WO2023112716A1 - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
WO2023112716A1
WO2023112716A1 PCT/JP2022/044522 JP2022044522W WO2023112716A1 WO 2023112716 A1 WO2023112716 A1 WO 2023112716A1 JP 2022044522 W JP2022044522 W JP 2022044522W WO 2023112716 A1 WO2023112716 A1 WO 2023112716A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
transparent conductive
conductive film
oxide layer
layer
Prior art date
Application number
PCT/JP2022/044522
Other languages
French (fr)
Japanese (ja)
Inventor
那由太 嶋田
徹 奥西
明日美 佐野
Original Assignee
尾池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022173639A external-priority patent/JP2023088847A/en
Application filed by 尾池工業株式会社 filed Critical 尾池工業株式会社
Publication of WO2023112716A1 publication Critical patent/WO2023112716A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to transparent conductive films.
  • transparent conductive films are used in various products such as touch panels, electronic paper, liquid crystal displays, and RF-ID tags.
  • a transparent conductive film there is a thin film of ITO made of indium oxide and tin oxide. High conductivity is required.
  • the film thickness is required to be several times that used in small touch panels and the like.
  • the ITO thin film is easily cracked, and the flexibility is impaired.
  • an increase in cost due to an increase in processing time cannot be avoided. Therefore, in order to develop high conductivity, a transparent electrode using a silver alloy with a low specific resistance is formed by laminating a metal oxide, a silver alloy, and a thin layer of a metal oxide in this order (metal oxide/silver alloy/ metal oxides) have been proposed (see, for example, Patent Document 1).
  • the average thickness of the laminate of metal oxide/silver alloy/metal oxide can be reduced while obtaining high conductivity. It reduces manufacturing costs while improving performance.
  • an object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a transparent conductive film which is excellent in conductivity and resistance to moist heat.
  • a transparent conductive film having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order,
  • the first metal oxide layer contains zinc oxide and tin oxide
  • the metal layer contains at least one of silver and a silver alloy
  • the second metal oxide layer contains indium oxide and tin oxide
  • a transparent conductive film characterized in that no peak is detected at 2 ⁇ 29 ° to 32 ° when the transparent conductive film is heat-treated at 150 ° C. for 30 minutes and then measured by X-ray crystal diffraction. be.
  • ⁇ 2> The transparent conductive film according to ⁇ 1>, wherein the second metal oxide layer has an arithmetic mean roughness Ra of 15 nm or less.
  • the content of tin oxide in the second metal oxide layer is 5% by mass or more with respect to the total amount of the indium oxide and the tin oxide. It is a transparent conductive film.
  • ⁇ 4> The transparent conductive film according to any one of ⁇ 1> to ⁇ 3>, having a total light transmittance of 82% or more as measured according to JIS K7361-1.
  • FIG. 1A is a cross-sectional view showing an example of the transparent conductive film of the present invention.
  • FIG. 1B is a cross-sectional view showing another example of the transparent conductive film of the present invention.
  • 2A is a diagram showing the measurement results of the transparent conductive film of Example 1 by the X-ray crystal diffraction method.
  • FIG. 2B is a diagram showing the measurement results of the transparent conductive film of Example 2 by the X-ray crystal diffraction method.
  • FIG. 2C is a diagram showing the results of X-ray crystal diffraction measurement of the transparent conductive film of Example 3.
  • FIG. 2D is a diagram showing the measurement results of the transparent conductive film of Comparative Example 1 by the X-ray crystal diffraction method.
  • FIG. 1A is a cross-sectional view showing an example of the transparent conductive film of the present invention.
  • FIG. 1B is a cross-sectional view showing another example of the transparent conductive film of the present invention.
  • FIG. 2E is a diagram showing measurement results of the transparent conductive film of Comparative Example 2 by the X-ray crystal diffraction method.
  • FIG. 2F is a diagram showing the measurement results of the transparent conductive film of Comparative Example 3 by the X-ray crystal diffraction method.
  • FIG. 2G is a diagram showing the measurement results of the transparent conductive film of Comparative Example 4 by the X-ray crystal diffraction method.
  • FIG. 2H is a diagram showing the measurement results of the transparent conductive film of Comparative Example 5 by the X-ray crystal diffraction method.
  • FIG. 2I is a diagram showing the measurement results of the transparent conductive film of Comparative Example 6 by the X-ray crystal diffraction method.
  • FIG. 2J is a diagram showing the measurement results of the transparent conductive film of Comparative Example 7 by the X-ray crystal diffraction method.
  • FIG. 2K is a diagram showing the measurement results of the transparent conductive film of Comparative Example 8 by the X-ray crystal diffraction method.
  • FIG. 2L is a diagram showing the measurement results of the transparent conductive film of Comparative Example 9 by the X-ray crystal diffraction method.
  • FIG. 2M is a diagram showing the measurement results of the transparent conductive film of Comparative Example 10 by the X-ray crystal diffraction method.
  • FIG. 2N is a diagram showing the measurement results of the transparent conductive film of Comparative Example 11 by the X-ray crystal diffraction method.
  • FIG. 2O is a diagram showing the measurement results of the transparent conductive film of Comparative Example 12 by the X-ray crystal diffraction method.
  • FIG. 2P is a diagram showing the measurement results of the transparent conductive film of Example 4 by the X-ray crystal diffraction method.
  • FIG. 2Q is a diagram showing the measurement results of the transparent conductive film of Example 5 by the X-ray crystal diffraction method.
  • FIG. 3A is a photograph showing the appearance of the transparent conductive film of Example 1 after a heat and humidity resistance test (60° C., 95% RH, 250 hours).
  • 3B is a photograph showing the appearance of the transparent conductive film of Example 1 after a heat and humidity resistance test (80° C., 85% RH, 250 hours).
  • 3C is a photograph showing the appearance of the transparent conductive film of Comparative Example 5 after a heat and humidity resistance test (60° C., 95% RH, 250 hours).
  • 3D is a photograph showing the appearance of the transparent conductive film of Comparative Example 5 after a heat and humidity resistance test (80° C., 85% RH, 250 hours).
  • the transparent conductive film of the present invention has a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order,
  • the first metal oxide layer contains zinc oxide and tin oxide
  • the metal layer contains at least one of silver and a silver alloy
  • the second metal oxide layer contains indium oxide and tin oxide, and further has other layers as necessary.
  • a transparent conductive film having a laminated structure having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order the second metal oxide layer is exposed. Therefore, in order to improve the conductivity of the transparent conductive film, it is desirable that the conductivity (surface resistance) itself of the second metal oxide layer is good.
  • heat treatment may be required in the post-treatment. In this case, the materials of the first and second metal oxide layers are crystallized by the heat treatment to generate grain boundaries, thereby creating passages for outside air containing water vapor in the first and second metal oxide layers. The water vapor may cause silver agglomeration in the metal layer. For this reason, the present inventors have found that it is important for the first and second metal oxide layers to have the property of being able to maintain an amorphous state over time or even after heat treatment. .
  • the present inventors have found that a transparent conductive film having a laminated structure having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order, wherein the metal layer comprises silver and It was found that by containing at least one of the silver alloys and containing indium oxide and tin oxide in the second metal oxide layer, it is possible to achieve both excellent electrical conductivity and resistance to moist heat.
  • the present inventors have found that by arranging the first and second metal oxide layers, it is possible to exhibit excellent moist heat resistance (barrier function) based on the amorphous state in the first and second metal oxide layers.
  • ⁇ Measurement conditions for the X-ray crystal diffraction method> ⁇ Device name: X-ray crystal diffraction device (XRD6100, manufactured by Shimadzu Corporation) ⁇ Standard mode ⁇ X-ray source: CuK ⁇ ⁇ Tube voltage: 40 kV ⁇ Tube current: 30mA ⁇ Drive shaft: 2 ⁇ / ⁇ ⁇ Scanning speed: 2.00°/min ⁇ Scanning step: 0.02° ⁇ Scanning range: Measure diffraction intensity from 29° to 32° ⁇ Goniometer: vertical type ⁇ Divergence slit: 1° ⁇ Scattering slit: 1° ⁇ Receiving slit: 0.30mm Next, the following values ⁇ 1> to ⁇ 3> are calculated based on the measured raw data.
  • transparent means that the haze value measured according to JIS K7136 is 15% or less.
  • the haze value of the transparent conductive film of the present invention measured according to JIS K7136 is preferably 6% or less, more preferably 4% or less, and even more preferably 2% or less. When the haze value is 6% or less, it can be suitably used for displays and the like.
  • the total light transmittance (visible light transmittance) measured according to JIS K7361-1 is preferably 78% or more, more preferably 80% or more, and further 82% or more. preferable.
  • the total light transmittance is 78% or more, a transparent conductive film with excellent transparency can be obtained, and it can be suitably used for applications requiring high visible light transmittance, such as displays and solar cells.
  • the haze value and the total light transmittance are not particularly limited and can be appropriately selected according to the purpose. can do.
  • the surface resistance value of the transparent conductive film of the present invention is preferably 30 ⁇ / ⁇ or less, more preferably 20 ⁇ / ⁇ or less, and even more preferably 15 ⁇ / ⁇ or less.
  • Examples of the method for measuring the surface resistance value include a method of measuring arbitrary 10 points with a low resistivity meter (manufactured by Mitsubishi Chemical Analytech, model number: MCP-T610) and calculating the average value. .
  • the substrate is a material that serves as the substrate of the transparent conductive film of the present invention.
  • the shape, structure, and size of the base material are not particularly limited, and can be appropriately selected according to the purpose.
  • the material of the base material is not particularly limited and can be appropriately selected depending on the intended purpose. , polyethylene-2,6-naphthalate (PEN), cycloolefin polymer (COP), triacetylcellulose (TAC), polyetheretherketone (PEEK), liquid crystal polymer (LCP), transparent polyimide (CPI), and the like.
  • PEN polyethylene-2,6-naphthalate
  • COP cycloolefin polymer
  • TAC triacetylcellulose
  • PEEK polyetheretherketone
  • LCP liquid crystal polymer
  • CPI transparent polyimide
  • the average thickness of the substrate is preferably 6 ⁇ m or more and 300 ⁇ m or less, more preferably 12 ⁇ m or more and 250 ⁇ m or less, and even more preferably 25 ⁇ m or more and 200 ⁇ m or less.
  • the average thickness of the base material can be obtained by measuring the thickness at arbitrary five points using an electronic micrometer (manufactured by Anritsu Co., Ltd., device name: KG3001A) and calculating the average value.
  • the total light transmittance of the substrate measured according to JIS K7361-1 is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the total light transmittance is not particularly limited and can be appropriately selected according to the purpose.
  • the haze value measured according to JIS K7136 is preferably 6% or less, more preferably 4% or less, and even more preferably 2% or less.
  • the transparency in a transparent conductive film can be improved as the said haze value is 6 % or less.
  • the transparent conductive film of the present invention can be suitably used for displays.
  • the haze value is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the base material includes, for example, smoothness.
  • An index of the smoothness of the base material includes, for example, the arithmetic mean roughness Ra of the surface of the base material.
  • the arithmetic mean roughness Ra of the substrate surface is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less.
  • the arithmetic mean roughness Ra of the surface of the substrate is 50 nm or less, the occurrence of defects (gaps due to surface unevenness) in the first metal oxide layer and the second metal oxide layer described later is suppressed, and silver It is possible to suppress the intrusion of water vapor that causes aggregation of the
  • the arithmetic mean roughness Ra of the surface of the base material can be measured, for example, by an optical interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan, measurement conditions: VSI mode).
  • the first metal oxide layer is arranged between the base material and a metal layer to be described later.
  • the shape, structure, and size of the first metal oxide layer are not particularly limited, and can be appropriately selected according to the purpose.
  • the material of the first metal oxide layer contains zinc oxide and tin oxide, and further contains other components as necessary.
  • the first metal oxide layer contains zinc oxide and tin oxide, it is possible to obtain a film that is amorphous and has no crystal grain boundaries, and is permeable to water vapor that causes aggregation of silver contained in the metal layer. can be made difficult.
  • the zinc oxide and tin oxide include ZTO.
  • the content of tin oxide in the zinc oxide and tin oxide is preferably 15% by mass or more and 65% by mass or less, more preferably 20% by mass or more and 60% by mass or less, based on the total amount of zinc oxide and tin oxide. % by mass or more and 55% by mass or less is more preferable.
  • a favorable amorphous film (layer) can be obtained when the content of tin oxide in the zinc oxide and tin oxide is 15% by mass or more with respect to the total amount of zinc oxide and tin oxide. Further, when the content of tin oxide in the zinc oxide and tin oxide is 65% by mass or less with respect to the total amount of zinc oxide and tin oxide, the moist heat resistance of the first metal oxide layer can be improved. can.
  • the content of zinc oxide and tin oxide in the first metal oxide layer is preferably 90% by mass or more, more preferably 95% by mass or more, relative to the total amount of the first metal oxide layer.
  • the content of zinc oxide and tin oxide in the first metal oxide layer is 90% by mass or more, the total light transmittance can be improved.
  • the other components are not particularly limited, and may contain components other than zinc oxide and tin oxide as appropriate as long as the effects of the present invention are not impaired.
  • the average thickness of the first metal oxide layer is preferably 25 nm or more and 65 nm or less, more preferably 35 nm or more and 63 nm or less, and even more preferably 40 nm or more and 60 nm or less.
  • the average thickness (height) of the first metal oxide layer can be measured as follows.
  • a substrate on which a first metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and the physical thickness of the first metal oxide layer having a plurality of levels of predetermined thickness is measured using a contact-type profilometer. Measured by Further, the amount of the material of the first metal oxide layer in the first metal oxide layer having a predetermined thickness at multiple levels was quantitatively analyzed using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Co., Ltd.). Measure. A calibration curve is prepared from the film thickness measured by the contact profilometer and the amount of material of the first metal oxide layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the amount of the material of the first metal oxide layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve.
  • XRF X-ray fluorescence spectrometer
  • the method for forming the first metal oxide layer is not particularly limited and can be appropriately selected depending on the intended purpose. and a method of treating the entire surface of the substrate using a method or the like.
  • the metal layer is arranged between the first metal oxide layer and a second metal oxide layer to be described later.
  • the shape, structure, and size of the metal layer are not particularly limited and can be appropriately selected according to the purpose.
  • the material of the metal layer contains at least one of silver and a silver alloy, and further contains other components as necessary.
  • the metal layer preferably contains a silver alloy. By containing a silver alloy in the metal layer, the effect of suppressing aggregation of silver can be improved.
  • the metal layer may contain silver as a main component, and the content of silver in the metal layer is preferably 80% by mass or more and 99.9% by mass or less, and more preferably 82% by mass or more and 99.8% by mass. % or less, and more preferably 85% by mass or more and 99.7% by mass or less.
  • the silver alloy may contain silver as a main component, and the content of silver in the silver alloy is preferably 80% by mass or more and 99.9% by mass or less, and more preferably 82% by mass or more and 99.8% by mass. % or less, and more preferably 85% by mass or more and 99.7% by mass or less.
  • the content of silver in the silver alloy is 80% by mass or more, electrical conductivity and optical properties can be improved.
  • the silver content is 99.9% by mass or less, it is possible to suppress migration and inhibit aggregation of silver more than silver alone.
  • the silver alloys include silver-copper alloys.
  • the other components are not particularly limited as long as they do not inhibit the effects of the present invention. Examples include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ru, Co, Rh, Ir. , Ni, Pd, Pt, Cu, Au, Zn, Al, Ga, In, Si, Ge, Sn, Bi, Mn, C, B, N, P, S and the like.
  • the average thickness of the metal layer is preferably 4 nm or more and 16 nm or less, more preferably 5 nm or more and 14 nm or less, and even more preferably 6 nm or more and 12 nm or less. Electrical conductivity can be improved as the average thickness of the said metal layer is 4 nm or more. Further, when the average thickness of the metal layer is 16 nm or less, the total light transmittance can be enhanced.
  • the average thickness (height) of the metal layer can be measured, for example, as follows. First, a substrate on which a plurality of levels of predetermined thickness metal layers are formed is prepared, and the physical film thickness of the plurality of levels of predetermined thicknesses of the metal layer is measured by a contact profilometer.
  • the amount of metal layer material in a plurality of levels of predetermined thickness of the metal layer is measured by quantitative analysis using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Corporation).
  • XRF fluorescent X-ray measurement device
  • a calibration curve is prepared from the film thickness measured by the contact profilometer and the material amount of the metal layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • the amount of material of the metal layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve.
  • Ten samples are prepared in the same manner, and the average value is taken as the average thickness.
  • the method for forming the metal layer is not particularly limited and can be appropriately selected according to the purpose. and a method of treating the entire exposed surface of the first metal oxide layer.
  • the second metal oxide layer is a layer arranged on the metal layer.
  • the shape, structure, and size of the second metal oxide layer are not particularly limited, and can be appropriately selected according to the purpose.
  • the material of the second metal oxide layer contains indium oxide and tin oxide, and further contains other components as necessary.
  • the conductivity of the second metal oxide layer can be improved by containing the indium oxide and tin oxide.
  • examples of the indium oxide and tin oxide include ITO.
  • the content of tin oxide in the indium oxide and tin oxide is preferably 5% by mass or more, more preferably 5% by mass or more and 14% by mass or less, and 7% by mass or more, based on the total amount of indium oxide and tin oxide. 12% by mass or less is more preferable, and 8% by mass or more and 11% by mass or less is most preferable.
  • the content of tin oxide in the indium oxide and tin oxide is 5% by mass or more, the effect of suppressing crystallization can be improved, and the conductivity and resistance to moist heat can be improved. Further, when the content of tin oxide in the indium oxide and tin oxide is 14% by mass or less, excellent total light transmittance can be obtained.
  • the content of indium oxide and tin oxide in the second metal oxide layer is preferably 95% by mass or more, more preferably 98% by mass or more, relative to the total amount of the second metal oxide layer.
  • the other components are not particularly limited, and may contain components other than the indium oxide and tin oxide as appropriate as long as the effects of the present invention are not hindered.
  • the average thickness of the second metal oxide layer is preferably 30 nm or more and 60 nm or less, more preferably 32 nm or more and 55 nm or less, and even more preferably 35 nm or more and 50 nm or less.
  • the average thickness (height) of the second metal oxide layer can be measured, for example, as follows.
  • a substrate on which a second metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and the physical thickness of the second metal oxide layer having a plurality of levels of predetermined thickness is measured by a contact profilometer. Measure. In addition, the amount of the material of the second metal oxide layer in the second metal oxide layer having a predetermined thickness at multiple levels was quantitatively analyzed using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Co., Ltd.). Measure. A calibration curve is prepared from the film thickness measured by the contact profilometer and the amount of the material of the second metal oxide layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the amount of the material of the second metal oxide layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve.
  • XRF X-ray fluorescence spectrometer
  • the arithmetic mean roughness Ra of the surface of the second metal oxide layer is preferably 15 nm or less, more preferably 11 nm or less, and even more preferably 10 nm or less.
  • the arithmetic mean roughness Ra of the surface of the second metal oxide layer can be measured by a light interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan, measurement conditions: VSI mode).
  • the surface of the second metal oxide layer means the surface of the second metal oxide layer that is not the side facing the metal layer.
  • the surface resistance value of only the second metal oxide layer is preferably 10,000 ⁇ /square or less, more preferably 5,000 ⁇ /square or less, and even more preferably 1,000 ⁇ /square or less.
  • a method for measuring the surface resistance value for example, only the second metal oxide layer is formed on the substrate, and an arbitrary 10 For example, a method of measuring points and calculating the average value thereof can be used.
  • the method for forming the second metal oxide layer is not particularly limited and can be appropriately selected according to the purpose.
  • the entire exposed surface of the metal layer is treated using a method or the like.
  • hydrogen in the reaction atmosphere it is possible to obtain a film (layer) in which the second metal oxide layer can maintain an amorphous state even when heat is applied, and a transparent conductive film having excellent moist heat resistance. can be obtained.
  • the other layer is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an underlayer.
  • the underlying layer is a layer arranged between the substrate and the first metal oxide layer.
  • the shape, structure, and size of the underlying layer are not particularly limited, and can be appropriately selected according to the purpose.
  • Examples of materials for the base layer include acrylic resins, ester resins, silicone resins, and organic-inorganic hybrid materials.
  • the average thickness of the underlayer is preferably 50 nm or more and 3,500 nm or less, more preferably 70 nm or more and 3,000 nm or less, and even more preferably 80 nm or more and 2,500 nm or less.
  • the average thickness (height) of the underlying layer can be measured, for example, as follows.
  • the reflected waveform of the substrate on which the underlayer is formed is measured using an ultraviolet-visible spectrophotometer (UV3600, manufactured by Shimadzu Corporation), and the average thickness (height) of the underlayer is calculated from the spectrum shape. be able to.
  • the arithmetic surface roughness Ra of the surface of the underlayer is not particularly limited and can be appropriately selected according to the purpose, but the smaller the better.
  • the height Ra can be reduced.
  • the method for forming the base layer is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include a method of treating the entire surface of the base material using wet coating or the like.
  • FIG. 1A is a cross-sectional view showing an example of the transparent conductive film of the present invention.
  • FIG. 1B is a cross-sectional view showing another example of the transparent conductive film of the present invention.
  • the transparent conductive film 10 shown in FIG. 1A has a first metal oxide layer 12a, a metal layer 13, and a second metal oxide layer 12b on a substrate 11 in this order.
  • the transparent conductive film 10 shown in FIG. 1B is the transparent conductive film 10 shown in FIG. It is the same as the transparent conductive film 10 shown.
  • transparent conductive film of the present invention includes, for example, liquid crystal displays, organic EL, inorganic EL lighting, thin film solar cells, electromagnetic wave shields, window films, electronic blackboards, and transparent electrodes such as transparent heaters.
  • ZTO containing 70% by mass of and 30% by mass of tin oxide was sputtered to form a first metal oxide layer having an average thickness of 53 nm.
  • the pressure during film formation was adjusted to 0.25 Pa and the input power density was adjusted to 1.5 W/cm 2 , and under the introduction of argon gas, 89% by mass of silver and 11% of copper were added.
  • a silver alloy containing 1% by mass was sputtered to form a metal layer with an average thickness of 11 nm.
  • Example 2 ⁇ Production of Transparent Conductive Film 2>
  • the material of the underlayer was changed to Si Coat 801 (silicone resin, manufactured by Momentive Performance Materials Japan LLC) to form an underlayer with an average thickness of 90 nm. Then, a transparent conductive film 2 was obtained.
  • Si Coat 801 silicone resin, manufactured by Momentive Performance Materials Japan LLC
  • Example 3 ⁇ Production of transparent conductive film 3>
  • the material of the underlayer was changed to NSC-3162A (silicone resin, manufactured by Nippon Fine Chemical Co., Ltd.) and an underlayer with an average thickness of 1.5 ⁇ m was formed.
  • a transparent conductive film 3 was obtained.
  • Example 4 ⁇ Production of Transparent Conductive Film 4> Example 1 except that "ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide" in Example 1 was changed to "ITO containing 95% by mass of indium oxide and 5% by mass of tin oxide”. A transparent conductive film 4 was obtained in the same manner.
  • Example 5 ⁇ Production of Transparent Conductive Film 5> Example 2 except that "ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide" in Example 2 was changed to "ITO containing 95% by mass of indium oxide and 5% by mass of tin oxide”. A transparent conductive film 5 was obtained in the same manner as above.
  • Example 1 ⁇ Production of Transparent Conductive Film 6>
  • Example 4 ⁇ Production of Transparent Conductive Film 9>
  • the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were adjusted to a film-forming pressure of 0.37 Pa and an input power density of 3.3 W/cm 2 .
  • argon gas and oxygen gas 98: 2
  • ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide was sputtered, and the average thickness was changed to 43 nm.
  • a transparent conductive film 9 was obtained in the same manner as in Example 1.
  • Example 5 ⁇ Production of transparent conductive film 10>
  • Example 2 the same procedure as in Example 2 was performed except that the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 4. , a transparent conductive film 10 was obtained.
  • Example 6 ⁇ Production of transparent conductive film 11>
  • Example 3 the same procedure as in Example 3 was performed except that the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 4. , a transparent conductive film 11 was obtained.
  • Example 7 ⁇ Production of transparent conductive film 12>
  • a transparent conductive film 12 was obtained in the same manner as in Example 1, except for changing as follows.
  • Example 8 ⁇ Production of transparent conductive film 13> In Example 2, a transparent A conductive film 13 was obtained.
  • Example 9 (Comparative Example 9) ⁇ Production of Transparent Conductive Film 14> In Example 3, a transparent A conductive film 14 was obtained.
  • Example 10 (Comparative Example 10) ⁇ Production of Transparent Conductive Film 15>
  • the conditions for forming the first metal oxide layer were the same as the conditions for forming the second metal oxide layer, and the average thickness of the first metal oxide layer and the second metal oxide layer was A transparent conductive film 15 was obtained in the same manner as in Example 1, except that the thickness was changed to 43 nm.
  • Example 11 ⁇ Production of Transparent Conductive Film 16>
  • Example 2 the same conditions as in Example 2 were repeated except that the conditions for forming the first metal oxide layer and the average thickness of the second metal oxide layer and the average thickness of the second metal oxide layer were changed to the same conditions as in Comparative Example 10. Thus, a transparent conductive film 16 was obtained.
  • Example 12 ⁇ Production of Transparent Conductive Film 17>
  • Example 3 the same conditions as in Example 3 were repeated except that the conditions for forming the first metal oxide layer and the average thickness of the second metal oxide layer and the average thickness of the second metal oxide layer were changed to the same conditions as in Comparative Example 10. Thus, a transparent conductive film 17 was obtained.
  • Example 13 ⁇ Production of Transparent Conductive Film 18>
  • the average thickness of the first metal oxide layer was changed to 55 nm, and the pressure during film formation was adjusted to 0.37 Pa and the input power density to 3.3 W / cm 2 on the metal layer
  • ZTO containing 70% by mass of zinc oxide and 30% by mass of tin oxide was sputtered to form a second metal oxide layer with an average thickness of 40 nm.
  • a transparent conductive film 18 was obtained in the same manner as in Example 2, except that
  • the average thickness of each layer in the produced transparent conductive film was measured as follows. First, a substrate on which a first metal oxide layer, a metal layer, or a second metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and a physical film thickness of each layer having a plurality of levels of predetermined thickness is obtained. was measured with a contact-type profilometer. Also, the first metal oxide layer, the metal layer, or the second metal oxide layer in the predetermined thickness of the first metal oxide layer, the metal layer, or the second metal oxide layer at the plurality of levels was measured by quantitative analysis using a fluorescent X-ray measuring device (XRF, manufactured by Rigaku Corporation).
  • XRF fluorescent X-ray measuring device
  • a calibration curve was prepared from the film thickness measured by the contact profilometer and the material amount of each layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • the transparent conductive film was subjected to quantitative analysis using an X-ray fluorescence spectrometer (XRF) to detect elements derived from each layer, and the average value of the measured values at 10 locations was taken as the average thickness.
  • XRF X-ray fluorescence spectrometer
  • the line intensity was detected, and the fluorescent X-ray intensity of indium derived from the second metal oxide layer was detected for the average thickness of the second metal oxide layer.
  • the average thickness of the underlayer is measured using a UV-visible spectrophotometer (UV3600, manufactured by Shimadzu Corporation) for the reflected waveform of the substrate on which the underlayer is formed, and the average thickness (height) of the underlayer is determined. Calculated. For each layer, the average value of the measured values at 10 locations was taken as the average thickness. The results are shown in Tables 1-4.
  • the arithmetic surface roughness Ra of the surface of the second metal oxide was measured with a light interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan Co., Ltd.) Condition: Measured using VSI mode). The results are shown in Tables 1-4.
  • the obtained transparent conductive films 1 to 17 were heat-treated for 30 minutes in a constant temperature device (device name: DRX420DA, manufactured by ADVANTEC Co., Ltd.) at 150°C.
  • a constant temperature device device name: DRX420DA, manufactured by ADVANTEC Co., Ltd.
  • crystallinity of the second metal oxide layer in the transparent conductive film was confirmed by the following X-ray crystal diffraction method.
  • ZTO was used for the second metal oxide layer
  • the crystallinity of the second metal oxide layer was not confirmed. Specifically, it was confirmed by the following method. First, X-ray crystal diffraction was performed under the following conditions.
  • the obtained transparent conductive film was subjected to a moisture and heat resistance test as follows.
  • Total light transmittance measurement The total light transmittance was measured for the transparent conductive film before the heat and humidity resistance test and after the heat and humidity resistance test.
  • the total light transmittance was measured according to JIS K7361-1/HAZE: JIS K7136 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number: NDH5000SP).
  • the tape was instantaneously peeled off in a direction orthogonal to the bonded surfaces, and the peeling state of the second metal oxide was confirmed.
  • the results are shown in Tables 1-4.
  • the numerator represents the number of masses remaining without peeling, and 100/100 represents the state without peeling.
  • the measurement results were evaluated according to the following evaluation criteria. Among the evaluation results of each condition of the moist heat resistance test ("60 ° C., 95% RH, 250 hours" and "85 ° C., 85% RH, 250 hours"), the worse evaluation result is the evaluation of the transparent conductive film. bottom. In addition, if the evaluation result is 2 or more, it is a level that poses no problem in actual use. [Evaluation criteria] 3: The number of remaining squares is 100/100 2: The number of remaining squares is 90/100 or more and less than 100/100 1: The number of remaining squares is less than 90/100
  • Tables 1 to 4 show that the transparent conductive films of Examples 1 to 5 can maintain excellent appearance, conductivity, total light transmittance, and adhesion even after the wet heat resistance test.

Abstract

The present invention provides a transparent conductive film which sequentially comprises a base material, a first metal oxide layer, a metal layer and a second metal oxide layer in this order, wherein: the first metal oxide layer contains zinc oxide and tin oxide; the metal layer contains at least one of silver and a silver alloy; the second metal oxide layer contains indium oxide and tin oxide; and a peak in not detected at 2θ = 29° to 32° as measured by X-ray crystal diffractometry after subjecting the transparent conductive film to a heat treatment at 150°C for 30 minutes.

Description

透明導電性フィルムtransparent conductive film
 本発明は、透明導電性フィルムに関する。 The present invention relates to transparent conductive films.
 現在、タッチパネル、電子ペーパー、液晶ディスプレイ、RF-IDタグなど、さまざまな製品で透明導電性フィルムが用いられている。
 透明導電性フィルムとしては、酸化インジウムと酸化スズからなるITOの薄膜を形成したものなどがあるが、太陽電池、有機EL、電磁波シールド、EC調光シート、大面積ディスプレイ用の透明電極では、より高い導電性が求められる。
At present, transparent conductive films are used in various products such as touch panels, electronic paper, liquid crystal displays, and RF-ID tags.
As a transparent conductive film, there is a thin film of ITO made of indium oxide and tin oxide. High conductivity is required.
 ITOの薄膜で高い導電性を得るためには、キャリア密度や移動度の最適化に加え、小型のタッチパネル等で用いられている数倍の膜厚が求められる。しかしながら、膜厚が厚くなると、ITO薄膜が割れやすくなり、フレキシブル性が損なわれる。また、加工時間の増加による高コスト化も避けられない。
 そこで、高い導電性を発現させるために、比抵抗の低い銀合金を用いた透明電極として金属酸化物、銀合金、金属酸化物の薄層をこの順に積層したもの(金属酸化物/銀合金/金属酸化物)が提案されている(例えば、特許文献1参照)。
 この透明電極では、キャリア密度がITOよりも一桁高い銀合金を用いることにより、高い導電性を得つつ、金属酸化物/銀合金/金属酸化物の積層体の平均厚みを薄くできるため、フレキシブル性を向上させつつ、製造コストを抑制している。
In order to obtain high conductivity in a thin ITO film, in addition to optimizing the carrier density and mobility, the film thickness is required to be several times that used in small touch panels and the like. However, when the film thickness is increased, the ITO thin film is easily cracked, and the flexibility is impaired. Moreover, an increase in cost due to an increase in processing time cannot be avoided.
Therefore, in order to develop high conductivity, a transparent electrode using a silver alloy with a low specific resistance is formed by laminating a metal oxide, a silver alloy, and a thin layer of a metal oxide in this order (metal oxide/silver alloy/ metal oxides) have been proposed (see, for example, Patent Document 1).
In this transparent electrode, by using a silver alloy whose carrier density is one order of magnitude higher than that of ITO, the average thickness of the laminate of metal oxide/silver alloy/metal oxide can be reduced while obtaining high conductivity. It reduces manufacturing costs while improving performance.
特開2002-15623号公報JP-A-2002-15623
 しかしながら、特許文献1に開示の技術では、金属酸化物/銀合金/金属酸化物の積層構造を有する電極において、銀合金をITOなどの同一の金属酸化物で挟んでおり、金属酸化物を透過した水蒸気などにより、銀合金中の銀が凝集しやすく、耐湿熱性が低下してしまう場合があるという問題がある。
 また、銀が凝集すると外観が悪くなりディスプレイ用途に使用しにくくなるだけでなく、太陽電池などにおいても光電変換効率が低下する場合があるという問題がある。
 これらの問題から、銀の凝集を抑制することは非常に重要である。
However, in the technique disclosed in Patent Document 1, in an electrode having a laminated structure of metal oxide/silver alloy/metal oxide, the silver alloy is sandwiched between the same metal oxide such as ITO, and the metal oxide is transparent. There is a problem that silver in the silver alloy tends to agglomerate due to the water vapor and the like, and the resistance to moist heat may be lowered.
In addition, aggregation of silver deteriorates the appearance and makes it difficult to use for display applications. In addition, there is a problem that the photoelectric conversion efficiency may be lowered in solar cells and the like.
Due to these problems, it is very important to suppress aggregation of silver.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、導電性及び耐湿熱性に優れる透明導電性フィルムを提供することを目的とする。 The object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a transparent conductive film which is excellent in conductivity and resistance to moist heat.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基材と、第1の金属酸化物層と、金属層と、第2の金属酸化物層と、をこの順に有する透明導電性フィルムであって、
 前記第1の金属酸化物層は、酸化亜鉛及び酸化スズを含有し、
 前記金属層は、銀及び銀合金の少なくともいずれかを含有し、
 前記第2の金属酸化物層は、酸化インジウム及び酸化スズを含有し、
 前記透明導電性フィルムを、150℃、30分間、熱処理した後に、X線結晶回折法で測定したときに、2θ=29°~32°においてピークが検出されないことを特徴とする透明導電性フィルムである。
 <2> 前記第2の金属酸化物層の算術平均粗さRaが、15nm以下である前記<1>に記載の透明導電性フィルムである。
 <3> 前記第2の金属酸化物層における酸化スズの含有量が、前記酸化インジウム及び前記酸化スズの合計量に対して、5質量%以上である前記<1>又は<2>に記載の透明導電性フィルムである。
 <4> JIS K7361-1に準じて測定される全光線透過率が82%以上である前記<1>から<3>のいずれかに記載の透明導電性フィルムである。
Means for solving the above problems are as follows. Namely
<1> A transparent conductive film having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order,
The first metal oxide layer contains zinc oxide and tin oxide,
the metal layer contains at least one of silver and a silver alloy,
The second metal oxide layer contains indium oxide and tin oxide,
A transparent conductive film characterized in that no peak is detected at 2θ = 29 ° to 32 ° when the transparent conductive film is heat-treated at 150 ° C. for 30 minutes and then measured by X-ray crystal diffraction. be.
<2> The transparent conductive film according to <1>, wherein the second metal oxide layer has an arithmetic mean roughness Ra of 15 nm or less.
<3> The content of tin oxide in the second metal oxide layer is 5% by mass or more with respect to the total amount of the indium oxide and the tin oxide. It is a transparent conductive film.
<4> The transparent conductive film according to any one of <1> to <3>, having a total light transmittance of 82% or more as measured according to JIS K7361-1.
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、導電性及び耐湿熱性に優れる透明導電性フィルムを提供することができる。 According to the present invention, it is possible to solve the above-mentioned conventional problems, achieve the above-mentioned objects, and provide a transparent conductive film excellent in conductivity and resistance to moist heat.
図1Aは、本発明の透明導電性フィルムの一例を示す断面図である。FIG. 1A is a cross-sectional view showing an example of the transparent conductive film of the present invention. 図1Bは、本発明の透明導電性フィルムの他の一例を示す断面図である。FIG. 1B is a cross-sectional view showing another example of the transparent conductive film of the present invention. 図2Aは、実施例1の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2A is a diagram showing the measurement results of the transparent conductive film of Example 1 by the X-ray crystal diffraction method. FIG. 図2Bは、実施例2の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2B is a diagram showing the measurement results of the transparent conductive film of Example 2 by the X-ray crystal diffraction method. FIG. 図2Cは、実施例3の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2C is a diagram showing the results of X-ray crystal diffraction measurement of the transparent conductive film of Example 3. FIG. 図2Dは、比較例1の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2D is a diagram showing the measurement results of the transparent conductive film of Comparative Example 1 by the X-ray crystal diffraction method. FIG. 図2Eは、比較例2の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2E is a diagram showing measurement results of the transparent conductive film of Comparative Example 2 by the X-ray crystal diffraction method. FIG. 図2Fは、比較例3の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2F is a diagram showing the measurement results of the transparent conductive film of Comparative Example 3 by the X-ray crystal diffraction method. FIG. 図2Gは、比較例4の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2G is a diagram showing the measurement results of the transparent conductive film of Comparative Example 4 by the X-ray crystal diffraction method. FIG. 図2Hは、比較例5の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2H is a diagram showing the measurement results of the transparent conductive film of Comparative Example 5 by the X-ray crystal diffraction method. FIG. 図2Iは、比較例6の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2I is a diagram showing the measurement results of the transparent conductive film of Comparative Example 6 by the X-ray crystal diffraction method. FIG. 図2Jは、比較例7の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2J is a diagram showing the measurement results of the transparent conductive film of Comparative Example 7 by the X-ray crystal diffraction method. FIG. 図2Kは、比較例8の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2K is a diagram showing the measurement results of the transparent conductive film of Comparative Example 8 by the X-ray crystal diffraction method. FIG. 図2Lは、比較例9の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2L is a diagram showing the measurement results of the transparent conductive film of Comparative Example 9 by the X-ray crystal diffraction method. FIG. 図2Mは、比較例10の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2M is a diagram showing the measurement results of the transparent conductive film of Comparative Example 10 by the X-ray crystal diffraction method. FIG. 図2Nは、比較例11の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2N is a diagram showing the measurement results of the transparent conductive film of Comparative Example 11 by the X-ray crystal diffraction method. FIG. 図2Oは、比較例12の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2O is a diagram showing the measurement results of the transparent conductive film of Comparative Example 12 by the X-ray crystal diffraction method. FIG. 図2Pは、実施例4の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2P is a diagram showing the measurement results of the transparent conductive film of Example 4 by the X-ray crystal diffraction method. FIG. 図2Qは、実施例5の透明導電性フィルムにおけるX線結晶回折法の測定結果を示す図である。2Q is a diagram showing the measurement results of the transparent conductive film of Example 5 by the X-ray crystal diffraction method. FIG. 図3Aは、実施例1の透明導電性フィルムにおける耐湿熱試験後(60℃、95%RH、250時間)の外観を示す写真である。3A is a photograph showing the appearance of the transparent conductive film of Example 1 after a heat and humidity resistance test (60° C., 95% RH, 250 hours). 図3Bは、実施例1の透明導電性フィルムにおける耐湿熱試験後(80℃、85%RH、250時間)の外観を示す写真である。3B is a photograph showing the appearance of the transparent conductive film of Example 1 after a heat and humidity resistance test (80° C., 85% RH, 250 hours). 図3Cは、比較例5の透明導電性フィルムにおける耐湿熱試験後(60℃、95%RH、250時間)の外観を示す写真である。3C is a photograph showing the appearance of the transparent conductive film of Comparative Example 5 after a heat and humidity resistance test (60° C., 95% RH, 250 hours). 図3Dは、比較例5の透明導電性フィルムにおける耐湿熱試験後(80℃、85%RH、250時間)の外観を示す写真である。3D is a photograph showing the appearance of the transparent conductive film of Comparative Example 5 after a heat and humidity resistance test (80° C., 85% RH, 250 hours).
(透明導電性フィルム)
 本発明の透明導電性フィルムは、基材と、第1の金属酸化物層と、金属層と、第2の金属酸化物層と、をこの順に有し、
 前記第1の金属酸化物層は、酸化亜鉛及び酸化スズを含有し、
 前記金属層は、銀及び銀合金の少なくともいずれかを含有し、
 前記第2の金属酸化物層は、酸化インジウム及び酸化スズを含有し、さらに必要に応じてその他の層を有する。
 本発明の透明導電性フィルムは、前記透明導電性フィルムを、150℃、30分間、熱処理した後に、X線結晶回折法で測定したときに、2θ=29°~32°におけるピークが検出されない。
(transparent conductive film)
The transparent conductive film of the present invention has a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order,
The first metal oxide layer contains zinc oxide and tin oxide,
the metal layer contains at least one of silver and a silver alloy,
The second metal oxide layer contains indium oxide and tin oxide, and further has other layers as necessary.
In the transparent conductive film of the present invention, no peak at 2θ = 29° to 32° is detected when measured by X-ray crystal diffraction after heat-treating the transparent conductive film at 150°C for 30 minutes.
 基材と、第1の金属酸化物層と、金属層と、第2の金属酸化物層と、をこの順に有する積層構造の透明導電性フィルムでは、第2の金属酸化物層が露出するように配されているため、透明導電性フィルムの導電性を良好にするためには、第2の金属酸化物層の導電性(表面抵抗)自体が良好であることが望ましい。
 また、透明導電性フィルムの用途によっては、後処理において熱処理が必要な場合がある。この場合、熱処理によって第1及び第2の金属酸化物層の材質が結晶化して結晶粒界が発生することにより、第1及び第2の金属酸化物層において水蒸気を含む外気の通り道が生じてしまい、水蒸気によって金属層に銀の凝集を生じさせてしまう恐れがある。このため、第1及び第2の金属酸化物層としては、経時的又は熱処理しても非晶質状態を維持することができる性質を有することが重要であることを本発明者らは見出した。
In a transparent conductive film having a laminated structure having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order, the second metal oxide layer is exposed. Therefore, in order to improve the conductivity of the transparent conductive film, it is desirable that the conductivity (surface resistance) itself of the second metal oxide layer is good.
Further, depending on the use of the transparent conductive film, heat treatment may be required in the post-treatment. In this case, the materials of the first and second metal oxide layers are crystallized by the heat treatment to generate grain boundaries, thereby creating passages for outside air containing water vapor in the first and second metal oxide layers. The water vapor may cause silver agglomeration in the metal layer. For this reason, the present inventors have found that it is important for the first and second metal oxide layers to have the property of being able to maintain an amorphous state over time or even after heat treatment. .
 本発明者らは、基材と、第1の金属酸化物層と、金属層と、第2の金属酸化物層と、をこの順に有する積層構造の透明導電性フィルムにおいて、金属層が銀及び銀合金の少なくともいずれかを含有し、第2の金属酸化物層が酸化インジウム及び酸化スズを含有させることによって、優れた導電性及び耐湿熱性の両立を達成することができることを見出した。
 特に、(1)キャリア濃度の高い金属層と、表面抵抗の低い第2の金属酸化物層とを組み合わせることによって、優れた導電性を発揮できること、並びに、(2-1)それ自体の表面抵抗は高いものの、酸化亜鉛及び酸化スズを含有する結晶化しにくい第1の金属酸化物層を基材側に配すること、及び(2-2)非晶質状態の第2の金属酸化物層を配することによって、第1及び第2の金属酸化物層における非晶質状態に基づく優れた耐湿熱性(バリア機能)を発揮することができることを本発明者らは見出した。
 なお、酸化インジウム及び酸化スズを含有する第2の金属酸化物層について、「経時的又は熱処理しても非晶質状態を維持することができる」とは、150℃、30分間の条件下で熱処理(促進試験)を行った後、X線結晶回折法で第2の金属酸化物層におけるITOの(222)面に対応する2θ=29°~32°においてピークが出ているか否かによって確認することができる。2θ=29°~32°においてピークが出ている場合、促進試験により結晶化していることを意味し、経時的で結晶化しやすい性質(膜質)であると判断することができる。逆に、2θ=29°~32°においてピークが出ていない場合、促進試験をしても結晶化していないことを意味し、経時的で結晶化しにくい性質(膜質)であると判断することができる。
The present inventors have found that a transparent conductive film having a laminated structure having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order, wherein the metal layer comprises silver and It was found that by containing at least one of the silver alloys and containing indium oxide and tin oxide in the second metal oxide layer, it is possible to achieve both excellent electrical conductivity and resistance to moist heat.
In particular, (1) by combining a metal layer with a high carrier concentration and a second metal oxide layer with a low surface resistance, excellent conductivity can be exhibited, and (2-1) the surface resistance of itself (2-2) disposing a first metal oxide layer containing zinc oxide and tin oxide that is difficult to crystallize on the substrate side, and (2-2) forming a second metal oxide layer in an amorphous state; The present inventors have found that by arranging the first and second metal oxide layers, it is possible to exhibit excellent moist heat resistance (barrier function) based on the amorphous state in the first and second metal oxide layers.
In addition, regarding the second metal oxide layer containing indium oxide and tin oxide, the phrase “can maintain an amorphous state over time or even after heat treatment” means that After heat treatment (acceleration test), it is confirmed by X-ray crystal diffraction whether a peak appears at 2θ = 29 ° to 32 ° corresponding to the (222) plane of ITO in the second metal oxide layer. can do. When a peak appears at 2θ=29° to 32°, it means that the film is crystallized by the accelerated test, and it can be judged that the film has a property (film quality) that tends to crystallize over time. Conversely, if there is no peak at 2θ = 29° to 32°, it means that crystallization has not occurred even in the accelerated test, and it can be judged that the film has a property (film quality) that is difficult to crystallize over time. can.
 なお、酸化インジウム及び酸化スズを含有する第2の金属酸化物層におけるITOの(222)面に対応する2θ=29°~32°においてピークがないことは、X線結晶回折法の測定結果により判定することができる。
 具体的には、以下の方法で確認することができる。
 まず、以下の条件でX線結晶回折法を行う。
<X線結晶回折法の測定条件>
  ・装置名:X線結晶回折装置(XRD6100、株式会社島津製作所製)
  ・標準モード
  ・X線源:CuKα
  ・管電圧:40kV
  ・管電流:30mA
  ・駆動軸:2θ/θ
  ・走査速度:2.00°/min
  ・走査ステップ:0.02°
  ・走査範囲:29°~32°までの回折強度を測定
  ・ゴニオメーター:縦型
  ・ダイバージェンススリット:1°
  ・スッキャッタリングスリット:1°
  ・レシービングスリット:0.30mm
 次に、測定した未加工のデータに基づき、以下の値<1>~<3>を算出する。
  <1> 30°~31°の範囲における回折強度の最大値
  <2> 29°及び32°の回折強度を加算し2で割った値
  <3> <1>を<2>で除した値
 「<1>30°~31°の範囲における回折強度の最大値」は、第2の金属酸化物層におけるITOが結晶化しているときは、ITOが結晶化していないときにくらべて高い値となる。
 また、「<1>30°~31°の範囲における回折強度の最大値」は、第2の金属酸化物層におけるITOが結晶化していないときには、「<2>29°及び32°の回折強度を加算し2で割った値」に近しい値となる。
 このことから、本発明においては、「<3> <1>を<2>で除した値」が1.2以上のときは「ピークが検出されている」と判定し、「<3> <1>を<2>で除した値」が1.2未満のときは「ピークが検出されない」と判定することとする。
The absence of a peak at 2θ = 29° to 32° corresponding to the (222) plane of ITO in the second metal oxide layer containing indium oxide and tin oxide is based on the measurement results of the X-ray crystal diffraction method. can judge.
Specifically, it can be confirmed by the following method.
First, an X-ray crystal diffraction method is performed under the following conditions.
<Measurement conditions for the X-ray crystal diffraction method>
・ Device name: X-ray crystal diffraction device (XRD6100, manufactured by Shimadzu Corporation)
・Standard mode ・X-ray source: CuKα
・Tube voltage: 40 kV
・Tube current: 30mA
・Drive shaft: 2θ/θ
・Scanning speed: 2.00°/min
・Scanning step: 0.02°
・Scanning range: Measure diffraction intensity from 29° to 32° ・Goniometer: vertical type ・Divergence slit: 1°
・Scattering slit: 1°
・Receiving slit: 0.30mm
Next, the following values <1> to <3> are calculated based on the measured raw data.
<1> Maximum value of diffraction intensity in the range of 30° to 31° <2> Value obtained by adding diffraction intensity at 29° and 32° and dividing by 2 <3> Value obtained by dividing <1> by <2><1> Maximum value of diffraction intensity in the range of 30° to 31°” is higher when the ITO in the second metal oxide layer is crystallized than when the ITO is not crystallized. .
Further, "<1> the maximum value of the diffraction intensity in the range of 30° to 31°" is "<2> the diffraction intensity at 29° and 32° when the ITO in the second metal oxide layer is not crystallized. is added and divided by 2".
Therefore, in the present invention, when "the value obtained by dividing <3><1> by <2>" is 1.2 or more, it is determined that "the peak is detected", and "<3>< When the value obtained by dividing 1> by <2> is less than 1.2, it is determined that 'no peak is detected'.
 なお、本発明において、「透明」とは、JIS K7136に準拠して測定したヘーズ値が15%以下であることを意味する。本発明の透明導電性フィルムのJIS K7136に準拠して測定されるヘーズ値としては、6%以下が好ましく、4%以下がより好ましく、2%以下がさらに好ましい。前記ヘーズ値が6%以下であると、ディスプレイ用途などに好適に用いることができる。
 本発明の透明導電性フィルムにおける、JIS K7361-1に準じて測定される全光線透過率(可視光透過率)としては、78%以上が好ましく、80%以上がより好ましく、82%以上がさらに好ましい。前記全光線透過率が78%以上であると、透明性に優れる透明導電性フィルムを得ることができ、ディスプレイや太陽電池などの高い可視光透過性が必要な用途に好適に用いることができる。
 前記ヘーズ値、及び前記全光線透過率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘーズメーター(日本電色工業株式会社製、型番等:NDH5000SP)などによって測定することができる。
In the present invention, "transparent" means that the haze value measured according to JIS K7136 is 15% or less. The haze value of the transparent conductive film of the present invention measured according to JIS K7136 is preferably 6% or less, more preferably 4% or less, and even more preferably 2% or less. When the haze value is 6% or less, it can be suitably used for displays and the like.
In the transparent conductive film of the present invention, the total light transmittance (visible light transmittance) measured according to JIS K7361-1 is preferably 78% or more, more preferably 80% or more, and further 82% or more. preferable. When the total light transmittance is 78% or more, a transparent conductive film with excellent transparency can be obtained, and it can be suitably used for applications requiring high visible light transmittance, such as displays and solar cells.
The haze value and the total light transmittance are not particularly limited and can be appropriately selected according to the purpose. can do.
 本発明の透明導電性フィルムの表面抵抗値としては、30Ω/□以下が好ましく、20Ω/□以下がより好ましく、15Ω/□以下がさらに好ましい。
 前記表面抵抗値の測定方法としては、例えば、低抵抗率計(三菱化学アナリテック社製、型番:MCP-T610)により任意の10点を測定し、その平均値を算出する方法などが挙げられる。
The surface resistance value of the transparent conductive film of the present invention is preferably 30Ω/□ or less, more preferably 20Ω/□ or less, and even more preferably 15Ω/□ or less.
Examples of the method for measuring the surface resistance value include a method of measuring arbitrary 10 points with a low resistivity meter (manufactured by Mitsubishi Chemical Analytech, model number: MCP-T610) and calculating the average value. .
<基材>
 前記基材は、本発明の透明導電性フィルムの基板となる材料である。
<Base material>
The substrate is a material that serves as the substrate of the transparent conductive film of the present invention.
 前記基材の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, structure, and size of the base material are not particularly limited, and can be appropriately selected according to the purpose.
 前記基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリメタクリル酸メチル(PMMA)等のポリ(メタ)アクリル酸エステル、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、透明ポリイミド(CPI)等が挙げられる。 The material of the base material is not particularly limited and can be appropriately selected depending on the intended purpose. , polyethylene-2,6-naphthalate (PEN), cycloolefin polymer (COP), triacetylcellulose (TAC), polyetheretherketone (PEEK), liquid crystal polymer (LCP), transparent polyimide (CPI), and the like.
 前記基材の平均厚みとしては、6μm以上300μm以下が好ましく、12μm以上250μm以下がより好ましく、25μm以上200μm以下がさらに好ましい。前記基材の平均厚みが6μm以上であることにより、加工時のハンドリング性を向上させることができる。また、前記基材の平均厚みが300μm以下であることにより、柔軟性のある透明導電性フィルムを得ることができる。
 前記基材の平均厚みは、電子マイクロメーター(アンリツ株式会社製、装置名:KG3001A)を用いて、任意の5点の厚みを測定し、その平均値を算出することにより求めることができる。
The average thickness of the substrate is preferably 6 μm or more and 300 μm or less, more preferably 12 μm or more and 250 μm or less, and even more preferably 25 μm or more and 200 μm or less. When the average thickness of the base material is 6 μm or more, the handleability during processing can be improved. Moreover, when the average thickness of the substrate is 300 μm or less, a flexible transparent conductive film can be obtained.
The average thickness of the base material can be obtained by measuring the thickness at arbitrary five points using an electronic micrometer (manufactured by Anritsu Co., Ltd., device name: KG3001A) and calculating the average value.
 前記基材における、JIS K7361-1に準じて測定される全光線透過率としては、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。前記全光線透過率が60%以上であると、透明導電性フィルムの透明性を向上させることができる。
 前記全光線透過率としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘーズメーター(日本電色工業株式会社製、型番等:NDH5000SP)などによって測定することができる。
The total light transmittance of the substrate measured according to JIS K7361-1 is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. When the total light transmittance is 60% or more, the transparency of the transparent conductive film can be improved.
The total light transmittance is not particularly limited and can be appropriately selected according to the purpose.
 また、前記基材においては、JIS K7136に準拠して測定したヘーズ値は6%以下が好ましく、4%以下がより好ましく、2%以下がさらに好ましい。前記ヘーズ値が6%以下であると、透明導電性フィルムにおける透明性を向上させることができる。また、前記ヘーズ値が2%以下であると、本発明の透明導電性フィルムをディスプレイ用途に好適に用いることができる。
 前記ヘーズ値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘーズメーター(日本電色工業株式会社製、装置名:NDH5000SP)などによって測定することができる。
Further, in the substrate, the haze value measured according to JIS K7136 is preferably 6% or less, more preferably 4% or less, and even more preferably 2% or less. The transparency in a transparent conductive film can be improved as the said haze value is 6 % or less. Moreover, when the haze value is 2% or less, the transparent conductive film of the present invention can be suitably used for displays.
The haze value is not particularly limited and can be appropriately selected depending on the intended purpose.
 前記基材のその他の特性としては、例えば、平滑性などが挙げられる。 Other properties of the base material include, for example, smoothness.
 前記基材の平滑性の指標としては、例えば、前記基材の表面の算術平均粗さRaが挙げられる。
 前記基材の表面の算術平均粗さRaとしては、50nm以下が好ましく、30nm以下がより好ましく、20nm以下がさらに好ましい。前記基材の表面の算術平均粗さRaが50nm以下であると、後述する第1の金属酸化物層及び第2の金属酸化物層の欠陥(表面凹凸による隙間)の発生を抑制し、銀の凝集の原因となる水蒸気の侵入を抑制することができる。
 前記基材の表面の算術平均粗さRaは、例えば、光干渉型表面形状粗さ計(ブルカージャパン株式会社製、WYKO ContourGT K1M、測定条件:VSI mode)により測定することができる。
An index of the smoothness of the base material includes, for example, the arithmetic mean roughness Ra of the surface of the base material.
The arithmetic mean roughness Ra of the substrate surface is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less. When the arithmetic mean roughness Ra of the surface of the substrate is 50 nm or less, the occurrence of defects (gaps due to surface unevenness) in the first metal oxide layer and the second metal oxide layer described later is suppressed, and silver It is possible to suppress the intrusion of water vapor that causes aggregation of the
The arithmetic mean roughness Ra of the surface of the base material can be measured, for example, by an optical interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan, measurement conditions: VSI mode).
<第1の金属酸化物層>
 前記第1の金属酸化物層は、前記基材と、後述する金属層との間に配される。
<First metal oxide layer>
The first metal oxide layer is arranged between the base material and a metal layer to be described later.
 前記第1の金属酸化物層の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, structure, and size of the first metal oxide layer are not particularly limited, and can be appropriately selected according to the purpose.
 前記第1の金属酸化物層の材質としては、酸化亜鉛及び酸化スズを含有し、さらに必要に応じてその他の成分を含有する。前記第1の金属酸化物層が酸化亜鉛及び酸化スズを含有すると、非晶質で結晶粒界が無い膜を得ることができ、金属層に含まれる銀が凝集する原因となる水蒸気を透過しにくくすることができる。
 前記酸化亜鉛及び酸化スズとしては、例えば、ZTOなどが挙げられる。
The material of the first metal oxide layer contains zinc oxide and tin oxide, and further contains other components as necessary. When the first metal oxide layer contains zinc oxide and tin oxide, it is possible to obtain a film that is amorphous and has no crystal grain boundaries, and is permeable to water vapor that causes aggregation of silver contained in the metal layer. can be made difficult.
Examples of the zinc oxide and tin oxide include ZTO.
 前記酸化亜鉛及び酸化スズにおける酸化スズの含有量としては、酸化亜鉛及び酸化スズの全量に対して、15質量%以上65質量%以下が好ましく、20質量%以上60質量%以下がより好ましく、25質量%以上55質量%以下がさらに好しい。前記酸化亜鉛及び酸化スズにおける酸化スズの含有量が、酸化亜鉛及び酸化スズの全量に対して、15質量%以上であると、良好な非晶質の膜(層)を得ることができる。また、前記酸化亜鉛及び酸化スズにおける酸化スズの含有量が、酸化亜鉛及び酸化スズの全量に対して、65質量%以下であると、第1の金属酸化物層の耐湿熱性を向上させることができる。 The content of tin oxide in the zinc oxide and tin oxide is preferably 15% by mass or more and 65% by mass or less, more preferably 20% by mass or more and 60% by mass or less, based on the total amount of zinc oxide and tin oxide. % by mass or more and 55% by mass or less is more preferable. A favorable amorphous film (layer) can be obtained when the content of tin oxide in the zinc oxide and tin oxide is 15% by mass or more with respect to the total amount of zinc oxide and tin oxide. Further, when the content of tin oxide in the zinc oxide and tin oxide is 65% by mass or less with respect to the total amount of zinc oxide and tin oxide, the moist heat resistance of the first metal oxide layer can be improved. can.
 前記第1の金属酸化物層における前記酸化亜鉛及び酸化スズの含有量としては、第1の金属酸化物層の全量に対して、90質量%以上が好ましく、95質量%以上がより好ましい。前記第1の金属酸化物層における前記酸化亜鉛及び酸化スズの含有量が、90質量%以上であると、全光線透過率を向上させることができる。 The content of zinc oxide and tin oxide in the first metal oxide layer is preferably 90% by mass or more, more preferably 95% by mass or more, relative to the total amount of the first metal oxide layer. When the content of zinc oxide and tin oxide in the first metal oxide layer is 90% by mass or more, the total light transmittance can be improved.
 前記その他の成分としては、特に制限はなく、本発明の効果を阻害しなければ、前記酸化亜鉛及び酸化スズ以外の成分を適宜含有していてもよい。 The other components are not particularly limited, and may contain components other than zinc oxide and tin oxide as appropriate as long as the effects of the present invention are not impaired.
 前記第1の金属酸化物層の平均厚みとしては、25nm以上65nm以下が好ましく、35nm以上63nm以下がより好ましく、40nm以上60nm以下がさらに好ましい。前記第1の金属酸化物層の平均厚みが、25nm以上であると、水蒸気の透過を抑制する効果を向上させることができる。また、前記第1の金属酸化物層の平均厚みが、65nm以下であると、全光線透過率を高めることができる。
 なお、前記第1の金属酸化物層の平均厚み(高さ)は、以下のようにして測定することができる。
 まず、複数の水準の所定の厚みの第1の金属酸化物層を形成した基板を用意し、複数の水準の所定の厚みの前記第1の金属酸化物層の物理膜厚を接触式段差計により測定する。また、複数の水準の所定の厚みの第1の金属酸化物層における第1の金属酸化物層の材料の量を、蛍光X線測定装置(XRF、株式会社リガク製)を用いた定量分析により測定する。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した第1の金属酸化物層の材料の量から、検量線を作成する。実際に測定したいサンプルにおいて、蛍光X線測定装置(XRF)を用い第1の金属酸化物層の材料の量を定量分析し、作成した検量線を用いて膜厚を算出する。10点のサンプルを同様に作成し、その平均値を平均厚みとする。
The average thickness of the first metal oxide layer is preferably 25 nm or more and 65 nm or less, more preferably 35 nm or more and 63 nm or less, and even more preferably 40 nm or more and 60 nm or less. When the average thickness of the first metal oxide layer is 25 nm or more, the effect of suppressing the permeation of water vapor can be improved. Further, when the average thickness of the first metal oxide layer is 65 nm or less, the total light transmittance can be increased.
The average thickness (height) of the first metal oxide layer can be measured as follows.
First, a substrate on which a first metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and the physical thickness of the first metal oxide layer having a plurality of levels of predetermined thickness is measured using a contact-type profilometer. Measured by Further, the amount of the material of the first metal oxide layer in the first metal oxide layer having a predetermined thickness at multiple levels was quantitatively analyzed using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Co., Ltd.). Measure. A calibration curve is prepared from the film thickness measured by the contact profilometer and the amount of material of the first metal oxide layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF). In a sample to be actually measured, the amount of the material of the first metal oxide layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve. Ten samples are prepared in the same manner, and the average value is taken as the average thickness.
 前記第1の金属酸化物層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、DCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法などを用いて、前記基材の表面の全面に処理する方法などが挙げられる。 The method for forming the first metal oxide layer is not particularly limited and can be appropriately selected depending on the intended purpose. and a method of treating the entire surface of the substrate using a method or the like.
<金属層>
 前記金属層は、前記第1の金属酸化物層と、後述する第2の金属酸化物層との間に配されている。
<Metal layer>
The metal layer is arranged between the first metal oxide layer and a second metal oxide layer to be described later.
 前記金属層の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, structure, and size of the metal layer are not particularly limited and can be appropriately selected according to the purpose.
 前記金属層の材質としては、銀及び銀合金の少なくともいずれかを含有し、さらに必要に応じてその他の成分を含有する。
 前記金属層としては、銀合金を含有することが好ましい。前記金属層が銀合金を含有することによって、銀の凝集を抑制する効果を向上させることができる。
 前記金属層としては、銀を主成分として含有していればよく、前記金属層における銀の含有量としては、80質量%以上99.9質量%以下が好ましく、82質量%以上99.8質量%以下がより好ましく、85質量%以上99.7質量%以下がさらに好ましい。
 前記銀合金としては、銀を主成分として含有していればよく、前記銀合金における銀の含有量としては、80質量%以上99.9質量%以下が好ましく、82質量%以上99.8質量%以下がより好ましく、85質量%以上99.7質量%以下がさらに好ましい。前記銀合金における銀の含有量が80質量%以上であると、導電性や光学特性を向上させることができる。銀の含有量が99.9質量%以下であることにより、銀単体よりもマイグレーションを抑制し、銀の凝集を阻害することができる。
 前記銀合金としては、例えば、銀-銅合金などが挙げられる。
The material of the metal layer contains at least one of silver and a silver alloy, and further contains other components as necessary.
The metal layer preferably contains a silver alloy. By containing a silver alloy in the metal layer, the effect of suppressing aggregation of silver can be improved.
The metal layer may contain silver as a main component, and the content of silver in the metal layer is preferably 80% by mass or more and 99.9% by mass or less, and more preferably 82% by mass or more and 99.8% by mass. % or less, and more preferably 85% by mass or more and 99.7% by mass or less.
The silver alloy may contain silver as a main component, and the content of silver in the silver alloy is preferably 80% by mass or more and 99.9% by mass or less, and more preferably 82% by mass or more and 99.8% by mass. % or less, and more preferably 85% by mass or more and 99.7% by mass or less. When the content of silver in the silver alloy is 80% by mass or more, electrical conductivity and optical properties can be improved. When the silver content is 99.9% by mass or less, it is possible to suppress migration and inhibit aggregation of silver more than silver alone.
Examples of the silver alloys include silver-copper alloys.
 前記その他の成分としては、本発明の効果を阻害しなければ特に制限はなく、例えば、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Au、Zn、Al、Ga、In、Si、Ge、Sn、Bi、Mn、C、B、N、P、Sなどが挙げられる。 The other components are not particularly limited as long as they do not inhibit the effects of the present invention. Examples include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Ru, Co, Rh, Ir. , Ni, Pd, Pt, Cu, Au, Zn, Al, Ga, In, Si, Ge, Sn, Bi, Mn, C, B, N, P, S and the like.
 前記金属層の平均厚みとしては、4nm以上16nm以下が好ましく、5nm以上14nm以下がより好ましく、6nm以上12nm以下がさらに好ましい。前記金属層の平均厚みが4nm以上であると、導電性を向上させることができる。また、前記金属層の平均厚みが16nm以下であると、全光線透過率を高めることができる。
 なお、前記金属層の平均厚み(高さ)は、例えば、以下のようにして測定することができる。
 まず、複数の水準の所定の厚みの金属層を形成した基板を用意し、複数の水準の所定の厚みの金属層の物理膜厚を接触式段差計により測定する。また、複数の水準の所定の厚みの金属層における金属層の材料の量を、蛍光X線測定装置(XRF、株式会社リガク製)を用いた定量分析により測定する。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した金属層の材料の量から、検量線を作成する。実際に測定したいサンプルにおいて、蛍光X線測定装置(XRF)を用い金属層の材料の量を定量分析し、作成した検量線を用いて膜厚を算出する。10点のサンプルを同様に作成し、その平均値を平均厚みとする。
The average thickness of the metal layer is preferably 4 nm or more and 16 nm or less, more preferably 5 nm or more and 14 nm or less, and even more preferably 6 nm or more and 12 nm or less. Electrical conductivity can be improved as the average thickness of the said metal layer is 4 nm or more. Further, when the average thickness of the metal layer is 16 nm or less, the total light transmittance can be enhanced.
The average thickness (height) of the metal layer can be measured, for example, as follows.
First, a substrate on which a plurality of levels of predetermined thickness metal layers are formed is prepared, and the physical film thickness of the plurality of levels of predetermined thicknesses of the metal layer is measured by a contact profilometer. In addition, the amount of metal layer material in a plurality of levels of predetermined thickness of the metal layer is measured by quantitative analysis using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Corporation). A calibration curve is prepared from the film thickness measured by the contact profilometer and the material amount of the metal layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF). In a sample to be actually measured, the amount of material of the metal layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve. Ten samples are prepared in the same manner, and the average value is taken as the average thickness.
 前記金属層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、DCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法などを用いて、前記第1の金属酸化物層の露出表面の全面に処理する方法などが挙げられる。 The method for forming the metal layer is not particularly limited and can be appropriately selected according to the purpose. and a method of treating the entire exposed surface of the first metal oxide layer.
<第2の金属酸化物層>
 前記第2の金属酸化物層は、前記金属層上に配される層である。
<Second metal oxide layer>
The second metal oxide layer is a layer arranged on the metal layer.
 前記第2の金属酸化物層の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, structure, and size of the second metal oxide layer are not particularly limited, and can be appropriately selected according to the purpose.
 前記第2の金属酸化物層の材質としては、酸化インジウム及び酸化スズを含有し、さらに必要に応じてその他の成分を含有する。前記第2の金属酸化物層が、前記酸化インジウム及び酸化スズを含有することにより、導電性を向上させることができる。
 前記酸化インジウム及び酸化スズとしては、例えば、ITOなどが挙げられる。
The material of the second metal oxide layer contains indium oxide and tin oxide, and further contains other components as necessary. The conductivity of the second metal oxide layer can be improved by containing the indium oxide and tin oxide.
Examples of the indium oxide and tin oxide include ITO.
 前記酸化インジウム及び酸化スズにおける酸化スズの含有量としては、酸化インジウム及び酸化スズの合計量に対して、5質量%以上が好ましく、5質量%以上14質量%以下がより好ましく、7質量%以上12質量%以下がさらに好ましく、8質量%以上11質量%以下が最も好ましい。前記酸化インジウム及び酸化スズにおける酸化スズの含有量が5質量%以上であると、結晶化を抑制する効果を向上させることができ、導電性及び耐湿熱性を向上させることができる。
 また、前記酸化インジウム及び酸化スズにおける酸化スズの含有量が14質量%以下であると、全光線透過率を優れたものとすることができる。
The content of tin oxide in the indium oxide and tin oxide is preferably 5% by mass or more, more preferably 5% by mass or more and 14% by mass or less, and 7% by mass or more, based on the total amount of indium oxide and tin oxide. 12% by mass or less is more preferable, and 8% by mass or more and 11% by mass or less is most preferable. When the content of tin oxide in the indium oxide and tin oxide is 5% by mass or more, the effect of suppressing crystallization can be improved, and the conductivity and resistance to moist heat can be improved.
Further, when the content of tin oxide in the indium oxide and tin oxide is 14% by mass or less, excellent total light transmittance can be obtained.
 前記第2の金属酸化物層における前記酸化インジウム及び酸化スズの含有量としては、第2の金属酸化物層の全量に対して、95質量%以上が好ましく、98質量%以上がより好ましい。 The content of indium oxide and tin oxide in the second metal oxide layer is preferably 95% by mass or more, more preferably 98% by mass or more, relative to the total amount of the second metal oxide layer.
 前記その他の成分としては、特に制限はなく、本発明の効果を阻害しなければ、前記酸化インジウム及び酸化スズ以外の成分を適宜含有していてもよい。 The other components are not particularly limited, and may contain components other than the indium oxide and tin oxide as appropriate as long as the effects of the present invention are not hindered.
 前記第2の金属酸化物層の平均厚みとしては、30nm以上60nm以下が好ましく、32nm以上55nm以下がより好ましく、35nm以上50nm以下がさらに好ましい。前記第2の金属酸化物層の平均厚みが、30nm以上であると、水蒸気の透過を抑制する効果を向上させることができる。また、前記第2の金属酸化物層の平均厚みが、60nm以下であると、全光線透過率を高めることができる。
 なお、前記第2の金属酸化物層の平均厚み(高さ)は、例えば、以下のようにして測定することができる。
 まず、複数の水準の所定の厚みの第2の金属酸化物層を形成した基板を用意し、複数の水準の所定の厚みの第2の金属酸化物層の物理膜厚を接触式段差計により測定する。また、複数の水準の所定の厚みの第2の金属酸化物層における第2の金属酸化物層の材料の量を、蛍光X線測定装置(XRF、株式会社リガク製)を用いた定量分析により測定する。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した第2の金属酸化物層の材料の量から、検量線を作成する。実際に測定したいサンプルにおいて、蛍光X線測定装置(XRF)を用い第2の金属酸化物層の材料の量を定量分析し、作成した検量線を用いて膜厚を算出する。10点のサンプルを同様に作成し、その平均値を平均厚みとする。
The average thickness of the second metal oxide layer is preferably 30 nm or more and 60 nm or less, more preferably 32 nm or more and 55 nm or less, and even more preferably 35 nm or more and 50 nm or less. When the average thickness of the second metal oxide layer is 30 nm or more, the effect of suppressing the permeation of water vapor can be improved. Further, when the average thickness of the second metal oxide layer is 60 nm or less, the total light transmittance can be increased.
The average thickness (height) of the second metal oxide layer can be measured, for example, as follows.
First, a substrate on which a second metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and the physical thickness of the second metal oxide layer having a plurality of levels of predetermined thickness is measured by a contact profilometer. Measure. In addition, the amount of the material of the second metal oxide layer in the second metal oxide layer having a predetermined thickness at multiple levels was quantitatively analyzed using a fluorescent X-ray measurement device (XRF, manufactured by Rigaku Co., Ltd.). Measure. A calibration curve is prepared from the film thickness measured by the contact profilometer and the amount of the material of the second metal oxide layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF). In a sample to be actually measured, the amount of the material of the second metal oxide layer is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve. Ten samples are prepared in the same manner, and the average value is taken as the average thickness.
 前記第2の金属酸化物層の表面の算術平均粗さRaとしては、15nm以下が好ましく、11nm以下がより好ましく、10nm以下がさらに好ましい。前記第2の金属酸化物層の表面の算術平均粗さRaが15nm以下であると、耐湿熱性を向上させることができる。
 前記第2の金属酸化物層の表面の算術平均粗さRaは、光干渉型表面形状粗さ計(ブルカージャパン株式会社製、WYKO ContourGT K1M、測定条件:VSI mode)により測定することができる。
 なお、前記第2の金属酸化物層の表面とは、前記第2の金属酸化物層における前記金属層と対向する側ではない面を意味する。
The arithmetic mean roughness Ra of the surface of the second metal oxide layer is preferably 15 nm or less, more preferably 11 nm or less, and even more preferably 10 nm or less. When the arithmetic mean roughness Ra of the surface of the second metal oxide layer is 15 nm or less, moist heat resistance can be improved.
The arithmetic mean roughness Ra of the surface of the second metal oxide layer can be measured by a light interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan, measurement conditions: VSI mode).
The surface of the second metal oxide layer means the surface of the second metal oxide layer that is not the side facing the metal layer.
 前記第2の金属酸化物層のみの表面抵抗値としては、10,000Ω/□以下が好ましく、5,000Ω/□以下がより好ましく、1,000Ω/□以下がさらに好ましい。
 前記表面抵抗値の測定方法としては、例えば、基材に第2の金属酸化物層のみを成膜し、低抵抗率計(三菱化学アナリテック社製、型番:MCP-T610)により任意の10点を測定し、その平均値を算出する方法などが挙げられる。
The surface resistance value of only the second metal oxide layer is preferably 10,000 Ω/square or less, more preferably 5,000 Ω/square or less, and even more preferably 1,000 Ω/square or less.
As a method for measuring the surface resistance value, for example, only the second metal oxide layer is formed on the substrate, and an arbitrary 10 For example, a method of measuring points and calculating the average value thereof can be used.
 前記第2の金属酸化物層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、DCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法などを用いて、前記金属層の露出表面の全面に処理する方法などが挙げられる。
 前記第2の金属酸化物層を形成する際は、層(膜)が経時的に結晶化することを防ぐために、層形成時の反応雰囲気に水素を含有することが好ましい。反応雰囲気中に水素を含有することにより、熱が加わっても、前記第2の金属酸化物層が非結晶状態を維持できる膜(層)を得ることができ、耐湿熱性に優れる透明導電性フィルムを得ることができる。
The method for forming the second metal oxide layer is not particularly limited and can be appropriately selected according to the purpose. For example, the entire exposed surface of the metal layer is treated using a method or the like.
When forming the second metal oxide layer, it is preferable to contain hydrogen in the reaction atmosphere during layer formation in order to prevent the layer (film) from crystallizing over time. By containing hydrogen in the reaction atmosphere, it is possible to obtain a film (layer) in which the second metal oxide layer can maintain an amorphous state even when heat is applied, and a transparent conductive film having excellent moist heat resistance. can be obtained.
<その他の層>
 前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下地層などが挙げられる。
<Other layers>
The other layer is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an underlayer.
<<下地層>>
 前記下地層は、前記基材と前記第1の金属酸化物層との間に配される層である。前記下地層を設けることによって前記基材と前記第1の金属酸化物層との密着性の向上や、耐擦傷性の向上などの効果を得ることができる。
<<Underlayer>>
The underlying layer is a layer arranged between the substrate and the first metal oxide layer. By providing the base layer, it is possible to obtain effects such as improvement in adhesion between the base material and the first metal oxide layer and improvement in scratch resistance.
 前記下地層の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。 The shape, structure, and size of the underlying layer are not particularly limited, and can be appropriately selected according to the purpose.
 前記下地層の材質としては、アクリル樹脂、エステル樹脂、シリコーン樹脂、有機無機ハイブリット材などが挙げられる。 Examples of materials for the base layer include acrylic resins, ester resins, silicone resins, and organic-inorganic hybrid materials.
 前記下地層の平均厚みとしては、50nm以上3,500nm以下が好ましく、70nm以上3,000nm以下がより好ましく、80nm以上2,500nm以下がさらに好ましい。前記下地層の平均厚みが、50nm以上であると、前記基材と前記第1の金属酸化物層との密着性を向上させることができる。前記下地層の平均厚みが、3,500nm以下であると、全光線透過率を高めることができる。
 なお、前記下地層の平均厚み(高さ)は、例えば、以下のようにして測定することができる。
 前記下地層を形成した基材の反射波形について、紫外可視分光光度計(UV3600、株式会社島津製作所製)を用いて測定し、そのスペクトル形状から前記下地層の平均厚み(高さ)を算出することができる。
The average thickness of the underlayer is preferably 50 nm or more and 3,500 nm or less, more preferably 70 nm or more and 3,000 nm or less, and even more preferably 80 nm or more and 2,500 nm or less. When the average thickness of the underlayer is 50 nm or more, the adhesion between the substrate and the first metal oxide layer can be improved. When the average thickness of the underlayer is 3,500 nm or less, the total light transmittance can be increased.
The average thickness (height) of the underlying layer can be measured, for example, as follows.
The reflected waveform of the substrate on which the underlayer is formed is measured using an ultraviolet-visible spectrophotometer (UV3600, manufactured by Shimadzu Corporation), and the average thickness (height) of the underlayer is calculated from the spectrum shape. be able to.
 前記下地層の表面の算術表面粗さRaとしては、特に制限はなく、目的に応じて適宜選択することができるが、小さい方が好ましい。前記下地層の表面の算術表面粗さRaが小さい方が、前記下地層の上に形成される第1の金属酸化物層、金属層、及び第2の金属酸化物層の表面の算術平均粗さRaを小さくすることができる。 The arithmetic surface roughness Ra of the surface of the underlayer is not particularly limited and can be appropriately selected according to the purpose, but the smaller the better. The smaller the arithmetic surface roughness Ra of the surface of the underlayer, the higher the arithmetic mean roughness of the surfaces of the first metal oxide layer, the metal layer, and the second metal oxide layer formed on the underlayer. The height Ra can be reduced.
 前記下地層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウェットコーティングなどを用いて、前記基材の表面の全面に処理する方法などが挙げられる。 The method for forming the base layer is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include a method of treating the entire surface of the base material using wet coating or the like.
 ここで、図面を参照して、本発明の透明導電性フィルムの一例について説明する。
 図1Aは、本発明の透明導電性フィルムの一例を示す断面図である。図1Bは、本発明の透明導電性フィルムの他の一例を示す断面図である。
 図1Aに示す透明導電性フィルム10は、基材11上に、第1の金属酸化物層12aと、金属層13と、第2の金属酸化物層12bと、をこの順で有する。
 図1Bに示す透明導電性フィルム10は、図1Aに示す透明導電性フィルム10において、基材11と、第1の金属酸化物層12aと、の間に下地層14を有する以外は図1Aに示す透明導電性フィルム10と同様である。
Here, one example of the transparent conductive film of the present invention will be described with reference to the drawings.
FIG. 1A is a cross-sectional view showing an example of the transparent conductive film of the present invention. FIG. 1B is a cross-sectional view showing another example of the transparent conductive film of the present invention.
The transparent conductive film 10 shown in FIG. 1A has a first metal oxide layer 12a, a metal layer 13, and a second metal oxide layer 12b on a substrate 11 in this order.
The transparent conductive film 10 shown in FIG. 1B is the transparent conductive film 10 shown in FIG. It is the same as the transparent conductive film 10 shown.
 本発明の透明導電性フィルムの用途としては、例えば、液晶ディスプレイ、有機EL、無機EL照明、薄膜太陽電池、電磁波シールド、ウインドウフィルム、電子黒板、透明ヒータなどの透明電極などが挙げられる。 Applications of the transparent conductive film of the present invention include, for example, liquid crystal displays, organic EL, inorganic EL lighting, thin film solar cells, electromagnetic wave shields, window films, electronic blackboards, and transparent electrodes such as transparent heaters.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
<透明導電性フィルム1の製造>
 基材として平均厚み125μmのポリエチレンテレフタラートフィルムの上に、NH-1000G(有機無機ハイブリット樹脂、日本曹達株式会社製)をウェットコーティング法で塗工し、平均厚み1.5μmの下地層を形成した。
 次に、下地層の上に、製膜時圧力0.37Pa、投入電力密度3.3W/cmに調整し、アルゴンガス及び酸素ガス導入下(アルゴン:酸素=95:5)で、酸化亜鉛を70質量%、酸化スズを30質量%含むZTOをスパッタリングし、平均厚み53nmの第1の金属酸化物層を形成した。
 次に、第1の金属酸化物層の上に、製膜時圧力0.25Pa、投入電力密度1.5W/cmに調整し、アルゴンガス導入下で、銀を89質量%、銅を11質量%含む銀合金をスパッタリングし、平均厚み11nmの金属層を形成した。
 次に、金属層の上に、製膜時圧力0.35Pa、投入電力密度3.3W/cmに調整し、アルゴンガス、酸素ガス、及び水素ガス導入下(アルゴン:酸素:水素=95.5:3.5:1)で、酸化インジウムを90質量%、酸化スズを10質量%含むITOをスパッタリングし、平均厚み38nmの第2の金属酸化物層を形成し、透明導電性フィルム1を得た。
(Example 1)
<Production of Transparent Conductive Film 1>
NH-1000G (organic-inorganic hybrid resin, manufactured by Nippon Soda Co., Ltd.) was coated on a polyethylene terephthalate film with an average thickness of 125 μm as a base material by a wet coating method to form a base layer with an average thickness of 1.5 μm. .
Next, on the underlayer, the pressure during film formation was adjusted to 0.37 Pa and the input power density was adjusted to 3.3 W/cm 2 , and under the introduction of argon gas and oxygen gas (argon:oxygen = 95:5), zinc oxide was applied. ZTO containing 70% by mass of and 30% by mass of tin oxide was sputtered to form a first metal oxide layer having an average thickness of 53 nm.
Next, on the first metal oxide layer, the pressure during film formation was adjusted to 0.25 Pa and the input power density was adjusted to 1.5 W/cm 2 , and under the introduction of argon gas, 89% by mass of silver and 11% of copper were added. A silver alloy containing 1% by mass was sputtered to form a metal layer with an average thickness of 11 nm.
Next, on the metal layer, the pressure during film formation was adjusted to 0.35 Pa and the input power density was adjusted to 3.3 W/cm 2 , and under the introduction of argon gas, oxygen gas, and hydrogen gas (argon:oxygen:hydrogen=95. 5:3.5:1), ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide was sputtered to form a second metal oxide layer with an average thickness of 38 nm, and a transparent conductive film 1 was formed. Obtained.
(実施例2)
<透明導電性フィルム2の製造>
 実施例1において、下地層の材料をSiコート801(シリコーン樹脂、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)に変更し、平均厚み90nmの下地層を形成した以外は、実施例1と同様にして、透明導電性フィルム2を得た。
(Example 2)
<Production of Transparent Conductive Film 2>
In Example 1, the same as Example 1 except that the material of the underlayer was changed to Si Coat 801 (silicone resin, manufactured by Momentive Performance Materials Japan LLC) to form an underlayer with an average thickness of 90 nm. Then, a transparent conductive film 2 was obtained.
(実施例3)
<透明導電性フィルム3の製造>
 実施例1において、下地層の材料をNSC-3162A(シリコーン樹脂、日本精化株式会社製)に変更し、平均厚み1.5μmの下地層を形成した以外は、実施例1と同様にして、透明導電性フィルム3を得た。
(Example 3)
<Production of transparent conductive film 3>
In Example 1, in the same manner as in Example 1, except that the material of the underlayer was changed to NSC-3162A (silicone resin, manufactured by Nippon Fine Chemical Co., Ltd.) and an underlayer with an average thickness of 1.5 μm was formed. A transparent conductive film 3 was obtained.
(実施例4)
<透明導電性フィルム4の製造>
 実施例1において、「酸化インジウムを90質量%、酸化スズを10質量%含むITO」を、「酸化インジウムを95質量%、酸化スズを5質量%含むITO」に変更した以外は、実施例1と同様にして、透明導電性フィルム4を得た。
(Example 4)
<Production of Transparent Conductive Film 4>
Example 1 except that "ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide" in Example 1 was changed to "ITO containing 95% by mass of indium oxide and 5% by mass of tin oxide". A transparent conductive film 4 was obtained in the same manner.
(実施例5)
<透明導電性フィルム5の製造>
 実施例2において、「酸化インジウムを90質量%、酸化スズを10質量%含むITO」を、「酸化インジウムを95質量%、酸化スズを5質量%含むITO」に変更した以外は、実施例2と同様にして、透明導電性フィルム5を得た。
(Example 5)
<Production of Transparent Conductive Film 5>
Example 2 except that "ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide" in Example 2 was changed to "ITO containing 95% by mass of indium oxide and 5% by mass of tin oxide". A transparent conductive film 5 was obtained in the same manner as above.
(比較例1)
<透明導電性フィルム6の製造>
 実施例1において、第2の金属酸化物層の形成条件について、製膜時圧力0.37Pa、投入電力密度3.3W/cmに調整し、アルゴンガス及び酸素ガス導入下(アルゴン:酸素=98:2)に変更した以外は、実施例1と同様にして、透明導電性フィルム6を得た。
(Comparative example 1)
<Production of Transparent Conductive Film 6>
In Example 1, the conditions for forming the second metal oxide layer were adjusted to a film-forming pressure of 0.37 Pa and an input power density of 3.3 W/cm 2 under the introduction of argon gas and oxygen gas (argon: oxygen = A transparent conductive film 6 was obtained in the same manner as in Example 1, except that the ratio was changed to 98:2).
(比較例2)
<透明導電性フィルム7の製造>
 実施例2において、第2の金属酸化物層の形成条件を比較例1と同様の条件に変更した以外は、実施例2と同様にして、透明導電性フィルム7を得た。
(Comparative example 2)
<Production of Transparent Conductive Film 7>
A transparent conductive film 7 was obtained in the same manner as in Example 2, except that the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 1.
(比較例3)
<透明導電性フィルム8の製造>
 実施例3において、第2の金属酸化物層の形成条件を比較例1と同様の条件に変更した以外は、実施例3と同様にして、透明導電性フィルム8を得た。
(Comparative Example 3)
<Production of transparent conductive film 8>
A transparent conductive film 8 was obtained in the same manner as in Example 3, except that the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 1.
(比較例4)
<透明導電性フィルム9の製造>
 実施例1において、第1の金属酸化物層の形成条件と、第2の金属酸化物層の形成条件とを、製膜時圧力0.37Pa、投入電力密度3.3W/cmに調整し、アルゴンガス及び酸素ガス導入下(アルゴン:酸素=98:2)で、酸化インジウムを90質量%、酸化スズを10質量%含むITOをスパッタリングし、平均厚み43nmとなるように変更した以外は、実施例1と同様にして、透明導電性フィルム9を得た。
(Comparative Example 4)
<Production of Transparent Conductive Film 9>
In Example 1, the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were adjusted to a film-forming pressure of 0.37 Pa and an input power density of 3.3 W/cm 2 . , Under the introduction of argon gas and oxygen gas (argon: oxygen = 98: 2), ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide was sputtered, and the average thickness was changed to 43 nm. A transparent conductive film 9 was obtained in the same manner as in Example 1.
(比較例5)
<透明導電性フィルム10の製造>
 実施例2において、第1の金属酸化物層の形成条件と、第2の金属酸化物層の形成条件とを、比較例4と同様の条件に変更した以外は、実施例2と同様にして、透明導電性フィルム10を得た。
(Comparative Example 5)
<Production of transparent conductive film 10>
In Example 2, the same procedure as in Example 2 was performed except that the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 4. , a transparent conductive film 10 was obtained.
(比較例6)
<透明導電性フィルム11の製造>
 実施例3において、第1の金属酸化物層の形成条件と、第2の金属酸化物層の形成条件とを、比較例4と同様の条件に変更した以外は、実施例3と同様にして、透明導電性フィルム11を得た。
(Comparative Example 6)
<Production of transparent conductive film 11>
In Example 3, the same procedure as in Example 3 was performed except that the conditions for forming the first metal oxide layer and the conditions for forming the second metal oxide layer were changed to the same conditions as in Comparative Example 4. , a transparent conductive film 11 was obtained.
(比較例7)
<透明導電性フィルム12の製造>
 実施例1において、第1の金属酸化物層の形成条件を、製膜時圧力0.37Pa、投入電力密度3.3W/cmに調整し、アルゴンガス及び酸素ガス導入下(アルゴン:酸素=98:2)で、酸化インジウムを90質量%、酸化スズを10質量%含むITOをスパッタリングし、平均厚み43nmとなるように変更し、さらに第2の金属酸化物層の平均厚みを43nmとなるように変更した以外は、実施例1と同様にして、透明導電性フィルム12を得た。
(Comparative Example 7)
<Production of transparent conductive film 12>
In Example 1, the conditions for forming the first metal oxide layer were adjusted to a film forming pressure of 0.37 Pa and an input power density of 3.3 W/cm 2 under the introduction of argon gas and oxygen gas (argon: oxygen = 98:2), sputtering ITO containing 90% by mass of indium oxide and 10% by mass of tin oxide, changing the average thickness to 43 nm, and further increasing the average thickness of the second metal oxide layer to 43 nm. A transparent conductive film 12 was obtained in the same manner as in Example 1, except for changing as follows.
(比較例8)
<透明導電性フィルム13の製造>
 実施例2において、第1の金属酸化物層の形成条件及び第2の金属酸化物層の平均厚みを、比較例7と同様の条件に変更した以外は、実施例2と同様にして、透明導電性フィルム13を得た。
(Comparative Example 8)
<Production of transparent conductive film 13>
In Example 2, a transparent A conductive film 13 was obtained.
(比較例9)
<透明導電性フィルム14の製造>
 実施例3において、第1の金属酸化物層の形成条件及び第2の金属酸化物層の平均厚みを、比較例7と同様の条件に変更した以外は、実施例3と同様にして、透明導電性フィルム14を得た。
(Comparative Example 9)
<Production of Transparent Conductive Film 14>
In Example 3, a transparent A conductive film 14 was obtained.
(比較例10)
<透明導電性フィルム15の製造>
 実施例1において、第1の金属酸化物層の形成条件を、第2の金属酸化物層の形成条件と同様にし、第1の金属酸化物層及び第2の金属酸化物層の平均厚みが43nmとなるように変更した以外は、実施例1と同様にして、透明導電性フィルム15を得た。
(Comparative Example 10)
<Production of Transparent Conductive Film 15>
In Example 1, the conditions for forming the first metal oxide layer were the same as the conditions for forming the second metal oxide layer, and the average thickness of the first metal oxide layer and the second metal oxide layer was A transparent conductive film 15 was obtained in the same manner as in Example 1, except that the thickness was changed to 43 nm.
(比較例11)
<透明導電性フィルム16の製造>
 実施例2において、第1の金属酸化物層の形成条件及び平均厚みと第2の金属酸化物層の平均厚みを、比較例10と同様の条件に変更した以外は、実施例2と同様にして、透明導電性フィルム16を得た。
(Comparative Example 11)
<Production of Transparent Conductive Film 16>
In Example 2, the same conditions as in Example 2 were repeated except that the conditions for forming the first metal oxide layer and the average thickness of the second metal oxide layer and the average thickness of the second metal oxide layer were changed to the same conditions as in Comparative Example 10. Thus, a transparent conductive film 16 was obtained.
(比較例12)
<透明導電性フィルム17の製造>
 実施例3において、第1の金属酸化物層の形成条件及び平均厚みと第2の金属酸化物層の平均厚みを、比較例10と同様の条件に変更した以外は、実施例3と同様にして、透明導電性フィルム17を得た。
(Comparative Example 12)
<Production of Transparent Conductive Film 17>
In Example 3, the same conditions as in Example 3 were repeated except that the conditions for forming the first metal oxide layer and the average thickness of the second metal oxide layer and the average thickness of the second metal oxide layer were changed to the same conditions as in Comparative Example 10. Thus, a transparent conductive film 17 was obtained.
(比較例13)
<透明導電性フィルム18の製造>
 実施例2において、第1の金属酸化物層の平均厚みを55nmに変更し、さらに、金属層の上に、製膜時圧力0.37Pa、投入電力密度3.3W/cmに調整し、アルゴンガス及び酸素ガス導入下(アルゴン:酸素=95:5)で、酸化亜鉛を70質量%、酸化スズを30質量%含むZTOをスパッタリングし、平均厚み40nmの第2の金属酸化物層を形成した以外は、実施例2と同様にして、透明導電性フィルム18を得た。
(Comparative Example 13)
<Production of Transparent Conductive Film 18>
In Example 2, the average thickness of the first metal oxide layer was changed to 55 nm, and the pressure during film formation was adjusted to 0.37 Pa and the input power density to 3.3 W / cm 2 on the metal layer, Under the introduction of argon gas and oxygen gas (argon:oxygen=95:5), ZTO containing 70% by mass of zinc oxide and 30% by mass of tin oxide was sputtered to form a second metal oxide layer with an average thickness of 40 nm. A transparent conductive film 18 was obtained in the same manner as in Example 2, except that
 なお、作製した透明導電性フィルムにおける各層の平均厚みは以下のようにして測定した。
 まず、複数の水準の所定の厚みの第1の金属酸化物層、金属層、又は第2の金属酸化物層を形成した基板を用意し、複数の水準の所定の厚みの各層の物理膜厚を接触式段差計により測定した。
 また、複数の水準の所定の厚みの第1の金属酸化物層、金属層、又は第2の金属酸化物層における、第1の金属酸化物層、金属層、又は第2の金属酸化物層の材料の量を、蛍光X線測定装置(XRF、株式会社リガク製)を用いた定量分析により測定した。
 接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した各層の材料の量から、検量線を作成した。透明導電性フィルムを、蛍光X線測定装置(XRF)を用いた定量分析によって、各層に由来する元素を検出し、10箇所における測定値の平均値を平均厚みとした。
 なお、第1の金属酸化物層の平均厚みについては第1の金属酸化物層に由来する亜鉛の蛍光X線強度を検出し、金属層の平均厚みについては金属層に由来する銀の蛍光X線強度を検出し、第2の金属酸化物層の平均厚みについては第2の金属酸化物層に由来するインジウムの蛍光X線強度を検出した。
 また、下地層の平均厚みは、下地層を形成した基材の反射波形について、紫外可視分光光度計(UV3600、株式会社島津製作所製)を用いて測定し下地層の平均厚み(高さ)を算出した。
 各層について、10箇所における測定値の平均値を平均厚みとした。結果を表1~表4に示す。
In addition, the average thickness of each layer in the produced transparent conductive film was measured as follows.
First, a substrate on which a first metal oxide layer, a metal layer, or a second metal oxide layer having a plurality of levels of predetermined thickness is formed is prepared, and a physical film thickness of each layer having a plurality of levels of predetermined thickness is obtained. was measured with a contact-type profilometer.
Also, the first metal oxide layer, the metal layer, or the second metal oxide layer in the predetermined thickness of the first metal oxide layer, the metal layer, or the second metal oxide layer at the plurality of levels was measured by quantitative analysis using a fluorescent X-ray measuring device (XRF, manufactured by Rigaku Corporation).
A calibration curve was prepared from the film thickness measured by the contact profilometer and the material amount of each layer measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF). The transparent conductive film was subjected to quantitative analysis using an X-ray fluorescence spectrometer (XRF) to detect elements derived from each layer, and the average value of the measured values at 10 locations was taken as the average thickness.
For the average thickness of the first metal oxide layer, the fluorescence X-ray intensity of zinc derived from the first metal oxide layer is detected, and for the average thickness of the metal layer, the fluorescence X-ray intensity of silver derived from the metal layer is detected. The line intensity was detected, and the fluorescent X-ray intensity of indium derived from the second metal oxide layer was detected for the average thickness of the second metal oxide layer.
In addition, the average thickness of the underlayer is measured using a UV-visible spectrophotometer (UV3600, manufactured by Shimadzu Corporation) for the reflected waveform of the substrate on which the underlayer is formed, and the average thickness (height) of the underlayer is determined. Calculated.
For each layer, the average value of the measured values at 10 locations was taken as the average thickness. The results are shown in Tables 1-4.
 また、得られた透明導電性フィルム1~18について、第2の金属酸化物の表面の算術表面粗さRaを、光干渉型表面形状粗さ計(ブルカージャパン株式会社製、WYKO ContourGT K1M、測定条件:VSI mode)を用いて測定した。結果を表1~表4に示す。 In addition, for the obtained transparent conductive films 1 to 18, the arithmetic surface roughness Ra of the surface of the second metal oxide was measured with a light interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan Co., Ltd.) Condition: Measured using VSI mode). The results are shown in Tables 1-4.
 次に、得られた透明導電性フィルム1~17について、150℃の恒温装置(装置名:DRX420DA、ADVANTEC株式会社製)で30分間の熱処理を行った。
 熱処理後、以下のX線結晶回折法によって透明導電性フィルムにおける第2の金属酸化物層の結晶性を確認した。なお、透明導電性フィルム18に関しては、第2の金属酸化物層にZTOを使用しているため、第2の金属酸化物層の結晶性については確認しなかった。
 具体的には、以下の方法で確認した。
 まず、以下の条件でX線結晶回折を行った。
<X線結晶回折の測定条件>
  ・装置名:X線結晶回折装置(XRD6100、株式会社島津製作所製)
  ・標準モード
  ・X線源:CuKα
  ・管電圧:40kV
  ・管電流:30mA
  ・駆動軸:2θ/θ
  ・走査速度:2.00°/min
  ・走査ステップ:0.02°
  ・走査範囲:29°~32°までの回折強度を測定
  ・ゴニオメーター:縦型
  ・ダイバージェンススリット:1°
  ・スッキャッタリングスリット:1°
  ・レシービングスリット:0.30mm
 透明導電性フィルム1~17において、X線結晶回折法により得られたスペクトルの未加工のデータを図2A~図2Qにそれぞれ示す。X線結晶回折法により測定する(222)面に対応する2θ=29°~32°におけるピークの検出の有無について、以下の方法に基づき判定した。結果を表1~表4に示す。
 測定した未加工のデータに基づき、以下の値<1>~<3>を算出する。
  <1> 30°~31°の範囲における回折強度の最大値
  <2> 29°及び32°の回折強度を加算し2で割った値
  <3> <1>を<2>で除した値
 「<1>30°~31°の範囲における回折強度の最大値」は、第2の金属酸化物層におけるITOが結晶化しているときは、ITOが結晶化していないときにくらべて高い値となる。
 また、「<1>30°~31°の範囲における回折強度の最大値」は、第2の金属酸化物層におけるITOが結晶化していないときには、「<2>29°及び32°の回折強度を加算し2で割った値」に近しい値となる。
 本実施例においては、「<3> <1>を<2>で除した値」が1.2以上のときは「ピークが検出されている」と判定し、「<3> <1>を<2>で除した値」が1.2未満のときは「ピークが検出されない」と判定した。
 また、表1~表4中、「ITO(非結晶)」とは、150℃、30分間の熱処理を行ってもITOが結晶化せず、X線回折のピークが検出されないことを意味し、「ITO(微結晶)」とは、150℃、30分間の熱処理を行うことによりITOが結晶化し、X線回折のピークが検出されたことを意味する。
Next, the obtained transparent conductive films 1 to 17 were heat-treated for 30 minutes in a constant temperature device (device name: DRX420DA, manufactured by ADVANTEC Co., Ltd.) at 150°C.
After the heat treatment, crystallinity of the second metal oxide layer in the transparent conductive film was confirmed by the following X-ray crystal diffraction method. Regarding the transparent conductive film 18, since ZTO was used for the second metal oxide layer, the crystallinity of the second metal oxide layer was not confirmed.
Specifically, it was confirmed by the following method.
First, X-ray crystal diffraction was performed under the following conditions.
<Measurement conditions for X-ray crystal diffraction>
・ Device name: X-ray crystal diffraction device (XRD6100, manufactured by Shimadzu Corporation)
・Standard mode ・X-ray source: CuKα
・Tube voltage: 40 kV
・Tube current: 30mA
・Drive shaft: 2θ/θ
・Scanning speed: 2.00°/min
・Scanning step: 0.02°
・Scanning range: Measure diffraction intensity from 29° to 32° ・Goniometer: vertical type ・Divergence slit: 1°
・Scattering slit: 1°
・Receiving slit: 0.30mm
The raw data of the spectra obtained by X-ray crystallography for transparent conductive films 1-17 are shown in FIGS. 2A-2Q, respectively. The presence or absence of detection of a peak at 2θ=29° to 32° corresponding to the (222) plane measured by X-ray crystal diffraction was judged based on the following method. The results are shown in Tables 1-4.
The following values <1> to <3> are calculated based on the measured raw data.
<1> Maximum value of diffraction intensity in the range of 30° to 31° <2> Value obtained by adding diffraction intensity at 29° and 32° and dividing by 2 <3> Value obtained by dividing <1> by <2><1> Maximum value of diffraction intensity in the range of 30° to 31°” is higher when the ITO in the second metal oxide layer is crystallized than when the ITO is not crystallized. .
Further, "<1> the maximum value of the diffraction intensity in the range of 30° to 31°" is "<2> the diffraction intensity at 29° and 32° when the ITO in the second metal oxide layer is not crystallized. is added and divided by 2".
In this embodiment, when "value obtained by dividing <3><1> by <2>" is 1.2 or more, it is determined that "a peak is detected", and "<3><1> is When the "value divided by <2>" was less than 1.2, it was determined that "no peak was detected".
In addition, in Tables 1 to 4, "ITO (amorphous)" means that ITO does not crystallize even after heat treatment at 150 ° C. for 30 minutes, and no X-ray diffraction peak is detected. “ITO (microcrystalline)” means that ITO was crystallized by heat treatment at 150° C. for 30 minutes and an X-ray diffraction peak was detected.
 次に、得られた透明導電性フィルムについて、以下のようにして耐湿熱試験を実施した。
[耐湿熱試験]
 得られた透明導電性フィルム1~18を2枚ずつ用意し、各透明導電性フィルムの1枚を60℃、95%RHの恒温恒湿装置で250時間静置する耐湿熱試験を行い、もう一枚を85℃、85%RHの恒温恒湿装置で250時間静置する耐湿熱試験を行った。
Next, the obtained transparent conductive film was subjected to a moisture and heat resistance test as follows.
[Moisture and heat resistance test]
Two sheets of each of the obtained transparent conductive films 1 to 18 were prepared, and one sheet of each transparent conductive film was left for 250 hours in a constant temperature and humidity apparatus at 60 ° C. and 95% RH. A humidity and heat resistance test was performed by leaving one sheet in a constant temperature and humidity apparatus at 85° C. and 85% RH for 250 hours.
 耐湿熱試験後の透明導電性フィルム1~18について、以下のようにして、「外観評価」、「導電性(表面抵抗値測定)」、「透明性(全光線透過率)」、及び「密着性(碁盤目剥離試験)」を評価した。結果を表1~表4に示した。 Regarding the transparent conductive films 1 to 18 after the heat and humidity resistance test, "appearance evaluation", "conductivity (surface resistance measurement)", "transparency (total light transmittance)", and "adhesion properties (cross-cut peeling test)” was evaluated. The results are shown in Tables 1-4.
<外観評価>
 耐湿熱試験後の透明導電性フィルムについて、目視で外観確認を行い、金属層における銀の凝集(銀の凝集塊)の発生状態を下記評価基準に基づき評価した。結果を表1~表4に示す。なお、実施例1の平面視した状態における写真の一例を図3A(60℃、95%RH、250時間)及び図3B(85℃、85%RH、250時間)に示し、比較例5の平面視した状態における写真の一例を図3C(60℃、95%RH、250時間)及び図3D(85℃、85%RH、250時間)に示す。写真における白色の点状の箇所が銀の凝集塊を示す。耐湿熱試験の条件「60℃、95%RH、250時間」における評価結果が3以上、及び「85℃、85%RH、250時間」における評価結果が2以上であれば実使用上問題ない水準である。
[評価基準]
   3:40mm×40mmの面積に直径0.5mm以上の銀の凝集塊が3個以下存在する
   2:40mm×40mmの面積に直径0.5mm以上の銀の凝集塊が4個以上10個未満存在する
   1:40mm×40mmの面積に直径0.5mm以上の銀の凝集塊が10個以上存在する
<Appearance evaluation>
After the moist heat resistance test, the appearance of the transparent conductive film was visually confirmed, and the state of silver aggregation (silver aggregate) in the metal layer was evaluated based on the following evaluation criteria. The results are shown in Tables 1-4. 3A (60° C., 95% RH, 250 hours) and FIG. 3B (85° C., 85% RH, 250 hours). An example of the photograph in the viewing state is shown in FIG. 3C (60° C., 95% RH, 250 hours) and FIG. 3D (85° C., 85% RH, 250 hours). White dotted spots in the photograph indicate silver agglomerates. If the evaluation result is 3 or more under the conditions of the humidity and heat resistance test "60°C, 95% RH, 250 hours" and the evaluation result is 2 or more under "85°C, 85% RH, 250 hours", there is no problem in practical use. is.
[Evaluation criteria]
3: 3 or less silver aggregates with a diameter of 0.5 mm or more exist in an area of 40 mm × 40 mm 2: 4 or more and less than 10 silver aggregates with a diameter of 0.5 mm or more exist in an area of 40 mm × 40 mm 1: There are 10 or more silver agglomerates with a diameter of 0.5 mm or more in an area of 40 mm x 40 mm
<導電性(表面抵抗値測定)>
 「耐湿熱試験前」及び「耐湿熱試験後」の透明導電性フィルムについて、表面抵抗値を測定した。表面抵抗値は低抵抗率計(三菱化学アナリテック社製、型番:MCP-T610)により任意の10点を測定し、その平均値を表面抵抗値とした。測定結果を下記評価基準に準じて評価した。耐湿熱試験の各条件(「60℃、95%RH、250時間」及び「85℃、85%RH、250時間」)の評価結果のうち、悪い方の評価結果を透明導電性フィルムの評価とした。なお、耐湿熱試験の各条件における評価結果が「〇」であれば実使用上問題ない水準である。
[評価基準]
  〇:表面抵抗値が30Ω/□以下
  ×:表面抵抗値が30Ω/□超
<Conductivity (measurement of surface resistance)>
The surface resistance value was measured for the transparent conductive film "before the heat and humidity resistance test" and "after the heat and humidity resistance test". The surface resistance value was measured at arbitrary 10 points with a low resistivity meter (manufactured by Mitsubishi Chemical Analytic Tech, model number: MCP-T610), and the average value was taken as the surface resistance value. The measurement results were evaluated according to the following evaluation criteria. Among the evaluation results of each condition of the moist heat resistance test ("60 ° C., 95% RH, 250 hours" and "85 ° C., 85% RH, 250 hours"), the worse evaluation result is the evaluation of the transparent conductive film. bottom. In addition, if the evaluation result in each condition of the moisture and heat resistance test is "O", it is a level that does not pose any problems in practical use.
[Evaluation criteria]
○: Surface resistance value is 30 Ω / □ or less ×: Surface resistance value is over 30 Ω / □
<透明性(全光線透過率測定)>
 耐湿熱試験前及び耐湿熱試験後の透明導電性フィルムについて、全光線透過率を測定した。全光線透過率は、ヘーズメーター(日本電色工業株式会社製、型番等:NDH5000SP)を用いて、JIS K7361-1/HAZE:JIS K7136に準拠して測定した。
<Transparency (total light transmittance measurement)>
The total light transmittance was measured for the transparent conductive film before the heat and humidity resistance test and after the heat and humidity resistance test. The total light transmittance was measured according to JIS K7361-1/HAZE: JIS K7136 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number: NDH5000SP).
<密着性(碁盤目剥離試験)>
 「耐湿熱試験前」及び「耐湿熱試験後」の透明導電性フィルムについて、碁盤目剥離試験により密着性を評価した。
 具体的には、第2の金属酸化物層側から等間隔(1.5mm)に11本切り込みを入れ、90°向きを変えてさらに等間隔(1.5mm)で11本切り込みを入れ、縦横10×10個の碁盤目状に切り込まれた100マスを作製した。
 この上に、セロハンテープ(ニチバン株式会社製、品番:CT405AP-18)を貼付け、第2の金属酸化物層に付着させた。その後、テープの端を持ち、貼り合わせた面に対して直交する方向に瞬間的にテープを引き剥がし、第2の金属酸化物の剥離状況を確認した。
 結果を表1~表4に示す。結果において、分子は剥離せずに残存したマスの数を表し、100/100は剥離無しの状態であることを表す。測定結果を下記評価基準に準じて評価した。耐湿熱試験の各条件(「60℃、95%RH、250時間」及び「85℃、85%RH、250時間」)の評価結果のうち、悪い方の評価結果を透明導電性フィルムの評価とした。なお、評価結果が2以上であれば実使用上問題ない水準である。
[評価基準]
  3:残存したマスの数が100/100
  2:残存したマスの数が90/100以上100/100未満
  1:残存したマスの数が90/100未満
<Adhesion (crosscut peeling test)>
The adhesiveness of the transparent conductive film "before the moisture-heat resistance test" and "after the moisture-heat resistance test" was evaluated by a checkerboard peeling test.
Specifically, 11 incisions were made at equal intervals (1.5 mm) from the second metal oxide layer side, the direction was changed by 90°, and 11 incisions were made at equal intervals (1.5 mm). 100 squares cut in a grid of 10×10 pieces were prepared.
A cellophane tape (manufactured by Nichiban Co., Ltd., product number: CT405AP-18) was pasted thereon and adhered to the second metal oxide layer. After that, holding the end of the tape, the tape was instantaneously peeled off in a direction orthogonal to the bonded surfaces, and the peeling state of the second metal oxide was confirmed.
The results are shown in Tables 1-4. In the results, the numerator represents the number of masses remaining without peeling, and 100/100 represents the state without peeling. The measurement results were evaluated according to the following evaluation criteria. Among the evaluation results of each condition of the moist heat resistance test ("60 ° C., 95% RH, 250 hours" and "85 ° C., 85% RH, 250 hours"), the worse evaluation result is the evaluation of the transparent conductive film. bottom. In addition, if the evaluation result is 2 or more, it is a level that poses no problem in actual use.
[Evaluation criteria]
3: The number of remaining squares is 100/100
2: The number of remaining squares is 90/100 or more and less than 100/100 1: The number of remaining squares is less than 90/100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~表4の結果から、実施例1~5の透明導電性フィルムは、耐湿熱試験後においても優れた外観、導電性、全光線透過率、及び密着性を維持できることが示された。
 なお、図2A~図2C及び図2P~図2Qの結果から、第2の金属酸化物層における酸化スズの含有量が酸化インジウム及び酸化スズの合計量に対して10質量%である実施例1~3は、前記酸化スズの含有量が酸化インジウム及び酸化スズの合計量に対して5質量%である実施例4及び5よりも、X線回析測定(222)面に対応する2θ=29°~32°のピークがより検出されていないことから、より結晶化が起こりにくいことが示された。
The results in Tables 1 to 4 show that the transparent conductive films of Examples 1 to 5 can maintain excellent appearance, conductivity, total light transmittance, and adhesion even after the wet heat resistance test.
From the results of FIGS. 2A to 2C and FIGS. 2P to 2Q, the content of tin oxide in the second metal oxide layer is 10% by mass with respect to the total amount of indium oxide and tin oxide. 2θ=29 corresponding to the X-ray diffraction measurement (222) plane than in Examples 4 and 5 in which the tin oxide content is 5% by mass with respect to the total amount of indium oxide and tin oxide. ° to 32° peak was less detected, indicating less crystallization.
 本国際出願は、2021年12月15日に出願した日本国特許出願2021-203235号、及び2022年10月28日に出願した日本国特許出願2022-173639号に基づく優先権を主張するものであり、日本国特許出願2021-203235号、及び日本国特許出願2022-173639号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-203235 filed on December 15, 2021 and Japanese Patent Application No. 2022-173639 filed on October 28, 2022. Yes, the entire contents of Japanese Patent Application No. 2021-203235 and Japanese Patent Application No. 2022-173639 are incorporated into this international application.
 10  透明導電性フィルム
 11  基材
 12a 第1の金属酸化物層
 12b 第2の金属酸化物層
 13  金属層
 14  下地層
REFERENCE SIGNS LIST 10 transparent conductive film 11 substrate 12a first metal oxide layer 12b second metal oxide layer 13 metal layer 14 base layer

Claims (4)

  1.  基材と、第1の金属酸化物層と、金属層と、第2の金属酸化物層と、をこの順に有する透明導電性フィルムであって、
     前記第1の金属酸化物層は、酸化亜鉛及び酸化スズを含有し、
     前記金属層は、銀及び銀合金の少なくともいずれかを含有し、
     前記第2の金属酸化物層は、酸化インジウム及び酸化スズを含有し、
     前記透明導電性フィルムを、150℃、30分間、熱処理した後に、X線結晶回折法で測定したときに、2θ=29°~32°においてピークが検出されないことを特徴とする透明導電性フィルム。
    A transparent conductive film having a substrate, a first metal oxide layer, a metal layer, and a second metal oxide layer in this order,
    The first metal oxide layer contains zinc oxide and tin oxide,
    the metal layer contains at least one of silver and a silver alloy,
    The second metal oxide layer contains indium oxide and tin oxide,
    A transparent conductive film characterized in that no peak is detected at 2θ = 29° to 32° when measured by X-ray crystal diffraction after heat treatment at 150°C for 30 minutes.
  2.  前記第2の金属酸化物層の算術平均粗さRaが、15nm以下である請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the second metal oxide layer has an arithmetic mean roughness Ra of 15 nm or less.
  3.  前記第2の金属酸化物層における酸化スズの含有量が、前記酸化インジウム及び前記酸化スズの合計量に対して、5質量%以上である請求項1から2のいずれかに記載の透明導電性フィルム。 The transparent conductive material according to any one of claims 1 and 2, wherein the content of tin oxide in the second metal oxide layer is 5% by mass or more with respect to the total amount of the indium oxide and the tin oxide. the film.
  4.  JIS K7361-1に準じて測定される全光線透過率が82%以上である請求項1から2のいずれかに記載の透明導電性フィルム。

     
    3. The transparent conductive film according to claim 1, which has a total light transmittance of 82% or more as measured according to JIS K7361-1.

PCT/JP2022/044522 2021-12-15 2022-12-02 Transparent conductive film WO2023112716A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-203235 2021-12-15
JP2021203235 2021-12-15
JP2022173639A JP2023088847A (en) 2021-12-15 2022-10-28 transparent conductive film
JP2022-173639 2022-10-28

Publications (1)

Publication Number Publication Date
WO2023112716A1 true WO2023112716A1 (en) 2023-06-22

Family

ID=86774580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044522 WO2023112716A1 (en) 2021-12-15 2022-12-02 Transparent conductive film

Country Status (1)

Country Link
WO (1) WO2023112716A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234816A (en) * 1996-02-29 1997-09-09 Mitsui Toatsu Chem Inc Transparent conductive laminate
JPH1024520A (en) * 1996-07-11 1998-01-27 Mitsui Petrochem Ind Ltd Transparent conductive laminate
JP2005320192A (en) * 2004-05-07 2005-11-17 Sumitomo Metal Mining Co Ltd Oxide sintered compact, spattering target, and transparent conductive thin film
JP2007112673A (en) * 2005-10-21 2007-05-10 Sumitomo Metal Mining Co Ltd Oxide sintered compact, oxide film using same and laminate comprising the oxide film
JP2010157497A (en) * 2008-12-02 2010-07-15 Geomatec Co Ltd Substrate with transparent conductive film and method of manufacturing the same
JP2017107825A (en) * 2015-12-11 2017-06-15 Tdk株式会社 Transparent conductor
JP2020082660A (en) * 2018-11-30 2020-06-04 Tdk株式会社 Gas barrier laminate
JP2021018956A (en) * 2019-07-23 2021-02-15 Tdk株式会社 Transparent conductor and organic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234816A (en) * 1996-02-29 1997-09-09 Mitsui Toatsu Chem Inc Transparent conductive laminate
JPH1024520A (en) * 1996-07-11 1998-01-27 Mitsui Petrochem Ind Ltd Transparent conductive laminate
JP2005320192A (en) * 2004-05-07 2005-11-17 Sumitomo Metal Mining Co Ltd Oxide sintered compact, spattering target, and transparent conductive thin film
JP2007112673A (en) * 2005-10-21 2007-05-10 Sumitomo Metal Mining Co Ltd Oxide sintered compact, oxide film using same and laminate comprising the oxide film
JP2010157497A (en) * 2008-12-02 2010-07-15 Geomatec Co Ltd Substrate with transparent conductive film and method of manufacturing the same
JP2017107825A (en) * 2015-12-11 2017-06-15 Tdk株式会社 Transparent conductor
JP2020082660A (en) * 2018-11-30 2020-06-04 Tdk株式会社 Gas barrier laminate
JP2021018956A (en) * 2019-07-23 2021-02-15 Tdk株式会社 Transparent conductor and organic device

Similar Documents

Publication Publication Date Title
CN107735841B (en) Transparent conductor
JP4961786B2 (en) Transparent conductive film and transparent conductive film using the same
US9582130B2 (en) Transparent conductor and touch panel
EP3001428B1 (en) Conductive film and electronic device having conductive film
JPWO2006090798A1 (en) Electromagnetic wave shielding laminate and display device using the same
KR20060052892A (en) Electromagnetic shielding multilayer body and display using same
CN109313964B (en) Transparent conductor
JP2024032742A (en) Light-transparent conductive layer and light-transparent conductive film
EP4238756A1 (en) Transparent conductive piezoelectric film and touch panel
KR101700884B1 (en) Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film
WO2023112716A1 (en) Transparent conductive film
JP2023088847A (en) transparent conductive film
KR20150105798A (en) Transparent electrode and manufacturing method thereof
US10490317B2 (en) Conductive laminate and transparent electrode including same
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
KR20110021641A (en) Transparent conductive laminate
KR20200001441A (en) Ito film and transparent conductive film
JP2005047178A (en) Transparent substrate with multi-layer film having conductivity
WO2021215153A1 (en) Light-transmitting electrically conductive layer laminated body
CN115298757A (en) Light-transmitting conductive film and transparent conductive film
WO2015118726A1 (en) Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device formed using transparent conductive laminate
CN111916252A (en) Transparent conductive film with low sheet resistance
WO2014157312A1 (en) Transparent conductive multilayer film and method for producing same
EP3272520B1 (en) Conductive structure and electronic device comprising same
WO2023013733A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907244

Country of ref document: EP

Kind code of ref document: A1