WO2023115670A1 - 一种早强速凝型超高性能混凝土及其制备方法和应用 - Google Patents

一种早强速凝型超高性能混凝土及其制备方法和应用 Download PDF

Info

Publication number
WO2023115670A1
WO2023115670A1 PCT/CN2022/071903 CN2022071903W WO2023115670A1 WO 2023115670 A1 WO2023115670 A1 WO 2023115670A1 CN 2022071903 W CN2022071903 W CN 2022071903W WO 2023115670 A1 WO2023115670 A1 WO 2023115670A1
Authority
WO
WIPO (PCT)
Prior art keywords
early
performance concrete
high performance
ultra
strength
Prior art date
Application number
PCT/CN2022/071903
Other languages
English (en)
French (fr)
Inventor
侯东帅
王鑫鹏
武迪
李萌萌
李冠男
王攀
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2023115670A1 publication Critical patent/WO2023115670A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of concrete, and in particular relates to an early-strength quick-setting ultra-high performance concrete and a preparation method and application thereof.
  • Red mud is an alkaline solid waste produced in the alumina production process. Affected by the grade of bauxite, 1 to 1.5 tons of red mud will be produced for every ton of alumina produced. At present, the treatment method of red mud is mainly landfill, which takes up a lot of land and at the same time, the lye dissolution caused by the high alkalinity of red mud (pH value is 10-12.5) also causes land salinity. A series of environmental problems such as waterlogging and groundwater pollution.
  • red mud especially Bayer red mud
  • alkalinity pH > 10
  • red mud can accelerate the hydration of cement, promote the setting and hardening of concrete and the development of early strength.
  • red mud content is low (the content is less than 150kg/m 3 ), the alkali supply is insufficient, and the effect of early strength is limited; while the high content of red mud exerts the quick-setting effect, it also brings about obvious deterioration of concrete performance. : In addition, the large amount of red mud blending increases the radioactive risk of its products.
  • the existing red mud recycling technology has problems such as complex process (requires dealkalization pretreatment process), doubtful alkali resistance and radioactive performance of the product.
  • the purpose of the present invention is to provide an early-strength quick-setting ultra-high-performance concrete and its preparation method and application.
  • red mud is added to the ultra-high-performance concrete in a high amount as an early-strength agent to ensure the excellent mechanical properties of the product.
  • the setting time of concrete is significantly shortened, the development of early strength is promoted, the accumulation of red mud and the environmental pollution problems caused by it are alleviated, and the risk of red mud lye dissolution and radioactivity is greatly reduced.
  • the present invention provides the following technical solutions:
  • the invention provides an early-strength quick-setting ultra-high performance concrete, which comprises the following components in parts by mass:
  • the particle size of the quartz sand is 0.075-0.6mm;
  • the particle size of the red mud is 0.01-0.075mm
  • the average particle diameter of the silica fume is 300nm, and the activity index is ⁇ 100%.
  • the water reducer is a polycarboxylate high-efficiency water reducer; the solid content of the polycarboxylate high-efficiency water reducer is 20%, and the water reducing rate is ⁇ 35%.
  • the cement is ordinary Portland cement with a strength grade of 52.5.
  • the length of the steel fiber is 13 mm, the diameter is 0.65 mm, and the tensile strength is ⁇ 2000 MPa; the steel fiber is a long straight copper-plated steel fiber.
  • the red mud is Bayer process red mud.
  • the specific gravity of the quartz sand is 2560kg/m 3 .
  • the present invention also provides a preparation method for the early-strength quick-setting ultra-high performance concrete described in the above technical solution, comprising the following steps:
  • the second premix and the steel fiber are mixed for the third time to obtain the early-strength quick-setting ultra-high performance concrete.
  • the mixing time of the first mixing is 120-180s; the mixing time of the second mixing is 240-360s; and the mixing time of the third mixing is 60s.
  • the present invention also provides the application of the early-strength quick-setting ultra-high-performance concrete described in the above technical solution or the early-strength quick-setting ultra-high performance concrete obtained by the preparation method described in the above technical solution in building materials or decorative materials.
  • the application includes the following steps:
  • the early-strength quick-setting ultra-high performance concrete is poured into the mold, and the prefabricated components are obtained by successively vibrating, standing and removing the formwork;
  • the early-strength quick-setting ultra-high performance concrete is poured and film-covered in sequence.
  • the vibration time is 60-180s.
  • the standing time is 3 hours.
  • the steam curing conditions include: heating up to 45°C at 5°C/min for 12 hours of pre-curing, then raising the temperature to 100°C at a rate of 11°C/min for 6 hours, and finally cooling down to room temperature at 6.7°C/h.
  • the invention provides an early-strength quick-setting ultra-high-performance concrete, which comprises the following components in parts by mass: 110-180 parts of red mud, 70-80 parts of silica fume, 130-290 parts of cement, and 400 parts of quartz sand ⁇ 500 parts, 10 ⁇ 15 parts of water reducing agent, 80 ⁇ 100 parts of water and 50 ⁇ 75 parts of steel fiber.
  • the high alkalinity of red mud can significantly increase the alkali concentration of ultra-high performance concrete (UHPC) slurry, promote cement hydration, shorten the induction period, accelerate coagulation, and improve early strength; moreover, the granularity of red mud
  • the diameter is lower (between silica fume and cement), and it can also provide nucleation sites for hydration products, accelerate hydration, shorten the setting time and improve the early strength; on this basis, by optimizing the cement-based material Composition of mineral materials, give full play to the pozzolanic effect and filling effect of red mud, and realize the preparation of ultra-high strength, excellent and durable cement-based materials.
  • red mud is added to ultra-high performance concrete to replace part of the gel material, thereby alleviating the accumulation of red mud and the environmental pollution problems caused by it, reducing the amount of gel materials such as cement and silica fume, and reducing the reduce CO2 emissions, reduce the cost of ultra-high performance concrete, and promote the safe recycling of red mud; moreover, the early-strength quick-setting ultra-high performance concrete structure provided by the present invention is dense, and can resist the alkalinity of red mud Liquid leaching plays a better shielding effect.
  • the early-strength and quick-setting ultra-high concrete provided by the present invention can shield the radioactivity of red mud slurry, greatly reduce the risk of radioactivity, and is conducive to the safe and long-term operation and maintenance of red mud-based ultra-high performance concrete components, realizing the safety of red mud , Efficient and high-value recycling.
  • Embodiment The test result shows that the lye leaching amount of the early-strength quick-setting type ultra-high performance concrete provided by the present invention is lower, and meets the standard "Measurement Method for Leachable Harmful Substances in Wall Materials"; the radionuclide value is compared with red The mud is significantly reduced, and the values of the internal exposure index I Ra and the external exposure index I r are both lower than those of the red mud, and are lower than 1, which meet the internal exposure index index and external exposure index index required by the national standard.
  • the present invention also provides a preparation method for the early-strength quick-setting ultra-high performance concrete described in the above scheme.
  • the present invention prepares the early-strength quick-setting ultra-high performance concrete by mixing the components, which ensures the sufficient dispersion and While hydrating the gelling material, the sedimentation and aggregation of the components are avoided.
  • the present invention also provides the application of the early-strength quick-setting ultra-high performance concrete described in the above proposal, and the early-strength quick-setting ultra-high performance concrete provided by the invention can be applied to building materials and decorative materials.
  • the early-strength and quick-setting ultra-high-performance concrete provided by the invention is reddish-brown, has a certain appearance beautification effect, and this material complies with the national standard GB 6566-2010 "Limits of Radionuclide in Building Materials" and GB/T 39804-2021
  • the requirements of "Determination Method for Leachable Hazardous Substances in Wall Materials” reduce the cost of building materials and meet the requirements of safety, economy and environmental protection; it can be applied to road, bridge deck pavement and prefabricated components to ensure the safe and stable operation of components While reducing costs and shortening the construction period.
  • the invention provides an early-strength quick-setting ultra-high performance concrete, which comprises the following components in parts by mass:
  • the source of each component in the early-strength quick-setting ultra-high performance concrete of the present invention has no special requirements, and those well-known to those skilled in the art can be used.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 110-180 parts of red mud, preferably 115-179 parts, more preferably 119-178 parts.
  • the particle size of the red mud is preferably 0.01-0.075 mm, more preferably 0.02-0.06 mm, and still more preferably 0.03-0.05 mm.
  • the red mud is preferably Bayer process red mud.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 70-80 parts of silica fume, preferably 71-78 parts, more preferably 72-76 parts.
  • the average particle diameter of the silica fume is preferably 300 nm.
  • the activity index of the silica fume is preferably ⁇ 100%.
  • the silica fume is preferably purchased from Elkem.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 130-290 parts of cement, preferably 140-280 parts, more preferably 150-270 parts.
  • the cement is preferably ordinary Portland cement with a strength grade of 52.5.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 400-500 parts of quartz sand, preferably 410-490 parts, more preferably 420-480 parts.
  • the particle size of the quartz sand is preferably 0.075-0.6 mm, more preferably 0.1-0.5 mm, and still more preferably 0.2-0.4 mm.
  • the quartz sand is preferably continuously graded; the specific gravity is preferably 2560kg/m 3 .
  • the quartz sand is preferably purchased from Hunan Yangmao Quartz Sand Filter Co., Ltd.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 10-15 parts of water reducing agent, preferably 11-14 parts, more preferably 12-13 parts.
  • the water reducer is preferably a polycarboxylate high-efficiency water reducer.
  • the solid content of the polycarboxylate superplasticizer is preferably 20%.
  • the water reducing rate of the water reducing agent is preferably ⁇ 35%.
  • the polycarboxylate high-efficiency water reducer is preferably a polycarboxylate high-efficiency water reducer produced by Jiangsu Subote New Material Co., Ltd.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 80-100 parts of water, preferably 83-95 parts, more preferably 85-93 parts.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention includes 50-75 parts of steel fibers, preferably 55-70 parts, more preferably 60-65 parts.
  • the length of the steel fiber is preferably 13 mm
  • the diameter is preferably 0.65 mm
  • the tensile strength is preferably ⁇ 2000 MPa.
  • the steel fibers are preferably long straight copper-coated steel fibers.
  • the present invention also provides a preparation method for the early-strength quick-setting ultra-high performance concrete described in the above technical solution, comprising the following steps:
  • the second premix and the steel fiber are mixed for the third time to obtain the early-strength quick-setting ultra-high performance concrete.
  • silica fume, cement, quartz sand and red mud are first mixed to obtain a first premixed material.
  • the mixing time of the first mixing is preferably 120-180s, more preferably 130-170s.
  • the first mixing equipment is preferably a mortar stirring pot.
  • the first mixing is preferably stirring; the rotation speed of the stirring is preferably 135-145 rpm, more preferably 138-143 rpm; the time is preferably 90 s.
  • the present invention After obtaining the first premix, the present invention performs second mixing on the first premix, water and water reducing agent to obtain the second premix.
  • the mixing time of the second mixing is preferably 240-360 s, more preferably 250-350 s.
  • the second mixing is preferably carried out under the condition of stirring; the rotational speed of the stirring is preferably 135-145 rpm, more preferably 138-143 rpm.
  • the present invention performs a third mixing of the second premix and steel fibers to obtain the early-strength quick-setting ultra-high performance concrete.
  • the mixing time of the third mixing is preferably 60s.
  • the third mixing is preferably carried out under the condition of stirring; the rotational speed of the stirring is preferably 135-145 rpm, more preferably 138-143 rpm.
  • the present invention also provides the application of the early-strength quick-setting ultra-high performance concrete described in the above scheme in building materials or decorative materials.
  • the application of the early-strength and quick-setting ultra-high performance concrete preferably includes the following steps: pouring the early-strength and quick-setting ultra-high performance concrete into a mold, vibrating, standing and removing the formwork in sequence to obtain a prefabricated component; curing the prefabricated component under steam curing conditions;
  • the early-strength quick-setting ultra-high performance concrete is poured and film-covered in sequence.
  • the vibration time is preferably 60-180s, more preferably 70-170s.
  • the standing time is preferably 3 hours; the standing is preferably carried out under the condition of covering a plastic film.
  • the steam curing conditions preferably include: heating up to 45°C at 5°C/min for 12 hours of pre-curing, then raising the temperature to 100°C at a rate of 11°C/min for 6 hours, and finally cooling down to room temperature at 6.7°C/h temperature.
  • the red mud in the early-strength quick-setting ultra-high performance concrete replaces 40% of the original volume of the cement, which is recorded as VC40.
  • the red mud in the early-strength quick-setting ultra-high performance concrete replaces 50% of the original volume of the cement, which is recorded as VC50.
  • the red mud in the early-strength quick-setting ultra-high performance concrete replaces 60% of the original volume of the cement, which is recorded as VC60.
  • the ultra-high-performance concrete of the above-mentioned embodiments 1-3 and comparative examples 1-2 were subjected to material setting time, 3h strength and 28d strength and durability tests, and the test method was:
  • Compressive strength and flexural strength testing the early-strength quick-setting ultra-high-performance concrete obtained in Examples 1-3 and the ultra-high-performance concrete obtained in Comparative Examples 1-2 were respectively poured into molds, and the molds were placed on the vibration table Vibrate for 180s to make it compact, then cover the surface of the forming surface with a layer of plastic film, remove the mold after 1 day, and obtain the prefabricated component; put the obtained prefabricated component under standard curing conditions (temperature is 18 ⁇ 22 °C, relative humidity is greater than 95%) ) for curing, and after curing, dry the molded parts.
  • cement Mortar Strength Test Method the compressive strength and flexural strength are respectively tested on the universal pressure testing machine by using molded parts of 40mm ⁇ 40mm ⁇ 40mm and 40mm ⁇ 40mm ⁇ 160mm;
  • Durability test the test method is: use a cylindrical molded part with a diameter of 100mm and a height of 50 ⁇ 2mm, and evaluate it with an electric flux test and a rapid chloride ion migration test (RCM).
  • RCM chloride ion migration test
  • the initial setting time of the early-strength quick-setting ultra-high performance concrete prepared in Examples 1 to 3 is relatively short, and the initial setting can be completed in 20 to 40 minutes, and the final setting is completed within 60 minutes, and the setting time is relatively short.
  • the 3h strength of the early-strength quick-setting ultra-high performance concrete prepared in Examples 1-3 is 15.1-22.7 MPa.
  • the early-strength quick-setting ultra-high-performance concrete prepared in Examples 1-3 has excellent 28d strength and durability, and the 28d strength is >100MPa, reaching ultra-high strength, and the electric flux is ⁇ 100C, which belongs to the negligible range of chloride ion penetration.
  • Comparative example 1 is ultra-high performance concrete without adding red mud accelerator, its setting time is 369-479 minutes, and it does not set for 3 hours, which does not meet the requirements of early-strength quick-setting concrete.
  • Comparative example 2 is an ordinary concrete system mixed with red mud accelerator alone, its early strength is low, only 1.1MPa at 3h, and the strength at 28d is only 19.3MPa, which shows that it needs a large Increase the content of red mud, but high content of red mud significantly reduces the early strength of ordinary concrete, and also limits the development of later strength.
  • the electric flux of the early-strength and quick-setting ultra-high performance concrete obtained in Examples 1 to 3 of the present invention is lower than that of the ultra-high performance concrete in Comparative Examples 1 to 2, indicating that the early-strength and quick-setting concrete provided by Examples 1 to 3 of the present invention
  • the durability of the setting type ultra-high performance concrete is higher than that of the traditional ultra-high performance concrete of comparative example 1 and the ordinary concrete of comparative example 2.
  • the early-strength quick-setting ultra-high-performance concrete obtained in Examples 1 to 3 was subjected to a radioactive test and an alkaline test.
  • the test method was: grind the sample to be tested to particles smaller than 0.16mm, seal it and place it for 7 days, and use low-cost and low-cost
  • the radioactive activity of each nuclide was tested by the Dow gamma spectrometer, and the internal exposure index (I Ra ) and external exposure index (I r ) were calculated. The statistical results are shown in Table 2.
  • the early-strength and quick-setting ultra-high performance concrete prepared in Examples 1-3 has low specific activity of radioactivity, the specific activity of 226 Ra is 40-95Bq/kg, and the specific activity of 232 Th is 95 ⁇ 150Bq/kg, 40 Ka specific activity is 320 ⁇ 365Bq/kg, and the values of internal and external exposure indices I Ra and I r are both less than 1, and meet the internal exposure index required by GB6566-2010 "Limits of Radionuclide in Building Materials" indicators and external exposure index indicators.
  • the early-strength quick-setting type ultra-high performance concrete leaching (Na + ion) that embodiment 1 ⁇ 3 makes is lower, meets the construction material safety use standard GBT 39804-2021 "the determination of leachable harmful substances in wall materials method".
  • Table 3 Concrete energy consumption and cost comparison table
  • VC60 can reduce the preparation cost of ultra-high performance concrete per cubic meter by 45.9%, reduce CO2 emissions by 70.7%, and can solidify and recover 371kg of red mud.
  • a 15cm-thick steel-ultra-high-performance concrete composite bridge deck is laid.
  • the total amount of ultra-high-performance concrete is 6618.8m 3 .
  • the statistics of the bridge deck concrete consumption are shown in Table 4.
  • the direct cost can be reduced by about 12.98 million yuan
  • the treatment cost of carbon dioxide emissions can be reduced by 470,000 yuan (the treatment fee is calculated at 0.22 yuan/kg)
  • the solidified red mud is nearly 1200 yuan. Ton.
  • the early-strength quick-setting ultra-high performance concrete provided by the present invention not only has higher early strength and shorter setting time, but also has ultra-high late strength, which meets the requirements of ultra-high performance concrete in bridge structure construction,
  • the strength and construction time requirements of the paving decorative components are met, and at the same time, it has good durability, and the preparation cost is low, and the energy consumption is low.
  • the safe and efficient recycling of red mud has also been realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种早强速凝型超高性能混凝土及其制备方法和应用。提供的超高性能混凝土的组分包括赤泥、硅灰、水泥、石英砂、减水剂、水和钢纤维。将赤泥添加到超高性能混凝土中,无需对赤泥进行煅烧活化或脱碱处理,即可用于取代部分商用速凝剂或早强剂凝胶材料。能有效减少固体废料赤泥在垃圾填埋场的堆积,减少超高性能混凝土中水泥等凝胶材料的用量,降低制备超高性能混凝土过程中CO 2的排放量及成本,促进赤泥的安全回收利用。提供的早强速凝型超高性能混凝土早期强度发展快,后期强度高,体系密实结构形成迅速,能有效抑制赤泥的碱液浸出和放射性辐射。

Description

一种早强速凝型超高性能混凝土及其制备方法和应用
本申请要求于2021年12月22日提交中国专利局、申请号为CN202111580483.3、发明名称为“一种早强速凝型超高性能混凝土及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于混凝土技术领域,具体涉及一种早强速凝型超高性能混凝土及其制备方法和应用。
背景技术
赤泥是氧化铝生产过程中产生的碱性固体废弃物,受铝土矿品位影响,每生产1吨氧化铝会产生1~1.5吨赤泥。目前,赤泥的处理方式以填埋为主,这种处理方式占用了大量土地的同时,因赤泥的高碱度(pH值为10~12.5)带来的碱液溶出也引发了土地盐渍化和地下水污染等一系列环境问题。
目前赤泥的回收利用主要手段包括制备吸附剂、提取有价金属和生产水泥。然而,赤泥(尤其是拜耳法赤泥)表现出强碱性(pH>10),使得赤泥在上述回收应用时需要对赤泥做脱碱处理或使用酸性中和剂进行中和,增加了赤泥回收的成本和难度。从水泥水化的角度来看,赤泥的高碱性能加速水泥水化,促进混凝土凝结硬化和早期强度发展。然而,赤泥掺量低时(掺量<150kg/m 3),碱供应量不足,带来的早强效果有限;而高掺量赤泥发挥速凝效果的同时带来混凝土性能的明显劣化:此外,赤泥的大量掺加增加了其制品放射性风险。
综上所述,现有的赤泥回收利用技术存在工艺复杂(需要脱碱预处理工艺)、制品抗碱和放射性性能存疑等问题。
发明内容
本发明的目的在于提供一种早强速凝型超高性能混凝土及其制备方法和应用,本发明将赤泥作为早强剂高掺量添加到超高性能混凝土中,在保证制品优异的力学和耐久性能的前提下,明显缩短混凝土凝结时间,促 进早期强度发展,同时缓解了赤泥堆积及其带来的环境污染问题,大幅降低了赤泥碱液溶出和放射性风险。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种早强速凝型超高性能混凝土,以质量份数计,包括以下组分:
赤泥110~180份、硅灰70~80份、水泥130~290份、石英砂400~500份、减水剂10~15份、水80~100份和钢纤维50~75份。
优选的,所述石英砂的粒径为0.075~0.6mm;
所述赤泥的粒径为0.01~0.075mm;
所述硅灰的平均粒径为300nm,活性指数≥100%。
优选的,所述减水剂为聚羧酸系高效减水剂;所述聚羧酸系高效减水剂的固含量为20%,减水率≥35%。
优选的,所述水泥为强度等级为52.5级的普通硅酸盐水泥。
优选的,所述钢纤维的长度为13mm,直径为0.65mm,抗拉强度≥2000MPa;所述钢纤维为长直镀铜钢纤维。
优选的,所述赤泥为拜耳法赤泥。
优选的,所述石英砂的比重为2560kg/m 3
本发明还提供了上述技术方案所述早强速凝型超高性能混凝土的制备方法,包括以下步骤:
将硅灰、水泥、石英砂和赤泥进行第一混合,得到第一预混合料;
将所述第一预混合料、水和减水剂进行第二混合,得到第二预混合料;
将所述第二预混合料和钢纤维进行第三混合,得到所述早强速凝型超高性能混凝土。
优选的,所述第一混合的混合时间为120~180s;所述第二混合的混合时间为240~360s;所述第三混合的时间为60s。
本发明还提供了上述技术方案所述的早强速凝型超高性能混凝土或上述技术方案所述制备方法得到的早强速凝型超高性能混凝土在建筑材料或装饰材料中的应用。
优选的,所述应用包括以下步骤:
将早强速凝型超高性能混凝土浇筑到模具中依次进行振捣、静置和拆 模,得到预制构件;
将所述预制构件在蒸汽养护条件下进行养护;
或者包括以下步骤:
将早强速凝型超高性能混凝土依次进行浇筑和覆膜养护。
优选的,所述振捣的时间为60~180s。
优选的,所述静置的时间为3h。
优选的,所述蒸汽养护的条件包括:5℃/min升温至45℃预养护12h,然后以速率11℃/min升温至100℃蒸养6h,最后以6.7℃/h降温至室温温度。
本发明提供了一种早强速凝型超高性能混凝土,以质量份数计,包括以下组分:赤泥110~180份、硅灰70~80份、水泥130~290份、石英砂400~500份、减水剂10~15份、水80~100份和钢纤维50~75份。
在本发明中,赤泥的高碱性能够显著提升超高性能混凝土(UHPC)浆体的碱浓度,促进了水泥水化,缩短诱导期,加速凝结,提升早期强度;而且,赤泥的粒径较低(在硅灰和水泥之间),也能够为水化产物提供成核位点,加速水化,实现凝结时间的缩短和早期强度的提升;在此基础上,通过优化水泥基材料矿料组成,充分发挥赤泥的火山灰效应和填充效应,实现了超高强度、优异耐久的水泥基材料的制备。本发明将赤泥添加到超高性能混凝土中,用于取代部分凝胶材料,缓解了赤泥堆积及其带来的环境污染问题,同时减少了水泥、硅灰等凝胶材料的用量,降低了CO 2的排放量,并且减少了超高性能混凝土的成本,促进了赤泥的安全回收利用;而且,本发明提供的早强速凝型超高性能混凝土结构致密,能够对赤泥的碱液浸出起到较好的屏蔽作用。最后,本发明提供的早强速凝型超高混凝土能够屏蔽赤泥泥浆的放射性,大幅降低放射性风险,有利于赤泥基超高性能混凝土构件的安全、长期运维,实现了赤泥的安全、高效和高赋值回收利用。
实施例测试结果表明,本发明提供的早强速凝型超高性能混凝土的碱液浸出量较低,满足标准《墙体材料中可浸出有害物质的测定方法》;放射性核素值相比赤泥明显降低,同时内照射指数I Ra和外照射指数I r的数值均小于赤泥,且低于1,满足国家规范要求的内照射指数指标和外照射 指数指标。
本发明还提供了上述方案所述早强速凝型超高性能混凝土的制备方法,本发明通过将各组分混合制备得到了早强速凝型超高性能混凝土,保证了颗粒的充分分散和胶凝材料的水化的同时,避免了组分的沉降聚集。
本发明还提供了上述方案所述早强速凝型超高性能混凝土的应用,本发明提供的早强速凝型超高性能混凝土能够应用于建筑材料和装饰材料中。本发明提供的早强速凝型超高性能混凝土呈红褐色,具有一定的外观美化效果,并且该种材料符合国家标准GB 6566-2010《建筑材料放射性核素限量》和GB/T 39804-2021《墙体材料中可浸出有害物质的测定方法》的要求,降低了建筑材料的成本,满足安全、经济和环保等要求;能够应用于公路、桥面板铺装和预制构件,保证构件安全稳定运维的同时减少成本、缩短工期。
具体实施方式
本发明提供了一种早强速凝型超高性能混凝土,以质量份数计,包括以下组分:
赤泥110~180份、硅灰70~80份、水泥130~290份、石英砂400~500份、减水剂10~15份、水80~100份和钢纤维50~75份。
如无特殊说明,本发明所述早强速凝型超高性能混凝土中各组分的来源没有特殊要求,采用本领域技术人员所熟知的即可。
按质量分数计,本发明提供的早强速凝型超高性能混凝土包括赤泥110~180份,优选为115~179份,更优选为119~178份。在本发明中,所述赤泥的粒径优选为0.01~0.075mm,更优选为0.02~0.06mm,再优选为0.03~0.05mm。在本发明中,所述赤泥优选为拜耳法赤泥。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括硅灰70~80份,优选为71~78份,更优选为72~76份。在本发明中,所述硅灰的平均粒径优选为300nm。在本发明中,所述硅灰的活性指数优选≥100%。在本发明的一个实施例中,所述硅灰优选购买自埃肯公司。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括水泥130~290份,优选为140~280份,更优选为150~270份。 在本发明中,所述水泥优选为强度等级为52.5级的普通硅酸盐水泥。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括石英砂400~500份,优选为410~490份,更优选为420~480份。在本发明中,所述石英砂的粒径优选为0.075~0.6mm,更优选为0.1~0.5mm,再优选为0.2~0.4mm。在本发明中,所述石英砂优选为连续级配;比重优选为2560kg/m 3。在本发明的实施例中,所述石英砂优选购买自湖南杨茂石英砂滤料有限公司。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括减水剂10~15份,优选为11~14份,更优选为12~13份。在本发明中,所述减水剂优选为聚羧酸系高效减水剂。在本发明中,所述聚羧酸系高效减水剂的固含量优选为20%。在本发明中,所述减水剂的减水率优选≥35%。在本发明具体实施例中,所述聚羧酸系高效减水剂优选为江苏苏博特新材料股份有限公司生产的聚羧酸系高效减水剂。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括水80~100份,优选为83~95份,更优选为85~93份。
以所述赤泥的质量份数为基准,本发明提供的早强速凝型超高性能混凝土包括钢纤维50~75份,优选为55~70份,更优选为60~65份。在本发明中,所述钢纤维的长度优选为13mm,直径优选为0.65mm,抗拉强度优选≥2000MPa。在本发明中,所述钢纤维优选为长直镀铜钢纤维。
本发明还提供了上述技术方案所述早强速凝型超高性能混凝土的制备方法,包括以下步骤:
将硅灰、水泥、石英砂和赤泥进行第一混合,得到第一预混合料;
将所述第一预混合料、水和减水剂进行第二混合,得到第二预混合料;
将所述第二预混合料和钢纤维进行第三混合,得到所述早强速凝型超高性能混凝土。
本发明将硅灰、水泥、石英砂和赤泥进行第一混合,得到第一预混合料。在本发明中,所述第一混合的混合时间优选为120~180s,更优选为130~170s。在本发明中,所述第一混合的设备优选为砂浆搅拌锅。在本发明中,所述第一混合优选为搅拌;所述搅拌的转速优选为135~145rpm,更优选为138~143rpm;时间优选为90s。
得到第一预混合料后,本发明将所述第一预混合料、水和减水剂进行第二混合,得到第二预混合料。
在本发明中,所述第二混合的混合时间优选为240~360s,更优选为250~350s。在本发明中,所述第二混合优选在搅拌的条件下进行;所述搅拌的转速优选为135~145rpm,更优选为138~143rpm。
得到第二预混合料后,本发明将所述第二预混合料和钢纤维进行第三混合,得到所述早强速凝型超高性能混凝土。
在本发明中,所述第三混合的混合时间优选为60s。在本发明中,所述第三混合优选在搅拌的条件下进行;所述搅拌的转速优选为135~145rpm,更优选为138~143rpm。
本发明还提供了上述方案所述早强速凝型超高性能混凝土在建筑材料或装饰材料中的应用。
在本发明中,所述早强速凝型超高性能混凝土的应用优选包括以下步骤:将早强速凝型超高性能混凝土浇筑到模具中依次进行振捣、静置和拆模,得到预制构件;将所述预制构件在蒸汽养护条件下进行养护;
或者包括以下步骤:
将早强速凝型超高性能混凝土依次进行浇筑和覆膜养护。
在本发明中,所述振捣的时间优选为60~180s,更优选为70~170s。在本发明中,所述静置的时间优选为3h;所述静置优选在覆盖塑料薄膜的条件下进行。在本发明中,所述蒸汽养护的条件优选包括:5℃/min升温至45℃预养护12h,然后以速率11℃/min升温至100℃蒸养6h,最后以6.7℃/h降温至室温温度。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的早强速凝型超高性能混凝土进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
以质量份数计,将硅灰72份、水泥288份、赤泥119份、石英砂425份混合加入砂浆搅拌锅中,在转速为140±5rpm的条件下搅拌90s,得到第一预混合料;在所得第一预混合料中加入84份水和12份减水剂,在转速为140±5rpm的条件下搅拌240s,待成浆后,加入钢纤维50份,在转 速为140±5rpm的条件下搅拌60s,得到早强速凝型超高性能混凝土。
该早强速凝型超高性能混凝土中赤泥取代了水泥原本体积的40%,记为VC40。
实施例2
以质量份数计,将硅灰72份、水泥180份、赤泥148份、石英砂425份混合加入砂浆搅拌锅中,在转速为140±5rpm的条件下搅拌90s,得到第一预混合料;在所得第一预混合料中加入84份水和12份减水剂,在转速为140±5rpm的条件下搅拌240s,待成浆后,加入钢纤维50份,在转速为140±5rpm的条件下搅拌60s,得到早强速凝型超高性能混凝土。
该早强速凝型超高性能混凝土中赤泥取代了水泥原本体积的50%,记为VC50。
实施例3
以质量份数计,将硅灰72份、水泥144份、赤泥178份、石英砂425份混合加入砂浆搅拌锅中,在转速为140±5rpm的条件下搅拌90s,得到第一预混合料;在所得第一预混合料中加入84份水和12份减水剂,在转速为140±5rpm的条件下搅拌240s,待成浆后,加入钢纤维50份,在转速为140±5rpm的条件下搅拌60s,得到早强速凝型超高性能混凝土。
该早强速凝型超高性能混凝土中赤泥取代了水泥原本体积的60%,记为VC60。
对比例1
以质量份数计,将硅灰72份、水泥360份、石英砂425份混合加入砂浆搅拌锅中,在转速为140±5rpm的条件下搅拌90s,得到预混合料;在所得预混合料中加入84份水和12份减水剂,在转速为140±5rpm的条件下搅拌240s,待成浆后,加入钢纤维50份,在转速为140±5rpm的条件下搅拌60s,得到未使用赤泥的超高性能混凝土,记为Ref.1。
对比例2
以质量份数计,将水泥69份、103份赤泥和石英砂517份混合加入砂浆搅拌锅中,在转速为140±5rpm的条件下搅拌90s,得到预混合料;在所得预混合料中加入86份水,在转速为140±5rpm的条件下搅拌240s,得到未使用硅灰、减水剂和钢纤维的超高性能混凝土,记为Ref.2。
测试例1
将上述实施例1~3和对比例1~2的超高性能混凝土进行材料凝结时间、3h强度以及28d强度和耐久性测试,测试方法为:
凝结时间:根据JGJ/T70-2009《建筑砂浆基本性能试验方法标准》对UHPC浆体的凝结时间进行测定;
抗压强度、抗折强度检测:将实施例1~3所得的早强速凝型超高性能混凝土以及对比例1~2所得超高性能混凝土分别浇筑到模具中,将模具安放到振动台上振动180s使其振捣密实,随后在成型面表面覆盖一层塑料薄膜,1d后拆模,得到预制构件;将所得的预制构件在标准养护条件(温度为18~22℃,相对湿度大于95%)下进行养护,养护结束后将成型件晾干。按照GB 17671-1999《水泥胶砂强度检验方法》进行检验测试,抗压强度与抗折强度分别利用40mm×40mm×40mm与40mm×40mm×160mm的成型件在万能压力试验机上测试;
耐久性能检测,测试方法为:采用直径为100mm、高度为50±2mm的圆柱体成型件,用电通量试验和快速氯离子迁移试验(RCM)评估。
测试结果见表1。
表1 实施例1~3和对比例1~2超高性能混凝土的性能测试
Figure PCTCN2022071903-appb-000001
由表1可见,实施例1~3制得的早强速凝型超高性能混凝土的初凝时间较短,在20~40min即可初凝,在60min内完成终凝,凝结时间较短,且实施例1~3制得的早强速凝型超高性能混凝土3h强度为15.1~22.7MPa。实施例1~3制得的早强速凝型超高性能混凝土具有优异的28d强度和耐久性,28d强度>100MPa,达到超高强度,电通量<100C,属于氯离子渗透可忽略范围。对比例1为未掺赤泥早强剂的超高性能混凝 土,其凝结时间为369~479min,3h未凝结,不满足早强速凝混凝土的要求。对比例2为单独掺入赤泥早强剂的普通混凝土体系,其早期强度低,3h仅为1.1MPa,并且28d强度也仅为19.3MPa,这说明在普通混凝土体系达到速凝效果需要大幅度提高赤泥掺量,然而高掺量赤泥显著降低普通混凝土的早期强度,也限制了后期强度的发展。
本发明实施例1~3所得的早强速凝型超高性能混凝土的电通量均低于对比例1~2中的超高性能混凝土,说明本发明实施例1~3提供的早强速凝型超高性能混凝土的耐久性能高于对比例1传统超高性能混凝土和对比例2普通混凝土。
测试例2
对实施例1~3所得早强速凝型超高性能混凝土进行放射性测试和碱性测试,测试方法为:将待测样品研磨至小于0.16mm的颗粒,密封并放置7d,利用低本低多道γ能谱仪测试各核素的放射性活度,计算内照射指数(I Ra),外照射指数(I r),统计结果见表2。
表2 实施例1~3放射性测试和碱性测试结果
Figure PCTCN2022071903-appb-000002
由表2可见,实施例1~3制得的早强速凝型超高性能混凝土具有较低的放射性比活度, 226Ra比活度在40~95Bq/kg, 232Th比活度在95~150Bq/kg, 40Ka比活度在320~365Bq/kg,且内外照射指数I Ra和I r的数值均小于1,且符合GB6566-2010《建筑材料放射性核素限量》要求的内照射指数指标和外照射指数指标。实施例1~3制得的早强速凝型超高性能混凝土碱液浸出(Na +离子)较低,满足建筑材料安全性使用标准GBT 39804-2021《墙体材料中可浸出有害物质的测定方法》。
依照简化的全生命周期评价方法(Damineli B L,Kemeid F M,Aguiar P S,et al.Measuring the eco-efficiency of cement use[J].Cement and Concrete Composites,2010,32(8):555-562)以及
Figure PCTCN2022071903-appb-000003
的研究(
Figure PCTCN2022071903-appb-000004
P-C.Cements of yesterday and today:concrete of tomorrow[J].Cement and Concrete Research,2000,30(9):1349-1359),将单位性能指标(1MPa)下的碳排放和成本作为评价混凝土环境效益和经济效益的指标,对实施例1~2所得早强速凝型超高强度混凝土和对比例1所得超高性能混凝土的能耗(以二氧化碳排放量)和成本进行比较,所得结果见表3。
表3 混凝土能耗与成本比较表
Figure PCTCN2022071903-appb-000005
由表3可以看出,制备超高性能混凝土的能耗较大,成本较高,二氧化碳排放量为462.9kg/m 3,成本为4274元/m 3;本发明提供的早强速凝型超高性能混凝土能耗较小,且成本较低,VC60的二氧化碳排放量为138.5kg/m 3,,VC60的成本为2309元/m 3,可以看出,本发明提供的早强速凝型超高性能混凝土的制备成本、能耗均低于常规超高性能混凝土。
以VC60为例,VC60可降低每立方米超高性能混凝土45.9%的制备成本,减少CO 2排放70.7%,可固化回收赤泥371kg。以某实际桥梁工程 为例,工程铺设15cm厚钢-超高性能混凝土组合桥面板,其中,超高性能混凝土的总用量为6618.8m 3,桥面板混凝土用量统计见表4。
表4 超高性能混凝土桥面板用量统计表
Figure PCTCN2022071903-appb-000006
由表4可以看出,选用本发明制备的超高性能混凝土,直接成本可降低约1298万元,减少二氧化碳排放治理费用47万元(治理费按0.22元/kg计算),固化赤泥近1200吨。
由以上实施例可知本发明提供的早强速凝型超高性能混凝土不仅具有较高的早期强度和较短的凝结时间,还具有超高强的后期强度,满足超高性能混凝土在桥梁结构建造、铺装饰构件的强度和施工时间要求,同时具有较好的耐久性能,并且制备成本较低,能耗较低。同时,也实现了赤泥的安全、高效的回收利用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种早强速凝型超高性能混凝土,以质量份数计,包括以下组分:
    赤泥110~180份、硅灰70~80份、水泥130~290份、石英砂400~500份、减水剂10~15份、水80~100份和钢纤维50~75份。
  2. 根据权利要求1所述的早强速凝型超高性能混凝土,其特征在于,所述石英砂的粒径为0.075~0.6mm;
    所述赤泥的粒径为0.01~0.075mm;
    所述硅灰的平均粒径为300nm,活性指数≥100%。
  3. 根据权利要求1所述的早强速凝型超高性能混凝土,其特征在于,所述减水剂为聚羧酸系高效减水剂;所述聚羧酸系高效减水剂的固含量为20%,减水率≥35%。
  4. 根据权利要求1所述的早强速凝型超高性能混凝土,其特征在于,所述水泥为强度等级为52.5级的普通硅酸盐水泥。
  5. 根据权利要求1所述的早强速凝型超高性能混凝土,其特征在于,所述钢纤维的长度为13mm,直径为0.65mm,抗拉强度≥2000MPa;所述钢纤维为长直镀铜钢纤维。
  6. 根据权利要求1或2所述的早强速凝型超高性能混凝土,其特征在于,所述赤泥为拜耳法赤泥。
  7. 根据权利要求1或2所述的早强速凝型超高性能混凝土,其特征在于,所述石英砂的比重为2560kg/m 3
  8. 权利要求1~7任一项所述早强速凝型超高性能混凝土的制备方法,其特征在于,包括以下步骤:
    将硅灰、水泥、石英砂和赤泥进行第一混合,得到第一预混合料;
    将所述第一预混合料、水和减水剂进行第二混合,得到第二预混合料;
    将所述第二预混合料和钢纤维进行第三混合,得到所述早强速凝型超高性能混凝土。
  9. 根据权利要求8所述的制备方法,其特征在于,所述第一混合的混合时间为120~180s;所述第二混合的混合时间为240~360s;所述第三混合的时间为60s。
  10. 权利要求1~7任一项所述的早强速凝型超高性能混凝土或者权 利要求8~9任一项所述制备方法得到的早强速凝型超高性能混凝土在建筑材料或装饰材料中的应用。
  11. 根据权利要求10所述的应用,其特征在于,所述应用包括以下步骤:
    将早强速凝型超高性能混凝土浇筑到模具中依次进行振捣、静置和拆模,得到预制构件;
    将所述预制构件在蒸汽养护条件下进行养护;
    或者包括以下步骤:
    将早强速凝型超高性能混凝土依次进行浇筑和覆膜养护。
  12. 根据权利要求11所述的应用,其特征在于,所述振捣的时间为60~180s。
  13. 根据权利要求11所述的应用,其特征在于,所述静置的时间为3h。
  14. 根据权利要求11所述的应用,其特征在于,所述蒸汽养护的条件包括:5℃/min升温至45℃预养护12h,然后以速率11℃/min升温至100℃蒸养6h,最后以6.7℃/h降温至室温温度。
PCT/CN2022/071903 2021-12-22 2022-01-14 一种早强速凝型超高性能混凝土及其制备方法和应用 WO2023115670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111580483.3A CN114349419A (zh) 2021-12-22 2021-12-22 一种早强速凝型超高性能混凝土及其制备方法和应用
CN202111580483.3 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023115670A1 true WO2023115670A1 (zh) 2023-06-29

Family

ID=81101066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071903 WO2023115670A1 (zh) 2021-12-22 2022-01-14 一种早强速凝型超高性能混凝土及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114349419A (zh)
WO (1) WO2023115670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117105609A (zh) * 2023-10-23 2023-11-24 湖南人健宝固高新科技发展有限公司 一种无速凝剂辅助施工的超高性能喷射混凝土制配方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102314A (zh) * 2023-01-31 2023-05-12 青岛理工大学 赤泥与石灰石粉作为辅助胶凝材料的混凝土及其制备方法
CN116514488A (zh) * 2023-05-05 2023-08-01 山东高速股份有限公司 一种早强高韧性超高性能混凝土及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049401A2 (en) * 2011-09-28 2013-04-04 Calera Corporation Cement and concrete with calcium aluminates
EP2599756A1 (en) * 2011-12-01 2013-06-05 W. R. Grace & Co.-Conn Composition and method for obtaining exposed aggregates in surfaces of moulded concrete and other cementitious materials
CN107117880A (zh) * 2017-06-03 2017-09-01 合肥慧林建材有限公司 一种彩色钢渣路面砖及其制备方法
CN108298841A (zh) * 2018-03-08 2018-07-20 同济大学 一种专用于掺有无碱液体速凝剂的喷射混凝土的水泥
CN109836097A (zh) * 2019-02-27 2019-06-04 湖南大学 一种生态型超高性能混凝土
CN110590296A (zh) * 2019-10-30 2019-12-20 成都新柯力化工科技有限公司 一种轻质混凝土建筑材料及制备方法
CN110642582A (zh) * 2019-09-29 2020-01-03 华北水利水电大学 用于块体储能塔的地聚合物基混凝土及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993208A (zh) * 2010-10-26 2011-03-30 阳泉市华通建筑材料研究所 利用赤泥工业废弃物制做水泥混凝土增强剂
CN102951887A (zh) * 2011-08-24 2013-03-06 中国水利水电科学研究院 赤泥添加型生态混凝土及其在污水净化中的应用
CN109081626A (zh) * 2018-10-29 2018-12-25 辽宁坚峰实业有限公司 一种混凝土外加剂、制备方法、使用方法及应用
CN110627467A (zh) * 2019-10-18 2019-12-31 中国地质大学(北京) 一种海水防腐赤泥基胶凝材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049401A2 (en) * 2011-09-28 2013-04-04 Calera Corporation Cement and concrete with calcium aluminates
EP2599756A1 (en) * 2011-12-01 2013-06-05 W. R. Grace & Co.-Conn Composition and method for obtaining exposed aggregates in surfaces of moulded concrete and other cementitious materials
CN107117880A (zh) * 2017-06-03 2017-09-01 合肥慧林建材有限公司 一种彩色钢渣路面砖及其制备方法
CN108298841A (zh) * 2018-03-08 2018-07-20 同济大学 一种专用于掺有无碱液体速凝剂的喷射混凝土的水泥
CN109836097A (zh) * 2019-02-27 2019-06-04 湖南大学 一种生态型超高性能混凝土
CN110642582A (zh) * 2019-09-29 2020-01-03 华北水利水电大学 用于块体储能塔的地聚合物基混凝土及其制备方法
CN110590296A (zh) * 2019-10-30 2019-12-20 成都新柯力化工科技有限公司 一种轻质混凝土建筑材料及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117105609A (zh) * 2023-10-23 2023-11-24 湖南人健宝固高新科技发展有限公司 一种无速凝剂辅助施工的超高性能喷射混凝土制配方法
CN117105609B (zh) * 2023-10-23 2024-01-05 湖南人健宝固高新科技发展有限公司 一种无速凝剂辅助施工的超高性能喷射混凝土制配方法

Also Published As

Publication number Publication date
CN114349419A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023115670A1 (zh) 一种早强速凝型超高性能混凝土及其制备方法和应用
CN103121819B (zh) 一种用再生骨料配制的c30自密实混凝土及其制备方法
CN107352923A (zh) 用于盾构隧道管片的抗渗混凝土及制备该管片的方法
CN109776033A (zh) 一种预制构件用防辐射c40混凝土及其制备方法
CN107572981A (zh) 一种混凝土修补用自密实混凝土及其制备方法
CN111268979A (zh) 基于全固废的高强度、免烧护坡砖及其制备方法
CN111302742B (zh) 一种基于再生玻璃砂的可3d打印uhpc及制备方法
Dong et al. Value-added utilization of phosphogypsum industrial by-products in producing green Ultra-High performance Concrete: Detailed reaction kinetics and microstructure evolution mechanism
CN103130464B (zh) 一种用再生骨料配制的c25自密实混凝土及其制备方法
CN110746158A (zh) 制备无机人造石的高抗折强度水泥砂浆及制备方法与应用
CN104817296A (zh) 一种陶粒再生混凝土自保温材料及其制备方法
CN113754364A (zh) 一种基于渣土洗砂尾泥的人造骨料及其制备方法
CN112777981A (zh) 一种低成本高性能全再生骨料砂浆及其制备方法
CN103359991B (zh) 一种夹心结构的建筑垃圾保湿砖的制备方法
CN103351112B (zh) 一种高强度轻质多孔的建筑垃圾复合材料的制备方法
Wu et al. Research on carbonation characteristics and frost resistance of iron tailings powder concrete under low-cement clinker system
Ma et al. Study on the use of CO2 to strengthen recycled aggregates and pervious concrete
Yang Source radon control of cement-based materials and application prospect of polymer delayed plugging strategy
CN115124317B (zh) 一种基于裹浆工艺复合活化再生微粉混凝土及其制备方法
Liu et al. Combined Effects of Graphite Tailings and Curing Conditions on the Early‐Age Performances of Cement Mortar
Liu et al. Analysis on pore structure of non-dispersible underwater concrete in saline soil area
CN115124298B (zh) 一种利用废弃石粉制备的高强再生骨料混凝土及其制备方法
CN112062514B (zh) 一种废弃3d打印混凝土制备3d打印油墨的方法
CN109970413B (zh) 一种园林固废用环保粘结剂及其制备方法
CN107365106A (zh) 用铸造模具废砂制备复合型砂基透水砖块的生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909016

Country of ref document: EP

Kind code of ref document: A1