rotary calciner, the rotary calciner is preheated to a certain temperature, and the subsequent continuous feeding and discharging always maintains a certain temperature, which can prevent the formation of walls and bridges of the magnesium carbonate.
  • Calcination time of magnesium carbonate is about 1 ⁇ 2h, and the temperature is 700 ⁇ 750°C.
  • the inner furnace begins to decompose a large amount of CO 2 and naturally overflows into the settling chamber to settle. The settled micro dust returns to the feeding system, and the gas returns to the carbon dioxide capture device 216 after being filtered.
  • the heated air at the inner furnace outer wall of the rotary calciner can be output to the filter press and drying section for drying calcium carbonate and magnesium carbonate, so as to make full use of waste heat.
  • the magnesium carbonate in the hearth of the rotary calciner is calcined, high-quality light magnesium oxide is obtained, which is continuously discharged and packaged for sale through a closed screw conveyor with a circulating water cooling function, and the circulating cooling water in it can be circulated and transported to
  • the pyrolysis section is used for pyrolysis to realize full utilization of waste heat in the whole process.
  • the carbon dioxide circulation subsystem in order to form a circulation loop for the carbon dioxide produced and consumed in dolomite processing to achieve the maximum utilization of resources, includes a gas transmission pipeline, a carbon dioxide water vapor recovery pipe , a gas-liquid separator, a first recovery pipeline 212, and a second recovery pipeline 213; wherein, the gas transmission pipeline communicates with the gas outlet of the carbon dioxide capture device 216 and the gas inlet of the carbonization reaction tank respectively, so as to transfer the Part of the carbon dioxide in the carbon dioxide capture device 216 is transported to the carbonization system; the carbon dioxide water vapor recovery pipe is respectively connected to the flue gas outlet of the pyrolysis tank and the air inlet of the gas-liquid separator, and the first recovery Pipeline 212 communicates with the gas outlet of the gas-liquid separator and the inlet of the carbon dioxide capture device 216, so as to recycle the carbon dioxide gas produced in the heavy magnesium hydropyrolysis reactor and transport it to the carbon dioxide capture
  • the device 216 reclaim
  • the present invention also provides a method for utilizing dolomite resources by adopting the complete treatment system for deep utilization of dolomite resources as described in any one of the above items and the process thereof.
  • the method for utilizing dolomite resources may further include the step of: when the dolomite in the primary calcination device 201 is heated to the decomposition temperature of magnesium carbonate, that is, 600-700°C, the carbon dioxide capture device 216 is turned on to recover carbon dioxide and recycling.
  • the method for utilizing dolomite resources may also include one or more of the following steps:
  • the inhibitors include one or more of ethylenediaminetetraacetic acid, sodium hexametaphosphate, polyacrylic acid, polymaleic acid, and nitrilotriacetic acid;
  • a dispersant to the calcium-containing heavy magnesium aqueous solution in the pyrolysis tank, and the dispersant includes one or more of methanol, alcohol, glycerol, polyacrylamide, cellulose derivatives, water glass;
  • the amount of the dispersant added is 0.1% to 2% by volume of the calcium-containing heavy magnesium aqueous solution, and the calcium-containing heavy magnesium aqueous solution corresponds to the magnesium bicarbonate solution.
  • the first batch of calcined white in the digestion device 202 is digested with water at 50-80°C, and the remaining batches of calcined white are digested with the uncooled decomposed mother liquor;
  • the solid-to-liquid ratio of the calcined white to the water or the decomposed mother liquor in the digestion device 202 is 1kg:10-30L.
  • the present invention provides a dolomite calciner 100, which is a clean and environmentally friendly calciner for indirect processing of dolomite.
  • dolomite calciner 100 which is a clean and environmentally friendly calciner for indirect processing of dolomite.
  • indirect processing and "indirect processing” in this application
  • Both “indirect calcination treatment” and “indirect heating treatment” refer to the direct calcination of dolomite, which is different from the existing direct calcination of dolomite, such as the method of direct sintering and calcination heating of dolomite by adding coke and coal powder, or through
  • indirect treatment”, “indirect calcination treatment” and “indirect heating treatment” refer to the method of heating the materials in the furnace or the furnace wall by electric heating, or The furnace wall is heated so that the heat is directly transferred to the material or transferred to the material through the furnace wall to calcine the material.
  • the calciner includes a gas collection pipeline 307 and a furnace body, and the furnace body includes a blanking bin 303 , a furnace and a discharging bin 317 arranged in sequence from top to bottom.
  • the feeding mechanism can supply materials to the furnace body through the blanking bin 303;
  • the material is discharged to the transmission mechanism, and the clean calcination refers to not introducing other substances into the calcined white product and carbon dioxide gas during the dolomite calcination process;
  • the transmission mechanism may include a plate conveyor 319, and the plate conveyor 319 According to the set transmission rate, the calcined white is transmitted to the outside for use. It should be understood that, because the first batch of feed materials fails to stay in the furnace body for a long time, the first batch of feed materials needs to re-enter the furnace body through the feed mechanism to complete its alignment. of calcination.
  • the furnace body includes a furnace, and at least one vertical calcination zone 312 is formed inside the furnace body. It also includes a heating device that supplies heat to the materials in the furnace through heat conduction, so as to increase the temperature of the dolomite entering the calcination zone 312 .
  • the heating device may be an electric heater or an electromagnetic heater arranged in the furnace or on the outer wall of the furnace, or a gas heating device for heating the furnace wall outside the furnace body. It should be understood by those skilled in the art that it only needs to play the role of indirect heat treatment on the dolomite in the furnace.
  • an insulation layer 315 may be covered on the outer wall of the furnace.
  • each calcining zone 312 is surrounded by electric heating plates 314 .
  • the top of the furnace is provided with a sealing plate 310 for closing the furnace mouth of the furnace, and at least one communication port 311 is opened on the sealing plate 310 .
  • the sealing plate 310 is also fixed with electric heating rods 313 protruding into the calcination area 312, preferably, each of the calcination areas 312 is provided with at least one corresponding Generally, a plurality of electric heating rods 313 are uniformly arranged in each calcination zone 312 to uniformly calcine the dolomite in the calcination zone 312 .
  • the electric heating plate 314 and the electric heating rod 313 in this embodiment correspond to the heating device.
  • the electric heating plate 314 and the electric heating rod 313 can heat up the calcining area 312 in the form of electric heating.
  • the electric heating plate 314 is located around the calcination area 312, and a plurality of the electric heating rods 313 are vertically inserted into the calcination area 312 and the array is evenly distributed to achieve the effect of precise temperature control, so that the produced The activity of calcined white is better. Since the calcination process is carried out in the clean calcination zone 312, and the process of producing calcined white does not need to add any auxiliary materials, the CO 2 decomposed during the calcination process and the produced calcined white are clean and pollution-free.
  • the material in the electric heating rod 313 includes one or more of Mo-Si alloy, W metal, Mo metal, SiC, and heavy graphite; the material of the electric heating plate 314 includes Fe- One or both of Cr-Al and Ni-Cr alloys.
  • the contact surface between the electric heating plate 314 and the material is also provided with a wear-resistant and good thermal conductivity protective layer.
  • the distance between the adjacent electric heating rods 313 and between the electric heating rods 313 and the electric heating plate 314 can be determined according to the actual situation. As a better choice, it can be set at 100-500 mm. between.
  • the blanking bin 303 is arranged above the sealing plate 310, and the feeding port of the blanking bin 303 faces the The feeding mechanism, the blanking port of the blanking bin 303 communicates with the calcining area 312 through the communication port 311, and the size of the blanking port is smaller than the size of the communication port 311;
  • the exhaust chamber 308 formed between the outer wall of 303 and the sealing plate 310 is surrounded by a surrounding plate 309 , and the exhaust chamber 308 communicates with the calcining area 312 through the communication port 311 .
  • the blanking port can be flush with the communication port 311, or slightly extend into the calcining area 312 after passing through the communication port 311, so as to avoid the complete blockage of the communication port 311 by dolomite .
  • the coaming plate 309 can be fixedly connected with the outer wall of the blanking bin 303 and the sealing plate 310 by means of welding or flange connection, so as to connect the outer wall of the blanking bin 303 to the outer wall of the blanking bin 303.
  • the gap between the sealing plates 310 is closed.
  • the coaming plate 309 can also be integrated with the blanking bin 303, and the bottom of the coaming plate 309 can be held against the top of the furnace body by adjusting the height of the blanking bin 303.
  • the discharge bin 317 is arranged below the furnace, and at least one of the discharge bins 317 is communicated with the calcination area 312.
  • the discharge port of 317 faces the conveying mechanism, so that the dolomite material in the calcining zone 312 passes through the discharge bin 317 and then is discharged onto the conveying mechanism.
  • one of the discharging A bin 317 may correspond to one calcining zone 312 .
  • the gas collection pipeline 307 is connected with the exhaust chamber 308 and the external carbon dioxide capture device 216 at the same time, so that the gas generated in the calcination area 312
  • the gas is sequentially discharged into the carbon dioxide capture device 216 through the communication port 311, the exhaust chamber 308 and the gas collection pipe 307; between the gas collection pipe 307 and the exhaust chamber 308
  • a valve can be set to avoid the entry of moisture generated in the early stage, and the valve can be communicated with an external controller;
  • the height of the gas collection pipeline 307 can correspond to the height range of the exhaust chamber 308 , the gas collection pipeline 307 can communicate with the exhaust chamber 308 through a collection pipeline, or directly communicate with it.
  • the external carbon dioxide capture device 216 is usually equipped with an induced draft fan.
  • the feeding mechanism includes a conveyor installed above the blanking bin 303, the conveyor may be a belt conveyor 301, and the tape
  • the transporter 301 is provided with a mobile unloading vehicle 302 for feeding into the dropping bin 303 .
  • the belt conveyor 301 can be arranged laterally above the blanking bin 303, and one or more belt conveyors 301 can be set to operate simultaneously according to the structure of the furnace body.
  • a level controller 306 is installed on the mobile unloading vehicle 302 or the dropping bin 303, and the level controller 306 may be a sound wave level controller 306 or a tuning fork level controller 306; the level controller 306 monitors the position of the blanking bin 303 and controls the mobile unloading vehicle 302 on the conveyor to feed into the blanking bin 303, so as to Realize the interlock control between the blanking bin 303 and the feeding mechanism.
  • the blanking bin 303 may include a bin body and a plurality of dropping hoppers 304 arranged at the lower part of the bin body.
  • the bin body can also be entirely composed of a plurality of drop hoppers 304 .
  • the discharge hopper 304 may be in the shape of a funnel, each of the discharge hoppers 304 is provided with the discharge opening, and the number of the communication openings 311 is set to match the discharge opening. It should be noted that the tops of the side walls of two adjacent drop hoppers 304 and between the drop hopper 304 and the enclosure 309 need to be sealed to ensure that the exhaust chamber 308 tightness.
  • the material level controller 306 can also be installed on the hopper 304 or the baffle plate 305 to realize the control of the storage position in each of the hoppers 304, of course, the material level The controller 306 is arranged on the mobile unloading vehicle 302 to achieve this purpose.
  • the mobile unloading vehicle 302 is instructed by the level controller 306 to move to the top of the corresponding dropping hopper 304 to discharge and supplement.
  • the feeding cart 302 is instructed by the level controller 306 to stop unloading and automatically move to the top of the other lower hoppers 304 to unload, so as to achieve the purpose of automatic and accurate feeding.
  • a vibrator 316 is provided on the outer wall of the discharging bin 317 to make the discharge of dolomite materials more uniform and stable.
  • the outer wall of the discharge bin 317 is provided with a circulating water cooling assembly for cooling water to flow 318, to lower the temperature of the calcined white produced after calcination.
  • the circulating water-cooling assembly 318 can be arranged in the middle and lower part of the discharge bin 317, and the circulating water-cooling assembly 318 can be a water-cooled sandwich wall, and the water-cooled sandwich wall and the outer wall of the discharge bin 317
  • the room can be surrounded by a water-cooled chamber for the entry of cooling water and discharge after heating.
  • the heated hot water in the water cooling chamber can be used for pyrolysis or dry evaporation in the process of calcining white hydrolysis or producing other products after hydrolysis.
  • the working mode of the above embodiment can be: crush the dolomite to 10-100 mm, and transport the crushed dolomite to the falling bin 303 by the belt conveyor 301 and the mobile unloading vehicle 302.
  • the crushed dolomite passes through the hopper 304, the calcining area 312, and the discharge bin 317 in sequence, and stays on the apron conveyor 319, and gradually accumulates in the hopper 304 .
  • the electric heating plate 314 and the electric heating rod 313 are controlled to raise the temperature of the calcining area 312 .
  • the maximum temperature of the material is controlled to be 1050°C.
  • the heating time at the first start is generally set at 1 to 3 hours according to the lumpiness of the material. After the heating is completed, the holding time is controlled for about 2 to 3 hours, and the subsequent adjustment of the plate conveying
  • the discharge speed of machine 319 controls the residence time of all materials in the furnace for about 2 to 4 hours.
  • the bottom material at the first start-up is returned to the discharge hopper 304, and then the dolomite is continuously calcined through fully automatic control.
  • the calcined white enters the discharge bin 317 from the calcination area 312, and is discharged to the apron conveyor after being cooled in the discharge bin 317. on the conveyor 319, and then discharged with the slat conveyor 319 for use.
  • the technology of indirect heating treatment is adopted, combined with the advantages of vertical furnace material direction and heat flow direction opposite and natural heat exchange, simple structure, low investment and maintenance costs, and unblocking of materials, a set of dolomite furnaces is developed. It is a vertical clean and environmentally friendly calciner with large amount of decomposition gas for ore calcination, high purity requirements for downstream products, no self-heating, and airtight recovery of decomposition flue gas.
  • the calcination furnace can not only realize the continuous processing of dolomite, precise temperature control, and the processing process does not need to contact any auxiliary materials such as pulverized coal and coke, nor does it need to contact combustion air, etc.
  • the calcination environment is relatively airtight, which can make the dolomite calcination become More efficient, clean and environmentally friendly. In addition, it can also achieve efficient recovery of carbon dioxide gas and preheating and drying of dolomite materials.
  • the calciner in the above embodiment can also use the form of outer wall heating for indirect calcining. When the outer wall of the furnace is heated, the calcining zone 312 is relatively independent due to the accumulation of materials, and the exhaust of the calciner is carried out in a closed state. Therefore, the purity of the products and carbon dioxide in the furnace will not be affected by heating the outer wall with gas.
  • the above-mentioned embodiment not only realizes the heat exchange between gas and materials and between materials under the premise of ensuring the airtight recovery of gas, but also has further energy-saving effects.
  • the heat inside the furnace can only be transferred upwards or downwards, and because there is heat exchange between the gas materials and the materials above the furnace, the heat transferred upwards will be absorbed by the blanking bin
  • the dolomite in 303 is fully utilized.
  • the outer wall of the discharge bin 317 is provided with the circulating water cooling assembly 318, a small part of the heat transferred downward will be absorbed by the cooling water in the circulating water cooling assembly 318.
  • the cooling water can be used in other processes of dolomite after heating up, so as to improve the utilization rate of heat.
  • the present invention also provides a clean and environmentally friendly calcination method for indirect processing of dolomite. After the dolomite is crushed, any of the above-mentioned embodiments The clean and environment-friendly calciner calcines the dolomite.
  • the clean and environmentally friendly calcination method for indirect treatment of dolomite includes steps:
  • the base material refers to the material located below the calcining zone 312 and accumulated on the conveying mechanism.
  • the first base material is crushed dolomite, and the subsequent base material is calcined white during continuous calcination. Since the first pad material falls on the conveying mechanism without being fully calcined, the first generated pad material needs to be returned to the blanking bin 303 through the feeding mechanism to complete the process of the Full calcination of the base material.
  • the first preset time corresponds to the calcination temperature of dolomite rising to the decomposition temperature of magnesium carbonate
  • the first preset time may be when the calcination temperature of dolomite rises to 600-700°C, that is: when the When the magnesium carbonate in the dolomite begins to decompose, the induced draft fan in the carbon dioxide capture device 216 is turned on, and the gas generated in the calcination area 312 is transported to the carbon dioxide capture device 216 .
  • the dolomite contains moisture
  • the temperature of the material reaches about 700°C (that is, at 600-700°C)
  • the moisture in the dolomite is basically evaporated, so the recovered carbon dioxide contains less moisture. less, because there will be preheating in the blanking bin 303, so the carbon dioxide produced later will contain less moisture.
  • part of the heat in the calcination zone 312 will be transferred to the blanking bin 303 along with the accumulation of dolomite and the upward flow of gas, so as to realize the preheating and drying of the dolomite in the blanking bin 303 process, and due to the accumulation of dolomite, the gas will not flow into the blanking bin 303 when flowing to the communication port 311, but will only flow to the gas collection pipe 307 through the exhaust chamber 308, And heat exchange is performed with the blanking bin 303 in the exhaust chamber 308 to ensure the preheating and drying of dolomite and the energy utilization rate.
  • the calcined white obtained by calcination is cooled in the discharge bin 317 and then discharged onto the conveying mechanism, and the calcined white is discharged along with the transmission of the conveying mechanism stand-by.
  • the residence time of dolomite in the calcining zone 312 can be controlled to be 2-4 hours by adjusting the conveying rate of the conveying mechanism.
  • the second preset time may be 3-6 hours.
  • the method may further include the step of: controlling the residence time of the added dolomite in the calcination area to be 2 to 4 hours by adjusting the transmission rate of the transmission mechanism in the calcination furnace as described in any of the above-mentioned embodiments .
  • the weight loss rate of dolomite raw ore after calcination is about 47%, the decomposition rate is over 99%, the CO2 concentration in the flue gas is about 80%, and the calcined white activity is greater than 35%.
  • the entire calcination process does not add any auxiliary materials, and the output of calcined white and CO 2 flue gas is clean and pollution-free. Compared with the existing production equipment and technology, it can not only obtain pure calcined white products, but also easily recover high-concentration CO 2 flue gas. Turn waste into treasure.
  • the present invention provides a carbonization separation device 203, which is used to complete the separation of calcium and magnesium in the dolomite digestion emulsion, including a carbonization reaction tank 401, a gas-liquid mixing reactor 410, and a circulation pump 419; of course , may also include a plurality of communicating pipelines for transporting digestive emulsion or carbon dioxide.
  • the top of the carbonization reaction tank 401 is provided with a feeding port 402 for the digestion emulsion to enter and a gas circuit circulation outlet 403; the bottom of the carbonization reaction tank 401 is provided with a water circuit circulation outlet 404 and valved drain port 405.
  • a temperature display interface 406, a pressure display interface 407, a liquid level display interface 408, and an inspection port 409 can also be provided on the carbonization reaction tank 401, so that the staff can monitor the carbonization reaction and check the carbonization reaction tank 401. for maintenance.
  • the gas-liquid mixing reactor 410 includes a gas-liquid mixing pipe 415, a feed pipe 411, and an air injection pipe 412; wherein, the gas-liquid mixing pipe 415 is installed in the carbonization reaction
  • the inside of the tank 401 can be specifically installed on the top of the carbonization reaction tank 401, thereby reserving sufficient accommodating space in the carbonization reaction tank 401 to facilitate the carbonization reaction;
  • the feed pipe 411 The feed inlet is located outside the carbonization reaction tank 401, and the outlet end of the feed pipe 411 is inserted into the inside of the gas-liquid mixing pipe 415 from the top of the gas-liquid mixing pipe 415; the gas-liquid mixing pipe 415 and
  • the interface of the feed pipe 411 is sealed by a seal, that is, the top of the gas-liquid mixing pipe 415 is provided with a seal, so that the top of the convective mixing injection pipe 416 is sealed.
  • the lower end of the gas-liquid mixing pipe 415 communicates with the carbonization reaction tank 401, and an air inlet is provided on the side wall of the gas-liquid mixing pipe 415;
  • the air circuit circulation outlet 403 is connected, and the exhaust end of the air injection pipe 412 is fixedly installed with the air inlet; and, the vertical position of the outlet of the feed pipe 411 is lower than the air inlet , so that carbon dioxide enters the gas-liquid mixing tube 415 driven by the high-speed flowing digestive emulsion, and is cut into microbubbles by the digestive emulsion.
  • a pressure reducing valve 413 is provided between the air inlet of the gas injection pipe 412 and the carbon dioxide pressure supply device.
  • a gas circuit circulation check valve 414 is provided between the air inlet of the gas injection pipe 412 and the gas circuit circulation outlet 403 to prevent the carbon dioxide from The carbon dioxide provided by the pressurized air supply device is split during the intake process.
  • the pressure reducing valve 413 and its corresponding pipeline can be connected with the gas circulation check valve 414 and its corresponding pipelines are set in parallel.
  • the normal working air pressure of the carbonization reaction tank 401 is slightly positive pressure, about 20-40KPa. It will continuously absorb CO 2 to reduce the pressure in the reactor, so the constant pressure valve can keep the supply of CO 2 and the required pressure during continuous operation.
  • the pressure reducing valve 413 can be used in conjunction with a constant pressure valve, and the constant pressure valve can be arranged on the air injection pipe 412, or on the air injection pipe 412 and the pressure reducing valve 413. on the connecting pipeline.
  • the pipe at the lower part of the feed pipe 411 The inner diameter of the cavity gradually decreases; further, the inner diameter of the lower lumen of the gas-liquid mixing tube 415 can also be gradually reduced, that is, the diameter of the gas-liquid mixing tube 415 can be from the position of the air inlet to On this basis, the discharge end of the feed pipe 411 can extend to the bottom of the gas-liquid mixing pipe 415, and the feed pipe 411 and the gas-liquid mixing pipe 415 A gap needs to be maintained between the inner walls for the flow of carbon dioxide gas.
  • the liquid inlet of the circulation pump 419 is communicated with the water circuit circulation outlet 404, and the liquid outlet of the circulation pump 419 is communicated with the feed port of the feed pipe 411, so as to
  • the digested emulsion in the carbonization reaction tank 401 is pumped into the feed pipe 411 at a high speed, so that the digested emulsion entering the feed pipe 411 enters the gas-liquid mixture from top to bottom at a relatively high flow rate.
  • Pipe 415 and drive the flow of carbon dioxide gas, and then cut the carbon dioxide gas.
  • a circulation pump inlet valve 420 is provided between the circulation pump 419 and the water circuit circulation outlet 404, and a circulation pump outlet valve 421 is provided between the circulation pump 419 and the feeding port of the feed pipe 411, To control the liquid in the circulation.
  • the gas-liquid mixing reactor 410 must also include a convective mixing injection pipe 416 vertically connecting the outlet of the gas-liquid mixing pipe 415 and the carbonization reaction tank 401, and the convective mixing injection pipe 416 It is arranged below the gas-liquid mixing pipe 415, and the convective mixing injection pipe 416 is provided with a forward flow mixer 417 and a reverse flow mixer 418 in sequence from top to bottom; the convective mixing injection pipe 416 and the The gas-liquid mixing tube 415 can be arranged integrally or fixedly connected, both of which are vertically arranged, and the gas-liquid mixture obtained in the gas-liquid mixing tube 415 enters the gas-liquid mixing tube 415 through the lower opening of the gas-liquid mixing tube 415.
  • the outlet end of the reverse flow mixer 418 may also be connected with a nozzle, and the free end of the nozzle may be located below the middle of the carbonization reaction tank 401 .
  • the forward flow mixer 417 is mainly used to make the gas-liquid mixture flowing downward generate forward rotation
  • the flow mixer 418 is mainly used to reverse the rotation of the gas-liquid mixture flowing downwards.
  • the forward rotation and the reverse rotation are relative concepts, and only the rotation direction between the two is opposite. Generally, In some cases, the forward rotation can be understood as clockwise rotation, and the reverse rotation can be understood as counterclockwise rotation.
  • the forward flow mixer 417 includes a first tube body and a first spiral protrusion protruding from the inner wall of the lumen of the first tube body
  • the reverse flow mixer 418 includes a second tube body
  • the helical directions of the first helical protrusion and the second helical protrusion are opposite to those of the second helical protrusion protruding from the inner wall of the lumen of the second tubular body.
  • the first pipe body and the second pipe body may be integrally arranged, or fixedly connected by a fixing piece.
  • the helical direction of the first helical protrusion may be clockwise
  • the helical direction of the second helical protrusion may be counterclockwise
  • the helical protrusions can all be of a double helix structure, of course, they can also be of a single helix structure.
  • the forward flow mixer 417 and the reverse flow mixer 418 can form a high-speed convection of gas and liquid, so that the mixing reaction is more complete and the reaction is more efficient. Specifically, under the action of vertical jet force and reverse convection, the frequency of contact between the microbubbles and the digestive emulsion can be instantly increased countless times.
  • the working mode of the above embodiment can be as follows: the digested emulsion placed in the carbonization reaction tank 401 is transported into the feed pipe 411 through the circulation pump 419, and discharged along the feed pipe 411. The orifice flows into the gas-liquid mixing pipe 415. Due to the pump pressure of the circulation pump 419 and the structural design of the feed pipe 411, the digested emulsion has a At a higher flow rate, the negative pressure generated by the high-speed flowing digestive emulsion will cause the carbon dioxide gas to enter the gas-liquid mixing pipe 415 from the air injection pipe 412 .
  • the mechanical energy is converted into the surface energy of gas and liquid, and the carbon dioxide is cut into microbubbles, and under the further action of the forward flow mixer 417 and the reverse flow mixer 418, all The carbon dioxide and the digestive emulsion are further mixed, so that the two are mixed at high frequency.
  • Tiny carbon dioxide bubbles react quickly with the calcium and magnesium ions in the digestive emulsion to form carbonate precipitates (magnesium carbonate and calcium carbonate). Small particles of carbonate continue to react with carbon dioxide bubbles in the high-speed liquid flow, and the carbonic acid in them Magnesium particles will generate magnesium bicarbonate and dissolve in the solution, and finally control the pH value of the reaction end point to 7.5-8.0 to realize the deep separation of calcium and magnesium.
  • the unreacted carbon dioxide gas rises and returns to the gas injection pipe 412 for recycling through the gas circulation outlet 403 .
  • the solid-liquid separation of the carbonized slurry obtained in the dolomite calcined white digestion and separation device can be carried out by known conventional treatment methods, such as plate and frame filter press, centrifugal separation and the like.
  • the subsequent processing of the heavy magnesium water (magnesium bicarbonate solution) obtained after the solid-liquid separation of the carbonized slurry can also be carried out by known conventional treatment methods, including pyrolysis (pyrolysis), vacuum decomposition or special equipment decomposition.
  • the decomposed decomposed mother liquor is returned to the digestion process and can be used to digest calcined white to obtain the digested emulsion for carbonization reaction.
  • the present invention also provides a dolomite calcined white digestion and separation method, the digestion emulsion of dolomite is sent through the feed port 402 and carbon dioxide is sent into any of the above-mentioned methods through the gas injection pipe 412.
  • the dolomite calcined white digestion and separation device described in the method is carbonized with carbon dioxide to obtain calcium carbonate precipitate and magnesium bicarbonate solution.
  • the dolomite calcined white digestion and separation method may include steps:
  • the ratio of the first batch of calcined white to water can be 1kg:10-30L.
  • the digestion temperature of the calcined white is generally 30-80°C, and the digestion time is generally 1-3h. Stirring and other operations are required during the digestion process.
  • the digestive emulsion obtained by digestion usually needs to be filtered to remove residues that cannot be fully digested.
  • the inhibitor includes one or more of ethylenediaminetetraacetic acid, sodium hexametaphosphate, polyacrylic acid, polymaleic acid, and nitrilotriacetic acid
  • the main function of the inhibitor is to inhibit the generated calcium carbonate precipitation from reacting with carbon dioxide to generate calcium bicarbonate during the carbonization process of calcium and magnesium ions.
  • the added amount of the inhibitor may be 0.01-0.05% of the mass fraction of the digestive emulsion, preferably 0.01-0.02%.
  • reaction pressure of the carbonization reaction may be 20-40kPa.
  • the solid-to-liquid ratio of the calcined white and the decomposed mother liquor in subsequent batches can also be 1kg:10-30L; by using the decomposed mother liquor to digest the calcined white, the purpose is mainly to recover the inhibitors in the decomposed mother liquor and utilize The heat in the decomposition mother liquor, in this process, also can suitably supplement described inhibitor.
  • the carbonized slurry after carbonization is subjected to solid-liquid separation to obtain calcium carbonate and magnesium bicarbonate solution, and the magnesium bicarbonate solution is subjected to a subsequent decomposition process (such as pyrolysis) to obtain filtrate and basic magnesium carbonate , the filtrate is returned to the digestive system as a digestive liquid to realize the recycling of inhibitors.
  • a subsequent decomposition process such as pyrolysis
  • the decomposed mother liquid is the clear liquid obtained after the heavy magnesium water after the carbonization reaction is pyrolyzed to separate basic magnesium carbonate.
  • the present invention is mainly aimed at digestion and carbonization separation during dolomite processing.
  • Dolomite processing usually includes crushing dolomite, calcining at high temperature to obtain calcined white, and digesting calcined white to obtain digested emulsion. , carbonize the digested emulsion to separate calcium and magnesium to obtain a carbonized slurry with a lower concentration of calcium ions, and then separate the solid and liquid through filtration to obtain calcium carbonate and heavy magnesium water, and the resulting heavy magnesium water is pyrolyzed, etc.
  • the process can obtain basic magnesium carbonate and recycled decomposition mother liquor.
  • the principle of calcium and magnesium separation in the above embodiment is as follows: the above embodiment uses the gas-liquid mixing reactor 410 to replace the stirring gas-liquid mixing and contact tower mixing in the prior art, by combining the gas-liquid mixing reactor 410 with The circulation pump 419 is matched to circulate drainage and carbonization under airtight and pressurized conditions, so that the digestive emulsion can be in close contact with carbon dioxide; and, by controlling the pH value of the system during the carbonization process, the magnesium hydroxide in the dolomite digestion slurry, The carbonization and separation efficiency of calcium hydroxide is higher, the purity of the obtained calcium carbonate product is better, and the overall production yield is further improved. The efficient separation of calcium and magnesium is conveniently realized, and the added inhibitor can be easily separated and recovered, which greatly reduces the production cost.
  • the system was gradually acidified and the pH of the system decreased gradually. And as the pH value of the system decreases, the digestive emulsion generates calcium carbonate and magnesium carbonate precipitation in the first stage, and the magnesium carbonate and calcium carbonate react with excess carbon dioxide to form magnesium bicarbonate and calcium bicarbonate in the second stage.
  • the inhibitor carries out a coordination reaction with free Ca2+, so that free Ca2+ does not appear in the solution in the form of calcium bicarbonate.
  • a specific example of the calcium and magnesium separation treatment method is: at 20-40°C, add inhibitors to the digestive emulsion, the total amount of inhibitors added is 0.01-0.02% of the mass fraction of the digestive emulsion, and the added inhibitor
  • the digestive emulsion of the agent is injected into the carbonization reaction tank 401, and the pH value of the digestion emulsion is 13.1 at this time, and then carbon dioxide is introduced to control the pressure in the carbonization reaction tank 401 to be between 20 ⁇ 40kPa; when the carbon dioxide and the digestion emulsion are fully
  • the carbonized carbonized slurry is poured into a plate and frame filter press for separation.
  • the filter residue is light calcium carbonate with an effective content of calcium carbonate above 97%, and the filtrate is heavy magnesium water, that is, magnesium bicarbonate solution. Pyrolyze the magnesium bicarbonate solution at 30-70°C for 45 minutes, put it into a plate and frame filter press for separation, and the filter residue is basic magnesium carbonate, in which the content of magnesium oxide is 41.52%, and the content of calcium oxide is 0.15%, which meets the standard HG /T2959-2010 "Industrial Hydrated Basic Magnesium Carbonate" requires high-quality products, and realizes the deep separation of calcium and magnesium in the emulsion.
  • the present invention provides a purification and recycling device for dolomite calcined carbon dioxide.
  • the processing technology of dolomite usually includes: a primary calcination section; a digestion section; a carbonization section; a pyrolysis section ; secondary calcination section, etc., respectively corresponding to primary calcination unit 201; digestion unit 202; carbonization separation unit 203; pyrolysis unit 204; secondary calcination unit 205; Carbon dioxide will be produced during operation, and the carbonization section needs to continuously consume carbon dioxide during operation; in addition, the carbon dioxide gas generated in the primary calcination section and the secondary calcination section will be mixed with dust, and the carbon dioxide gas produced in the pyrolysis section will be mixed with water vapor .
  • the purification and recycling device for dolomite calcined carbon dioxide includes: a recovery chamber assembly, a dust removal assembly 104, a compressed buffer gas tank assembly 105, a carbon dioxide purification and recovery subsystem 106, and a carbon dioxide circulation subsystem.
  • the recovery chamber assembly includes a plurality of shrouds 309, which surround the top of the hearth of the indirect heating type dolomite calciner 10 and the outer wall of the blanking bin 303.
  • the feed port of the dolomite calciner, the blanking port of the blanking bin 303 and the exhaust port of the dolomite calciner are all communicated with the exhaust chamber 11, the The exhaust chamber 11 communicates with the dust removal assembly 104 through the gas collection pipe 307, so as to discharge the gas generated in the calcining area 312 of the furnace body through the exhaust chamber 11 and the gas collection pipe 307 to the dust removal assembly 104.
  • the dolomite calciner 10 because the space between the dolomite calciner 10 and the outer wall of the blanking bin 303 is blocked and surrounded by the coaming plate 309, an exhaust chamber 11 is formed.
  • the dolomite calciner In 10 because the decomposition of carbon dioxide presents a positive pressure state, the external air will not enter the furnace body from the discharge port and the feed port of the calciner, that is to say, the contact between the flue gas and the outside can be avoided, so that the flue gas It is in a relatively independent environment from production to collection, which ensures the initial purity of carbon dioxide.
  • the accumulated material in the blanking bin 303 separates the outside world from the interior of the dolomite calciner, which can further ensure that the flue gas is in a relatively independent environment from generation to collection, ensuring the initial purity of carbon dioxide.
  • the feed port of the dolomite calciner and the exhaust port of the dolomite calciner may be the same opening, in this case, they are collectively referred to as the communication port 311 .
  • the exhaust chamber 11 can be understood with reference to the structure shown in the exhaust passage 10 .
  • the recovery chamber assembly can be used together with a dolomite calcination furnace 100 (ie, the primary calcination section) for indirect processing of dolomite, and the two can be integrally formed or fixed in a detachable connection.
  • the dolomite calciner 100 may include a blanking bin 303 , a furnace, and a discharging bin 317 arranged sequentially from top to bottom.
  • the outer wall of the furnace is covered with an insulating layer 315, and at least one calcining area 312 surrounded by heating plates 314 is formed inside the furnace.
  • the heating plate 314 and the heating rod 313 can use electric energy as a heating energy source.
  • the blanking bin 303 is arranged above the sealing plate 310, at least one blanking port of the blanking bin 303 communicates with the calcining area 312 through the communication port 311, and the size of the blanking port is smaller than The size of the communication port 311; between the outer wall of the blanking bin 303 and the sealing plate 310, a closed exhaust chamber 11 is formed around the surrounding plate 309, and the exhaust chamber 11 passes through at least one The communication port 311 communicates with the calcining zone 312 .
  • the discharge opening may be flush with the communication opening 311, or may slightly protrude into the calcining zone 312, so as to prevent the communication opening 311 from being completely blocked by dolomite.
  • the blanking bin 303 may include multiple blanking hoppers 304 provided with the blanking openings, and the blanking hoppers 304 are funnel-shaped.
  • the blanking bin 303 may be composed of a plurality of
  • the lower part of the blanking bin 303 can also be composed of a plurality of the blanking bins 304 , and the upper part of the blanking bin 303 can be surrounded by a baffle plate 305 .
  • each of the blanking hoppers 304 is provided with one of the blanking openings, between the tops of the side walls of two adjacent blanking hoppers 304, and between the blanking hoppers 304 and the surrounding boards 309, all need Sealed connection to ensure the airtightness of the exhaust chamber 11.
  • the discharge bin 317 is arranged below the furnace, and at least one of the discharge bins 317 is communicated with the calcination area 312 so that the dolomite material in the calcination area 312 passes through the discharge bin After 317, the material is discharged onto the conveying mechanism.
  • a circulating water cooling assembly 318 may be provided on the outer wall of the discharge bin 317 for cooling down the calcined white produced after calcination.
  • the circulating water-cooling assembly 318 can be arranged in the middle and lower part of the discharge bin 317, and the circulating water-cooling assembly 318 can be a water-cooled sandwich wall, and the water-cooled sandwich wall and the outer wall of the discharge bin 317
  • the room can be surrounded by a water-cooled chamber for the entry of cooling water and discharge after heating.
  • a vibrator can also be arranged on the outer wall of the discharge bin 317 to keep the dolomite in and out smoothly.
  • the gas collection pipe 307 is set in communication with the exhaust chamber 11 and the dust removal assembly 104 at the same time, so that the gas generated in the calcining area 312 passes through the communication port 311 and the exhaust chamber in sequence. 11 and the gas collection pipe 307 are discharged into the dust removal assembly 104 .
  • the induced draft fan in the dust removal assembly 104 is turned on to transport the gas generated in the calcination area 312 to the dust removal assembly 104 .
  • a valve may be provided at the connection between the gas collection pipe 307 and the exhaust chamber 11 to prevent the moisture generated in the early stage from entering the gas collection pipe 307, and the valve may be communicated with an external controller .
  • the dolomite contains water
  • the temperature of the material is about 700°C
  • the water in the dolomite is basically evaporated at this time, so the recovered carbon dioxide will contain less water.
  • the subsequent generation of carbon dioxide contains less moisture.
  • the calcination process does not need to add fossil fuels such as pulverized coal and coke, and does not need combustion-supporting air. Therefore, when calcined to a certain temperature, the decomposed CO has high purity and does not contain SO2, CO, H2S and other gases. There is no blowing of combustion-supporting air and the participation of external substances. Under the sealing effect of the closed recovery chamber assembly 206, the concentration of the CO 2 flue gas discharged from the exhaust chamber 11 into the dust removal assembly 104 is as high as about 85%. , and the rest is 11.85% N2 and 3.15% O2, the recovery is more valuable, the process is simpler and the energy consumption is lower.
  • the dolomite ore falls into the furnace through the blanking bin 303 on the furnace roof and accumulates naturally, and gradually forms a sand pile at the communication port 311.
  • the communication port 311 around the cone of the accumulated dolomite and the The exhaust chamber 11 forms the complete closed flue.
  • the CO2 flue gas decomposed by heating enters the dust collection and CO2 recovery system through the closed flue under the action of the induced draft fan.
  • the induced draft fan in the dust removal assembly 104 can be turned on, and the decomposed CO2 flue gas is drawn from the exhaust chamber 11 and the gas collection pipeline by the negative pressure of the induced draft fan. 307 into the dust removal assembly 104.
  • the dolomite calcination furnace 100 is continuously fed, and the newly fed dolomite can continuously exchange heat with the rising CO 2 flue gas.
  • the dust removal assembly 104 is used to remove dust from the carbon dioxide gas; , the process bag filter 12 introduces the carbon dioxide gas generated in the dolomite calciner 100 into the process bag filter 12 through the induced draft fan.
  • the dust removal device of the carbon dioxide purification and recycling device also includes a ring collection dust removal mechanism, which is used to collect the calcined feed The ore powder dust gas generated in the process, and the collected ore powder dust gas is dedusted.
  • the ring collection dust removal mechanism includes a ring collection dust cover 101 and a ring collection bag filter 102 communicating with the ring collection dust cover 101; the ring collection dust cover 101 is arranged on the dolomite calciner 100 above, used to collect the ore powder dust gas generated during the feeding process; the ring collection bag filter 102 receives the ore powder dust gas collected by the ring collection dust hood 101, and the received ore powder dust gas After the dust removal treatment, the gas treated by the ring bag filter 102 is discharged through the factory chimney 103 .
  • the present invention is provided with two sets of dedusting devices, the ring collection dust removal device and the process dust removal device.
  • the ring collection bag filter 102 communicates with the ring collection dust cover 101 at the furnace top silo, and is used for handling dolomite ore transportation. , loading and unloading, and the ore powder dust generated during electric furnace feeding; the process bag filter 12 is connected to the exhaust chamber 11, and during production, the dust removal assembly 104 is opened when the material temperature reaches about 600-700°C, At this time , the materials in the furnace do not contain moisture, and start to decompose CO gas in a large amount.
  • the temperature of the CO 2 flue gas discharged from the closed flue is lower than 100°C
  • a CO 2 gas concentration detector can be installed at the connection between the exhaust chamber 11 and the gas collection pipe 307 , control the opening and closing of the pipeline valve and the start and stop of the induced draft fan through the detection of the CO 2 solubility in the flue gas and the real-time state of the material temperature in the furnace.
  • the CO2 concentration of flue gas after dedusting by the process can reach about 85%, so it can be directly used in the subsequent processing of dolomite to prepare magnesium carbonate, calcium carbonate and other products.
  • the compressed buffer gas tank assembly 105 the air inlet of the compressed buffer gas tank assembly 105 communicates with the outlet of the dust removal assembly 104, and CO gas is compressed and stored, the compressed buffer The gas tank assembly 105 includes a first gas outlet 208 and a second gas outlet 209; wherein, the compressed buffer gas tank assembly 105 is used to receive the carbon dioxide gas processed by the dust removal assembly 104, and to treat the carbon dioxide gas Compression and storage are performed sequentially.
  • the compressed buffer gas tank assembly 105 includes a screw compressor 13, a heat exchanger 14, and a buffer gas tank 15; the carbon dioxide gas processed by the dust removal assembly 104 After being compressed by the screw compressor 13, the carbon dioxide gas compressed by the screw compressor 13 is heated to normal temperature by the heat exchanger 14 and then transported to the buffer gas tank 15 for storage. Part of the stored CO 2 mixed gas is discharged through the pressure reducing valve into the carbonization section for carbonization to prepare calcium carbonate and magnesium carbonate, and the rest enters the carbon dioxide purification and recovery subsystem 106. Of course, a choice between the two can be made according to the actual situation. Wherein, the screw compressor 13 is arranged behind the induced draft fan.
  • the screw compressor 13 pressurizes the dedusted low-pressure CO mixed gas to about 0.8MPa, and after the heat exchanger 14 keeps it at normal temperature, it enters the buffer gas tank 15 for storage, and stores it in the buffer gas tank 15.
  • the CO 2 mixed gas concentration is about 85%, which can be directly released under reduced pressure for the calcined white carbonization process after calcination.
  • the carbon dioxide purification and recovery subsystem 106 communicates with the compressed buffer gas tank assembly 105, specifically, the carbon dioxide purification and recovery subsystem 106 communicates with the second gas outlet 209 is connected to produce liquefied carbon dioxide after purifying and compressing part of the carbon dioxide stored in the compressed buffer gas tank assembly 105 .
  • the carbon dioxide purification and recovery subsystem 106 includes a primary purification component, a secondary purification component, a temporary storage component, and a rectification component.
  • the primary purification assembly is used to sequentially compress, condense, and gas-liquid separate the carbon dioxide gas stored in the compressed buffer gas tank assembly 105 to obtain the first separated carbon dioxide liquid and gas to be purified; the primary purification assembly Including a first compressor 16, a first condenser 17, and a first gas-liquid separator 18; the first compressor 16 compresses the carbon dioxide gas stored in the compressed buffer gas tank assembly 105; the second A condenser 17 condenses the carbon dioxide gas compressed by the first compressor 16 to obtain carbon dioxide liquid and gas to be separated; The gas is subjected to gas-liquid separation treatment to obtain carbon dioxide liquid and gas to be purified; the carbon dioxide liquid in the first condenser 17 and the first gas-liquid separator 18 is discharged to the temporary storage component.
  • the secondary purification component is used to receive the gas to be purified obtained after the first separation, and sequentially compress, condense and separate the gas to be purified after the first separation to obtain the carbon dioxide liquid after the secondary separation , gas to be purified and gas to be discharged; the gas outlet to be purified of the secondary purification component is communicated with the air inlet of the primary purification component, so that the gas to be purified obtained after the secondary separation is passed through the primary
  • the purification assembly is processed again; the waste gas exhaust port of the secondary purification assembly communicates with the outside to discharge the gas to be discharged obtained after the secondary separation;
  • the secondary purification assembly includes a second compressor 19, a second Two condensers 20, the second gas-liquid separator 21; the second compressor 19 compresses the gas to be purified in the first gas-liquid separator 18; the second condenser 20 compresses the gas to be purified in the first gas-liquid separator 18;
  • the carbon dioxide gas compressed by the second compressor 19 is condensed to obtain carbon dioxide liquid, gas
  • the gas to be discharged in the second condenser 20 is discharged to the factory chimney 103, and the carbon dioxide liquid in the second condenser 20 and the second gas-liquid separator 21 is discharged to the temporary storage assembly, so The gas to be purified in the second gas-liquid separator 21 is discharged to the first condenser 17.
  • carbon dioxide gas first enters the primary purification component, which pressurizes it to 2.45MPa, condenses it to -12.5°C, and precipitates about 70% of the mass of CO 2 liquid in the CO 2 mixed gas, and the rest enters the secondary
  • the secondary purification component continues to pressurize to about 2.45MPa and condenses to -25°C.
  • the remaining mixed gas is basically liquefied, and the non-condensable gas is discharged from the top of the second condenser 2020 in the secondary purification component to the outside of the chimney.
  • the second gas The small amount of gas finally separated by the liquid separator 21 returns to the primary purification system with part of the residual cold, so as to reuse the cold energy to achieve energy saving effect.
  • the CO 2 purity after liquefaction of the two purification systems is about 98%.
  • a small amount of water vaporized CO2 enters the second gas-liquid separator 21, and the separated CO2 liquid is pumped into the temporary storage component together with the CO2 liquid precipitated by the second condenser 20, and the separated gas entrains part of the cold It can be returned to the inlet of the primary condenser to reduce energy consumption and improve recovery rate.
  • the first compressor 16 pressurizes the 0.8MPa incoming gas in the buffer gas tank 15 to 2.45MPa and then transports it to the The temperature in the first condenser 17 is lowered to -12.5°C to form a gas-liquid two-phase region. At this time, the mass of liquefied CO2 is about 70%.
  • the separated exhaust gas still has about 30% mass of CO gas , because the pressure is lost after passing through the first gas-liquid separator 18 and delivery valves and pipelines, so
  • the CO 2 mixed gas discharged from the first gas-liquid separator 18 needs to be compressed again by the second compressor 19 to 2.45 MPa, and then cooled to -25° C. by the second condenser 20 before being completely liquefied.
  • the purity of CO 2 liquefied by the primary and secondary purification systems can reach about 98%, which already has a certain commercial value, but in order to meet the higher quality requirements of CO 2 products, it needs to enter the rectification component for further purification to higher purity.
  • the temporary storage assembly includes a first cooling storage tank 23 and a pressure regulating valve, the first cooling storage tank 23 is used to temporarily store the carbon dioxide liquid obtained after the primary separation and the secondary separation, and the pressure regulating valve Used to adjust the pressure of the first cooling storage tank 23; specifically, the first cooling storage tank 23 stores the liquefied concentration of about 98% CO 2 from the primary and secondary purification systems pumped in by the booster pump, The CO 2 regulated by the pressure regulating valve enters the rectification component for further purification.
  • the rectification assembly includes a rectification tower 24 and a second cooling storage tank 25, the rectification tower 24 is used to receive the carbon dioxide liquid treated with pressure regulation in the first cooling storage tank 23, and to receive the carbon dioxide liquid Perform rectification treatment to obtain purified carbon dioxide, and the second cooling storage tank 25 is used for cooling and temporarily storing the purified carbon dioxide.
  • the gas in this system is mainly derived from the calcination of dolomite in the dolomite calcination furnace 100
  • the CO2 flue gas decomposed by the dolomite ore calcined by the dolomite calcination furnace 100 does not contain SO2, CO, H2S, etc. Therefore, the rectification tower 24 does not need to consider functions such as desulfurization and aldehyde removal. It only needs to adjust the working temperature of the rectification tower 24 and control the boiling point of CO2 to purify and precipitate it.
  • the purity of CO2 after rectification and purification can reach 99.99%, all indicators can reach the food grade carbon dioxide GB10621-2006 standard.
  • the high-purity CO 2 after rectification needs to be cooled to about -25°C, and then pressurized to about 2.45MPa before entering the liquefied CO 2 storage tank for storage.
  • the carbon dioxide purification and recovery subsystem 106 also includes a first booster pump 22 , a second booster pump 26 and a liquefied carbon dioxide storage tank 27 .
  • the carbon dioxide liquid in the first condenser 17, the first gas-liquid separator 18, the second condenser 20, and the second gas-liquid separator 21 is all passed through the first booster pump 22 After being pressurized, it is discharged into the first cooling storage tank 23.
  • the purified carbon dioxide in the second cooling storage tank 25 is pressurized by the second pressurizing pump 26 and then transported to the liquefied carbon dioxide storage tank 27 for storage.
  • the CO 2 liquid liquefied by the primary and secondary purification components is pumped into the first cooling storage tank 23 for buffering under the action of the first pressurizing pump 22, and then decompressed into the The rectifying column 24 is further purified.
  • the CO 2 purified by the rectification tower 24 enters the second cooling storage tank 25 and is cooled to -25°C for storage again. Due to the loss of pressure during the process, it needs to be pressurized by the second booster pump 26 After 2.45MPa, it enters the liquefied CO2 storage tank for storage for sale.
  • the carbon dioxide circulation subsystem in order to form a circulation loop of carbon dioxide produced and consumed in dolomite processing to achieve maximum utilization of resources, the carbon dioxide circulation subsystem includes a gas transmission pipeline 210, a carbon dioxide water vapor recovery pipe 211, gas-liquid separator, the first recovery pipeline 212 and the second recovery pipeline 213; wherein, the gas pipeline 210 communicates with the first gas outlet 208 and the carbonization separation device 203 of the dolomite calcined calcium and magnesium separation process (i.e.
  • the carbon dioxide water vapor recovery pipe 211 communicates with the heavy magnesium hydrolysis of the dolomite calcined calcium and magnesium separation process
  • the flue gas outlet of the reactor ie, the pyrolysis section
  • the first recovery pipeline 212 communicates with the gas outlet of the gas-liquid separator and the compressed buffer gas tank assembly 105
  • the air inlet is used to recover the carbon dioxide gas produced in the heavy magnesium hydropyrolysis reactor and then transfer it to the compressed buffer gas tank assembly 105
  • the second recovery pipeline 213 communicates with the dolomite calcined calcium and magnesium separation
  • the flue gas outlet of the magnesium carbonate calciner i.e. the secondary calciner section
  • the air inlet of the dust removal assembly 104 so that the carbon dioxide produced by the magnesium carbonate calciner is recycled to the compressed buffer gas tank after dust removal Component 105.
  • the present invention also provides a method for purifying and recycling carbon dioxide calcined from dolomite, using the purification and recycling device as described in any of the above embodiments to separate and recycle carbon dioxide.
  • a specific embodiment of the purification and recycling method is as follows: the pretreated dolomite ore enters the blanking bin 303 of the dolomite calciner 100 through the feed system, and falls into the calcining area 312 of the furnace regularly. When the temperature rises and the calcination starts, mineral powder dust will be generated during the feeding process. The dust is collected by the ring collection dust cover 101 and enters the ring collection bag filter 102 for dust removal. After the dust removal reaches the standard, it is discharged through the chimney 103 in the factory area.
  • the dolomite calcination furnace 100 continues to heat up.
  • the temperature rises to about 600-700°C the dolomite ore in the furnace begins to decompose a large amount of CO 2 flue gas.
  • the induced draft fan and the gas collection pipe 307 Open the decomposed CO 2 flue gas enters the process bag filter 12 under the negative pressure of the induced draft fan of the process bag filter 12 to remove dust, and the decomposed high-temperature CO 2 flue gas rises in the furnace to the exhaust chamber 11 and is discharged
  • the heat exchange with the cold material in the blanking bin 303 is carried out constantly, therefore, the measured temperature of the exhausted CO 2 flue gas is within 100°C.
  • the temperature of the CO 2 mixed gas will increase during the pressurization process, so a heat exchanger 14 is equipped to keep it at room temperature at 0.8MPa to reduce the pressure.
  • the CO 2 mixed gas enters the buffer gas tank 15 for storage after volume. It should be noted that both the heavy magnesium hydropyrolysis reactor used in the dolomite pyrolysis process and the magnesium carbonate calciner used in the secondary calcination process will produce CO 2 , therefore, it is necessary to separate them from gas-liquid or After dedusting, it is pressurized and introduced into the buffer gas tank 15 .
  • CO stored in the buffer gas tank 15 A part of the mixed gas is directly decompressed and introduced into the carbonization section to prepare products such as magnesium carbonate and calcium; the rest enters the first compressor 16 and is pressurized to about 2.45MPa. 2. The mixed gas enters the first condenser 17 and cools down to about -12.5°C.
  • the pressure will be lost in the first condensation and the first gas-liquid separation process, so the gas separated by the first gas-liquid separator 18 needs to be recompressed to 2.45MPa by the second compressor 19, and the repressurized gas enters the first gas-liquid separator.
  • the temperature of the second condenser 20 is lowered to about -25°C.
  • the remaining 30% of the mass of CO2 is basically liquefied, and the liquefied CO2 is also discharged from the bottom of the second condenser 20, and the rest of the non-condensable gas is discharged from the top of the second condenser 20. Discharge to the chimney 103 in the factory area.
  • the measured purity of the liquefied CO2 at this time is only about 98%, which is not It meets the purity requirements of most product-level CO 2 . Therefore, the liquefied CO 2 needs to be pressure-regulated and enter the rectification tower 24 for low-temperature rectification. After rectification, the CO 2 with a purity of 99.99% can be buffered. Due to the loss of pressure and temperature during rectification and pipeline transportation, the CO 2 after rectification needs to be cooled to about -25°C again, and then pressurized to about 2.45MPa before being stored for use.

Abstract

本发明提供一种白云石资源化深度利用成套处理系统及方法,所述系统包括一次煅烧装置、二氧化碳捕集装置、消化装置、碳化分离装置、热解装置以及二次煅烧装置:所述一次煅烧装置包括白云石煅烧炉、多块围板以及气体捕集管道,所述围板与白云石煅烧炉的炉膛顶部以及落料仓的外壁的之间围绕形成排气腔室;所述排气腔室通过气体捕集管道与所述二氧化碳捕集装置连通;所述碳化分离装置包括碳化反应罐,所述碳化反应罐的进气口与所述二氧化碳捕集装置的出气口连通;所述热解装置包热解釜以及真空泵,所述真空泵维持所述热解釜内的负压状态。本发明可以优化工艺流程、降低能耗、提高资源利用度、并使钙镁分离更加完全。

Description

一种白云石资源化深度利用的成套处理系统和方法 技术领域
本发明涉及白云石的资源化利用,尤其涉及一种白云石资源化深度利用的成套处理系统和方法。
背景技术
白云石是重要的钙镁资源,白云石在煅烧时会失去二氧化碳,成为氧化钙和氧化镁的混合物,工业中常被称为轻烧白云石或煅白,煅白是白云石矿生产优质碳酸镁、钙及优质氧化镁,亦或是用于冶金、新材料、农业、环保等各领域的重要直接和中间产品。从白云石中获得钙镁材料的主要方法有碳化法、酸解法、铵浸法和卤化法;其中碳化法因生产成本较低,生产过程稳定尤为受到重视。
白云石碳化法的基本工艺包括:将白云石矿破碎后,煅烧得到含活性氧化钙和氧化镁的煅白(即轻烧白云石);将煅白消化除杂后,可以获得消化乳液;将消化乳液转至碳化塔内,通入二氧化碳后,消化乳液中的氢氧化钙先发生沉淀反应生成碳酸钙,随着二氧化碳的持续加入,氢氧化镁转化为可溶性碳酸氢镁;当氢氧化镁完全转化时,停止碳化,过滤反应液,滤液为重镁水(即碳酸氢镁溶液),滤渣为含杂碳酸钙;将上述滤液热解可以得到碱式碳酸镁沉淀,碱式碳酸镁沉淀经煅烧可得到氧化镁。
例如:公告号为CN105271845B的中国发明专利公开了一种由白云石制备高性能硅钢用氧化镁的方法,其先将白云石通过煅烧,与水进行化合后在碳化塔中进行碳化,然后过滤分离固体碳酸钙与碳酸氢镁水溶液,得到的碳酸氢镁水溶液通过热解过滤,得到碳酸镁后分步煅烧,经气流粉碎包装后即得到高性能硅钢用氧化镁。该专利中的白云石经碳化法加工虽然获得了高性能的硅钢用氧化镁,但是,其是利用多次煅烧提纯才获得了性能上的提升,也未在白云石煅烧过程中获得含高纯二氧化碳的烟气,增加了整个加工过程的资源浪费与能耗。
又例如,公告号为CN103145166B的中国发明专利公开了一种用于白云石碳化工艺中的钙镁分离方法,包括:向消化乳液中通入二氧化碳至pH为 12.5-9.5,得到初步碳化体系;向初步碳化体系中加入乙酰丙酮,混合得到混合体系;向混合体系中通入二氧化碳至pH为9.5-7.5,以产生碳酸钙固体,分离固体后,液相为精制重镁水,实现了高效的钙镁分离。但是该专利技术方案中增加了乙酰丙酮的使用,不仅加大了成本,而且乙酰丙酮为有毒物质。
虽然碳化法在白云石的加工过程中应用较为普遍,但是白云石碳化法的加工过程目前还是存在一些问题,如:能耗和成本过高、二氧化碳净化与回收的难度较大、资源浪费、钙镁分离不彻底等。鉴于此,有必要提供一种白云石资源化深度利用成套处理系统和方法,以解决或至少缓解上述的缺陷。
发明内容
本发明的主要目的是提供一种白云石资源化深度利用的成套处理系统,旨在解决上述技术问题。
为实现上述目的,本发明提供了一种白云石资源化深度利用的成套处理系统,其特征在于,包括一次煅烧装置、二氧化碳捕集装置、消化装置、碳化分离装置、热解装置以及二次煅烧装置:其中,
所述一次煅烧装置包括对白云石进行间接处理的白云石煅烧炉、多块围板以及气体捕集管道,所述围板与所述白云石煅烧炉的炉膛顶部以及落料仓的外壁的之间围绕形成排气腔室,所述白云石煅烧炉的进料口、所述落料仓的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室连通,所述排气腔室通过所述气体捕集管道与所述二氧化碳捕集装置的进气口连通;
所述二氧化碳捕集装置包括第一出气口、第二出气口、回收系统、第一回收管道以及第二回收管道,所述第二出气口连通所述回收系统;
所述碳化分离装置包括碳化反应罐,所述碳化反应罐的进气口与所述二氧化碳捕集装置通过所述第一出气口连通;
所述热解装置包括热解釜以及真空泵,所述真空泵与所述热解釜连通,所述第一回收管道连通所述热解釜的出气口和所述二氧化碳捕集装置的进气口;其中,所述热解装置热解反应后的分解母液通过分解母液回流管道回流至所述消化装置的进液口;
所述二次煅烧装置包括碳酸镁煅烧炉,所述碳酸镁煅烧炉的烟气出口通过所述第二回收管道连通所述二氧化碳捕集装置的进气口。
进一步地,所述白云石煅烧炉包括自上至下依次设置的落料仓、炉膛、及 出料仓;
其中,所述炉膛的外壁上覆设有保温层,所述落料仓设置于炉膛的进料口的上方,所述落料仓的落料口通过所述进料口对应设置,所述落料口的尺寸小于所述进料口的尺寸,所述进料口同时作为所述炉膛的排气口;
所述落料仓的外壁与所述炉体的外壁之间通过所述围板围绕形成所述排气腔室,所述排气腔室通过所述进料口与所述炉膛的内部连通。
进一步地,,所述出料仓的外壁上设有循环水冷组件;
所述循环水冷组件的热水出口与所述热解釜的水浴热水进水口通过循环水回流管道连通,升温后的循环水用于向所述热解釜进行供热。
进一步地,所述循环水冷组件包括水冷夹壁,所述水冷夹壁与所述出料仓的外壁之间围绕形成水冷室。
进一步地,所述碳化分离装置包括所述碳化反应罐、气液混合反应器以及循环泵;
所述碳化反应罐的顶部开设有加料口和气路循环出口;所述碳化反应罐的底部开设有水路循环出口和排流口,所述排流口处安装有排流阀;
所述气液混合反应器包括气液混合管、进料管以及喷气管;其中,所述气液混合管安装于所述碳化反应罐的内部,所述气液混合管的侧壁上部开设有喷气管安装口,所述气液混合管的下端与所述碳化反应罐的内部连通设置;
所述进料管自上至下依次穿过所述碳化反应罐的顶部和所述气液混合管的顶部后伸入所述气液混合管的内部,且所述进料管的出料口位于所述喷气管安装口的下方,其中,所述气液混合管与所述进料管的接口处通过密封件密封;
所述喷气管的进气口同时与所述第一出气口和所述气路循环出口连通,所述喷气管的排气口安装于所述喷气管安装口;
所述循环泵的进液口与所述水路循环出口连通,所述循环泵的出液口与所述进料管的进料口连通。
进一步地,所述气液混合反应器还包括连通所述气液混合管的出口和所述碳化反应罐的对流混合喷射管,所述对流混合喷射管设置于所述气液混合管的下方,且所述对流混合喷射管自上至下依次设有正向流混合器和反向流混合器。
进一步地,所述热解釜中设有防止物料沉积结壁的螺带式搅拌器。
进一步地,所述二氧化碳捕集装置还包括压缩缓存气罐组件和二氧化碳循环子系统;
所述压缩缓存气罐组件的进气口通过所述气体捕集管道与所述排气腔室连通,所述压缩缓存气罐组件包括所述第一出气口和所述第二出气口;
所述二氧化碳循环子系统包括输气管道、所述第一回收管道、所述第二回收管道、二氧化碳水汽回收管以及气液分离器;
其中,所述二氧化碳水汽回收管连通所述热解釜的烟气出口和所述气液分离器的进气口,所述气液分离器的出气口连通所述二氧化碳捕集装置的进气口。
本发明还提供一种采用如上述任一项所述的白云石资源化深度利用成套处理系统进行白云石资源利用的方法。
进一步地,还包括步骤:在所述一次煅烧装置的白云石加热至碳酸镁的分解温度时,开启所述二氧化碳捕集装置进行二氧化碳的回收与循环利用。
进一步地,所述碳酸镁的分解温度为600-700℃。
进一步地,还包括以下步骤中的一项或者多项:
向所述消化装置中添加抑制剂,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;
向含钙重镁水溶液中添加分散剂,所述分散剂包括甲醇、酒精、甘油、聚丙烯酰胺、纤维素衍生物、水玻璃中的一种或多种;
所述消化装置中的首批煅白采用水进行消化,其余批次的煅白采用未冷却的所述分解母液进行消化;
维持所述热解釜内的负压状态,以使所述热解釜内的含钙重镁水溶液的沸点位于碳酸氢镁的热解温度与碳酸氢钙的热解温度之间。
进一步地,所述消化装置中的煅白与所述水或所述分解母液的固液比为1kg:10~30L;消化所述首批煅白采用50~80℃的所述水。
进一步地,所述分散剂的添加量为所述含钙重镁水溶液0.1%~2%的体积百分比。
本发明还提供一种白云石煅烧炉,包括:气体捕集管道和炉体,所述炉体包括自上至下依次设置的落料仓、炉膛和出料仓;
其中,所述炉膛的内部形成有至少一个竖向的煅烧区,所述炉体还包括通过热传导的方式向所述炉膛内的物料供热的加热装置;所述炉膛的顶部设置有封闭所述炉膛的炉口的封板,且所述封板上开设有至少一个连通口;
所述落料仓设置于所述封板的上方,所述落料仓的落料口通过所述连通口与所述煅烧区连通,所述落料口的尺寸小于所述连通口的尺寸;所述落料仓的 外壁与所述封板之间通过围板围绕形成有排气腔室,所述排气腔室通过所述连通口与所述煅烧区连通;
所述气体捕集管道与所述排气腔室连通,以将所述煅烧区内产生的气体依次通过所述连通口、所述排气腔室及所述气体捕集管道排放至外部的二氧化碳捕集装置中。
进一步地,所述加热装置包括电加热板和电加热棒;其中,每个所述煅烧区均被电加热板围绕设置,所述封板上还固定有伸入所述煅烧区内的电加热棒。
进一步地,每个所述煅烧区对应设置有至少一个所述电加热棒。
进一步地,所述落料仓包括仓体以及设于所述仓体下部的多个落料斗,每个所述落料斗开设有所述落料口;所述连通口的个数与所述落料口相配合的设置。
进一步地,所述炉膛的外壁上覆设有保温层;所述出料仓的外壁上设有供冷却水流动的循环水冷组件。
进一步地,所述煅烧炉还包括设置于所述落料仓上方的进料机构、以及设置于所述出料仓下方的传送机构;
其中,所述进料机构和所述传送机构均与所述炉体平行设置,所述进料机构或所述落料仓上安装有物位控制器,所述物位控制器监测所述落料仓的仓位并控制所述进料机构向所述落料仓内投料,以实现所述落料仓与所述进料机构的联锁控制。
本发明还提供一种间接处理白云石的清洁环保煅烧方法,包括步骤:
S1,向如上述任一项所述的煅烧炉中的所述落料仓内投加破碎的白云石,以使白云石进入所述落料仓内;
S2,控制所述加热装置对所述煅烧区进行加热,以使白云石的煅烧温度上升至预设温度;
S3,在加热至第一预设时间后,开启二氧化碳捕集装置中的引风机,使所述煅烧区内产生的二氧化碳在所述引风机的作用下经所述连通口、所述排气腔室及所述气体捕集管道排放至所述二氧化碳捕集装置中;
S4,在加热至第二预设时间后,对煅烧得到的煅白经由所述出料仓排出待用;
S5,根据所述落料仓中的仓位向所述落料仓内追投破碎的白云石。
进一步地,所述预设温度为900~1050℃。
进一步地,所述第一预设时间对应白云石的煅烧温度升至碳酸镁的分解温度。
进一步地,所述第一预设时间为白云石的煅烧温度升至600-700℃时。
进一步地,所述步骤S4中,所述第二预设时间为3-6小时;所述煅烧方法还包括步骤:
通过调节如上述任意所述的煅烧炉中的所述传送机构的传送速率,控制追投的白云石在所述煅烧区内的停留时间为2~4小时。
进一步地,还包括步骤:将首次产生的垫底料再次返回至所述落料仓中,以完成对所述垫底料的充分煅烧。
本发明还提供一种碳化分离装置,包括碳化反应罐、气液混合反应器以及循环泵;其中,
所述碳化反应罐的顶部开设有供消化乳液进入的加料口和气路循环出口,所述碳化反应罐的底部开设有水路循环出口和排流口;
所述气液混合反应器包括气液混合管、进料管、喷气管和对流混合喷射管;其中,所述进料管的进料口位于所述碳化反应罐外部,所述进料管的出口端从所述气液混合管的顶部插入所述气液混合管的内部;所述气液混合管安装于所述碳化反应罐的内部,所述气液混合管与所述进料管的接口处通过密封件密封,所述气液混合管的侧壁上还开设有进气口;所述喷气管的进气端同时与二氧化碳压力供气装置和所述气路循环出口连通,所述喷气管的排气端与所述进气口固定安装;所述进料管的出料口的竖直位置低于所述进气口;
所述对流混合喷射管设置于所述气液混合管的下方,在竖向上连通所述气液混合管的出口和所述碳化反应罐,且所述对流混合喷射管自上至下依次设有正向流混合器和反向流混合器;
所述正向流混合器包括第一管体和凸设于所述第一管体的管腔内壁的第一螺旋凸起,所述反向流混合器包括第二管体和凸设于所述第二管体的管腔内壁的第二螺旋凸起,所述第一螺旋凸起和所述第二螺旋凸起的螺旋方向相反;
所述循环泵的进液口与所述水路循环出口连通,所述循环泵的出液口与所述进料管的进料口连通。
进一步地,所述第一螺旋凸起和所述第二螺旋凸起均为双螺旋结构。
进一步地,所述喷气管的进气口与所述二氧化碳压力供气装置之间设有减压阀,所述喷气管的进气口与所述气路循环出口之间设有气路循环单向阀。
进一步地,所述进料管下部的管腔内径逐渐减小。
进一步地,所述气液混合管的管径自所述进气口的位置向下逐渐减小。
进一步地,所述反向流混合器的出口端还连接有喷管,所述喷管的自由端的位置位于所述碳化反应罐的中部以下。
本发明还提供一种白云石煅白消化分离方法,包括步骤:
S10,将首批煅白用水消化后获得消化乳液;
S20,向所述消化乳液中加入抑制剂,其中,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;
S30,将加入所述抑制剂的所述消化乳液通过所述加料口,以及将具有压力的CO 2经由所述喷气管送入如权利要求27-32任意一项所述的分离装置中进行碳化反应,以使钙镁分离。
进一步地,还包括:S40,当所述碳化反应罐中碳化浆液的pH为7.0-7.8时,取出碳化浆液并进行固液分离,得碳酸钙沉淀和碳酸氢镁溶液。
进一步地,还包括步骤:
S50,将所述碳酸氢镁溶液进行分解后的分解母液循环与后续批次的煅白混合后作为新的所述消化乳液,返回所述步骤S30。
进一步地,首批所述煅白与水的添加比例、以及后续批次的所述煅白与所述分解母液的固液比均为1kg:10~30L。
进一步地,所述抑制剂的添加量为所述消化乳液质量分数的0.01~0.05%。
本发明还提供一种白云石煅烧二氧化碳的净化与循环利用装置,包括:回收腔组件、除尘组件、压缩缓存气罐组件、二氧化碳净化回收子系统以及二氧化碳循环子系统;
所述回收腔组件包括多块围板,所述围板与间接加热式的白云石煅烧炉的炉膛顶部以及落料仓的外壁的之间围绕形成排气腔室,所述白云石煅烧炉的进料口、所述落料仓的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室连通;所述排气腔室通过气体捕集管道与所述除尘组件连通;
所述压缩缓存气罐组件的进气口与所述除尘组件的出口连通,并对CO 2气体进行压缩和存贮,所述压缩缓存气罐组件包括第一出气口和第二出气口;
所述二氧化碳净化回收子系统与所述第二出气口连通;
所述二氧化碳循环子系统包括输气管道、二氧化碳水汽回收管、气液分离器、第一回收管道以及第二回收管道;其中,所述输气管道连通所述第一出气 口以及白云石煅烧钙镁分离工艺的碳化分离装置;
所述二氧化碳水汽回收管连通所述白云石煅烧钙镁分离工艺的重镁水热解反应器的烟气出口和所述气液分离器的进气口,所述第一回收管道连通所述气液分离器的出气口和所述压缩缓存气罐组件的进气口;
所述第二回收管道连通所述白云石煅烧钙镁分离工艺的碳酸镁煅烧炉的烟气出口和所述除尘组件的进气口。
进一步地,所述除尘组件包括工艺布袋除尘器,所述工艺布袋除尘器上设有引风机,所述工艺布袋除尘器通过所述引风机将所述白云石煅烧炉中产生的二氧化碳气体引入所述工艺布袋除尘器内。
进一步地,所述压缩缓存气罐组件包括螺杆压缩机、换热器、以及缓存气罐;所述除尘组件处理后的所述二氧化碳气体经所述螺杆压缩机压缩,所述螺杆压缩机压缩后的二氧化碳气体经所述换热器加热至常温后输送至所述缓存气罐存贮。
进一步地,所述二氧化碳净化回收子系统包括一次净化组件、二次净化组件、暂存组件、以及精馏组件;其中,
所述一次净化组件用于对所述压缩缓存气罐组件中存贮的二氧化碳气体依次进行压缩、冷凝和气液分离的处理,得首次分离后的二氧化碳液体和待净化气体;
所述二次净化组件用于接收所述首次分离后得到的待净化气体,并对所述首次分离后得到的待净化气体依次压缩、冷凝和气液分离的处理,得二次分离后的二氧化碳液体、待净化气体和待排放气体;所述二次净化组件的待净化气体排出口与所述一次净化组件的进气口连通,以对所述二次分离后得到的待净化气体经所述一次净化组件进行再次处理;所述二次净化组件的废气排气口与外部连通,以将所述二次分离后得到的待排放气体排出;
所述暂存组件包括第一冷却贮罐和调压阀,所述第一冷却贮罐用于暂存所述首次分离和所述二次分离后得到的二氧化碳液体,所述调压阀用于调节所述第一冷却贮罐的压力;
所述精馏组件包括精馏塔和第二冷却贮罐,所述精馏塔用于接收所述第一冷却贮罐中经调压处理的二氧化碳液体,并对接收的二氧化碳液体进行精馏处理,得纯化后的二氧化碳,所述第二冷却贮罐用于对纯化后的二氧化碳进行冷却暂存。
进一步地,所述一次净化组件包括第一压缩机、第一冷凝器、第一气液分离器;所述二次净化组件包括第二压缩机、第二冷凝器、第二气液分离器;
所述第一压缩机对所述压缩缓存气罐组件中存贮的二氧化碳气体进行压缩处理;所述第一冷凝器对所述第一压缩机压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体和待分离气体;所述第一气液分离器对所述第一冷凝器中的待分离气体进行气液分离处理,得二氧化碳液体和待净化气体;所述第一冷凝器和所述第一气液分离器中的二氧化碳液体排至所述暂存组件;
所述第二压缩机对所述第一气液分离器中的待净化气体进行压缩处理;所述第二冷凝器对所述第二压缩机压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体、待排放气体和待分离气体;所述第二气液分离器对所述第二冷凝器中的待分离气体进行气液分离,得二氧化碳液体和待净化气体;
其中,所述第二冷凝器中的待排放气体排至厂区烟囱,所述第二冷凝器和所述第二气液分离器中的二氧化碳液体排至所述暂存组件,所述第二气液分离器中的待净化气体排至所述第一冷凝器。
进一步地,所述二氧化碳净化回收子系统还包括第一加压泵、第二加压泵和液化二氧化碳贮罐;
所述第一冷凝器、所述第一气液分离器、所述第二冷凝器、及所述第二气液分离器中的二氧化碳液体均经所述第一加压泵加压后排至所述第一冷却贮罐中;
所述第二冷却贮罐中的所述纯化后的二氧化碳经所述第二加压泵加压后输送至所述液化二氧化碳贮罐中存贮待用。
进一步地,所述二氧化碳的净化与循环利用装置还包括环集除尘机构,所述环集除尘机构用于收集煅烧进料过程中产生的矿粉扬尘气体,并对收集的矿粉扬尘气体进行除尘处理。
进一步地,所述白云石煅烧炉的进料口与所述白云石煅烧炉的排气口为同一个开口。
本发明还提供一种白云石煅烧二氧化碳的净化与循环利用方法,其特征在于,采用如上述任意一项所述的净化与循环利用装置对二氧化碳进行净化与分离回收。
与现有技术相比,本发明的优点为:
1、本发明能使钙镁分离更加彻底,获得高纯的轻质碳酸和轻质氧化镁,生 产产品之一轻质碳酸钙的含镁率可控制在小于1%,满足《HG/T2226-2010》标准;生产产品之二高纯轻质氧化镁的纯度可达98%以上,满足《HG/T2573-2012》标准。通过对白云石进行间接煅烧,避免了因煤气、天然气或助燃气体与白云石的直接接触,从源头上杜绝了外部杂质的引入;通过排气腔室的设置,充分地实现了热量的利用、白云石的预热干燥、二氧化碳气体的独立排出、炉膛的封毕,以及避免了二氧化碳中含有过多的水分;通过将所述一次煅烧装置中白云石煅烧炉产生的高纯二氧化碳用于所述碳化工段中,不仅实现了资源的循环利用,还保证了碳化工段中所用二氧化碳气体的纯度,避免了所述碳化工段中杂质的引入。
2、本发明通过以高速流动的消化乳液带动二氧化碳气体的流入,并将二氧化碳气体切割成微气泡,可以提高二氧化碳气体与消化乳液的混合度,促进碳化反应的进行;通过将二氧化碳气体与消化乳液的气液混合物进行对流混合,可以促进二氧化碳和消化乳液的进一步结合;通过在所述碳化反应工段的碳化反应中引入所述抑制剂,可以抑制生成的碳酸钙转换为碳酸氢钙,避免了钙的溶出。
3、本发明通过在所述热解工段进行负压调节,可以确保热解釜中的沸点温度处于碳酸氢钙和碳酸氢镁的热解温度之间,避免了碳酸氢钙的热解,保证了碳酸镁的纯度;通过在所述热解工段引入所述分散剂,可以促进碳酸镁的形成。
4、本发明通过控制白云石在煅烧过程中不与外部直接接触,并设置独立的排气系统,保证了烟气中的气体仅来源于白云石的分解;本发明能提升烟气中二氧化碳的纯度,使得烟气中二氧化碳的纯度约为85%。
5、本发明通过控制气体回收的时间节点,白云石加热至650-750℃时开启气体回收,使二氧化碳捕集装置的开启时间与碳酸镁的初始分解时间保持一致,不仅可以降低能源消耗,还能为白云石的预热干燥提供缓冲时间,避免了烟气中混入大量水汽;并且,后续煅烧区内的热量会有部分经物料堆积和气体流动而传输至待煅烧的白云石,因此,后续白云石在煅烧过程中产生的水汽较少,不会使烟气在后续煅烧过程中混入大量水汽。
6、本发明能提高资源利用度并降低能耗。在煅烧过程中,热量主要集中在炉膛的煅烧区内,少量逸散的热量只能向上通过物料堆积和气体流动传递给待煅烧的白云石,或向下传递给循环冷却组件中的冷却水,加热后的冷却水可以用作所述热解工段中的热源;此外,通过将所述热解工段中产生的分解母液用 于消化工段的消化,不仅可以实现抑制剂的循环使用,还可以实现对热量的再利用,即热量自白云石的煅烧区传递给冷却水,然后自加热后的冷却水传递至热解工段,最后还可自热解工段的分解母液传递至消化工段。
7、本发明能提高煅白的品质和活性度。通过所述封板、所述落料仓、以及所述围板的结构设计和所述排气腔室的设置,即使采用对炉膛的外壁进行加热的方式来以热传导的方式向所述炉膛内的物料提供热量,由于所述落料仓中物料的堆积及所述围板与所述封板的作用,也可以避免燃煤、助燃风等直接与白云石接触,保证了白云石在煅烧过程中不会引入杂质;在此过程中,还可以实现白云石进料、密闭排气和热交换等功能;通过采用所述电加热板和所述电加热棒对白云石进行加热煅烧,可以保证清洁煅烧的进一步地开展。
8、本发明能提升烟气中二氧化碳的纯度。通过所述连通口、所述排气腔室和所述气体捕集管道可以构成一个独立的排气系统,确保自所述煅烧区内排出的烟气不会掺入杂质,而是完全来自于白云石的煅烧分解,二氧化碳纯度高。
9、本发明能降低烟气中二氧化碳的水汽含量。所述落料仓的外壁与所述封板之间通过围板围绕形成有排气腔室,排气腔室中的烟气可以对落料仓的物料起到预热的作用,既能回收利用能源,又能是先将物料仓中的物料的水分先蒸发掉,通过控制二氧化碳捕集装置的开启时间,使之与碳酸镁的初始分解节点(600-700℃)保持一致,不仅可以与二氧化碳的分解时间适配,还能为白云石的预热干燥提供缓冲时间,避免了烟气中混入大量水汽;并且,在后续过程中,因煅烧区内的热量会有部分经物料堆积和气体流动而传输至待煅烧的白云石,因此,后续白云石在煅烧过程中产生的水汽较少,不会使烟气中混合大量水汽。
10、本发明能降低白云石煅烧所需的能耗。在煅烧过程中,热量主要集中在炉膛的煅烧区内,少量逸散的热量只能向上或向下传递。其中,在向上传递的过程中,因落料口和连通口的设置,可以通过物料堆积而将热量传递至落料仓中,从而使待煅烧的白云石预热干燥;此外,由于烟气中也会携带部分热量,但是,因排气系统和落料系统共用一个连通口,且排气系统中的排气腔室环绕落料仓设置,烟气中携带的热量同样会经落料仓传递给待煅烧的白云石,使之预热干燥;在向下传递的过程中,因出料仓的位置处设有所述循环水冷组件,可以将向下传递的热量吸收至冷却水中,冷却水经加热后可以用于后续的热解工段,不需再次对热解工段提供热源。
11、本发明能以较低的成本使钙镁分离更加彻底。通过设置位于所述碳化 反应罐内部的所述气液混合管、用于液体循环的所述进料管、以及用于喷入气体的所述喷气管,在高速液作用下,使机械能转化为气液的表面能,二氧化碳被切割成微气泡。在此基础上,由于所述气液混合管具有较高的喷射力,在喷射力的带动下,气液混合物在竖向上被喷入所述对流混合喷射管中,借助气液混合物的高速流动性和所述对流混合喷射管中的反向对流作用,可以使得二氧化碳与消化乳液在短时间内的接触频率显著提升;且由于所述对流混合喷射管位于所述碳化反应罐的内部,高频接触后的气液混合物可立即进入被喷入所述碳化反应罐内,从而持续保持气液之间的紧密性。
具体为:所述气液混合管、所述进料管和所述喷气管使得二氧化碳被切割成微气泡,在竖向喷射力和反向对流的作用下,所述微气泡与消化乳液的接触频率可以瞬间提升无数倍。其中,所述气液混合管和所述对流混合管上下设置,可以避免喷射力的减弱;并且,所述气液混合管下部的管径逐渐减小,也可以进一步地保证气液混合物在进入所述对流混合喷射管中的过程中具有更高的喷射速度,以确保气液之间的接触频率能够瞬间提升,从而提高碳化反应的效率。此外,通过在碳化过程中向消化乳液加入抑制剂,并控制碳化过程中体系的pH,可以抑制碳酸钙转换为碳酸氢钙,使体系中的钙镁得到彻底分离;同时,后续批次的消化乳液采用分解母液进行消化,可将大部分的抑制剂回收利用,大大降低了生产成本,实现了绿色生产。
12、本发明能实现白云石深加工过程中二氧化碳的净化与回收利用。首先,通过设置回收腔组件,使所述进料口和所述排气腔室构成了封闭的排气系统,从而构建了一次煅烧工段中二氧化碳的净化回收通路,该排气系统可以避免烟气与外部的接触,使得烟气自产生至收集均处于相对独立的环境中,保证了二氧化碳的初始纯度;其次,通过控制烟气回收的时间节点,使烟气回收的起始时间与白云石中碳酸镁的初始分解时间一致,为白云石的预热干燥提供了缓冲时间,避免了回收的二氧化碳中夹杂大量水汽。此外,通过设置所述二氧化碳水汽回收管、所述气液分离器和所述第一回收管道,构建了热解工段中二氧化碳的净化回收通路;通过设置所述第二回收管道,并将所述第二回收管道与所述除尘组件连通,构建了二次煅烧工段中二氧化碳的净化回收通路;通过设置同时与所述碳化系统和所述压缩缓存气罐组件连通的所述输气管道,构建了二氧化碳的资源利用通路;尤其是,将碳化工段、热解工段和二次煅烧工段通过管路连通,还构成了碳回路,形成了碳循环。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明中成套处理系统的模块示意图;
图2为本发明中白云石煅烧炉的立面示意图;
图3为本发明中白云石煅烧炉的平面示意图;
图4为本发明中落料仓与气体捕集管道的相对位置示意图;
图5为本发明中排气腔室与气体捕集管道的相对位置示意图;
图6为本发明中排气腔室和落料仓的剖切图;
图7为本发明中落料仓与气体捕集管道的另一相对位置示意图;
图8为本发明中碳化分离装置的结构示意图;
图9为本发明中气液混合反应器的结构示意图;
图10为本发明中对流混合喷射管的结构示意图;
图11为本发明中白云石煅白消化分离方法的流程示意图;
图12为本发明中净化与循环利用装置的结构示意图;
图13为本发明中净化与循环利用装置的另一结构示意图;
图14为本发明中回收腔组件的结构示意图;
图15为本发明中白云石煅烧炉与回收腔组件组合的结构示意图。
附图标记:
排气通路10;排气腔室11;工艺布袋除尘器12;螺杆压缩机13;换热器14;缓存气罐15;第一压缩机16;第一冷凝器17;第一气液分离器18;第二压缩机19;第二冷凝器20;第二气液分离器21;第一加压泵22;第一冷却贮罐23;精馏塔24;第二冷却贮罐25;第二加压泵26;液化二氧化碳贮罐27;
白云石煅烧炉100;环集收尘罩101;环集布袋除尘器102;厂区烟囱103;除尘组件104;压缩缓存气罐组件105;二氧化碳净化回收子系统106;
一次煅烧装置201;消化装置202;碳化分离装置203;热解装置204;二次煅烧装置205;回收腔组件206;气液分离组件207;第一出气口208;第二出气口209;输气管道210;二氧化碳水汽回收管211;第一回收管道212;第 二回收管道213;循环水回流管道214;分解母液回流管道215;二氧化碳捕集装置216;
胶带运输机301;移动卸料车302;落料仓303;落料斗304;挡板305;物位控制器306;气体捕集管道307;排气腔室308;围板309;封板310;连通口311;煅烧区312;加热棒313;加热板314;保温层315;震动器316;出料仓317;循环水冷组件318;板式输送机319;
碳化反应罐401;加料口402;气路循环出口403;水路循环出口404;排流口405;温度显示接口406;压力显示接口407;液位显示接口408;检修口409;气液混合反应器410;进料管411;喷气管412;减压阀413;气路循环单向阀414;气液混合管415;对流混合喷射管416;正向流混合器417;反向流混合器418;循环泵419;循环泵进口阀420;循环泵出口阀421。
本发明目的的实现、功能特点及优点将结合实施方式,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明的一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
需要说明,本发明实施方式中所有方向性指示(诸如上、下……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
并且,本发明各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
实施例1
如图1-15所示,本发明提供了一种白云石资源化深度利用的成套处理系统,括一次煅烧装置201、二氧化碳捕集装置216、消化装置202、碳化分离装置203、热解装置204以及二次煅烧装置205。
具体的,所述一次煅烧装置201包括对白云石进行间接煅烧处理的白云石煅烧炉、多块围板309以及气体捕集管道307。所述围板309与白云石煅烧炉的炉体顶部以及落料仓303的外壁的之间围绕形成排气腔室308,所述白云石煅烧炉的进料口、落料仓的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室308连通;所述排气腔室308通过所述气体捕集管道307与所述二氧化碳捕集装置216的进气口连通。进一步地,所述白云石煅烧炉的进料口和所述白云石煅烧炉的排气口可以为同一个开口,统称为连通口311。
其中,申请人需要说明的是,本申请中的“间接处理”、“间接加热处理”和“间接煅烧处理”均指的是区别于现有的对白云石的直接煅烧,例如对白云石通过非添加焦炭、煤粉的点火直接烧结煅烧加热的方式,或者通过通入燃气等直接在明火中直接煅烧的方式;本申请中的“间接处理”、“间接加热处理”和“间接煅烧处理”指的是通过对炉膛内的物料或者炉壁采用电加热、又或者对炉壁进行加热,使热量传导至物流从而对物料进行煅烧的方式。在一可选地实施例中,通过对白云石进行间接煅烧处理的白云石煅烧炉可以以电力或燃气作为煅烧的能源对所述白云石进行间接煅烧,得煅白与二氧化碳气体;并通过所述白云石煅烧炉中白云石的堆积和二氧化碳气体的流动对未煅烧的白云石进行预热和干燥处理。
以下以一具体示例来说明一次煅烧装置201,所述对白云石进行间接煅烧处理的白云石煅烧炉为竖炉或者竖窑。所述白云石煅烧炉包括自上至下依次设置的落料仓303、炉膛、及出料仓317。
其中,所述炉膛的顶部设置有用于封闭所述炉膛的炉口的且具有至少一个所述连通口311的封板310。
在一具体示例中,所述炉膛的外壁上覆设有保温层315,所述炉膛的内部形成有至少一个由加热板314围绕而成的煅烧区312,所述封板310上固定有至少一个伸入所述煅烧区312内的加热棒313;一般情况下,每个所述煅烧区312内均均匀布置有多个所述加热棒313,以对所述煅烧区312内的白云石进行均匀煅烧。
需指出的是,相邻所述加热棒313之间及所述加热棒313与所述加热板314 间之间的距离可以根据实际情况确定,作为一种较优的选择,具体可以设置在100~500mm之间。
所述落料仓303设置于所述封板310的上方,所述落料仓303的至少一个落料口通过所述连通口311与所述煅烧区312连通,所述落料口的尺寸小于所述连通口311的尺寸。
所述围板309与所述落料仓303的外壁以及所述封板310之间围绕形成有密闭的所述排气腔室308,所述排气腔室308通过所述连通口311与所述煅烧区312连通。其中,所述落料口可以与所述连通口311平齐,也可略微伸入所述煅烧区312内,以避免所述连通口311被白云石完全堵塞。
所述出料仓317设置于所述炉膛的下方,以使所述煅烧区312内的白云石物料穿过所述出料仓317后出料至所述传送机构上。
所述气体捕集管道307同时与所述排气腔室308和二氧化碳捕集装置216连通设置,以将所述煅烧区312内产生的气体依次通过所述连通口311、所述排气腔室308及所述气体捕集管道307排放至二氧化碳捕集装置216中。
在本申请中,由于所述排气腔室308四周的围板309围绕所述落料仓303的外壁,在回收气体的过程中,会将部分热量传输至所述落料仓303中,从而对白云石进行预热和干燥,这样后续白云石煅烧分解过程中,二氧化碳中的水汽含量会很低;再者,特别新颖的是,由于所述落料仓303中的白云石与所述煅烧区312内的白云石为堆积关系,所述落料仓303内的堆积物料将外界与所述白云石煅烧炉的内部分隔,此外,还会有部分热量随白云石的堆积传输至所述落料仓303中,进一步对落料仓303中的物料进行预热。
在具体实施方式中,所述围板309可以通过焊接、法兰连接的方式与所述落料仓303的外壁以及所述封板310固定连接,以对所述落料仓303的外壁与所述封板310之间的间隙进行封闭。所述围板3099还可以与落料仓3033一体的设置,通过调整落料仓303的高度,使围板309的底部抵持在炉体的顶部即可。
具体的,当所述白云石中的碳酸镁(一般为白云石被加热到700度左右时)开始分解时,再开启所述二氧化碳捕集装置216中的引风机,以将所述煅烧区312内产生的气体输送至所述二氧化碳捕集装置216中。如:由于白云石中含有水分,当碳酸镁开始分解时,物料温度在700℃左右,此时白云石中的水分基本被蒸发,因此,回收的二氧化碳中所含水分会较少,后续由于所述落料仓 303中会存在预热,因此后续所产生的二氧化碳所含水分也较少。
所述气体捕集管道307与所述排气腔室308的连通处还可以设置阀门,以避免前期产生的水分进入所述气体捕集管道307中,所述阀门可以与位于外部的控制器通信连接。
进一步地,为了准确地控制所述落料仓303的仓位,所述落料仓303上或进料机构上可以安装有物位控制器306,所述物位控制器306可以为声波物位控制器306或音叉物位控制器306,所述进料机构可以为带移动卸料车302的胶带运输机301;所述物位控制器306监测所述落料仓303的仓位并控制所述运输机上的所述移动卸料车302向所述落料仓303内投料,以实现所述落料仓303与所述胶带运输机301的联锁控制。
其中,所述落料仓303可以包括多个开设有所述落料口的落料斗304,所述落料斗304呈漏斗状,具体地,所述落料仓303可以全部由多个所述落料斗304组成,也可以使所述落料仓303的下部由多个所述落料斗304组成,所述落料仓303的上部由挡板305围绕而成。且,每个所述落料斗304均开设一个所述落料口,相邻两个所述落料斗304的侧壁顶端之间、及所述落料斗304与所述围板309之间均需密封连接,以确保所述排气腔室308的密封性。为了精准投料,所述物位控制器306还可以安装在所述落料斗304或所述挡板305上,以实现对每个所述落料斗304中仓位的控制,当然,将所述物位控制器306设于所述移动卸料车302上也可实现此目的。
此外,为了使所述炉体的进料出料更加顺畅,所述出料仓317的外壁上设有震动器316,以使白云石物料的排出地更加均匀和稳定。为了便于对所述煅烧区312内生产的高温煅白进行降温,从而保证向外输料所述传送机构不因过高温而烧损,所述出料仓317的外壁上设有循环水冷组件318,以用于对煅烧后生成的煅白进行降温,所述传送机构可以为板式输送机319。进一步地,所述循环水冷组件318可以设置于所述出料仓317的中下部,且所述循环水冷组件318可以为水冷夹壁,所述水冷夹壁与所述出料仓317的外壁之间可以围绕形成水冷室,以供冷却水的进入及升温后排出。所述循环水冷组件的热水出口与所述热解釜的水浴热水进水口通过循环水回流管道214连通连通,所述水冷室中的升温后的热水用于向所述热解釜供热。
应明确的是,一次煅烧装置201主要对白云石煅烧及气体回收,采用所述白云石煅烧炉替代传统炉窑,该炉煅烧白云石无需添加粉煤、焦炭或重油等燃 辅料,采用清洁电能或燃气间接处理,在前端即解决了粉煤灰、焦油等物质对轻烧白云石的污染,因此该炉生产的轻烧白云石纯度高、活性好、无污染,可有效降低后续工段除杂成本及提高生产效率;该炉还具有煅烧过程中无需鼓入大量助燃风的特点,因此煅烧分解的CO 2气体纯度高且不含SO2、CO、H2S等,炉气成分约为85%CO 2、11.85%N2及3.15%O2,可直接除尘后通过二次压缩进入中间气包缓存后供碳化工段使用,无废气及二氧化碳排放。
而且,所述白云石煅烧炉可采用电间接加热也可采用燃气燃烧器提供热风间接加热,生产时白云石矿破碎至5~10CM投入内炉膛中,当采用电间接加热时,所述加热棒313和所述加热板314以电力作为能量来源对所述煅烧区312进行升温加热;当采用燃气加热时,热源在所述炉膛的外壁加热,由于所述落料仓、所述围板和所述封板的结构设计、以及所述排气腔室的设置,在堆积白云石的情况下,可以避免所述煅烧区内的物料与热源和助燃风的接触,保证了物料的洁净度,在此基础上,还确保了白云石进料、密闭排气和热交换等功能的实现。所述煅烧区312内的热量通过白云石的堆积和气体的流动向所述落料仓303中的白云石传递,从而对白云石进行预热和干燥,此外,当采用燃气加热时外壁时,间接加热的内炉膛外侧加热空气上升后也可用于物料的预热,不需担心其对煅白产品和二氧化碳造成影响。
还需了解的是,所述白云石煅烧炉不仅在保证气体密闭回收的前提下,实现了气料之间及料料之间的热交换,还具有更进一步的节能效果。如:因所述炉膛的外壁设有所述保温层315,因此,所述炉膛内部的热量只能向上或向下传递,且由于所述炉膛的上方存在气料之间及料料之间的热交换,因此,向上传递的热量会被所述落料仓303中的白云石充分利用,此外,由于所述出料仓317的外壁上设有所述循环水冷组件318,少部分向下传递的热量会被所述循环水冷组件318中的冷却水吸收,所述冷却水在升温后可以用于白云石的其他工序,以将提高热量的利用率。
二氧化碳捕集装置216包括压缩缓存气罐组件、二氧化碳循环子系统、回收系统,所述压缩缓存气罐组件的进气口通过所述气体捕集管道与所述排气腔室连通,所述压缩缓存气罐组件包括第一出气口208和第二出气口209,所述第二出气口209连通所述回收系统,所述二氧化碳循环子系统包括输气管道、第一回收管道212以及第二回收管道213。
其中,压缩缓存气罐组件通过所述第一出气口208可以将部分二氧化碳排 至碳化分离装置203,以完成碳化反应。所述第二出气口209可以将另一部分多余的二氧化碳排至所述回收系统中储存,所述回收系统具体可以包括二氧化碳净化回收子系统106,以对多余的二氧化碳进行深度净化;由于白云石加工过程中一直存在二氧化碳的分解,且二氧化碳可以循环利用,因此,多余的二氧化碳可以存储至所述回收系统中。
所述消化装置202可以通过回转消化机添加水溶液对所述煅白进行消化,得消化乳液;通过回转冷却机对所述消化乳液进行冷却处理,得冷却后的消化乳液。
其中,所述消化工段中的所述水溶液包括水或热解装置204反应后得到的分解母液,可以向经水消化后得到的所述消化乳液中加入抑制剂,以保证钙镁的分离。所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种,所述抑制剂的添加量可以为所述消化乳液质量分数的0.01~0.05%。此外,所述煅白与所述水或所述分解母液的固液比为1kg:10~30L;首批所述煅白采用50~80℃的水进行消化,其余批次的所述煅白采用未冷却的所述分解母液进行消化。
应明确的是,本发明在所述回转消化机中采用热解工段固液分离后的分解母液消化所述消化乳液,加之消化过程煅白释放的热量,可使连续生产时不必考虑消化用水的加热。另外,回转消化机后设置有高低阶梯布置的回转冷却机,消化乳液溢流至回转冷却机完成冷却,冷却至30℃左右经泵进入所述碳化工段的碳化反应器;消化滤渣洗砂后满足《GB/T14684-2011》建筑用砂标准,可做建材外售,无废渣产生或外排,洗水全部返回消化机循环使用,无废水排放。采用所述回转消化机及回转冷却机替代传统搅拌式消化槽、冷却槽可良好的避免消化浆液沉钙严重,堵塞设备及管道等影响正常生产的问题。
所述碳化分离装置203包括碳化反应罐401,所述碳化反应罐401的进气口与所述压缩缓存气罐组件的所述第一出气口208连通。
具体的,以下举例来说明本发明一实施例中的所述碳化分离装置203。为了确保消化乳液与二氧化碳气体的充分反应,所述碳化分离装置203可以为水环式碳化反应器,具体地,包括:所述碳化反应罐401、气液混合反应器410以及循环泵419;当然,还可以包括多条用于输送消化乳液或二氧化碳的且起连通作用的管路。
所述碳化反应罐401的顶部开设有加料口402和气路循环出口403;所述 碳化反应罐401的底部开设有水路循环出口404和排流口405,所述排流口405处安装有排流阀;此外,所述碳化反应罐401上还可以开设温度显示接口406、压力显示接口407、液位显示接口408、以及检修口409,以便于工作人员对碳化反应进行监测和对所述碳化反应罐401进行维护。
所述气液混合反应器410包括气液混合管415、进料管411以及喷气管412;其中,所述气液混合管415安装于所述碳化反应罐401的内部,具体可以安装在所述碳化反应罐401的上部,从而在所述碳化反应罐401中预留出充分的容置空间,以便于碳化反应的充分进行。所述气液混合管415的顶部设有密封件,所述气液混合管415的侧壁上部开设有喷气管412安装口,所述气液混合管415的下端与所述碳化反应罐401的内部连通设置。
为了使消化乳液与二氧化碳成分混合,所述进料管411自上至下依次穿过所述碳化反应罐401的顶部和所述气液混合管415的顶部后伸入所述气液混合管415的内部,且所述进料管411的出料口位于所述喷气管412安装口的下方,所述气液混合管415与所述进料管411的接口处通过密封件密封。所述喷气管412的进气口同时与供气装置(即所述第一出气口208)和所述气路循环出口403连通,所述喷气管412的排气口安装于所述喷气管412安装口的位置处,并与所述气液混合管415连通设置;以使二氧化碳在高速流动的消化乳液的带动下进入所述气液混合管415中,并被所述消化乳液切割成微气泡。
为了进一步地对消化乳液和二氧化碳的气液混合物进行对流混合,所述气液混合反应器410还包括分别与所述气液混合管415的下端和所述碳化反应罐401连通设置的所述对流混合喷射管416,所述对流混合喷射管416设置于所述气液混合管415的下方,且所述对流混合喷射管416自上至下依次设有正向流混合器417和反向流混合器418。
所述对流混合喷射管416和所述气液混合管415可以一体设置,也可以固定连接,所述气液混合管415中得到的气液混合物自所述气液混合管415的下端开口进入所述对流混合管中,并经由所述正向流混合器417和所述反向流混合器418的对流混合后喷射至所述碳化反应罐401中。
作为对所述正向流混合器417和所述反向流混合器418的说明:所述正向流混合器417主要用于使下流的气液混合物产生正向旋转,所述反向流混合器418主要用于使下流的气液混合物产生反向旋转,所述正向旋转和所述反向旋转为相对的概念,两者之间只需的旋转方向相反即可,一般情况下,所述正向 旋转可以理解为顺时针旋转,所述反向旋转可以理解为逆时针旋转。
具体地,所述正向流混合器417包括第一管体和凸设于所述第一管体的管腔内壁的第一螺旋凸起,所述反向流混合器418包括第二管体和凸设于所述第二管体的管腔内壁的第二螺旋凸起,所述第一螺旋凸起和所述第二螺旋凸起的螺旋方向相反。所述第一管体和所述第二管体可以一体设置,也可以通过固定件固定连接。作为一种选择,所述第一螺旋凸起的螺旋方向可以为顺时针方向,所述第二螺旋凸起的螺旋方向可以为逆时针方向,且所述第一螺旋凸起和所述第二螺旋凸起均可以为双螺旋结构,当然,也可以为单螺旋结构。此外,需明确的是,所述正向流混合器417和所述反向流混合器418可以使气液形成高速对流,以使混合反应更充分,反应更高效。
作为对所述气液混合反应器410的结构设计,为了使所述消化乳液、以所述消化乳液与二氧化碳混合后的气液混合物具有更高的喷射速度,所述进料管411下部的管腔内径逐渐减小,所述对气液混合管415下部管腔的内径也可以逐渐减小设置,在此基础上,所述进料管411的出料口可以延伸至所述对气液混合管415的下部,且所述进料管411与所述气液混合管415的内壁之间需保持有间隙,以供二氧化碳气体的流动。
为了便于对所述气液混合管415中供气,及对未反应的二氧化碳进行循环利用,所述喷气管412的进气口与所述供气装置之间设有减压阀413,以对所述供气装置提供的二氧化碳进行气压调节,所述喷气管412的进气口与所述气路循环出口403之间设有气路循环单向阀414,以防止所述供气装置提供的二氧化碳在进气过程中产生分流。此外,为了使所述喷气管412能同时接收所述供气装置提供的二氧化碳和循环中的二氧化碳,所述减压阀413及其对应的管路可以和所述气路循环单向阀414及其对应的管路并联设置。
需了解的是,所述碳化反应罐401的正常工作气压约20~40KPa,当所述碳化反应罐401搭配水力循环泵419连续运行时,所述碳化反应罐401内的消化乳液会不断吸收CO 2,使反应器内压力降低,因此配备恒压阀可以使得连续作业时一直保持CO 2的供给及所需压力。在此基础上,所述减压阀413可以与恒压阀搭配使用,所述恒压阀可以设置于所述进料管411上,也可以设置于所述进料管411与所述减压阀413的连通管路上。
为了保证消化乳液的高速流动,所述循环泵419的进液口与所述水路循环出口404连通,所述循环泵419的出液口与所述进料管411的进料口连通,以 将所述碳化反应罐401中的消化乳液高速地泵如所述进料管411中,从而使得进入所述所述进料管411中的消化乳液以较高的流速自上至下地进入所述气液混合管415内,并将二氧化碳气体进行切割。其中,所述循环泵419与所述水路循环出口404之间设有循环泵进口阀420,所述循环泵419与所述进料管411的进料口之间设有循环泵出口阀421。以对循环中的液体进行控制。
应明确的是,上述的所述碳化分离装置203采用了所述气液混合反应器410,所述碳化分离装置203在完全密闭且加压的情况下通过所述循环泵419进行液体的循环,气液两相在循环过程中不仅使二氧化碳被消化乳液分隔成微气泡,还会产生螺旋对流。此外,所述碳化分离装置203中产生的循环气路还可使一次未充分吸收的CO 2气体通过循环泵419产生的负压二次进入气液混合反应器410中再次气液混合碳化,直至完全吸收。本发明中的所述碳化分离装置203不仅效率高,且不会造成CO 2反应气体的外泄和浪费。夏日高温生产期,碳化过程因环境及机械热的影响较难控制碳化温度低于35℃,会有少量碳酸轻钙分解溶入重镁水(碳酸氢镁溶液)中,进而影响产品纯度,因此,高温生产期在消化乳液中添加0.01~0.05%质量分数的抑制剂,可有效控制碳化过程碳酸氢钙的溶解。
所述热解装置204包热解釜以及真空泵,所述真空泵与所述热解釜连通,维持所述热解釜内的负压状态,以使所述热解釜内的含钙重镁水溶液的沸点位于碳酸氢镁的热解温度与碳酸氢钙的热解温度之间;其中,所述热解装置204热解反应后的分解母液通过分解母液回流管道215回流至所述消化装置202的进液口。所述第一回收管道212连通所述热解釜的出气口和所述二氧化碳捕集装置216的进气口。
具体的,热解装置204是通过真空泵抽取热解釜中的气体,控制所述碳酸氢镁的沸点处于碳酸氢镁的热解温度与碳酸氢钙的热解温度之间,使所述碳酸氢镁溶液在负压状态的所述热解釜中进行热解,得分解母液、碳酸镁沉淀和二氧化碳气体。
需说明的是,在所述热解工段中,通过真空泵使所述真空热解釜的内部形成负压,可以降低所述热解处理所需的温度,并其还能抽取所述螺带真空热解釜中产生的二氧化碳。由于碳酸氢钙和碳酸氢镁的热解温度均低于100℃,且碳酸氢钙的热解温度高于碳酸氢镁,通过使所述真空热解釜内部抽负压至接近真空,可以控制溶液的沸点位于碳酸氢镁的热解温度与碳酸氢钙的热解温度之 间,以此避免钙镁同时沉淀而造成的掺杂。
具体地,所述热解工段中的热解釜作业时会产生带有一定水汽的高浓CO 2气体,该气通过所述反应釜配备的负压水环式真空泵抽出,负压压力控制一般小于0.02MPa。含有一定水汽的高浓CO 2气体中所含的水分会在所述水环式真空泵水箱中富集,其中的富CO 2气体会经气液分离器分离后进入所述二氧化碳捕集装置216,以用于所述碳化工段的碳化反应或二氧化碳的收集。
为了提升碳酸氢镁的分解速度,在采用所述热解釜对所述碳酸氢镁溶液进行热解之前,向所述碳酸氢镁溶液中加入分散剂,以促进热解过程中碳酸镁的形成;其中,所述分散剂包括甲醇、酒精、甘油、聚丙烯酰胺、纤维素衍生物、水玻璃中的一种或多种。所述分散剂的添加量可以为所述碳酸氢镁溶液0.1%~2%的体积百分比。
此外,所述热解釜可以为螺带热解釜,所述螺带热解釜中可以设有防止物料沉积结壁的螺带式搅拌器,以避免物料沉积结壁而降低对所述热解釜供热效果。
应明确的是,上述实施例采用带所述螺带式搅拌器的所述真空热解釜进行热解,该反应釜外壁设置有加热夹套,夹套内加热热源来至一次煅烧工段中所述循环水冷组件318中的循环冷却水;所述热解釜内设置的所述螺带式搅拌器,用以防止釜内物料沉积结壁造成热传导率降低而能耗增高,并可加速重镁水的分解反应。该反应釜还配备水环式真空泵,作业过程中由所述水环式真空泵提供负压使其内部形成真空,以降低所述反应釜内重镁水的分解温度,并结合分散剂的添加使碳酸氢镁的分解速度大幅加速的同时,使得碳酸镁结晶更细且形状规律,纯度更高。热解产生的大量高浓CO 2气体所含水分在所述水环式真空泵水箱中富集,分离富CO 2气经气液分离器进入所述煅烧工段二氧化碳捕集装置216,然后一同进行再利用。
本发明中的白云石资源化深度利用成套处理系统,进一步的,还可以包括压滤与干燥工段装置:分别对所述碳酸钙沉淀和所述碳酸镁沉淀依次进行过滤、洗涤、和干燥,得轻质碳酸钙和轻质碳酸镁。
具体地,在所述压滤与干燥工段装置,可以采用集过滤、滤饼洗涤、挤压、风干、自动卸料、自动清洗滤布等功能于一体的全自动立式压滤机/带式压滤机替代传统板框压滤机,碳化工段所产轻质碳酸钙与热解工段所产轻质碳酸镁分区分机压滤,二者压滤后滤饼分别送至分区分机的快速旋转闪蒸干燥机,所述 快速旋转闪蒸干燥机自带打散功能,加料连续稳定不架桥,气密性好,可将轻质碳酸钙的终水份干燥至小于0.1%,并使轻质碳酸镁干燥至的终水含量小于20%。所得轻质碳酸钙即可包装待售,轻质碳酸镁进入二次煅烧工段制备轻质氧化镁。
上述采用的全自动立式压滤机具有自动清洗滤带及滤饼的功能,使压滤更彻底的同时通过清洗滤饼提升产品回收率。压滤物料轻质碳酸镁及轻质碳酸钙均为结晶物质,吸水率较大,传统板框压滤机最大0.18MPa难以滤出太多水分,影响后续干燥生产。所述立式压滤机具备自动保压功能,最大滤压可达到1.6MPa,再通过其配置的自动风干系统,可实现对产品的进一步地干燥。
所述二次煅烧装置205对所述轻质碳酸镁进行间接煅烧,使所述轻质碳酸镁分解为轻质氧化镁和二氧化碳气体。所述二次煅烧装置205包括碳酸镁煅烧炉,所述碳酸镁煅烧炉的烟气出口通过所述第二回收管道213连通所述二氧化碳捕集装置216的进气口。
应明确的是,因所述轻质碳酸镁密度较小,质量较轻,无法用所述白云石煅烧炉进行煅烧,因此,所述二次煅烧工段可以采用间接加热式回转煅烧炉进行煅烧,即采用间接煅烧回转炉,该回转炉采用密闭螺旋进料,煅烧物料轻质碳酸镁置于内炉膛,然后通过燃气火焰加热内炉膛的外壁,在此过程中,燃气与燃气热风均不与物料接触,保证了煅烧物料的洁净度。
在二次煅烧过程中,轻质碳酸镁分解为高纯轻质氧化镁及CO 2,CO 2分解至一定量时从进料端顶部排气通道自然溢出进入沉降室,沉降室沉降的少量物料粉尘为未充分分解的轻质碳酸镁及轻质氧化镁,该物料粉尘经星型卸料阀排出收集后可以返回所述回转煅烧炉的进料装置。沉降室后方设置有过滤气体中粉尘的布袋收尘器,以使CO 2气体在被过滤微量粉尘后,可以并入煅烧工段中的二氧化碳捕集装置216中,从而实现二氧化碳的循环利用,确保无二氧化碳与废气的排放。此外,所述间接加热式回转炉排料采用带冷却功能的密闭螺旋输送机排出,排出落料口处设置微负压抽滤,可以经旋风及布袋回收部分轻质氧化镁扬尘。
针对本发明,还应明确的是,所述碳化工段中的所述二氧化碳气体包括所述一次煅烧工段中煅烧白云石得到的二氧化碳气体、所述热解工段中热解所述碳酸氢镁溶液得到二氧化碳气体、以及所述二次煅烧工段中煅烧所述轻质碳酸镁得到的二氧化碳气体,以保证二氧化碳的充分利用,且避免废弃的排放。此 外,所述碳化工段加压碳化之压力来至所述二氧化碳捕集装置216的CO 2炉气压缩气包,所述CO 2炉气压缩气包内贮存CO 2炉气压力为0.8MPa,所述一次煅烧工段、所述热解工段、及所述二次煅烧工段中产生的CO 2均可先进入所述二氧化碳捕集装置216的CO 2炉气压缩气包后,再用于所述碳化工段的碳化反应。
在本发明中,本专利技术均采用全新或新式的成套装备,具有自动化程度高,一次性投资少,运行稳定、维护简单、无废气及二氧化碳排放等各项优点。生产产品之一轻质碳酸钙纯度可达98%以上,含镁率可控制在小于1%,生产产品之二高纯轻质氧化镁纯度可达98%以上。
作为对上述实施方式的细化,上述实施方式具体还可以包括:
白云石破碎至5~10CM后经进料机构进入所述白云石煅烧炉的所述煅烧区312,所述煅烧区312的热气上升后进入所述落料仓303中预热原料,以充分利用余热;所述煅烧区312内的白云石矿升温至700℃左右时开启所述二氧化碳捕集装置216,收集的CO 2炉气经净化后加压至0.8MPa进入所述CO 2炉气压缩气包中贮存。最终煅烧温度控制在物料温度1050℃以内,煅烧过程升温约30min,保温约1~2.5h,后续通过控制所述间接式煅烧竖炉底部的用于排料的板式输送机319的运输速度,控制炉内物料均停留约2.5小时左右。
煅烧后得到的煅白经所述板式输送机319连续输入所述回转消化机,所述回转消化机单程约15min即充分消化。消化后的消化乳液经溢流进入阶梯布置的所述回转冷却机,冷却约30~45min后至30℃左右经泵打入所述碳化反应罐401中;消化中得到的消化滤渣经提升机进入洗砂机洗砂后即可作为建筑砂外售,洗水全部返回回转消化机。
消化乳液进入所述碳化反应罐401中,同时所述CO 2炉气压缩气包(即中间气包)中的CO 2气体经减压阀413减压至40KPa左右后通过配置的恒压阀入口进入喷气管412中,在所述碳化分离装置203配置的水力循环泵419的作业下,碳化反应时间约30Min即可使乳液pH达至7.5~8.0之间。过程中根据实际生产环境及控制参数添加约0.01~0.05%的抑制剂。反应完全后排料进入全自动带式压滤机压滤,滤饼经输送机进入旋转闪蒸干燥机干燥后得到轻质碳酸钙包装待售;滤液为重镁水,经泵进入热解工段的所述热解釜;干燥水汽冷凝后可以返回所述回转消化机中使用。
重镁水进入所述热解釜之前,所述热解釜的内胆已被加热夹套内来自煅烧 工段中所述循环冷却组件的循环水加热至一定温度。重镁水进入后开启所述热解釜中的低速螺带式搅拌机,同时开启配套的水环式真空泵抽负压至0.02MPa以下。此时重镁水开始分解成碳酸镁、CO 2及分解母液,CO 2夹有少量水汽经水环式真空泵进入气液分离器分离后返回至所述二氧化碳捕集装置216;分解母液可用于消化工段中的消化。生产时根据实际情况添加0.1~0.2%的分散剂,使碳酸镁结晶速度更快,结晶更细且形状规则。热解釜连续作业约10~30Min可使结晶基本完成,此时即将所得结晶排出进入压滤与干燥工段。
压滤与干燥工段设置两个区,碳酸钙及碳酸镁压滤及干燥均不使用同一台设备,碳酸钙已在前面完成压滤及干燥。碳酸镁经泵进入全自动立式压滤机压滤,滤饼经输送机进入旋转闪蒸干燥机,干燥后经密闭螺旋输送机进入二次煅烧工段;滤液及干燥水汽冷凝后全部返回消化工段。
在干燥后的碳酸镁进入回转煅烧炉之前,即将所述回转煅烧炉预热至一定温度,后续连续进料和排料始终保持一定温度,可防止碳酸镁结壁架桥等现象。碳酸镁煅烧时间约1~2h,温度700~750℃。升温至700℃时内炉膛开始大量分解CO 2并自然溢出进入沉降室沉降,沉降的微量粉尘返回进料系统,气体经过滤后返回二氧化碳捕集装置216。所述回转煅烧炉的内炉膛外壁处的加热空气可以输出至压滤与干燥工段中,以用于对碳酸钙和碳酸镁进行干燥,从而充分利用余热。所述回转煅烧炉内炉膛内的碳酸镁煅烧完成后即得到优质轻质氧化镁,经具备循环水冷功能的密闭螺旋输送机连续排出包装待售,其中的循环冷却水在受热后可以循环输至热解工段供热解使用,以实现全流程的余热充分利用。
作为对所述二氧化碳循环子系统的进一步说明:为了将白云石加工中所产生及消耗的二氧化碳构成循环回路,以实现资源的最大利用,所述二氧化碳循环子系统包括输气管道、二氧化碳水汽回收管、气液分离器、第一回收管道212以及第二回收管道213;其中,所述输气管道分别连通所述二氧化碳捕集装置216的出气口以及碳化反应罐的进气口,以将所述二氧化碳捕集装置216中部分的二氧化碳传输至所述碳化系统;所述二氧化碳水汽回收管分别连通所述热解釜的烟气出口和所述气液分离器的进气口,所述第一回收管道212连通所述气液分离器的出气口和所述二氧化碳捕集装置216的进气口,以将所述重镁水热解反应器中产生的二氧化碳气体回收后传输至所述二氧化碳捕集装置216回收;所述第二回收管道213分别连通所述二次煅烧装置205的烟气出口和所述 二氧化碳捕集装置216的进气口,以将所述碳酸镁煅烧炉产生的二氧化碳在除尘后回收至所述二氧化碳捕集装置216中。
本发明还提供一种采用如上任一项所述的白云石资源化深度利用成套处理系统及其工艺进行白云石资源利用的方法。
所述白云石资源利用的方法还可以包括步骤:在所述一次煅烧装置201的白云石加热至碳酸镁的分解温度,即600-700℃时,开启所述二氧化碳捕集装置216进行二氧化碳的回收与循环利用。
所述白云石资源利用的方法还可以包括以下步骤中的一项或者多项:
向所述消化装置202中添加抑制剂,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;
向所述热解釜内的含钙重镁水溶液中添加分散剂,所述分散剂包括甲醇、酒精、甘油、聚丙烯酰胺、纤维素衍生物、水玻璃中的一种或多种;所述分散剂的添加量为所述含钙重镁水溶液0.1%~2%的体积百分比,所述含钙重镁水溶液对应所述碳酸氢镁溶液。
所述消化装置202中的首批所述煅白采用50~80℃的水进行消化,其余批次的所述煅白采用未冷却的所述分解母液进行消化;
所述消化装置202中的所述煅白与所述水或所述分解母液的固液比为1kg:10~30L。
实施例2
如图2-7所示,本发明提供了一种白云石煅烧炉100,其为间接处理白云石的清洁环保煅烧炉,其中申请人需要说明的是,本申请中的“间接处理”、“间接煅烧处理”和“间接加热处理”均指的是区别于现有的对白云石采用明火的直接煅烧,例如对白云石通过添加焦炭、煤粉的点火直接烧结煅烧加热的方式,或者通过通入燃气等直接在明火中直接煅烧的方式;本申请中的“间接处理”、“间接煅烧处理”和“间接加热处理”指的是通过对炉膛内的物料或者炉壁采用电加热、又或者对炉壁进行加热,使热量直接传导至物料或者经由炉壁传导至物料从而对物料进行煅烧的方式。
所述煅烧炉包括气体捕集管道307和炉体,所述炉体包括自上至下依次设置的落料仓303、炉膛和出料仓317。
进一步地,还可以包括设置在所述落料仓303上方的进料机构和设置在所述出料仓317下方的传送机构,所述进料机构和所述传送机构均与所述炉体平 行设置。其中,所述进料机构可以通过所述落料仓303向所述炉体供料;所述炉体用于对白云石进行清洁煅烧,并通过所述出料仓317将煅烧得到的煅白出料至所述传送机构,所述清洁煅烧是指在白云石煅烧过程中不向煅白产物和二氧化碳气体中引入其他物质;所述传送机构可以包括板式输送机319,所述板式输送机319根据设定的传送速率将所述煅白传送至外部待用。应当了解的是,因首批进料未能在所述炉体中长时间地停留,因此,首批进料在后续需通过所述进料机构重新进入所述炉体中,以完成对其的煅烧。
为了保证在相对封闭的环境下,能够更加节能地对白云石进行清洁煅烧,具体地,所述炉体包括炉膛,所述炉膛的内部形成有至少一个竖向的煅烧区312,所述炉体还包括通过热传导的方式向所述炉膛内的物料供热的加热装置,以使进入所述煅烧区312内的白云石升温。所述加热装置可以采用设置在炉膛内或者炉体外壁上的电加热器或者电磁加热器,也可以是在炉体外部对炉壁进行加热的燃气加热装置。本领域技术人员应当理解的是,只要起到对炉膛内的白云石起到间接加热处理的作用即可。优选的,所述炉膛的外壁上可以覆设有保温层315。
进一步的,在一优选的实施例中,每个所述煅烧区312均被电加热板314围绕设置。
其中,所述炉膛的顶部设置有用于封闭所述炉膛的炉口的封板310,所述封板310上开设有至少一个连通口311。
进一步的,在一优选的实施例中,所述封板310上还固定有伸入所述煅烧区312内的电加热棒313,优选地,每个所述煅烧区312对应设置有至少一个所述电加热棒313,一般情况下,每个所述煅烧区312内均会均匀布置有多个所述电加热棒313,以对所述煅烧区312内的白云石进行均匀煅烧。该实施例中的所述电加热板314和所述电加热棒313对应所述加热装置。
需了解的是,所述电加热板314和所述电加热棒313可以以电加热的形式对所述煅烧区312进行升温。具体地,所述电加热板314位于所述煅烧区312的四周,多根所述电加热棒313均垂直插入所述煅烧区312内且阵列均匀分布,以达到精准控温的效果,使得产出的煅白活性度较优。由于煅烧过程均在清洁的所述煅烧区312内进行,且生产煅白的过程无需添加任何辅料,因此煅烧过程分解的CO 2及产出的煅白均清洁无污染。
根据加热温度不同,所述电加热棒313中的材质包括Mo-Si合金、W金属、 Mo金属、SiC、重质石墨中的一种或多种;所述电加热板314的材质包括Fe-Cr-Al、Ni-Cr合金中的一种或两种。需指出的是,所述电加热板314与物料的接触面还设置有耐磨且导热性质好的保护层。此外,相邻所述电加热棒313之间及电加热棒313与所述电加热板314间之间的距离可以根据实际情况确定,作为一种较优的选择,具体可以设置在100~500mm之间。
为了实现对所述煅烧区312内气体的密闭收集,以获得高纯的二氧化碳气体,所述落料仓303设置于所述封板310的上方,所述落料仓303的进料口朝向所述进料机构,所述落料仓303的落料口通过所述连通口311与所述煅烧区312连通,所述落料口的尺寸小于所述连通口311的尺寸;所述落料仓303的外壁与所述封板310之间通过围板309围绕形成有的排气腔室308,所述排气腔室308通过所述连通口311与所述煅烧区312连通。其中,所述落料口可以与所述连通口311平齐,也可在穿过所述连通口311后略微伸入所述煅烧区312内,以避免所述连通口311被白云石完全堵塞。
在具体实施方式中,所述围板309可以通过焊接、法兰连接的方式与所述落料仓303的外壁以及所述封板310固定连接,以对所述落料仓303的外壁与所述封板310之间的间隙进行封闭。所述围板309还可以与落料仓303一体的设置,通过调整落料仓303的高度,使围板309的底部抵持在炉体的顶部即可。
在本申请中,由于所述排气腔室308四周的围板309围绕所述落料仓303的外壁,在回收气体的过程中,会将部分热量传输至所述落料仓303中,从而对白云石进行预热和干燥,这样后续白云石煅烧分解过程中,二氧化碳中的水汽含量会很低;再者,特别新颖的是,由于所述落料仓303中的白云石与所述煅烧区312内的白云石为堆积关系,所述落料仓303内的堆积物料将外界与所述白云石煅烧炉的内部分隔,此外,还会有部分热量随白云石的堆积传输至所述落料仓303中,进一步对落料仓303中的物料进行预热。
为了便于对所述煅烧区312内的物料进行收集,所述出料仓317设置于所述炉膛的下方,至少一个所述出料仓317与所述煅烧区312连通设置,所述出料仓317的出料口朝向所述传送机构,以使所述煅烧区312内的白云石物料穿过所述出料仓317后出料至所述传送机构上,一般情况下,一个所述出料仓317可以对应一个所述煅烧区312。
为了完成对所述煅烧区312内气体的回收,所述气体捕集管道307同时与所述排气腔室308和外部的二氧化碳捕集装置216连通设置,以将所述煅烧区 312内产生的气体依次通过所述连通口311、所述排气腔室308及所述气体捕集管道307排放至二氧化碳捕集装置216中;所述气体捕集管道307与所述排气腔室308之间可以设置阀门,以避免前期产生的水分的进入,所述阀门可以与位于外部的控制器通信连接;所述气体捕集管道307所处的高度可以对应于所述排气腔室308的高度范围,所述气体捕集管道307可以通过捕集管路和所述排气腔室308连通,也可直接连通。其中,为了保证所述排气腔室308能对煅烧产生的气体具有抽吸作用,外部的所述二氧化碳捕集装置216通常还设有引风机。
作为对上述实施方式的补充,为了便于向所述落料仓303中投料,所述进料机构包括安装于所述落料仓303上方的运输机,所述运输机可以为胶带运输机301,所述胶带运输机301上设有用于向所述落料仓303投料的移动卸料车302。所述胶带运输机301可横向布置于所述落料仓303的上方,并且,可以根据所述炉体的结构设置一条或多条所述所述胶带运输机301同时作业。
为了准确地控制所述落料仓303的仓位,所述移动卸料车302或所述落料仓303上安装有物位控制器306,所述物位控制器306可以为声波物位控制器306或音叉物位控制器306;所述物位控制器306监测所述落料仓303的仓位并控制所述运输机上的所述移动卸料车302向所述落料仓303内投料,以实现所述落料仓303与所述进料机构的联锁控制。
作为对所述落料仓的说明,所述落料仓303可以包括仓体以及设于所述仓体下部的多个落料斗304,在此情况下,所述仓体的上部由挡板305围绕而成;当然,作为另一选择,所述仓体也可以全部由多个落料斗304组成。其中,所述落料斗304可以呈漏斗状,每个所述落料斗304均开设有所述落料口,所述连通口311的个数与所述落料口相配合的设置。需注意的是,相邻两个所述落料斗304的侧壁顶端之间、及所述落料斗304与所述围板309之间均需密封连接,以确保所述排气腔室308的密封性。为了精准投料,所述物位控制器306还可以安装在所述落料斗304或所述挡板305上,以实现对每个所述落料斗304中仓位的控制,当然,将所述物位控制器306设于所述移动卸料车302上也可实现此目的。
当某一处的所述落料斗304处于低仓位时,所述移动卸料车302受所述物位控制器306指令移动至相应落料斗304的上方卸料补充,补充至高位时,移动卸料车302受物位控制器306指令停止卸料并自动移至其它处于低位的所述 落料斗304的上方卸料,以此达成自动精准给料的目的。
作为上述实施方式的优选,为了使所述炉体的进料出料更加顺畅,所述出料仓317的外壁上设有震动器316,以使白云石物料的排出更加均匀和稳定。为了便于对所述煅烧区312内生产的高温煅白进行降温,从而保证所述传送机构不因过高温而烧损,所述出料仓317的外壁上设有供冷却水流动的循环水冷组件318,以用于对煅烧后生成的煅白进行降温。进一步地,所述循环水冷组件318可以设置于所述出料仓317的中下部,且所述循环水冷组件318可以为水冷夹壁,所述水冷夹壁与所述出料仓317的外壁之间可以围绕形成水冷室,以供冷却水的进入及升温后排出。所述水冷室中的升温后的热水可用于煅白水解或水解后生产其他产品过程中的热解或干燥蒸发。
上述实施方式的工作方式可以为:将白云石破碎至10~100mm,通过所述胶带运输机301和所述移动卸料车302将破碎后的白云石输送至所述落料仓303的所述落料斗304内,破碎的白云石依次穿过所述落料斗304、所述煅烧区312、以及所述出料仓317后停留于的板式输送机319上,并逐渐堆积至所述落料斗304内。当所述煅烧区312被所述破碎白云石填充后,控制所述电加热板314和所述电加热棒313对所述煅烧区312进行升温。
在所述煅烧区312内,当物料升温至700℃左右时,白云石矿物中MgCO3分解为MgO及CO 2,当物料升温至900℃时,白云石矿物中CaCO3分解为CaO及CO 2。在外部二氧化碳捕集装置216的抽吸作用下,CO 2气体会经所述连通口311、所述排气腔室308、和所述气体捕集管道307后进入外部的二氧化碳捕集装置216中。期间,炉内高温白云石的热量上升,部分热量经气体的热辐射和物料热传导进入所述落料仓303的内部,对新加入的白云石起到预热升温和干燥的作用。
在煅烧过程中,控制物料最高温度为1050℃,第一次启动时升温时间根据物料块度一般设置为1~3h,升温完成后控制保温时间约2~3小时,后续通过调节所述板式输送机319的出料速度控制所有物料在炉内停留时间约2~4小时,第一次启动时的垫底料返回落料斗304内,之后便通过全自动化控制对白云石进行连续煅烧。煅烧完成后,因所述板式输送机319的出料控制,煅白自所述煅烧区312内进入所述出料仓317,并在所述出料仓317内冷却后出料至所述板式输送机319上,然后随所述板式输送机319排出待用。
上述实施方式中采用了间接加热处理的技术,结合立式炉物料方向和热流 方向相反并自然热交换、结构简单和投资维护费用低、下料不易堵塞等优点,开发了一套适用于白云石矿煅烧分解气量大、下游产品纯度要求高、不自发热并可密闭回收分解烟气的立式清洁环保煅烧炉。所述煅烧炉不仅可实现白云石的连续加工,精准控温,且加工过程无需接触任何粉煤、焦炭等辅料,也无需接触助燃风等,煅烧环境相对密闭,能使对白云石煅烧变得更加高效清洁环保。此外,还能实现对二氧化碳气体的高效回收及对白云石物料的预热和干燥。上述实施方式中的煅烧炉除了所述电加热板314和所述电加热棒313的电加热外,还可采用外壁加热的形式进行间接煅烧,当对炉膛的外壁进行加热时,所述煅烧区312因物料的堆积而相对独立,所述煅烧炉的排气又是在密闭状态下进行,因此,不会因为在外壁采用燃气等加热而影响炉内的产物和二氧化碳的纯度。
还需了解的是,上述实施方式不仅在保证气体密闭回收的前提下,实现了气料之间及料料之间的热交换,还具有更进一步的节能效果。如:所述炉膛内部的热量只能向上或向下传递,且由于所述炉膛的上方存在气料之间及料料之间的热交换,因此,向上传递的热量会被所述落料仓303中的白云石充分利用,此外,由于所述出料仓317的外壁上设有所述循环水冷组件318,少部分向下传递的热量会被所述循环水冷组件318中的冷却水吸收,所述冷却水在升温后可以用于白云石的其他工序,以将提高热量的利用率。
在所述清洁环保煅烧炉的基础上,为了完成对白云石的清洁高效煅烧,本发明还提供了一种间接处理白云石的清洁环保煅烧方法,将白云石破碎后,采用如上述任意实施方式所述的清洁环保煅烧炉对白云石进行煅烧。
具体地,所述间接处理白云石的清洁环保煅烧方法包括步骤:
S1,向如上述任意实施方式所述的煅烧炉中的所述落料仓303内投加破碎的白云石,以使白云石进入所述落料仓303内,并随所述传送机构上的垫底料的排出进入所述煅烧区312内。
需知道的是,所述垫底料指位于所述煅烧区312下方,并堆积于所述传送机构上的物料。首次的垫底料为破碎的白云石,后续的垫底料为连续煅烧过程中的煅白。由于首次的垫底料未经充分煅烧即落在所述传送机构上,因此,需将首次产生的所述垫底料通过所述进料机构返回至所述落料仓303中,以完成对所述垫底料的充分煅烧。
S2,控制所述加热装置对所述煅烧区312进行加热,使白云石的煅烧温度上升至900~1050℃,以保证白云石中的碳酸镁经煅烧分解为氧化镁和二氧化 碳,并使白云石中的碳酸钙经煅烧分解为氧化钙和二氧化碳。
S3,在加热至第一预设时间后,开启二氧化碳捕集装置216中的引风机,使所述煅烧区312内产生的二氧化碳在所述引风机的作用下经所述连通口311、所述排气腔室308及所述气体捕集管道307排放至所述二氧化碳捕集装置216中。
具体为,所述第一预设时间对应白云石的煅烧温度升至碳酸镁的分解温度,所述第一预设时间可以为白云石的煅烧温度升至600-700℃时,即:当所述白云石中的碳酸镁开始分解时,开启所述二氧化碳捕集装置216中的引风机,将所述煅烧区312内产生的气体输送至所述二氧化碳捕集装置216中。由于白云石中含有水分,当碳酸镁开始分解时,物料温度达到700℃左右时(即600-700℃时),白云石中的水分基本被蒸发,因此,回收的二氧化碳中所含水分会较少,后续由于所述落料仓303中会存在预热,因此后续所产生的二氧化碳所含水分也较少。
此外,所述煅烧区312内的部分热量会随白云石的堆积和气体的向上流动传输至所述落料仓303中,以实现对所述落料仓303中的白云石的预热和干燥处理,且由于白云石的堆积,气体在流动至所述连通口311时不会流向所述落料仓303中,仅会通过所述排气腔室308流至所述气体捕集管道307,并在所述排气腔室308中与所述落料仓303进行热交换,保证白云石的预热干燥和能源利用率。
S4,在加热至第二预设时间后,使煅烧得到的煅白在所述出料仓317中进行冷却后出料至所述传送机构上,并随传送机构的传送将所述煅白排出待用。
S5,根据所述落料仓303中的仓位向所述落料仓303内追投破碎的白云石。
其中,可以通过调节所述传送机构的传送速率,控制白云石在所述煅烧区312内的停留时间为2~4小时。但是,由于第一次启动时的升温时间为1~3h,升温完成后控制保温时间约2~3小时,因此,所述第二预设时间可以为3-6小时。所述方法还可以包括步骤:通过调节如上述任意实施方式所述的煅烧炉中的所述传送机构的传送速率,控制追投的白云石在所述煅烧区内的停留时间为2~4小时。
作为本发明的其中一个实施例,煅烧完成后的白云石原矿失重率约47%,分解率99%以上,烟气CO 2浓度80%左右,煅白活性度大于35%。整个煅烧过程不添加任何辅料,产出煅白及CO 2烟气洁净无污染,相比现有生产装备及技 术,既可得到纯净的煅白产品,又可简易回收高浓CO 2烟气,使之变废为宝。
实施例3
如图8-11所示,本发明提供了一种碳化分离装置203,用于完成白云石消化乳液中钙镁的分离,包括碳化反应罐401、气液混合反应器410以及循环泵419;当然,还可以包括多条用于输送消化乳液或二氧化碳的且起连通作用的管路。
为了便于消化乳液的投加及气液循环,所述碳化反应罐401的顶部开设有供消化乳液进入的加料口402和气路循环出口403;所述碳化反应罐401的底部开设有水路循环出口404和带阀门的排流口405。此外,所述碳化反应罐401上还可以开设温度显示接口406、压力显示接口407、液位显示接口408、以及检修口409,以便于工作人员对碳化反应进行监测和对所述碳化反应罐401进行维护。
为了使消化乳液与二氧化碳气体充分地反应,所述气液混合反应器410包括气液混合管415、进料管411以及喷气管412;其中,所述气液混合管415安装于所述碳化反应罐401的内部,具体可以安装在所述碳化反应罐401的上部,从而在所述碳化反应罐401中预留出充分的容置空间,以便于碳化反应的进行;所述进料管411的进料口位于所述碳化反应罐401外部,所述进料管411的出口端从所述气液混合管415的顶部插入所述气液混合管415的内部;所述气液混合管415与所述进料管411的接口处通过密封件密封,即所述气液混合管415的顶部设有密封件,以使所述对流混合喷射管416的顶部密封设置,除此之外,所述气液混合管415的下端与所述碳化反应罐401连通,所述气液混合管415的侧壁上开设有进气口;所述喷气管412的进气端同时与二氧化碳压力供气装置和所述气路循环出口403连通,所述喷气管412的排气端与所述进气口固定安装;并且,所述进料管411的出料口的竖直位置低于所述进气口,以使二氧化碳在高速流动的消化乳液的带动下进入所述气液混合管415中,并被所述消化乳液切割成微气泡。
为了便于对所述气液混合管415中供气,及对未反应的二氧化碳进行循环利用,所述喷气管412的进气口与所述二氧化碳压力供气装置之间设有减压阀413,以对所述二氧化碳压力供气装置提供的二氧化碳进行气压调节,所述喷气管412的进气口与所述气路循环出口403之间设有气路循环单向阀414,以防止所述二氧化碳压力供气装置提供的二氧化碳在进气过程中产生分流。此外, 为了使所述喷气管412能同时接收所述二氧化碳压力供气装置提供的二氧化碳和循环中的二氧化碳,所述减压阀413及其对应的管路可以和所述气路循环单向阀414及其对应的管路并联设置。
需了解的是,所述碳化反应罐401的正常工作气压为微正压,约20~40KPa,当所述碳化反应罐401搭配循环泵419连续运行时,所述碳化反应罐401内的消化乳液会不断吸收CO 2,使反应器内压力降低,因此配备恒压阀可以使得连续作业时一直保持CO 2的供给及所需压力。在此基础上,所述减压阀413可以与恒压阀搭配使用,所述恒压阀可以设置于所述喷气管412上,也可以设置于所述喷气管412与所述减压阀413的连通管路上。
作为对所述气液混合反应器410的结构设计,为了使所述消化乳液、以及所述消化乳液与二氧化碳混合后的气液混合物具有更高的喷射速度,所述进料管411下部的管腔内径逐渐减小;进一步地,所述对气液混合管415下部管腔的内径也可以逐渐减小设置,即所述气液混合管415的管径可以自所述进气口的位置向下逐渐减小,在此基础上,所述进料管411的出料端可以延伸至所述对气液混合管415的下部,且所述进料管411与所述气液混合管415的内壁之间需保持有间隙,以供二氧化碳气体的流动。
为了保证消化乳液的高速流动,所述循环泵419的进液口与所述水路循环出口404连通,所述循环泵419的出液口与所述进料管411的进料口连通,以将所述碳化反应罐401中的消化乳液高速地泵入所述进料管411中,从而使得进入所述进料管411中的消化乳液以较高的流速自上至下地进入所述气液混合管415内,并带动二氧化碳气体的流动,然后将二氧化碳气体进行切割。其中,所述循环泵419与所述水路循环出口404之间设有循环泵进口阀420,所述循环泵419与所述进料管411的进料口之间设有循环泵出口阀421,以对循环中的液体进行控制。
值得注意的是,所述气液混合反应器410还必须包括在竖向上连通所述气液混合管415的出口和所述碳化反应罐401的对流混合喷射管416,所述对流混合喷射管416设置于所述气液混合管415的下方,且所述对流混合喷射管416自上至下依次设有正向流混合器417和反向流混合器418;所述对流混合喷射管416和所述气液混合管415可以一体设置,也可以固定连接,两者均为竖向排布,所述气液混合管415中得到的气液混合物自所述气液混合管415的下端开口进入所述对流混合管中,并经由所述正向流混合器417和所述反向流混合 器418的对流混合后喷射至所述碳化反应罐401中。此外,所述反向流混合器418的出口端也可以连接有喷管,所述喷管的自由端的位置可以位于所述碳化反应罐401的中部以下。
作为对所述正向流混合器417和所述反向流混合器418的说明:所述正向流混合器417主要用于使向下流动的气液混合物产生正向旋转,所述反向流混合器418主要用于使向下流动的气液混合物产生反向旋转,所述正向旋转和所述反向旋转为相对的概念,两者之间只需的旋转方向相反即可,一般情况下,所述正向旋转可以理解为顺时针旋转,所述反向旋转可以理解为逆时针旋转。
具体地,所述正向流混合器417包括第一管体和凸设于所述第一管体的管腔内壁的第一螺旋凸起,所述反向流混合器418包括第二管体和凸设于所述第二管体的管腔内壁的第二螺旋凸起,所述第一螺旋凸起和所述第二螺旋凸起的螺旋方向相反。所述第一管体和所述第二管体可以一体设置,也可以通过固定件固定连接。作为一种选择,所述第一螺旋凸起的螺旋方向可以为顺时针方向,所述第二螺旋凸起的螺旋方向可以为逆时针方向,且所述第一螺旋凸起和所述第二螺旋凸起均可以为双螺旋结构,当然,也可以为单螺旋结构。此外,需明确的是,所述正向流混合器417和所述反向流混合器418可以使气液形成高速对流,以使混合反应更充分,反应更高效。具体地,在竖向喷射力和反向对流的作用下,所述微气泡与消化乳液的接触频率可以瞬间提升无数倍。
上述实施方式的工作方式可以为:置于所述碳化反应罐401内的所述消化乳液通过所述循环泵419输送至所述进料管411中,并沿所述进料管411的出料口流至所述对气液混合管415内,由于所述循环泵419的泵压作用、以及所述进料管411的结构设计,所述消化乳液在穿过所述进料管411时具有较高的流速,高速流动的消化乳液产生的负压会使二氧化碳气体由所述喷气管412进入所述气液混合管415。在高速液作用下,机械能转化为气液的表面能,二氧化碳被切割成微气泡,且在所述正向流混合器417和所述反向流混合器418的进一步作用下,还会对所述二氧化碳和消化乳液做进一步混合,使得两者高频混合。微小的二氧化碳气泡与消化乳液中的钙镁离子快速混合反应,可以生成碳酸盐沉淀(碳酸镁和碳酸钙),碳酸盐小颗粒在高速液流中,继续与二氧化碳气泡反应,其中的碳酸镁颗粒会生成碳酸氢镁返溶于溶液中,最后控制反应终点pH值7.5-8.0即可实现钙镁的深度分离。此外,未反应的二氧化碳气体上升并通过所述气路循环出口403返回所述喷气管412循环使用。
在上述实施方式中,对所述白云石煅白消化分离装置中得到的碳化浆液进行固液分离的方式可以采用已知常规处理方法进行,例如:板框压滤、离心分离等方式。碳化浆液固液分离后得到的重镁水(碳酸氢镁溶液)的后续加工方式也可以采用已知常规处理方法进行,包括高温分解(热解)、真空分解或特殊设备分解等。分解后的分解母液返回消化工序中可以用于消化煅白,以获得用于进行碳化反应的所述消化乳液。
为了实现钙镁的彻底分离,本发明还提供了一种白云石煅白消化分离方法,将白云石的消化乳液经由所述加料口402以及将二氧化碳经由所述喷气管412送入如上述任意实施方式所述的白云石煅白消化分离装置中与二氧化碳进行碳化反应,以得到碳酸钙沉淀和碳酸氢镁溶液。
具体地,所述白云石煅白消化分离方法可以包括步骤:
S10,将首批煅白用水消化后获得消化乳液。首批所述煅白与水的添加比例可以为1kg:10~30L,所述煅白的消化温度一般为30~80℃,消化时间一般为1~3h,消化过程中需要进行搅拌等操作,消化得到的所述消化乳液通常还需进行过滤,以去除不能被充分消化的残渣。
S20,向所述消化乳液中加入抑制剂,其中,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;所述抑制剂的主要作用为在钙镁离子碳化过程抑制生成的碳酸钙沉淀与二氧化碳反应生成碳酸氢钙。作为一种选择,所述抑制剂的添加量可以为所述消化乳液质量分数的0.01~0.05%,优选为0.01~0.02%。
S30,将加入所述抑制剂的所述消化乳液通过所述加料口402,以及将具有压力的二氧化碳经由所述喷气管412送入如上述任意实施方式所述的白云石煅白消化分离装置中进行碳化反应;其中,所述碳化反应的反应压力可以为20~40kPa。
S40,当所述碳化反应罐中碳化浆液的pH为7.0-7.8时,取出碳化浆液并进行固液分离,得碳酸钙沉淀和碳酸氢镁溶液。需知道的是,在加入所述抑制剂的情况下,因所述抑制剂的存在可以抑制钙的溶出,因此,也可将反应终点pH控制在7.0-7.8,以便在抑制钙溶出的情况下,提高镁的溶出效率。
S50,将所述碳酸氢镁溶液进行分解后的分解母液循环与后续批次的煅白混合后作为新的所述消化乳液,返回所述步骤S30。
后续批次所述煅白与所述分解母液的固液比也可以为1kg:10~30L;通过采 用所述分解母液对煅白进行消化,其目的主要是回收分解母液中的抑制剂及利用所述分解母液中的热量,在该过程中,也可适当补加所述抑制剂。
在上述实施方式中,将碳化后的碳化浆液进行固液分离,即可分离得到碳酸钙和碳酸氢镁溶液,碳酸氢镁溶液经过后续分解工艺(如热解)后得到滤液和碱式碳酸镁,滤液返回消化系统做消化液,实现抑制剂的循环利用,需明确的是,所述分解母液是由碳化反应后的重镁水经过热解分离碱式碳酸镁后得到的清液。
作为对上述实施方式的具体说明,本发明主要针对白云石加工过程中的消化和碳化分离,白云石的加工过程通常包括将白云石破碎、高温锻烧得煅白、煅白经消化得消化乳液,对消化乳液进行碳化处理,使钙镁分离,得到具有较低钙离子浓度的碳化浆液,后续经过滤进行固液的分离,得碳酸钙和重镁水,所得的重镁水经热解等工序可得到碱式碳酸镁和循环利用的分解母液。
上述实施方式中钙镁分离的原理如下:上述实施方式采用所述气液混合反应器410取代现有技术中的搅拌气液混合和接触塔式混合,通过将所述气液混合反应器410与所述循环泵419搭配,在密闭加压的条件下循环引流碳化,可以使消化乳液与二氧化碳密切接触;并且,通过控制碳化过程中体系的pH值,使白云石消化浆液中的氢氧化镁、氢氧化钙碳化和分离效率更高,得到的碳酸钙产品纯度更好,整体生产产率进一步提升。方便地实现了高效的钙镁分离,且添加的抑制剂可容易地分离回收,大大降低了生产成本。
在消化乳液的碳化过程中,随着二氧化碳的通入,体系逐步酸化,体系pH逐渐降低。且随着体系pH值的减小,消化乳液在第一阶段生成碳酸钙和碳酸镁沉淀,第二阶段碳酸镁和碳酸钙与过量二氧化碳进行反应生成碳酸氢镁和碳酸氢钙。抑制剂在碳化的第二阶段与游离的Ca2+进行配位反应,使游离的Ca2+不以碳酸氢钙形式出现在溶液中。通过控制反应终点pH值(7.0-7.8)和抑制剂的双重作用,避免在后续分解阶段钙离子形成沉淀进入碱式碳酸镁的产品,实现钙镁离子的深度分离。
所述钙镁分离处理方法的一个具体实施例为:在20~40℃条件下,向消化乳液中加入抑制剂,抑制剂的加入总量为消化乳液质量分数的0.01~0.02%,将加入抑制剂的消化乳液打入所述碳化反应罐401中,此时消化乳液pH值为13.1,随后通入二氧化碳,控制所述碳化反应罐401中压力为20~40kPa之间;在二氧化碳与消化乳液充分碳化至pH为7.5时,将碳化后的碳化浆液打入板框 压滤机分离,滤渣为轻质碳酸钙,碳酸钙有效含量为97%以上,滤液为重镁水,即碳酸氢镁溶液。将碳酸氢镁溶液在30~70℃条件下热解45min,打入板框压滤机进行分离,滤渣为碱式碳酸镁,其中氧化镁含量为41.52%,氧化钙含量0.15%,达到标准HG/T2959-2010《工业水合碱式碳酸镁》中的优等品要求,实现了乳化液中钙镁的深度分离。
实施例4
基于白云石的加工工艺,本发明提供了一种白云石煅烧二氧化碳的净化与循环利用装置,需明确的是,白云石的加工工艺通常包括:一次煅烧工段;消化工段;碳化工段;热解工段;二次煅烧工段等,分别对应一次煅烧装置201;消化装置202;碳化分离装置203;热解装置204;二次煅烧装置205;其中,一次煅烧工段、热解工段、以及二次煅烧工段等在运行时均会产生二氧化碳,而碳化工段在运行时需要持续消耗二氧化碳;此外,一次煅烧工段和二次煅烧工段中产生的二氧化碳气体会夹杂有粉尘,热解工段产生的二氧化碳气体会夹杂有水汽。
参照图1-15所示,所述白云石煅烧二氧化碳的净化与循环利用装置包括:回收腔组件、除尘组件104、压缩缓存气罐组件105、二氧化碳净化回收子系统106以及二氧化碳循环子系统。
其中申请人需要说明的是,本申请中的“间接处理”、“间接煅烧处理”和“间接加热处理”均指的是区别于现有的对白云石采用明火的直接煅烧,例如对白云石通过添加焦炭、煤粉的点火直接烧结煅烧加热的方式,或者通过通入燃气等直接在明火中直接煅烧的方式;本申请中的“间接处理”、“间接煅烧处理”和“间接加热处理”指的是通过对炉膛内的物料或者炉壁采用电加热、又或者对炉壁进行加热,使热量直接传导至物料或者经由炉壁传导至物料从而对物料进行煅烧的方式。
作为对所述回收腔组件的说明:所述回收腔组件包括多块围板309,所述围板309与间接加热式白云石煅烧炉10的炉膛顶部以及落料仓303的外壁的之间围绕形成排气腔室11,所述白云石煅烧炉的进料口、落料仓303的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室11连通,所述排气腔室11通过气体捕集管道307与所述除尘组件104连通,以将所述炉体的煅烧区312内产生的气体通过所述排气腔室11和所述气体捕集管道307排放至所述除尘组件104中。具体的,由于围板309将白云石煅烧炉10以及落料仓303的外壁的之 间的空间进行封堵和围绕,形成有排气腔室11,在白云石煅烧过程中,白云石煅烧炉10内由于二氧化碳的分解呈现的是正压状态因此,外部空气不会从煅烧炉的出料口以及进料口进入到炉体内部,也就是说可以避免烟气与外部的接触,使得烟气自产生至收集均处于相对独立的环境中,保证了二氧化碳的初始纯度。另外,所述落料仓303内的堆积物料将外界与所述白云石煅烧炉内部分隔,可以进一步确保烟气自产生至收集均处于相对独立的环境中,保证了二氧化碳的初始纯度。
其中,所述白云石煅烧炉的进料口与所述白云石煅烧炉的排气口可以为同一个开口,在此情况下,统称为连通口311。另外,所述排气腔室11可参照排气通路10中示出的结构进行理解。
所述回收腔组件可以搭配用于对白云石进行间接处理的白云石煅烧炉100(即一次煅烧工段)一起使用,两者可以是一体成型的,也可采用可拆卸式的连接方式进行固定。具体地:所述白云石煅烧炉100可以包括自上至下依次设置的落料仓303、炉膛、及出料仓317。
所述炉膛的外壁上覆设有保温层315,所述炉膛的内部形成有至少一个由加热板314围绕而成的煅烧区312,所述炉膛的顶部设置有用于封闭所述炉膛的炉口的且具有至少一个所述连通口311的封板310;所述封板310上固定有至少一个伸入所述煅烧区312内的加热棒313;一般情况下,每个所述煅烧区312内均均匀布置有多个所述加热棒313,以对所述煅烧区312内的白云石进行均匀煅烧。其中。所述加热板314和所述加热棒313可以以电能作为加热的能源。
所述落料仓303设置于所述封板310的上方,所述落料仓303的至少一个落料口通过所述连通口311与所述煅烧区312连通,所述落料口的尺寸小于所述连通口311的尺寸;所述落料仓303的外壁与所述封板310之间通过围板309围绕形成有密闭的排气腔室11,所述排气腔室11通过至少一个所述连通口311与所述煅烧区312连通。其中,所述落料口可以与所述连通口311平齐,也可略微伸入所述煅烧区312内,以避免所述连通口311被白云石完全堵塞。
其中,所述落料仓303可以包括多个开设有所述落料口的落料斗304,所述落料斗304呈漏斗状,具体地,所述落料仓303可以全部由多个所述落料斗304组成,也可以使所述落料仓303的下部由多个所述落料斗304组成,所述落料仓303的上部由挡板305围绕而成。且,每个所述落料斗304均开设一个 所述落料口,相邻两个所述落料斗304的侧壁顶端之间、及所述落料斗304与所述围板309之间均需密封连接,以确保所述排气腔室11的密封性。
所述出料仓317设置于所述炉膛的下方,至少一个所述出料仓317与所述煅烧区312连通设置,以使所述煅烧区312内的白云石物料穿过所述出料仓317后出料至所述传送机构上。所述出料仓317的外壁上可以设有循环水冷组件318,以用于对煅烧后生成的煅白进行降温。进一步地,所述循环水冷组件318可以设置于所述出料仓317的中下部,且所述循环水冷组件318可以为水冷夹壁,所述水冷夹壁与所述出料仓317的外壁之间可以围绕形成水冷室,以供冷却水的进入及升温后排出。所述出料仓317的外壁上还可以设置震动器,以保持白云石的进出料顺畅。
所述气体捕集管道307同时与所述排气腔室11和所述除尘组件104连通设置,以将所述煅烧区312内产生的气体依次通过所述连通口311、所述排气腔室11及所述气体捕集管道307排放至所述除尘组件104中。当所述白云石中的碳酸镁开始分解时,开启所述除尘组件104中的引风机,以将所述煅烧区312内产生的气体输送至所述除尘组件104中。所述气体捕集管道307与所述排气腔室11的连通处可以设置阀门,以避免前期产生的水分进入所述气体捕集管道307中,所述阀门可以与位于外部的控制器通信连接。需了解的是,由于白云石中含有水分,当碳酸镁开始分解时,物料温度在700℃左右,此时白云石中的水分基本被蒸发,因此,回收的二氧化碳中所含水分会较少,后续由于所述落料仓303中会存在预热,因此后续所产生的二氧化碳所含水分也较少。
应明确的是,通过采用回收腔组件,并搭配所述白云石煅烧炉100的间接煅烧,使得煅烧加工无需添加粉煤、焦炭等化石燃料,也无需助燃风。因此,煅烧至一定温度时分解的CO 2纯度高,不含SO2、CO、H2S等气体,煅烧过程中分解的大量CO 2通过所述回收腔组件中的排气腔室11排出,因煅烧过程中无助燃风的鼓入和外部物质的参与,在封闭式回收腔组件206的封闭作用下,从所述排气腔室11排出进入所述除尘组件104的CO 2烟气浓度高达85%左右,其余为11.85%N2及3.15%O2,回收更有价值,工艺更简洁,能耗更低。
生产时,白云石矿通过炉顶的落料仓303落入炉膛自然堆积,并逐渐在所述连通口311处形成沙堆状堆积,堆积的白云石矿锥部周边的连通口311和所述排气腔室11形成完整的所述密闭烟道。加热分解的CO 2烟气在引风机的作用下通过密闭烟道进入收尘和CO 2回收系统。
在白云石煅烧至温度600~700℃左右时可以开启除尘组件104中的引风机,分解的CO 2烟气通过引风机负压抽力从所述排气腔室11和所述气体捕集管道307进入所述除尘组件104。期间所述白云石煅烧炉100不断给料,新给料的白云石可以与上升的CO 2烟气连续热交换,因此,不但利用了高温CO 2烟气对新加入电炉的物料进行了预热,起到合理利用余热之作用,且使得排出的CO 2烟气温度低于100℃,使之不因高温烧损除尘组件104,且不造成过多热量的损失,达到一定的节能效果。
作为对所述除尘组件104的说明:所述除尘组件104用于对所述二氧化碳气体进行除尘处理;所述除尘组件104包括工艺布袋除尘器12,所述工艺布袋除尘器12上设有引风机,所述工艺布袋除尘器12通过所述引风机将所述白云石煅烧炉100中产生的二氧化碳气体引入所述工艺布袋除尘器12内。
此外,由于白云石在进料过程中会产生矿粉扬尘,因此,所述二氧化碳的净化与循环利用装置的除尘装置还包括环集除尘机构,所述环集除尘机构用于收集煅烧进料过程中产生的矿粉扬尘气体,并对收集的矿粉扬尘气体进行除尘处理。所述环集除尘机构包括环集收尘罩101、以及与所述环集收尘罩101连通的环集布袋除尘器102;所述环集收尘罩101设置于所述白云石煅烧炉100的上方,用于收集进料过程中产生的矿粉扬尘气体;所述环集布袋除尘器102接收所述环集收尘罩101收集的矿粉扬尘气体,并在对接收的矿粉扬尘气体进行除尘处理后,通过厂区烟囱103将经所述环集布袋除尘器102处理后的气体排出。
应明确的是,本发明设置有环集除尘与工艺除尘两套除尘装置,所述环集布袋除尘器102与炉顶料仓处环集收尘罩101连通,同时用于处理白云石矿运输、装卸及电炉进料时产生的矿粉扬尘;所述工艺布袋除尘器12与所述排气腔室11连通,生产时,所述除尘组件104在物料温度达到600~700℃左右时开启,此时的炉内物料已不含水分,开始大量分解CO 2气体,分解的CO 2气体在引风机的抽力下经过所述排气腔室11,并与所述落料仓303中的冷料连续热交换,因此排出所述密闭烟道的CO 2烟气温度低于100℃,所述排气腔室11与所述气体捕集管道307的连通处可以设有CO 2气体浓度检测仪,通过烟气中CO 2溶度的检测和炉膛内物料温度的实时状态控制所述管路阀门的开闭和所述引风机的启停。经工艺除尘后的烟气CO 2浓度可达85%左右,因此可直接用于白云石后续的加工过程,从而制备碳酸镁、碳酸钙等产品。
作为对所述压缩缓存气罐组件105的说明:所述压缩缓存气罐组件105的进气口与所述除尘组件104的出口连通,并对CO 2气体进行压缩和存贮,所述压缩缓存气罐组件105包括第一出气口208和第二出气口209;其中,所述压缩缓存气罐组件105用于接收经所述除尘组件104处理后的所述二氧化碳气体,并对所述二氧化碳气体依次进行压缩和存贮。
为方便直接用于碳化使用的CO 2气体贮存,所述压缩缓存气罐组件105包括螺杆压缩机13、换热器14、以及缓存气罐15;所述除尘组件104处理后的所述二氧化碳气体经所述螺杆压缩机13压缩,所述螺杆压缩机13压缩后的二氧化碳气体经所述换热器14加热至常温后输送至所述缓存气罐15存贮。贮存后的CO 2混合气一部分经减压阀排出进入碳化工段供碳化制备碳酸钙、碳酸镁使用,其余进入二氧化碳净化回收子系统106,当然,两者之间可根据实际情况进行选择。其中,所述螺杆压缩机13设置在引风机后方。
所述螺杆压缩机13将除尘后的低压CO 2混合气加压至0.8MPa左右,并经所述换热器14使之保持常温后进入所述缓存气罐15贮存,缓存气罐15内贮存的CO 2混合气浓度在85%左右,即可直接减压释放用于煅烧后的煅白碳化过程。
作为对所述二氧化碳净化回收子系统106的说明:所述二氧化碳净化回收子系统106与所述压缩缓存气罐组件105连通,具体地,所述二氧化碳净化回收子系统106与所述第二出气口209连通,用于对所述压缩缓存气罐组件105中存储的部分二氧化碳进行净化和压缩后,生产液化二氧化碳。
所述二氧化碳净化回收子系统106包括一次净化组件、二次净化组件、暂存组件、以及精馏组件。
所述一次净化组件用于对所述压缩缓存气罐组件105中存贮的二氧化碳气体依次进行压缩、冷凝和气液分离的处理,得首次分离后的二氧化碳液体和待净化气体;所述一次净化组件包括第一压缩机16、第一冷凝器17、第一气液分离器18;所述第一压缩机16对所述压缩缓存气罐组件105中存贮的二氧化碳气体进行压缩处理;所述第一冷凝器17对所述第一压缩机16压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体和待分离气体;所述第一气液分离器18对所述第一冷凝器17中的待分离气体进行气液分离处理,得二氧化碳液体和待净化气体;所述第一冷凝器17和所述第一气液分离器18中的二氧化碳液体排至所述暂存组件。
所述二次净化组件用于接收所述首次分离后得到的待净化气体,并对所述 首次分离后得到的待净化气体依次压缩、冷凝和气液分离的处理,得二次分离后的二氧化碳液体、待净化气体和待排放气体;所述二次净化组件的待净化气体排出口与所述一次净化组件的进气口连通,以对所述二次分离后得到的待净化气体经所述一次净化组件进行再次处理;所述二次净化组件的废气排气口与外部连通,以将所述二次分离后得到的待排放气体排出;所述二次净化组件包括第二压缩机19、第二冷凝器20、第二气液分离器21;所述第二压缩机19对所述第一气液分离器18中的待净化气体进行压缩处理;所述第二冷凝器20对所述第二压缩机19压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体、待排放气体和待分离气体;所述第二气液分离器21对所述第二冷凝器20中的待分离气体进行气液分离,得二氧化碳液体和待净化气体。
其中,所述第二冷凝器20中的待排放气体排至厂区烟囱103,所述第二冷凝器20和所述第二气液分离器21中的二氧化碳液体排至所述暂存组件,所述第二气液分离器21中的待净化气体排至所述第一冷凝器17。
在净化过程中,二氧化碳气体首先进入一次净化组件,所述一次净化组件将之加压至2.45MPa,冷凝至-12.5℃,析出CO 2混合气中约70%质量的CO 2液体,其余进入二次净化组件继续加压至2.45MPa左右,并冷凝至-25℃,剩余混合气基本全部液化,不凝气从二次净化组件中的第二冷凝器2020顶部排出至烟囱外排,第二气液分离器21最终分离的少量气体携部分余冷返回所述一次净化系统,以再利用冷能达到节能之效果。所述两次净化系统液化后的CO 2纯度约为98%。
经所述第一气液分离器18排出的CO 2进入所述第二压缩机19,再次加压至2.45MPa左右后进入所述第二冷凝器20,二次加压后的CO 2在所述第二冷凝器20的作用下降至-25℃左右,CO 2基本全部液化,不凝气从顶部通往烟囱排出。少量水汽化CO 2进入所述第二气液分离器21,分离出的CO 2液体与所述第二冷凝器20析出的CO 2液体一同泵入暂存组件中,分离出的气体夹带部分冷能返回至所述一次冷凝器入口,以降低能耗和提高回收率。
应明确的是,所述缓存气罐15内CO 2混合气进入所述一次净化系统时,所述第一压缩机16将缓存气罐15内0.8MPa来气增压至2.45MPa后输至所述第一冷凝器17内降温至-12.5℃形成气液两相区,此时液化的CO 2质量约为70%,液化后的CO 2经第一冷凝器17底流排出,其余汽态混合气进入所述第一气液分离器18分离;分离排气仍还有约30%质量的CO 2气体,因经所述第一 气液分离器18及输送阀门、管道后压力有所损失,所以经所述第一气液分离器18排出的CO 2混合气需经所述第二压缩机19再次压缩至2.45MPa,并再经所述第二冷凝器20降温至-25℃后全部液化。经所述一、二次净化系统液化后的CO 2纯度可达98%左右,已具备一定的商用价值,但为满足更高的CO 2产品质量需求,需进入所述精馏组件中再次提纯至更高纯度。
所述暂存组件包括第一冷却贮罐23和调压阀,所述第一冷却贮罐23用于暂存所述首次分离和所述二次分离后得到的二氧化碳液体,所述调压阀用于调节所述第一冷却贮罐23的压力;具体地,所述第一冷却贮罐23贮存来自加压泵泵入的一、二级净化系统液化后的浓度约为98%CO 2,经所述调压阀调压后的CO 2进入所述精馏组件再次提纯。
所述精馏组件包括精馏塔24和第二冷却贮罐25,所述精馏塔24用于接收所述第一冷却贮罐23中经调压处理的二氧化碳液体,并对接收的二氧化碳液体进行精馏处理,得纯化后的二氧化碳,所述第二冷却贮罐25用于对纯化后的二氧化碳进行冷却暂存。
因本系统的气体主要源自所述白云石煅烧炉100中白云石的煅烧,而采用所述白云石煅烧炉100煅烧白云石矿所分解的CO 2烟气,不含SO2、CO、H2S等杂质气体,因此精馏塔24不需考虑脱硫、除醛等功能,只需调节精馏塔24工作温度,控制CO 2沸点使其纯化析出即可,经精馏提纯后的CO 2纯度可达99.99%,各项指标均可达食品级二氧化碳GB10621-2006标准。为满足常态贮存及外售运输,精馏后的高纯CO 2需再经冷却至-25℃左右,并经再次加压至2.45MPa左右后进入液化CO 2贮罐中贮存待用。
此外,所述二氧化碳净化回收子系统106还包括第一加压泵22、第二加压泵26和液化二氧化碳贮罐27。
所述第一冷凝器17、所述第一气液分离器18、所述第二冷凝器20、及所述第二气液分离器21中的二氧化碳液体均经所述第一加压泵22加压后排至所述第一冷却贮罐23中。
所述第二冷却贮罐25中的所述纯化后的二氧化碳经所述第二加压泵26加压后输送至所述液化二氧化碳贮罐27中存贮待用。
应明确的是,经所述一、二次净化组件液化后的CO 2液体在所述第一加压泵22的作用下泵入所述第一冷却贮罐23缓存后,经减压进入所述精馏塔24再次提纯。经所述精馏塔24提纯后的CO 2进入所述第二冷却贮罐25再次冷却 至-25℃缓存,因过程中压力有所损失,需再经所述第二加压泵26加压后2.45MPa后进入所述液化CO 2贮罐贮存待售。
作为对所述二氧化碳循环子系统的说明:为了将白云石加工中所产生及消耗的二氧化碳构成循环回路,以实现资源的最大利用,所述二氧化碳循环子系统包括输气管道210、二氧化碳水汽回收管211、气液分离器、第一回收管道212以及第二回收管道213;其中,所述输气管道210连通所述第一出气口208以及白云石煅烧钙镁分离工艺的碳化分离装置203(即碳化工段),以将所述压缩缓存气罐组件105中部分的二氧化碳传输至所述碳化分离装置203;所述二氧化碳水汽回收管211连通所述白云石煅烧钙镁分离工艺的重镁水热解反应器(即热解工段)的烟气出口和所述气液分离器的进气口,所述第一回收管道212连通所述气液分离器的出气口和所述压缩缓存气罐组件105的进气口,以将所述重镁水热解反应器中产生的二氧化碳气体回收后传输至所述压缩缓存气罐组件105;所述第二回收管道213连通所述白云石煅烧钙镁分离工艺的碳酸镁煅烧炉(即二次煅烧工段)的烟气出口和所述除尘组件104的进气口,以将所述碳酸镁煅烧炉产生的二氧化碳在除尘后回收至所述压缩缓存气罐组件105中。
本发明还提供了一种白云石煅烧二氧化碳的净化与循环利用方法,采用如上述任意实施方式所述的净化与循环利用装置对二氧化碳进行分离回收。
所述净化与循环利用方法的具体一个实施例为:经过预处理的白云石矿通过进料系统进入所述白云石煅烧炉100的落料仓303中,并规律落入炉膛的煅烧区312内开始升温煅烧,进料过程会产生矿粉扬尘,扬尘经环集收尘罩101捕集进入环集布袋除尘器102中除尘,除尘达标后经厂区烟囱103排放。
所述白云石煅烧炉100持续升温,当升温至物料温度约600~700℃时,炉内白云石矿开始分解出大量CO 2烟气,此时所述引风机和所述气体捕集管道307开启,分解的CO 2烟气在工艺布袋除尘器12配套引风机的负压下进入工艺布袋除尘器12中除尘,分解的高温CO 2烟气在炉膛内上升至排气腔室11排出的过程中,不断与所述落料仓303中的冷料进行热交换,因此,排出的CO 2烟气温度实测在100℃以内。经工艺除尘达标后的CO 2混合气进入螺杆压缩机13加压至0.8MPa,加压过程CO 2混合气温度会升高,因此配备换热器14使之保持在常温下0.8MPa,以缩小CO 2混合气体积后进入缓存气罐15贮存。需注意的是,白云石热解过程中所用的重镁水热解反应器和二次煅烧过程中所用的碳酸 镁煅烧炉中均会产生CO 2,因此,需将其分别进行气液分离或除尘后经加压引入所述缓存气罐15中。
根据实际工艺要求,缓存气罐15中贮存的CO 2混合气一部分直接减压引入碳化工段制备碳酸镁、钙等产品;其余进入第一压缩机16加压至约2.45MPa,加压后的CO 2混合气进入第一冷凝器17降温至约-12.5℃,此时会析出约70%左右质量的CO 2液体,析出的液体CO 2从第一冷凝器17底部排出;其余混合气进入第一气液分离器18分离,分离出的液态CO 2与第一冷凝器17液化的CO 2底流一同经第一加压泵22泵入第一冷却贮罐23;第一气液分离器18分离出的气体进入至第二压缩机19。
实际过程中一次冷凝及一次气液分离过程压力会有所损失,因此第一气液分离器18分离出的气体需经第二压缩机19再次压缩至2.45MPa,再次加压后的气体进入第二冷凝器20降温至-25℃左右,此时剩余30%质量的CO 2基本全部液化,液化后的CO 2同样从第二冷凝器20底部排出,其余不凝气从第二冷凝器20顶部排出至厂区烟囱103排放。高压低温下会仍有少量汽化气体需进入第二气液分离器21再次分离,分离出的液态CO 2汇同第二冷凝器20液化的CO 2一同泵入暂存组件的第一冷却贮罐23中。
经过两次压缩冷凝及气液分离得到的液化CO 2统一经第一加压泵22泵入暂存组件的冷却贮罐中后,此时的液化CO 2纯度实测只有98%左右纯度,并不能满足大多数产品级CO 2的纯度要求,因此,液化CO 2需再经调压后进入精馏塔24低温精馏,精馏后获得纯度99.99%CO 2再进行缓存。因精馏及管道运输过程压力及温度有所损失,因此精馏后的CO 2需经再次冷却至约-25℃,并经再次加压至2.45MPa左右后贮存待用。
本发明的上述技术方案中,以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的技术构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围。

Claims (46)

  1. 一种白云石资源化深度利用的成套处理系统,其特征在于,包括一次煅烧装置、二氧化碳捕集装置、消化装置、碳化分离装置、热解装置以及二次煅烧装置:其中,
    所述一次煅烧装置包括对白云石进行间接处理的白云石煅烧炉、多块围板以及气体捕集管道,所述围板与所述白云石煅烧炉的炉膛顶部以及落料仓的外壁的之间围绕形成排气腔室,所述白云石煅烧炉的进料口、所述落料仓的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室连通,所述排气腔室通过所述气体捕集管道与所述二氧化碳捕集装置的进气口连通;
    所述二氧化碳捕集装置包括第一出气口、第二出气口、回收系统、第一回收管道以及第二回收管道,所述第二出气口连通所述回收系统;
    所述碳化分离装置包括碳化反应罐,所述碳化反应罐的进气口与所述二氧化碳捕集装置通过所述第一出气口连通;
    所述热解装置包括热解釜以及真空泵,所述真空泵与所述热解釜连通,所述第一回收管道连通所述热解釜的出气口和所述二氧化碳捕集装置的进气口;其中,所述热解装置热解反应后的分解母液通过分解母液回流管道回流至所述消化装置的进液口;
    所述二次煅烧装置包括碳酸镁煅烧炉,所述碳酸镁煅烧炉的烟气出口通过所述第二回收管道连通所述二氧化碳捕集装置的进气口。
  2. 根据权利要求1所述的白云石资源化深度利用的成套处理系统,其特征在于,所述白云石煅烧炉包括自上至下依次设置的落料仓、炉膛、及出料仓;
    其中,所述炉膛的外壁上覆设有保温层,所述落料仓设置于炉膛的进料口的上方,所述落料仓的落料口通过所述进料口对应设置,所述落料口的尺寸小于所述进料口的尺寸,所述进料口同时作为所述炉膛的排气口;
    所述落料仓的外壁与所述炉体的外壁之间通过所述围板围绕形成所述排气腔室,所述排气腔室通过所述进料口与所述炉膛的内部连通。
  3. 根据权利要求2所述的白云石资源化深度利用的成套处理系统,其特征在于,所述出料仓的外壁上设有循环水冷组件;
    所述循环水冷组件的热水出口与所述热解釜的水浴热水进水口通过循环水回流管道连通,升温后的循环水用于向所述热解釜进行供热。
  4. 根据权利要求3所述的白云石资源化深度利用的成套处理系统,其特征 在于,所述循环水冷组件包括水冷夹壁,所述水冷夹壁与所述出料仓的外壁之间围绕形成水冷室。
  5. 根据权利要求1所述的白云石资源化深度利用的成套处理系统,其特征在于,所述碳化分离装置包括所述碳化反应罐、气液混合反应器以及循环泵;
    所述碳化反应罐的顶部开设有加料口和气路循环出口;所述碳化反应罐的底部开设有水路循环出口和排流口,所述排流口处安装有排流阀;
    所述气液混合反应器包括气液混合管、进料管以及喷气管;其中,所述气液混合管安装于所述碳化反应罐的内部,所述气液混合管的侧壁上部开设有喷气管安装口,所述气液混合管的下端与所述碳化反应罐的内部连通设置;
    所述进料管自上至下依次穿过所述碳化反应罐的顶部和所述气液混合管的顶部后伸入所述气液混合管的内部,且所述进料管的出料口位于所述喷气管安装口的下方,其中,所述气液混合管与所述进料管的接口处通过密封件密封;
    所述喷气管的进气口同时与所述第一出气口和所述气路循环出口连通,所述喷气管的排气口安装于所述喷气管安装口;
    所述循环泵的进液口与所述水路循环出口连通,所述循环泵的出液口与所述进料管的进料口连通。
  6. 根据权利要求5所述的白云石资源化深度利用的成套处理系统,其特征在于,所述气液混合反应器还包括连通所述气液混合管的出口和所述碳化反应罐的对流混合喷射管,所述对流混合喷射管设置于所述气液混合管的下方,且所述对流混合喷射管自上至下依次设有正向流混合器和反向流混合器。
  7. 根据权利要求1所述的白云石资源化深度利用的成套处理系统,其特征在于,所述热解釜中设有防止物料沉积结壁的螺带式搅拌器。
  8. 根据权利要求1所述的白云石资源化深度利用的成套处理系统,其特征在于,所述二氧化碳捕集装置还包括压缩缓存气罐组件和二氧化碳循环子系统;
    所述压缩缓存气罐组件的进气口通过所述气体捕集管道与所述排气腔室连通,所述压缩缓存气罐组件包括所述第一出气口和所述第二出气口;
    所述二氧化碳循环子系统包括输气管道、所述第一回收管道、所述第二回收管道、二氧化碳水汽回收管以及气液分离器;
    其中,所述二氧化碳水汽回收管连通所述热解釜的烟气出口和所述气液分离器的进气口,所述气液分离器的出气口连通所述二氧化碳捕集装置的进气口。
  9. 一种采用如权利要求1-8中任一项所述的白云石资源化深度利用的成套 处理系统进行白云石资源利用的方法。
  10. 根据权利要求9所述的白云石资源利用的方法,其特征在于,还包括步骤:在所述一次煅烧装置的白云石加热至碳酸镁的分解温度时,开启所述二氧化碳捕集装置进行二氧化碳的回收与循环利用。
  11. 根据权利要求10所述的白云石资源利用的方法,其特征在于,所述碳酸镁的分解温度为600-700℃。
  12. 根据权利要求9所述的白云石资源利用的方法,其特征在于,还包括以下步骤中的一项或者多项:
    向所述消化装置中添加抑制剂,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;
    向含钙重镁水溶液中添加分散剂,所述分散剂包括甲醇、酒精、甘油、聚丙烯酰胺、纤维素衍生物、水玻璃中的一种或多种;
    所述消化装置中的首批煅白采用水进行消化,其余批次的煅白采用未冷却的所述分解母液进行消化;
    维持所述热解釜内的负压状态,以使所述热解釜内的含钙重镁水溶液的沸点位于碳酸氢镁的热解温度与碳酸氢钙的热解温度之间。
  13. 根据权利要求12所述的白云石资源利用的方法,其特征在于,所述消化装置中的煅白与所述水或所述分解母液的固液比为1kg:10~30L;消化所述首批煅白采用50~80℃的所述水。
  14. 根据权利要求12所述的白云石资源利用的方法,其特征在于,所述分散剂的添加量为所述含钙重镁水溶液0.1%~2%的体积百分比。
  15. 一种白云石煅烧炉,其特征在于,包括:气体捕集管道和炉体,所述炉体包括自上至下依次设置的落料仓、炉膛和出料仓;
    其中,所述炉膛的内部形成有至少一个竖向的煅烧区,所述炉体还包括通过热传导的方式向所述炉膛内的物料供热的加热装置;所述炉膛的顶部设置有封闭所述炉膛的炉口的封板,且所述封板上开设有至少一个连通口;
    所述落料仓设置于所述封板的上方,所述落料仓的落料口通过所述连通口与所述煅烧区连通,所述落料口的尺寸小于所述连通口的尺寸;所述落料仓的外壁与所述封板之间通过围板围绕形成有排气腔室,所述排气腔室通过所述连通口与所述煅烧区连通;
    所述气体捕集管道与所述排气腔室连通,以将所述煅烧区内产生的气体依 次通过所述连通口、所述排气腔室及所述气体捕集管道排放至外部的二氧化碳捕集装置中。
  16. 根据权利要求15所述的煅烧炉,其特征在于,所述加热装置包括电加热板和电加热棒;其中,每个所述煅烧区均被电加热板围绕设置,所述封板上还固定有伸入所述煅烧区内的电加热棒。
  17. 根据权利要求16所述的煅烧炉,其特征在于,每个所述煅烧区对应设置有至少一个所述电加热棒。
  18. 根据权利要求15所述的煅烧炉,其特征在于,所述落料仓包括仓体以及设于所述仓体下部的多个落料斗,每个所述落料斗开设有所述落料口;所述连通口的个数与所述落料口相配合的设置。
  19. 根据权利要求15所述的煅烧炉,其特征在于,所述炉膛的外壁上覆设有保温层;所述出料仓的外壁上设有供冷却水流动的循环水冷组件。
  20. 根据权利要求15所述的煅烧炉,其特征在于,所述煅烧炉还包括设置于所述落料仓上方的进料机构、以及设置于所述出料仓下方的传送机构;
    其中,所述进料机构和所述传送机构均与所述炉体平行设置,所述进料机构或所述落料仓上安装有物位控制器,所述物位控制器监测所述落料仓的仓位并控制所述进料机构向所述落料仓内投料,以实现所述落料仓与所述进料机构的联锁控制。
  21. 一种间接处理白云石的清洁环保煅烧方法,其特征在于,包括步骤:
    S1,向如权利要求15-20中任一项所述的煅烧炉中的所述落料仓内投加破碎的白云石,以使白云石进入所述落料仓内;
    S2,控制所述加热装置对所述煅烧区进行加热,以使白云石的煅烧温度上升至预设温度;
    S3,在加热至第一预设时间后,开启二氧化碳捕集装置中的引风机,使所述煅烧区内产生的二氧化碳在所述引风机的作用下经所述连通口、所述排气腔室及所述气体捕集管道排放至所述二氧化碳捕集装置中;
    S4,在加热至第二预设时间后,对煅烧得到的煅白经由所述出料仓排出待用;
    S5,根据所述落料仓中的仓位向所述落料仓内追投破碎的白云石。
  22. 根据权利要求21所述的煅烧方法,其特征在于,所述预设温度为900~1050℃。
  23. 根据权利要求21所述的煅烧方法,其特征在于,所述第一预设时间对应白云石的煅烧温度升至碳酸镁的分解温度。
  24. 根据权利要求23所述的煅烧方法,其特征在于,所述第一预设时间为白云石的煅烧温度升至600-700℃时。
  25. 根据权利要求21所述的煅烧方法,其特征在于,所述步骤S4中,所述第二预设时间为3-6小时;所述煅烧方法还包括步骤:
    通过调节如权利要求20所述的煅烧炉中的所述传送机构的传送速率,控制追投的白云石在所述煅烧区内的停留时间为2~4小时。
  26. 根据权利要求21所述的煅烧方法,其特征在于,还包括步骤:将首次产生的垫底料再次返回至所述落料仓中,以完成对所述垫底料的充分煅烧。
  27. 一种碳化分离装置,其特征在于,包括碳化反应罐、气液混合反应器以及循环泵;其中,
    所述碳化反应罐的顶部开设有供消化乳液进入的加料口和气路循环出口,所述碳化反应罐的底部开设有水路循环出口和排流口;
    所述气液混合反应器包括气液混合管、进料管、喷气管和对流混合喷射管;其中,所述进料管的进料口位于所述碳化反应罐外部,所述进料管的出口端从所述气液混合管的顶部插入所述气液混合管的内部;所述气液混合管安装于所述碳化反应罐的内部,所述气液混合管与所述进料管的接口处通过密封件密封,所述气液混合管的侧壁上还开设有进气口;所述喷气管的进气端同时与二氧化碳压力供气装置和所述气路循环出口连通,所述喷气管的排气端与所述进气口固定安装;所述进料管的出料口的竖直位置低于所述进气口;
    所述对流混合喷射管设置于所述气液混合管的下方,在竖向上连通所述气液混合管的出口和所述碳化反应罐,且所述对流混合喷射管自上至下依次设有正向流混合器和反向流混合器;
    所述正向流混合器包括第一管体和凸设于所述第一管体的管腔内壁的第一螺旋凸起,所述反向流混合器包括第二管体和凸设于所述第二管体的管腔内壁的第二螺旋凸起,所述第一螺旋凸起和所述第二螺旋凸起的螺旋方向相反;
    所述循环泵的进液口与所述水路循环出口连通,所述循环泵的出液口与所述进料管的进料口连通。
  28. 根据权利要求27所述的分离装置,其特征在于,所述第一螺旋凸起和所述第二螺旋凸起均为双螺旋结构。
  29. 根据权利要求27所述的分离装置,其特征在于,所述喷气管的进气口与所述二氧化碳压力供气装置之间设有减压阀,所述喷气管的进气口与所述气路循环出口之间设有气路循环单向阀。
  30. 根据权利要求27所述的分离装置,其特征在于,所述进料管下部的管腔内径逐渐减小。
  31. 根据权利要求30所述的分离装置,其特征在于,所述气液混合管的管径自所述进气口的位置向下逐渐减小。
  32. 根据权利要求27所述的分离装置,其特征在于,所述反向流混合器的出口端还连接有喷管,所述喷管的自由端的位置位于所述碳化反应罐的中部以下。
  33. 一种白云石煅白消化分离方法,其特征在于,包括步骤:
    S10,将首批煅白用水消化后获得消化乳液;
    S20,向所述消化乳液中加入抑制剂,其中,所述抑制剂包括乙二胺四乙酸、六偏磷酸钠、聚丙烯酸、聚顺丁烯二酸、氨三乙酸中的一种或多种;
    S30,将加入所述抑制剂的所述消化乳液通过所述加料口,以及将具有压力的CO 2经由所述喷气管送入如权利要求27-32任意一项所述的分离装置中进行碳化反应,以使钙镁分离。
  34. 根据权利要求33所述的白云石煅白消化分离方法,其特征在于,还包括:S40,当所述碳化反应罐中碳化浆液的pH为7.0-7.8时,取出碳化浆液并进行固液分离,得碳酸钙沉淀和碳酸氢镁溶液。
  35. 根据权利要求33所述的白云石煅白消化分离方法,其特征在于,还包括步骤:
    S50,将所述碳酸氢镁溶液进行分解后的分解母液循环与后续批次的煅白混合后作为新的所述消化乳液,返回所述步骤S30。
  36. 根据权利要求35所述的白云石煅白消化分离方法,其特征在于,首批所述煅白与水的添加比例、以及后续批次的所述煅白与所述分解母液的固液比均为1kg:10~30L。
  37. 根据权利要求33所述的白云石煅白消化分离方法,其特征在于,所述抑制剂的添加量为所述消化乳液质量分数的0.01~0.05%。
  38. 一种白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,包括:回收腔组件、除尘组件、压缩缓存气罐组件、二氧化碳净化回收子系统以及二 氧化碳循环子系统;
    所述回收腔组件包括多块围板,所述围板与间接加热式的白云石煅烧炉的炉膛顶部以及落料仓的外壁的之间围绕形成排气腔室,所述白云石煅烧炉的进料口、所述落料仓的落料口以及所述白云石煅烧炉的排气口均与所述排气腔室连通;所述排气腔室通过气体捕集管道与所述除尘组件连通;
    所述压缩缓存气罐组件的进气口与所述除尘组件的出口连通,并对CO 2气体进行压缩和存贮,所述压缩缓存气罐组件包括第一出气口和第二出气口;
    所述二氧化碳净化回收子系统与所述第二出气口连通;
    所述二氧化碳循环子系统包括输气管道、二氧化碳水汽回收管、气液分离器、第一回收管道以及第二回收管道;其中,所述输气管道连通所述第一出气口以及白云石煅烧钙镁分离工艺的碳化分离装置;
    所述二氧化碳水汽回收管连通所述白云石煅烧钙镁分离工艺的重镁水热解反应器的烟气出口和所述气液分离器的进气口,所述第一回收管道连通所述气液分离器的出气口和所述压缩缓存气罐组件的进气口;
    所述第二回收管道连通所述白云石煅烧钙镁分离工艺的碳酸镁煅烧炉的烟气出口和所述除尘组件的进气口。
  39. 根据权利要求38所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述除尘组件包括工艺布袋除尘器,所述工艺布袋除尘器上设有引风机,所述工艺布袋除尘器通过所述引风机将所述白云石煅烧炉中产生的二氧化碳气体引入所述工艺布袋除尘器内。
  40. 根据权利要求38所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述压缩缓存气罐组件包括螺杆压缩机、换热器、以及缓存气罐;所述除尘组件处理后的所述二氧化碳气体经所述螺杆压缩机压缩,所述螺杆压缩机压缩后的二氧化碳气体经所述换热器加热至常温后输送至所述缓存气罐存贮。
  41. 根据权利要求38所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述二氧化碳净化回收子系统包括一次净化组件、二次净化组件、暂存组件、以及精馏组件;其中,
    所述一次净化组件用于对所述压缩缓存气罐组件中存贮的二氧化碳气体依次进行压缩、冷凝和气液分离的处理,得首次分离后的二氧化碳液体和待净化气体;
    所述二次净化组件用于接收所述首次分离后得到的待净化气体,并对所述首次分离后得到的待净化气体依次压缩、冷凝和气液分离的处理,得二次分离后的二氧化碳液体、待净化气体和待排放气体;所述二次净化组件的待净化气体排出口与所述一次净化组件的进气口连通,以对所述二次分离后得到的待净化气体经所述一次净化组件进行再次处理;所述二次净化组件的废气排气口与外部连通,以将所述二次分离后得到的待排放气体排出;
    所述暂存组件包括第一冷却贮罐和调压阀,所述第一冷却贮罐用于暂存所述首次分离和所述二次分离后得到的二氧化碳液体,所述调压阀用于调节所述第一冷却贮罐的压力;
    所述精馏组件包括精馏塔和第二冷却贮罐,所述精馏塔用于接收所述第一冷却贮罐中经调压处理的二氧化碳液体,并对接收的二氧化碳液体进行精馏处理,得纯化后的二氧化碳,所述第二冷却贮罐用于对纯化后的二氧化碳进行冷却暂存。
  42. 根据权利要求41所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述一次净化组件包括第一压缩机、第一冷凝器、第一气液分离器;所述二次净化组件包括第二压缩机、第二冷凝器、第二气液分离器;
    所述第一压缩机对所述压缩缓存气罐组件中存贮的二氧化碳气体进行压缩处理;所述第一冷凝器对所述第一压缩机压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体和待分离气体;所述第一气液分离器对所述第一冷凝器中的待分离气体进行气液分离处理,得二氧化碳液体和待净化气体;所述第一冷凝器和所述第一气液分离器中的二氧化碳液体排至所述暂存组件;
    所述第二压缩机对所述第一气液分离器中的待净化气体进行压缩处理;所述第二冷凝器对所述第二压缩机压缩后的二氧化碳气体进行冷凝处理,得二氧化碳液体、待排放气体和待分离气体;所述第二气液分离器对所述第二冷凝器中的待分离气体进行气液分离,得二氧化碳液体和待净化气体;
    其中,所述第二冷凝器中的待排放气体排至厂区烟囱,所述第二冷凝器和所述第二气液分离器中的二氧化碳液体排至所述暂存组件,所述第二气液分离器中的待净化气体排至所述第一冷凝器。
  43. 根据权利要求42所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述二氧化碳净化回收子系统还包括第一加压泵、第二加压泵和液化二氧化碳贮罐;
    所述第一冷凝器、所述第一气液分离器、所述第二冷凝器、及所述第二气液分离器中的二氧化碳液体均经所述第一加压泵加压后排至所述第一冷却贮罐中;
    所述第二冷却贮罐中的所述纯化后的二氧化碳经所述第二加压泵加压后输送至所述液化二氧化碳贮罐中存贮待用。
  44. 根据权利要求38所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述二氧化碳的净化与循环利用装置还包括环集除尘机构,所述环集除尘机构用于收集煅烧进料过程中产生的矿粉扬尘气体,并对收集的矿粉扬尘气体进行除尘处理。
  45. 根据权利要求38所述的白云石煅烧二氧化碳的净化与循环利用装置,其特征在于,所述白云石煅烧炉的进料口与所述白云石煅烧炉的排气口为同一个开口。
  46. 一种白云石煅烧二氧化碳的净化与循环利用方法,其特征在于,采用如权利要求38-45任意一项所述的净化与循环利用装置对二氧化碳进行净化与分离回收。
PCT/CN2022/086671 2021-12-24 2022-04-13 一种白云石资源化深度利用的成套处理系统和方法 WO2023115759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/072,329 US11866803B2 (en) 2021-12-24 2022-11-30 Treatment system and method for deep utilization of dolomite resources

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111595132.XA CN113998905B (zh) 2021-12-24 2021-12-24 一种白云石煅白消化分离方法与装置
CN202111595493.4 2021-12-24
CN202111595493.4A CN113998908B (zh) 2021-12-24 2021-12-24 一种白云石资源化深度利用成套处理系统和方法
CN202111595131.5A CN113996247B (zh) 2021-12-24 2021-12-24 一种白云石煅烧二氧化碳的净化与循环利用方法及装置
CN202111595478.X 2021-12-24
CN202111595478.XA CN113998907B (zh) 2021-12-24 2021-12-24 一种间接处理白云石的清洁环保煅烧炉及方法
CN202111595131.5 2021-12-24
CN202111595132.X 2021-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/072,329 Continuation US11866803B2 (en) 2021-12-24 2022-11-30 Treatment system and method for deep utilization of dolomite resources

Publications (1)

Publication Number Publication Date
WO2023115759A1 true WO2023115759A1 (zh) 2023-06-29

Family

ID=86901160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086671 WO2023115759A1 (zh) 2021-12-24 2022-04-13 一种白云石资源化深度利用的成套处理系统和方法

Country Status (1)

Country Link
WO (1) WO2023115759A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016393A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种由白云石制备轻质碳酸钙和氧化镁的方法
CN108529653A (zh) * 2018-05-24 2018-09-14 中南大学 以白云石为原料制备高纯氧化镁的装置及其方法和应用
CN110357138A (zh) * 2019-07-19 2019-10-22 恩平燕怡新材料有限公司 一种纳米碳酸钙喷射碳化方法及系统
US20210163352A1 (en) * 2019-04-30 2021-06-03 Sobute New Materials Co., Ltd. Method for preparing light magnesium oxide and calcium oxide and application thereof for preparing calcium-magnesium composite expanding agent
CN113149471A (zh) * 2021-05-17 2021-07-23 李鑫 一种菱镁石电能轻烧竖窑
CN113998908A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石资源化深度利用成套处理系统和方法
CN113996247A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石煅烧二氧化碳的净化与循环利用方法及装置
CN113998905A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石煅白消化分离方法与装置
CN113998907A (zh) * 2021-12-24 2022-02-01 中南大学 一种间接处理白云石的清洁环保煅烧炉及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016393A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种由白云石制备轻质碳酸钙和氧化镁的方法
CN108529653A (zh) * 2018-05-24 2018-09-14 中南大学 以白云石为原料制备高纯氧化镁的装置及其方法和应用
US20210163352A1 (en) * 2019-04-30 2021-06-03 Sobute New Materials Co., Ltd. Method for preparing light magnesium oxide and calcium oxide and application thereof for preparing calcium-magnesium composite expanding agent
CN110357138A (zh) * 2019-07-19 2019-10-22 恩平燕怡新材料有限公司 一种纳米碳酸钙喷射碳化方法及系统
CN113149471A (zh) * 2021-05-17 2021-07-23 李鑫 一种菱镁石电能轻烧竖窑
CN113998908A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石资源化深度利用成套处理系统和方法
CN113996247A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石煅烧二氧化碳的净化与循环利用方法及装置
CN113998905A (zh) * 2021-12-24 2022-02-01 中南大学 一种白云石煅白消化分离方法与装置
CN113998907A (zh) * 2021-12-24 2022-02-01 中南大学 一种间接处理白云石的清洁环保煅烧炉及方法

Similar Documents

Publication Publication Date Title
JP7258093B2 (ja) ケイ酸塩鉱物からのリチウムの回収
CN107032372B (zh) 一种从锂云母精矿提取锂的方法
US20160152472A1 (en) Method for mass production of phosphoric acid with rotary kiln
CN108529653B (zh) 以白云石为原料制备高纯氧化镁的装置及其方法和应用
WO2016086734A1 (zh) 烟气脱硫生产硫酸镁的装置与方法
WO2018000587A1 (zh) 一种真空感应炉、电弧炉真空炼镁系统及其炼镁方法
CN103183380A (zh) 钛白粉煅烧回转窑进料方法及设备
CN208747648U (zh) 水泥窑协同处置二次铝灰的系统
CN107475531B (zh) 一种回收锌粉的系统及其方法
CN104528674B (zh) 一种大规模生产高纯度五氧化二磷的方法
CN113998908B (zh) 一种白云石资源化深度利用成套处理系统和方法
WO2023115759A1 (zh) 一种白云石资源化深度利用的成套处理系统和方法
CN101445271A (zh) 一种用含钒矿石或含钒矿渣生产五氧化二钒的方法
CN208545315U (zh) 水泥窑协同处置电解铝废渣联产双快水泥的系统
CN102936025B (zh) 微细及纳米级活性轻质碳酸钙自动化生产系统
CN108642303B (zh) 一种氧化锌矿的真空冶炼方法
CN101780969B (zh) 一种氧化铝碳分母液的处理的方法
CN1986472A (zh) 采用造纸白泥作水泥生产原料的方法
CN101746791A (zh) 一种干法烧结氧化铝熟料的方法
US11866803B2 (en) Treatment system and method for deep utilization of dolomite resources
CN105399118A (zh) 一种烧结法氧化铝生产方法
CN113996247B (zh) 一种白云石煅烧二氧化碳的净化与循环利用方法及装置
CN113955760B (zh) 一种白炭黑的制备设备及其工艺
WO2022148452A1 (zh) 一种石油焦处理装置、工艺及处理系统
CN212205356U (zh) 一种工业盐干燥设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909096

Country of ref document: EP

Kind code of ref document: A1