WO2023113070A1 - System for monitoring energy of power equipment in factory - Google Patents

System for monitoring energy of power equipment in factory Download PDF

Info

Publication number
WO2023113070A1
WO2023113070A1 PCT/KR2021/019134 KR2021019134W WO2023113070A1 WO 2023113070 A1 WO2023113070 A1 WO 2023113070A1 KR 2021019134 W KR2021019134 W KR 2021019134W WO 2023113070 A1 WO2023113070 A1 WO 2023113070A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
plc
factory
facilities
monitoring system
Prior art date
Application number
PCT/KR2021/019134
Other languages
French (fr)
Korean (ko)
Inventor
박종성
이명우
Original Assignee
(주)열린기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)열린기술 filed Critical (주)열린기술
Priority to PCT/KR2021/019134 priority Critical patent/WO2023113070A1/en
Publication of WO2023113070A1 publication Critical patent/WO2023113070A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an energy monitoring system of a power facility in a factory, and more particularly, to an energy monitoring system of a power facility in a factory capable of collecting and transmitting power consumption data while using an existing measuring instrument.
  • power systems are largely composed of three stages: generation, transmission and distribution, and distribution.
  • a plurality of voltage circuit breakers (or voltage circuit breakers) for power system control are installed in a power plant in charge of power generation.
  • the power system in the power plant includes a switch gear (SWGR), a load center (L/C), a motor control center (MCC), and the like.
  • SWGR switch gear
  • L/C load center
  • MCC motor control center
  • IEC International Electro-technical Commission
  • on-site power consumption refers to the power produced by the power plant and consumed by itself. Of the power produced by the power plant, it is consumed to operate various auxiliary facilities (i.e., loads) necessary for the operation of the power plant without being transmitted to the transmission end. means the power to be
  • This conventional method has problems in that the measurement range is limited and it is difficult to obtain an integrated measurement result.
  • the problem of the present invention for solving the problems of the prior art as described above is to integrate and check the results of measuring energy consumption in the plant while using existing measuring instruments, and to transmit the collected data as needed. It is to provide an energy monitoring system.
  • the energy monitoring system of power facilities in a factory of the present invention includes a plurality of switchboards for supplying power generated in a power plant to facilities, and a plurality of instruments for measuring the power supplied to facilities from the switchboards.
  • It includes a programmable logic controller (PLC) that collects power data by performing serial communication with the measuring instruments, and a monitoring device that collects, analyzes, and displays the power data collected in the PLC.
  • PLC programmable logic controller
  • the monitoring device unit may be connected to the PLC through an Ethernet cable and an Ethernet hub.
  • the monitoring device unit may collect power data of the PLC posted by the gateway on the web.
  • the instruments and the PLC may perform serial communication in the form of RS485 or RS232.
  • the meters can detect current, power, voltage and power factor.
  • the present invention has the effect of providing convenience in monitoring by being able to check the energy consumption in the site by integrating it at a remote location while using the existing measuring instruments as they are.
  • FIG. 1 is a block diagram of an energy monitoring system of a power facility in a factory according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram of an energy monitoring system of a power facility in a factory according to another embodiment of the present invention.
  • an energy monitoring system of a power facility in a factory includes a plurality of switchboards 10 supplying power generated in a power plant to facilities 20, and the switchboard 10 ), a plurality of meters 30 that measure the power supplied to the facility 20, and a PLC (Programmable Logic Controller, 40) that collects power data by performing serial communication with the meters 30, and the PLC It is configured to include a monitoring device unit 60 that is connected to Ethernet through 40 and the network hub 50 to collect and display power data collected in the PLC 40.
  • a monitoring device unit 60 that is connected to Ethernet through 40 and the network hub 50 to collect and display power data collected in the PLC 40.
  • on-site power refers to power consumed by supplying a portion of the power generated by the power plant to facilities 20 in the power plant, and in various types of power plants, some of the power produced is supplied to facilities necessary for power plant operation. .
  • a substation including various types of switchboards 10 is provided to supply the generated power to facilities, and the scale is also very large.
  • a plurality of substations may be provided.
  • the meter 30 measures the amount of power supplied from the switchboard 10 to the facility 20, and usually measures the amount of power of the air circuit breaker (ACB) and the overcurrent circuit breaker (MCCB) of the switchboard 10.
  • ACB air circuit breaker
  • MCCB overcurrent circuit breaker
  • the instruments 30 are each connected to the PLC 40 through a serial communication cable.
  • the PLC 40 controls the facility 20 according to a program, and includes a serial communication means for receiving input data for controlling the facility 20.
  • the PLC 40 may collect power data measured by the measuring instruments 30 through RS485 and RS232 serial communication.
  • the measuring instruments 30 may have differences in measured values (individual parameters) for each address depending on the manufacturer or model.
  • Schneider PM 1200 a kind of meter 30, has A, A1, A2, A3, etc. as current measurement parameters, and detects average current, first phase current, second phase current, and third phase current values, respectively.
  • the addresses are designated as 3913, 3929, 3943, and 3957, respectively.
  • the measuring instruments 30 can measure the power, voltage, power factor, etc. of ACB and MCCB to be measured, respectively, and provide these measurement results to the PLC 40 through serial communication.
  • the PLC 40 stores the received power data in a memory, and transmits the power data to the monitoring device unit 60 if there is a request from the monitoring device unit 60 .
  • the monitoring device unit 60 may be, for example, a PC, and in particular, a building energy management system (BEMS) is installed and operated.
  • BEMS building energy management system
  • the monitoring unit 60 may transmit power data analysis results and management plans to the outside.
  • Transmission at this time may use wired or wireless communication.
  • the monitoring device unit 60 and the PLC 40 may be interconnected using an Ethernet cable and the network hub 50, and may transmit power data by performing server-client communication in a MODBUS TCP method.
  • the power data collected by the monitoring device unit 60 may be processed in various ways.
  • FIG. 2 is a block diagram of an energy monitoring system of a power facility in a factory according to another embodiment of the present invention.
  • a plurality of switchboards 10 supplying power generated in a power plant to facilities 20, and a plurality of switchboards 10 measuring power supplied to facilities 20 from the switchboards 10.
  • PLC Programmable Logic Controller
  • the configuration of another embodiment of the present invention is partially the same as that of the embodiment described above with reference to FIG. 1, and is different in that a gateway 70 is used.
  • the power supplied to the facility 20 from a specific element of the switchboard 10 is detected by the meter 30, and the power data detected by the meter 30 is collected by the PLC 40 through serial communication.
  • the meter 30 may measure the amount of power of the air circuit breaker (ACB) and the overcurrent circuit breaker (MCCB) of the switchboard 10 .
  • the measuring instruments 30 are each connected to the PLC 40 through a serial communication cable, and the PLC 40 transmits power data detected at a requested or set time period, which is temporarily stored in the memory of the PLC 40.
  • the measuring instruments 30 can measure the current, power, voltage, power factor, etc. of the ACB and MCCB to be measured, respectively, and provide these measurement results to the PLC 40 through serial communication.
  • Power data stored in the memory of the PLC 40 is posted on the web via the gateway 70.
  • the PLC 40 and the gateway 70 may perform MODBUS TCP communication, and the gateway 70 posts power data to a designated web page.
  • the monitoring device unit 60 may be a computing device that performs various communications accessible to the web, and may be, for example, a PC.
  • the monitoring device unit 60 assumes that at least a building energy management system (BEMS) is installed and operated.
  • BEMS building energy management system
  • the monitoring device unit 60 is capable of checking and analyzing power data on the web and suggesting an optimized energy management plan. If necessary, the monitoring unit 60 may transmit power data analysis results and management plans to the outside.
  • Transmission at this time may use wired or wireless communication.
  • the present invention relates to a system for collecting and analyzing power data measured in individual meters using natural laws, and has industrial applicability.

Abstract

The present invention relates to a system for monitoring the energy of power equipment in a factory, comprising: a plurality of switchboards for supplying power generated by a power plant to equipment; a plurality of measurement instruments for measuring power supplied from the switchboards to the equipment; a programmable logic controller (PLC), which performs serial communication with the measurement instruments so as to collect power data; and a monitoring device unit for collecting, analyzing, and displaying the power data collected by the PLC.

Description

공장내 전력설비의 에너지 모니터링 시스템 Energy monitoring system for power facilities in factories
본 발명은 공장내 전력설비의 에너지 모니터링 시스템에 관한 것으로, 더 상세하게는 기존의 계측기를 사용하면서도 소내전력 사용 데이터를 수집 및 전송할 수 있는 공장내 전력설비의 에너지 모니터링 시스템에 관한 것이다.The present invention relates to an energy monitoring system of a power facility in a factory, and more particularly, to an energy monitoring system of a power facility in a factory capable of collecting and transmitting power consumption data while using an existing measuring instrument.
일반적으로 전력 시스템은 크게 발전, 송변전, 배전의 3단계로 구성된다.In general, power systems are largely composed of three stages: generation, transmission and distribution, and distribution.
그 중 발전을 담당하는 발전소에는 전력 계통 제어를 위한 다수의 전압 차단기(또는 전압 차단기반)가 설치되어 있다.Among them, a plurality of voltage circuit breakers (or voltage circuit breakers) for power system control are installed in a power plant in charge of power generation.
예컨대 상기 발전소내의 전력 계통에는 고압차단기반(SWGR : Switch Gear), 저압차단기반(L/C : Load Center), 전동기 제어반(MCC : Motor Control Center) 등이 포함되어 있다. 여기서 상기 저압과 고압의 구분은 IEC(International Electro-technical Commission) 규격에 따른다.For example, the power system in the power plant includes a switch gear (SWGR), a load center (L/C), a motor control center (MCC), and the like. Here, the classification of the low pressure and the high pressure follows the International Electro-technical Commission (IEC) standard.
최근 발전소는 불시고장 등에 의한 전력 공급능력 부족으로 충분한 예비전력의 확보에 어려움이 있으며, 그런만큼 소내 소비전력을 절감하여 조금이라도 더 송전전력을 극대화함으로써 전력수급 안정에 기여하고자 노력하고 있는 상황이다.Recently, power plants have difficulty in securing sufficient reserve power due to a lack of power supply capacity due to unexpected failures, etc. As such, efforts are being made to contribute to stabilizing power supply and demand by maximizing transmission power even a little more by reducing power consumption on site.
여기서 소내 소비전력이란, 발전소에서 생산하여 자체적으로 소비하는 전력을 말하는 것으로, 발전소에서 생산된 전력 중 송전단으로 송전되지 않고, 발전소의 운영에 필요한 각종 부대설비(즉, 부하)를 가동하기 위하여 소비되는 전력을 의미한다. Here, on-site power consumption refers to the power produced by the power plant and consumed by itself. Of the power produced by the power plant, it is consumed to operate various auxiliary facilities (i.e., loads) necessary for the operation of the power plant without being transmitted to the transmission end. means the power to be
따라서 종래에도 소내 소비전력을 절감하기 위하여 소비전력을 측정하였으나, 주로 보조변압기측 및 고압차단기반 모선 인입 단에 설치된 계측기들을 이용하여 소내 소비전력을 측정하였다. Therefore, in the prior art, power consumption was measured to reduce on-site power consumption, but the on-site power consumption was measured mainly using instruments installed on the side of the auxiliary transformer and at the inlet end of the high-voltage cut-off-based bus bar.
이러한 종래의 방식은 측정 범위가 제한되고, 통합된 계측결과를 얻는데 어려움이 있는 문제점이 있었다.This conventional method has problems in that the measurement range is limited and it is difficult to obtain an integrated measurement result.
상기와 같은 종래 기술의 문제점을 해결하기 위한 본 발명의 과제는, 기존의 계측기들을 사용하면서 소내 에너지 사용량 계측결과를 통합하여 확인하며, 필요에 따라 수집된 데이터를 송신할 수 있는 공장내 전력설비의 에너지 모니터링 시스템을 제공함에 있다.The problem of the present invention for solving the problems of the prior art as described above is to integrate and check the results of measuring energy consumption in the plant while using existing measuring instruments, and to transmit the collected data as needed. It is to provide an energy monitoring system.
위와 같은 과제를 해결하기 위한 본 발명 공장내 전력설비의 에너지 모니터링 시스템은, 발전소에서 생산된 전력을 설비들에 공급하는 다수의 배전반과, 상기 배전반에서 설비로 공급되는 전력을 계측하는 다수의 계측기와, 상기 계측기들과 직렬 통신을 수행하여 전력 데이터를 수집하는 PLC(Programmable Logic Controller)와, 상기 PLC에 수집된 전력 데이터를 수집하고 분석 및 표시하는 모니터링 장치부를 포함한다.In order to solve the above problems, the energy monitoring system of power facilities in a factory of the present invention includes a plurality of switchboards for supplying power generated in a power plant to facilities, and a plurality of instruments for measuring the power supplied to facilities from the switchboards. , It includes a programmable logic controller (PLC) that collects power data by performing serial communication with the measuring instruments, and a monitoring device that collects, analyzes, and displays the power data collected in the PLC.
본 발명의 실시예에서, 상기 모니터링 장치부는, 상기 PLC와 이더넷 케이블 및 이더넷 허브를 통해 연결될 수 있다.In an embodiment of the present invention, the monitoring device unit may be connected to the PLC through an Ethernet cable and an Ethernet hub.
본 발명의 실시예에서, 상기 모니터링 장치부는, 게이트웨이가 웹상에 게시한 상기 PLC의 전력 데이터를 수집할 수 있다.In an embodiment of the present invention, the monitoring device unit may collect power data of the PLC posted by the gateway on the web.
본 발명의 실시예에서, 상기 계측기들과 상기 PLC는, RS485 또는 RS232 방식의 직렬 통신을 수행할 수 있다.In an embodiment of the present invention, the instruments and the PLC may perform serial communication in the form of RS485 or RS232.
본 발명의 실시예에서, 상기 계측기들은, 전류, 전력, 전압 및 역률을 검출할 수 있다.In an embodiment of the present invention, the meters can detect current, power, voltage and power factor.
본 발명은 기존에 설치된 계측기들을 그대로 사용하면서도, 원격지에서 통합하여 소내 에너지 사용량을 확인할 수 있어, 모니터링 편의성을 제공할 수 있는 효과가 있다.The present invention has the effect of providing convenience in monitoring by being able to check the energy consumption in the site by integrating it at a remote location while using the existing measuring instruments as they are.
도 1은 본 발명의 바람직한 실시예에 따른 공장내 전력설비의 에너지 모니터링 시스템의 구성도이다.1 is a block diagram of an energy monitoring system of a power facility in a factory according to a preferred embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 공장내 전력설비의 에너지 모니터링 시스템의 구성도이다.2 is a block diagram of an energy monitoring system of a power facility in a factory according to another embodiment of the present invention.
- 부호의 설명 -- Description of codes -
10:배전반 20:설비10: switchboard 20: equipment
30:계측기 40:PLC30: instrument 40: PLC
50:네트워크 허브 60:모니터링 장치부50: network hub 60: monitoring unit
70:게이트웨이70: gateway
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein. In order to clearly describe the present invention in the drawings, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar components throughout the specification.
도 1을 참조하면, 본 발명의 바람직한 실시예에 따른 공장내 전력설비의 에너지 모니터링 시스템은, 발전소에서 생산된 전력을 설비(20)들에 공급하는 다수의 배전반(10)과, 상기 배전반(10)에서 설비(20)로 공급되는 전력을 계측하는 다수의 계측기(30)와, 상기 계측기(30)들과 직렬 통신을 수행하여 전력 데이터를 수집하는 PLC(Programmable Logic Controller, 40)와, 상기 PLC(40)와 네트워크 허브(50)를 통해 이더넷 연결되어 PLC(40)에 수집된 전력 데이터를 수집하고 표시하는 모니터링 장치부(60)를 포함하여 구성된다.Referring to FIG. 1 , an energy monitoring system of a power facility in a factory according to a preferred embodiment of the present invention includes a plurality of switchboards 10 supplying power generated in a power plant to facilities 20, and the switchboard 10 ), a plurality of meters 30 that measure the power supplied to the facility 20, and a PLC (Programmable Logic Controller, 40) that collects power data by performing serial communication with the meters 30, and the PLC It is configured to include a monitoring device unit 60 that is connected to Ethernet through 40 and the network hub 50 to collect and display power data collected in the PLC 40.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 공장내 전력설비의 에너지 모니터링 시스템의 구성과 작용에 대하여 보다 상세히 설명한다.Hereinafter, the configuration and operation of the energy monitoring system of a power facility in a factory according to a preferred embodiment of the present invention configured as described above will be described in more detail.
먼저, 소내 전력은 발전소에서 생산된 전력의 일부를 발전소 내의 설비(20)들에 공급하여 소비되는 전력을 뜻하며, 다양한 형태의 발전소에는 생산된 전력 중 일부를 발전소 운영에 필요한 설비들로 공급하고 있다.First, on-site power refers to power consumed by supplying a portion of the power generated by the power plant to facilities 20 in the power plant, and in various types of power plants, some of the power produced is supplied to facilities necessary for power plant operation. .
발전소 내에는 생산된 전력의 설비 공급을 위하여 다양한 형태의 배전반(10)을 포함하는 변전실을 구비하고 있으며, 그 규모 또한 매우 크다. 또한 변전실도 다수로 구비될 수 있다.In the power plant, a substation including various types of switchboards 10 is provided to supply the generated power to facilities, and the scale is also very large. In addition, a plurality of substations may be provided.
계측기(30)는 배전반(10)에서 설비(20)로 공급되는 전력량을 계측하며, 보통 배전반(10)의 기중차단기(ACB)와 과전류차단기(MCCB)의 전력량을 계측한다.The meter 30 measures the amount of power supplied from the switchboard 10 to the facility 20, and usually measures the amount of power of the air circuit breaker (ACB) and the overcurrent circuit breaker (MCCB) of the switchboard 10.
계측기(30)들은 각각 직렬 통신 케이블을 통해 PLC(40)와 연결된다.The instruments 30 are each connected to the PLC 40 through a serial communication cable.
PLC(40)는 프로그램에 따라 설비(20)의 제어를 수행하는 것으로, 설비(20) 제어를 위한 입력 데이터를 입력받는 직렬 통신수단을 포함한다.The PLC 40 controls the facility 20 according to a program, and includes a serial communication means for receiving input data for controlling the facility 20.
예를 들어 PLC(40)는 RS485, RS232 방식의 직렬 통신을 통해 계측기(30)들에서 계측된 전력 데이터를 수집할 수 있다.For example, the PLC 40 may collect power data measured by the measuring instruments 30 through RS485 and RS232 serial communication.
계측기(30)들은 제조사나 모델에 따라 어드레스별 계측값(개별 파라미터)에 차이가 있을 수 있다. The measuring instruments 30 may have differences in measured values (individual parameters) for each address depending on the manufacturer or model.
계측기(30)의 일종인 슈나이더 PM 1200는 전류 계측 파라미터로 A, A1, A2, A3등이 있으며, 각각 평균 전류, 제1상 전류, 제2상 전류, 제3상 전류값을 검출한다. 이때 어드레스는 각각 3913, 3929, 3943, 3957로 지정된다.Schneider PM 1200, a kind of meter 30, has A, A1, A2, A3, etc. as current measurement parameters, and detects average current, first phase current, second phase current, and third phase current values, respectively. At this time, the addresses are designated as 3913, 3929, 3943, and 3957, respectively.
위의 예와 같이 계측기(30)들은 각각 측정대상인 ACB, MCCB의 전력, 전압, 역률 등을 계측할 수 있으며, 이러한 계측 결과를 직렬 통신을 통해 PLC(40)로 제공한다.As in the above example, the measuring instruments 30 can measure the power, voltage, power factor, etc. of ACB and MCCB to be measured, respectively, and provide these measurement results to the PLC 40 through serial communication.
PLC(40)는 메모리에 수신된 전력 데이터를 저장하며, 모니터링 장치부(60)로부터 요청이 있으면, 전력 데이터를 모니터링 장치부(60)로 송신한다.The PLC 40 stores the received power data in a memory, and transmits the power data to the monitoring device unit 60 if there is a request from the monitoring device unit 60 .
모니터링 장치부(60)는 예를 들어 PC일 수 있으며, 특히 건물에너지관리시스템(BEMS)이 설치 및 가동되는 것으로 한다.The monitoring device unit 60 may be, for example, a PC, and in particular, a building energy management system (BEMS) is installed and operated.
즉, 전력 데이터를 수신하여 분석하고, 최적화된 에너지 관리 방안을 제시할 수 있는 것으로 한다. 필요에 따라 모니터링 장치부(60)는 전력 데이터의 분석결과 및 관리 방안을 외부로 송신할 수 있다. That is, it is assumed that power data can be received and analyzed, and an optimized energy management plan can be presented. If necessary, the monitoring unit 60 may transmit power data analysis results and management plans to the outside.
이때의 송신은 유선 또는 무선 통신을 이용할 수 있다.Transmission at this time may use wired or wireless communication.
모니터링 장치부(60)와 PLC(40)는 이더넷 케이블과 네트워크 허브(50)를 이용하여 상호 연결될 수 있으며, MODBUS TCP 방식으로 서버 클라이언트 방식 통신을 수행하여 전력 데이터를 송신할 수 있다.The monitoring device unit 60 and the PLC 40 may be interconnected using an Ethernet cable and the network hub 50, and may transmit power data by performing server-client communication in a MODBUS TCP method.
이처럼 모니터링 장치부(60)에 수집된 전력 데이터는 다양하게 가공될 수 있다.As such, the power data collected by the monitoring device unit 60 may be processed in various ways.
도 2는 본 발명의 다른 실시예에 따른 공장내 전력설비의 에너지 모니터링 시스템의 구성도이다.2 is a block diagram of an energy monitoring system of a power facility in a factory according to another embodiment of the present invention.
본 발명의 다른 실시예에 따르면, 발전소에서 생산된 전력을 설비(20)들에 공급하는 다수의 배전반(10)과, 상기 배전반(10)에서 설비(20)로 공급되는 전력을 계측하는 다수의 계측기(30)와, 상기 계측기(30)들과 직렬 통신을 수행하여 전력 데이터를 수집하는 PLC(Programmable Logic Controller, 40)와, 상기 PLC(40)의 전력 데이터를 수집하여 웹상에 게시하는 게이트웨이(70)와, 웹상에서 상기 게이트웨이(70)에서 게시한 전력 데이터를 수집하고 표시하는 모니터링 장치부(60)를 포함하여 구성된다. According to another embodiment of the present invention, a plurality of switchboards 10 supplying power generated in a power plant to facilities 20, and a plurality of switchboards 10 measuring power supplied to facilities 20 from the switchboards 10. A measuring instrument 30, a PLC (Programmable Logic Controller, 40) that performs serial communication with the measuring instruments 30 to collect power data, and a gateway that collects and posts the power data of the PLC 40 on the web ( 70) and a monitoring device unit 60 that collects and displays power data posted by the gateway 70 on the web.
본 발명의 다른 실시예의 구성은 앞서 도 1을 참조하여 설명한 실시예와 일부 동일하며, 게이트웨이(70)를 사용한다는 점에서 차이가 있다.The configuration of another embodiment of the present invention is partially the same as that of the embodiment described above with reference to FIG. 1, and is different in that a gateway 70 is used.
즉, 배전반(10)의 특정 요소에서 설비(20)로 공급되는 전력을 계측기(30)에서 검출하고, 계측기(30)에서 검출한 전력 데이터를 직렬 통신을 통해 PLC(40)에서 수집한다.That is, the power supplied to the facility 20 from a specific element of the switchboard 10 is detected by the meter 30, and the power data detected by the meter 30 is collected by the PLC 40 through serial communication.
이때, 계측기(30)는 배전반(10)의 기중차단기(ACB)와 과전류차단기(MCCB)의 전력량을 계측할 수 있다.At this time, the meter 30 may measure the amount of power of the air circuit breaker (ACB) and the overcurrent circuit breaker (MCCB) of the switchboard 10 .
계측기(30)들은 각각 직렬 통신 케이블을 통해 PLC(40)와 연결되며, PLC(40)는 요청 또는 설정된 시간 주기로 검출한 전력 데이터를 송신하며, 이는 PLC(40)의 메모리에 일시 저장된다.The measuring instruments 30 are each connected to the PLC 40 through a serial communication cable, and the PLC 40 transmits power data detected at a requested or set time period, which is temporarily stored in the memory of the PLC 40.
계측기(30)들은 각각 측정대상인 ACB, MCCB의 전류, 전력, 전압, 역률 등을 계측할 수 있으며, 이러한 계측 결과를 직렬 통신을 통해 PLC(40)로 제공한다.The measuring instruments 30 can measure the current, power, voltage, power factor, etc. of the ACB and MCCB to be measured, respectively, and provide these measurement results to the PLC 40 through serial communication.
PLC(40)의 메모리에 저장된 전력 데이터는 게이트웨이(70)를 통해 웹상에 게시된다.Power data stored in the memory of the PLC 40 is posted on the web via the gateway 70.
PLC(40)와 게이트웨이(70)는 MODBUS TCP 통신을 수행하는 것일 수 있으며, 게이트웨이(70)는 지정된 웹페이지에 전력 데이터를 게시한다.The PLC 40 and the gateway 70 may perform MODBUS TCP communication, and the gateway 70 posts power data to a designated web page.
모니터링 장치부(60)는 웹에 접근 가능한 다양한 통신을 수행하는 컴퓨팅 장치인 것으로 할 수 있으며, 예를 들어 PC인 것으로 할 수 있다.The monitoring device unit 60 may be a computing device that performs various communications accessible to the web, and may be, for example, a PC.
모니터링 장치부(60)는 적어도 건물에너지관리시스템(BEMS)이 설치 및 가동되는 것으로 한다.The monitoring device unit 60 assumes that at least a building energy management system (BEMS) is installed and operated.
모니터링 장치부(60)는 웹상에서 전력 데이터를 확인하고, 분석하고, 최적화된 에너지 관리 방안을 제시할 수 있는 것으로 한다. 필요에 따라 모니터링 장치부(60)는 전력 데이터의 분석결과 및 관리 방안을 외부로 송신할 수 있다. The monitoring device unit 60 is capable of checking and analyzing power data on the web and suggesting an optimized energy management plan. If necessary, the monitoring unit 60 may transmit power data analysis results and management plans to the outside.
이때의 송신은 유선 또는 무선 통신을 이용할 수 있다.Transmission at this time may use wired or wireless communication.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention may add elements within the scope of the same spirit. However, other embodiments can be easily proposed by means of changes, deletions, additions, etc., but these will also fall within the scope of the present invention.
본 발명은 자연법칙을 이용하여 개별 계측기들에서 계측된 전력 데이터를 수집하고, 분석하는 시스템에 관한 것으로, 산업상 이용 가능성이 있다.The present invention relates to a system for collecting and analyzing power data measured in individual meters using natural laws, and has industrial applicability.

Claims (5)

  1. 발전소에서 생산된 전력을 설비들에 공급하는 다수의 배전반;A plurality of switchboards supplying electric power generated in the power plant to facilities;
    상기 배전반에서 설비로 공급되는 전력을 계측하는 다수의 계측기;a plurality of meters for measuring power supplied from the switchboard to facilities;
    상기 계측기들과 직렬 통신을 수행하여 전력 데이터를 수집하는 PLC(Programmable Logic Controller); 및a PLC (Programmable Logic Controller) that performs serial communication with the instruments to collect power data; and
    상기 PLC에 수집된 전력 데이터를 수집하고 분석 및 표시하는 모니터링 장치부를 포함하는 공장내 전력설비의 에너지 모니터링 시스템.An energy monitoring system of a power facility in a factory including a monitoring device unit for collecting, analyzing, and displaying power data collected in the PLC.
  2. 제1항에 있어서,According to claim 1,
    상기 모니터링 장치부는,The monitoring device unit,
    상기 PLC와 이더넷 케이블 및 이더넷 허브를 통해 연결되는 것을 특징으로 하는 공장내 전력설비의 에너지 모니터링 시스템.An energy monitoring system for power facilities in a factory, characterized in that connected to the PLC through an Ethernet cable and an Ethernet hub.
  3. 제1항에 있어서, According to claim 1,
    상기 모니터링 장치부는,The monitoring device unit,
    게이트웨이가 웹상에 게시한 상기 PLC의 전력 데이터를 수집하는 것을 특징으로 하는 공장내 전력설비의 에너지 모니터링 시스템.An energy monitoring system for power facilities in a factory, characterized in that the gateway collects the power data of the PLC posted on the web.
  4. 제1항에 있어서,According to claim 1,
    상기 계측기들과 상기 PLC는,The instruments and the PLC,
    RS485 또는 RS232 방식의 직렬 통신을 수행하는 것을 특징으로 하는 공장내 전력설비의 에너지 모니터링 시스템.An energy monitoring system for power facilities in a factory, characterized in that it performs RS485 or RS232 type serial communication.
  5. 제4항에 있어서, According to claim 4,
    상기 계측기들은, These instruments are
    전류, 전력, 전압 및 역률을 검출하는 것을 특징으로 하는 공장내 전력설비의 에너지 모니터링 시스템.An energy monitoring system for power facilities in a factory, characterized in that for detecting current, power, voltage and power factor.
PCT/KR2021/019134 2021-12-16 2021-12-16 System for monitoring energy of power equipment in factory WO2023113070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/019134 WO2023113070A1 (en) 2021-12-16 2021-12-16 System for monitoring energy of power equipment in factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/019134 WO2023113070A1 (en) 2021-12-16 2021-12-16 System for monitoring energy of power equipment in factory

Publications (1)

Publication Number Publication Date
WO2023113070A1 true WO2023113070A1 (en) 2023-06-22

Family

ID=86774582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019134 WO2023113070A1 (en) 2021-12-16 2021-12-16 System for monitoring energy of power equipment in factory

Country Status (1)

Country Link
WO (1) WO2023113070A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200950B1 (en) * 2012-08-17 2012-11-13 (주) 동보파워텍 Power management system for using wired and wireless data gathering unit
KR20140148217A (en) * 2013-06-21 2014-12-31 한국남부발전 주식회사 Energy management system for power plant
KR20170060709A (en) * 2015-11-25 2017-06-02 김민수 Temperature monitoring system of switchgear
JP2019144624A (en) * 2018-02-16 2019-08-29 三菱日立パワーシステムズ環境ソリューション株式会社 Plant equipment monitoring control system and plant equipment monitoring control method
KR102212476B1 (en) * 2019-08-26 2021-02-10 주식회사 대홍전기 Distribution board and motor control centerboard using power management control system based on edge computing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200950B1 (en) * 2012-08-17 2012-11-13 (주) 동보파워텍 Power management system for using wired and wireless data gathering unit
KR20140148217A (en) * 2013-06-21 2014-12-31 한국남부발전 주식회사 Energy management system for power plant
KR20170060709A (en) * 2015-11-25 2017-06-02 김민수 Temperature monitoring system of switchgear
JP2019144624A (en) * 2018-02-16 2019-08-29 三菱日立パワーシステムズ環境ソリューション株式会社 Plant equipment monitoring control system and plant equipment monitoring control method
KR102212476B1 (en) * 2019-08-26 2021-02-10 주식회사 대홍전기 Distribution board and motor control centerboard using power management control system based on edge computing

Similar Documents

Publication Publication Date Title
EP1346453A1 (en) Substation control system
ATE182038T1 (en) ENERGY DISTRIBUTION AND BUILDING AUTOMATION SYSTEM
CN103323691A (en) Novel, intelligent and multifunctional comprehensive tester and testing method
CN202142911U (en) An intelligent monitoring module and a distributed distribution terminal having the intelligent monitoring module
CN110994803A (en) Join in marriage electrical information acquisition and processing system of electrical room
CN105634137B (en) Integral intelligent looped network switch apparatus
CN201025557Y (en) Digital communication multi-function power measurement instrument with protective control
CN115313653A (en) Simulation platform area training system with intelligent fusion terminal as core
WO2023113070A1 (en) System for monitoring energy of power equipment in factory
Allen et al. Flexible high-speed load shedding using a crosspoint switch
CN104682213A (en) Intelligent power distribution test and control system
JP3686877B2 (en) A system that polls snapshots from a central station to monitor the power consumption of multiple local stations
CN202503362U (en) Distribution terminal unit integrating measurement, control and protection for intelligent distribution network
CN202034825U (en) Intelligent comprehensive device of medium-voltage switch
CN218888153U (en) Photovoltaic grid-connected control and isolation device
CN214041605U (en) Edge computing system and power distribution terminal with high-low voltage synchronous measurement and protection
CN2667778Y (en) Intelligent electric comprehensive monitoring device
CN112180212A (en) Edge computing system, method and terminal with high-low voltage synchronous measurement and protection
CN106329729A (en) Intelligent power distribution terminal based on distributed type virtual plug-in
CN112510838A (en) Low-voltage power distribution system based on oil sludge treatment station
CN213402068U (en) Novel intelligent comprehensive distribution box
CN218514150U (en) Distribution automation terminal who possesses line loss function
CN217362661U (en) New energy automobile fills and trades power station data acquisition and intelligent cloud monitored control system
RU2772974C1 (en) Method for monitoring the equipment of an automated process control system
CN216530716U (en) Remote meter reading system for electricity consumption data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968279

Country of ref document: EP

Kind code of ref document: A1