WO2023115740A1 - 一种建筑接收太阳辐射能的计算方法和系统 - Google Patents

一种建筑接收太阳辐射能的计算方法和系统 Download PDF

Info

Publication number
WO2023115740A1
WO2023115740A1 PCT/CN2022/083281 CN2022083281W WO2023115740A1 WO 2023115740 A1 WO2023115740 A1 WO 2023115740A1 CN 2022083281 W CN2022083281 W CN 2022083281W WO 2023115740 A1 WO2023115740 A1 WO 2023115740A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
preset
solar radiation
sun
rays
Prior art date
Application number
PCT/CN2022/083281
Other languages
English (en)
French (fr)
Inventor
张�成
郑佳琳
张乾熙
阮建文
李晓宁
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Publication of WO2023115740A1 publication Critical patent/WO2023115740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the invention relates to the technical field of building solar energy utilization, in particular to a calculation method and system for building receiving solar radiation energy.
  • the present invention provides a calculation method and system for building receiving solar radiation energy, which is used to solve the problem that the existing calculation method for building receiving solar radiation energy needs to calculate the solar radiation time of all roofs and side grids of the building, and the calculation process is relatively complicated , and technical problems with large errors.
  • the first aspect of the present invention provides a calculation method for building received solar radiation energy, comprising the following steps:
  • the sun elevation angle is calculated according to the time at the preset moment and the latitude and longitude information where the preset building is located, to obtain the direction of the sun's rays at the preset moment.
  • calculating the projection point coordinates of the feature points of the preset building falling on a plane perpendicular to the direction of the sun's rays also includes:
  • the three-dimensional space coordinate scene of the preset building is established, and the coordinates of the feature points of the preset building in the three-dimensional space coordinate scene are determined.
  • the feature point of the preset building is a vertex on the top of the preset building.
  • the second aspect of the present invention provides a computing system for buildings to receive solar radiation energy, including the following modules:
  • the obtaining module is used to obtain the feature points of the preset building and the direction of the sun's rays at the preset moment;
  • the projection module is used to calculate the projection point coordinates of the feature points of the preset buildings falling on the plane perpendicular to the direction of the sun's rays;
  • the projected area calculation module is used to calculate the area S of the polygon surrounded by the coordinates of the projected points falling on the plane perpendicular to the direction of the sun's rays;
  • the solar radiation energy calculation module is used to calculate the solar radiation energy received by the building according to the shading rate.
  • the three-dimensional space construction module is used to establish the three-dimensional space coordinate scene of the preset building, and determine the coordinates of the feature points of the preset building in the three-dimensional space coordinate scene.
  • the feature point of the preset building is a vertex on the top of the preset building.
  • the calculation method for building receiving solar radiation energy provided by the present invention has the following advantages:
  • the method for calculating solar radiant energy received by buildings since the angle of the parallel rays of sunlight at any moment in the preset location is a definite value, the projection of the characteristic points of the preset buildings on a plane perpendicular to the parallel rays can be obtained
  • the coordinates of the point using the area enclosed by the projection points and the area of the building to calculate the shading rate, so as to obtain the solar radiation energy received by the building, that is, the shading rate is directly calculated by two-dimensional projection overlapping, and the three-dimensional relationship becomes The two-dimensional overlapping relationship is established, and the projection of the line segment is still a line segment, and the projected area after the overlap is directly calculated to calculate the shading rate.
  • Fig. 1 is a schematic flow chart of a calculation method for a building receiving solar radiation energy provided by the present invention
  • Fig. 2 is the schematic diagram that the sun rays irradiate A building and B building provided by the present invention
  • Fig. 3 is a schematic diagram of feature points and projection points of A building and B building in Fig. 2;
  • Fig. 4 is a structural schematic diagram of a computing system for a building receiving solar radiation energy provided by the present invention.
  • the present invention provides a kind of embodiment of the calculation method that building receives solar radiation energy, comprises the following steps:
  • Step 101 Obtain the feature points of the preset building and the direction of the sun's rays at the preset moment.
  • the direction of the sun's rays at a certain location is a definite value at any time, and the sun's altitude angle can be calculated according to the current time and the latitude and longitude information of the location, so as to obtain the direction of the sun's rays.
  • the feature points are the vertices of the solar panel, and for buildings, the feature points can be the vertices of the top.
  • Step 102 calculating the coordinates of the projected points where the feature points of the preset buildings fall on a plane perpendicular to the direction of the sun's rays.
  • the coordinates of the projection point can be determined by establishing a coordinate system.
  • the three-dimensional space coordinate scene of the building is established, the three-dimensional space coordinates (x j , y j , z j ) of the feature points of the building are determined, and then projected onto a plane perpendicular to the direction of the sun's rays to obtain two-dimensional projection points Coordinates (u j ,v j ).
  • Step 103 calculate the area S of the polygon surrounded by the coordinates of the projected points falling on the plane perpendicular to the direction of the sun's rays.
  • the projection points When the feature points of the building are projected onto the plane perpendicular to the direction of the sun’s rays, the projection points form a polygon on the plane perpendicular to the direction of the sun’s rays. At this time, according to the coordinates of each projection point, the polygon can be calculated using mathematical geometric relations The area S of
  • the feature points of building A are P 11 , P 12 , P 13 , and P 14
  • the feature points of building B are P 21 , P 22 , P 23 , and P 24
  • the projection of the ray normal plane is Q 11 , Q 12 , Q 13 , Q 14 plane and Q 21 , Q 22 , Q 23 , Q 24 plane
  • Q k1 and Q k2 are Q 11 , Q 12 , Q 13 , Q 14 plane and Q 21 , Q 22 , Q 23 , Q 24 planes, therefore, when the feature points of building A and building B are projected onto a plane perpendicular to the direction of the sun’s rays, the projection point is on the plane perpendicular to the direction of the sun’s rays
  • the enclosed polygon is Q 11 Q 12 Q k1 Q 22 Q 23 Q 24 Q k2 Q 14 Q 11 .
  • Step 104 Calculate the occlusion rate ⁇ according to the area S of the polygon enclosed by the total area Sc of the preset building and the coordinates of the projected points.
  • the total area Sc of the building can be calculated according to the actual parameters of the building. Therefore, after calculating the area S of the polygon enclosed by the coordinates of the projection points falling on the plane perpendicular to the direction of the sun's rays, it can be calculated according to the shading rate ⁇ .
  • the calculation formula ⁇ (Sc-S)/Sc calculates and obtains the shading rate ⁇ .
  • Step 105 calculating the solar radiation energy received by the building according to the shading rate.
  • the solar radiation energy received by the building can be obtained.
  • the method for calculating solar radiant energy received by buildings since the angle of the parallel rays of sunlight at any moment in the preset location is a definite value, the projection of the characteristic points of the preset buildings on a plane perpendicular to the parallel rays can be obtained
  • the coordinates of the point using the area enclosed by the projection points and the area of the building to calculate the shading rate, so as to obtain the solar radiation energy received by the building, that is, the shading rate is directly calculated by two-dimensional projection overlapping, and the three-dimensional relationship becomes The two-dimensional overlapping relationship is established, and the projection of the line segment is still a line segment, and the projected area after the overlap is directly calculated to calculate the shading rate.
  • the present invention provides a computing system for buildings to receive solar radiant energy, including the following modules:
  • the obtaining module is used to obtain the feature points of the preset building and the direction of the sun's rays at the preset moment;
  • the projection module is used to calculate the projection point coordinates of the feature points of the preset buildings falling on the plane perpendicular to the direction of the sun's rays;
  • the projected area calculation module is used to calculate the area S of the polygon surrounded by the coordinates of the projected points falling on the plane perpendicular to the direction of the sun's rays;
  • the solar radiation energy calculation module is used to calculate the solar radiation energy received by the building according to the shading rate.
  • the three-dimensional space construction module is used to establish the three-dimensional space coordinate scene of the preset building, and determine the coordinates of the feature points of the preset building in the three-dimensional space coordinate scene.
  • the feature point of the preset building is the vertex of the top of the preset building.
  • the calculation system for buildings receiving solar radiant energy since the angle of the parallel rays of sunlight at any moment in the preset location is a definite value, the projection of the characteristic points of the preset buildings on the plane perpendicular to the parallel rays can be obtained
  • the coordinates of the point using the area enclosed by the projection points and the area of the building to calculate the shading rate, so as to obtain the solar radiation energy received by the building, that is, the shading rate is directly calculated by two-dimensional projection overlapping, and the three-dimensional relationship becomes The two-dimensional overlapping relationship is established, and the projection of the line segment is still a line segment, and the projected area after the overlap is directly calculated to calculate the shading rate.
  • the calculation system for building received solar radiant energy provided by the embodiment of the present invention is used to execute the calculation method for building received solar radiant energy in the foregoing embodiments, and its working principle is the same as the calculation method for building received solar radiant energy in the foregoing embodiments, and can The same technical effect as that of the calculation method of the solar radiation energy received by the building in the foregoing embodiments is obtained, and details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种建筑接收太阳辐射能的计算方法和系统,由于太阳光的平行光线在预置地点的任意时刻的角度是确定值,因而可获得预置建筑的特征点在于平行光垂直的平面上的投影的点的坐标,利用投影点所围成的面积和建筑的面积计算出遮挡率,从而得到建筑接收的太阳辐射能,即以二维投影重叠的方式直接计算出遮挡率,将三维关系变成了二维重叠关系,利用线段的投影仍然是线段,直接计算重叠后的投影面积,计算遮挡率,不需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,解决了现有的建筑接收太阳辐射能的计算方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大的技术问题。

Description

一种建筑接收太阳辐射能的计算方法和系统
本申请要求于2021年12月23日提交中国专利局、申请号为202111592441.1、申请名称为“一种建筑接收太阳辐射能的计算方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑太阳能利用技术领域,尤其涉及一种建筑接收太阳辐射能的计算方法和系统。
背景技术
建设绿色低碳城市是现代城市的重要导向,居民对于现代城市规划住宅也有了更节能环保的要求,为了更好地利用太阳辐射能,需要研究出更多评估太阳能接收率的方法比如建筑太阳能评估算法来适应时代的需求。建筑是城市的重要组成部分,为了评估某部分区域接收到太阳能辐射的多少,目前采用建筑太阳能评估算法去估算建筑的太阳能接收率,通过选择该建筑的一个栅格(栅格化处理建筑分布图纸,在建筑分布图纸中选择一建筑物的一个栅格)获得每个水平方向的最大遮挡角度,以所有栅格的太阳能辐射时间求和来获得其整体的太阳能辐射时间,最后通过计算求出建筑总体接收的太阳能辐射值。该方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大。
申请内容
本发明提供了一种建筑接收太阳辐射能的计算方法和系统,用于解决现有的建筑接收太阳辐射能的计算方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大的技术问题。
有鉴于此,本发明第一方面提供了一种建筑接收太阳辐射能的计算方法,包括以下步骤:
获取预置建筑的特征点和预置时刻的太阳光线方向;
计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐 标;
计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S;
根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc;
根据遮挡率计算建筑接收的太阳辐射能。
可选地,根据预置时刻的时间和预置建筑所在的经纬度信息计算太阳高度角,得到预置时刻的太阳光线方向。
可选地,计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标,之前还包括:
建立预置建筑的三维空间坐标场景,确定预置建筑的特征点在三维空间坐标场景中的坐标。
可选地,预置建筑的特征点为预置建筑顶部的顶点。
本发明第二方面提供了一种建筑接收太阳辐射能的计算系统,包括以下模块:
获取模块,用于获取预置建筑的特征点和预置时刻的太阳光线方向;
投影模块,用于计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标;
投影面积计算模块,用于计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S;
遮挡率计算模块,用于根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc;
太阳辐射能计算模块,用于根据遮挡率计算建筑接收的太阳辐射能。
可选地,获取模块具体用于:
获取预置建筑的特征点;
根据预置时刻的时间和预置建筑所在的经纬度信息计算太阳高度角,得到预置时刻的太阳光线方向。
可选地,还包括:
三维空间构建模块,用于建立预置建筑的三维空间坐标场景,确定预置建筑的特征点在三维空间坐标场景中的坐标。
可选地,预置建筑的特征点为预置建筑顶部的顶点。
从以上技术方案可以看出,本发明提供的建筑接收太阳辐射能的计算方法具有以下优点:
本发明提供的建筑接收太阳辐射能的计算方法,由于太阳光的平行光线在预置地点的任意时刻的角度是确定值,因而可获得预置建筑的特征点在于平行光垂直的平面上的投影的点的坐标,利用投影点所围成的面积和建筑的面积计算出遮挡率,从而得到建筑接收的太阳辐射能,即以二维投影重叠的方式直接计算出遮挡率,将三维关系变成了二维重叠关系,利用线段的投影仍然是线段,直接计算重叠后的投影面积,计算遮挡率,不需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,解决了现有的建筑接收太阳辐射能的计算方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大的技术问题。
附图说明
图1为本发明提供的一种建筑接收太阳辐射能的计算方法的流程示意图;
图2为本发明提供的太阳光线照射A建筑和B建筑的示意图;
图3为图2的A建筑和B建筑的特征点和投影点示意图;
图4为本发明提供的一种建筑接收太阳辐射能的计算系统的结构示意图。
具体实施方式
下面将结合本申请中的说明书附图,对申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
为了便于理解,请参阅图1,本发明中提供了一种建筑接收太阳辐射能的计算方法的实施例,包括以下步骤:
步骤101、获取预置建筑的特征点和预置时刻的太阳光线方向。
某个地点的太阳光线的方向在任意时刻为确定值,可以根据当前时间和该地点的经纬度信息求太阳高度角,从而得到太阳光线的方向。对于太阳能电池板而言,特征点为太阳能电池板的各个顶点,对于建筑而言,特征点可选为顶部的各个顶点。
步骤102、计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标。
太阳光线照射建筑时,太阳光线的照射方向已求得,因而与太阳光线方向垂直的平面是已知的,那么将建筑的特征点投影到与太阳光线方向垂直的平面上,得到该平面上的投影点坐标。投影点坐标的确定可通过建立坐标系确定。具体地,建立建筑的三维空间坐标场景,确定建筑的特征点的三维空间坐标(x j,y j,z j),然后投影映射到与太阳光线方向垂直的平面上,得到二维的投影点坐标(u j,v j)。
步骤103、计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S。
当建筑的特征点投影到与太阳光线方向垂直的平面上时,投影点在与太阳光线方向垂直的平面上围成多边形,此时,根据各投影点坐标,利用数学几何关系可计算出该多边形的面积S。
如图2和图3所示,A建筑的特征点为P 11、P 12、P 13、P 14,B建筑的特征点为P 21、P 22、P 23、P 24,这些特征点在某光线法平面的投影为Q 11、Q 12、Q 13、Q 14平面和Q 21、Q 22、Q 23、Q 24平面,Q k1和Q k2为Q 11、Q 12、Q 13、Q 14平面和Q 21、Q 22、Q 23、Q 24平面的交叉点,因而,A建筑和B建筑的特征点投影到与太阳光线方向垂直的平面上时,投影点在与太阳光线方向垂直的平面上围成多边形为Q 11Q 12Q k1Q 22Q 23Q 24Q k2Q 14Q 11
步骤104、根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc。
建筑的总面积Sc是可以根据建筑的实际参数计算而得的,因而,计算出落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S之后,可以根据遮挡率η的计算公式η=(Sc-S)/Sc计算求得遮挡率η。
步骤105、根据遮挡率计算建筑接收的太阳辐射能。
求得遮挡率之后,便可得到建筑接收的太阳辐射能。具体地,建筑接收的太阳辐射能E为遮挡率η与太阳辐射强度I以及建筑的总面积Sc之间的关系为:E=(1-η)ISc。
本发明提供的建筑接收太阳辐射能的计算方法,由于太阳光的平行光线在预置地点的任意时刻的角度是确定值,因而可获得预置建筑的特征点在于平行光垂直的平面上的投影的点的坐标,利用投影点所围成的面积和建筑的面积计算出遮挡率,从而得到建筑接收的太阳辐射能,即以二维投影重叠的方式直接计算出遮挡率,将三维关系变成了二维重叠关系,利用线段的投影仍然是线段,直接计算重叠后的投影面积,计算遮挡率,不需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,解决了现有的建筑接收太阳辐射能的计算方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大的技术问题。
实施例二
为了便于理解,请参阅图4,本发明中提供了一种建筑接收太阳辐射能的计算系统,包括以下模块:
获取模块,用于获取预置建筑的特征点和预置时刻的太阳光线方向;
投影模块,用于计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标;
投影面积计算模块,用于计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S;
遮挡率计算模块,用于根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc;
太阳辐射能计算模块,用于根据遮挡率计算建筑接收的太阳辐射能。
获取模块具体用于:
获取预置建筑的特征点;
根据预置时刻的时间和预置建筑所在的经纬度信息计算太阳高度角,得到预置时刻的太阳光线方向。
还包括:
三维空间构建模块,用于建立预置建筑的三维空间坐标场景,确定预置建筑的特征点在三维空间坐标场景中的坐标。
预置建筑的特征点为预置建筑顶部的顶点。
本发明提供的建筑接收太阳辐射能的计算系统,由于太阳光的平行光线在预置地点的任意时刻的角度是确定值,因而可获得预置建筑的特征点在于平行光垂直的平面上的投影的点的坐标,利用投影点所围成的面积和建筑的面积计算出遮挡率,从而得到建筑接收的太阳辐射能,即以二维投影重叠的方式直接计算出遮挡率,将三维关系变成了二维重叠关系,利用线段的投影仍然是线段,直接计算重叠后的投影面积,计算遮挡率,不需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,解决了现有的建筑接收太阳辐射能的计算方法需要计算建筑物所有屋顶和侧面栅格的太阳能辐射时间,计算过程较为复杂,且误差较大的技术问题。
本发明实施例提供的建筑接收太阳辐射能的计算系统,用于执行前述实施例的建筑接收太阳辐射能的计算方法,其工作原理与前述实施例的建筑接收太阳辐射能的计算方法相同,可取得与前述实施例的建筑接收太阳辐射能的计算方法相同的技术效果,在此不再进行赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种建筑接收太阳辐射能的计算方法,其特征在于,包括以下步骤:
    获取预置建筑的特征点和预置时刻的太阳光线方向;
    计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标;
    计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S;
    根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc;
    根据遮挡率计算建筑接收的太阳辐射能。
  2. 根据权利要求1所述的建筑接收太阳辐射能的计算方法,其特征在于,根据预置时刻的时间和预置建筑所在的经纬度信息计算太阳高度角,得到预置时刻的太阳光线方向。
  3. 根据权利要求1所述的建筑接收太阳辐射能的计算方法,其特征在于,计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标,之前还包括:
    建立预置建筑的三维空间坐标场景,确定预置建筑的特征点在三维空间坐标场景中的坐标。
  4. 根据权利要求1所述的建筑接收太阳辐射能的计算方法,其特征在于,预置建筑的特征点为预置建筑顶部的顶点。
  5. 一种建筑接收太阳辐射能的计算系统,其特征在于,包括以下模块:
    获取模块,用于获取预置建筑的特征点和预置时刻的太阳光线方向;
    投影模块,用于计算预置建筑的特征点落在与太阳光线方向垂直的平面的投影点坐标;
    投影面积计算模块,用于计算落在与太阳光线方向垂直的平面的投影点坐标所围成的多边形的面积S;
    遮挡率计算模块,用于根据预置建筑的总面积Sc和投影点坐标所围成的多边形的面积S,计算遮挡率η,遮挡率η的计算公式为:η=(Sc-S)/Sc;
    太阳辐射能计算模块,用于根据遮挡率计算建筑接收的太阳辐射能。
  6. 根据权利要求5所述的建筑接收太阳辐射能的计算系统,其特征在于,获取模块具体用于:
    获取预置建筑的特征点;
    根据预置时刻的时间和预置建筑所在的经纬度信息计算太阳高度角,得到预置时刻的太阳光线方向。
  7. 根据权利要求5所述的建筑接收太阳辐射能的计算系统,其特征在于,还包括:
    三维空间构建模块,用于建立预置建筑的三维空间坐标场景,确定预置建筑的特征点在三维空间坐标场景中的坐标。
  8. 根据权利要求5所述的建筑接收太阳辐射能的计算系统,其特征在于,预置建筑的特征点为预置建筑顶部的顶点。
PCT/CN2022/083281 2021-12-23 2022-03-28 一种建筑接收太阳辐射能的计算方法和系统 WO2023115740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111592441.1 2021-12-23
CN202111592441.1A CN114238842A (zh) 2021-12-23 2021-12-23 一种建筑接收太阳辐射能的计算方法和系统

Publications (1)

Publication Number Publication Date
WO2023115740A1 true WO2023115740A1 (zh) 2023-06-29

Family

ID=80762159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083281 WO2023115740A1 (zh) 2021-12-23 2022-03-28 一种建筑接收太阳辐射能的计算方法和系统

Country Status (2)

Country Link
CN (1) CN114238842A (zh)
WO (1) WO2023115740A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114238842A (zh) * 2021-12-23 2022-03-25 广东海洋大学 一种建筑接收太阳辐射能的计算方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130226537A1 (en) * 2011-08-30 2013-08-29 Joon-Bum JEE Method and apparatus for providing one layer solar radiation model for calculation of insolation
CN111597733A (zh) * 2020-06-03 2020-08-28 清华大学 一种计算空间结构中的各种构件的太阳辐射量的方法
CN112258649A (zh) * 2020-10-27 2021-01-22 中国科学院空天信息创新研究院 一种基于光线投射的三维城市太阳辐射计算方法
CN113221222A (zh) * 2021-05-10 2021-08-06 中国计量大学上虞高等研究院有限公司 建筑物屋顶光伏板排布方法
CN114238842A (zh) * 2021-12-23 2022-03-25 广东海洋大学 一种建筑接收太阳辐射能的计算方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130226537A1 (en) * 2011-08-30 2013-08-29 Joon-Bum JEE Method and apparatus for providing one layer solar radiation model for calculation of insolation
CN111597733A (zh) * 2020-06-03 2020-08-28 清华大学 一种计算空间结构中的各种构件的太阳辐射量的方法
CN112258649A (zh) * 2020-10-27 2021-01-22 中国科学院空天信息创新研究院 一种基于光线投射的三维城市太阳辐射计算方法
CN113221222A (zh) * 2021-05-10 2021-08-06 中国计量大学上虞高等研究院有限公司 建筑物屋顶光伏板排布方法
CN114238842A (zh) * 2021-12-23 2022-03-25 广东海洋大学 一种建筑接收太阳辐射能的计算方法和系统

Also Published As

Publication number Publication date
CN114238842A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Desthieux et al. Solar energy potential assessment on rooftops and facades in large built environments based on lidar data, image processing, and cloud computing. methodological background, application, and validation in geneva (solar cadaster)
Machete et al. The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential
Nguyen et al. Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale
CN104778316B (zh) 一种基于建筑信息模型的光伏发电设备辐射分析方法
CN110851945B (zh) 一种光伏阵列排布方法及光伏阵列排布方案自动生成系统
Robinson et al. Irradiation modelling made simple: the cumulative sky approach and its applications
CN109815544B (zh) 一种基于bim的屋顶光伏布置方法
KR102321673B1 (ko) 태양광 발전 시뮬레이션 장치 및 방법
Ibarra et al. Solar availability: a comparison study of six irradiation distribution methods
Alam et al. Shadow effect on photovoltaic potentiality analysis using 3D city models
CN105760590A (zh) 一种基于阴影辐射分析的屋顶式光伏阵列间距优化方法
Lobaccaro et al. District geometry simulation: a study for the optimization of solar façades in urban canopy layers
CN103823927A (zh) 跟踪式光伏设备的阵列式排布方法
Hiller et al. TRNSHD—a program for shading and insolation calculations
WO2023115740A1 (zh) 一种建筑接收太阳辐射能的计算方法和系统
CN115983011B (zh) 基于年辐射量的光伏发电功率模拟方法、系统及存储介质
CN114912370B (zh) 一种建筑物光伏潜力分析可用面积计算方法
Liao et al. Simplified vector-based model tailored for urban-scale prediction of solar irradiance
CN104034058A (zh) 基于gpu的塔式太阳能热电系统镜场的成像方法
Alam et al. Detecting shadow for direct radiation using CityGML models for photovoltaic potentiality analysis
KR20160078920A (ko) 목표 지점의 일사량 계산 방법 및 장치
Cellura et al. A photographic method to estimate the shading effect of obstructions
Elmalky et al. Computational procedure of solar irradiation: A new approach for high performance façades with experimental validation
Hu et al. A comprehensive mathematical approach and optimization principle for solar flux distribution and optical efficiency in a solar tower
CN112182714A (zh) 顾及飞行员视线和天气条件的建筑太阳能潜力计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909078

Country of ref document: EP

Kind code of ref document: A1