WO2023115189A1 - Compact hybrid energy-generation system and method for managing and operating the system - Google Patents

Compact hybrid energy-generation system and method for managing and operating the system Download PDF

Info

Publication number
WO2023115189A1
WO2023115189A1 PCT/BR2022/050515 BR2022050515W WO2023115189A1 WO 2023115189 A1 WO2023115189 A1 WO 2023115189A1 BR 2022050515 W BR2022050515 W BR 2022050515W WO 2023115189 A1 WO2023115189 A1 WO 2023115189A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
hybrid
energy
fluid reservoir
temperature
Prior art date
Application number
PCT/BR2022/050515
Other languages
French (fr)
Portuguese (pt)
Inventor
Fernando FERNANDES
Antonio Fernando PORTA
Original Assignee
Fernandes Fernando
Porta Antonio Fernando
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102021025927-2A external-priority patent/BR102021025927A2/en
Application filed by Fernandes Fernando, Porta Antonio Fernando filed Critical Fernandes Fernando
Publication of WO2023115189A1 publication Critical patent/WO2023115189A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/30Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems

Definitions

  • the present invention patent refers to a hybrid and compact system of sustainable energy generation through renewable energy matrices, more particularly, these energy matrices are composed of photovoltaic energy, wind energy, thermoelectric energy through the Seebeck effect and energy through a steam turbine. Furthermore, the present patent refers to an intelligent method of management and operation of said hybrid power generation system.
  • the hybrid power generation system is mounted in a compact module, such as a container, which can be transported and installed in remote locations or in locations with little free area available. Still advantageously, the intelligent method of management and operation, controls the storage and distribution of energy in the system, in order to obtain the best use of energy generation and use.
  • the hybrid power generation system also works as a thermal battery, in order to prolong the power generation time by the Seebeck effect.
  • Oil, mineral coal and natural gas are fossil fuels and non-renewable sources, and in the future we will no longer have them, resulting in high costs due to their scarcity. In addition, they are sources that, when burned and released into the atmosphere, contribute to the increase of gases that generate the greenhouse effect.
  • Hydroelectric power plants need large flooded areas to retain water and generate electricity when this water passes through the turbines.
  • hydroelectric plants depend on rainfall, which historically has been changing from year to year in both the volume and location of rainfall, causing the so-called blackouts in countries where the matrix hydropower is predominant.
  • hybrid power generation systems can be used either as primary sources or as secondary sources complementary to the conventional electricity supplied.
  • secondary sources they are usually used to reduce the costs charged by the concessionary companies that manage the energy systems of the countries.
  • the systems are used as primary sources, they are systems developed to supply the demand of a certain community that does not receive the energy distributed by the said concessionaires.
  • renewable energy matrices such as photovoltaic energy, energy by micro wind turbines, energy through the Seebeck effect and energy through a steam turbine, in order to operate in a primary way, independently of the electrical network, or, operate in a secondary way, complementing the energy distributed by the concessionary companies.
  • Another objective of the present invention is to provide a power generation system that works as a thermal battery, so that said system captures and absorbs the sun's energy during the day and continues power generation even at night, which advantageously, it extends the energy generation time and reduces the amount of chemical batteries, which are usually used to store electrical energy in the conventional systems of the state of the art.
  • the thermal battery can comprise at least two fluid storage tanks, one being heated by solar energy and the other remaining at room temperature, generating the thermal differential, which is used to generate energy by the Seeback effect, including in periods without sunlight.
  • Another objective of the present invention is to provide an intelligent method of management and operation of said hybrid power generation system, in order to control the storage and distribution of energy in the system, which in an advantageous way guarantees the best use and use of the energy generated, since the aforementioned intelligent method collects information such as weather forecast, generation and consumption of energy, and forecast of durability of the thermal battery, which guarantees an energy delivery according to the user's profile.
  • the intelligent method of management and operation evaluates favorable conditions and duration, allowing the system to generate and distribute energy at specific times or prioritizes the maintenance of the thermal battery, extending the period of energy generation.
  • Another objective of the present invention is to provide a hybrid power generation system, which can be mounted in a compact module, such as a container, which advantageously can be transported and installed in remote locations or in places with little free area available .
  • Yet another objective of the present invention is to provide means that amplify the capture of solar energy, such as a Fresnel lens, which works like a magnifying glass, converging the sun's rays to a certain point in order to heat the fluid with higher speed.
  • another objective of the present invention is to provide conductive plates that help in the absorption of thermal energy, gradually dissipating heat, in order to prolong the use of thermal energy.
  • Another objective of the present invention is to provide a power generation system equipped with a bank of controlled capacitors that allow the start of a motor to be stabilized and smoothed, which advantageously consumes less electric current and at the same time avoids trips of energy of that system.
  • Figure 1 illustrates an isometric view of a hybrid system (SH) configured in a compact module (MC), showing a photovoltaic power generation module (1), a wind power generation module (2) and a primary solar module. generation of thermoelectric energy (3).
  • SH hybrid system
  • MC compact module
  • FIG. 27 Figure 2 illustrates a front view of a hybrid system (SH) configured in a compact module (MC), showing a hot fluid reservoir (30), a hot hydraulic circuit (300), a cold fluid reservoir (31) , a cold hydraulic circuit (310) and a heat sink module (32).
  • SH hybrid system
  • MC compact module
  • FIG. 28A Figure 3 illustrates a block diagram, representing a heating control (MA) method.
  • FIG. 29A Figure 4 illustrates a block diagram, representing a power generation control method (MGE1).
  • FIG. 30 Figure 5 illustrates a block diagram representing a power generation control method (MGE2).
  • the present invention patent reveals a hybrid and compact system of sustainable energy generation through renewable energy matrices, such as photovoltaic energy, wind energy, thermoelectric energy through the Seebeck effect and thermoelectric energy through a turbine steam.
  • renewable energy matrices such as photovoltaic energy, wind energy, thermoelectric energy through the Seebeck effect and thermoelectric energy through a turbine steam.
  • a hybrid power generation (SH) system is configured in a compact module (MC) and comprises a photovoltaic power generation module (1) and a wind power generation module (2), which are integrated to a primary module and, alternatively to a secondary thermoelectric power generation module (3 and 4), respectively.
  • the primary thermoelectric power generation module (3) captures and absorbs solar energy through at least one hot fluid reservoir (30) equipped with a hot hydraulic circuit (300) thermally isolated.
  • the primary thermoelectric power generation module (3) also comprises at least one cold fluid reservoir (31) provided with a cold hydraulic circuit (310) and at least one heat sink module (32) provided with a set of thermal cells (320) which captures the temperature gradient generated by the respective hot (30) and cold (31) fluid reservoirs for generating electricity through the Seebeck effect.
  • the hot (30) and cold (31) fluid reservoirs form a thermal battery, since the hot fluid reservoir (30) stores thermal energy, which is gradually used to generate electricity, a Since the set of thermal cells (320) generates electrical energy from any thermal difference, for this reason, advantageously, the hybrid power generation system (SH) is capable of generating electrical energy even without the presence of sunlight.
  • each hot fluid reservoir (30) comprises an upper opening which allows a greater entry of solar rays that promote heating of the fluid stored inside each hot fluid reservoir (30) .
  • the upper opening of each hot fluid reservoir (30) alternatively comprises a convex lens (301), such as a Fresnel lens, which converges the sun's rays, focusing the light in a point by increasing the temperature in that region.
  • each hot fluid reservoir (30) receives, inside, a conductive plate (302) for absorption and dissipation of solar energy captured by the upper opening of the hot fluid reservoir (30).
  • the conductive plate (302) absorbs the maximum amount of solar energy, especially in cases where this conductive plate (302) receives focused solar energy through the convex lens (301), transforming this solar energy into potential energy, which is being consumed as the fluid temperature of the hot fluid reservoir drops, since the conductive plates (302) have low thermal conductivities.
  • the secondary thermoelectric power generation module (4) comprises a steam circuit (40) equipped with at least one serpentine (41) for conducting a vaporized fluid to a steam turbine (42), said coil (41) is arranged inside the hot fluid reservoir (30).
  • the secondary thermoelectric power generation module (4) generates energy by reusing the thermal energy of the primary thermoelectric power generation module (3), since, by thermal conduction, the fluid stored in the hot fluid reservoir (30) heats the fluid flowing in the steam circuit (40), which arrives pressurized to a steam turbine (42), which generates electrical energy through a power generator (not illustrated).
  • the steam circuit (40) crosses the conductive plates (302) in order to increase the capture of thermal energy accumulated in said conductive plates (302).
  • the hybrid system (SH) comprises a temperature control system (5) of the fluid stored inside each hot fluid reservoir (30), thus, the temperature control system (5) is equipped with a pipe circulation (50), at least one pump (51) and at least one temperature sensor (52). 039 In this way, the temperature control (5) guarantees the safety of the hybrid system (SH), in addition to reducing maintenance rates, as it prevents overheating.
  • the circulation piping (50) of the temperature control system (5) passes through the conductive plate (302).
  • the hybrid system (SH) also comprises a battery bank (6) and a management and operation system (7), said battery bank (6) being responsible for storing and supplying the management and operation system (7 ), which comprises a computer (71) for self-management of the operation of said hybrid system (SH).
  • the battery bank (6) is powered by the electrical energy generated by the photovoltaic energy generation module (1) and by the wind energy generation module (2).
  • a management and operation method (M) of the hybrid system (SH) is illustrated, which is integrated into a weather forecast monitoring system and comprises a heating control method ( MA) of the fluid from at least one hot fluid reservoir (30), comprises a power generation control method (MGE1) of a primary thermoelectric power generation module (3) and comprises a power generation control method (MGE2) of a secondary thermoelectric power generation module (4).
  • the heating control method (MA) of the fluid of at least one hot fluid reservoir (30) comprises the following steps: a) Monitor the fluid temperature of each hot fluid reservoir (30); b) Monitoring the temperature of a conductive plate (302) arranged on each hot fluid reservoir (30); c) Compare the temperatures of steps (a) and (b) using a programmable logic controller embedded in the hybrid system (SH); d) Turn on at least one circulation pump (51) of a temperature control system (5) when the temperature of step (b) is greater than the temperature of step (a); e) Turn off each circulation pump (51) when the temperature of step (a) is greater than 350 degrees Celsius; f) Repeat steps (a) to (e) during the entire operation of the hybrid power generation system (SH).
  • thermoelectric power generation module (3) comprises the following steps:
  • step (III) Activate the cold hydraulic circuit (310), when the thermal difference of step (III) is greater than 10 degrees Celsius;
  • step (III) Activate the hot hydraulic circuit (300), when the thermal difference of step (III) is greater than 80 degrees Celsius;
  • the power generation control method (MGE2) of the secondary thermoelectric power generation module (4) comprises the following steps: i) Monitor the fluid temperature of each hot fluid reservoir (30); ii) Activate the steam circuit (40) arranged inside the hot fluid reservoir (30), when the temperature of step (i) is greater than or equal to 250 degrees Celsius; iii) Monitor the pressure in the steam circuit (40); iiii) Release the flow of steam to a steam turbine (42), when the pressure is greater than 4 bar, to generate electricity; iiiiii) Repeat steps (i) to (iiii) during the entire operation of the hybrid power generation system (SH).
  • the management and operation method (M) is capable and responsible for the entire hybrid system (SH), managing each source of energy generation, in addition to maintaining security, since it is also responsible for temperature control of the first and second thermoelectric power generation modules (3 and 4) respectively.
  • the management and operation method (M) is triggered by timers (not shown), in order to operate the hybrid system (SH) at certain pre-programmed times according to the user profile and/or operate according to with future weather conditions, monitored by the weather monitoring system. weather forecast that is integrated into the management and operation method (M).
  • thermoelectric energy generation the production of electric energy, through the first and second modules of thermoelectric energy generation (3 and 4), can be controlled, allowing a greater extension of the use of the thermal batteries, configured by the hot water fluid tanks (30 ) and cold water fluid (31).
  • the management and operation method (M) also makes it possible to prioritize maximum energy generation in cases where the user intends to inject the generated energy into the concessionaire's distribution network, in certain periods when consumption is higher. .
  • thermal batteries practically eliminate the use of chemical batteries, which are harmful to humans and the environment, thus contributing to conscious consumption and especially to the reduction of solid waste disposal, which is highly polluting in the environment .
  • the hybrid power generation system (SH) is configured in a compact module (MC), allows it to be taken and installed anywhere, allowing power generation to be a primary source, for own consumption, or, as a secondary source, where the user uses the energy generated by the hybrid system (SH) in certain periods of the day and in the rest of the period the user uses energy from the distributor's network.
  • MC compact module

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present patent of invention relates to a hybrid and compact system for generating sustainable energy using renewable energy matrices, such as photovoltaic energy, wind energy, thermoelectric energy generated by the Seebeck effect and, alternatively, steam turbine-generated energy. The present patent further relates to an intelligent method for managing and operating the hybrid energy-generation system capable of generating energy 24 hours a day and 365 days per year, since it relies only on natural renewable sources for its operation. Moreover, since the hybrid energy-generation system is designed as a compact module, it can be transported and installed anywhere.

Description

“Sistema híbrido e compacto de geração de energia e método de gerenciamento e operação do sistema” “Hybrid and compact power generation system and system management and operation method”
CAMPO DE APLICAÇÃO APPLICATION FIELD
001 A presente patente de invenção se refere a um sistema híbrido e compacto de geração de energia sustentável por meio de matrizes energéticas renováveis, mais particularmente, estas matrizes energéticas são compostas pela energia fotovoltaica, energia eólica, energia termoelétrica por meio do efeito Seebeck e energia por meio turbina a vapor. Ainda, a presente patente se refere a um método inteligente de gerenciamento e operação do referido sistema híbrido de geração de energia. 001 The present invention patent refers to a hybrid and compact system of sustainable energy generation through renewable energy matrices, more particularly, these energy matrices are composed of photovoltaic energy, wind energy, thermoelectric energy through the Seebeck effect and energy through a steam turbine. Furthermore, the present patent refers to an intelligent method of management and operation of said hybrid power generation system.
002 Vantajosamente, o sistema híbrido de geração de energia é montado em um módulo compacto, tal como um container, o qual pode ser transportado e instalado em locais remotos ou em locais com pouca área livre disponível. Ainda de maneira vantajosa, o método inteligente de gerenciamento e operação, controla o armazenamento e a distribuição de energia do sistema, de modo a obter o maior aproveitamento da geração e utilização da energia. 002 Advantageously, the hybrid power generation system is mounted in a compact module, such as a container, which can be transported and installed in remote locations or in locations with little free area available. Still advantageously, the intelligent method of management and operation, controls the storage and distribution of energy in the system, in order to obtain the best use of energy generation and use.
003 Além disso, o sistema híbrido de geração de energia também funciona como uma bateria térmica, de modo a prolongar o tempo de geração de energia pelo efeito Seebeck. 003 In addition, the hybrid power generation system also works as a thermal battery, in order to prolong the power generation time by the Seebeck effect.
ESTADO DA TÉCNICA STATE OF THE TECHNIQUE
004 Atualmente, no mundo, as matrizes energéticas são, por meio do petróleo que representa 31 %, por meio do carvão mineral que representa 29%, por meio do gás natural representando 21 %, as biomassas que representam 10%, nuclear 5%, hidrelétrica 2% e 1 % que representa as demais matrizes energéticas. (RIBEIRO, Amarolina. "O que é matriz energética?"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/o- que-e/geografia/o-que-e-matriz-energetica.htm) 004 Currently, in the world, the energy matrices are, through petroleum representing 31%, through mineral coal representing 29%, through natural gas representing 21%, biomass representing 10%, nuclear 5%, hydroelectric 2% and 1% representing the other energy matrices. (RIBEIRO, Amarolina. "What is matrix energetic?"; Brasil Escola. Available at: https://brasilescola.uol.com.br/o-que-e/geografia/o-que-e-matriz-energetica.htm)
005 O petróleo, o carvão mineral e o gás natural são combustíveis fósseis e fontes não renováveis, e futuramente não as teremos mais, acarretando em altos custos devido à sua escassez. Além disso, são fontes que ao serem queimadas e lançadas na atmosfera, contribuem no aumento dos gases que geram o efeito estufa. 005 Oil, mineral coal and natural gas are fossil fuels and non-renewable sources, and in the future we will no longer have them, resulting in high costs due to their scarcity. In addition, they are sources that, when burned and released into the atmosphere, contribute to the increase of gases that generate the greenhouse effect.
006 Outras matrizes também apresentam desvantagens, como por exemplo as biomassas que necessitam de grandes áreas para que os produtos sejam plantados, além de necessitar um processo de extração dos óleos ou gases. Alguns desses óleos e ou gases, quando queimados e lançados na atmosfera, também contribuem para o efeito estufa. As usinas nucleares trazem grandes preocupações à sociedade, já que provocam enormes danos quando ocorrem acidentes, além de necessitar estruturas físicas para armazenamento do urânio que já não gera mais energia, porém ainda emite radiação no meio ambiente. 006 Other matrices also have disadvantages, such as biomass that requires large areas for the products to be planted, in addition to requiring an oil or gas extraction process. Some of these oils and or gases, when burned and released into the atmosphere, also contribute to the greenhouse effect. Nuclear power plants bring great concern to society, as they cause enormous damage when accidents occur, in addition to requiring physical structures to store uranium that no longer generates energy, but still emits radiation into the environment.
007 Já as usinas hidrelétricas, necessitam de grandes áreas alagadas para represar a água e gerar a energia elétrica quando esta água passa através das turbinas. Além de alagar regiões afetando a fauna, a flora e algumas comunidades, as hidrelétricas dependem das incidências de chuvas, o que historicamente vem mudando ano-a-ano tanto o volume quanto a localização das chuvas, causando os chamados apagões em países onde a matriz hidrelétrica é predominante. 007 Hydroelectric power plants, on the other hand, need large flooded areas to retain water and generate electricity when this water passes through the turbines. In addition to flooding regions, affecting the fauna, flora and some communities, hydroelectric plants depend on rainfall, which historically has been changing from year to year in both the volume and location of rainfall, causing the so-called blackouts in countries where the matrix hydropower is predominant.
008 Quanto as demais matrizes energéticas, temos as que se utilizam da energia solar, como por exemplo as placas fotovoltaicas que utilizam os raios solares para gerar energia elétrica, temos ainda as que utilizam a energia eólica, que aproveita a força dos ventos para girar pás que por sua vez giram turbinas para gerar energia elétrica. As desvantagens destas matrizes são os elevados custos dos materiais, além de necessitar de uma grande área para construir usinas com estas tecnologias. 008 As for the other energy matrices, we have those that use solar energy, such as photovoltaic panels that use solar rays to generate electricity, we also have those that use wind energy, which takes advantage of the force of the winds to turn blades which in turn turn turbines to generate electricity. The disadvantages of these matrices are the high cost of materials, in addition to the need for a large area to build plants with these technologies.
009 Como estas matrizes energéticas são, fisicamente, enormes, tem-se desenvolvido meios de gerar energia em ambientes fisicamente menores, contudo para que se possa gerar uma quantidade razoável de energia, estes meios precisam combinar mais de uma matriz geradora no mesmo ambiente. 009 As these energy matrices are physically huge, means have been developed to generate energy in physically smaller environments, however, in order to generate a reasonable amount of energy, these means need to combine more than one generating matrix in the same environment.
010 Desta forma, é conhecido no estado da técnica sistemas híbridos de geração de energia sustentável, que utilizam a energia solar e a energia eólica para gerar energia elétrica. Há sistemas híbridos que além da energia solar e a energia eólica, também se beneficiam da energia hidráulica das marés e das ondas dos oceanos, ou ainda das correntezas dos rios para gerar energia elétrica, ampliando, assim, as matrizes energéticas renováveis. 010 In this way, it is known in the state of the art hybrid systems of sustainable energy generation, which use solar energy and wind energy to generate electricity. There are hybrid systems that, in addition to solar energy and wind energy, also benefit from hydraulic energy from the tides and ocean waves, or even river currents to generate electricity, thus expanding the renewable energy matrices.
01 1 Estes sistemas híbridos de geração de energia, podem ser utilizados tanto como fontes primárias ou como fontes secundárias complementares à energia elétrica convencional fornecida. Para os casos em que tais sistemas são utilizados como fonte secundárias, usualmente são utilizados para reduzir os custos cobrados pelas empresas concessionárias que administram os sistemas energéticos dos países. Já para os casos onde os sistemas são utilizados como fontes primárias, são sistemas desenvolvidos para suprir a demanda de uma determinada comunidade que não recebe a energia distribuída pelas ditas concessionárias. 01 1 These hybrid power generation systems can be used either as primary sources or as secondary sources complementary to the conventional electricity supplied. For the cases in which such systems are used as a secondary source, they are usually used to reduce the costs charged by the concessionary companies that manage the energy systems of the countries. As for the cases where the systems are used as primary sources, they are systems developed to supply the demand of a certain community that does not receive the energy distributed by the said concessionaires.
012 Um exemplo do estado da técnica é o documento brasileiro PI0903264-9, o qual revela um sistema híbrido e co-gerador de energia sustentável dotado de uma usina hidrelétrica marítima, uma usina eólica e painéis fotovoltaicos para geração a partir da energia solar. O documento brasileiro ainda revela que o dito sistema híbrido ou parte dele é construído em contêiner disposto na vertical, além de ser dotado de um módulo de dessalinização da água do mar. 013 Entretanto, o documento brasileiro PI0903264-9, desvantajosamente, não fornece uma quantidade considerável de energia, já que este sistema também tem como objetivo reduzir ou eliminar o sal da água do mar, o que por si só já consome grande parte da energia gerada pelo dito sistema. Além disso, outro inconveniente deste documento brasileiro é o fato de as usinas serem instaladas somente nas costas marítimas, uma vez que uma das matrizes geradoras de energia é por meio da utilização dos movimentos das marés e ou das ondas do mar. Ainda, este modelo de gerador híbrido de energia deve ser construído com componentes especiais, já que a água salinizada possui um grande índice de corrosão, o que desvantajosamente, eleva o custo de construção de cada usina híbrida. 012 An example of the state of the art is the Brazilian document PI0903264-9, which reveals a hybrid system and co-generator of sustainable energy equipped with a marine hydroelectric plant, a wind farm and photovoltaic panels for generation from solar energy. The Brazilian document also reveals that the said hybrid system or part of it is built in a container arranged vertically, in addition to being equipped with a seawater desalination module. 013 However, the Brazilian document PI0903264-9, disadvantageously, does not provide a considerable amount of energy, since this system also aims to reduce or eliminate salt from seawater, which in itself already consumes a large part of the energy generated by said system. In addition, another drawback of this Brazilian document is the fact that the plants are installed only on the sea coasts, since one of the energy generating matrices is through the use of tidal movements and/or sea waves. Also, this model of hybrid energy generator must be built with special components, since saline water has a high rate of corrosion, which, disadvantageously, increases the construction cost of each hybrid power plant.
014 Um outro exemplo do estado da técnica é o documento de patente americano US2016099570 intitulado de “Sistema compacto modular de captação de energia”, o qual trata de um conceito de geração híbrida de energia limpa portátil e compacto, por meio da captação da energia solar e eólica omnidirecional, ou seja, captura toda fonte de energia de qualquer direção, já que possui uma cúpula geodésica. Além disso, o sistema apresentado no documento americano permiti ser conectado com outras fontes de energia tal como termoelétrica pelo efeito Seebeck, antena piezoelétrica, entre outras. Ainda, o dito documento americano, revela uma unidade de gerenciamento de energia que regula as entradas de energia de várias fontes, gerenciando os ciclos recarregáveis de carga e uso da bateria. 014 Another example of the state of the art is the US patent document US2016099570 entitled “Compact modular system for energy harvesting”, which deals with a concept of hybrid generation of portable and compact clean energy, through the capture of solar energy and omnidirectional wind, that is, it captures any source of energy from any direction, as it has a geodesic dome. In addition, the system presented in the American document allows it to be connected with other energy sources such as thermoelectric by the Seebeck effect, piezoelectric antenna, among others. Still, the said American document reveals an energy management unit that regulates energy inputs from various sources, managing rechargeable cycles of battery charge and use.
015 O conceito revelado pelo documento US2016099570 depende diretamente das energias solar e eólica, o que desvantajosamente gera energia somente em dias ensolarados e durante o dia ou quando há incidência de ventos para girar as pás da usina eólica. Mesmo o efeito Seebeck aplicado neste sistema, se utiliza diretamente da energia solar, já que as pastilhas são aquecidas pelos raios solares, gerando a diferença térmica e consequentemente gerando energia elétrica. 016 Desta forma, em dias nublados ou a noite sem a incidência de ventos, desvantajosamente, o sistema não gera energia. Além disso, o sistema utiliza baterias químicas para armazenamento de energia, o que de maneira desvantajosa afeta o meio ambiente, uma vez que essas baterias tem um ciclo de vida relativamente baixo, além de necessitar de um espaço físico para armazenamento das ditas baterias. 015 The concept revealed by document US2016099570 depends directly on solar and wind energy, which disadvantageously generates energy only on sunny days and during the day or when there is incidence of wind to turn the blades of the wind farm. Even the Seebeck effect applied in this system uses solar energy directly, since the tablets are heated by the sun's rays, generating the thermal difference and consequently generating electrical energy. 016 Thus, on cloudy days or at night without the incidence of wind, disadvantageously, the system does not generate energy. In addition, the system uses chemical batteries for energy storage, which adversely affects the environment, since these batteries have a relatively low life cycle, in addition to requiring a physical space to store said batteries.
017 De modo a solucionar os inconvenientes do estado da técnica, é um objetivo da presente invenção prover um sistema híbrido e compacto de geração de energia sustentável por meio de matrizes energéticas renováveis como, a energia fotovoltaica, a energia por micro turbinas eólicas, a energia por meio do efeito Seebeck e a energia por meio turbina a vapor, de modo a operar de forma primária, independente da rede elétrica, ou, operar de forma secundária, complementando a energia distribuída pelas empresas concessionárias. 017 In order to solve the inconveniences of the state of the art, it is an objective of the present invention to provide a hybrid and compact system of sustainable energy generation through renewable energy matrices such as photovoltaic energy, energy by micro wind turbines, energy through the Seebeck effect and energy through a steam turbine, in order to operate in a primary way, independently of the electrical network, or, operate in a secondary way, complementing the energy distributed by the concessionary companies.
018 Um outro objetivo da presente invenção é prover um sistema de geração de energia que funcione como uma bateria térmica, de modo que o dito sistema capte e absorva a energia do sol durante o dia e continue a geração de energia mesmo a noite, o que vantajosamente, prolonga o tempo de geração de energia e reduz a quantidade de baterias químicas, que são usualmente utilizadas para armazenar a energia elétrica nos sistemas convencionais do estado da técnica. 018 Another objective of the present invention is to provide a power generation system that works as a thermal battery, so that said system captures and absorbs the sun's energy during the day and continues power generation even at night, which advantageously, it extends the energy generation time and reduces the amount of chemical batteries, which are usually used to store electrical energy in the conventional systems of the state of the art.
019 Desta forma, a bateria térmica pode compreender pelo menos dois tanques de armazenamento de fluido, sendo um aquecido pela energia solar e o outro permanece na temperatura ambiente, gerando o diferencial térmico, o qual é utilizado para gerar energia pelo efeito Seeback, inclusive em períodos sem incidência de luz solar. 019 In this way, the thermal battery can comprise at least two fluid storage tanks, one being heated by solar energy and the other remaining at room temperature, generating the thermal differential, which is used to generate energy by the Seeback effect, including in periods without sunlight.
020 Um outro objetivo da presente invenção é prover um método inteligente de gerenciamento e operação do referido sistema híbrido de geração de energia, de modo a controlar o armazenamento e a distribuição de energia do sistema, que de maneira vantajosa garante o maior aproveitamento e utilização da energia gerada, já que o referido método inteligente coleta informações como previsão do tempo, geração e consumo de energia, e previsão de durabilidade da bateria térmica, o que garante uma entrega de energia de acordo com o perfil do usuário. 020 Another objective of the present invention is to provide an intelligent method of management and operation of said hybrid power generation system, in order to control the storage and distribution of energy in the system, which in an advantageous way guarantees the best use and use of the energy generated, since the aforementioned intelligent method collects information such as weather forecast, generation and consumption of energy, and forecast of durability of the thermal battery, which guarantees an energy delivery according to the user's profile.
021 Desta forma, o método inteligente de gerenciamento e operação avalia as condições favoráveis e tempo de duração, permitindo que o sistema gere e distribua energia em horários específicos ou prioriza a manutenção da bateria térmica, prolongando o período de geração de energia. 021 In this way, the intelligent method of management and operation evaluates favorable conditions and duration, allowing the system to generate and distribute energy at specific times or prioritizes the maintenance of the thermal battery, extending the period of energy generation.
022 Outro objetivo da presente invenção é prover um sistema híbrido de geração de energia, o qual permite ser montando em um módulo compacto, tal como um container, que vantajosamente, pode ser transportado e instalado em locais remotos ou em locais com pouca área livre disponível. 022 Another objective of the present invention is to provide a hybrid power generation system, which can be mounted in a compact module, such as a container, which advantageously can be transported and installed in remote locations or in places with little free area available .
023 Ainda, um outro objetivo da presente invenção, é prover meios que ampliam a captação da energia solar, tal como uma lente de Fresnel, a qual funciona como uma lupa, convergindo os raios solares para um determinado ponto de modo a aquecer o fluido com maior velocidade. No mesmo sentido, um outro objetivo da presente invenção é prover placas condutoras que auxiliam na absorção da energia térmica, dissipando gradualmente o calor, de modo a prolongar o uso da energia térmica. 023 Yet another objective of the present invention is to provide means that amplify the capture of solar energy, such as a Fresnel lens, which works like a magnifying glass, converging the sun's rays to a certain point in order to heat the fluid with higher speed. In the same sense, another objective of the present invention is to provide conductive plates that help in the absorption of thermal energy, gradually dissipating heat, in order to prolong the use of thermal energy.
024 Um outro objetivo da presente invenção, é prover um sistema de geração de energia dotado de um banco de capacitores controlados que permitem que o start de um motor seja estabilizado e suavizado, o que vantajosamente consome menos corrente elétrica e ao mesmo tempo evita desarmes de energia do dito sistema. 024 Another objective of the present invention is to provide a power generation system equipped with a bank of controlled capacitors that allow the start of a motor to be stabilized and smoothed, which advantageously consumes less electric current and at the same time avoids trips of energy of that system.
025 São apresentadas a seguir figuras esquemáticas, de variadas formas de concretização da invenção, cujas dimensões e proporções não são necessariamente as reais, pois as figuras têm apenas a finalidade de apresentar didaticamente seus diversos aspectos, cuja abrangência de proteção está determinada apenas pelo escopo das reivindicações anexas. 025 Below are schematic figures of various ways of implementing the invention, whose dimensions and proportions are not necessarily the real ones, as the figures are only intended to didactically present their various aspects, whose scope of protection is determined only by the scope of the attached claims.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
26 A Figura 1 ilustra uma vista isométrica de um sistema híbrido (SH) configurado em um módulo compacto (MC), evidenciando módulo de geração de energia fotovoltaica (1 ), um módulo de geração de energia eólica (2) e um módulo primário de geração de energia termoelétrica (3). 26 Figure 1 illustrates an isometric view of a hybrid system (SH) configured in a compact module (MC), showing a photovoltaic power generation module (1), a wind power generation module (2) and a primary solar module. generation of thermoelectric energy (3).
27 A Figura 2 ilustra uma vista frontal de um sistema híbrido (SH) configurado em um módulo compacto (MC), evidenciando um reservatório de fluido quente (30), um circuito hidráulico quente (300), um reservatório de fluido frio (31 ), um circuito hidráulico frio (310) e um módulo dissipador de calor (32). 27 Figure 2 illustrates a front view of a hybrid system (SH) configured in a compact module (MC), showing a hot fluid reservoir (30), a hot hydraulic circuit (300), a cold fluid reservoir (31) , a cold hydraulic circuit (310) and a heat sink module (32).
28A Figura 3 ilustra um diagrama de blocos, representando um método de controle de aquecimento (MA). 28A Figure 3 illustrates a block diagram, representing a heating control (MA) method.
29A Figura 4 ilustra um diagrama de blocos, representando um método de controle de geração de energia (MGE1). 29A Figure 4 illustrates a block diagram, representing a power generation control method (MGE1).
30 A Figura 5 ilustra um diagrama de blocos, representando um método de controle de geração de energia (MGE2). 30 Figure 5 illustrates a block diagram representing a power generation control method (MGE2).
DESCRIÇÃO DETALHADA DETAILED DESCRIPTION
31 A presente patente de invenção revela um sistema híbrido e compacto de geração de energia sustentável por meio de matrizes energéticas renováveis, tais como a energia fotovoltaica, a energia eólica, a energia termoelétrica por meio do efeito Seebeck e a energia termoelétrica por meio turbina a vapor. 31 The present invention patent reveals a hybrid and compact system of sustainable energy generation through renewable energy matrices, such as photovoltaic energy, wind energy, thermoelectric energy through the Seebeck effect and thermoelectric energy through a turbine steam.
FOLHA RETIFICADA (REGRA 91) 032 Conforme ilustrado pela figura 1 , um sistema híbrido de geração de energia (SH) é configurado em um módulo compacto (MC) e compreende um módulo de geração de energia fotovoltaica (1 ) e um módulo de geração de energia eólica (2), os quais são integrados à um módulo primário e, alternativamente a um módulo secundário de geração de energia termoelétrica (3 e 4), respectivamente. RECTIFIED SHEET (RULE 91) 032 As illustrated by figure 1, a hybrid power generation (SH) system is configured in a compact module (MC) and comprises a photovoltaic power generation module (1) and a wind power generation module (2), which are integrated to a primary module and, alternatively to a secondary thermoelectric power generation module (3 and 4), respectively.
033 O módulo primário de geração de energia termoelétrica (3) capta e absorve a energia solar, por meio de pelo menos um reservatório de fluido quente (30) dotado de um circuito hidráulico quente (300) isolados termicamente. O módulo primário de geração de energia termoelétrica (3) também compreende pelo menos um reservatório de fluido frio (31 ) dotado de um circuito hidráulico frio (310) e pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) que captura o gradiente de temperatura gerado pelos respectivos reservatórios de fluido quente (30) e frio (31 ) para geração de energia elétrica por meio do efeito Seebeck. 033 The primary thermoelectric power generation module (3) captures and absorbs solar energy through at least one hot fluid reservoir (30) equipped with a hot hydraulic circuit (300) thermally isolated. The primary thermoelectric power generation module (3) also comprises at least one cold fluid reservoir (31) provided with a cold hydraulic circuit (310) and at least one heat sink module (32) provided with a set of thermal cells (320) which captures the temperature gradient generated by the respective hot (30) and cold (31) fluid reservoirs for generating electricity through the Seebeck effect.
034 Dessa forma, os reservatórios de fluido quente (30) e frio (31 ) formam uma bateria térmica, já que o reservatório de fluido quente (30) armazena energia térmica, a qual vai sendo utilizada gradativamente para a geração de energia elétrica, uma vez que o conjunto de células térmicas (320) gera energia elétrica a partir de qualquer diferença térmica, por este motivo, vantajosamente, o sistema híbrido de geração de energia (SH) é capaz de gerar energia elétrica mesmo sem a presença da luz solar. 034 Thus, the hot (30) and cold (31) fluid reservoirs form a thermal battery, since the hot fluid reservoir (30) stores thermal energy, which is gradually used to generate electricity, a Since the set of thermal cells (320) generates electrical energy from any thermal difference, for this reason, advantageously, the hybrid power generation system (SH) is capable of generating electrical energy even without the presence of sunlight.
035 De modo a ampliar a captura da energia solar, cada reservatório de fluido quente (30) compreende uma abertura superior a qual permite uma maior entrada dos raios solares que promovem o aquecimento do fluido armazenado no interior de cada reservatório de fluido quente (30). Do mesmo modo, a abertura superior de cada reservatório de fluido quente (30), alternativamente, compreende uma lente convexa (301 ), tal como uma lente de Fresnel, a qual converge os raios solares, focando a luz em um determinado ponto aumentando a temperatura nesta região. 035 In order to increase the capture of solar energy, each hot fluid reservoir (30) comprises an upper opening which allows a greater entry of solar rays that promote heating of the fluid stored inside each hot fluid reservoir (30) . Likewise, the upper opening of each hot fluid reservoir (30) alternatively comprises a convex lens (301), such as a Fresnel lens, which converges the sun's rays, focusing the light in a point by increasing the temperature in that region.
036 No sentido de aumentar a eficiência térmica, cada reservatório de fluido quente (30) recebe, em seu interior, uma placa condutora (302) de absorção e dissipação da energia solar captada pela abertura superior do reservatório de fluido quente (30). Assim, a placa condutora (302) absorve o máximo de energia solar, principalmente, nos casos onde esta placa condutora (302) recebe a energia solar focalizada por meio da lente convexa (301 ), transformando esta energia solar em energia potencial, a qual vai sendo consumida conforme a temperatura do fluido do reservatório de fluido quente vai caindo, uma vez que as placas condutoras (302) têm baixas condutividades térmicas. 036 In order to increase thermal efficiency, each hot fluid reservoir (30) receives, inside, a conductive plate (302) for absorption and dissipation of solar energy captured by the upper opening of the hot fluid reservoir (30). Thus, the conductive plate (302) absorbs the maximum amount of solar energy, especially in cases where this conductive plate (302) receives focused solar energy through the convex lens (301), transforming this solar energy into potential energy, which is being consumed as the fluid temperature of the hot fluid reservoir drops, since the conductive plates (302) have low thermal conductivities.
037 Já o módulo secundário de geração de energia termoelétrica (4), compreende um circuito de vapor (40) dotado de pelo menos uma serpentina (41 ) de condução de um fluido vaporizado até uma turbina a vapor (42), sendo que a dita serpentina (41 ) é disposta no interior do reservatório de fluido quente (30). Desta forma, o módulo secundário de geração de energia termoelétrica (4) gera energia por meio do reaproveitamento da energia térmica do módulo primário de geração de energia termoelétrica (3), já que, por condução térmica, o fluido armazenado no reservatório de fluido quente (30) aquece o fluido que flui no circuito de vapor (40), que chega pressurizado até uma turbina de vapor (42), que gera energia elétrica por meio de um gerador de energia (não ilustrado). Alternativamente, o circuito de vapor (40) atravessa as placas condutoras (302) de modo a aumentar a captação de energia térmica acumulada nas ditas placas condutoras (302). 037 The secondary thermoelectric power generation module (4) comprises a steam circuit (40) equipped with at least one serpentine (41) for conducting a vaporized fluid to a steam turbine (42), said coil (41) is arranged inside the hot fluid reservoir (30). In this way, the secondary thermoelectric power generation module (4) generates energy by reusing the thermal energy of the primary thermoelectric power generation module (3), since, by thermal conduction, the fluid stored in the hot fluid reservoir (30) heats the fluid flowing in the steam circuit (40), which arrives pressurized to a steam turbine (42), which generates electrical energy through a power generator (not illustrated). Alternatively, the steam circuit (40) crosses the conductive plates (302) in order to increase the capture of thermal energy accumulated in said conductive plates (302).
038 Ainda, o sistema híbrido (SH) compreende um sistema de controle de temperatura (5) do fluido armazenado no interior de cada reservatório de fluido quente (30), assim, o sistema de controle de temperatura (5) é dotado de uma tubulação de circulação (50), pelo menos uma bomba (51 ) e pelo menos um sensor de temperatura (52). 039 Desta forma, o controle de temperatura (5) garante a segurança do sistema híbrido (SH), além de reduzir os índices de manutenção, já que evita superaquecimentos. De maneira alternativa, a tubulação de circulação (50) do sistema de controle de temperatura (5) atravessa a placa condutora (302). 038 Also, the hybrid system (SH) comprises a temperature control system (5) of the fluid stored inside each hot fluid reservoir (30), thus, the temperature control system (5) is equipped with a pipe circulation (50), at least one pump (51) and at least one temperature sensor (52). 039 In this way, the temperature control (5) guarantees the safety of the hybrid system (SH), in addition to reducing maintenance rates, as it prevents overheating. Alternatively, the circulation piping (50) of the temperature control system (5) passes through the conductive plate (302).
040 O sistema híbrido (SH) também compreende um banco de baterias (6) e um sistema de gerenciamento e operação (7), sendo que dito banco de baterias (6) é responsável pelo armazenamento e alimentação do sistema de gerenciamento e operação (7), o qual compreende um computador (71 ) de auto gestão do funcionamento do dito sistema híbrido (SH). De maneira preferencial, o banco de baterias (6) é alimentado pela energia elétrica gerada pelo módulo de geração de energia fotovoltaica (1 ) e pelo módulo de geração de energia eólica (2). 040 The hybrid system (SH) also comprises a battery bank (6) and a management and operation system (7), said battery bank (6) being responsible for storing and supplying the management and operation system (7 ), which comprises a computer (71) for self-management of the operation of said hybrid system (SH). Preferably, the battery bank (6) is powered by the electrical energy generated by the photovoltaic energy generation module (1) and by the wind energy generation module (2).
041 De acordo com as figuras de 3 a 5, é ilustrado um método de gerenciamento e operação (M) do sistema híbrido (SH) o qual é integrado a um sistema de monitoramento de previsão do tempo e compreende um método de controle de aquecimento (MA) do fluido de pelo menos um reservatório de fluido quente (30), compreende um método de controle de geração de energia (MGE1 ) de um módulo primário de geração de energia termoelétrica (3) e compreende um método de controle de geração de energia (MGE2) de um módulo secundário de geração de energia termoelétrica (4). 041 According to figures 3 to 5, a management and operation method (M) of the hybrid system (SH) is illustrated, which is integrated into a weather forecast monitoring system and comprises a heating control method ( MA) of the fluid from at least one hot fluid reservoir (30), comprises a power generation control method (MGE1) of a primary thermoelectric power generation module (3) and comprises a power generation control method (MGE2) of a secondary thermoelectric power generation module (4).
042 Desta forma, o método de controle de aquecimento (MA) do fluido de pelo menos um reservatório de fluido quente (30) compreender as seguintes etapas: a) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); b) Monitorar a temperatura de uma placa condutora (302) disposta sobre cada reservatório de fluido quente (30); c) Comparar as temperaturas das etapas (a) e (b) por meio de um controlador lógico programável embarcado no sistema híbrido (SH); d) Ligar pelo menos uma bomba (51 ) de circulação de um sistema de controle de temperatura (5) quando a temperatura da etapa (b) for maior que a temperatura da etapa (a); e) Desligar cada bomba (51 ) de circulação quando a temperatura da etapa (a) for maior 350 graus Celsius; f) Repetir as etapas de (a) a (e) durante toda operação do sistema híbrido (SH) de geração de energia. 042 In this way, the heating control method (MA) of the fluid of at least one hot fluid reservoir (30) comprises the following steps: a) Monitor the fluid temperature of each hot fluid reservoir (30); b) Monitoring the temperature of a conductive plate (302) arranged on each hot fluid reservoir (30); c) Compare the temperatures of steps (a) and (b) using a programmable logic controller embedded in the hybrid system (SH); d) Turn on at least one circulation pump (51) of a temperature control system (5) when the temperature of step (b) is greater than the temperature of step (a); e) Turn off each circulation pump (51) when the temperature of step (a) is greater than 350 degrees Celsius; f) Repeat steps (a) to (e) during the entire operation of the hybrid power generation system (SH).
043 Da mesma forma, o método de controle de geração de energia (MGE1 ) do módulo primário de geração de energia termoelétrica (3), compreende as seguintes etapas: 043 Likewise, the power generation control method (MGE1) of the primary thermoelectric power generation module (3) comprises the following steps:
I) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); I) Monitor the fluid temperature of each hot fluid reservoir (30);
II) Monitorar a temperatura do fluido de cada reservatório de fluido frio (31 );II) Monitor the fluid temperature of each cold fluid reservoir (31);
III) Comparar as temperaturas das etapas (I) e (II) por meio de um controlador lógico programável embarcado no sistema híbrido (SH); III) Compare the temperatures of steps (I) and (II) using a programmable logic controller embedded in the hybrid system (SH);
IV) Acionar o circuito hidráulico frio (310), quando a diferença térmica da etapa (III) for maior que 10 graus Celsius; IV) Activate the cold hydraulic circuit (310), when the thermal difference of step (III) is greater than 10 degrees Celsius;
V) Liberar a passagem do fluido frio por pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) de captura do gradiente de temperatura para geração de energia elétrica; V) Allowing the passage of the cold fluid through at least one heat sink module (32) equipped with a set of thermal cells (320) for capturing the temperature gradient for generating electrical energy;
VI) Acionar o circuito hidráulico quente (300), quando a diferença térmica da etapa (III) for maior que 80 graus Celsius; VI) Activate the hot hydraulic circuit (300), when the thermal difference of step (III) is greater than 80 degrees Celsius;
VII) Liberar a passagem do fluido quente por pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) de captura do gradiente de temperatura para geração de energia elétrica; VIII) Executar o método de controle de aquecimento (MA) do fluido de pelo menos um reservatório de fluido quente (30), quando a temperatura da etapa (I) for maior 350 graus Celsius; VII) Allow the hot fluid to pass through at least one heat sink module (32) equipped with a set of thermal cells (320) for capturing the temperature gradient for generating electrical energy; VIII) Execute the heating control method (MA) of the fluid of at least one hot fluid reservoir (30), when the temperature of step (I) is greater than 350 degrees Celsius;
IX) Repetir as etapas de (I) a (VIII) durante toda operação do sistema híbrido (SH) de geração de energia. IX) Repeat steps (I) to (VIII) during the entire operation of the hybrid power generation system (SH).
044 Ainda, o método de controle de geração de energia (MGE2) do módulo secundário de geração de energia termoelétrica (4), compreende as seguintes etapas: i) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); ii) Acionar o circuito de vapor (40) disposto no interior do reservatório de fluido quente (30), quando a temperatura da etapa (i) for maior ou igual a 250 graus Celsius; iii) Monitorar a pressão no circuito de vapor (40); iiii) Liberar o fluxo de vapor para uma turbina a vapor (42), quando a pressão for superior a 4 bar, para geração de energia elétrica; iiiii) Repetir as etapas de (i) a (iiii) durante toda operação do sistema híbrido (SH) de geração de energia. 044 Also, the power generation control method (MGE2) of the secondary thermoelectric power generation module (4), comprises the following steps: i) Monitor the fluid temperature of each hot fluid reservoir (30); ii) Activate the steam circuit (40) arranged inside the hot fluid reservoir (30), when the temperature of step (i) is greater than or equal to 250 degrees Celsius; iii) Monitor the pressure in the steam circuit (40); iiii) Release the flow of steam to a steam turbine (42), when the pressure is greater than 4 bar, to generate electricity; iiiiii) Repeat steps (i) to (iiii) during the entire operation of the hybrid power generation system (SH).
045 Desta forma, o método de gerenciamento e operação (M) é capaz e responsável por todo o sistema híbrido (SH), gerenciando cada fonte de geração de energia, além de manter a segurança, uma vez que também é responsável pelo controle da temperatura dos primeiro e segundo módulos de geração de energia termoelétrica (3 e 4) respectivamente. 045 In this way, the management and operation method (M) is capable and responsible for the entire hybrid system (SH), managing each source of energy generation, in addition to maintaining security, since it is also responsible for temperature control of the first and second thermoelectric power generation modules (3 and 4) respectively.
046 Preferencialmente, o método de gerenciamento e operação (M) é acionado por temporizadores (não ilustrados), de modo a operar o sistema híbrido (SH) em determinados horários pré-programados de acordo com o perfil do usuário e/ou operar de acordo com as condições meteorológicas futuras, monitoradas pelo sistema de monitoramento de previsão do tempo que é integrado ao método de gerenciamento e operação (M). 046 Preferably, the management and operation method (M) is triggered by timers (not shown), in order to operate the hybrid system (SH) at certain pre-programmed times according to the user profile and/or operate according to with future weather conditions, monitored by the weather monitoring system. weather forecast that is integrated into the management and operation method (M).
047 Assim, a produção de energia elétrica, por meio dos primeiro e segundo módulos de geração de energia termoelétrica (3 e 4), pode controlada, permitindo um maior prolongamento da utilização das baterias térmicas, configuradas pelos tanques de fluido de água quente (30) e fluido de água fria (31 ). Da mesma forma, o método de gerenciamento e operação (M) também possibilita a priorização de geração máxima de energia em casos, onde o usuário tenha como objetivo injetar a energia gerada na rede de distribuição da concessionária, em determinados períodos onde o consumo é maior. 047 Thus, the production of electric energy, through the first and second modules of thermoelectric energy generation (3 and 4), can be controlled, allowing a greater extension of the use of the thermal batteries, configured by the hot water fluid tanks (30 ) and cold water fluid (31). Likewise, the management and operation method (M) also makes it possible to prioritize maximum energy generation in cases where the user intends to inject the generated energy into the concessionaire's distribution network, in certain periods when consumption is higher. .
048 Além disso, as baterias térmicas, praticamente, eliminam o uso de baterias químicas, que são nocivas aos seres humanos e ao meio ambiente, contribuindo assim, com consumo consciente e principalmente com a redução de descarte de resíduos sólidos, altamente contaminante no meio ambiente. 048 In addition, thermal batteries practically eliminate the use of chemical batteries, which are harmful to humans and the environment, thus contributing to conscious consumption and especially to the reduction of solid waste disposal, which is highly polluting in the environment .
049 Desta forma, o sistema híbrido de geração de energia (SH) dotado do módulo de geração de energia fotovoltaica (1 ) e um módulo de geração de energia eólica (2), integrados ao módulo primário e, alternativamente ao módulo secundário de geração de energia termoelétrica (3 e 4), respectivamente, juntamente com o método de gerenciamento e operação (M) do referido sistema híbrido (SH), é capaz de gerar energia por até 24 horas, 365 dias do ano, uma vez que depende de apenas das fontes renováveis da natureza para funcionar. 049 In this way, the hybrid power generation system (SH) equipped with the photovoltaic power generation module (1) and a wind power generation module (2), integrated into the primary module and, alternatively to the secondary power generation module, thermoelectric energy (3 and 4), respectively, together with the management and operation method (M) of the said hybrid system (SH), is capable of generating energy for up to 24 hours, 365 days a year, since it depends on only nature's renewable sources to function.
050 Além disso, o fato do sistema híbrido (SH) de geração de energia ser configurado em um módulo compacto (MC), permite que seja levado e instalado em qualquer lugar, possibilitando a geração de energia seja uma fonte primária, para consumo próprio, ou, como uma fonte secundária, onde o usuário utiliza a energia gerada pelo sistema híbrido (SH) em determinados períodos do dia e no restante do período o usuário utiliza a energia da rede da distribuidora. 050 In addition, the fact that the hybrid power generation system (SH) is configured in a compact module (MC), allows it to be taken and installed anywhere, allowing power generation to be a primary source, for own consumption, or, as a secondary source, where the user uses the energy generated by the hybrid system (SH) in certain periods of the day and in the rest of the period the user uses energy from the distributor's network.
051 O homem da técnica prontamente perceberá, a partir da descrição e dos desenhos representados, várias maneiras de realizar a invenção sem fugir do escopo das reivindicações em anexo. 051 The person in the art will readily perceive, from the description and the drawings represented, several ways to carry out the invention without deviating from the scope of the appended claims.

Claims

REIVINDICAÇÕES
1. “Sistema híbrido de geração de energia” configurado em um módulo compacto (MC) e compreendendo um módulo de geração de energia fotovoltaica (1 ) e um módulo de geração de energia eólica (2), caracterizado por o sistema híbrido (SH) integrar o módulo de geração de energia fotovoltaica (1 ) e o módulo de geração de energia eólica (2) à um módulo primário de geração de energia termoelétrica (3) por meio da captação e absorção da energia solar; o módulo primário de geração de energia termoelétrica (3) compreender pelo menos um reservatório de fluido quente (30) dotado de um circuito hidráulico quente (300) isolados termicamente, pelo menos um reservatório de fluido frio (31 ) dotado de um circuito hidráulico frio (310), e pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) de captura do gradiente de temperatura gerada pelos respectivos reservatórios de fluido quente (30) e frio (31 ) para geração de energia elétrica. 1. "Hybrid power generation system" configured in a compact module (MC) and comprising a photovoltaic power generation module (1) and a wind power generation module (2), characterized in that the hybrid system (SH) integrate the photovoltaic energy generation module (1) and the wind energy generation module (2) to a primary thermoelectric energy generation module (3) by capturing and absorbing solar energy; the primary thermoelectric power generation module (3) comprising at least one hot fluid reservoir (30) provided with a hot hydraulic circuit (300) thermally isolated, at least one cold fluid reservoir (31) provided with a cold hydraulic circuit (310), and at least one heat sink module (32) provided with a set of thermal cells (320) for capturing the temperature gradient generated by the respective hot (30) and cold (31) fluid reservoirs for power generation electric.
2. “Sistema híbrido de geração de energia” de acordo com a reivindicação 1 , caracterizado por o sistema híbrido (SH) integrar um módulo secundário de geração de energia termoelétrica (4) por meio do reaproveitamento da energia térmica do módulo primário de geração de energia termoelétrica (3); o módulo secundário de geração de energia termoelétrica (4) compreender um circuito de vapor (40) dotado de pelo menos uma serpentina (41 ) de condução de um fluido vaporizado até uma turbina a vapor (42), sendo dita serpentina (41 ) ser disposta no interior do reservatório de fluido quente (30). 2. "Hybrid power generation system" according to claim 1, characterized in that the hybrid system (SH) integrates a secondary thermoelectric power generation module (4) through the reuse of thermal energy from the primary power generation module thermoelectric energy (3); the secondary thermoelectric power generation module (4) comprises a steam circuit (40) equipped with at least one serpentine (41) for conducting a vaporized fluid to a steam turbine (42), said serpentine (41) being disposed inside the hot fluid reservoir (30).
3. “Sistema híbrido de geração de energia” de acordo com a reivindicação 1 , caracterizado por cada reservatório de fluido quente (30) captar a energia solar por meio da abertura superior para aquecimento do dito fluido armazenado no interior de cada reservatório de fluido quente (30). 3. "Hybrid power generation system" according to claim 1, characterized in that each hot fluid reservoir (30) captures solar energy through the upper opening for heating said fluid stored inside each hot fluid reservoir (30).
4. “Sistema híbrido de geração de energia” de acordo com a reivindicação 3, caracterizado por cada reservatório de fluido quente (30) receber, em sua abertura superior, uma lente convexa (301 ). 4. "Hybrid power generation system" according to claim 3, characterized in that each hot fluid reservoir (30) receives, in its upper opening, a convex lens (301).
5. “Sistema híbrido de geração de energia” de acordo com a reivindicação 3, caracterizado por a lente convexa (301 ) ser uma lente de Fresnel. 5. "Hybrid power generation system" according to claim 3, characterized in that the convex lens (301) is a Fresnel lens.
6. “Sistema híbrido de geração de energia” de acordo com a reivindicação 3, caracterizado por cada reservatório de fluido quente (30) receber, em seu interior, uma placa condutora (302) de absorção e dissipação da energia solar captada pela abertura superior do dito reservatório de fluido quente (30). 6. "Hybrid power generation system" according to claim 3, characterized in that each hot fluid reservoir (30) receives, inside, a conductive plate (302) for absorption and dissipation of solar energy captured by the upper opening of said hot fluid reservoir (30).
7. “Sistema híbrido de geração de energia” de acordo com a reivindicação 1 , caracterizado por o sistema híbrido (SH) compreender um sistema de controle de temperatura (5) do fluido armazenado no interior de cada reservatório de fluido quente (30). 7. "Hybrid power generation system" according to claim 1, characterized in that the hybrid system (SH) comprises a temperature control system (5) of the fluid stored inside each hot fluid reservoir (30).
8. “Sistema híbrido de geração de energia” de acordo com a reivindicação 7, caracterizado por o sistema de controle de temperatura (5) compreender uma tubulação de circulação (50), pelo menos uma bomba (51 ) e pelo menos um sensor de temperatura (52). 8. "Hybrid power generation system" according to claim 7, characterized in that the temperature control system (5) comprises a circulation pipe (50), at least one pump (51) and at least one temperature sensor. temperature (52).
9. “Sistema híbrido de geração de energia” de acordo com a reivindicação 8, caracterizado por a tubulação de circulação (50) do sistema de controle de temperatura (5) estar disposta junto a placa condutora (302). 9. "Hybrid power generation system" according to claim 8, characterized in that the circulation pipe (50) of the temperature control system (5) is arranged next to the conductive plate (302).
10. “Sistema híbrido de geração de energia” de acordo com a reivindicação 1 , caracterizado por o sistema híbrido (SH) compreender um banco de baterias (6) e um sistema de gerenciamento e operação (7), sendo dito banco de baterias (6) é de armazenamento e alimentação de um sistema de gerenciamento e operação (7), o qual compreende um computador (71 ) de auto gestão do funcionamento do dito sistema híbrido (SH). 10. "Hybrid power generation system" according to claim 1, characterized in that the hybrid system (SH) comprises a battery bank (6) and a management and operation system (7), said battery bank ( 6) is for storing and feeding a management and operation system (7), which comprises a computer (71) for self-management of the operation of said hybrid system (SH).
1 1 . “Sistema híbrido de geração de energia” de acordo com a reivindicação 1 , caracterizado por o módulo de geração de energia fotovoltaica (1 ) e o 17 módulo de geração de energia eólica (2) serem dedicados para alimentação do banco de baterias (6) que alimenta o computador (71 ) de auto gestão do funcionamento do dito sistema híbrido (SH). 1 1 . "Hybrid power generation system" according to claim 1, characterized in that the photovoltaic power generation module (1) and the 17 wind power generation module (2) are dedicated to power the battery bank (6) that feeds the computer (71) for self-management of the operation of said hybrid system (SH).
12. “Método de gerenciamento e operação do sistema híbrido de geração de energia” caracterizado por o método de gerenciamento e operação do sistema híbrido (M) ser integrado a um sistema de monitoramento de previsão do tempo e compreender um método de controle de temperatura (CT) do fluido de pelo menos um reservatório de fluido quente (30), compreender um método de controle de geração de energia (MGE1 ) de um módulo primário de geração de energia termoelétrica (3) e compreender um método de controle de geração de energia (MGE2) de um módulo secundário de geração de energia termoelétrica (4). 12. "Method of management and operation of the hybrid power generation system" characterized in that the method of management and operation of the hybrid system (M) is integrated into a weather forecast monitoring system and comprises a temperature control method ( CT) of the fluid from at least one hot fluid reservoir (30), comprising a power generation control method (MGE1) of a primary thermoelectric power generation module (3) and comprising a power generation control method (MGE2) of a secondary thermoelectric power generation module (4).
13. “Método de gerenciamento e operação do sistema híbrido de geração de energia” de acordo com a reivindicação 12, caracterizado por o método de controle de temperatura (CT) do fluido de pelo menos um reservatório de fluido quente (30) compreender as seguintes etapas: a) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); b) Monitorar a temperatura de uma placa condutora (302) disposta sobre cada reservatório de fluido quente (30); c) Comparar as temperaturas das etapas (a) e (b) por meio de um controlador lógico programável embarcado no sistema híbrido (SH); d) Ligar pelo menos uma bomba (51 ) de circulação de um sistema de controle de temperatura (5) quando a temperatura da etapa (b) for maior que a temperatura da etapa (a); e) Desligar cada bomba (51 ) de circulação quando a temperatura da etapa (a) for maior 350 graus Celsius; 18 f) Repetir as etapas de (a) a (e) durante toda operação do sistema híbrido (SH) de geração de energia. 13. "Method of management and operation of the hybrid power generation system" according to claim 12, characterized in that the temperature control method (CT) of the fluid of at least one hot fluid reservoir (30) comprises the following steps: a) Monitor the fluid temperature of each hot fluid reservoir (30); b) Monitoring the temperature of a conductive plate (302) arranged on each hot fluid reservoir (30); c) Compare the temperatures of steps (a) and (b) using a programmable logic controller embedded in the hybrid system (SH); d) Turn on at least one circulation pump (51) of a temperature control system (5) when the temperature of step (b) is greater than the temperature of step (a); e) Turn off each circulation pump (51) when the temperature of step (a) is greater than 350 degrees Celsius; 18 f) Repeat steps (a) to (e) during the entire operation of the hybrid power generation system (SH).
14. “Método de gerenciamento e operação do sistema híbrido de geração de energia” de acordo com a reivindicação 12, caracterizado por o método de controle de geração de energia (MGE1 ) de um módulo primário de geração de energia termoelétrica (3), compreender as seguintes etapas: 14. "Method of management and operation of the hybrid power generation system" according to claim 12, characterized in that the power generation control method (MGE1) of a primary thermoelectric power generation module (3), comprises the following steps:
I) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); I) Monitor the fluid temperature of each hot fluid reservoir (30);
II) Monitorar a temperatura do fluido de cada reservatório de fluido frio (31 ); II) Monitor the fluid temperature of each cold fluid reservoir (31);
III) Comparar as temperaturas das etapas (I) e (II) por meio de um controlador lógico programável embarcado no sistema híbrido (SH); III) Compare the temperatures of steps (I) and (II) using a programmable logic controller embedded in the hybrid system (SH);
IV) Acionar o circuito hidráulico frio (310), quando a diferença térmica da etapa (III) for maior que 10 graus Celsius; IV) Activate the cold hydraulic circuit (310), when the thermal difference of step (III) is greater than 10 degrees Celsius;
V) Liberar a passagem do fluido frio por pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) de captura do gradiente de temperatura para geração de energia elétrica; V) Allowing the passage of the cold fluid through at least one heat sink module (32) equipped with a set of thermal cells (320) for capturing the temperature gradient for generating electrical energy;
VI) Acionar o circuito hidráulico quente (300), quando a diferença térmica da etapa (III) for maior que 80 graus Celsius; VI) Activate the hot hydraulic circuit (300), when the thermal difference of step (III) is greater than 80 degrees Celsius;
VII) Liberar a passagem do fluido quente por pelo menos um módulo dissipador de calor (32) dotado de um conjunto de células térmicas (320) de captura do gradiente de temperatura para geração de energia elétrica; VII) Allow the hot fluid to pass through at least one heat sink module (32) equipped with a set of thermal cells (320) for capturing the temperature gradient for generating electrical energy;
VIII) Executar o método de controle de aquecimento (MA) do fluido de pelo menos um reservatório de fluido quente (30), quando a temperatura da etapa (I) for maior 350 graus Celsius; VIII) Execute the heating control method (MA) of the fluid of at least one hot fluid reservoir (30), when the temperature of step (I) is greater than 350 degrees Celsius;
IX) Repetir as etapas de (I) a (VIII) durante toda operação do sistema híbrido (SH) de geração de energia. 19 IX) Repeat steps (I) to (VIII) during the entire operation of the hybrid power generation system (SH). 19
15. “Método de gerenciamento e operação do sistema híbrido de geração de energia” de acordo com a reivindicação 12, caracterizado por o método de controle de geração de energia (MGE2) de um módulo secundário de geração de energia termoelétrica (4), compreender as seguintes etapas: i) Monitorar a temperatura do fluido de cada reservatório de fluido quente (30); ii) Acionar o circuito de vapor (40) disposto no interior do reservatório de fluido quente (30), quando a temperatura da etapa (i) for maior ou igual a 250 graus Celsius; iii) Monitorar a pressão no circuito de vapor (40); iiii) Liberar o fluxo de vapor para uma turbina a vapor (42), quando a pressão for superior a 4 bar, para geração de energia elétrica; iiiii) Repetir as etapas de (i) a (iiii) durante toda operação do sistema híbrido (SH) de geração de energia. 15. "Method of management and operation of the hybrid power generation system" according to claim 12, characterized in that the power generation control method (MGE2) of a secondary thermoelectric power generation module (4), comprises the following steps: i) Monitor the fluid temperature of each hot fluid reservoir (30); ii) Activate the steam circuit (40) arranged inside the hot fluid reservoir (30), when the temperature of step (i) is greater than or equal to 250 degrees Celsius; iii) Monitor the pressure in the steam circuit (40); iiii) Release the flow of steam to a steam turbine (42), when the pressure is greater than 4 bar, to generate electricity; iiiiii) Repeat steps (i) to (iiii) during the entire operation of the hybrid power generation system (SH).
16. “Método de gerenciamento e operação do sistema híbrido de geração de energia” de acordo com qualquer uma das reivindicações 12 a 15 caracterizado por o método de gerenciamento e operação do sistema híbrido (M) ser acionado por meio de temporizadores, de modo a gerenciar e operar o sistema híbrido (SH) em determinados horários pré programados de acordo com o perfil do usuário. 16. "Method of management and operation of the hybrid power generation system" according to any one of claims 12 to 15 characterized in that the method of management and operation of the hybrid system (M) is triggered by means of timers, in order to manage and operate the hybrid system (SH) at certain pre-programmed times according to the user's profile.
PCT/BR2022/050515 2021-12-21 2022-12-21 Compact hybrid energy-generation system and method for managing and operating the system WO2023115189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR1020210259272 2021-12-21
BR102021025927-2A BR102021025927A2 (en) 2021-12-21 HYBRID AND COMPACT ENERGY GENERATION SYSTEM AND SYSTEM MANAGEMENT AND OPERATION METHOD

Publications (1)

Publication Number Publication Date
WO2023115189A1 true WO2023115189A1 (en) 2023-06-29

Family

ID=86900800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2022/050515 WO2023115189A1 (en) 2021-12-21 2022-12-21 Compact hybrid energy-generation system and method for managing and operating the system

Country Status (1)

Country Link
WO (1) WO2023115189A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151072A1 (en) * 2001-10-05 2003-04-30 Utz Retter Vacuum sun collector for direct conversion of solar energy into electrical energy using the Seebeck effect
DE102006023616A1 (en) * 2006-05-19 2007-11-22 Pilz, Ulrich, Dr.-Ing. Arrangement and method for generating energy from solar radiation
DE102008009979A1 (en) * 2008-02-19 2009-09-10 Pérez, José Luis, Dipl.-Ing. Thermoelectric solar generator for generating electrical energy, has warm and cold store, where thermoelectric solar generator produces electric voltage in Peltier modules on basis of physical Seebeck effect
DE102011016621A1 (en) * 2011-04-09 2012-10-11 Rainer Schmidt Hybrid power module for electric power generation, has hybrid collectors, photovoltaic panel and/or solar modules arranged in staggered and overlapping construction, such that wind flow is guided in photovoltaic panels and/or solar modules
AU2013100968A4 (en) * 2013-07-17 2013-08-15 Pointer, Simon Barratt MR Hybridized-solar thermal power plant
WO2014032145A1 (en) * 2012-08-28 2014-03-06 Caballero Tainan Viana Modular mobile microthermoelectric plant and electric energy generation process
BR102013010565A2 (en) * 2012-05-03 2015-06-30 Hamilton Sundstrand Space Sys Method for converting solar energy into electrical energy, and composite / thermoelectric concentrated photovoltaic power source
CN210295573U (en) * 2019-01-10 2020-04-10 辽宁轨道交通职业学院 Industrial-grade modularized wind-solar hybrid power generation training platform

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151072A1 (en) * 2001-10-05 2003-04-30 Utz Retter Vacuum sun collector for direct conversion of solar energy into electrical energy using the Seebeck effect
DE102006023616A1 (en) * 2006-05-19 2007-11-22 Pilz, Ulrich, Dr.-Ing. Arrangement and method for generating energy from solar radiation
DE102008009979A1 (en) * 2008-02-19 2009-09-10 Pérez, José Luis, Dipl.-Ing. Thermoelectric solar generator for generating electrical energy, has warm and cold store, where thermoelectric solar generator produces electric voltage in Peltier modules on basis of physical Seebeck effect
DE102011016621A1 (en) * 2011-04-09 2012-10-11 Rainer Schmidt Hybrid power module for electric power generation, has hybrid collectors, photovoltaic panel and/or solar modules arranged in staggered and overlapping construction, such that wind flow is guided in photovoltaic panels and/or solar modules
BR102013010565A2 (en) * 2012-05-03 2015-06-30 Hamilton Sundstrand Space Sys Method for converting solar energy into electrical energy, and composite / thermoelectric concentrated photovoltaic power source
WO2014032145A1 (en) * 2012-08-28 2014-03-06 Caballero Tainan Viana Modular mobile microthermoelectric plant and electric energy generation process
AU2013100968A4 (en) * 2013-07-17 2013-08-15 Pointer, Simon Barratt MR Hybridized-solar thermal power plant
CN210295573U (en) * 2019-01-10 2020-04-10 辽宁轨道交通职业学院 Industrial-grade modularized wind-solar hybrid power generation training platform

Similar Documents

Publication Publication Date Title
Wang et al. Hybrid solar-assisted combined cooling, heating, and power systems: A review
Khosravi et al. Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system
Kannan et al. Solar energy for future world:-A review
US9051923B2 (en) Dual energy solar thermal power plant
Breeze Solar power generation
US9705449B2 (en) Effective and scalable solar energy collection and storage
WO2012041125A1 (en) Solar energy generation method and system using biomass boiler as auxiliary heat source
JP2016536752A (en) Power generation system
Dadak et al. Design and development of an innovative integrated structure for the production and storage of energy and hydrogen utilizing renewable energy
CN108322140B (en) Graphene heat storage type thermophotovoltaic intelligent comprehensive power generation system and device
Ahmadizadeh et al. Technological advancements in sustainable and renewable solar energy systems
JP6138495B2 (en) Power generation system
WO2023115189A1 (en) Compact hybrid energy-generation system and method for managing and operating the system
Abbott Hydrogen without tears: Addressing the global energy crisis via a solar to hydrogen pathway [point of view]
CN103470460B (en) Face, pond evaporation type solar heat power generation system
BR102021025927A2 (en) HYBRID AND COMPACT ENERGY GENERATION SYSTEM AND SYSTEM MANAGEMENT AND OPERATION METHOD
Mondal et al. Recent advancements in the harvesting and storage of solar energy
Biswal Thermal energy storage systems for concentrating solar power plants
CN203978518U (en) A kind of renewable energy sources public service system
Rajadurai et al. Integration of solar PV—micro hydro power system for household application
Darwish Prospect of using alternative energy for power and desalted water productions in Kuwait
Sukhatme et al. Solar energy in western Rajasthan
Kao Renewable and clean energy for data centers
Parimi et al. A Comparative Study of CSP to Produce Electricity Even at Night
Radovanović Review of Solar Thermal Technologies and Expiriences in the Area of Southern Spain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22908947

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE