WO2023113442A1 - Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics - Google Patents

Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics Download PDF

Info

Publication number
WO2023113442A1
WO2023113442A1 PCT/KR2022/020274 KR2022020274W WO2023113442A1 WO 2023113442 A1 WO2023113442 A1 WO 2023113442A1 KR 2022020274 W KR2022020274 W KR 2022020274W WO 2023113442 A1 WO2023113442 A1 WO 2023113442A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
manufacturing
cold forging
heat treatment
screw part
Prior art date
Application number
PCT/KR2022/020274
Other languages
French (fr)
Korean (ko)
Inventor
정병인
전영수
박용식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023113442A1 publication Critical patent/WO2023113442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a method of manufacturing a wire rod for cold forging and a screw part capable of manufacturing parts having excellent drilling characteristics only by quenching heat treatment.
  • cold forging the surface texture and dimensional accuracy of parts after forging are excellent, and parts manufactured by cold forging have lower production costs and better yield than parts manufactured by hot forging. For this reason, cold forging is widely applied to the manufacture of various industrial machines including automobiles, such as gears, shafts and bolts, and parts for building structures.
  • Patent Document 1 Japanese Patent Registration No. 3966493 (registration announcement date: 2007.06.08)
  • the present invention provides a manufacturing method for securing hardness for reducing wear during drilling by applying only quenching heat treatment instead of conventionally used austempering heat treatment in manufacturing a high-strength cold-rolling wire rod having excellent drilling characteristics.
  • the component produced by the method according to the present invention is characterized by having a hardness of 500 HV or more.
  • microstructure of the manufactured wire rod may include 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction.
  • another embodiment of the present invention includes the steps of softening heat treatment of the prepared wire rod for cold forging at a temperature of 600 to 800 ° C; forming a screw part shape having a body diameter of 3 to 6 mm by cold forging the wire rod subjected to the softening heat treatment; heating for 500 to 4,000 seconds at a temperature of 850 to 950° C. so that the average austenite grain size is 15 ⁇ m or less after the cold forging; And after the heating step of quenching in a refrigerant of 20 ⁇ 100 °C; containing, provides a method for manufacturing a screw part.
  • the area fraction is controlled to have a microstructure of 70% or more of auto-tempered martensite, 0.1 to 5.0% of bainite, 1 to 28% of fresh martensite, and 0.1 to 1.0% of retained austenite.
  • can include There is an advantage that brittleness of parts can be alleviated compared to parts made only of fresh martensite by controlling to have the above micro-refining.
  • the quenching step may include controlling the average thickness of carbides precipitated in the prior austenite crystal grains to be 20 nm or less.
  • the screw part may have a hardness of 500 HV or more at room temperature.
  • another embodiment of the present invention is a screw part manufactured by the above method, wherein the screw part has an area fraction of 70% or more of auto-tempered martensite, 0.1 to 5% of bainite, Provides a screw part with a microstructure of 1-28% fresh martensite and 0.1-1% retained austenite, an average thickness of carbides precipitated in old austenite grains of 20 nm or less, and a hardness of 500 HV or more at room temperature .
  • 1 is a graph of state change in the case of quenching heat treatment performed on an inventive material.
  • Figure 2 is a state change graph in the case of conventional austempering heat treatment performed on existing products.
  • the present invention is characterized in that it has excellent hardness while applying only quenching heat treatment instead of expensive austempering heat treatment that has been mainly used in the prior art to secure hardness for reducing wear during drilling.
  • the average austenite grain size is controlled to be 30 ⁇ m or less, cracking can be prevented during quenching heat treatment for manufacturing parts described later.
  • the microstructure of the manufactured wire rod includes 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction, so that when the strength of the wire rod is 800 MPa or less, wire drawing is possible without additional softening heat treatment.
  • Conventional materials for parts required two softening heat treatments, but the wire rod according to the present invention can be cold forged with one softening heat treatment.
  • another embodiment of the present invention includes the steps of softening heat treatment of the prepared wire rod for cold forging at a temperature of 600 to 800 ° C; forming a screw part shape having a trunk diameter of 3 to 6 mm by cold forging the wire rod subjected to the softening heat treatment; After the cold forging, heating for 500 to 4,000 seconds at a temperature of 850 to 950 ° C so that the average austenite grain size is 15 ⁇ m or less doing; And after the heating step of quenching in a refrigerant of 20 ⁇ 100 °C; containing, provides a method for manufacturing a screw part.
  • the average austenite grain size By controlling the average austenite grain size to be 15 ⁇ m or less, it is possible to prevent cracks from occurring inside the part during quenching heat treatment.
  • the area fraction is controlled to have a microstructure of 70% or more of auto-tempered martensite, 0.1 to 5.0% of bainite, 1 to 28% of fresh martensite, and 0.1 to 1.0% of retained austenite to obtain fresh martensite. It has the advantage of mitigating the brittleness of parts compared to parts consisting only of sites.
  • the average thickness of carbides precipitated in the prior austenite crystal grains is controlled to be 20 nm or less, so that cracks can be prevented from occurring inside the part after the quenching heat treatment.
  • the screw part may have a hardness of 500 HV or more, preferably 500 to 700 HV at room temperature. When it has a hardness of 500 HV or more, it can withstand the wear caused by drilling work for mechanical fastening.
  • FIG. 1 is a schematic diagram of a quenching heat treatment process performed on an inventive material, in which only quenching heat treatment is performed without austempering heat treatment for forming a separate specific microstructure, and quenching is performed using a refrigerant to obtain a desired microstructure.
  • FIG. 2 is a schematic diagram of the case of conventional austempering heat treatment performed on existing products. Although manufactured to have a lower bainite structure through austempering heat treatment, such austempering heat treatment requires high-cost constant temperature heat treatment, resulting in low economic feasibility there is a problem
  • the carbon content is less than 0.30%, it is not easy to obtain sufficient material hardness, and it is not easy to secure sufficient hardenability during final heat treatment. In addition, when the carbon content exceeds 0.50%, the hardenability is excessive, which is undesirable because it may cause delayed fracture when tempering is omitted.
  • Silicon is not only useful for deoxidation of steel, but also effective in securing strength through solid solution strengthening, but is an element that deteriorates impact characteristics. If the content is less than 0.30%, strength is not sufficiently secured through deoxidation and solid solution strengthening of the steel, and if it exceeds 0.50%, it is undesirable because there is a concern about formability deterioration due to solid solution strengthening.
  • Mn is an alloying element that is advantageous for securing strength by improving hardenability of steel, and serves to increase rollability and reduce brittleness. If it is added less than 0.35%, it is difficult to secure sufficient hardness, and if it is added in excess of 0.75%, it is easy to generate a hard structure during cooling after hot rolling, and a large amount of MnS inclusions are generated, which can cause internal cracks during cold forging. Needs to be.
  • Cr Cr
  • Cr Cr is an element that is effective in improving hardenability together with Mn to secure hardness, and can be added in an amount of 0.40% or more. However, if the content is excessive, there is a problem in that coarse carbides are formed, so the upper limit can be limited to 0.70%.
  • Titanium combines with nitrogen introduced into steel to form titanium carbonitride, preventing boron from combining with nitrogen. If the content of titanium is less than 0.010%, it is difficult to utilize the effect of boron because it is not sufficient to form nitrogen introduced during the steelmaking process into titanium carbonitride, and if it exceeds 0.050%, coarse carbonitride is formed, It is undesirable because it causes the occurrence of microcracks. It makes delayed failure resistance inferior.
  • Al is widely used as a deoxidizer in the steelmaking process, and is effective in refining austenite grains by AlN formed by reacting with N. If it is added less than 0.01%, the number of nitrogen compounds is insufficient and the effect of crystal grain refinement is lowered, and if it is added in excess of 0.05%, non-metallic inclusions such as alumina are excessively generated, which intensifies the occurrence of defects in steel, so it is necessary to limit it. there is.
  • Boron is a hardenability improving element.
  • the content of boron is less than 0.0010%, it is difficult to expect an effect of improving hardenability, and when it exceeds 0.0050%, Fe 23 (CB) 6 carbide is formed at grain boundaries to induce brittleness of austenite grain boundaries, which is not preferable.
  • Nitrogen is effective in refining austenite crystal grains by AlN formed by reacting with Al, and is an element that is widely used instead of inputting expensive alloy elements. If it is added less than 0.002%, the number of nitrogen compounds is insufficient and the austenite grain refinement effect is lowered, and if it exceeds 0.020%, the forging heat generated during cold forging causes the movement and proliferation of dislocations inside the material, and free nitrogen It adheres to the mold and increases the deformation strength, reducing the life of the mold.
  • the remaining component of the present invention is the remaining amount of iron (Fe).
  • Fe iron
  • another embodiment of the present invention provides a screw component manufactured by the method according to the present invention.
  • Screw parts have a microstructure of 70% or more of auto-tempered martensite, 0.1-5% of bainite, 1-28% of fresh martensite, and 0.1-1% of retained austenite in area fraction, and precipitate within the prior austenite grains. It is characterized in that the average thickness of the carbide to be 20nm or less.
  • the screw component according to the present invention is characterized by having a hardness of 500 HV or more at room temperature.
  • Example 1 0.38 0.40 0.46 0.53 0.023 0.04 0.0020 0.004
  • Example 2 0.45 0.41 0.45 0.54 0.022 0.03 0.0022 0.004
  • Example 3 0.40 0.40 0.36 0.52 0.024 0.03 0.0021 0.004
  • Example 4 0.41 0.44 0.49 0.52 0.024 0.03 0.0024 0.004
  • Example 5 0.39 0.41 0.44 0.46 0.026 0.03 0.0021 0.004
  • Example 6 0.42 0.41 0.43 0.59 0.021 0.02 0.0023 0.004
  • Example 7 0.43 0.31 0.42 0.52 0.023 0.04 0.0024 0.004
  • Example 8 0.41 0.48 0.44 0.53 0.027 0.03 0.0019 0.004 Comparative Example 1-1 0.27 0.41 0.46 0.52 0.025 0.02 0.0022 0.004 Comparative Example 1-2 0.52 0.42 0.47 0.52 0.023 0.03 0.0021 0.004 Comparative Example 1-3 0.38 0.25 0.45 0.50 0.022 0.03 0.0023 0.004
  • the hardness was measured using a Vickers hardness tester.
  • the thickness of carbide was measured in 5 fields using a transmission electron microscope (TEM) using a replica specimen and expressed as an average thickness.
  • the thickness of the carbide was measured by defining the short axis of the plate-type carbide as the thickness.
  • the delayed fracture performance evaluation test method was conducted by a delayed fracture simulation method to observe the presence or absence of cracks in the screw thread, which is the stress concentration part, before and after immersing in 5% hydrochloric acid + 95% distilled water solution for 10 minutes after fastening to the target part after heat treatment of the final product. .
  • the alloy composition of Examples 1 to 8 is included in the scope of the present invention, the carbide thickness after heat treatment is 20 nm or less, and the hardness is 500 HV or more.
  • the alloy components were out of the range of the present invention, the carbide thickness exceeded 20 nm after heat treatment, the hardness was less than 500 HV, or cracks occurred due to delayed fracture.
  • Table 3 in order to confirm the effect of the present invention in which only quenching heat treatment was performed without austempering heat treatment, screw parts were manufactured by performing austempering heat treatment with the alloy composition of Table 1 above, and their hardness was measured using a Vickers hardness machine measured.
  • Comparative Examples 2-1 to 2-8 are the hardness of parts manufactured by performing austempering heat treatment with the compositions of Examples 1 to 8 in Table 1
  • Comparative Examples 3-1 to 3 -6 is the hardness of the parts manufactured by performing austempering heat treatment with the compositions of Comparative Examples 1-1 to 1-6 in Table 1 above.

Abstract

The present invention relates to methods for manufacturing a wire rod for cold forging and a screw part, which can manufacture with only quenching heat treatment a part with excellent drilling characteristics, and which can specifically manufacture a part to be used for mechanical coupling of automotive parts manufactured with different materials.

Description

드릴링 특성이 우수한 냉간단조용 선재 및 스크류 부품의 제조방법Manufacturing method of wire rod and screw parts for cold forging with excellent drilling characteristics
본 발명은 퀜칭 열처리만으로 드릴링 특성이 우수한 부품을 제조할 수 있는 냉간단조용 선재 및 스크류 부품의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a wire rod for cold forging and a screw part capable of manufacturing parts having excellent drilling characteristics only by quenching heat treatment.
이종 소재로 제조된 자동차 부품의 기계적 체결용으로 사용되는 플로우 드릴 스크류(Flow Drill Screw) 등과 같은 부품을 제조하는 경우, 기계적 체결을 위한 드릴링 작업에서 발생되는 마모에 견디기 위해 500 HV 이상의 높은 경도가 필요하다. 이를 위해 종래에는 볼트용 소재 대비 탄소 함량을 높이고, 고비용의 항온열처리인 오스템퍼링 열처리를 통해 하부 베이나이트 조직을 가지도록 제조하는 방법이 고려되었으나(도 2 참조), 경제성 저하의 문제점이 있어 사용상 제한이 되고 있는 실정이다.When manufacturing parts such as flow drill screws used for mechanical fastening of automobile parts made of different materials, a high hardness of 500 HV or higher is required to withstand the wear caused by drilling for mechanical fastening. do. To this end, conventionally, a method of increasing the carbon content compared to the material for bolts and manufacturing to have a lower bainite structure through austempering heat treatment, which is an expensive constant temperature heat treatment, has been considered (see FIG. 2). This is what is happening.
한편, 냉간 단조는 단조 후의 부품의 표면 질감 및 치수 정밀도가 우수하고, 또한 냉간 단조에 의해 제조되는 부품은 열간 단조에 의해 제조되는 부품에 비해 제조 비용이 낮고, 수율도 양호하다. 그로 인해, 냉간 단조는 기어나 샤프트, 볼트 등의 자동차를 비롯한 각종 산업 기계나 건축 구조물용 부품의 제조에 널리 적용되어 있다.On the other hand, in cold forging, the surface texture and dimensional accuracy of parts after forging are excellent, and parts manufactured by cold forging have lower production costs and better yield than parts manufactured by hot forging. For this reason, cold forging is widely applied to the manufacture of various industrial machines including automobiles, such as gears, shafts and bolts, and parts for building structures.
(선행기술문헌)(Prior art literature)
특허문헌 1: 일본 등록특허 제3966493호 (등록공고일: 2007.06.08) Patent Document 1: Japanese Patent Registration No. 3966493 (registration announcement date: 2007.06.08)
본 발명에서는 드릴링 특성이 우수한 고강도 냉간압조용 선재를 제조함에 있어, 종래에 사용되던 오스템퍼링 열처리 대신에 퀜칭 열처리만을 적용하여 드릴링 시 마모 저감을 위한 경도를 확보하는 제조방법을 제공한다. 또한, 본 발명에 따른 방법으로 제조된 부품은 500 HV 이상의 경도를 가지는 것을 특징으로 한다.The present invention provides a manufacturing method for securing hardness for reducing wear during drilling by applying only quenching heat treatment instead of conventionally used austempering heat treatment in manufacturing a high-strength cold-rolling wire rod having excellent drilling characteristics. In addition, the component produced by the method according to the present invention is characterized by having a hardness of 500 HV or more.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 실시예는, 중량%로, 탄소(C): 0.30~0.50%, 실리콘(Si): 0.30~0.50%, 망간(Mn): 0.35~0.75%, 크롬(Cr): 0.40~0.70%, 티타늄(Ti): 0.010~0.050%, 알루미늄(Al): 0.01~0.05%, 보론(B): 0.0010~0.0050%, 질소(N): 0.002~0.020%, 잔부의 철(Fe) 및 기타 불순물을 포함하는 빌렛을 제공하는 단계; 상기 빌렛을 900~1200℃의 온도로 가열하고, 800~1000℃의 온도에서 마무리 열간압연하여 선재를 제조하는 단계; 상기 선재를 700~900℃에서 권취하여 평균 오스테나이트 결정립 크기가 30㎛ 이하가 되도록 제어하는 단계; 및 상기 권취된 선재를 0.4~1.0℃/s의 속도로 냉각하는 단계를 포함하는, 드릴링 특성이 우수한 냉간단조용 선재의 제조방법을 제공한다.In order to achieve the above object, an embodiment of the present invention, in weight percent, carbon (C): 0.30 ~ 0.50%, silicon (Si): 0.30 ~ 0.50%, manganese (Mn): 0.35 ~ 0.75% , Chromium (Cr): 0.40~0.70%, Titanium (Ti): 0.010~0.050%, Aluminum (Al): 0.01~0.05%, Boron (B): 0.0010~0.0050%, Nitrogen (N): 0.002~0.020% , providing a billet containing the balance of iron (Fe) and other impurities; heating the billet to a temperature of 900 to 1200° C., and performing finish hot rolling at a temperature of 800 to 1000° C. to manufacture a wire rod; Winding the wire rod at 700 to 900° C. to control the average austenite grain size to be 30 μm or less; And it provides a method for manufacturing a wire rod for cold forging with excellent drilling characteristics, comprising the step of cooling the coiled wire rod at a rate of 0.4 ~ 1.0 ° C / s.
또한, 상기 제조된 선재의 미세조직은, 면적분율로 페라이트 45~60% 및 펄라이트 40~55%를 포함할 수 있다.In addition, the microstructure of the manufactured wire rod may include 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 실시예는, 상기 제조된 냉간단조용 선재를 600~800℃의 온도에서 연화열처리하는 단계; 상기 연화열처리된 선재를 냉간단조를 하여 몸통부 직경이 3~6mm인 스크류 부품 형상을 만드는 단계; 상기 냉간단조 후 평균 오스테나이트 결정립 크기가 15㎛ 이하가 되도록 850~950℃의 온도에서 500~4,000초 동안 가열하는 단계; 및 상기 가열 후 20~100℃의 냉매에 퀜칭하는 단계;를 포함하는, 스크류 부품의 제조방법을 제공한다.In order to achieve the above object, another embodiment of the present invention includes the steps of softening heat treatment of the prepared wire rod for cold forging at a temperature of 600 to 800 ° C; forming a screw part shape having a body diameter of 3 to 6 mm by cold forging the wire rod subjected to the softening heat treatment; heating for 500 to 4,000 seconds at a temperature of 850 to 950° C. so that the average austenite grain size is 15 μm or less after the cold forging; And after the heating step of quenching in a refrigerant of 20 ~ 100 ℃; containing, provides a method for manufacturing a screw part.
또한, 상기 퀜칭 단계에서, 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5.0%, 프레쉬 마르텐사이트 1~28%, 및 잔류 오스테나이트 0.1~1.0%의 미세조직을 갖도록 제어되는 것을 포함할 수 있다. 상기와 같은 미세조질을 갖도록 제어함으로써 프레쉬 마르텐사이트만으로 이루어진 부품 대비 부품의 취성을 완화시킬 수 있는 이점이 있다.In addition, in the quenching step, the area fraction is controlled to have a microstructure of 70% or more of auto-tempered martensite, 0.1 to 5.0% of bainite, 1 to 28% of fresh martensite, and 0.1 to 1.0% of retained austenite. can include There is an advantage that brittleness of parts can be alleviated compared to parts made only of fresh martensite by controlling to have the above micro-refining.
또한, 상기 퀜칭 단계에서, 구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하가 되도록 제어되는 것을 포함할 수 있다.In addition, the quenching step may include controlling the average thickness of carbides precipitated in the prior austenite crystal grains to be 20 nm or less.
또한, 상기 스크류 부품은, 상온에서 500 HV 이상의 경도를 가지는 것일 수 있다.In addition, the screw part may have a hardness of 500 HV or more at room temperature.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 실시예는, 상기 방법으로 제조된 스크류 부품으로서, 상기 스크류 부품은, 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5%, 프레쉬 마르텐사이트 1~28%, 잔류 오스테나이트 0.1~1%의 미세조직을 가지고, 구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하이며, 상온에서 500 HV 이상의 경도를 가지는 스크류 부품을 제공한다.In order to achieve the above object, another embodiment of the present invention is a screw part manufactured by the above method, wherein the screw part has an area fraction of 70% or more of auto-tempered martensite, 0.1 to 5% of bainite, Provides a screw part with a microstructure of 1-28% fresh martensite and 0.1-1% retained austenite, an average thickness of carbides precipitated in old austenite grains of 20 nm or less, and a hardness of 500 HV or more at room temperature .
본 발명에 따른 냉간단조용 선재의 제조방법은, 종래에 주로 사용되던 고비용의 오스템퍼링 열처리 대신에 퀜칭 열처리만을 적용하여 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5%, 프레쉬 마르텐사이트 1~28%, 잔류 오스테나이트 0.1~1%로 구성되는 미세조직을 가지며, 특히 구 오스테나이트 결정립 내에 석출된 탄화물의 평균 두께가 20nm 이하가 되도록 할 수 있고, 이에 따라, 500 HV 이상의 경도를 가지는 부품을 제공할 수 있다.In the method for manufacturing a wire rod for cold forging according to the present invention, only quenching heat treatment is applied instead of the expensive austempering heat treatment that has been mainly used in the prior art, and auto-tempered martensite is 70% or more, bainite is 0.1 to 5%, and fresh martensite is 1 It has a microstructure composed of ~28% and retained austenite 0.1~1%, and in particular, the average thickness of carbides precipitated in the prior austenite crystal grains can be made to be 20 nm or less, and thus, parts with a hardness of 500 HV or more. can provide.
도 1은 발명재에서 실시된 퀜칭 열처리한 경우의 상태변화 그래프이다.1 is a graph of state change in the case of quenching heat treatment performed on an inventive material.
도 2는 기존 제품에서 실시되는 통상적인 오스템퍼링 열처리한 경우의 상태변화 그래프이다.Figure 2 is a state change graph in the case of conventional austempering heat treatment performed on existing products.
본 발명의 일 실시예에 따른 드릴링 특성이 우수한 냉간단조용 선재의 제조방법은, 중량%로, 탄소(C): 0.30~0.50%, 실리콘(Si): 0.30~0.50%, 망간(Mn): 0.35~0.75%, 크롬(Cr): 0.40~0.70%, 티타늄(Ti): 0.010~0.050%, 알루미늄(Al): 0.01~0.05%, 보론(B): 0.0010~0.0050%, 질소(N): 0.002~0.020%, 잔부의 철(Fe) 및 기타 불순물을 포함하는 빌렛을 제공하는 단계; 상기 빌렛을 900~1200℃의 온도로 가열하고, 800~1000℃의 온도에서 마무리 열간압연하여 선재를 제조하는 단계; 상기 선재를 700~900℃에서 권취하여 평균 오스테나이트 결정립 크기가 30㎛ 이하가 되도록 제어하는 단계; 및 상기 권취된 선재를 0.4~1.0℃/s의 속도로 냉각하는 단계를 포함한다.In the method for manufacturing a wire rod for cold forging having excellent drilling characteristics according to an embodiment of the present invention, in weight%, carbon (C): 0.30 to 0.50%, silicon (Si): 0.30 to 0.50%, manganese (Mn): 0.35~0.75%, Chromium (Cr): 0.40~0.70%, Titanium (Ti): 0.010~0.050%, Aluminum (Al): 0.01~0.05%, Boron (B): 0.0010~0.0050%, Nitrogen (N): Providing a billet containing 0.002-0.020%, the balance of iron (Fe) and other impurities; heating the billet to a temperature of 900 to 1200° C., and performing finish hot rolling at a temperature of 800 to 1000° C. to manufacture a wire rod; Winding the wire rod at 700 to 900° C. to control the average austenite grain size to be 30 μm or less; and cooling the wound wire at a rate of 0.4 to 1.0° C./s.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Preferred embodiments of the present invention are described below. However, the embodiments of the present invention can be modified in many different forms, and the technical spirit of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.Terms used in this application are only used to describe specific examples. Therefore, for example, expressions in the singular number include plural expressions unless the context clearly requires them to be singular. In addition, the terms "include" or "have" used in this application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, but other features It should be noted that it is not intended to be used to preliminarily exclude the presence of any steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used in this specification should be regarded as having the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. Accordingly, certain terms should not be interpreted in an overly idealistic or formal sense unless clearly defined herein. For example, in this specification, a singular expression includes a plurality of expressions unless there is a clear exception from the context.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, "about", "substantially", etc. in this specification are used at or in the sense of or close to the value when manufacturing and material tolerances inherent in the stated meaning are presented, and are accurate to aid in understanding the present invention. or absolute numbers are used to prevent unfair use by unscrupulous infringers of the stated disclosure.
본 발명은, 드릴링 시 마모 저감을 위한 경도 확보를 위해 종래에 주로 사용되던 고비용의 오스템퍼링 열처리 대신에 퀜칭 열처리만을 적용하면서도 우수한 경도를 가지는 것을 특징으로 한다.The present invention is characterized in that it has excellent hardness while applying only quenching heat treatment instead of expensive austempering heat treatment that has been mainly used in the prior art to secure hardness for reducing wear during drilling.
본 발명의 일 실시예는, 중량%로, 탄소(C): 0.30~0.50%, 실리콘(Si): 0.30~0.50%, 망간(Mn): 0.35~0.75%, 크롬(Cr): 0.40~0.70%, 티타늄(Ti): 0.010~0.050%, 알루미늄(Al): 0.01~0.05%, 보론(B): 0.0010~0.0050%, 질소(N): 0.002~0.020%, 잔부의 철(Fe) 및 기타 불순물을 포함하는 빌렛을 제공하는 단계; 상기 빌렛을 900~1200℃의 온도로 가열하고, 800~1000℃의 온도에서 마무리 열간압연하여 선재를 제조하는 단계; 상기 선재를 700~900℃에서 권취하여 평균 오스테나이트 결정립 크기가 30㎛ 이하가 되도록 제어 하는 단계; 및 상기 권취된 선재를 0.4~1.0℃/s의 속도로 냉각하는 단계를 포함하는, 드릴링 특성이 우수한 냉간단조용 선재의 제조방법을 제공한다.One embodiment of the present invention, in weight percent, carbon (C): 0.30 ~ 0.50%, silicon (Si): 0.30 ~ 0.50%, manganese (Mn): 0.35 ~ 0.75%, chromium (Cr): 0.40 ~ 0.70 %, titanium (Ti): 0.010 to 0.050%, aluminum (Al): 0.01 to 0.05%, boron (B): 0.0010 to 0.0050%, nitrogen (N): 0.002 to 0.020%, balance iron (Fe) and others providing a billet comprising impurities; heating the billet to a temperature of 900 to 1200° C., and performing finish hot rolling at a temperature of 800 to 1000° C. to manufacture a wire rod; Winding the wire rod at 700 to 900° C. to control the average austenite grain size to be 30 μm or less; And it provides a method for manufacturing a wire rod for cold forging with excellent drilling characteristics, comprising the step of cooling the coiled wire rod at a rate of 0.4 ~ 1.0 ° C / s.
평균 오스테나이트 결정립 크기가 30㎛ 이하가 되도록 제어하면, 후술하는 부품 제조를 위한 퀜칭열처리 시 균열을 방지할 수 있다.When the average austenite grain size is controlled to be 30 μm or less, cracking can be prevented during quenching heat treatment for manufacturing parts described later.
또한, 상기 제조된 선재의 미세조직은, 면적분율로 페라이트 45~60% 및 펄라이트 40~55%를 포함하도록 하여 선재 강도가 800MPa 이하가 되면 추가 연질화열처리 없이 바로 신선가공이 가능하다. 종래의 부품용 소재는 2회의 연질화열처리가 필요하였으나, 본 발명에 따른 선재는 연질화열처리 한번으로 냉간단조가 가능하다.In addition, the microstructure of the manufactured wire rod includes 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction, so that when the strength of the wire rod is 800 MPa or less, wire drawing is possible without additional softening heat treatment. Conventional materials for parts required two softening heat treatments, but the wire rod according to the present invention can be cold forged with one softening heat treatment.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 실시예는, 상기 제조된 냉간단조용 선재를 600~800℃의 온도에서 연화열처리하는 단계; 상기 연화열처리된 선재를 냉간단조를 하여 몸통부 직경이 3~6mm인 스크류 부품 형상을 만드는 단계; 상기 냉간단조 후 평균 오스테나이트 결정립 크기가 15㎛ 이하가 되도록 850~950℃의 온도에서 500~4,000초 동안 가열 하는 단계; 및 상기 가열 후 20~100℃의 냉매에 퀜칭하는 단계;를 포함하는, 스크류 부품의 제조방법을 제공한다.In order to achieve the above object, another embodiment of the present invention includes the steps of softening heat treatment of the prepared wire rod for cold forging at a temperature of 600 to 800 ° C; forming a screw part shape having a trunk diameter of 3 to 6 mm by cold forging the wire rod subjected to the softening heat treatment; After the cold forging, heating for 500 to 4,000 seconds at a temperature of 850 to 950 ° C so that the average austenite grain size is 15 μm or less doing; And after the heating step of quenching in a refrigerant of 20 ~ 100 ℃; containing, provides a method for manufacturing a screw part.
평균 오스테나이트 결정립 크기가 15㎛ 이하가 되도록 제어함으로써 퀜칭열처리 시 부품 내부에 균열이 발생되지 않도록 할 수 있다.By controlling the average austenite grain size to be 15 μm or less, it is possible to prevent cracks from occurring inside the part during quenching heat treatment.
또한, 상기 퀜칭 단계에서, 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5.0%, 프레쉬 마르텐사이트 1~28%, 잔류 오스테나이트 0.1~1.0%의 미세조직을 갖도록 제어하여 프레쉬 마르텐사이트만으로 이루어진 부품 대비 부품의 취성을 완화시킬 수 있는 이점이 있다.In addition, in the quenching step, the area fraction is controlled to have a microstructure of 70% or more of auto-tempered martensite, 0.1 to 5.0% of bainite, 1 to 28% of fresh martensite, and 0.1 to 1.0% of retained austenite to obtain fresh martensite. It has the advantage of mitigating the brittleness of parts compared to parts consisting only of sites.
또한, 상기 퀜칭 단계에서, 구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하가 되도록 제어하여 퀜칭열처리 후 부품 내부에 균열이 발생하는 것을 방지할 수 있다.In addition, in the quenching step, the average thickness of carbides precipitated in the prior austenite crystal grains is controlled to be 20 nm or less, so that cracks can be prevented from occurring inside the part after the quenching heat treatment.
또한, 상기 스크류 부품은, 상온에서 500 HV 이상, 바람직하게는 500~700 HV의 경도를 가지는 것일 수 있다. 500 HV 이상의 경도를 가질 때 기계적 체결을 위한 드릴링 작업에서 발생되는 마모를 견딜 수 있다.In addition, the screw part may have a hardness of 500 HV or more, preferably 500 to 700 HV at room temperature. When it has a hardness of 500 HV or more, it can withstand the wear caused by drilling work for mechanical fastening.
도 1은 발명재에서 실시된 퀜칭 열처리 공정의 모식도로서, 별도의 특정 미세조직 형성을 위한 오스템퍼링 열처리 없이 퀜칭 열처리만을 진행하며, 냉매를 사용하여 퀜칭하여 목적하는 미세조직을 갖도록 한다.1 is a schematic diagram of a quenching heat treatment process performed on an inventive material, in which only quenching heat treatment is performed without austempering heat treatment for forming a separate specific microstructure, and quenching is performed using a refrigerant to obtain a desired microstructure.
도 2는 기존 제품에서 실시되는 통상적인 오스템퍼링 열처리한 경우의 모식도로서, 오스템퍼링 열처리를 통해 하부 베이나이트 조직을 가지도록 제조되었으나, 이와 같은 오스템퍼링 열처리는 고비용의 항온열처리가 요구되어 경제성이 저하되는 문제가 있다.Figure 2 is a schematic diagram of the case of conventional austempering heat treatment performed on existing products. Although manufactured to have a lower bainite structure through austempering heat treatment, such austempering heat treatment requires high-cost constant temperature heat treatment, resulting in low economic feasibility there is a problem
이하, 각 합금원소의 성분범위를 한정한 이유에 대하여 설명한다. 이하에서는 특별한 기재가 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the composition range of each alloy element will be described. Hereinafter, unless otherwise specified, units are % by weight.
C: 0.30~0.50%C: 0.30 to 0.50%
탄소가 0.30% 미만의 함량에서는 충분한 소재 경도를 얻기가 쉽지 않고, 최종 열처리 시 충분한 소입성 확보가 용이하지 않다. 또한, 탄소 함량이 0.50% 를 초과하게 되면 소입성이 과도하여 템퍼링 생략 시 지연파괴를 유발할 수 있어 바람직하지 않다.When the carbon content is less than 0.30%, it is not easy to obtain sufficient material hardness, and it is not easy to secure sufficient hardenability during final heat treatment. In addition, when the carbon content exceeds 0.50%, the hardenability is excessive, which is undesirable because it may cause delayed fracture when tempering is omitted.
Si: 0.30~0.50%Si: 0.30 to 0.50%
실리콘은 강의 탈산을 위해서 유용할 뿐만 아니라, 고용 강화를 통해 강도 확보에도 효과적이지만 충격특성을 열위하게 하는 원소이다. 0.30% 미만의 함량에서는 강의 탈산 및 고용 강화를 통한 강도 확보가 충분치 않고, 0.50%를 초과하는 경우에는 고용강화에 의한 성형성 열위가 우려되기 때문에 바람직하지 않다.Silicon is not only useful for deoxidation of steel, but also effective in securing strength through solid solution strengthening, but is an element that deteriorates impact characteristics. If the content is less than 0.30%, strength is not sufficiently secured through deoxidation and solid solution strengthening of the steel, and if it exceeds 0.50%, it is undesirable because there is a concern about formability deterioration due to solid solution strengthening.
Mn: 0.35~0.75%Mn: 0.35 to 0.75%
Mn은 강재의 소입성을 향상시켜 강도를 확보하는데 유리한 합금원소이며 압연성을 증가시키고 취성을 감소시키는 역할을 한다. 0.35% 미만으로 첨가될 경우, 충분한 경도를 확보하기가 어려우며, 0.75%를 초과하여 첨가되면 열간압연 후 냉각시 경조직이 발생하기 쉽고 MnS 개재물이 다량으로 생성되어 냉간단조 시 내부균열이 발생할 수 있어 제한할 필요가 있다.Mn is an alloying element that is advantageous for securing strength by improving hardenability of steel, and serves to increase rollability and reduce brittleness. If it is added less than 0.35%, it is difficult to secure sufficient hardness, and if it is added in excess of 0.75%, it is easy to generate a hard structure during cooling after hot rolling, and a large amount of MnS inclusions are generated, which can cause internal cracks during cold forging. Needs to be.
Cr: 0.40~0.70%Cr: 0.40~0.70%
Cr(크롬)은 Mn과 함께 경화능 향상에 유효하여 경도를 확보하는 원소로 0.40% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 조대한 탄화물이 형성되는 문제가 있어 그 상한을 0.70%로 한정할 수 있다.Cr (chrome) is an element that is effective in improving hardenability together with Mn to secure hardness, and can be added in an amount of 0.40% or more. However, if the content is excessive, there is a problem in that coarse carbides are formed, so the upper limit can be limited to 0.70%.
Ti: 0.010~0.050%Ti: 0.010 to 0.050%
티타늄은 강중 내 유입되는 질소와 결합하여 티타늄 탄질화물을 형성하여, 보론이 질소와 결합하는 것을 방지한다. 티타늄의 함량이 0.010% 미만인 경우에는 제강공정 중 유입되는 질소를 티타늄 탄질화물로 형성하는데 충분하지 못하기 때문에 보론의 효과를 활용하기가 어렵고, 0.050%를 초과하는 경우에는 조대한 탄질화물이 형성되어 미세균열 발생을 야기하여 바람직하지 않다. 발생지연파괴 저항성을 열위하게 만든다.Titanium combines with nitrogen introduced into steel to form titanium carbonitride, preventing boron from combining with nitrogen. If the content of titanium is less than 0.010%, it is difficult to utilize the effect of boron because it is not sufficient to form nitrogen introduced during the steelmaking process into titanium carbonitride, and if it exceeds 0.050%, coarse carbonitride is formed, It is undesirable because it causes the occurrence of microcracks. It makes delayed failure resistance inferior.
Al: 0.01~0.05%Al: 0.01 to 0.05%
Al은 제강 공정에서 탈산제로 많이 사용이 되며, N과 반응하여 형성된 AlN에 의한 오스테나이트 결정립의 미세화에 효과가 있다. 0.01% 미만으로 첨가될 경우, 질소 화합물의 수가 충분하지 않아 결정립 미세화 효과가 저하되며, 0.05%를 초과하여 첨가되면 알루미나와 같은 비금속개재물의 생성이 과다하여 강재 내 결함 발생이 심화되므로 제한할 필요가 있다.Al is widely used as a deoxidizer in the steelmaking process, and is effective in refining austenite grains by AlN formed by reacting with N. If it is added less than 0.01%, the number of nitrogen compounds is insufficient and the effect of crystal grain refinement is lowered, and if it is added in excess of 0.05%, non-metallic inclusions such as alumina are excessively generated, which intensifies the occurrence of defects in steel, so it is necessary to limit it. there is.
B: 0.0010~0.0050%B: 0.0010 to 0.0050%
보론은 경화능 향상 원소이다. 보론의 함량이 0.0010% 미만인 경우 경화능 향상 효과를 기대하기 어렵고, 0.0050%를 초과하는 경우에는 결정립계에 Fe23(CB)6 탄화물을 형성시켜 오스테나이트 결정립계의 취성을 유발하여 바람직하지 않다.Boron is a hardenability improving element. When the content of boron is less than 0.0010%, it is difficult to expect an effect of improving hardenability, and when it exceeds 0.0050%, Fe 23 (CB) 6 carbide is formed at grain boundaries to induce brittleness of austenite grain boundaries, which is not preferable.
N: 0.002~0.020%N: 0.002 to 0.020%
질소는 Al과 반응하여 형성된 AlN에 의한 오스테나이트 결정립의 미세화에 효과가 있어, 고가 합금원소의 투입 대신에 많이 활용되는 원소이다. 0.002% 미만으로 첨가될 경우, 질소 화합물의 수가 부족하여 오스테나이트 결정립 미세화 효과가 저하되며, 0.020%를 초과하면, 냉간단조시 발생한 단조열에 의해 소재 내부에 전위의 이동과 증식을 일으키고 자유 질소가 전위에 고착하여 변형강도를 증가시켜 금형 수명이 저하된다.Nitrogen is effective in refining austenite crystal grains by AlN formed by reacting with Al, and is an element that is widely used instead of inputting expensive alloy elements. If it is added less than 0.002%, the number of nitrogen compounds is insufficient and the austenite grain refinement effect is lowered, and if it exceeds 0.020%, the forging heat generated during cold forging causes the movement and proliferation of dislocations inside the material, and free nitrogen It adheres to the mold and increases the deformation strength, reducing the life of the mold.
그 외 성분other ingredients
본 발명의 나머지 성분은 잔량의 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is the remaining amount of iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, not all of them are specifically mentioned in this specification.
또한, 상기와 같은 목적을 달성하기 위해, 본 발명의 다른 실시예는, 본 발명에 따른 방법으로 제조된 스크류 부품을 제공한다.In addition, in order to achieve the above object, another embodiment of the present invention provides a screw component manufactured by the method according to the present invention.
스크류 부품은, 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5%, 프레쉬 마르텐사이트 1~28%, 잔류 오스테나이트 0.1~1%의 미세조직을 가지고, 구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하인 것을 특징으로 한다.Screw parts have a microstructure of 70% or more of auto-tempered martensite, 0.1-5% of bainite, 1-28% of fresh martensite, and 0.1-1% of retained austenite in area fraction, and precipitate within the prior austenite grains. It is characterized in that the average thickness of the carbide to be 20nm or less.
또한, 본 발명에 따른 스크류 부품은, 상온에서 500 HV 이상의 경도를 가지는 것을 특징으로 한다.In addition, the screw component according to the present invention is characterized by having a hardness of 500 HV or more at room temperature.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only for illustrating the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
[실시예][Example]
하기 표 1과 같은 성분 조성을 갖는 강재를 이용하여 실시예 및 비교예의 부품을 제조하였다.Parts of Examples and Comparative Examples were manufactured using steel materials having component compositions as shown in Table 1 below.
구체적으로, 하기 표 1의 조성을 가지는 빌렛을 900~1200℃로 가열한 후 800~1000℃에서 마무리 선재압연을 Φ7mm 직경으로 실시한 후, 700~900℃ 권취하고 0.4~1.0℃/s의 냉각속도로 냉각하고, 600~800℃ 사이의 연화열처리를 통해 강도를 낮추고 냉간단조를 하여 몸통부 직경이 4mm인 스크류 부품 형상을 만들고, 850~950℃ 사이의 온도로 가열하고, 60℃의 냉매에 퀜칭하여 제조된 스크류 부품을 이용하여 실험하였다.Specifically, after heating the billet having the composition shown in Table 1 below at 900 to 1200 ° C, finishing wire rod rolling at 800 to 1000 ° C to a diameter of Φ 7 mm, followed by winding at 700 to 900 ° C and cooling at a cooling rate of 0.4 to 1.0 ° C / s Cooling, lowering the strength through softening heat treatment between 600 and 800 ° C, and cold forging to make a screw part shape with a body diameter of 4 mm, heating to a temperature between 850 and 950 ° C, and quenching in a refrigerant at 60 ° C. An experiment was conducted using the manufactured screw parts.
(중량%)(weight%) CC SiSi MnMn CrCr TiTi AlAl BB NN
실시예1Example 1 0.380.38 0.400.40 0.460.46 0.530.53 0.0230.023 0.040.04 0.00200.0020 0.0040.004
실시예2Example 2 0.450.45 0.410.41 0.450.45 0.540.54 0.0220.022 0.030.03 0.00220.0022 0.0040.004
실시예3Example 3 0.400.40 0.400.40 0.360.36 0.520.52 0.0240.024 0.030.03 0.00210.0021 0.0040.004
실시예4Example 4 0.410.41 0.440.44 0.490.49 0.520.52 0.0240.024 0.030.03 0.00240.0024 0.0040.004
실시예5Example 5 0.390.39 0.410.41 0.440.44 0.460.46 0.0260.026 0.030.03 0.00210.0021 0.0040.004
실시예6Example 6 0.420.42 0.410.41 0.430.43 0.590.59 0.0210.021 0.020.02 0.00230.0023 0.0040.004
실시예7Example 7 0.430.43 0.310.31 0.420.42 0.520.52 0.0230.023 0.040.04 0.00240.0024 0.0040.004
실시예8Example 8 0.410.41 0.480.48 0.440.44 0.530.53 0.0270.027 0.030.03 0.00190.0019 0.0040.004
비교예1-1Comparative Example 1-1 0.270.27 0.410.41 0.460.46 0.520.52 0.0250.025 0.020.02 0.00220.0022 0.0040.004
비교예1-2Comparative Example 1-2 0.520.52 0.420.42 0.470.47 0.520.52 0.0230.023 0.030.03 0.00210.0021 0.0040.004
비교예1-3Comparative Example 1-3 0.380.38 0.250.25 0.450.45 0.500.50 0.0220.022 0.030.03 0.00230.0023 0.0040.004
비교예1-4Comparative Example 1-4 0.340.34 0.400.40 0.780.78 0.510.51 0.0260.026 0.020.02 0.00210.0021 0.0040.004
비교예1-5Comparative Example 1-5 0.430.43 0.370.37 0.490.49 0.380.38 0.0230.023 0.030.03 0.00220.0022 0.0040.004
비교예1-6Comparative Example 1-6 0.420.42 0.420.42 0.470.47 0.740.74 0.0230.023 0.040.04 0.00190.0019 0.0040.004
또한, 하기 표 2에서, 경도는 비커스 경도기를 이용하여 측정하였다.탄화물 두께 측정은 투과전자현미경 (TEM)을 이용하여 Replica 시편으로 5 field에서 측정하여 평균 두께로 나타내었다. 탄화물의 두께는 plate-type으로 형성되는 탄화물의 단축을 두께로 정의하여 측정하였다. Also, in Table 2 below, the hardness was measured using a Vickers hardness tester. The thickness of carbide was measured in 5 fields using a transmission electron microscope (TEM) using a replica specimen and expressed as an average thickness. The thickness of the carbide was measured by defining the short axis of the plate-type carbide as the thickness.
지연파괴 성능평가 실험방법은, 최종 제품 열처리 후 대상 부품에 체결 후 5% 염산 + 95% 증류수 용액에 10분간 침지하기 전/후에 응력집중부인 나사산에 크랙 유무를 관찰하는 지연파괴 모사법으로 진행되었다.The delayed fracture performance evaluation test method was conducted by a delayed fracture simulation method to observe the presence or absence of cracks in the screw thread, which is the stress concentration part, before and after immersing in 5% hydrochloric acid + 95% distilled water solution for 10 minutes after fastening to the target part after heat treatment of the final product. .
경도 (HV)Hardness (HV) 탄화물 두께
(nm)
carbide thickness
(nm)
크랙 유무presence or absence of cracks
실시예1Example 1 525525 1515 XX
실시예2Example 2 622622 1616 XX
실시예3Example 3 587587 1414 XX
실시예4Example 4 592592 1414 XX
실시예5Example 5 546546 1515 XX
실시예6Example 6 596596 1616 XX
실시예7Example 7 602602 1717 XX
실시예8Example 8 589589 1313 XX
비교예1-1Comparative Example 1-1 488488 1717 XX
비교예1-2Comparative Example 1-2 634634 2222 OO
비교예1-3Comparative Example 1-3 492492 2121 OO
비교예1-4Comparative Example 1-4 559559 1717 OO
비교예1-5Comparative Example 1-5 602602 1717 OO
비교예1-6Comparative Example 1-6 609609 1818 OO
상기 표 1 및 2를 참조하면, 실시예 1 내지 8은 합금조성이 본 발명의 범위에 포함되고, 열처리 후 탄화물 두께가 20nm 이하이고, 경도가 500 HV 이상이다. 반면, 비교예 1-1 내지 1-6은 합금성분이 본 발명의 범위를 벗어나거나, 열처리 후 탄화물 두께가 20nm 초과하거나, 경도가 500 HV 미만이거나, 지연파괴에 의한 크랙이 발생하였다.나아가, 하기 표 3에는 오스템퍼링 열처리 없이 퀜칭 열처리만 수행한 본 발명의 효과를 확인하기 위해, 상기 표 1의 합금조성으로 오스템퍼링 열처리를 실시하여 스크류 부품을 제조하였으며, 이들의 경도를 비커스 경도기를 이용하여 측정하였다.Referring to Tables 1 and 2, the alloy composition of Examples 1 to 8 is included in the scope of the present invention, the carbide thickness after heat treatment is 20 nm or less, and the hardness is 500 HV or more. On the other hand, in Comparative Examples 1-1 to 1-6, the alloy components were out of the range of the present invention, the carbide thickness exceeded 20 nm after heat treatment, the hardness was less than 500 HV, or cracks occurred due to delayed fracture. Further, In Table 3 below, in order to confirm the effect of the present invention in which only quenching heat treatment was performed without austempering heat treatment, screw parts were manufactured by performing austempering heat treatment with the alloy composition of Table 1 above, and their hardness was measured using a Vickers hardness machine measured.
구체적으로, 하기 표 3에서, 비교예 2-1 내지 2-8은 상기 표 1의 실시예 1 내지 8의 조성으로 오스템퍼링 열처리를 실시하여 제조한 부품의 경도이고, 비교예 3-1 내지 3-6은 상기 표 1의 비교예 1-1 내지 1-6의 조성으로 오스템퍼링 열처리를 실시하여 제조한 부품의 경도이다.Specifically, in Table 3 below, Comparative Examples 2-1 to 2-8 are the hardness of parts manufactured by performing austempering heat treatment with the compositions of Examples 1 to 8 in Table 1, Comparative Examples 3-1 to 3 -6 is the hardness of the parts manufactured by performing austempering heat treatment with the compositions of Comparative Examples 1-1 to 1-6 in Table 1 above.
(중량%)(weight%) 오스템퍼링 시 경도(HV)Hardness when austempered (HV)
비교예2-1Comparative Example 2-1 432432
비교예2-2Comparative Example 2-2 461461
비교예2-3Comparative Example 2-3 456456
비교예2-4Comparative Example 2-4 455455
비교예2-5Comparative Example 2-5 443443
비교예2-6Comparative Example 2-6 457457
비교예2-7Comparative Example 2-7 469469
비교예2-8Comparative Example 2-8 462462
비교예3-1Comparative Example 3-1 402402
비교예3-2Comparative Example 3-2 479479
비교예3-3Comparative Example 3-3 441441
비교예3-4Comparative Example 3-4 453453
비교예3-5Comparative Example 3-5 458458
비교예3-6Comparative Example 3-6 456456
상기 표 2 및 3을 참조하면, 오스템퍼링 열처리 없이 퀜칭 열처리만 수행하는 경우에 비해, 오스템퍼링을 실시하는 경우 경도가 저하되는 것을 확인할 수 있다.상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.Referring to Tables 2 and 3, it can be seen that the hardness is lowered when austempering is performed compared to the case where only quenching heat treatment is performed without austempering heat treatment. As described above, exemplary embodiments of the present invention Although described, the present invention is not limited thereto, and those skilled in the art will understand that various changes and modifications are possible without departing from the concept and scope of the claims described below.
본 발명의 일 예에 따르면, 드릴링 특성이 우수한 고강도 냉간압조용 선재 및 스크류 부품을 제조함에 있어, 종래에 사용되던 오스템퍼링 열처리 대신에 퀜칭 열처리만을 적용하여 드릴링 시 마모 저감을 위한 경도를 확보하는 제조방법을 제공한다.According to an example of the present invention, in manufacturing high-strength cold-rolling wire rods and screw parts with excellent drilling characteristics, only quenching heat treatment is applied instead of conventionally used austempering heat treatment to secure hardness for reducing wear during drilling Manufacturing provides a way

Claims (7)

  1. 중량%로, 탄소(C): 0.30~0.50%, 실리콘(Si): 0.30~0.50%, 망간(Mn): 0.35~0.75%, 크롬(Cr): 0.40~0.70%, 티타늄(Ti): 0.010~0.050%, 알루미늄(Al): 0.01~0.05%, 보론(B): 0.0010~0.0050%, 질소(N): 0.002~0.020%, 잔부의 철(Fe) 및 기타 불순물을 포함하는 빌렛을 제공하는 단계;By weight %, carbon (C): 0.30 to 0.50%, silicon (Si): 0.30 to 0.50%, manganese (Mn): 0.35 to 0.75%, chromium (Cr): 0.40 to 0.70%, titanium (Ti): 0.010 to 0.050%, aluminum (Al): 0.01 to 0.05%, boron (B): 0.0010 to 0.0050%, nitrogen (N): 0.002 to 0.020%, the balance to provide a billet containing iron (Fe) and other impurities step;
    상기 빌렛을 900~1200℃의 온도로 가열하고, 800~1000℃의 온도에서 마무리 열간압연하여 선재를 제조하는 단계;heating the billet to a temperature of 900 to 1200° C., and performing finish hot rolling at a temperature of 800 to 1000° C. to manufacture a wire rod;
    상기 선재를 700~900℃에서 권취하여 평균 오스테나이트 결정립 크기가 30㎛ 이하가 되도록 제어하는 단계; 및Winding the wire rod at 700 to 900° C. to control the average austenite grain size to be 30 μm or less; and
    상기 권취된 선재를 0.4~1.0℃/s의 속도로 냉각하는 단계를 포함하는, 드릴링 특성이 우수한 냉간단조용 선재의 제조방법.A method of manufacturing a wire rod for cold forging having excellent drilling characteristics, comprising the step of cooling the wound wire at a rate of 0.4 to 1.0 ° C / s.
  2. 제1항에 있어서,According to claim 1,
    상기 제조된 선재의 미세조직은, 면적분율로 페라이트 45~60% 및 펄라이트 40~55%를 포함하는, 냉간단조용 선재의 제조방법. The microstructure of the prepared wire rod is a method for producing a wire rod for cold forging, including 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction.
  3. 중량%로, 탄소(C): 0.30~0.50%, 실리콘(Si): 0.30~0.50%, 망간(Mn): 0.35~0.75%, 크롬(Cr): 0.40~0.70%, 티타늄(Ti): 0.010~0.050%, 알루미늄(Al): 0.01~0.05%, 보론(B): 0.0010~0.0050%, 질소(N): 0.002~0.020%, 잔부의 철(Fe) 및 기타 불순물을 포함하고, 미세조직은 면적분율로 페라이트 45~60% 및 펄라이트 40~55%을 가지며, 평균 오스테나이트 결정립 크기가 30㎛ 이하인 선재를 600~800℃의 온도에서 연화열처리하는 단계;By weight %, carbon (C): 0.30 to 0.50%, silicon (Si): 0.30 to 0.50%, manganese (Mn): 0.35 to 0.75%, chromium (Cr): 0.40 to 0.70%, titanium (Ti): 0.010 ~0.050%, aluminum (Al): 0.01 ~ 0.05%, boron (B): 0.0010 ~ 0.0050%, nitrogen (N): 0.002 ~ 0.020%, the balance includes iron (Fe) and other impurities, and the microstructure is Softening heat treatment of a wire rod having 45 to 60% of ferrite and 40 to 55% of pearlite in area fraction and having an average austenite grain size of 30 μm or less at a temperature of 600 to 800 ° C;
    상기 연화열처리된 선재를 냉간단조를 하여 몸통부 직경이 3~6mm인 스크류 부품 형상을 만드는 단계;forming a screw part shape having a body diameter of 3 to 6 mm by cold forging the wire rod subjected to the softening heat treatment;
    상기 냉간단조 후 평균 오스테나이트 결정립 크기가 15㎛ 이하가 되도록 850~950℃의 온도에서 500~4,000초 동안 가열하는 단계; 및heating for 500 to 4,000 seconds at a temperature of 850 to 950° C. so that the average austenite grain size is 15 μm or less after the cold forging; and
    상기 가열 후 20~100℃의 냉매에 퀜칭하는 단계;를 포함하는, 스크류 부품의 제조방법.After the heating step of quenching in a refrigerant of 20 ~ 100 ℃; manufacturing method of a screw part comprising a.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 퀜칭 단계에서, 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5.0%, 프레쉬 마르텐사이트 1~28%, 및 잔류 오스테나이트 0.1~1.0%의 미세조직을 갖도록 제어되는 것인, 스크류 부품의 제조방법.In the quenching step, the area fraction is controlled to have a microstructure of 70% or more of auto-tempered martensite, 0.1 to 5.0% of bainite, 1 to 28% of fresh martensite, and 0.1 to 1.0% of retained austenite, Manufacturing method of screw parts.
  5. 청구항 3에 있어서,The method of claim 3,
    상기 퀜칭 단계에서, 구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하가 되도록 제어되는 것인, 스크류 부품의 제조방법.In the quenching step, the average thickness of carbides precipitated in prior austenite crystal grains is controlled to be 20 nm or less, a method for manufacturing a screw part.
  6. 청구항 3에 있어서,The method of claim 3,
    상기 스크류 부품은, 상온에서 500 HV 이상의 경도를 가지는 것인, 스크류 부품의 제조방법.The screw part is a method of manufacturing a screw part having a hardness of 500 HV or more at room temperature.
  7. 면적분율로 오토템퍼드 마르텐사이트 70% 이상, 베이나이트 0.1~5%, 프레쉬 마르텐사이트 1~28%, 잔류 오스테나이트 0.1~1%의 미세조직을 가지고,By area fraction, it has a microstructure of 70% or more of autotempered martensite, 0.1-5% of bainite, 1-28% of fresh martensite, and 0.1-1% of retained austenite,
    구 오스테나이트 결정립 내에 석출되는 탄화물의 평균 두께가 20nm 이하 이며, 상온에서 500 HV 이상의 경도를 가지는 것인, 스크류 부품.A screw component having an average thickness of carbides precipitated in prior austenite crystal grains of 20 nm or less and a hardness of 500 HV or more at room temperature.
PCT/KR2022/020274 2021-12-16 2022-12-13 Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics WO2023113442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210180892A KR20230091619A (en) 2021-12-16 2021-12-16 Method for manufacturing wire rod for cold forging with excellent drilling properties and screw parts
KR10-2021-0180892 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023113442A1 true WO2023113442A1 (en) 2023-06-22

Family

ID=86773086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020274 WO2023113442A1 (en) 2021-12-16 2022-12-13 Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics

Country Status (2)

Country Link
KR (1) KR20230091619A (en)
WO (1) WO2023113442A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060772A (en) * 1999-12-28 2001-07-07 이구택 A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
JP2003183733A (en) * 2001-12-14 2003-07-03 Sumitomo Metal Ind Ltd Method for manufacturing wire rod
KR20070086836A (en) * 2005-02-16 2007-08-27 신닛뽄세이테쯔 카부시키카이샤 Hot rolled wire material excellent in cold forging property after spheroidizing treatment, spheroidizing-annealed steel wire having excellent cold forging property, and method for production thereof
KR20200075643A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel wire for graphitization and graphite steel and manufacturing method thereof
KR20210077505A (en) * 2019-12-17 2021-06-25 주식회사 포스코 Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and method for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966493B2 (en) 1999-05-26 2007-08-29 新日本製鐵株式会社 Cold forging wire and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060772A (en) * 1999-12-28 2001-07-07 이구택 A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
JP2003183733A (en) * 2001-12-14 2003-07-03 Sumitomo Metal Ind Ltd Method for manufacturing wire rod
KR20070086836A (en) * 2005-02-16 2007-08-27 신닛뽄세이테쯔 카부시키카이샤 Hot rolled wire material excellent in cold forging property after spheroidizing treatment, spheroidizing-annealed steel wire having excellent cold forging property, and method for production thereof
KR20200075643A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel wire for graphitization and graphite steel and manufacturing method thereof
KR20210077505A (en) * 2019-12-17 2021-06-25 주식회사 포스코 Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and method for manufacturing thereof

Also Published As

Publication number Publication date
KR20230091619A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2020130560A1 (en) Cold rolled steel sheet having excellent workability, hot-dip galvanized steel sheet, and manufacturing methods thereof
WO2019132195A1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
WO2020222394A1 (en) Hot-stamped part and manufacturing method therefor
WO2020046016A1 (en) Wire rod for cold heading, processed product using same, and manufacturing methods therefor
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2023113442A1 (en) Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics
WO2020040388A1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2021125555A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2022131589A1 (en) High-strength wire rod for cold heading, having excellent heat treatment characteristics and hydrogen delayed fracture characteristics, heat treatment component, and manufacturing methods therefor
WO2022139277A1 (en) Steel for tool and manufacturing method for same
WO2013125760A1 (en) Component steel for mechanical and structural parts having ultrafine grains after high-frequency heat treatment and method for manufacturing same
WO2023018028A2 (en) Steel and steel wire, which are for spring, and manufacturing methods therefor
WO2022131752A1 (en) Wire rod and parts with improved delayed fracture resistance, and methods for manufacturing same
WO2023101487A1 (en) Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same
WO2022131749A1 (en) Wire rod and part, having improved delayed fracture resistance, for use in bolt and method for manufacturing same
WO2023234702A1 (en) Non-quenched and non-tempered steel wire rod for hot forging with excellent machinability and impact toughness and method for manufacturing same
WO2023229432A1 (en) Non-quenched and tempered steel rod wire with improved machinability and toughness, and method for manufacturing same
KR100431852B1 (en) A method for manufacturing high strength thick steel sheet and a vessel by deep drawing
WO2021125765A1 (en) Steel sheet having excellent processability, and method for manufacturing same
WO2023234501A1 (en) Hot stamping part
WO2023229428A1 (en) Non-quenched and tempered steel rod wire for hot forging with improved machinability and toughness and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907909

Country of ref document: EP

Kind code of ref document: A1