WO2023115322A1 - 一种激光测距仪及其调整方法 - Google Patents

一种激光测距仪及其调整方法 Download PDF

Info

Publication number
WO2023115322A1
WO2023115322A1 PCT/CN2021/140033 CN2021140033W WO2023115322A1 WO 2023115322 A1 WO2023115322 A1 WO 2023115322A1 CN 2021140033 W CN2021140033 W CN 2021140033W WO 2023115322 A1 WO2023115322 A1 WO 2023115322A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
adjustment
electro
optical mirror
circuit board
Prior art date
Application number
PCT/CN2021/140033
Other languages
English (en)
French (fr)
Inventor
王振兴
Original Assignee
深圳市长毛象电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市长毛象电子有限公司 filed Critical 深圳市长毛象电子有限公司
Priority to PCT/CN2021/140033 priority Critical patent/WO2023115322A1/zh
Priority to DE112021002836.7T priority patent/DE112021002836T5/de
Priority to US18/083,878 priority patent/US11768290B2/en
Publication of WO2023115322A1 publication Critical patent/WO2023115322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96015Constructional details for touch switches
    • H03K2217/96023Details of electro-mechanic connections between different elements, e.g.: sensing plate and integrated circuit containing electronics

Definitions

  • the invention relates to the technical field of laser measurement, in particular to a laser rangefinder with a coaxial emitting optical axis and a receiving optical axis.
  • a laser distance meter is a measuring device for a laser distance measuring system, comprising an electro-optical component designed as a beam source, a further electro-optical component designed as a detector, a transmitting optics and a receiving optics.
  • the beam source and transmitting optics are called the transmitting device; while the detector and receiving optics are called the receiving device.
  • the beam source emits a laser beam along an optical axis.
  • the laser beam is focused by the transmission optics and directed at the target object.
  • the reception beam reflected and/or scattered by the target object is shaped by the reception optics and directed along an optical axis to the detector.
  • the measuring devices are divided into paraxial configurations, in which the optical axes of the transmitting and receiving devices run parallel and offset, and coaxial configurations, in which the optical axes of the transmitting and receiving devices overlap each other and with the aid of a beam Assign optics separately.
  • the transmission optics and reception optics are integrated into a common beam shaping optics which shapes the laser beam and the reception beam.
  • the patent No. CN201210157986.4 discloses a measuring device for distance measurement, including an electro-optical component constituted as a beam source, another electro-optic component constituted as a detector, a beam shaping optical mirror, a Beam splitting optics, an optic holder, and a circuit board.
  • the optics holder is connected to the circuit board via a connecting device.
  • the beam source is designed as a laser diode, which generates a laser beam in the visible spectrum, for example a red laser beam with a wavelength of 635 nm or a green laser beam with a wavelength of 532 nm.
  • the detectors are constructed as photodiodes whose characteristics are matched to those of laser diodes.
  • a control and evaluation unit is connected to the beam source and the detector and determines the distance to the target object from a time difference between the reference beam and the received beam detected by the detector.
  • the beam-shaping optics are designed as lenses that shape both the emitted laser beam and the received beam.
  • the laser beam is separated from the coaxially extending receive beam by means of beam-splitting optics.
  • the beam-splitting optics are arranged in the beam path of the emitted laser beam between the beam source and the beam-shaping optics and between the beam-shaping optics and the detector for the reflected and/or scattered reception beam in the light path.
  • the beam-splitting optics are configured as polarizing beam splitters, which are configured to primarily transmit light having the polarization direction of the emitted laser beam (transmission coefficient greater than about 80%) and partly reflect unpolarized light (reflection coefficient about 50%) ).
  • the beam reflected at the target object i.e. the reflected part of the received beam
  • the beam scattered at the target object i.e. the scattered part of the received beam
  • the part of the reception beam reflected by the target object and thus polarized is strongly attenuated by means of the beam-splitting optics in order to prevent overshooting of the detector.
  • the circuit board is the carrier of electrical and electro-optical components and serves for mechanical fastening and electrical connection.
  • the circuit board consists of electrically insulating material, such as fiber-reinforced plastic, Teflon or ceramic, with connected conductor tracks. These components are soldered onto the soldering surface or into the solder eyelets and in this way are simultaneously held mechanically and electrically connected. Larger components can be attached to the circuit board by means of gluing and screwing.
  • the beam source, the beam shaping optics and the beam distribution optics are arranged on the optics bracket.
  • the optics holder has a first receptacle for a first electro-optical component designed as a beam source, a second receptacle for a beam shaping optic and a third receptacle for a beam splitting optic .
  • a second electro-optical component designed as a detector is arranged in a further receptacle on a circuit board, wherein the circuit board serves as a further optics carrier for the second electro-optical component.
  • the optical mirror bracket constitutes an integral optical mirror bracket, which is not composed of multiple parts but composed of one material.
  • the integral optics carrier has no connection land between the first and second connection object.
  • Optic mounts are constructed of a metallic material such as zinc.
  • Metallic optic mounts result in electrical shielding between electro-optical components and reduce electrical crosstalk between beam source and detector.
  • Zinc has a high temperature stability, so that the temperature fluctuations to which laser distance measuring systems are frequently subjected have only a small influence on the adjustment state of the installed components and on the measuring properties of the measuring device. Furthermore, the zinc can be processed in die-casting with high precision, so that the housings are produced very precisely and positioned relative to each other.
  • the detector is arranged on the front side of the circuit board facing the optics carrier and is fixedly connected to the circuit board via a solder connection, the detector can be assembled and soldered automatically during the production of the circuit board, for example.
  • the detector is only connected to the circuit board and is held mechanically, there are no connectors connecting the detector directly to the optics holder.
  • the optics carrier is designed such that, in the installed state, that side facing the detector is open at least in the region of the detector and is connected with a first contact surface via a connecting device to a second contact surface arranged on the front side of the printed circuit board.
  • the connecting device is designed to be detachable at least during the adjustment of the measuring device and the adjustment of the detector.
  • the beam source emits a diverging primary laser beam along the optical axis.
  • the primary laser beam strikes the polarizing beam splitter, through which the largest possible fraction is transmitted and hits the beam-shaping optics as a diverging secondary laser beam in the direction of the optical axis.
  • the beam-shaping optics bundle the laser beam and direct the tertiary laser beam with a small divergence toward the target object in the direction of the optical axis.
  • the reception beam reflected and/or scattered by the target object hits the beam-shaping optics, referred to below as the primary reception beam, which focuses the primary reception beam and serves as a secondary reception beam.
  • the beam is directed to the beam splitting optics.
  • the optical axis of the secondary receive beam is coaxial to the optical axis of the secondary laser beam.
  • the secondary receive beam is at least partially reflected by the beam-splitting optics and the reflected part is directed as tertiary receive beam along the optical axis to the detector.
  • the beam-splitting optics distinguish the optical axis of the tertiary received beam from the optical axis of the primary laser beam from one another.
  • the beam source and the beam shaping optics are designed to be adjustable in their receptacles at least during adjustment of the measuring device in a forward and/or backward direction extending parallel to the associated optical axis, wherein the forward and/or Or the backward direction is also called the regulation direction.
  • the beam source and the beam-shaping optics are only adjustable in the respective adjustment direction during adjustment of the measuring device, and no adjustability in a plane direction perpendicular to the optical axis is provided.
  • the adjustment of the measuring device is carried out by means of an optical device comprising a lens and a digital camera chip arranged in the focal plane of the lens.
  • the optics are adjusted to the desired object distance, wherein the object distance can be adjusted to a limited distance of eg 10 m or to an infinite distance.
  • the measuring device is arranged in front of the lens in such a way that the lens captures images of the tertiary laser beam and the active area of the detector and images them on the camera chip. Both the laser beam and the image of the active area of the detector are simultaneously displayed on the camera chip.
  • the adjustment of the measuring device takes place in two steps: In a first step, the optical components in the optics holder are adjusted along their respective adjustment directions, and after adjusting the optics holder in a second step, in a direction perpendicular to Align the detector in the plane of the assigned optical axis.
  • the first and second receptacles in the optics holder are designed such that the electro-optic unit and the beam-shaping optics are only adjustable in their adjustment direction, adjustment in a plane perpendicular to the optical axis is not possible.
  • the beam-splitting optic is first inserted into the third receptacle and fastened to the optic holder.
  • the connection can be detachable or non-detachable.
  • the beam source and beam shaping optics are then placed into their receptacles.
  • the printed circuit board with the detector is adapted to the optics holder in the manner of stops and is detachably connected to the optics holder by means of a connecting device.
  • the beam shaping optics are moved in their adjustment direction until the optics adjusted to the desired object distance detect a sharp image of the active surface of the detector via the beam shaping optics, where the image is sharp at high contrast of.
  • the beam-shaping optics are adjusted to the desired distance from the active area of the detector, which corresponds to the object distance of the optics.
  • the second receptacle for the beam-shaping optics is designed, for example, as a press fit and the beam-shaping optics are fixed by the clamping force of the press-fit; Carried out under sufficient pressure of force.
  • the beam-shaping optic can be connected to the optic holder in a material-fit manner, for example by means of an adhesive connection.
  • the beam source is adjusted after the beam shaping optics.
  • the beam source emits a laser beam which is monitored by means of the optical system.
  • the beam source is moved in this direction until the optics detects a minimum focal point of the laser beam via beam-shaping optics.
  • the beam waist of the laser beam lies at the desired distance.
  • the first receptacle for the beam source is formed, for example, as a press fit and the beam source is fixed by the clamping force of the press fit; the displacement of the beam source in the adjustment direction is performed with a sufficient pressure to overcome the clamping force of the press fit case.
  • the beam source can be connected to the optics holder in a material-bonded manner, for example by means of an adhesive connection.
  • Adjust the detector after adjusting the optics holder Since the detector is non-detachably connected to the circuit board via a solder connection, the adjustment of the detector relative to the optics carrier takes place via the circuit board. For this purpose, the releasable connection is released between the optics holder and the printed circuit board, at least during the adjustment of the measuring device.
  • the beam source is switched on and emits a laser beam which is recorded by the optics together with an image of the active detector area.
  • the laser beam forms a focal point on the camera chip and the active detector area forms a sharp image which is superimposed on the focal point of the laser beam.
  • the printed circuit board is moved with the optics carrier in a stop-like manner in a plane oriented perpendicular to the optical axis of the tertiary reception beams until the focal point of the laser beam is located on the camera chip in a defined region of the active area of the detector.
  • the position of the focal point of the laser beam corresponds to the position of a received beam focused on the photodiode that is scattered by a target object arranged in the object distance of the optics.
  • the printed circuit board is non-frictionally connected to the optics holder via an adhesive connection.
  • the circuit board is connected to the optics holder via a screw connection.
  • the printed circuit board can first be screwed under sufficient contact pressure and then additionally reinforced with glue.
  • Glue connections do not require changes to the connection objects and in many cases can be reversed without harming the connection objects.
  • the adhesive connection may change under the influence of temperature. Embrittlement of the adhesive connection may result at low temperatures and softening of the adhesive connection may result at high temperatures.
  • stress concentrations occur on the connected objects, while the spaces in between hardly transmit force.
  • the threaded connection is only subjected to small temperature influences. Furthermore, the threaded connection creates an electrical connection between the optic holder and the circuit board.
  • the adjustment of the measuring device is realized in two steps: in the first step, the optical components in the optical mirror holder are adjusted along their respective adjustment directions, and after adjusting the optical mirror holder In a second step, the detector is adjusted in a plane perpendicular to the associated optical axis. Wherein, the adjustment of the detector relative to the optical mirror support is realized through the adjustment of the circuit board.
  • adjusting the circuit board may cause the electronic components to desolder.
  • the object of the present invention is to provide a laser range finder, which can realize the fine adjustment of the measuring device by adjusting the beam distribution optical mirror.
  • the technical solution adopted by the present invention is: a laser range finder, used to measure the distance between the reference mark and the target object (1);
  • the laser range finder includes a beam source, a photoelectric detector (2) , at least one beam shaping optical mirror (3), an optical mirror holder (4), a circuit board (5), a beam distribution optical mirror (6) and a connecting device (7);
  • the beam source includes the first An electro-optical assembly (11) for emitting a laser beam along an optical axis, said photodetector comprising a second electro-optical assembly for receiving light reflected and/or scattered by said target object along an optical axis beam,
  • the beam shaping optics are used to form a laser beam (12) and/or a receiving beam (13) along an optical axis
  • the optics holder has a A first receiving seat (41) of the component (11) and a second receiving seat (42) for fixing the at least one beam shaping optical mirror
  • the circuit board has a second receiving seat (42) for fixing the second electro-optical component Another
  • the beam distribution optical mirror is assembled on an adjustment bracket (8), and the optical mirror bracket has a third receiving seat (45) for fixing the adjustment bracket;
  • the first electro-optical assembly arranged in the optical mirror bracket is adjustable relative to the optical mirror bracket along the assigned optical axis direction, and can be fixed at the adjusted position;
  • the The beam splitting optics are adjustable relative to the optics mount and are fixable in the adjusted position.
  • the adjustment bracket includes a pendulum structure (81), the third receiving seat (45) is provided with a pendulum hole (451) matched with the pendulum structure, and the beam distribution optical mirror (6) Assembled on the pendulum structure; by adjusting the pendulum structure to swing slightly in the pendulum hole, the beam distribution optical mirror on the pendulum structure also swings accordingly, thereby adjusting the Direction of the optical axis to which the beam splitting optic is assigned.
  • the pendulum structure (81) includes a displacement plate (811) for fixing the beam distribution optical mirror and a spherical shell-shaped convex edge (812) matched with the pendulum hole (451), so The spherical convex edge can swing slightly in the pendulum hole;
  • the displacement plate is provided with at least three adjustment holes (813), and each adjustment hole is provided with a matching adjustment screw rod (814) and threaded ;
  • the third receiving seat is provided with a mounting hole (452) that matches the adjustment hole, and the pendulum and the third receiving seat pass through the adjusting hole, the mounting hole and the matching adjusting screw rod and thread connection; by adjusting any adjusting screw, the position of the displacement plate can be adjusted slightly, so that the beam distribution optical mirror on the displacement plate also swings accordingly, thereby adjusting the light beam attached to the beam distribution optical mirror The direction of the axis.
  • the second electro-optic assembly is arranged on a front position of the circuit board facing the optical mirror bracket, and is fixedly connected to the circuit board; during the adjustment of the laser rangefinder, the circuit board is basically It is adjustable in a plane perpendicular to the associated optical axis of the second electro-optical component relative to the optics carrier and can be fixed in the adjusted position.
  • the second electro-optical assembly is arranged on a back position of the circuit board facing away from the optical mirror bracket; during the adjustment of the laser range finder, the second electro-optical assembly is substantially perpendicular to the circuit board relative to the
  • the associated optical axis of the second electro-optical component is adjustable in the plane and can be fixed in the adjusted position.
  • the beam-shaping optics arranged in the optics holder are adjustable in the direction of the associated optical axis relative to the optics holder during adjustment of the laser distance meter and can be fixed in the adjusted position.
  • the connecting device connecting the first contact surface of the optics holder with the second contact surface of the circuit board is designed as a screw connection.
  • connection means connecting the first contact surface of the optics holder to the second contact surface of the printed circuit board is designed as an adhesive and screw connection.
  • a method for adjusting a laser range finder comprising the steps of:
  • the angle of the beam splitting mirror is adjusted by adjusting the bracket (8), so that the laser beam (12) and the receiving beam (13) are coaxial.
  • the beneficial effect of the present invention is that: the present invention cleverly adjusts the beam distribution optical mirror by adjusting the bracket to realize the adjustment of the laser range finder, and overcomes the disadvantage of adjusting the laser range finder by adjusting the circuit board in the prior art .
  • Fig. 1 is the structural representation of embodiment 1 of the present invention
  • Embodiment 1 is the coaxial laser rangefinder with a beam source, a photodetector and a beam distribution optical mirror, and the beam source is put into the optical In the mirror holder, the photodetector is arranged on the front side of the circuit board facing the optics mirror holder and is fixedly connected to the circuit board during adjustment of the laser rangefinder.
  • Fig. 2 is a three-dimensional structural schematic diagram of the adjusting bracket of the present invention
  • Fig. 3 is the exploded schematic view of the adjusting bracket of the present invention.
  • Fig. 4 is the schematic cross-sectional structure diagram of the adjusting bracket of the present invention.
  • Fig. 5 is embodiment 2 of a coaxial laser range finder with a beam source, a photodetector and a beam distribution optical mirror, the beam source is put into the optical mirror bracket, and the photodetector is arranged on The rear position of the circuit board facing away from the optic holder is adjustable relative to the circuit board during adjustment of the laser range finder.
  • first”, “second”, and “third” in the present invention are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present invention are only used to explain the relative positional relationship between the components in a certain posture (as shown in the accompanying drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the terms “include” and “have”, as well as any variations thereof, are intended to cover a non-exclusive inclusion.
  • Described laser range finder comprises a Beam source, a photodetector (2), at least one beam shaping optic (3), an optic holder (4), a circuit board (5), a beam splitting optic (6) and a connecting device (7);
  • the beam source includes a first electro-optical assembly (11) for emitting a laser beam along an optical axis
  • the photodetector includes a second electro-optical assembly for receiving the laser beam along an optical axis
  • the received beam reflected and/or scattered by the target object, the beam shaping optics are used to form a laser beam (12) and/or a received beam (13) along an optical axis, the optical mirror
  • the bracket has a first receiving seat (41) for fixing the first electro-optical assembly (11) and a second receiving seat (42) for fixing the at least one beam
  • the beam distribution optical mirror is assembled on an adjustment bracket (8), and the optical mirror bracket has a third receiving seat (45) for fixing the adjustment bracket;
  • the first electro-optical component in the optical mirror bracket is adjustable relative to the optical mirror bracket along the assigned optical axis direction, and can be fixed at the adjusted position; in addition, the beam assembled on the adjustment bracket
  • the distribution optic is adjustable relative to the optic mount and is fixable in the adjusted position.
  • the adjustment bracket includes a pendulum structure (81), the third receiving seat (45) is provided with a pendulum hole (451) matched with the pendulum structure, and the beam distribution optical mirror (6) Assembled on the pendulum structure; by adjusting the pendulum structure to swing slightly in the pendulum hole, the beam distribution optical mirror on the pendulum structure also swings accordingly, thereby adjusting the beam distribution Direction of the optical axis to which the optic is assigned.
  • the pendulum structure (81) includes a displacement plate (811) for fixing the beam distribution optical mirror and a spherical shell-shaped convex edge (812) matched with the pendulum hole (451), the spherical shell
  • the convex edge can swing slightly in the pendulum hole;
  • the displacement plate is provided with at least three adjustment holes (813), and each adjustment hole is provided with a matching adjustment screw rod (814) and thread;
  • a mounting hole (452) cooperating with the adjusting hole is provided on the third receiving seat, and the pendulum body and the third receiving seat are connected through the adjusting hole, the mounting hole and the supporting adjusting screw rod and screw thread; adjusting With any adjustment screw, the position of the displacement plate can be slightly adjusted, so that the beam distribution optical mirror on the displacement plate also swings accordingly, thereby adjusting the direction of the optical axis associated with the beam distribution optical mirror .
  • the second electro-optic assembly is arranged on a front side of the circuit board facing the optical mirror bracket, and is fixedly connected to the circuit board.
  • the beam-shaping optics arranged in the optics holder are adjustable in the direction of the associated optical axis relative to the optics holder and can be fixed in the adjusted position.
  • connection means for connecting the first contact surface of the optical mirror holder with the second contact surface (52) of the circuit board may be adhesive and threaded connections.
  • the beam source (or first electro-optical assembly (11)) and the beam shaping optics (3) are respectively accessible along a forward and/or backward direction extending parallel to the associated optical axis Adjusted, wherein the forward and/or backward directions are also referred to as adjustment directions.
  • the adjustment method of the laser range finder disclosed in embodiment 1 is as follows:
  • the angle of the beam splitting mirror is adjusted by adjusting the bracket (8), so that the laser beam (12) and the receiving beam (13) are coaxial.
  • Embodiment 2 shown in Fig. 1, Fig. 2, Fig. 3, Fig. 5, it differs from Embodiment 1 in that the beam source (or the first electro-optical assembly (11)) and the photodetector (2) (or the first Two electro-optical components) configuration. Different from Embodiment 1, the beam source is arranged on the circuit board and the photodetector is arranged in the optical mirror holder.
  • Embodiment 2 includes an optical mirror bracket and a circuit board 5, a detector 2 comprising a first electro-optical assembly, a beam shaping optical mirror 3 and a beam distribution optical mirror 6 are arranged in the optical mirror bracket, and a circuit board is provided as Beam source 11 of the second electro-optical component.
  • the printed circuit board 5 is detachably connected to the optics holder 4 via the connecting device 7 at least during the adjustment of the laser range finder 21 .
  • the adjustment method of embodiment 2 is as follows:
  • the angle of the beam splitting mirror is adjusted by adjusting the bracket (8), so that the laser beam and the receiving beam are coaxial.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光测距仪,包括一个射束源、一个光电检测器(2)、至少一个射束整形光学镜(3)、一个光学镜支架(4)、电路板(5)、一个射束分配光学镜(6)和一个连接装置(7);射束源包括第一电光组件(11),用于沿一个光轴发出一个激光射束,光电检测器(2)包括第二电光组件,用于沿一个光轴接收由目标物体反射的和/或散射的接收射束,射束整形光学镜(3)用于沿一个光轴形成一个激光射束(12)和/或一个接收射束(13),光学镜支架(4)具有一个用于固定第一电光组件(11)的第一容纳座(41)和一个用于固定至少一个射束整形光学镜(3)的第二容纳座(42),电路板(5)具有一个用于固定第二电光组件的另外的容纳座(51),连接装置(7)用于将光学镜支架(4)与电路板(5)相连接;射束分配光学镜(6)装配在一个调节支架(8)上。还包括一种激光测距仪的调整方法。

Description

一种激光测距仪及其调整方法 技术领域
本发明涉及激光测量技术领域,特别是一种发射光轴和接收光轴同轴的激光测距仪。
背景技术
激光测距仪是一种用于激光距离测量系统的测量装置,包括一个构成为射束源的电光组件、一个构成为检测器的另外的电光组件、一个发射光学镜和一个接收光学镜。射束源和发射光学镜被称作发射装置;而检测器和接收光学镜被称作接收装置。射束源沿一个光轴发出一个激光射束。该激光射束由发射光学镜集束并且指向目标物体。由目标物体反射和/或散射的接收射束由接收光学镜进行整形并且沿一个光轴指向所述检测器。测量装置分为旁轴配置和同轴配置,在旁轴配置中,发射和接收装置的光轴平行错位地延伸,在同轴配置中,发射和接收装置的光轴相互重叠并且借助一个射束分配光学镜分开。在同轴配置中,发射光学镜和接收光学镜集成到一个对激光射束和接收射束进行整形的共同的射束整形光学镜中。
专利号为CN201210157986.4的文献公开了一种用于距离测量的测量装置,包括一个构成为射束源的电光组件、一个构成为检测器的另外的电光组件、一个射束整形光学镜、一个射束分配光学镜、一个光学镜支架和一个电路板。光学镜支架经由一个连接装置与电路板相连接。射束源构成为激光二级管,它产生可见光谱中的激光射束,例如具有635nm波长的红色激光射束或具有532nm波长的绿色激光射束。检测器构成为光电二级管,其特性与激光二级管相匹配。一个控制和分析装置与射束源和检测器相连接并且从一个在基准射束与由检测器采集的接收射束之间的时间差确定到目标物体的距离。
射束整形光学镜构成为既对发出的激光射束进行整形也对接收射束进行整形的透镜。借助射束分配光学镜,激光射束与同轴延伸的接收射束分离。射束分配光学镜设置在射束源和射束整形光学镜之间的发出的激光射束的光路中且在射束整形光学镜和检测器之间的反射和/或散射的接收射束的光路中。射束分配光学镜构成为偏振射束分配器,它构成为主要透射具有发出的激光射束的偏振方向的光(透射系数大于约80%)而部分反射非偏振的光(反射系数大约50%)。在目标物体上反射的射束,也就是接收射束的反射部分具有高的强度并且拥有与发出的激光射束相同的偏振方向,然而在目标物体散射的射束也就是接收射束的散射部分是非偏振的。借助射束分配光学镜,接收射束的在目标物体上反射的并由此偏振的部分被强烈地衰减,以便防止检测器的过调。
电路板是电气和电光构件的载体并且用于机械固定和电气连接。电路板由具有连接的印制导线的电绝缘材料构成,例如纤维增强的塑料、聚四氟乙烯或陶瓷。这些构件被钎焊到钎焊表面上或焊眼中并且以这种方式同时被机械地保持和电气连接。更大的构件可以借助粘合和螺纹连接被固定在电路板上。
射束源、射束整形光学镜和射束分配光学镜设置在光学镜支架上。光学镜支架具有一个 用于构成为射束源的第一电光组件的第一容纳座、一个用于射束整形光学镜的第二容纳座和一个用于射束分配光学镜的第三容纳座。构成为检测器的第二电光组件设置在电路板上的另一容纳座中,其中电路板对于第二电光组件来说用作另一光学镜支架。
光学镜支架构成为整体的光学镜支架,它不是由多个零件组合而成而是由一种材料构成。整体的光学镜支架在第一和第二连接对象之间不具有连接地带。光学镜支架由一种金属材料构成,例如锌。金属的光学镜支架导致在电光组件之间的电气屏蔽并且减小在射束源与检测器之间的电气串扰。锌具有高的温度稳定性,从而激光距离测量系统经常遭受的温度波动只对装入的组件的调整状态和测量装置的测量特性施加小的影响。此外,锌可以在具有高精度的压铸法中进行加工,从而容纳座、被非常精确地制造并相互定位。
检测器设置在电路板的朝向光学镜支架的前面上并且与电路板经由钎焊连接而固定地连接,检测器例如可以在电路板的生产过程中被自动地装配和钎焊。检测器只与电路板相连接并被机械地保持,不存在将检测器直接与光学镜支架连接的连接件。光学镜支架构成为在安装状态下朝向检测器的那侧至少在检测器的区域中是敞开的并且以第一接触面经由连接装置与设置在电路板的前面上的第二接触面相连接。连接装置构成为至少在调整测量装置和调整检测器期间是可松脱的。
射束源沿光轴发出发散的一次激光射束。该一次激光射束碰到偏振射束分配器,在其上最大可能的部分都被透射并且作为发散的二次激光射束沿光轴方向击中射束整形光学镜。射束整形光学镜将激光射束集束并且把具有小的发散度的三次激光射束沿光轴方向指向目标物体。
由目标物体反射和/或散射的接收射束碰到射束整形光学镜上,该接收射束以下称之为一次接收射束,射束整形光学镜将一次接收射束聚焦并且作为二次接收射束指向射束分配光学镜。二次接收射束的光轴同轴于二次激光射束的光轴。二次接收射束至少部分地被射束分配光学镜反射并且反射的部分作为三次接收射束沿光轴指向检测器。射束分配光学镜负责将三次接收射束的光轴与一次激光射束的光轴相互区别开。
射束源和射束整形光学镜构成为在其容纳座中至少在调整测量装置期间分别沿一个平行于所属光轴延伸的向前和/或向后方向是可调节的,其中向前和/或向后方向也被称为调节方向。射束源和射束整形光学镜在调整测量装置期间只是沿各自的调节方向是可调节的,并没有设置沿一个垂直于光轴的平面方向的可调节性。
借助一个光学仪器实现测量装置的调整,该光学仪器包括一个透镜和一个设置在该透镜的焦平面中的数字摄像头芯片。该光学仪器被调节到期望的物距,其中物距可以被调节到例如10m的有限间距或一个无限间距。测量装置被如此地设置在所述透镜前面,以致该透镜采集三次激光射束和检测器的有效面的图像并且成像在该摄像头芯片上。不仅激光射束而且检测器的有效面的图像都同时表示在摄像头芯片上。
测量装置的调整以两个步骤实现:在第一步骤中,沿着其各自的调节方向调整在光学镜 支架中的光学组件,并且在调整光学镜支架之后在第二步骤中,在一个垂直于配属的光轴的平面中,调整检测器。在光学镜支架中的第一和第二容纳座如此构成,以致电光组件和射束整形光学镜只是沿其调节方向是可调节的,在垂直于光轴的平面中的调节是不可能的。
在第一步骤中,首先将射束分配光学镜放入到第三容纳座中并且将其固定在光学镜支架上。连接可以构成为可松脱的或不可松脱的。随后射束源和射束整形光学镜被放入到其容纳座中。为了调整射束整形光学镜和射束源,具有检测器的电路板按止挡方式与光学镜支架相配并且借助连接装置可松脱地与光学镜支架相连接。
射束整形光学镜沿其调节方向被移动,直到调节到期望的物距的光学仪器通过射束整形光学镜检测到检测器的有效面的一个清晰的图像,其中该图像在高对比度时是清晰的。在最大的图像清晰度的情况下,射束整形光学镜关于检测器的有效面被调整到期望的间距,该间距与光学仪器的物距一致。用于射束整形光学镜的第二容纳座构成为例如压配合并且射束整形光学镜通过压配合的夹紧力被固定;射束整形光学镜沿调节方向的移动在克服压配合的夹紧力的足够大的压力情况下进行。备选地或除了压配合之外,射束整形光学镜可以材料锁合地例如借助粘合连接与光学镜支架相连接。
在射束整形光学镜之后调整射束源。射束源发出一个激光射束,借助所述光学仪器对该激光射束进行监测。射束源沿所述方向被移动,直到该光学仪器通过射束整形光学镜检测到激光射束的一个最小的焦点。在这种情况下,激光射束的射束腰位于期望的间距中。用于射束源的第一容纳座例如构成为压配合并且射束源通过压配合的夹紧力被固定;射束源沿调节方向的移动在克服压配合的夹紧力的足够大的压力情况下进行。备选地或除了压配合之外,射束源可以材料锁合地例如借助粘合连接与光学镜支架相连接。
在调整光学镜支架之后调整检测器。因为检测器不可松脱地经由钎焊连接与电路板相连接,检测器相对于光学镜支架的调整经由电路板实现。为此,构成为至少在调整测量装置期间可松脱的连接装置在光学镜支架与电路板之间被松脱。射束源被接通并且发出一个激光射束,它连同有效的检测器面的图像一起被光学仪器采集。激光射束在摄像头芯片上形成一个焦点而有效的检测器面形成一个清晰的图像,它被叠加给该激光射束的焦点。电路板在垂直于三次接收射束的光轴取向的平面中按止挡方式随光学镜支架被移动,直到激光射束的焦点在摄像头芯片上位于检测器的有效面的一个确定的区域中。在此,激光射束的焦点的位置与一个聚焦到光电二极管上的接收射束的位置一致,该接收射束被一个设置在光学仪器的物距中的目标物体散射。
随后,将调整的电路板与光学镜支架相连接。该持久的连接通过两个步骤实现。在第一步骤中,电路板经由粘合连接无力地与光学镜支架相连接。在第二步骤中,电路板经由螺纹连接与光学镜支架相连接。备选的是,可以首先将电路板在足够的接触压力条件下拧紧并且随后用胶合剂附加地对其进行加固。
在粘合时,力被平面地从一个传递到另一个连接对象。粘合连接不需要改变连接对象并 且在很多情况下可以不伤害连接对象地进行逆操作。但是粘合连接可能在温度影响下发生变化。在低温时可能导致粘合连接脆化而在高温下导致粘合连接软化。在螺纹连接中在连接对象上产生应力集中,而其间的空间几乎不进行力传递。有利的是,螺纹连接只经受小的温度影响。此外,螺纹连接在光学镜支架和电路板之间产生一种电连接。
本发明人发现,上述技术方案中,测量装置的调整以两个步骤实现:在第一步骤中,沿着其各自的调节方向调整在光学镜支架中的光学组件,并且在调整光学镜支架之后在第二步骤中,在一个垂直于配属的光轴的平面中,调整检测器。其中,检测器相对于光学镜支架的调整经由电路板的调整而实现。
由于电路板上面布置着许多电子元件,调整电路板可能导致电子元件脱焊。
发明内容
本发明的目的在于提供一种激光测距仪,通过调节射束分配光学镜的方法实现对测量装置的微调。
本发明采用的技术方案是:一种激光测距仪,用于测量基准标记与目标物体(1)之间的距离;所述激光测距仪包括一个射束源、一个光电检测器(2)、至少一个射束整形光学镜(3)、一个光学镜支架(4)、电路板(5)、一个射束分配光学镜(6)和一个连接装置(7);所述射束源包括第一电光组件(11),用于沿一个光轴发出一个激光射束,所述光电检测器包括第二电光组件,用于沿一个光轴接收由所述目标物体反射的和/或散射的接收射束,所述射束整形光学镜用于沿一个光轴形成一个激光射束(12)和/或一个接收射束(13),所述光学镜支架具有一个用于固定所述第一电光组件(11)的第一容纳座(41)和一个用于固定所述至少一个射束整形光学镜的第二容纳座(42),所述电路板具有一个用于固定所述第二电光组件的另外的容纳座(51),所述连接装置用于将光学镜支架与电路板相连接;
其特征在于,所述射束分配光学镜装配在一个调节支架(8)上,所述光学镜支架具有一个用于固定所述调节支架的第三容纳座(45);在调整激光测距仪期间,设置在光学镜支架中的所述第一电光组件沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置;另,装配在所述调节支架上的所述射束分配光学镜相对于光学镜支架是可调节的,并且可固定在所调整的位置。
进一步地,所述调节支架包括一摆体结构(81),所述第三容纳座(45)上设有与所述摆体结构配合的承摆孔(451),所述射束分配光学镜(6)装配在所述摆体结构上;通过调节所述摆体结构在所述承摆孔内轻微摆动,使得所述摆体结构上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
特别地,所述摆体结构(81)包括用于固定所述射束分配光学镜的位移板(811)和与所述承摆孔(451)配合的球壳状凸沿(812),所述球壳状凸沿能够在所述承摆孔内轻微的摆动;所述位移板设有至少三个调节孔(813),每个调节孔均设有配套的调节丝杆(814)和螺纹;所述第三容纳座上设有与所述调节孔配合的安装孔(452),所述摆体和所述第三容纳座通过所述调节孔、安装孔以及配套的调节丝杆和螺纹连接;调节任一调节丝杆,所述位移板的位 置均能够得到轻微的调节,使得所述位移板上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
可选地,所述第二电光组件设置在电路板的一个朝向所述光学镜支架的前面位置,并且固定地与电路板相连接;在调整激光测距仪期间,所述电路板在基本上垂直于所述第二电光组件的配属的光轴的平面中相对于光学镜支架是可调节的,并且可固定在所调整的位置。
可选的,所述第二电光组件设置在电路板的一个背向光学镜支架的后面位置;在调整激光测距仪期间,所述第二电光组件相对于电路板在基本上垂直于所述第二电光组件的配属的光轴的平面中是可调节的,并且可固定在所调整的位置。
特别地,在调整激光测距仪期间,设置在光学镜支架中的所述射束整形光学镜沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置。
特别地,将光学镜支架的第一接触面与电路板的第二接触面相连接的所述连接装置构成为螺纹连接。
特别地,将光学镜支架的第一接触面与电路板的第二接触面相连接的所述连接装置构成为粘合和螺纹连接。
一种激光测距仪的调整方法,包括如下步骤:
沿着调节方向调整在光学镜支架(4)中的第一电光组件(11);
固定光电检测器(2)到电路板(5)上;
通过调节支架(8)调整射束分配镜的角度,使得激光射束(12)与接收射束(13)为同轴。
沿着调节方向调整在光学镜支架(4)中的射束整形光学镜(3)。
本发明的有益效果在于:本发明巧妙的通过调节支架调节射束分配光学镜,实现对激光测距仪的调整,克服了现有技术中通过调整电路板来实现对激光测距仪调整的缺点。
附图说明
图1为本发明的实施例1的结构示意图;实施例1为具有一个射束源、一个光电检测器和一个射束分配光学镜的同轴激光测距仪,射束源被放入到光学镜支架中,光电检测器被设置在电路板的朝向光学镜支架的前面位置并且在调整激光测距仪期间固定地与电路板相连接。
图2为本发明的调节支架的三维立体结构示意图;
图3为本发明的调节支架的爆炸示意图;
图4为本发明的调节支架的剖面结构示意图;
图5为具有一个射束源、一个光电检测器和一个射束分配光学镜的同轴激光测距仪的实施例2,射束源被放入到光学镜支架中,光电检测器被设置在电路板的背向光学镜支架的后面位置并且在调整激光测距仪期间相对于电路板是可调节的。
具体实施方式
下面将结合附图,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
如图1、图2、图3、图4所示的实施例1,一种激光测距仪,用于测量基准标记与目标物体(1)之间的距离;所述激光测距仪包括一个射束源、一个光电检测器(2)、至少一个射束整形光学镜(3)、一个光学镜支架(4)、电路板(5)、一个射束分配光学镜(6)和一个连接装置(7);所述射束源包括第一电光组件(11),用于沿一个光轴发出一个激光射束,所述光电检测器包括第二电光组件,用于沿一个光轴接收由所述目标物体反射的和/或散射的接收射束,所述射束整形光学镜用于沿一个光轴形成一个激光射束(12)和/或一个接收射束(13),所述光学镜支架具有一个用于固定所述第一电光组件(11)的第一容纳座(41)和一个用于固定所述至少一个射束整形光学镜的第二容纳座(42),所述电路板具有一个用于固定所述第二电光组件的另外的容纳座(51),所述连接装置用于将光学镜支架的第一接触面与电路板的第二接触面(52)相连接;
所述射束分配光学镜装配在一个调节支架(8)上,所述光学镜支架具有一个用于固定所述调节支架的第三容纳座(45);在调整激光测距仪期间,设置在光学镜支架中的所述第一电光组件沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置;另,装配在所述调节支架上的所述射束分配光学镜相对于光学镜支架是可调节的,并且可固定在所调整的位置。
所述调节支架包括一摆体结构(81),所述第三容纳座(45)上设有与所述摆体结构配合的承摆孔(451),所述射束分配光学镜(6)装配在所述摆体结构上;通过调节所述摆体结构在所述承摆孔内轻微摆动,使得所述摆体结构上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
所述摆体结构(81)包括用于固定所述射束分配光学镜的位移板(811)和与所述承摆孔(451)配合的球壳状凸沿(812),所述球壳状凸沿能够在所述承摆孔内轻微的摆动;所述位移板设有至少三个调节孔(813),每个调节孔均设有配套的调节丝杆(814)和螺纹;所述第三容纳座上设有与所述调节孔配合的安装孔(452),所述摆体和所述第三容纳座通过所述调节孔、安装孔以及配套的调节丝杆和螺纹连接;调节任一调节丝杆,所述位移板的位置均能够得到轻微的调节,使得所述位移板上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
所述第二电光组件设置在电路板的一个朝向所述光学镜支架的前面位置,并且固定地与电路板相连接。
在调整激光测距仪期间,设置在光学镜支架中的所述射束整形光学镜沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置。
将光学镜支架的第一接触面与电路板的第二接触面(52)相连接的所述连接装置可以为粘合和螺纹连接。
在调整激光测距仪期间,射束源(或第一电光组件(11))和射束整形光学镜(3)分别沿一个平行于所属光轴延伸的向前和/或向后方向是可调节的,其中向前和/或向后方向也被称为调节方向。
实施例1公开的激光测距仪的调整方法如下:
沿着调节方向调整在光学镜支架(4)中的第一电光组件(11);
固定光电检测器(2)到电路板(5)上;
通过调节支架(8)调整射束分配镜的角度,使得激光射束(12)与接收射束(13)为同轴。
沿着调节方向调整在光学镜支架(4)中的射束整形光学镜(3)。
如图1、图2、图3、图5所示的实施例2,它与实施例1的区别在于射束源(或第一电光组件(11))和光电检测器(2)(或第二电光组件)的配置。不同于实施例1,射束源设置在电路板上而光电检测器设置在光学镜支架中。
实施例2包括光学镜支架以及电路板5,在光学镜支架中设置有包括第一电光组件的检测器2、射束整形光学镜3和射束分配光学镜6,在电路板上设置有作为第二电光组件的射束源11。电路板5经由连接装置7至少在调整激光测距仪21期间可拆卸地与光学镜支架4相连接。
实施例2的调整方法如下:
沿着调节方向调整在光学镜支架(4)中的第一电光组件(11);
固定光电检测器(2)到电路板(5)上;
通过调节支架(8)调整射束分配镜的角度,使得激光射束与接收射束为同轴。
沿着调节方向调整在光学镜支架(4)中的射束整形光学镜(3)。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种激光测距仪,用于测量基准标记与目标物体(1)之间的距离;所述激光测距仪包括一个射束源、一个光电检测器(2)、至少一个射束整形光学镜(3)、一个光学镜支架(4)、电路板(5)、一个射束分配光学镜(6)和一个连接装置(7);所述射束源包括第一电光组件(11),用于沿一个光轴发出一个激光射束,所述光电检测器包括第二电光组件,用于沿一个光轴接收由所述目标物体反射的和/或散射的接收射束,所述射束整形光学镜用于沿一个光轴形成一个激光射束(12)和/或一个接收射束(13),所述光学镜支架具有一个用于固定所述第一电光组件(11)的第一容纳座(41)和一个用于固定所述至少一个射束整形光学镜的第二容纳座(42),所述电路板具有一个用于固定所述第二电光组件的另外的容纳座(51),所述连接装置用于将光学镜支架与电路板相连接;
    其特征在于,所述射束分配光学镜装配在一个调节支架(8)上,所述光学镜支架具有一个用于固定所述调节支架的第三容纳座(45);在调整激光测距仪期间,设置在光学镜支架中的所述第一电光组件沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置;另,装配在所述调节支架上的所述射束分配光学镜相对于光学镜支架是可调节的,并且可固定在所调整的位置。
  2. 根据权利要求1所述的激光测距仪,其特征在于,所述调节支架包括一摆体结构(81),所述第三容纳座(45)上设有与所述摆体结构配合的承摆孔(451),所述射束分配光学镜(6)装配在所述摆体结构上;通过调节所述摆体结构在所述承摆孔内轻微摆动,使得所述摆体结构上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
  3. 根据权利要求2所述的激光测距仪,其特征在于,所述摆体结构(81)包括用于固定所述射束分配光学镜的位移板(811)和与所述承摆孔(451)配 合的球壳状凸沿(812),所述球壳状凸沿能够在所述承摆孔内轻微的摆动;所述位移板设有至少三个调节孔(813),每个调节孔均设有配套的调节丝杆(814)和螺纹;所述第三容纳座上设有与所述调节孔配合的安装孔(452),所述摆体和所述第三容纳座通过所述调节孔、安装孔以及配套的调节丝杆和螺纹连接;调节任一调节丝杆,所述位移板的位置均能够得到轻微的调节,使得所述位移板上的射束分配光学镜也跟随摆动,从而调节所述射束分配光学镜配属的光轴的方向。
  4. 根据权利要求1所述的激光测距仪,其特征在于,所述第二电光组件设置在电路板的一个朝向所述光学镜支架的前面位置;在调整激光测距仪期间,所述电路板在基本上垂直于所述第二电光组件的配属的光轴的平面中相对于光学镜支架是可调节的。
  5. 根据权利要求1所述的激光测距仪,其特征在于,所述第二电光组件设置在电路板的一个背向光学镜支架的后面位置;在调整激光测距仪期间,所述第二电光组件相对于电路板在基本上垂直于所述第二电光组件的配属的光轴的平面中是可调节的。
  6. 根据权利要求1或2所述的激光测距仪,其特征在于,在调整激光测距仪期间,设置在光学镜支架中的所述射束整形光学镜沿配属的光轴方向相对于光学镜支架是可调节的,并且可固定在所调整的位置。
  7. 根据权利要求1至6之一所述的激光测距仪,其特征在于,将光学镜支架与电路板相连接的所述连接装置为螺纹连接。
  8. 一种如权利要求1-7之一所述的激光测距仪的调整方法,包括如下步骤:
    沿着调节方向调整在光学镜支架(4)中的第一电光组件(11);
    固定光电检测器(2)到电路板(5)上;
    通过调节支架(8)调整射束分配镜的角度,使得激光射束(12)与接收射束(13)为同轴。
  9. 一种如权利要求8所述激光测距仪的调整方法,包括如下步骤:沿着调节方向调整在光学镜支架(4)中的射束整形光学镜(3)。
PCT/CN2021/140033 2021-12-21 2021-12-21 一种激光测距仪及其调整方法 WO2023115322A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/140033 WO2023115322A1 (zh) 2021-12-21 2021-12-21 一种激光测距仪及其调整方法
DE112021002836.7T DE112021002836T5 (de) 2021-12-21 2021-12-21 Laser-entfernungsmesser und verfahren zum justieren
US18/083,878 US11768290B2 (en) 2021-12-21 2022-12-19 Laser range finder having adjustable beam splitting optic and method for adjusting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140033 WO2023115322A1 (zh) 2021-12-21 2021-12-21 一种激光测距仪及其调整方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/083,878 Continuation US11768290B2 (en) 2021-12-21 2022-12-19 Laser range finder having adjustable beam splitting optic and method for adjusting

Publications (1)

Publication Number Publication Date
WO2023115322A1 true WO2023115322A1 (zh) 2023-06-29

Family

ID=86767786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140033 WO2023115322A1 (zh) 2021-12-21 2021-12-21 一种激光测距仪及其调整方法

Country Status (3)

Country Link
US (1) US11768290B2 (zh)
DE (1) DE112021002836T5 (zh)
WO (1) WO2023115322A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351070A1 (de) * 2002-03-18 2003-10-08 HILTI Aktiengesellschaft Elektrooptisches para-axiales Distanzmesssystem
CN101238389A (zh) * 2005-08-08 2008-08-06 莱卡地球系统公开股份有限公司 光电测距仪
CN102798848A (zh) * 2011-05-26 2012-11-28 喜利得股份公司 用于距离测量的测量装置
CN102809747A (zh) * 2011-05-26 2012-12-05 喜利得股份公司 用于距离测量的测量装置
CN105051568A (zh) * 2013-03-28 2015-11-11 喜利得股份公司 用于光学测量到反射的或散射的目标物体的距离的设备
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
EP3839430A1 (de) * 2019-12-16 2021-06-23 Hilti Aktiengesellschaft Lasersystem mit einer verstellbaren fokussieroptik

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7516571B2 (en) * 2004-05-12 2009-04-14 Scrogin Andrew D Infrared range-finding and compensating scope for use with a projectile firing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1351070A1 (de) * 2002-03-18 2003-10-08 HILTI Aktiengesellschaft Elektrooptisches para-axiales Distanzmesssystem
CN101238389A (zh) * 2005-08-08 2008-08-06 莱卡地球系统公开股份有限公司 光电测距仪
CN102798848A (zh) * 2011-05-26 2012-11-28 喜利得股份公司 用于距离测量的测量装置
CN102809747A (zh) * 2011-05-26 2012-12-05 喜利得股份公司 用于距离测量的测量装置
CN105051568A (zh) * 2013-03-28 2015-11-11 喜利得股份公司 用于光学测量到反射的或散射的目标物体的距离的设备
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
EP3839430A1 (de) * 2019-12-16 2021-06-23 Hilti Aktiengesellschaft Lasersystem mit einer verstellbaren fokussieroptik

Also Published As

Publication number Publication date
US11768290B2 (en) 2023-09-26
DE112021002836T5 (de) 2023-08-10
US20230194708A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN102798848B (zh) 用于距离测量的测量装置
US9261362B2 (en) Measuring device for distance measurement
JP5284089B2 (ja) 光波距離測定装置
EP3519767A1 (en) Three-dimensional coordinate measuring device
US8411257B2 (en) Folded path laser rangefinder architecture and technique incorporating a single circuit board for mounting of both laser emitting and detecting elements
US9791566B2 (en) Device for the optical measurement of the distance from a reflecting or scattering target object
US9222829B2 (en) Enclosure with integrated terahertz photoconductive antenna and terahertz lens
US11043526B1 (en) Compact annular field imager optical interconnect
JP2022525426A (ja) ライダーシステムにおけるオプトエレクトロニクスコンポーネントの取り付け構成
GB2416941A (en) Passive alignment and coupling of an optical fibre with an optoelectonic device using a dual lens arrangement
US20180341073A1 (en) Single-Fiber Bidirectional Sub Assembly
WO2023115322A1 (zh) 一种激光测距仪及其调整方法
CN105572811A (zh) 表面固定型激光模组
CN217085256U (zh) 一种激光测距仪
CN114371466A (zh) 一种激光测距仪及其调整方法
CN213600058U (zh) 激光测距设备及其激光测距仪
CN108292020A (zh) 光学接收器及其装配方法
CN108254737B (zh) 一种激光三线共面调节方法
CN216816931U (zh) 一种激光测距仪
CN114371470A (zh) 一种激光测距仪的光轴微调方法及激光测距仪
KR20130001785A (ko) 정렬 광학계를 포함한 레이저 거리 측정기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968475

Country of ref document: EP

Kind code of ref document: A1