WO2023112708A1 - Method and device for generating germicidal mist - Google Patents

Method and device for generating germicidal mist Download PDF

Info

Publication number
WO2023112708A1
WO2023112708A1 PCT/JP2022/044448 JP2022044448W WO2023112708A1 WO 2023112708 A1 WO2023112708 A1 WO 2023112708A1 JP 2022044448 W JP2022044448 W JP 2022044448W WO 2023112708 A1 WO2023112708 A1 WO 2023112708A1
Authority
WO
WIPO (PCT)
Prior art keywords
sterilizing
mist
liquid
air
carrier gas
Prior art date
Application number
PCT/JP2022/044448
Other languages
French (fr)
Japanese (ja)
Inventor
一雄 松浦
Original Assignee
ナノミストテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノミストテクノロジーズ株式会社 filed Critical ナノミストテクノロジーズ株式会社
Publication of WO2023112708A1 publication Critical patent/WO2023112708A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations

Definitions

  • the present invention relates to a sterilization mist generation method and generation device that scatters a sterilization liquid in the air as a mist.
  • Patent Documents 1 and 2 A device that ultrasonically vibrates a solution to generate mist used for sterilization and deodorization has been developed (see Patent Documents 1 and 2).
  • the publication of Patent Document 1 describes a device that electrolyzes water into acidic water and alkaline water, generates a mist that is used for sterilization, deodorization, etc., by ultrasonically vibrating the electrolyzed acidic water and alkaline water.
  • Patent Literature 2 describes an apparatus that applies a voltage to water to generate underwater plasma to obtain functional water, and converts this functional water into mist by ultrasonic vibration.
  • the devices described in these publications cannot sterilize bacteria quickly and efficiently by scattering a small amount of sterilizing liquid in the form of mist in the air because the mist generated by ultrasonic vibration has a large particle size.
  • the method of scattering a mist that has a sterilizing effect in the air is expected to be effective in sterilizing more efficiently in a short time using a small amount of sterilizing agent.
  • a method for generating a sterilizing mist is a method for generating a sterilizing mist in which sterilizing mist, which is a mist of a sterilizing liquid, is scattered in the air, and in addition to water and a sterilizing agent, A mixed chemical solution of three or more components is used by adding a surfactant having a boiling point lower than that of water, and the mixed chemical solution is atomized by ultrasonic vibration to generate a sterilizing mist that is scattered in the air as a sterilizing mist.
  • the sterilizing agent in the mixed chemical solution can be a chlorine-based sterilizing agent.
  • alcohol can be used as the surfactant.
  • ethyl alcohol can be used as the surfactant.
  • the mixed chemical solution can contain 60% by weight or less of ethyl alcohol.
  • a method for generating a sterilizing mist includes ultrasonically vibrating a mixed chemical to generate a liquid column, blowing a carrier gas onto the surface of the liquid column, and dispersing the sterilizing mist in the air. .
  • a sterilizing mist generating apparatus is a sterilizing liquid consisting of a mixed chemical solution of three or more components in which a surfactant having a boiling point lower than that of water is added in addition to water and a sterilizing agent.
  • a blower duct for blowing gas and a blower for forcibly blowing a carrier gas into the blower duct are provided, and the carrier gas blown from the blower duct onto the surface of the liquid column scatters the sterilizing mist in the air.
  • the atomization chamber has a plurality of ultrasonic transducers arranged in a straight line, and the air duct has an opposing wall facing the liquid column. It has an ejection opening for blowing carrier gas onto the surface of the liquid column generated by the ultrasonic vibration of the ultrasonic transducer, and the carrier gas blown onto the liquid column from the ejection opening can scatter the sterilizing mist into the air.
  • an air duct includes one or a plurality of dividing plates that divide the air duct into a plurality of divided ducts in multiple stages.
  • a dividing plate can divide and blow the carrier gas supplied to the blowing duct to each ejection opening.
  • a sterilizing mist generating device comprises a plurality of rows of ultrasonic transducers arranged between the plurality of rows of liquid columns generated by the plurality of rows of ultrasonic transducers.
  • a blowing duct is provided, and the blowing duct has ejection openings on both sides to blow the carrier gas onto the liquid columns on both sides.
  • the method and apparatus for generating sterilizing mist of the present invention have the advantage of being able to achieve effective sterilizing power in an extremely simple manner while reducing the amount of sterilizing agent used.
  • FIG. 1 is a schematic horizontal cross-sectional view of a sterilizing mist generator according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the sterilizing mist generator shown in FIG.
  • FIG. 3 is a sectional view taken along line III-III of the sterilizing mist generator shown in FIG.
  • FIG. 4 is a schematic horizontal sectional view of a sterilizing mist generator according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the sterilizing mist generator shown in FIG. 4 taken along the line VV.
  • FIG. 6 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention.
  • FIG. 1 is a schematic horizontal cross-sectional view of a sterilizing mist generator according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the sterilizing mist generator shown in FIG.
  • FIG. 3 is a sectional view taken
  • FIG. 7 is a schematic horizontal cross-sectional view of a germicidal mist generator according to another embodiment of the present invention.
  • FIG. 8 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention.
  • FIG. 9 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention.
  • FIG. 10 is an enlarged cross-sectional view of a main part of the sterilizing mist generating device shown in FIG.
  • FIG. 11 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention.
  • FIG. 12 is a schematic perspective view showing an example in which the ejection opening is a slit.
  • FIG. 13 is a schematic perspective view showing an example in which the ejection openings are a plurality of through holes.
  • a method for generating a sterilizing mist is a method for generating a sterilizing mist in which sterilizing mist, which is a mist of a sterilizing liquid, is dispersed in the air.
  • a mixed chemical solution of three or more components is used by adding a surfactant having a boiling point lower than that of water, and the mixed chemical solution is atomized by ultrasonic vibration to generate a sterilizing mist which is scattered in the air as a sterilizing mist.
  • the method of scattering liquid in the air as mist by ultrasonic vibration has been used as an ultrasonic humidifier.
  • the mist generated by this method can be made smaller than the mist that is sprayed by pressurizing the liquid from the nozzle.
  • it is required to further refine the mist. This is because the fine mist increases the number of mists per unit amount, further increases the surface area, increases the probability of contact with the sterilizer, and increases the sterilization power.
  • an ultrasonic vibrator placed at the bottom of the sterilizing liquid emits ultrasonic vibrations upward, and the energy of the ultrasonic vibrations causes the liquid column to protrude from the liquid surface. to disperse and generate a sterilizing mist in the air from the surface of the liquid column.
  • the average particle diameter of the mist dispersed from the surface of the liquid column in this state is as large as microns, and it is required to further refine the mist to achieve effective sterilization power with a small amount of sterilant.
  • the energy of ultrasonic vibration causes the mist to fly out into the air from the surface of the liquid column, but the mist overcomes the surface tension and jumps out of the liquid column, so the size of the mist is affected by the surface tension of the liquid.
  • the surface tension of a liquid is the surface free energy per unit area, which is the force acting on the liquid to make its surface as small as possible.
  • the energy of the ultrasonic vibration overcomes the surface tension of the liquid, separates it from the surface of the liquid column, and scatters in the air.
  • the particle size of the mist ejected from the liquid column increases.
  • a sterilizing liquid is atomized to form a sterilizing mist, and in addition to water and a sterilizing agent, a surfactant having a boiling point lower than that of water is added to produce three or more components.
  • a surfactant having a boiling point lower than that of water is added to produce three or more components.
  • the surfactant added to the sterilizing liquid reduces the surface tension of the sterilizing liquid, and finely mists ejected from the liquid column by the energy of ultrasonic vibration. Therefore, the mixed chemical solution to which the surfactant has been added is already atomized mist in a state of being ejected from the liquid column into the air.
  • the surfactant having a boiling point lower than that of water added to the sterilizing liquid evaporates and disappears from the mist when scattered in the air, further reducing the mist.
  • the sterilizing mist in which the surfactant has evaporated and disappeared and has been finely divided in the air, has a higher concentration of the sterilizing agent and a higher concentration of the sterilizing agent on the surface of the mist, thereby significantly improving the sterilizing power. Therefore, the method of generating the sterilizing mist described above can achieve effective sterilizing power with a small amount of sterilizing agent by miniaturizing the sterilizing mist dispersed in the air to increase the concentration of the sterilizing agent.
  • the concentration of the sterilizing agent increases and the sterilizing power of the sterilizing mist itself becomes stronger.
  • the synergistic effect of becoming stronger it realizes the feature of being able to quickly sterilize sterilization in the air with a small amount of sterilization agent.
  • a method for generating the sterilizing mist is to scatter the sterilizing mist, which is the mist of the sterilizing liquid, in the air.
  • a mixed chemical solution containing three or more components containing a surfactant with a boiling point lower than that of water is used as the sterilizing solution, and the mixed chemical solution is atomized by ultrasonic vibration to form a sterilizing mist. Disperse in the air.
  • the sterilizing mist dispersed in the air can have a smaller particle size and a stronger sterilizing power. This is because if the particle size of the mist is reduced, the number of mists per unit amount of the sterilizing liquid can be increased, and the surface area can be increased.
  • the sterilizing mist generator 100 shown in FIGS. 1 to 3 radiates ultrasonic vibrations upward from the ultrasonic vibrator 2 placed at the bottom of the sterilizing liquid 1, and the energy of the ultrasonic vibrations is used to form a liquid column from the liquid surface 5. 6 is protruded to generate sterilizing mist dispersed in the air from the surface of the liquid column 6. - ⁇ Further, in the sterilizing mist generator 100, in order to make the average particle size of the mist dispersed from the surface of the liquid column 6 finer, the sterilizing liquid 1, which is water mixed with a sterilizing agent, has a lower particle size than the water. A boiling point surfactant is added. The surfactant added to the sterilizing liquid 1 facilitates the ejection of mist from the surface of the liquid into the air by ultrasonic vibrations, thereby miniaturizing the mist.
  • the liquid is ultrasonically vibrated, and the mist flies out into the air from the surface of the liquid column 6, but the mist overcomes the surface tension of the liquid and flies out of the liquid column 6.
  • the surface tension of a liquid is a force that acts to make the surface of the liquid as small as possible, and the surface free energy per unit area restrains the liquid from jumping out of the liquid column 6 .
  • the mist overcomes the surface tension of the liquid by the energy of the ultrasonic vibration and jumps out from the surface of the liquid column 6, so the strong surface tension of water increases the particle size of the mist.
  • the sterilizing mist generator 100 first reduces the surface tension of the sterilizing liquid 1 by adding a surfactant having a boiling point lower than that of water in addition to water and a sterilizing agent.
  • a surfactant is added, and a mixed chemical solution of three or more components is made into a sterilizing mist by ultrasonic vibration.
  • the surfactant added to the sterilizing liquid 1 reduces the surface tension of the sterilizing liquid 1, and finely mists ejected from the liquid column 6 by the energy of the ultrasonic vibration.
  • the surfactant added to the sterilizing liquid 1 first refines the mist that pops out of the liquid, and then further refines the mist even when it is scattered in the air to strengthen the sterilizing power.
  • a surfactant having a boiling point lower than that of water evaporates and disappears from the mist when it is scattered in the air, thereby making the sterilizing mist finer.
  • the sterilizing mist that scatters in the air becomes finer and the sterilizing power increases.
  • vaporization and disappearance of the surfactant increases the concentration of the sterilizing agent in the sterilizing mist and increases the concentration of the sterilizing agent on the surface of the mist. This enhances the sterilizing power of the mist itself.
  • the sterilizing mist generating device 100 of FIGS. 1 to 3 has the sterilizing power of the sterilizing mist that scatters in the air due to the synergistic effect of the sterilizing power enhancement effect due to the miniaturization of the mist and the sterilizing power enhancement effect of the mist itself. can be significantly enhanced.
  • a surfactant with a boiling point lower than that of water is added to make a mixed chemical solution of three or more components, and this mixed chemical solution is sterilized by ultrasonic vibration. It is realized by scattering in the air as The surfactant first makes the sterilizing mist generated by ultrasonic vibration finer, and when it is scattered in the air, the surfactant with a low boiling point evaporates and disappears, making the sterilizing mist even finer. In addition, by evaporating and disappearing the surfactant from the sterilizing mist to increase the sterilizing concentration of the sterilizing mist, the substantial sterilizing power in the state of scattering in the air is remarkably improved. Therefore, the sterilizing mist generating device 100 of FIGS. 1 to 3 can sterilize bacteria in the air extremely efficiently while reducing the use of sterilizing agents, so that the effects on the human body can be reduced, and quickly and further. To achieve a feature that can surely invalidate bacteria.
  • Ethyl alcohol is suitable as a surfactant with a boiling point lower than that of water to be added to the sterilizing solution 1. Since ethyl alcohol vaporizes more easily than water, ethyl alcohol contained in the mist quickly vaporizes and disappears from the mist. Ethyl alcohol evaporates from the mist, disappears, becomes fine, and is dispersed in the air. In particular, it is rapidly vaporized into a fine mist state by ultrasonic vibration, disappears, and is separated from the mist. The alcohol added to the sterilizing solution 1 is added as a surfactant, not as a sterilizing agent.
  • the alcohol added to the sterilizing liquid 1 is added as a surfactant to reduce the particle size of the mist, and does not achieve a sterilizing effect.
  • Alcohol itself has a bactericidal effect, but alcoholic water with a bactericidal effect needs to have a concentration of 70% or more.
  • the sterilizing liquid 1 does not use alcohol as a sterilizing agent, the alcohol concentration of the sterilizing liquid 1 is preferably 60% or less.
  • the amount of other surfactants added can be increased to make the mist fine, but the amount added is preferably 60% by weight or less, more preferably 50% by weight or less. Since the addition of the surfactant has the effect of refining the mist, for example, the amount of addition can be 30% by weight or less to make the mist fine. 1. Set the optimum concentration for the application in consideration of cost-effectiveness.
  • Ethyl alcohol which is added as a surfactant to the sterilizing solution 1, has a lower surface tension than water. While the surface tension of water is about 72 mN/m at 20° C. to 25° C., the surface tension of alcohol water with an ethyl alcohol concentration of 10% is 48 mN/m, and the surface tension of alcohol water with an ethyl alcohol concentration of 50%. The surface tension is remarkably low at 28 mN/m, and by adding this, the surface tension of the mist of the sterilizing liquid 1 is lowered, and the particle size of the generated mist is reduced.
  • a chlorine-based disinfectant can be used as the disinfectant added to the disinfectant solution 1.
  • Chlorine-based disinfectants have the advantage of being effective against a wide range of bacteria and viruses, including norovirus, in a short period of time, even at low concentrations, compared to alcohol disinfectants.
  • Chlorine-based disinfectants can be used including disinfectants currently in practical use and disinfectants that will be put into practical use in the future.
  • Examples of chlorine-based disinfectants include hypochlorous acid as the main effect, such as weakly acidic hypochlorous acid water and calcium hypochlorite, and those mainly containing other than hypochlorous acid. Examples include chlorine dioxide, trichloroisocyanuric acid, and sodium dichloroisocyanurate.
  • Spraying in a manned space is possible when a bactericidal effect is observed at a concentration that does not affect the human body. For example, when entering an unmanned space after spraying and ventilating, such as at night, more effective sterilizing power can be achieved by increasing the concentration of the chlorine-based sterilant.
  • the sterilizing mist generator 100 of FIGS. 1 to 3 blows a carrier gas onto the surface of the liquid column 6 protruding from the liquid surface by ultrasonic vibration to further refine the particle size of the mist. This is because the fresh carrier gas blown onto the surface of the liquid column 6 converts the micron-sized mist separated from the surface of the liquid column 6 into nano-mist, which is extremely fine mist.
  • the mist dispersed in the air from the interface between the sterilizing liquid 1 and the air is blown off by the energy of the ultrasonic vibration, separated from the surface of the liquid column 6, and the mist separated from the surface of the liquid column 6 is vaporized into water vapor. This is because water vapor is liquefied to form nano-mist.
  • air is generally used as the carrier gas
  • an embodiment in which air is used as the carrier gas will be mainly described in detail. It is also possible to use any gas, such as nitrogen gas, which can improve the atomization efficiency and does not attenuate the effective sterilization power.
  • the energy of ultrasonic vibration separates micron-sized mist from the surface of the liquid column 6.
  • the sterilizing mist generator 100 forcibly blows a carrier gas onto the surface of the liquid to convert the micron-sized mist separated from the surface of the liquid column 6 into nano-mist, thereby improving the atomization efficiency of the nano-mist.
  • the sterilizing liquid 1 to which a surfactant is added has a small surface tension, and the particle size of the mist becomes small when separated from the liquid column 6. - ⁇ Mist with a small particle size quickly evaporates. Therefore, the small mist separated from the surface of the liquid column 6 is rapidly vaporized by the carrier gas blown onto the surface of the liquid column 6 to become water vapor. This is because the carrier gas is blown onto the liquid column 6 to reduce the relative humidity on the surface of the liquid column 6 and create an environment in which the liquid column 6 is easily vaporized.
  • the air in which the mist is vaporized on the surface of the liquid column 6 is cooled by the heat of vaporization of the mist, and the temperature is lowered.
  • the air whose temperature has dropped rises in relative humidity and becomes supersaturated, liquefies water vapor again, and becomes nano-sized nano-mist.
  • FIG. 1 is a schematic configuration diagram of a sterilizing mist generating device 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a vertical longitudinal sectional view of the sterilizing mist generating device 100 shown in FIG. 1 cut in the longitudinal direction
  • 3 shows a vertical cross-sectional view of the sterilizing mist generating device 100 shown in FIG. 1 cut in the lateral direction.
  • the sterilizing mist generator 100 shown in these figures has a plurality of ultrasonic transducers 2 to generate a fine mist with high atomization efficiency.
  • This sterilization mist generator 100 includes a plurality of ultrasonic oscillators 2 for ultrasonically vibrating a sterilizing liquid 1, an atomization chamber 4 in which the plurality of ultrasonic oscillators 2 are arranged, and a A fan duct 7 for blowing a carrier gas onto the surface of a plurality of liquid columns 6 generated by the ultrasonic vibrations of the plurality of ultrasonic transducers 2 and a blower 9 for forcibly blowing the carrier gas to the fan duct 7 are provided.
  • the contents described in the sterilizing mist generator 100 also apply to other embodiments described later unless contradictory. (Atomization chamber 4)
  • the atomization chamber 4 is supplied with the sterilizing liquid 1 at a constant liquid level.
  • the atomization chamber 4 supplies the sterilizing liquid 1 when the liquid level drops, for example, to maintain the liquid level at a set value, or, although not shown, is connected to a stock solution tank storing the sterilizing liquid 1 via a pump. Then, the liquid level in the atomization chamber 4 is detected by a level sensor, the operation of the pump is controlled by the level sensor, and when the liquid level in the atomization chamber 4 drops, the pump is operated to set the liquid level. value can be held. (Ultrasonic transducer 2)
  • the atomization chamber 4 shown in FIGS. 2 and 3 has a plurality of ultrasonic transducers 2 fixed to the bottom in a posture that emits ultrasonic waves upward.
  • the ultrasonic transducer 2 is arranged at a constant depth that maximizes atomization efficiency.
  • Each ultrasonic transducer 2 is connected to an ultrasonic power supply (not shown) and excited by an alternating current of several tens of KHz to several MHz supplied from the ultrasonic power supply to ultrasonically vibrate.
  • Each ultrasonic vibrator 2 is placed at the same depth and emits ultrasonic vibrations upward to protrude a liquid column 6 from the liquid surface 5 .
  • the ultrasonic oscillator 2 radiates ultrasonic vibrations with a narrow radiation angle to project a liquid column 6 from the liquid surface 5 .
  • the liquid column 6 separates the sterilizing liquid 1 in the form of mist from the surface with the energy of the ultrasonic vibration.
  • the mist separated from the liquid column 6 is dispersed in the carrier gas that is forcibly blown, and is discharged as mist-mixed air.
  • a plurality of ultrasonic transducers 2 are arranged in a line at the bottom of the atomization chamber 4 .
  • the plurality of ultrasonic transducers 2 are arranged linearly on both sides of the air duct 7 as shown in FIG.
  • the ultrasonic vibrator 2 ultrasonically vibrates the sterilizing liquid 1 upward from the bottom, projects the liquid column 6 from the liquid surface 5, and separates the mist from the surface of the liquid column 6.
  • - ⁇ A carrier gas is blown onto the surface of the liquid column 6 from an air duct 7 in order to efficiently separate the mist and generate nano-mist.
  • the liquid columns 6 are arranged along the fan duct 7 such that each liquid column 6 is blown with the carrier gas from the fan duct 7 .
  • the air duct 7 is arranged in a straight line, and the liquid column 6 is arranged in a straight line parallel to the air duct 7 . Since the liquid column 6 is generated above the ultrasonic transducer 2, a plurality of ultrasonic transducers 2 are arranged on a straight line parallel to the air duct 7, and the liquid column 6 and the air duct 7 are arranged on the straight line. can be arranged in parallel.
  • a predetermined gap for example, a 3 mm to 3 cm air gap 11 is provided so that the carrier gas can be uniformly blown onto the surface of the liquid column 6. be done.
  • an arrangement line of the ultrasonic transducers 2 arranged on a line and a side line of the blowing duct 7 on the line. are parallel to each other and the spacing between them is equal to the spacing of the blowing gap 11 .
  • the spacing between the array line of the ultrasonic transducers 2 and the side line of the fan duct 7 can be made non-parallel by making them different between the upstream side and the downstream side when viewed from the fan side. (Blower duct 7)
  • the air duct 7 is arranged inside the atomization chamber 4 along the arrangement direction of the plurality of liquid columns 6 generated by the ultrasonic vibration of the ultrasonic oscillator 2 .
  • the air duct 7 is a hollow cylindrical body, and the carrier gas is forcibly blown from the air blower 9 .
  • the blower duct 7 has an ejection opening 8 in a wall 7 a facing the liquid column 6 . A carrier gas is blown from the blower 9 to the blower duct 7 , and the carrier gas is blown onto the surface of the liquid column 6 from the ejection opening 8 opened in the blower duct 7 .
  • the sterilizing mist generating device 100 of FIG. Spray horizontally to the left and right of the surface of 6. As shown in FIG. 3, the carrier gas is blown to the liquid column 6 on the right side from the ejection opening 8 of the opposite wall 7a on the right side of the fan duct 7, and the carrier gas is blown from the ejection opening 8 on the opposite wall 7a on the left side of the fan duct 7. A carrier gas is blown onto the liquid column 6 on the left.
  • the sterilizing mist generating device 100 can generate sterilizing mist by blowing a carrier gas onto the surfaces of two rows of liquid columns 6 with one fan duct 7 to improve the atomization efficiency.
  • the blower duct 7 has the opposing wall 7 a in a substantially vertical posture, and the ejection opening 8 is provided at a position facing the liquid column 6 .
  • the ejection opening 8 blows the carrier gas onto the surface of the liquid column 6 which is vertically protruded by ultrasonic vibration, thereby improving the atomization efficiency.
  • the blower duct 7 can also tilt the opposing wall 7a provided with the ejection opening 8 with respect to the vertical direction with respect to the bottom surface of the atomization chamber 4 .
  • the blower duct 7 has a wall 7a facing the liquid column 6, which opens the ejection opening 8, by inclining in a direction along the liquid column 6 protruding in a conical shape. By tilting in a direction parallel to the surface, the blowing gap 11 between the ejection opening 8 and the liquid column 6 can be equalized.
  • the opposing wall 7a of the air duct 7 can be formed in a shape corresponding to a predetermined air blow gap according to the air blow amount and position, and the height and position at which the carrier gas is blown onto the liquid column 6. .
  • the air duct 7 shown in the horizontal cross-sectional view of FIG. A ventilation gap 11 is provided. Since the ultrasonic transducers 2 are preferably arranged linearly as shown in FIG. 1, the air duct 7 is arranged in a posture extending linearly.
  • the air duct 7 has a vertical width sufficient to open ejection openings 8 capable of blowing the carrier gas from the lower end to the upper end of the liquid column 6, and a horizontal width capable of efficiently atomizing the surface of the liquid column 6 by blowing air from each ejection opening 8 to the surface of the liquid column 6. It is molded into a hollow cylinder.
  • the cross-sectional shape of the air duct 7 is preferably rectangular as shown in FIG.
  • the cross-sectional shape may be polygonal such as trapezoidal or triangular, or may be elliptical or otherwise without corners.
  • the shape of the cross section of the air duct 7 can be made into a trapezoidal shape with a downward slope, and the air blow gap 11 between the liquid column 6 and the liquid column 6 can be equalized in the vertical direction.
  • the air duct 7 has a cylindrical shape with the same cross-sectional area.
  • the cross-sectional area of the air duct 7 may be configured to be different in the arrangement direction of the liquid column 6 .
  • the carrier gas is forcibly blown from the blower 9 to the blower duct 7, and the carrier gas is blown to the liquid column 6 from the ejection opening 8 of the blower duct 7.
  • the cross-sectional area of the blower duct 7 on the downstream side farther from the blower 9 can be reduced in order to accommodate the different pressures at which the carrier gas is blown onto the liquid column 6 from the ejection openings 8 by the blower 9 . (Ejection opening 8)
  • the blower duct 7 in FIGS. 1 to 3 has an ejection opening 8 in the opposing wall 7a facing the liquid column 6.
  • the carrier gas is forcibly blown from the blower 9 to the blower duct 7 , and the carrier gas is blown onto the surface of the liquid column 6 from the ejection opening 8 of the blower duct 7 .
  • the ejection opening 8 is provided in the wall surface of the air duct 7 including the facing wall 7 a , ie the surface facing the liquid column 6 .
  • the sterilizing mist generating device 100 shown in FIGS. 1 to 3 has ejection openings 8 in opposing walls 7a on both sides of the air duct 7. As shown in FIG.
  • the ejection openings 8 can be opened in the facing wall 7a on one side of the fan duct 7, and the ejection openings 8 can be opened in the opposing walls 7a on both sides and one side of the fan duct 7.
  • the ejection opening 8 shown in FIGS. 1 to 3 is arranged at a position for blowing the carrier gas toward the liquid column 6 generated by ultrasonic vibration. This is because the carrier gas can be blown to the surface of the liquid column 6 to increase the atomization efficiency.
  • the ejection opening 8 can be opened at a position where the carrier gas is blown between adjacent liquid columns 6 . Depending on the distance between adjacent liquid columns 6, both adjacent liquid columns 6 can be blown with the carrier gas.
  • the ejection openings 8 may open at positions where the carrier gas is blown both to the liquid column 6 and between the adjacent liquid columns 6 .
  • Figures 12 and 13 show examples of the shape and arrangement of the ejection openings 8.
  • the ejection opening 8 can be a slit 8a extending in the vertical direction of the liquid column 6.
  • the ejection opening 8 can blow the carrier gas toward the entire liquid column 6 from the top to the bottom without partially blowing the carrier gas onto the liquid column 6, thereby improving the atomization efficiency. can be raised.
  • the slits 8a of the ejection opening 8 can be finely adjusted in terms of the size, shape, number, width, length and arrangement of the slits 8a. For example, FIG.
  • FIG 12A shows an example in which air is blown from the front toward the liquid column 6 from one slit 8a extending in the vertical direction of the liquid column 6, and FIG. An example of blowing air to the liquid column 6 from the slit 8a of the book is shown respectively.
  • the flow rate is the same, the larger the ejection opening 8, the slower the flow rate of the carrier gas, and the smaller the ejection opening 8, the faster the flow rate of the carrier gas.
  • the direction in which the carrier gas is blown from the jetting openings 8 is not limited to the horizontal direction with respect to the liquid column 6, but can also be in other directions.
  • the ejection opening 8 can blow the carrier gas in the horizontal direction, and it is also possible to devise the shape of the ejection opening 8 to blow the carrier gas obliquely upward or obliquely downward. It is also possible to blow the carrier gas in different directions at the openings 8 .
  • the length of the slit 8a of the ejection opening 8 is, for example, preferably 0.5 to 1.5 times the height of the liquid column 6, more preferably 0.8 to 1.5 times the height of the liquid column 6. Double it.
  • the blowing air volume of the carrier gas with good atomization efficiency differs, and the optimum length of the slit 8a of the ejection opening 8 also differs.
  • the carrier gas can be blown not only toward the upper end of the liquid column 6, but also toward the entire liquid column 6, thereby realizing optimum atomization efficiency. .
  • the air duct 7 can have ejection openings 8 with different opening areas.
  • the ejection openings 8 have different shapes, sizes, and arrangements depending on the positions of the ejection openings 8, namely, the upstream side close to the blower 9 and the far downstream side of the blower duct 7 for blowing air onto the surface of each liquid column 6. etc. can be adjusted.
  • the ejection openings 8 can have different opening areas.
  • the size, number, width and shape of the slits 8a can be changed according to the height position of the liquid column 6. FIG. By arranging the lowermost part of the slit 8 a of the ejection opening 8 above the liquid surface 5 , it is possible to prevent the sterilizing liquid 1 from entering the fan duct 7 .
  • the ejection opening 8 can also have a plurality of through holes 8b arranged vertically.
  • a plurality of through-holes 8b vertically, it is possible to spray the carrier gas toward the entire liquid column 6, as in the case of providing slits 8a extending in the vertical direction of the liquid column 6, thereby further atomizing the liquid column. Efficiency can be improved.
  • the through holes 8b of the ejection openings 8 can be adjusted more finely than the slits 8a, depending on the size, number, shape, and arrangement of the through holes 8b.
  • the through hole 8b is not limited to a circular hole, and may be an elliptical shape or a slit shape extending in the vertical or horizontal direction.
  • Both the through holes 8b and the slits 8a can be provided, or a combination thereof can be provided.
  • FIG. 13A shows an example in which air is blown from the front toward the liquid column 6 from a plurality of through holes 8b arranged in the vertical direction of the liquid column 6, and
  • FIG. 13C shows an example of blowing air to the liquid column 6 from a plurality of through holes 8b arranged in a letter shape. Examples of spraying are shown respectively.
  • the air duct 7 can have ejection openings 8 with different opening areas. Furthermore, since the lowermost portions of the plurality of through holes 8 b of the ejection opening 8 are arranged above the liquid surface 5 , the sterilizing liquid 1 can be prevented from entering the fan duct 7 . (Blower 9)
  • the blower 9 shown in FIG. 1 is connected to the blower duct 7 and forcibly blows the carrier gas into the blower duct 7 .
  • the carrier gas forcibly blown from the blower 9 is blown onto the surface of the liquid column 6 from the ejection opening 8 of the blower duct 7, efficiently generating nano-mist from the surface of the liquid column 6, and scattering the sterilizing mist in the air. to generate
  • multiple rows of air ducts 7 can be connected as shown in FIGS.
  • two blowers 9 may be provided in each blower duct 7 .
  • the air volume and pressure at which the air blower 9 forcibly blows the carrier gas are set so that the carrier gas can be forcibly blown to the liquid column 6 generated by each ultrasonic transducer 2 to generate nano-mist most efficiently.
  • the blower 9 can also heat or cool the air before blowing it.
  • the sterilizing mist generating device in which the blower 9 heats the air and blows it to each liquid column 6 can increase the mist atomization efficiency.
  • a sterilizing mist generator that cools air and forcibly blows it to each liquid column 6 is suitable for atomizing the sterilizing liquid 1 that is heated and deteriorated.
  • the description of the sterilizing mist generator 100 described above also applies to other embodiments to be described later, as long as there is no contradiction. [Embodiment 2]
  • FIG. 4 and 5 show a sterilizing mist generating device 200 according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic configuration diagram of a sterilizing mist generating device 200 according to Embodiment 2 of the present invention
  • FIG. 5 is a vertical cross section of the sterilizing mist generating device 200 shown in FIG. Figures are shown respectively.
  • the fan duct 7 is provided with a split plate 10 that splits the fan duct 7 into a plurality of split ducts 7b in multiple stages.
  • the dividing plate 10 is arranged vertically in the air duct 7 to divide the air duct 7 into a plurality of rows of divided ducts 7b.
  • the dividing plate 10 divides and supplies the carrier gas supplied from the blower 9 to the blowing duct 7 to the dividing duct 7b, and divides and blows it to each of the ejection openings 8 .
  • Other embodiments described below may also include a split plate 10 . (Divided duct 7b, divided plate 10)
  • the air duct 7 shown in FIG. 4 has a dividing plate 10 arranged therein for blowing the carrier gas equally to each liquid column 6, and the dividing plate 10 divides the air duct 7 into a plurality of rows of divided ducts 7b. split.
  • the dividing plate 10 makes the cross-sectional areas of the dividing ducts 7b substantially the same, and evenly distributes the carrier gas to the surface of each liquid column 6.
  • the dividing plate 10 shown in FIG. 4 has a flat portion 10a extending in the longitudinal direction of the blowing plate for guiding the carrier gas, and a bent portion 10b connected to the tip of the flat portion 10a. As shown in FIGS.
  • each of the dividing plates 10 is arranged in parallel at regular intervals with the flat portion 10a in a vertical posture, thereby dividing the air duct 7 into a plurality of rows of divided ducts 7b.
  • the bent portion 10b is bent from the flat portion 10a toward the facing wall 7a in order to connect the discharge side of the divided duct 7b to the ejection opening 8, and connects the tip edge thereof to the facing wall 7a.
  • the bent portion 10b connects the tip edge between the ejection openings 8 to the opposing wall 7a so that each split duct 7b is connected to the ejection openings 8. As shown in FIG.
  • Each split duct 7b is connected to the blower 9 on the inflow side and to the ejection opening 8 on the discharge side.
  • one ejection opening 8 is connected to one divided duct 7b.
  • This structure has the advantage that the carrier gas can be uniformly blown to each ejection opening 8 .
  • multiple rows of divided ducts 7b can connect a plurality of ejection openings 8 to one divided duct 7b.
  • FIG. 4 shows the ultrasonic vibrators 2 provided on both sides of the air duct 7 to generate liquid columns 6 on both sides of the air duct 7, and the ejection openings 8 provided in the opposing walls 7a on both the left and right sides of the air duct 7.
  • a plurality of rows of divided ducts 7b are provided to connect to the .
  • split plates 10 are arranged bilaterally symmetrically inside the air duct 7, and the split duct 7b is connected to the ejection openings 8 provided in the opposing walls 7a on both left and right sides.
  • One or a plurality of divided ducts 7b can be provided according to the positional relationship between the air duct 7 and the liquid column 6, the number and positions of the liquid column 6 and the ejection openings 8, the length of the air duct 7, and the like.
  • FIG. 6 is a schematic configuration diagram of a sterilizing mist generating device 300 according to Embodiment 3
  • FIG. 7 is a schematic configuration diagram of a sterilizing mist generating device 400 according to Embodiment 4
  • FIG. 9 is a schematic configuration diagram of a sterilizing mist generating device 500 according to Embodiment 6
  • FIG. 10 is an enlarged cross-sectional view of a main part of FIG. 9, and FIG. Schematic configuration diagrams of the sterilizing mist generating device 700 are respectively shown.
  • a plurality of ultrasonic transducers 2 are arranged on both sides of one fan duct 7, respectively.
  • the sterilizing mist generators 100 and 200 having this structure can blow a carrier gas onto two lines of liquid columns 6 with one fan duct 7 .
  • the sterilizing mist generators 300, 400, 500, 600, and 700 shown in FIGS. A fan duct 7 is arranged on one side or both sides of the vibrator 2, and a carrier gas is blown from an ejection opening 8 provided in an opposing wall 7a on one side or both sides of the fan duct 7.
  • a sterilizing mist generating device 300 according to Embodiment 3 shown in FIG. It is arranged on one side (right side in FIG. 6).
  • a carrier gas is blown to one side of the liquid column 6 from the opposing wall 7a on one side (the left side in FIG. 6) of the air duct 7.
  • the sterilizing mist generator 300 blows a carrier gas from the ejection openings 8 provided in the facing wall 7a on one side of the air duct 7 arranged on one side of the liquid column 6 in one row.
  • This sterilizing mist generating device 300 has a simple structure and can reduce the cost, and the width and size of the entire device can be reduced.
  • split plate 10 inside and a plurality of rows of split ducts 7b for blowing the carrier gas to the ejection openings 8 of the facing wall 7a on one side.
  • a simple structure without the dividing plate 10 can be used to further reduce the material and manufacturing costs. The same applies to the following embodiments.
  • a sterilizing mist generating device 400 according to Embodiment 4 shown in FIG. A carrier gas is blown to one side of each liquid column 6 from the ejection openings 8 of the opposing wall 7a on one side of each air duct 7.
  • the sterilizing mist generator 400 shown in FIG. 7 is provided with air ducts 7 along both sides of the atomization chamber 4 to blow a carrier gas to two lines of liquid columns 6 generated between the two sides.
  • the air ducts 7 on both sides are provided with ejection openings 8 in the facing walls 7a on one side (inner side in the figure) to blow the carrier gas to the liquid column 6 .
  • the sterilizing mist generator 400 has a structure in which a carrier gas is blown from the air ducts 7 on both sides to the inner two lines of liquid columns 6 .
  • an outlet for scattering the sterilizing mist into the air is provided above between the two liquid columns 6, so that the sterilizing mist can be efficiently scattered into the air.
  • two rows of the liquid columns 6 are arranged in a staggered arrangement, or the liquid columns 6 are arranged in one row, and the carrier gas is blown to both sides of each liquid column 6 from two air ducts 7 arranged on both sides.
  • the atomization efficiency can be improved.
  • Each split duct 7b is connected to an ejection opening 8 to equalize the carrier gas of the blower 9 and blow it from the ejection opening 8 to the liquid column 6. As shown in FIG.
  • the carrier gas is blown onto each liquid column 6 from the ejection opening 8 of the opposing wall 7a on the left side.
  • the sterilizing mist generator 500 of FIG. 8 two rows of air ducts 7 are arranged separately inside the atomization chamber 4, and the carrier gas is blown from each of the air ducts 7 to the two rows of liquid columns 6.
  • the air ducts 7 are provided parallel to and adjacent to the lines of the liquid columns 6 arranged in a straight line, and the carrier gas is blown from the air ducts 7 to the liquid columns 6.
  • one of the two rows of air ducts 7 has ejection openings 8 on opposite walls 7a on both sides, and the other row of air ducts 7 has ejection openings 8 on one opposite wall 7a.
  • a jet opening 8 can also be provided.
  • Each air duct 7 in FIG. 8 has a split plate 10 arranged inside and a plurality of rows of split ducts 7b inside, as in FIGS. 6 and 7 .
  • Each of the divided ducts 7b uniformly blows the carrier gas to the ejection openings 8 provided in the opposing wall 7a on one side, and uniformly blows the carrier gas to the liquid column 6 to improve the atomization efficiency.
  • a sterilizing mist generator 600 according to Embodiment 6 shown in FIG. 9 has a plurality of ultrasonic transducers 2 arranged in three rows between two rows of air ducts 7 and on both outer sides.
  • two rows of air ducts 7 are arranged in parallel, one row of a plurality of ultrasonic transducers 2 is arranged between the two rows of air ducts 7, and two rows A plurality of ultrasonic transducers 2 are arranged in rows on both sides of the air duct 7, respectively. Since this sterilizing mist generating device 600 has three rows of ultrasonic transducers 2, three rows of liquid columns 6 are generated.
  • the carrier gas is blown from the ejection openings 8 of the blower ducts 7 on both sides to the central liquid column 6a of the three liquid columns 6.
  • a carrier gas is blown from the ejection opening 8 of the fan duct 7 on one side to each of the liquid columns 6b on both sides.
  • the carrier gas is blown from both sides toward the central liquid column 6a from the ejection openings 8 provided in the air ducts 7 on both sides of the central liquid column 6a.
  • the two rows of air ducts 7 are each provided with ejection openings 8 in opposing walls 7a on both sides, and each ejection opening 8 is connected to each split duct 7b.
  • the central liquid column 6a to which the carrier gas is blown from both sides, is supplied with equalized carrier gas from both sides, so that the carrier gas is uniformly blown over a wide area of the surface, and the nano-mist is produced with higher atomization efficiency. can occur.
  • the sterilizing mist generator 600 can blow the carrier gas onto the liquid columns 6 in three rows with the two rows of air ducts 7, and further improve the efficiency of atomization of the central liquid column 6a.
  • the air duct 7 is arranged inside the liquid column 6 generated in a ring shape by the plurality of ultrasonic transducers 2 .
  • the fan duct 7 has a vertically extending tubular shape, and is provided with ejection openings 8 in a ring-shaped, curved facing wall 7a around it, from which the carrier gas is radially ejected.
  • a liquid column 6 generated by ultrasonic vibration is arranged at a position where the carrier gas is blown out.
  • this structure is suitable for a sterilizing mist generator 700 having a cylindrical outer shape.
  • this structure is not limited to those having a cylindrical outer shape.
  • the outer shape may be polygonal such as elliptical, octagonal, or hexagonal, as well as rectangular such as square or rectangular.
  • the sterilizing mist generating device 700 having this structure has a cylindrical fan duct 7 extending in the vertical direction.
  • a dividing plate 10 can be arranged inside the fan duct 7 to divide the inside into a plurality of divided ducts 7b.
  • a plurality of split plates 10 are arranged at positions of a diameter or radius passing through the center of the cross section (circle) of the cylindrical air duct 7, and the cross section of the fan duct 7 is made into a uniform fan shape to form a plurality of split ducts 7b. can be divided into
  • the present invention can be suitably used for a method and apparatus for quickly and effectively sterilizing airborne sterilization with a small amount of sterilizing agent by scattering fine sterilizing mist in the air.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Special Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided are a method and a device for generating a germicidal mist, the method and device making it possible to realize effective germicidal power through a simple method even though the amount of germicide used is small. A method for generating a germicidal mist in which a germicidal mist, which is a mist of a germicidal solution 1, is dispersed into the air, wherein a mixed chemical solution of three or more components obtained by adding a surfactant having a boiling point lower than that of water in addition to water and a germicide is used for the germicidal solution 1, and the mixed chemical solution is atomized using ultrasonic vibration and dispersed into the air as the germicidal mist.

Description

殺菌ミストの生成方法と生成装置Sterilization mist generation method and generation device
 本発明は、殺菌液をミストとして空気中に飛散させる殺菌ミストの生成方法と生成装置に関する。 The present invention relates to a sterilization mist generation method and generation device that scatters a sterilization liquid in the air as a mist.
 溶液を超音波振動させて、殺菌や脱臭に利用されるミストを発生する装置は開発されている(特許文献1、2参照)。特許文献1の公報は、水を酸性水とアルカリ性水とに電解して、電解した酸性水とアルカリ性水とを超音波振動でミストとして、除菌、脱臭等に用いられるミストを発生させる装置を開示する。特許文献2は、水に電圧を印加して水中プラズマを発生させて機能水とし、この機能水を超音波振動でミストとする装置を記載する。これ等の公報に記載される装置は、超音波振動で発生するミストの粒径が大きく、少量の殺菌液をミストの状態で空気中に飛散させて速やかに効率よく細菌を殺菌できない。 A device that ultrasonically vibrates a solution to generate mist used for sterilization and deodorization has been developed (see Patent Documents 1 and 2). The publication of Patent Document 1 describes a device that electrolyzes water into acidic water and alkaline water, generates a mist that is used for sterilization, deodorization, etc., by ultrasonically vibrating the electrolyzed acidic water and alkaline water. Disclose. Patent Literature 2 describes an apparatus that applies a voltage to water to generate underwater plasma to obtain functional water, and converts this functional water into mist by ultrasonic vibration. The devices described in these publications cannot sterilize bacteria quickly and efficiently by scattering a small amount of sterilizing liquid in the form of mist in the air because the mist generated by ultrasonic vibration has a large particle size.
特開2010-64001号公報Japanese Patent Application Laid-Open No. 2010-64001 特開2019-72681号公報JP 2019-72681 A
 空気中に殺菌効果のあるミストを飛散させる方法は、少量の殺菌剤を使用して短時間でより効率よく殺菌できる効果が期待される。本発明は、殺菌剤の使用量を少なくしながら、簡単な方法で有効な殺菌力を実現できる殺菌ミストの生成方法と装置を提供することにある。 The method of scattering a mist that has a sterilizing effect in the air is expected to be effective in sterilizing more efficiently in a short time using a small amount of sterilizing agent. SUMMARY OF THE INVENTION It is an object of the present invention to provide a sterilizing mist generating method and an apparatus capable of achieving effective sterilizing power in a simple manner while reducing the amount of sterilizing agent used.
 本発明の一実施態様に係る殺菌ミストの生成方法は、殺菌液のミストである殺菌ミストを空気中に飛散させる殺菌ミストの生成方法であって、殺菌液に、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を添加して3成分以上の混合薬液を使用し、混合薬液を超音波振動で霧化して殺菌ミストとして空気中に飛散させる殺菌ミストを生成する。 A method for generating a sterilizing mist according to an embodiment of the present invention is a method for generating a sterilizing mist in which sterilizing mist, which is a mist of a sterilizing liquid, is scattered in the air, and in addition to water and a sterilizing agent, A mixed chemical solution of three or more components is used by adding a surfactant having a boiling point lower than that of water, and the mixed chemical solution is atomized by ultrasonic vibration to generate a sterilizing mist that is scattered in the air as a sterilizing mist.
 本発明の他の実施態様に係る殺菌ミストの生成方法は、混合薬液の殺菌剤を、塩素系の殺菌剤にできる。 In the method of generating a sterilizing mist according to another embodiment of the present invention, the sterilizing agent in the mixed chemical solution can be a chlorine-based sterilizing agent.
 本発明の他の実施態様に係る殺菌ミストの生成方法は、界面活性剤をアルコールにできる。 In the method for generating a sterilizing mist according to another embodiment of the present invention, alcohol can be used as the surfactant.
 本発明の他の実施態様に係る殺菌ミストの生成方法は、界面活性剤をエチルアルコールにできる。 In another embodiment of the method for generating a sterilizing mist of the present invention, ethyl alcohol can be used as the surfactant.
 本発明の他の実施態様に係る殺菌ミストの生成方法は、混合薬液が、60重量%以下のエチルアルコールを含むことができる。 In the method for generating a sterilizing mist according to another embodiment of the present invention, the mixed chemical solution can contain 60% by weight or less of ethyl alcohol.
 本発明の他の実施態様に係る殺菌ミストの生成方法は、混合薬液を超音波振動して液柱を発生させて、液柱の表面に搬送気体を吹き付けて、殺菌ミストを空気中に飛散できる。 A method for generating a sterilizing mist according to another embodiment of the present invention includes ultrasonically vibrating a mixed chemical to generate a liquid column, blowing a carrier gas onto the surface of the liquid column, and dispersing the sterilizing mist in the air. .
 本発明の他の実施態様に係る殺菌ミストの生成装置は、水と殺菌剤に加えて、水よりも低沸点の界面活性剤が添加された3成分以上の混合薬液からなる殺菌液を超音波振動する超音波振動子と、複数の超音波振動子を配列してなる霧化室と、霧化室内にあって、超音波振動子の超音波振動で発生する複数の液柱の表面に搬送気体を吹き付ける送風ダクトと、送風ダクトに搬送気体を強制送風する送風機とを備え、送風ダクトから液柱の表面に吹き付けられる搬送気体で殺菌ミストを空気中に飛散する。 A sterilizing mist generating apparatus according to another embodiment of the present invention is a sterilizing liquid consisting of a mixed chemical solution of three or more components in which a surfactant having a boiling point lower than that of water is added in addition to water and a sterilizing agent. A vibrating ultrasonic transducer, an atomization chamber in which a plurality of ultrasonic transducers are arranged, and a plurality of liquid columns in the atomization chamber generated by the ultrasonic vibration of the ultrasonic transducer are conveyed to the surface. A blower duct for blowing gas and a blower for forcibly blowing a carrier gas into the blower duct are provided, and the carrier gas blown from the blower duct onto the surface of the liquid column scatters the sterilizing mist in the air.
 本発明の他の実施態様に係る殺菌ミストの生成装置は、霧化室が、直線上に配置してなる複数の超音波振動子を有し、送風ダクトが、液柱に対向する対向壁に、超音波振動子の超音波振動で発生する液柱の表面に搬送気体を吹き付ける噴出開口を有し、液柱に噴出開口から吹き付けられる搬送気体で殺菌ミストを空気中に飛散できる。 In a sterilizing mist generating device according to another embodiment of the present invention, the atomization chamber has a plurality of ultrasonic transducers arranged in a straight line, and the air duct has an opposing wall facing the liquid column. It has an ejection opening for blowing carrier gas onto the surface of the liquid column generated by the ultrasonic vibration of the ultrasonic transducer, and the carrier gas blown onto the liquid column from the ejection opening can scatter the sterilizing mist into the air.
 本発明の他の実施態様に係る殺菌ミストの生成装置は、送風ダクトが、送風ダクトを多段で複数の分割ダクトに分割する1または複数の分割プレートを備えている。分割プレートが、送風ダクトに供給される搬送気体を各々の噴出開口に分割して送風できる。 In a sterilizing mist generating device according to another embodiment of the present invention, an air duct includes one or a plurality of dividing plates that divide the air duct into a plurality of divided ducts in multiple stages. A dividing plate can divide and blow the carrier gas supplied to the blowing duct to each ejection opening.
 本発明の他の実施態様に係る殺菌ミストの生成装置は、超音波振動子が複数列に配置されて、複数列の超音波振動子で発生する複数列の液柱の間に配置されてなる送風ダクトを備え、送風ダクトが両側に噴出開口を開口して、両側の液柱に搬送気体を吹き付けできる。 A sterilizing mist generating device according to another embodiment of the present invention comprises a plurality of rows of ultrasonic transducers arranged between the plurality of rows of liquid columns generated by the plurality of rows of ultrasonic transducers. A blowing duct is provided, and the blowing duct has ejection openings on both sides to blow the carrier gas onto the liquid columns on both sides.
 本発明の殺菌ミストの生成方法及び生成装置は、殺菌剤の使用量を少なくしながら、極めて簡単な方法で有効な殺菌力を実現できる特長がある。 The method and apparatus for generating sterilizing mist of the present invention have the advantage of being able to achieve effective sterilizing power in an extremely simple manner while reducing the amount of sterilizing agent used.
図1は、本発明の一実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 1 is a schematic horizontal cross-sectional view of a sterilizing mist generator according to an embodiment of the present invention. 図2は、図1に示す殺菌ミストの生成装置のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the sterilizing mist generator shown in FIG. 図3は、図1に示す殺菌ミストの生成装置のIII-III線断面図である。FIG. 3 is a sectional view taken along line III-III of the sterilizing mist generator shown in FIG. 図4は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 4 is a schematic horizontal sectional view of a sterilizing mist generator according to another embodiment of the present invention. 図5は、図4に示す殺菌ミストの生成装置のV-V線断面図である。FIG. 5 is a cross-sectional view of the sterilizing mist generator shown in FIG. 4 taken along the line VV. 図6は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 6 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention. 図7は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 7 is a schematic horizontal cross-sectional view of a germicidal mist generator according to another embodiment of the present invention. 図8は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 8 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention. 図9は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 9 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention. 図10は、図9に示す殺菌ミストの生成装置の要部拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a main part of the sterilizing mist generating device shown in FIG. 図11は、本発明の他の実施形態に係る殺菌ミストの生成装置の概略水平断面図である。FIG. 11 is a schematic horizontal sectional view of a germicidal mist generator according to another embodiment of the present invention. 図12は、噴出開口がスリットの場合の例を示す概略斜視図である。FIG. 12 is a schematic perspective view showing an example in which the ejection opening is a slit. 図13は、噴出開口が複数の貫通孔の場合の例を示す概略斜視図である。FIG. 13 is a schematic perspective view showing an example in which the ejection openings are a plurality of through holes.
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。さらに以下に示す実施形態は、本発明の技術思想を具体例を示するものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 The present invention will be described in detail below based on the drawings. In the following description, terms indicating specific directions and positions (e.g., "upper", "lower", and other terms including those terms) are used as necessary, but the use of these terms is These terms are used to facilitate understanding of the invention with reference to the drawings, and the technical scope of the invention is not limited by the meaning of these terms. Also, parts with the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members. Further, the embodiments shown below are specific examples of the technical idea of the present invention, and the present invention is not limited to the following. In addition, unless there is a specific description, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention, but are intended to be examples. It is intended. In addition, the contents described in one embodiment and example can also be applied to other embodiments and examples. Also, the sizes and positional relationships of members shown in the drawings may be exaggerated for clarity of explanation.
 本発明の一実施態様の殺菌ミストの生成方法は、殺菌液のミストである殺菌ミストを空気中に飛散させる殺菌ミストの生成方法であって、殺菌液には、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を添加して3成分以上の混合薬液を使用し、この混合薬液を超音波振動で霧化して殺菌ミストとして空気中に飛散させる殺菌ミストを生成する。 A method for generating a sterilizing mist according to one embodiment of the present invention is a method for generating a sterilizing mist in which sterilizing mist, which is a mist of a sterilizing liquid, is dispersed in the air. A mixed chemical solution of three or more components is used by adding a surfactant having a boiling point lower than that of water, and the mixed chemical solution is atomized by ultrasonic vibration to generate a sterilizing mist which is scattered in the air as a sterilizing mist.
 超音波振動で液体をミストとして空気中に飛散させる方法は、従来から超音波加湿器として使用されている。この方法で生成されるミストは、ノズルから液体を加圧して噴霧するミストよりは小さくできるが、この方法で殺菌液をミストとして空気中に飛散するには、より少量の殺菌剤で効果的な殺菌を実現するために、ミストをさらに微細化することが要求される。微細なミストは、単位量に対するミスト数が増加し、さらに表面積が大きくなって、殺菌と接触する確率が高くなって殺菌力が増加するからである。また、空気中に殺菌剤をミストの状態で飛散する方法は、殺菌剤による人体の影響をできる限り少なくすることも大切であるので、いかに少量の殺菌剤で有効な殺菌力を実現できるかが極めて大切である。  The method of scattering liquid in the air as mist by ultrasonic vibration has been used as an ultrasonic humidifier. The mist generated by this method can be made smaller than the mist that is sprayed by pressurizing the liquid from the nozzle. In order to achieve sterilization, it is required to further refine the mist. This is because the fine mist increases the number of mists per unit amount, further increases the surface area, increases the probability of contact with the sterilizer, and increases the sterilization power. In addition, it is important to minimize the effect of the sterilant on the human body as much as possible in the method of scattering the sterilant in the air in a mist state, so how to achieve effective sterilization power with a small amount of sterilant is important. extremely important.
 殺菌液を超音波振動して殺菌ミストとする方法は、殺菌液の底に配置する超音波振動子で上向きに超音波振動を放射し、超音波振動のエネルギーで液面から液柱を突出させて、液柱の表面から空気中に殺菌ミストを分散して発生させる。この状態で液柱の表面から分散されたミストの平均粒径は、ミクロンサイズと大きく、さらにミストを微細化して少量の殺菌剤で有効な殺菌力を実現することが要求される。 In the method of ultrasonically vibrating the sterilizing liquid to make a sterilizing mist, an ultrasonic vibrator placed at the bottom of the sterilizing liquid emits ultrasonic vibrations upward, and the energy of the ultrasonic vibrations causes the liquid column to protrude from the liquid surface. to disperse and generate a sterilizing mist in the air from the surface of the liquid column. The average particle diameter of the mist dispersed from the surface of the liquid column in this state is as large as microns, and it is required to further refine the mist to achieve effective sterilization power with a small amount of sterilant.
 超音波振動のエネルギーは、液柱の表面からミストを空気中に飛び出させるが、ミストは表面張力に打ち勝って液柱から飛び出すので、ミストのサイズが液体の表面張力に影響を受ける。液体の表面張力は、液体が表面をできる限り小さくしようとするように働く力であって、単位面積当たりの表面自由エネルギーである。液体を超音波振動すると、超音波振動のエネルギーで液体の表面張力に打ち勝って、液柱の表面から分離されて空気中に飛散するが、ミストは強い表面張力に打ち勝って空気中に飛び出すので、液柱から飛び出したミストは粒径が大きくなる。 The energy of ultrasonic vibration causes the mist to fly out into the air from the surface of the liquid column, but the mist overcomes the surface tension and jumps out of the liquid column, so the size of the mist is affected by the surface tension of the liquid. The surface tension of a liquid is the surface free energy per unit area, which is the force acting on the liquid to make its surface as small as possible. When a liquid is ultrasonically vibrated, the energy of the ultrasonic vibration overcomes the surface tension of the liquid, separates it from the surface of the liquid column, and scatters in the air. The particle size of the mist ejected from the liquid column increases.
 本発明の一実施態様の殺菌ミストの生成方法は、霧化して殺菌ミストとする殺菌液に、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を添加して3成分以上の混合薬液を使用する。殺菌液に添加された界面活性剤は、殺菌液の表面張力を小さくして、超音波振動のエネルギーで液柱から飛び出すミストを微細化する。したがって、界面活性剤の添加された混合薬液は、液柱から空気中に飛び出した状態で、すでに微細化されたミストとなっている。さらに、殺菌液に添加された水よりも低沸点の界面活性剤は、空気中に飛散された状態ではミストから気化して消失してさらにミストを微細化する。界面活性剤が気化、消失して空気中で微細化された殺菌ミストは、殺菌剤の濃度が高くなり、ミスト表面の殺菌剤濃度も高くなって、殺菌力が著しく向上する。したがって、以上の殺菌ミストの生成方法は、空気中に飛散する殺菌ミストを微細化して殺菌剤濃度を高くすることで、少量の殺菌剤で効果的な殺菌力を実現できる。とくに、微細化されて殺菌ミストの殺菌力が向上することに加えて、さらに殺菌剤の濃度が高くなって殺菌ミスト自体の殺菌力も強くなるので、ミストの微細化と、ミスト自体の殺菌力が強くなることとの相乗効果によって、少量の殺菌剤で空気中の殺菌を速やかに殺菌できる特長を実現する。 In one embodiment of the method for generating a sterilizing mist of the present invention, a sterilizing liquid is atomized to form a sterilizing mist, and in addition to water and a sterilizing agent, a surfactant having a boiling point lower than that of water is added to produce three or more components. Use mixed chemicals. The surfactant added to the sterilizing liquid reduces the surface tension of the sterilizing liquid, and finely mists ejected from the liquid column by the energy of ultrasonic vibration. Therefore, the mixed chemical solution to which the surfactant has been added is already atomized mist in a state of being ejected from the liquid column into the air. Further, the surfactant having a boiling point lower than that of water added to the sterilizing liquid evaporates and disappears from the mist when scattered in the air, further reducing the mist. The sterilizing mist, in which the surfactant has evaporated and disappeared and has been finely divided in the air, has a higher concentration of the sterilizing agent and a higher concentration of the sterilizing agent on the surface of the mist, thereby significantly improving the sterilizing power. Therefore, the method of generating the sterilizing mist described above can achieve effective sterilizing power with a small amount of sterilizing agent by miniaturizing the sterilizing mist dispersed in the air to increase the concentration of the sterilizing agent. In particular, in addition to improving the sterilizing power of the sterilizing mist by miniaturization, the concentration of the sterilizing agent increases and the sterilizing power of the sterilizing mist itself becomes stronger. Through the synergistic effect of becoming stronger, it realizes the feature of being able to quickly sterilize sterilization in the air with a small amount of sterilization agent.
 殺菌ミストの生成方法は、殺菌液のミストである殺菌ミストを空気中に飛散させる。この方法は殺菌液に、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を含む3成分以上の混合薬液を使用して、混合薬液を超音波振動で霧化して殺菌ミストとして空気中に飛散させる。空気中に飛散される殺菌ミストは、粒径を小さくして殺菌力を強くできる。ミストの粒径を小さくすると、単位量の殺菌液に対するミストの個数を増加して、表面積を大きくできるからである。たとえば、ミストの粒径を1/10に小さくすると、1粒子当たりのミストの表面積はS=4πr2で1/100になるが、単位体積当たりのミストの個数を1000倍にでき、単位体積当たりのミスト全体の表面積を10倍に増加して、ミストが細菌に接触する確率を極めて高くして、殺菌効果を著しく向上できる。
[実施形態1]
A method for generating the sterilizing mist is to scatter the sterilizing mist, which is the mist of the sterilizing liquid, in the air. In this method, in addition to water and a sterilizing agent, a mixed chemical solution containing three or more components containing a surfactant with a boiling point lower than that of water is used as the sterilizing solution, and the mixed chemical solution is atomized by ultrasonic vibration to form a sterilizing mist. Disperse in the air. The sterilizing mist dispersed in the air can have a smaller particle size and a stronger sterilizing power. This is because if the particle size of the mist is reduced, the number of mists per unit amount of the sterilizing liquid can be increased, and the surface area can be increased. For example, if the particle size of the mist is reduced to 1/10, the surface area of the mist per particle becomes 1/100 at S=4πr 2 , but the number of mists per unit volume can be increased 1000 times. By increasing the surface area of the entire mist by 10 times, the probability that the mist comes into contact with bacteria is extremely high, and the sterilization effect can be remarkably improved.
[Embodiment 1]
 図1~図3に示す殺菌ミストの生成装置100は、殺菌液1の底に配置する超音波振動子2で上向きに超音波振動を放射し、超音波振動のエネルギーで液面5から液柱6を突出させて、液柱6の表面から空気中に殺菌ミストを分散して発生させる。さらに、この殺菌ミストの生成装置100は、液柱6の表面から分散されたミストの平均粒径をより微細化するために、水に殺菌剤を混合している殺菌液1に水よりも低沸点の界面活性剤を添加している。殺菌液1に添加された界面活性剤は、超音波振動で液体表面からミストを空気中に飛び出しやすくしてミストを微細化する。 The sterilizing mist generator 100 shown in FIGS. 1 to 3 radiates ultrasonic vibrations upward from the ultrasonic vibrator 2 placed at the bottom of the sterilizing liquid 1, and the energy of the ultrasonic vibrations is used to form a liquid column from the liquid surface 5. 6 is protruded to generate sterilizing mist dispersed in the air from the surface of the liquid column 6. - 特許庁Further, in the sterilizing mist generator 100, in order to make the average particle size of the mist dispersed from the surface of the liquid column 6 finer, the sterilizing liquid 1, which is water mixed with a sterilizing agent, has a lower particle size than the water. A boiling point surfactant is added. The surfactant added to the sterilizing liquid 1 facilitates the ejection of mist from the surface of the liquid into the air by ultrasonic vibrations, thereby miniaturizing the mist.
 液体を超音波振動して液柱6の表面からミストが空気中に飛び出すが、ミストは液体の表面張力に打ち勝って液柱6から飛び出す。液体の表面張力は、液体が表面をできる限り小さくしようとするように働く力であって、単位面積当たりの表面自由エネルギーで、液体が液柱6から飛び出すのを抑制する。ミストは、超音波振動のエネルギーで液体の表面張力に打ち勝って、液柱6の表面から飛び出すので、水の強い表面張力がミストの粒径を大きくする。 The liquid is ultrasonically vibrated, and the mist flies out into the air from the surface of the liquid column 6, but the mist overcomes the surface tension of the liquid and flies out of the liquid column 6. The surface tension of a liquid is a force that acts to make the surface of the liquid as small as possible, and the surface free energy per unit area restrains the liquid from jumping out of the liquid column 6 . The mist overcomes the surface tension of the liquid by the energy of the ultrasonic vibration and jumps out from the surface of the liquid column 6, so the strong surface tension of water increases the particle size of the mist.
 そこで、殺菌ミストの生成装置100は、殺菌液1に、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を添加して、まず、殺菌液1の表面張力を小さくする。水と殺菌剤に加えて、界面活性剤を添加して3成分以上の混合薬液を超音波振動で殺菌ミストとする。殺菌液1に添加された界面活性剤は、殺菌液1の表面張力を小さくして、超音波振動のエネルギーで液柱6から飛び出すミストを微細化する。 Therefore, the sterilizing mist generator 100 first reduces the surface tension of the sterilizing liquid 1 by adding a surfactant having a boiling point lower than that of water in addition to water and a sterilizing agent. In addition to water and a sterilizing agent, a surfactant is added, and a mixed chemical solution of three or more components is made into a sterilizing mist by ultrasonic vibration. The surfactant added to the sterilizing liquid 1 reduces the surface tension of the sterilizing liquid 1, and finely mists ejected from the liquid column 6 by the energy of the ultrasonic vibration.
 殺菌液1に添加された界面活性剤は、まず液体から飛び出すミストを微細化することに加えて、次に空気中に飛散された状態においても、ミストをさらに微細化して殺菌力を強くする。水よりも低沸点の界面活性剤は、空気中に飛散された状態ではミストから気化、消失して殺菌ミストを微細化する。空気中に飛散する殺菌ミストは微細化して殺菌力が増加する。さらに、界面活性剤が気化、消失することは、殺菌ミストの殺菌剤濃度を高くしてミスト表面の殺菌剤濃度を高くする。このことは、ミスト自体の殺菌力を強くする。したがって、空気中に飛散された殺菌ミストは、液体から飛び出す状態で微細化され、さらに空気中で界面活性剤が気化、消失してより微細化されて殺菌力が向上し、さらに殺菌ミスト自体の殺菌力も強くなる。図1~図3の殺菌ミストの生成装置100は、ミストの微細化による殺菌力の増強作用と、ミスト自体の殺菌力の増強作用との相乗効果によって、空気中に飛散する殺菌ミストの殺菌力を著しく増強できる。 The surfactant added to the sterilizing liquid 1 first refines the mist that pops out of the liquid, and then further refines the mist even when it is scattered in the air to strengthen the sterilizing power. A surfactant having a boiling point lower than that of water evaporates and disappears from the mist when it is scattered in the air, thereby making the sterilizing mist finer. The sterilizing mist that scatters in the air becomes finer and the sterilizing power increases. Furthermore, vaporization and disappearance of the surfactant increases the concentration of the sterilizing agent in the sterilizing mist and increases the concentration of the sterilizing agent on the surface of the mist. This enhances the sterilizing power of the mist itself. Therefore, the sterilizing mist scattered in the air is finely divided in the state of jumping out of the liquid, and the surfactant is vaporized and disappeared in the air, and the sterilizing power is improved. It also has stronger bactericidal power. The sterilizing mist generating device 100 of FIGS. 1 to 3 has the sterilizing power of the sterilizing mist that scatters in the air due to the synergistic effect of the sterilizing power enhancement effect due to the miniaturization of the mist and the sterilizing power enhancement effect of the mist itself. can be significantly enhanced.
 以上の優れた殺菌力の増強効果は、水と殺菌剤に加えて、水よりも低沸点の界面活性剤を添加して3成分以上の混合薬液とし、この混合薬液を超音波振動で殺菌ミストとして空気中に飛散させることで実現される。界面活性剤は、まず超音波振動で発生する殺菌ミストを微細化し、さらに空気中に飛散された状態では、低沸点の界面活性剤が気化、消失して殺菌ミストをより微細化し、さらにこのことに加えて、殺菌ミストから界面活性剤を気化、消失させて殺菌ミストの殺菌濃度を高くすることで、空気中に飛散された状態における実質的な殺菌力を著しく向上する。したがって、図1~図3の殺菌ミストの生成装置100は、殺菌剤の使用を低減しながら、空気中の細菌を極めて効率よく殺菌できることから、人体への影響を少なくしながら、速やかに、しかも確実に細菌を失効できる特長を実現する。 In addition to water and a sterilizing agent, a surfactant with a boiling point lower than that of water is added to make a mixed chemical solution of three or more components, and this mixed chemical solution is sterilized by ultrasonic vibration. It is realized by scattering in the air as The surfactant first makes the sterilizing mist generated by ultrasonic vibration finer, and when it is scattered in the air, the surfactant with a low boiling point evaporates and disappears, making the sterilizing mist even finer. In addition, by evaporating and disappearing the surfactant from the sterilizing mist to increase the sterilizing concentration of the sterilizing mist, the substantial sterilizing power in the state of scattering in the air is remarkably improved. Therefore, the sterilizing mist generating device 100 of FIGS. 1 to 3 can sterilize bacteria in the air extremely efficiently while reducing the use of sterilizing agents, so that the effects on the human body can be reduced, and quickly and further. To achieve a feature that can surely invalidate bacteria.
 殺菌液1に添加する、水よりも低沸点の界面活性剤としてエチルアルコールが適している。エチルアルコールは水よりも気化し易いので、ミストに含まれるエチルアルコールは、ミストの状態では速やかに気化してミストから消失する。エチルアルコールは、ミストから気化、消失して微細化されて空気中に分散される。とくに、超音波振動で微細なミストの状態に速やかに気化、消失してミストから分離される。殺菌液1に添加しているアルコールは界面活性剤として添加するものであって、殺菌剤としては添加しない。殺菌液1に添加されるアルコールは、界面活性剤として添加して、ミストの粒径を小さくするものであって、殺菌効果を実現するものでない。アルコールは、それ自体で殺菌効果があるが、殺菌効果のあるアルコール水は、濃度を70%以上とする必要がある。殺菌液1は、アルコールを殺菌剤としては使用しないので、好ましくは、殺菌液1のアルコール濃度を60%以下とする。さらに、他の界面活性剤の添加量も多くして、ミストを微細化することはできるが、好ましくは添加量を60重量%以下、さらに好ましくは50重量%と以下とする。界面活性剤は、添加することで、ミストを微細化する効果があるので、たとえば、添加量を30重量%以下としてミストを微細化することもできるので、界面活性剤の添加量は、殺菌液1の費用対効果を考慮して用途に最適な濃度に設定する。 Ethyl alcohol is suitable as a surfactant with a boiling point lower than that of water to be added to the sterilizing solution 1. Since ethyl alcohol vaporizes more easily than water, ethyl alcohol contained in the mist quickly vaporizes and disappears from the mist. Ethyl alcohol evaporates from the mist, disappears, becomes fine, and is dispersed in the air. In particular, it is rapidly vaporized into a fine mist state by ultrasonic vibration, disappears, and is separated from the mist. The alcohol added to the sterilizing solution 1 is added as a surfactant, not as a sterilizing agent. The alcohol added to the sterilizing liquid 1 is added as a surfactant to reduce the particle size of the mist, and does not achieve a sterilizing effect. Alcohol itself has a bactericidal effect, but alcoholic water with a bactericidal effect needs to have a concentration of 70% or more. Since the sterilizing liquid 1 does not use alcohol as a sterilizing agent, the alcohol concentration of the sterilizing liquid 1 is preferably 60% or less. Furthermore, the amount of other surfactants added can be increased to make the mist fine, but the amount added is preferably 60% by weight or less, more preferably 50% by weight or less. Since the addition of the surfactant has the effect of refining the mist, for example, the amount of addition can be 30% by weight or less to make the mist fine. 1. Set the optimum concentration for the application in consideration of cost-effectiveness.
 殺菌液1に界面活性剤として添加されるエチルアルコールは、表面張力が水よりも小さい。水の表面張力が20℃~25℃において約72mN/mであるのに対し、エチルアルコール濃度を10%とするアルコール水の表面張力は48mN/m、エチルアルコール濃度を50%とするアルコール水の表面張力は28mN/mと著しく小さく、これを添加して殺菌液1のミストの表面張力を低下して、発生するミストの粒径を小さくする。 Ethyl alcohol, which is added as a surfactant to the sterilizing solution 1, has a lower surface tension than water. While the surface tension of water is about 72 mN/m at 20° C. to 25° C., the surface tension of alcohol water with an ethyl alcohol concentration of 10% is 48 mN/m, and the surface tension of alcohol water with an ethyl alcohol concentration of 50%. The surface tension is remarkably low at 28 mN/m, and by adding this, the surface tension of the mist of the sterilizing liquid 1 is lowered, and the particle size of the generated mist is reduced.
 殺菌液1に添加する殺菌剤には、塩素系の殺菌剤が使用できる。塩素系の殺菌剤は、アルコール除菌に比べ、低濃度でもノロウイルスを含めた幅広い細菌、ウイルスに短時間で効果を発揮できる特徴がある。塩素系の殺菌剤は、現在実用化されている殺菌剤及び今後実用化される殺菌剤も含めて使用することができる。塩素系の殺菌剤には、例えば、次亜塩素酸を効果主体とするものとして、弱酸性次亜塩素酸水、次亜塩素酸カルシウムなどがあり、次亜塩素酸以外を主成分とするものとして、二酸化塩素、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウムなどがある。人体への影響がない程度の濃度で殺菌効果が認められる場合に、有人空間での噴霧が可能である。たとえば夜間のように、無人空間での噴霧後に、換気を行ってから入室する場合においては、塩素系の殺菌剤の濃度を上げることでより有効な殺菌力を実現できる。 A chlorine-based disinfectant can be used as the disinfectant added to the disinfectant solution 1. Chlorine-based disinfectants have the advantage of being effective against a wide range of bacteria and viruses, including norovirus, in a short period of time, even at low concentrations, compared to alcohol disinfectants. Chlorine-based disinfectants can be used including disinfectants currently in practical use and disinfectants that will be put into practical use in the future. Examples of chlorine-based disinfectants include hypochlorous acid as the main effect, such as weakly acidic hypochlorous acid water and calcium hypochlorite, and those mainly containing other than hypochlorous acid. Examples include chlorine dioxide, trichloroisocyanuric acid, and sodium dichloroisocyanurate. Spraying in a manned space is possible when a bactericidal effect is observed at a concentration that does not affect the human body. For example, when entering an unmanned space after spraying and ventilating, such as at night, more effective sterilizing power can be achieved by increasing the concentration of the chlorine-based sterilant.
 図1~図3の殺菌ミストの生成装置100は、超音波振動で液面から突出する液柱6の表面に、搬送気体を吹き付けてミストの粒径をさらに微細化する。液柱6表面に吹き付けられる新鮮な搬送気体が、液柱6表面から分離したミクロンサイズのミストをナノミストとして、極めて微細なミストに変換するからである。超音波振動のエネルギーで殺菌液1と空気の界面から空気中に飛散したミストを吹き飛ばして、液柱6の表面から引き離し、液柱6表面から離されたミストを気化して水蒸気とし、その後、水蒸気を液化してナノミストとするからである。この状態でナノミストの霧化効率を高くするには、液柱6の表面から引き離されたミストを気化して水蒸気とする環境と、気化した水蒸気を含むミスト混合空気を冷却して過飽和な状態として水蒸気を液化してナノミストとする環境が要求される。 The sterilizing mist generator 100 of FIGS. 1 to 3 blows a carrier gas onto the surface of the liquid column 6 protruding from the liquid surface by ultrasonic vibration to further refine the particle size of the mist. This is because the fresh carrier gas blown onto the surface of the liquid column 6 converts the micron-sized mist separated from the surface of the liquid column 6 into nano-mist, which is extremely fine mist. The mist dispersed in the air from the interface between the sterilizing liquid 1 and the air is blown off by the energy of the ultrasonic vibration, separated from the surface of the liquid column 6, and the mist separated from the surface of the liquid column 6 is vaporized into water vapor. This is because water vapor is liquefied to form nano-mist. In order to increase the atomization efficiency of the nano-mist in this state, an environment in which the mist separated from the surface of the liquid column 6 is vaporized into water vapor and the mist-mixed air containing the vaporized water vapor is cooled to create a supersaturated state. An environment where water vapor is liquefied to form nano-mist is required.
 搬送気体には一般的に空気が使用されるので、搬送気体を空気とする実施形態を主に詳述するが、本発明は搬送気体を空気に特定するものではなく、液柱の表面に送風して霧化効率を向上でき、有効な殺菌力を減衰しない全ての気体、たとえば、窒素ガス等を使用することもできる。 Since air is generally used as the carrier gas, an embodiment in which air is used as the carrier gas will be mainly described in detail. It is also possible to use any gas, such as nitrogen gas, which can improve the atomization efficiency and does not attenuate the effective sterilization power.
 超音波振動のエネルギーは、液柱6表面からミクロンサイズのミストを分離する。殺菌ミストの生成装置100は、液体表面に搬送気体を強制送風して、液柱6表面から分離されたミクロンサイズのミストをナノミストに変換して、ナノミストの霧化効率を向上できる。このことを実現するには、ミクロンサイズのミストを搬送気体で速やかに気化させて水蒸気とし、その後、水蒸気を液化させてナノミストに変換する必要がある。ミストが気化された水蒸気を液化してナノサイズのミストとなるからである。界面活性剤を添加している殺菌液1は、表面張力が小さく、液柱6から分離された状態でミストの粒径が小さくなる。粒径の小さいミストは速やかに気化する。したがって、液柱6の表面から分離された小さいミストは、液柱6の表面に吹き付けられる搬送気体で速やかに気化されて水蒸気となる。液柱6に搬送気体を吹き付けて、液柱6表面の相対湿度を低下して気化し易い環境とするからである。液柱6の表面でミストを気化した空気は、ミストの気化熱で冷却されて温度が低下する。温度が低下した空気は、相対湿度が上昇して過飽和な状態となって水蒸気を再び液化してナノサイズのナノミストとなる。 The energy of ultrasonic vibration separates micron-sized mist from the surface of the liquid column 6. The sterilizing mist generator 100 forcibly blows a carrier gas onto the surface of the liquid to convert the micron-sized mist separated from the surface of the liquid column 6 into nano-mist, thereby improving the atomization efficiency of the nano-mist. To achieve this, it is necessary to quickly vaporize the micron-sized mist with a carrier gas to water vapor, which is then liquefied and converted to nano-mist. This is because the water vapor in which the mist is vaporized is liquefied to become a nano-sized mist. The sterilizing liquid 1 to which a surfactant is added has a small surface tension, and the particle size of the mist becomes small when separated from the liquid column 6. - 特許庁Mist with a small particle size quickly evaporates. Therefore, the small mist separated from the surface of the liquid column 6 is rapidly vaporized by the carrier gas blown onto the surface of the liquid column 6 to become water vapor. This is because the carrier gas is blown onto the liquid column 6 to reduce the relative humidity on the surface of the liquid column 6 and create an environment in which the liquid column 6 is easily vaporized. The air in which the mist is vaporized on the surface of the liquid column 6 is cooled by the heat of vaporization of the mist, and the temperature is lowered. The air whose temperature has dropped rises in relative humidity and becomes supersaturated, liquefies water vapor again, and becomes nano-sized nano-mist.
 図1~図3に、本発明の実施形態1に係る殺菌ミストの生成装置100を示す。これらの図において、図1は本発明の実施形態1に係る殺菌ミストの生成装置100の概略構成図、図2は図1に示す殺菌ミストの生成装置100を長手方向に切断した垂直縦断面図、図3は図1に示す殺菌ミストの生成装置100を短手方向に切断した垂直横断面図を、それぞれ示している。 1 to 3 show a sterilizing mist generating device 100 according to Embodiment 1 of the present invention. In these figures, FIG. 1 is a schematic configuration diagram of a sterilizing mist generating device 100 according to Embodiment 1 of the present invention, and FIG. 2 is a vertical longitudinal sectional view of the sterilizing mist generating device 100 shown in FIG. 1 cut in the longitudinal direction. 3 shows a vertical cross-sectional view of the sterilizing mist generating device 100 shown in FIG. 1 cut in the lateral direction.
 これらの図に示す殺菌ミストの生成装置100は、複数の超音波振動子2でもって、微細なミストを高い霧化効率で発生する。この殺菌ミストの生成装置100は、殺菌液1を超音波振動する複数の超音波振動子2と、複数の超音波振動子2を配列してなる霧化室4と、霧化室4内にあって、複数の超音波振動子2の超音波振動で発生する複数の液柱6の表面に搬送気体を吹き付ける送風ダクト7と、送風ダクト7に搬送気体を強制送風する送風機9とを備える。殺菌ミストの生成装置100に記載する内容は、矛盾抵触しない限り、後述する他の実施形態にも当てはまる。
(霧化室4)
The sterilizing mist generator 100 shown in these figures has a plurality of ultrasonic transducers 2 to generate a fine mist with high atomization efficiency. This sterilization mist generator 100 includes a plurality of ultrasonic oscillators 2 for ultrasonically vibrating a sterilizing liquid 1, an atomization chamber 4 in which the plurality of ultrasonic oscillators 2 are arranged, and a A fan duct 7 for blowing a carrier gas onto the surface of a plurality of liquid columns 6 generated by the ultrasonic vibrations of the plurality of ultrasonic transducers 2 and a blower 9 for forcibly blowing the carrier gas to the fan duct 7 are provided. The contents described in the sterilizing mist generator 100 also apply to other embodiments described later unless contradictory.
(Atomization chamber 4)
 図1~図3に示すように、霧化室4は、一定の液面レベルに殺菌液1が供給される。霧化室4は、たとえば液面レベルが低下すると殺菌液1を供給して液面レベルを設定値に保持し、あるいは図示しないが、ポンプを介して殺菌液1を蓄えている原液槽を連結し、霧化室4の液面レベルをレベルセンサで検出し、レベルセンサでポンプの運転を制御して、霧化室4の液面レベルが低下するとポンプを運転して、液面レベルを設定値に保持することができる。
(超音波振動子2)
As shown in FIGS. 1-3, the atomization chamber 4 is supplied with the sterilizing liquid 1 at a constant liquid level. The atomization chamber 4 supplies the sterilizing liquid 1 when the liquid level drops, for example, to maintain the liquid level at a set value, or, although not shown, is connected to a stock solution tank storing the sterilizing liquid 1 via a pump. Then, the liquid level in the atomization chamber 4 is detected by a level sensor, the operation of the pump is controlled by the level sensor, and when the liquid level in the atomization chamber 4 drops, the pump is operated to set the liquid level. value can be held.
(Ultrasonic transducer 2)
 図2及び図3に示す霧化室4は、複数の超音波振動子2を上向きに超音波を放射する姿勢で底に固定している。超音波振動子2は、霧化効率が最も良くなる一定の深さに配置される。各々の超音波振動子2は、超音波電源(図示せず)に接続されて、超音波電源から供給される数十KHzないし数MHzの交流に励起されて超音波振動する。各々の超音波振動子2は同じ深さに配置されて、上向きに超音波振動を放射して、液面5から液柱6を突出させる。超音波振動子2は、狭い放射角で超音波振動を放射して、液面5から液柱6を突出させる。液柱6は超音波振動のエネルギーで表面から殺菌液1をミストの状態で分離する。液柱6から分離されたミストは、強制的に吹き付けられる搬送気体中に飛散されてミスト混合空気となって排出される。図示しないが、複数の超音波振動子2を上向きに超音波を放射する姿勢で、霧化室4の底部の外側に固定することもできる。 The atomization chamber 4 shown in FIGS. 2 and 3 has a plurality of ultrasonic transducers 2 fixed to the bottom in a posture that emits ultrasonic waves upward. The ultrasonic transducer 2 is arranged at a constant depth that maximizes atomization efficiency. Each ultrasonic transducer 2 is connected to an ultrasonic power supply (not shown) and excited by an alternating current of several tens of KHz to several MHz supplied from the ultrasonic power supply to ultrasonically vibrate. Each ultrasonic vibrator 2 is placed at the same depth and emits ultrasonic vibrations upward to protrude a liquid column 6 from the liquid surface 5 . The ultrasonic oscillator 2 radiates ultrasonic vibrations with a narrow radiation angle to project a liquid column 6 from the liquid surface 5 . The liquid column 6 separates the sterilizing liquid 1 in the form of mist from the surface with the energy of the ultrasonic vibration. The mist separated from the liquid column 6 is dispersed in the carrier gas that is forcibly blown, and is discharged as mist-mixed air. Although not shown, it is also possible to fix a plurality of ultrasonic transducers 2 to the outside of the bottom of the atomization chamber 4 in a posture that emits ultrasonic waves upward.
 複数の超音波振動子2は、霧化室4の底部に線上に配置される。好ましくは、複数の超音波振動子2は、図1に示すように、送風ダクト7の両側に直線上に配置される。超音波振動子2は、殺菌液1を底から上向きに超音波振動して、液面5から液柱6を突出して、液柱6の表面からミストを分離する。液柱6は、効率よくミストを分離してナノミストを発生させるために、表面に送風ダクト7から搬送気体が吹き付けられる。各々の液柱6に送風ダクト7から搬送気体が吹き付けられるように、液柱6は送風ダクト7に沿って配置される。図1~図3の殺菌ミストの生成装置100は、送風ダクト7を直線上に伸びる姿勢に配置して、液柱6を送風ダクト7に平行な直線上に配列している。液柱6は超音波振動子2の上方に発生するので、複数の超音波振動子2を送風ダクト7と平行な直線上に配置して、直線上に配列される液柱6と送風ダクト7を平行に配置できる。 A plurality of ultrasonic transducers 2 are arranged in a line at the bottom of the atomization chamber 4 . Preferably, the plurality of ultrasonic transducers 2 are arranged linearly on both sides of the air duct 7 as shown in FIG. The ultrasonic vibrator 2 ultrasonically vibrates the sterilizing liquid 1 upward from the bottom, projects the liquid column 6 from the liquid surface 5, and separates the mist from the surface of the liquid column 6. - 特許庁A carrier gas is blown onto the surface of the liquid column 6 from an air duct 7 in order to efficiently separate the mist and generate nano-mist. The liquid columns 6 are arranged along the fan duct 7 such that each liquid column 6 is blown with the carrier gas from the fan duct 7 . In the sterilizing mist generator 100 shown in FIGS. 1 to 3, the air duct 7 is arranged in a straight line, and the liquid column 6 is arranged in a straight line parallel to the air duct 7 . Since the liquid column 6 is generated above the ultrasonic transducer 2, a plurality of ultrasonic transducers 2 are arranged on a straight line parallel to the air duct 7, and the liquid column 6 and the air duct 7 are arranged on the straight line. can be arranged in parallel.
 図3に示すように、液柱6の表面に均一に搬送気体が吹き付けられるように、液柱6と送風ダクト7との間には、所定の隙間、たとえば3mm~3cmの送風隙間11が設けられる。液柱6と送風ダクト7との間に送風隙間11を設けるために、超音波振動子2を線上に配置している超音波振動子2の配列ラインと、線上である送風ダクト7の側面ラインは互いに平行であって、その間隔を送風隙間11の間隔に等しくしている。ただし、例えば、超音波振動子2の配列ラインと送風ダクト7の側面ラインの間隔を、送風側から見て上流側と下流側で異なるものとするなど非平行にすることもできる。
(送風ダクト7)
As shown in FIG. 3, between the liquid column 6 and the air duct 7, a predetermined gap, for example, a 3 mm to 3 cm air gap 11 is provided so that the carrier gas can be uniformly blown onto the surface of the liquid column 6. be done. In order to provide a blowing gap 11 between the liquid column 6 and the blowing duct 7, an arrangement line of the ultrasonic transducers 2 arranged on a line and a side line of the blowing duct 7 on the line. are parallel to each other and the spacing between them is equal to the spacing of the blowing gap 11 . However, for example, the spacing between the array line of the ultrasonic transducers 2 and the side line of the fan duct 7 can be made non-parallel by making them different between the upstream side and the downstream side when viewed from the fan side.
(Blower duct 7)
 送風ダクト7は、霧化室4の内部で、超音波振動子2の超音波振動で発生する複数の液柱6の配列方向に沿って配置される。送風ダクト7は中空状の筒体であり、送風機9から搬送気体が強制送風される。送風ダクト7は、液柱6に対向する対向壁7aに、噴出開口8を開口している。送風機9から搬送気体が送風ダクト7に送風されて、送風ダクト7に開口された噴出開口8から搬送気体が液柱6の表面に吹き付けられる。 The air duct 7 is arranged inside the atomization chamber 4 along the arrangement direction of the plurality of liquid columns 6 generated by the ultrasonic vibration of the ultrasonic oscillator 2 . The air duct 7 is a hollow cylindrical body, and the carrier gas is forcibly blown from the air blower 9 . The blower duct 7 has an ejection opening 8 in a wall 7 a facing the liquid column 6 . A carrier gas is blown from the blower 9 to the blower duct 7 , and the carrier gas is blown onto the surface of the liquid column 6 from the ejection opening 8 opened in the blower duct 7 .
 図3の殺菌ミストの生成装置100は、2列の液柱6の間に送風ダクト7が配置されて、送風ダクト7の両側の対向壁7aに設けられた噴出開口8から搬送気体を液柱6の表面に対して左右の水平方向に吹き付ける。図3に示すように、送風ダクト7の右側面の対向壁7aの噴出開口8から右側の液柱6に搬送気体が吹き付けられると共に、送風ダクト7の左側面の対向壁7aの噴出開口8から左側の液柱6に搬送気体が吹き付けられる。殺菌ミストの生成装置100は、ひとつの送風ダクト7で2列の複数の液柱6の表面に搬送気体を吹き付けて、霧化効率を向上して殺菌ミストを生成できる。 The sterilizing mist generating device 100 of FIG. Spray horizontally to the left and right of the surface of 6. As shown in FIG. 3, the carrier gas is blown to the liquid column 6 on the right side from the ejection opening 8 of the opposite wall 7a on the right side of the fan duct 7, and the carrier gas is blown from the ejection opening 8 on the opposite wall 7a on the left side of the fan duct 7. A carrier gas is blown onto the liquid column 6 on the left. The sterilizing mist generating device 100 can generate sterilizing mist by blowing a carrier gas onto the surfaces of two rows of liquid columns 6 with one fan duct 7 to improve the atomization efficiency.
 図3の横断面図に示すように、送風ダクト7は、対向壁7aをほぼ垂直姿勢として、液柱6との対向位置に噴出開口8を設けている。噴出開口8は、超音波振動で垂直方向に突出してできる液柱6の表面に搬送気体を送風して霧化効率を向上する。図示しないが、送風ダクト7は、噴出開口8が設けられる対向壁7aを、霧化室4の底面に対して垂直方向に対して傾斜することもできる。たとえば、送風ダクト7は、噴出開口8を開口している液柱6との対向壁7aを、円錐状に突出する液柱6に沿う方向に傾斜させることで、噴出開口8を液柱6の表面に対して平行となる方向に傾斜して、噴出開口8と液柱6との送風隙間11を均等化できる。この他にも、送風ダクト7の対向壁7aを、送風量や位置に応じた所定の送風隙間、搬送気体が液柱6に吹き付けられる高さ及び位置などに対応させた形状にすることもできる。 As shown in the cross-sectional view of FIG. 3 , the blower duct 7 has the opposing wall 7 a in a substantially vertical posture, and the ejection opening 8 is provided at a position facing the liquid column 6 . The ejection opening 8 blows the carrier gas onto the surface of the liquid column 6 which is vertically protruded by ultrasonic vibration, thereby improving the atomization efficiency. Although not shown, the blower duct 7 can also tilt the opposing wall 7a provided with the ejection opening 8 with respect to the vertical direction with respect to the bottom surface of the atomization chamber 4 . For example, the blower duct 7 has a wall 7a facing the liquid column 6, which opens the ejection opening 8, by inclining in a direction along the liquid column 6 protruding in a conical shape. By tilting in a direction parallel to the surface, the blowing gap 11 between the ejection opening 8 and the liquid column 6 can be equalized. In addition, the opposing wall 7a of the air duct 7 can be formed in a shape corresponding to a predetermined air blow gap according to the air blow amount and position, and the height and position at which the carrier gas is blown onto the liquid column 6. .
 図1の水平断面図に示す送風ダクト7は、直線状に配列される液柱6(図において2列)の配列方向に伸びる姿勢であって、噴出開口8と液柱6との間に所定の送風隙間11を設けている。超音波振動子2は、図1に示すように、好ましくは直線状に配置されるので、送風ダクト7は直線状に伸びる姿勢に配置される。送風ダクト7は、液柱6の下端から上端まで搬送気体を送風できる噴出開口8を開口できる上下幅で、各々の噴出開口8から液柱6の表面に送風して効率よく霧化できる横幅の中空筒状に成形される。送風ダクト7は、好ましくは、図3に示すように横断面形状を長方形とするが、横断面形状を台形や三角形などの多角形にでき、また楕円形など角のないの形状とすることもできる。たとえば、送風ダクト7の横断面の形状を、下窄み台形状として、液柱6との送風隙間11を上下で均等化するすることもできる。 The air duct 7 shown in the horizontal cross-sectional view of FIG. A ventilation gap 11 is provided. Since the ultrasonic transducers 2 are preferably arranged linearly as shown in FIG. 1, the air duct 7 is arranged in a posture extending linearly. The air duct 7 has a vertical width sufficient to open ejection openings 8 capable of blowing the carrier gas from the lower end to the upper end of the liquid column 6, and a horizontal width capable of efficiently atomizing the surface of the liquid column 6 by blowing air from each ejection opening 8 to the surface of the liquid column 6. It is molded into a hollow cylinder. The cross-sectional shape of the air duct 7 is preferably rectangular as shown in FIG. 3, but the cross-sectional shape may be polygonal such as trapezoidal or triangular, or may be elliptical or otherwise without corners. can. For example, the shape of the cross section of the air duct 7 can be made into a trapezoidal shape with a downward slope, and the air blow gap 11 between the liquid column 6 and the liquid column 6 can be equalized in the vertical direction.
 図1~図3に示す殺菌ミストの生成装置100は、送風ダクト7の横断面積が同じである筒状とする。ただし、図示しないが、送風ダクト7の横断面積が、液柱6の配列方向に異なる構造とすることもできる。送風機9から送風ダクト7に搬送気体が強制送風されて、送風ダクト7の噴出開口8から搬送気体が液柱6に吹き付けられるが、送風ダクト7の送風機9に近い上流側と遠い下流側とでは、送風機9によって噴出開口8から搬送気体が液柱6に吹き付ける圧が異なることに対応するために、たとえば、送風機9から遠い下流側の送風ダクト7の横断面積を小さくすることができる。
(噴出開口8)
In the sterilizing mist generator 100 shown in FIGS. 1 to 3, the air duct 7 has a cylindrical shape with the same cross-sectional area. However, although not shown, the cross-sectional area of the air duct 7 may be configured to be different in the arrangement direction of the liquid column 6 . The carrier gas is forcibly blown from the blower 9 to the blower duct 7, and the carrier gas is blown to the liquid column 6 from the ejection opening 8 of the blower duct 7. For example, the cross-sectional area of the blower duct 7 on the downstream side farther from the blower 9 can be reduced in order to accommodate the different pressures at which the carrier gas is blown onto the liquid column 6 from the ejection openings 8 by the blower 9 .
(Ejection opening 8)
 図1~図3の送風ダクト7は、液柱6に対向する対向壁7aに、噴出開口8を開口する。送風機9から搬送気体が送風ダクト7に強制送風され、送風ダクト7の噴出開口8から搬送気体が液柱6の表面に吹き付けられる。噴出開口8は、対向壁7a、すなわち液柱6に対向する面を含む送風ダクト7の壁面に設けられる。図1~図3の殺菌ミストの生成装置100は、送風ダクト7の両側の対向壁7aに噴出開口8を開口する。この他、後述するように送風ダクト7の片側の対向壁7aに噴出開口8を開口し、また、送風ダクト7の両側及び片側の対向壁7aに噴出開口8を開口できる。図1~図3に示す噴出開口8は、超音波振動で発生する液柱6に向かって搬送気体を吹き付ける位置に配置される。これにより、搬送気体を液柱6の表面に送風して霧化効率を上げることができるからである。また、図示しないが、噴出開口8を、隣接する液柱6の間に搬送気体を吹き付ける位置に開口することもできる。隣接する液柱6の間の間隔によっては、隣接する液柱6の両方に搬送気体を吹き付けることができる。また、噴出開口8は、液柱6及び隣接する液柱6の間の双方に搬送気体を吹き付ける位置に開口することもできる。 The blower duct 7 in FIGS. 1 to 3 has an ejection opening 8 in the opposing wall 7a facing the liquid column 6. As shown in FIG. The carrier gas is forcibly blown from the blower 9 to the blower duct 7 , and the carrier gas is blown onto the surface of the liquid column 6 from the ejection opening 8 of the blower duct 7 . The ejection opening 8 is provided in the wall surface of the air duct 7 including the facing wall 7 a , ie the surface facing the liquid column 6 . The sterilizing mist generating device 100 shown in FIGS. 1 to 3 has ejection openings 8 in opposing walls 7a on both sides of the air duct 7. As shown in FIG. In addition, as will be described later, the ejection openings 8 can be opened in the facing wall 7a on one side of the fan duct 7, and the ejection openings 8 can be opened in the opposing walls 7a on both sides and one side of the fan duct 7. The ejection opening 8 shown in FIGS. 1 to 3 is arranged at a position for blowing the carrier gas toward the liquid column 6 generated by ultrasonic vibration. This is because the carrier gas can be blown to the surface of the liquid column 6 to increase the atomization efficiency. Also, although not shown, the ejection opening 8 can be opened at a position where the carrier gas is blown between adjacent liquid columns 6 . Depending on the distance between adjacent liquid columns 6, both adjacent liquid columns 6 can be blown with the carrier gas. Alternatively, the ejection openings 8 may open at positions where the carrier gas is blown both to the liquid column 6 and between the adjacent liquid columns 6 .
 図12及び図13に噴出開口8の形状、配置などの例を示す。図12A及び図12Bに示すように、噴出開口8は、液柱6の上下方向に伸びるスリット8aにできる。これにより、噴出開口8は、部分的に液柱6に搬送気体を吹き付けることなく、液柱6の上から下にかけて、液柱6全体に向かって搬送気体を吹き付けることができ、より霧化効率を上げることができる。噴出開口8のスリット8aは、スリット8a大きさ、形状、本数、幅、長さ、配置具合など細かな調整ができる。たとえば、図12Aは、液柱6の上下方向に伸びる1本のスリット8aから液柱6に向かって正面から空気を吹き付ける例、図12Bは、液柱6の外形に沿ってハの字に2本のスリット8aから液柱6に空気を吹き付ける例をそれぞれ示す。流量が同じ場合、噴出開口8を大きくすると搬送気体の流速が遅くなり、噴出開口8を小さくすると搬送気体の流速が速くなることから、たとえばスリット8aの大きさ、本数、幅、配置により、また、スリット8aを部分的に噴出開口8の大きさを変えることで、流速を調整して、霧化効率を上げることもできる。噴出開口8から搬送気体を吹き付ける方向も、液柱6に対して横方向のみならず、それ以外の方向にすることもできる。噴出開口8は、搬送気体を水平方向に吹き付けることはもちろん、噴出開口8の噴き出しの形状を工夫して、搬送気体を上斜め方向、または下斜め方向に吹き付けることもでき、さらに、複数の噴出開口8で異なる方向に搬送気体を吹き付けることもできる。  Figures 12 and 13 show examples of the shape and arrangement of the ejection openings 8. As shown in FIGS. 12A and 12B, the ejection opening 8 can be a slit 8a extending in the vertical direction of the liquid column 6. As shown in FIGS. As a result, the ejection opening 8 can blow the carrier gas toward the entire liquid column 6 from the top to the bottom without partially blowing the carrier gas onto the liquid column 6, thereby improving the atomization efficiency. can be raised. The slits 8a of the ejection opening 8 can be finely adjusted in terms of the size, shape, number, width, length and arrangement of the slits 8a. For example, FIG. 12A shows an example in which air is blown from the front toward the liquid column 6 from one slit 8a extending in the vertical direction of the liquid column 6, and FIG. An example of blowing air to the liquid column 6 from the slit 8a of the book is shown respectively. If the flow rate is the same, the larger the ejection opening 8, the slower the flow rate of the carrier gas, and the smaller the ejection opening 8, the faster the flow rate of the carrier gas. By partially changing the size of the ejection opening 8 in the slit 8a, the flow velocity can be adjusted and the atomization efficiency can be increased. The direction in which the carrier gas is blown from the jetting openings 8 is not limited to the horizontal direction with respect to the liquid column 6, but can also be in other directions. The ejection opening 8 can blow the carrier gas in the horizontal direction, and it is also possible to devise the shape of the ejection opening 8 to blow the carrier gas obliquely upward or obliquely downward. It is also possible to blow the carrier gas in different directions at the openings 8 .
 噴出開口8のスリット8aの長さは、たとえば、好ましくは液柱6の高さの0.5倍ないし1.5倍で、より好ましくは液柱6の高さの0.8倍ないし1.2倍とする。実際に発生する液柱6の高さによって、霧化効率のよい搬送気体の吹き付け風量は異なり、最適な噴出開口8のスリット8aの長さも異なるため、液柱6の高さを基準として、液柱6の高さに対する所定のスリット8aの長さとすることで、液柱6の上端部のみならず、液柱6全体に向かって搬送気体を吹き付けることができ、最適な霧化効率を実現できる。 The length of the slit 8a of the ejection opening 8 is, for example, preferably 0.5 to 1.5 times the height of the liquid column 6, more preferably 0.8 to 1.5 times the height of the liquid column 6. Double it. Depending on the height of the liquid column 6 actually generated, the blowing air volume of the carrier gas with good atomization efficiency differs, and the optimum length of the slit 8a of the ejection opening 8 also differs. By setting the length of the slit 8a to a predetermined length with respect to the height of the liquid column 6, the carrier gas can be blown not only toward the upper end of the liquid column 6, but also toward the entire liquid column 6, thereby realizing optimum atomization efficiency. .
 送風ダクト7が、異なる開口面積の噴出開口8を有することができる。たとえば、各々の液柱6の表面に空気を送風する送風ダクト7の送風機9に近い上流側と、遠い下流側という噴出開口8の位置に応じて、噴出開口8を異なる形状、大きさ、配置などに調整できる。噴出開口8のスリット8aの大きさ、幅、長さ、本数、配置具合などを調整することで、異なる開口面積の噴出開口8にできる。また、スリット8aの大きさ、本数、幅、形状を液柱6の高さ位置に応じて変化させることもできる。なお、噴出開口8のスリット8aの最下部が、液面5よりも上に配置されることで、殺菌液1が送風ダクト7に入ることを防止できる。 The air duct 7 can have ejection openings 8 with different opening areas. For example, the ejection openings 8 have different shapes, sizes, and arrangements depending on the positions of the ejection openings 8, namely, the upstream side close to the blower 9 and the far downstream side of the blower duct 7 for blowing air onto the surface of each liquid column 6. etc. can be adjusted. By adjusting the size, width, length, number, and arrangement of the slits 8a of the ejection openings 8, the ejection openings 8 can have different opening areas. Also, the size, number, width and shape of the slits 8a can be changed according to the height position of the liquid column 6. FIG. By arranging the lowermost part of the slit 8 a of the ejection opening 8 above the liquid surface 5 , it is possible to prevent the sterilizing liquid 1 from entering the fan duct 7 .
 図13A~図13Cに示すように、噴出開口8は、複数の貫通孔8bを上下に並べて配置することもできる。複数の貫通孔8bを上下に並べて配置することで、液柱6の上下方向に伸びるスリット8aを設けた場合と同様に、液柱6全体に向かって搬送気体を吹き付けることができ、より霧化効率を上げることができる。噴出開口8の貫通孔8bは、貫通孔8bの大きさ、個数、形状、配置具合などにより、スリット8aの場合以上に、細かな調整が可能となる。貫通孔8bは、円形孔に限定されず、楕円形、縦又は横方向に伸びるスリット形状なども含まれる。貫通孔8bとスリット8aの両方を設けたり、組み合わせたりすることもできる。たとえば、図13Aは、液柱6の上下方向に並べて配置された複数の貫通孔8bから液柱6に向かって正面から空気を吹き付ける例、図13Bは、液柱6の外形に沿ってハの字に配置された複数の貫通孔8bから液柱6に空気を吹き付ける例、図13Cは、液柱6の上から下にかけて配置された形状の異なる複数の貫通孔8bから液柱6に空気を吹き付ける例をそれぞれ示す。 As shown in FIGS. 13A to 13C, the ejection opening 8 can also have a plurality of through holes 8b arranged vertically. By arranging a plurality of through-holes 8b vertically, it is possible to spray the carrier gas toward the entire liquid column 6, as in the case of providing slits 8a extending in the vertical direction of the liquid column 6, thereby further atomizing the liquid column. Efficiency can be improved. The through holes 8b of the ejection openings 8 can be adjusted more finely than the slits 8a, depending on the size, number, shape, and arrangement of the through holes 8b. The through hole 8b is not limited to a circular hole, and may be an elliptical shape or a slit shape extending in the vertical or horizontal direction. Both the through holes 8b and the slits 8a can be provided, or a combination thereof can be provided. For example, FIG. 13A shows an example in which air is blown from the front toward the liquid column 6 from a plurality of through holes 8b arranged in the vertical direction of the liquid column 6, and FIG. FIG. 13C shows an example of blowing air to the liquid column 6 from a plurality of through holes 8b arranged in a letter shape. Examples of spraying are shown respectively.
 スリット8aの場合と同様に、複数の貫通孔8bの場合においても、噴出開口8の大きさを変えることで、流速を調整して、霧化効率を上げることもできる。また、複数の貫通孔8bの場合においても、送風ダクト7が、異なる開口面積の噴出開口8を有することができる。さらに、噴出開口8の複数の貫通孔8bの最下部が、液面5よりも上に配置されることで、殺菌液1が送風ダクト7に入ることを防止できる。
(送風機9)
In the case of a plurality of through-holes 8b, as in the case of the slits 8a, by changing the size of the ejection openings 8, the flow velocity can be adjusted and the atomization efficiency can be increased. Also in the case of a plurality of through holes 8b, the air duct 7 can have ejection openings 8 with different opening areas. Furthermore, since the lowermost portions of the plurality of through holes 8 b of the ejection opening 8 are arranged above the liquid surface 5 , the sterilizing liquid 1 can be prevented from entering the fan duct 7 .
(Blower 9)
 図1に示す送風機9は、送風ダクト7に連結され、送風ダクト7に搬送気体を強制的に送風する。送風機9から強制送風された搬送気体は、送風ダクト7の噴出開口8から液柱6の表面に吹き付けられて、液柱6の表面から効率よくナノミストを発生させて、空気中に飛散する殺菌ミストの生成する。複数列の送風ダクト7が設けられる場合、たとえば、図5及び図6で示すように複数列の送風ダクト7を連結させて、1台の送風機9を設けることができる他、図7で示すように2台の送風機9を各々の送風ダクト7に設けることもできる。送風機9が搬送気体を強制送風する風量と圧力は、各々の超音波振動子2で発生する液柱6に搬送気体を強制送風して、最も効率よくナノミストを発生できるように設定される。送風機9は空気を加温し、あるいは冷却して送風することもできる。送風機9が空気を加温して各々の液柱6に送風する殺菌ミストの生成装置は、ミストの霧化効率を高くできる。空気を冷却して各々の液柱6に強制送風する殺菌ミストの生成装置は、加熱されて変質する殺菌液1の霧化に適している。以上の殺菌ミストの生成装置100についての記載内容は、矛盾抵触しない限り、後述する他の実施形態にも当てはまる。
[実施形態2]
The blower 9 shown in FIG. 1 is connected to the blower duct 7 and forcibly blows the carrier gas into the blower duct 7 . The carrier gas forcibly blown from the blower 9 is blown onto the surface of the liquid column 6 from the ejection opening 8 of the blower duct 7, efficiently generating nano-mist from the surface of the liquid column 6, and scattering the sterilizing mist in the air. to generate When multiple rows of air ducts 7 are provided, for example, multiple rows of air ducts 7 can be connected as shown in FIGS. Alternatively, two blowers 9 may be provided in each blower duct 7 . The air volume and pressure at which the air blower 9 forcibly blows the carrier gas are set so that the carrier gas can be forcibly blown to the liquid column 6 generated by each ultrasonic transducer 2 to generate nano-mist most efficiently. The blower 9 can also heat or cool the air before blowing it. The sterilizing mist generating device in which the blower 9 heats the air and blows it to each liquid column 6 can increase the mist atomization efficiency. A sterilizing mist generator that cools air and forcibly blows it to each liquid column 6 is suitable for atomizing the sterilizing liquid 1 that is heated and deteriorated. The description of the sterilizing mist generator 100 described above also applies to other embodiments to be described later, as long as there is no contradiction.
[Embodiment 2]
 図4及び図5に、本発明の実施形態2に係る殺菌ミストの生成装置200を示す。これらの図において、図4は本発明の実施形態2に係る殺菌ミストの生成装置200の概略構成図、図5は図4に示す殺菌ミストの生成装置200を短手方向に切断した垂直横断面図を、それぞれ示している。 4 and 5 show a sterilizing mist generating device 200 according to Embodiment 2 of the present invention. In these figures, FIG. 4 is a schematic configuration diagram of a sterilizing mist generating device 200 according to Embodiment 2 of the present invention, and FIG. 5 is a vertical cross section of the sterilizing mist generating device 200 shown in FIG. Figures are shown respectively.
 これらの図に示す殺菌ミストの生成装置200は、送風ダクト7が、送風ダクト7を多段で複数の分割ダクト7bに分割する分割プレート10を備える。分割プレート10は、送風ダクト7に垂直姿勢に配置されて、送風ダクト7を複数列の分割ダクト7bに分割する。分割プレート10が、送風機9から送風ダクト7に供給される搬送気体を分割ダクト7bに分割して供給し、各々の噴出開口8に分割して送風する。後述する他の実施形態も分割プレート10を備えることができる。
(分割ダクト7b、分割プレート10)
In the sterilizing mist generator 200 shown in these figures, the fan duct 7 is provided with a split plate 10 that splits the fan duct 7 into a plurality of split ducts 7b in multiple stages. The dividing plate 10 is arranged vertically in the air duct 7 to divide the air duct 7 into a plurality of rows of divided ducts 7b. The dividing plate 10 divides and supplies the carrier gas supplied from the blower 9 to the blowing duct 7 to the dividing duct 7b, and divides and blows it to each of the ejection openings 8 . Other embodiments described below may also include a split plate 10 .
(Divided duct 7b, divided plate 10)
 図4に示す送風ダクト7は、各々の液柱6に均等化して搬送気体を送風するために、内部に分割プレート10を配置し、分割プレート10が送風ダクト7を複数列の分割ダクト7bに分割している。分割プレート10は、分割ダクト7bの横断面積をほぼ同一として、各々の液柱6の表面に均等化して搬送気体を送風する。図4に示す分割プレート10は、搬送気体を導く送風プレートの長手方向に伸びる平面部10aと、平面部10aの先端部に連結している曲げ部10bとを備える。図4及び図5に示すように、各々の分割プレート10は、平面部10aを垂直姿勢として、一定の間隔で平行に配置して、送風ダクト7を複数列の分割ダクト7bに分割している。曲げ部10bは、分割ダクト7bの排出側を噴出開口8に連結するために、平面部10aから対向壁7aに向かって曲がっており、先端縁を対向壁7aに連結している。各々の分割ダクト7bが噴出開口8に連結されるように、曲げ部10bは先端縁を噴出開口8の間で対向壁7aに連結している。 The air duct 7 shown in FIG. 4 has a dividing plate 10 arranged therein for blowing the carrier gas equally to each liquid column 6, and the dividing plate 10 divides the air duct 7 into a plurality of rows of divided ducts 7b. split. The dividing plate 10 makes the cross-sectional areas of the dividing ducts 7b substantially the same, and evenly distributes the carrier gas to the surface of each liquid column 6. As shown in FIG. The dividing plate 10 shown in FIG. 4 has a flat portion 10a extending in the longitudinal direction of the blowing plate for guiding the carrier gas, and a bent portion 10b connected to the tip of the flat portion 10a. As shown in FIGS. 4 and 5, each of the dividing plates 10 is arranged in parallel at regular intervals with the flat portion 10a in a vertical posture, thereby dividing the air duct 7 into a plurality of rows of divided ducts 7b. . The bent portion 10b is bent from the flat portion 10a toward the facing wall 7a in order to connect the discharge side of the divided duct 7b to the ejection opening 8, and connects the tip edge thereof to the facing wall 7a. The bent portion 10b connects the tip edge between the ejection openings 8 to the opposing wall 7a so that each split duct 7b is connected to the ejection openings 8. As shown in FIG.
 各々の分割ダクト7bは、流入側を送風機9に、排出側を噴出開口8に連結している。図4の殺菌ミストの生成装置200は、ひとつの噴出開口8をひとつの分割ダクト7bに連結している。この構造は、各々の噴出開口8に搬送気体を均等化して送風できる特長がある。ただ、図示しないが、複数列の分割ダクト7bは、ひとつの分割ダクト7bに複数の噴出開口8を連結できる。分割プレート10の枚数を減らして単純な構造とすることで、材料及び製造コストを低く抑えることもできる。図4は、送風ダクト7の両側に超音波振動子2を設けて送風ダクト7の両側に液柱6を発生させており、送風ダクト7の左右両側の対向壁7aに設けられた噴出開口8に連結する複数列の分割ダクト7bを設けている。図4の送風ダクト7は、送風ダクト7の内部に左右対称に分割プレート10を配置して、左右両側の対向壁7aに設けている噴出開口8に分割ダクト7bを連結している。送風ダクト7と液柱6の位置関係、液柱6及び噴出開口8の個数及び位置、送風ダクト7の長さなどに応じて、1または複数の分割ダクト7bを設けることができる。
[実施形態3ないし6]
Each split duct 7b is connected to the blower 9 on the inflow side and to the ejection opening 8 on the discharge side. In the sterilizing mist generator 200 of FIG. 4, one ejection opening 8 is connected to one divided duct 7b. This structure has the advantage that the carrier gas can be uniformly blown to each ejection opening 8 . However, although not shown, multiple rows of divided ducts 7b can connect a plurality of ejection openings 8 to one divided duct 7b. By reducing the number of dividing plates 10 and simplifying the structure, it is also possible to keep material and manufacturing costs low. FIG. 4 shows the ultrasonic vibrators 2 provided on both sides of the air duct 7 to generate liquid columns 6 on both sides of the air duct 7, and the ejection openings 8 provided in the opposing walls 7a on both the left and right sides of the air duct 7. A plurality of rows of divided ducts 7b are provided to connect to the . In the air duct 7 of FIG. 4, split plates 10 are arranged bilaterally symmetrically inside the air duct 7, and the split duct 7b is connected to the ejection openings 8 provided in the opposing walls 7a on both left and right sides. One or a plurality of divided ducts 7b can be provided according to the positional relationship between the air duct 7 and the liquid column 6, the number and positions of the liquid column 6 and the ejection openings 8, the length of the air duct 7, and the like.
[Embodiments 3 to 6]
 図6~図11に、本発明の実施形態3ないし7に係る殺菌ミストの生成装置300、400、500、600、700を示す。これらの図において、図6は実施形態3に係る殺菌ミストの生成装置300の概略構成図、図7は実施形態4に係る殺菌ミストの生成装置400の概略構成図、図8は実施形態5に係る殺菌ミストの生成装置500の概略構成図、図9は実施形態6に係る殺菌ミストの生成装置600の概略構成図、図10は図9の要部拡大断面図、図11は実施形態7に係る殺菌ミストの生成装置700の概略構成図を、それぞれ示している。 6 to 11 show sterilizing mist generators 300, 400, 500, 600, and 700 according to Embodiments 3 to 7 of the present invention. In these figures, FIG. 6 is a schematic configuration diagram of a sterilizing mist generating device 300 according to Embodiment 3, FIG. 7 is a schematic configuration diagram of a sterilizing mist generating device 400 according to Embodiment 4, and FIG. FIG. 9 is a schematic configuration diagram of a sterilizing mist generating device 500 according to Embodiment 6, FIG. 10 is an enlarged cross-sectional view of a main part of FIG. 9, and FIG. Schematic configuration diagrams of the sterilizing mist generating device 700 are respectively shown.
 図1~図5に示した殺菌ミストの生成装置100、200は、ひとつの送風ダクト7の両側に各々複数の超音波振動子2を配置する。この構造の殺菌ミストの生成装置100、200は、1つの送風ダクト7で2列の液柱6に搬送気体を吹き付けることができる。これに対し、図6~図11に示す殺菌ミストの生成装置300、400、500、600、700は、1列または複数列に複数の超音波振動子2を線上に配置し、複数の超音波振動子2の片側または両側に送風ダクト7を配置して、送風ダクト7の片側または両側の対向壁7aに設けられた噴出開口8から搬送気体を吹き付ける。なお、これらの図に示す送風ダクト7及び複数の超音波振動子2の個数、配置の組み合わせは例示であり、これらに限定されるものではない。 In the sterilizing mist generators 100 and 200 shown in FIGS. 1 to 5, a plurality of ultrasonic transducers 2 are arranged on both sides of one fan duct 7, respectively. The sterilizing mist generators 100 and 200 having this structure can blow a carrier gas onto two lines of liquid columns 6 with one fan duct 7 . On the other hand, the sterilizing mist generators 300, 400, 500, 600, and 700 shown in FIGS. A fan duct 7 is arranged on one side or both sides of the vibrator 2, and a carrier gas is blown from an ejection opening 8 provided in an opposing wall 7a on one side or both sides of the fan duct 7. FIG. Note that the combinations of the number and arrangement of the fan duct 7 and the plurality of ultrasonic transducers 2 shown in these figures are examples, and the present invention is not limited to these.
 図6で示す実施形態3に係る殺菌ミストの生成装置300は、複数の超音波振動子2の超音波振動で発生する1列の液柱6の配列方向に沿って、ひとつの送風ダクト7が片側(図6において右側)に配置する。送風ダクト7の片側(図6において左側)の対向壁7aから液柱6の片側に搬送気体を吹き付ける。殺菌ミストの生成装置300は、1列の液柱6の片側に配置された送風ダクト7の片側の対向壁7aに設けられた噴出開口8から搬送気体を吹き付ける。この殺菌ミストの生成装置300は、単純な構造でコストを抑え、装置全体の幅、サイズを小さくできる。図6に示す送風ダクト7は、内部に分割プレート10を設けて、片側の対向壁7aの噴出開口8に搬送気体を送風する複数列の分割ダクト7bを設けている。ただし、図示しないが、分割プレート10を設けない単純な構造としてさらに材料及び製造コストを低く抑えることもできる。以下の実施形態においても、同様である。 A sterilizing mist generating device 300 according to Embodiment 3 shown in FIG. It is arranged on one side (right side in FIG. 6). A carrier gas is blown to one side of the liquid column 6 from the opposing wall 7a on one side (the left side in FIG. 6) of the air duct 7. As shown in FIG. The sterilizing mist generator 300 blows a carrier gas from the ejection openings 8 provided in the facing wall 7a on one side of the air duct 7 arranged on one side of the liquid column 6 in one row. This sterilizing mist generating device 300 has a simple structure and can reduce the cost, and the width and size of the entire device can be reduced. The fan duct 7 shown in FIG. 6 has a split plate 10 inside and a plurality of rows of split ducts 7b for blowing the carrier gas to the ejection openings 8 of the facing wall 7a on one side. However, although not shown, a simple structure without the dividing plate 10 can be used to further reduce the material and manufacturing costs. The same applies to the following embodiments.
 図7で示す実施形態4に係る殺菌ミストの生成装置400は、2列の液柱6の両外側に2つの送風ダクト7を配置する。送風ダクト7の各々片側の対向壁7aの噴出開口8から各々液柱6の片側に搬送気体を吹き付ける。図7の殺菌ミストの生成装置400は、霧化室4の両側に沿って送風ダクト7を設けて、両側の間に発生させた2列の液柱6に搬送気体を送風する。両側の送風ダクト7は、各々片側(図において内側)の対向壁7aに噴出開口8を設けて、液柱6に搬送気体を送風している。殺菌ミストの生成装置400は、両側の送風ダクト7から内側の2列の液柱6に搬送気体を吹き付ける構造である。図示しないが、2列の液柱6の間の上方に殺菌ミストを空気中に飛散する排出口を設けて、効率的に殺菌ミストを空気中に飛散できる。また図示しないが、2列の液柱6の位置を千鳥配列にしたり、液柱6を1列として、両側に配置された2つの送風ダクト7から各々の液柱6の両側に搬送気体を吹き付ける構造として、霧化効率を向上させることができる。図7の各々の送風ダクト7は、分割プレート10で内部を複数列の分割ダクト7bに分割している。各々の分割ダクト7bは噴出開口8に連結されて、送風機9の搬送気体を均等化して噴出開口8から液柱6に送風している。 A sterilizing mist generating device 400 according to Embodiment 4 shown in FIG. A carrier gas is blown to one side of each liquid column 6 from the ejection openings 8 of the opposing wall 7a on one side of each air duct 7. As shown in FIG. The sterilizing mist generator 400 shown in FIG. 7 is provided with air ducts 7 along both sides of the atomization chamber 4 to blow a carrier gas to two lines of liquid columns 6 generated between the two sides. The air ducts 7 on both sides are provided with ejection openings 8 in the facing walls 7a on one side (inner side in the figure) to blow the carrier gas to the liquid column 6 . The sterilizing mist generator 400 has a structure in which a carrier gas is blown from the air ducts 7 on both sides to the inner two lines of liquid columns 6 . Although not shown, an outlet for scattering the sterilizing mist into the air is provided above between the two liquid columns 6, so that the sterilizing mist can be efficiently scattered into the air. Although not shown, two rows of the liquid columns 6 are arranged in a staggered arrangement, or the liquid columns 6 are arranged in one row, and the carrier gas is blown to both sides of each liquid column 6 from two air ducts 7 arranged on both sides. As a structure, the atomization efficiency can be improved. Each air duct 7 in FIG. 7 divides the inside into a plurality of rows of divided ducts 7 b by a dividing plate 10 . Each split duct 7b is connected to an ejection opening 8 to equalize the carrier gas of the blower 9 and blow it from the ejection opening 8 to the liquid column 6. As shown in FIG.
 図8で示す実施形態5に係る殺菌ミストの生成装置500は、2列の液柱6の各々片側(図8においていずれも右側)に配置された2つの送風ダクト7の各々片側(図8において左側)の対向壁7aの噴出開口8から各々の液柱6に搬送気体を吹き付ける。図8の殺菌ミストの生成装置500は、霧化室4の内部に2列の送風ダクト7を離して配置して、各々の送風ダクト7から2列の液柱6に搬送気体を送風している。この殺菌ミストの生成装置500は、直線状に並べている各々の液柱6の列と平行に隣接して送風ダクト7を設けて、各々の送風ダクト7から液柱6に搬送気体を送風している。図示しないが、2列の送風ダクト7のうち一方の1列の送風ダクト7には両側の対向壁7aに噴出開口8を設け、他方の1列の送風ダクト7には片側の対向壁7aに噴出開口8を設けることもできる。図8の各々の送風ダクト7は、図6と図7と同様に、内部に分割プレート10を配置して内部に複数列の分割ダクト7bを設けている。各々の分割ダクト7bは、片側の対向壁7aの設けられた噴出開口8に均等に搬送気体を送風して、液柱6に搬送気体を均等化して送風して霧化効率を向上する。 A sterilizing mist generating device 500 according to Embodiment 5 shown in FIG. The carrier gas is blown onto each liquid column 6 from the ejection opening 8 of the opposing wall 7a on the left side. In the sterilizing mist generator 500 of FIG. 8, two rows of air ducts 7 are arranged separately inside the atomization chamber 4, and the carrier gas is blown from each of the air ducts 7 to the two rows of liquid columns 6. there is In this sterilizing mist generator 500, the air ducts 7 are provided parallel to and adjacent to the lines of the liquid columns 6 arranged in a straight line, and the carrier gas is blown from the air ducts 7 to the liquid columns 6. there is Although not shown, one of the two rows of air ducts 7 has ejection openings 8 on opposite walls 7a on both sides, and the other row of air ducts 7 has ejection openings 8 on one opposite wall 7a. A jet opening 8 can also be provided. Each air duct 7 in FIG. 8 has a split plate 10 arranged inside and a plurality of rows of split ducts 7b inside, as in FIGS. 6 and 7 . Each of the divided ducts 7b uniformly blows the carrier gas to the ejection openings 8 provided in the opposing wall 7a on one side, and uniformly blows the carrier gas to the liquid column 6 to improve the atomization efficiency.
 図9で示す実施形態6に係る殺菌ミストの生成装置600は、2列の送風ダクト7の間及び両外側に3列の複数の超音波振動子2を配置する。図9の殺菌ミストの生成装置600は、2列の送風ダクト7を平行に配置して、2列の送風ダクト7の間に1列の複数の超音波振動子2を配置し、さらに2列の送風ダクト7の両外側にも各々複数の超音波振動子2を1列ずつ配置している。この殺菌ミストの生成装置600は、3列の超音波振動子2を配置しているので3列の液柱6が発生する。3列の液柱6のうち中央の液柱6aには、両側の送風ダクト7の噴出開口8から搬送気体が吹き付けられる。両側の各々の液柱6bには、片側の送風ダクト7の噴出開口8から搬送気体が吹き付けられる。図10の要部拡大断面図に示すように、中央の液柱6aの両側の送風ダクト7に設けられた噴出開口8から、中央の液柱6aに向けて両側から搬送気体が吹き付けられる。2列の送風ダクト7は、各々両側の対向壁7aに噴出開口8を設けて、各々の噴出開口8を各々の分割ダクト7bに連結している。両側から搬送気体が吹き付けられる中央の液柱6aは、両側から均等化された搬送気体が供給されるので、表面の広い範囲に均一に搬送気体が送風されて、より高い霧化効率でナノミストを発生できる。以上のように、殺菌ミストの生成装置600は、2列の送風ダクト7で3列の液柱6に搬送気体を吹き付けでき、さらに中央の液柱6aの霧化効率を向上できる。 A sterilizing mist generator 600 according to Embodiment 6 shown in FIG. 9 has a plurality of ultrasonic transducers 2 arranged in three rows between two rows of air ducts 7 and on both outer sides. In the sterilizing mist generating device 600 of FIG. 9, two rows of air ducts 7 are arranged in parallel, one row of a plurality of ultrasonic transducers 2 is arranged between the two rows of air ducts 7, and two rows A plurality of ultrasonic transducers 2 are arranged in rows on both sides of the air duct 7, respectively. Since this sterilizing mist generating device 600 has three rows of ultrasonic transducers 2, three rows of liquid columns 6 are generated. The carrier gas is blown from the ejection openings 8 of the blower ducts 7 on both sides to the central liquid column 6a of the three liquid columns 6. As shown in FIG. A carrier gas is blown from the ejection opening 8 of the fan duct 7 on one side to each of the liquid columns 6b on both sides. As shown in the enlarged sectional view of FIG. 10, the carrier gas is blown from both sides toward the central liquid column 6a from the ejection openings 8 provided in the air ducts 7 on both sides of the central liquid column 6a. The two rows of air ducts 7 are each provided with ejection openings 8 in opposing walls 7a on both sides, and each ejection opening 8 is connected to each split duct 7b. The central liquid column 6a, to which the carrier gas is blown from both sides, is supplied with equalized carrier gas from both sides, so that the carrier gas is uniformly blown over a wide area of the surface, and the nano-mist is produced with higher atomization efficiency. can occur. As described above, the sterilizing mist generator 600 can blow the carrier gas onto the liquid columns 6 in three rows with the two rows of air ducts 7, and further improve the efficiency of atomization of the central liquid column 6a.
 図11で示す実施形態7に係る殺菌ミストの生成装置700は、霧化室4の中央部に送風ダクト7を配置して、送風ダクト7の周囲に複数の超音波振動子2をリング状に曲線上に配置している。送風ダクト7は、複数の超音波振動子2でリング状に発生する液柱6の内側に配置される。送風ダクト7を内側、液柱6を外側に配置することで、送風ダクト7の断面積を小さくして、液柱6の数を増やすことができる。送風ダクト7は上下方向に伸びる筒状で、周囲のリング状となる曲線の対向壁7aに噴出開口8を設けて、複数の噴出開口8から放射状に搬送気体を噴出する。搬送気体が吹き出される位置に、超音波振動で発生する液柱6を配置している。上下方向に伸びる筒状の送風ダクト7の半径を調整することで、送風隙間11の間隔及び送風ダクト7の周囲に配置される複数の超音波振動子2の個数を調整できる。図に示すように、この構造は、外形を円柱状とする殺菌ミストの生成装置700に適している。ただし、この構造は、外形を円柱状とするものに限定するものではなく、たとえば、外形が楕円形や八角形、六角形などの多角形はもちろん、正方形、長方形の四角形に用いることもできる。この構造の殺菌ミストの生成装置700は、送風ダクト7が上下方向に伸びる円筒状で、送風ダクト7の外周の対向壁7aに噴出開口8を設けるため、送風機9から各々の噴出開口8までの距離をほぼ同じにでき、送風ダクト7の各々の噴出開口8から均一に搬送気体を噴出できる特長も実現する。図示しないが、送風ダクト7の内部に分割プレート10を配置して内部を複数の分割ダクト7bに分割できる。たとえば、円筒状の送風ダクト7の横断面(円)の中心を通る直径または半径の位置に複数の分割プレート10を配置して、送風ダクト7を横断面を均等の扇形として複数の分割ダクト7bに分割できる。 A sterilizing mist generator 700 according to Embodiment 7 shown in FIG. placed on the curve. The air duct 7 is arranged inside the liquid column 6 generated in a ring shape by the plurality of ultrasonic transducers 2 . By arranging the fan duct 7 inside and the liquid column 6 outside, the cross-sectional area of the fan duct 7 can be reduced and the number of the liquid columns 6 can be increased. The fan duct 7 has a vertically extending tubular shape, and is provided with ejection openings 8 in a ring-shaped, curved facing wall 7a around it, from which the carrier gas is radially ejected. A liquid column 6 generated by ultrasonic vibration is arranged at a position where the carrier gas is blown out. By adjusting the radius of the cylindrical fan duct 7 extending in the vertical direction, the interval of the fan gap 11 and the number of the plurality of ultrasonic transducers 2 arranged around the fan duct 7 can be adjusted. As shown in the figure, this structure is suitable for a sterilizing mist generator 700 having a cylindrical outer shape. However, this structure is not limited to those having a cylindrical outer shape. For example, the outer shape may be polygonal such as elliptical, octagonal, or hexagonal, as well as rectangular such as square or rectangular. The sterilizing mist generating device 700 having this structure has a cylindrical fan duct 7 extending in the vertical direction. The distances can be made substantially the same, and the carrier gas can be uniformly ejected from each of the ejection openings 8 of the air duct 7. Although not shown, a dividing plate 10 can be arranged inside the fan duct 7 to divide the inside into a plurality of divided ducts 7b. For example, a plurality of split plates 10 are arranged at positions of a diameter or radius passing through the center of the cross section (circle) of the cylindrical air duct 7, and the cross section of the fan duct 7 is made into a uniform fan shape to form a plurality of split ducts 7b. can be divided into
 本発明は、微細な殺菌ミストを空気中に飛散して、少量の殺菌剤でもって空気中に飛散する殺菌を速やかに効果的に殺菌する方法と装置に好適に利用できる。 The present invention can be suitably used for a method and apparatus for quickly and effectively sterilizing airborne sterilization with a small amount of sterilizing agent by scattering fine sterilizing mist in the air.
100、200、300、400、500、600、700…殺菌ミストの生成装置
1…殺菌液
2…超音波振動子
4…霧化室
5…液面
6…液柱
6a…中央の液柱
6b…両側の液柱
7…送風ダクト
7a…対向壁
7b…分割ダクト
8…噴出開口
8a…スリット
8b…貫通孔
9…送風機
10…分割プレート
10a…平面部
10b…曲げ部
11…送風隙間
100, 200, 300, 400, 500, 600, 700...Sterilizing mist generator 1...Sterilizing liquid 2...Ultrasonic vibrator 4...Atomizing chamber 5...Liquid surface 6...Liquid column 6a...Central liquid column 6b... Liquid columns 7 on both sides Blower duct 7a Facing wall 7b Divided duct 8 Ejection opening 8a Slit 8b Through hole 9 Blower 10 Divided plate 10a Plane portion 10b Bent portion 11 Blower gap

Claims (10)

  1.  殺菌液のミストである殺菌ミストを空気中に飛散させる殺菌ミストの生成方法であって、
     前記殺菌液に、
      水と殺菌剤に加えて、
      水よりも低沸点の界面活性剤を添加して3成分以上の混合薬液を使用し、
     前記混合薬液を超音波振動で霧化して殺菌ミストとして空気中に飛散させる殺菌ミストの生成方法。
    A method for generating a sterilizing mist that scatters a sterilizing mist, which is a mist of a sterilizing liquid, into the air,
    In the sterilizing solution,
    In addition to water and disinfectant,
    Add a surfactant with a boiling point lower than that of water and use a mixed chemical solution of 3 or more components,
    A method for generating a sterilizing mist in which the mixed chemical liquid is atomized by ultrasonic vibration and dispersed in the air as a sterilizing mist.
  2.  請求項1に記載の殺菌ミストの生成方法であって、
     前記混合薬液の殺菌剤が、
      塩素系の殺菌剤であることを特徴とする殺菌ミストの生成方法。
    A method for generating a sterilizing mist according to claim 1,
    The disinfectant of the mixed chemical solution is
    A method for generating a sterilizing mist, characterized in that the sterilizing agent is a chlorine-based sterilizing agent.
  3.  請求項1または2に記載の殺菌ミストの生成方法であって、
     前記界面活性剤がアルコールであることを特徴とする殺菌ミストの生成方法。
    A method for generating a sterilizing mist according to claim 1 or 2,
    A method for generating a sterilizing mist, wherein the surfactant is alcohol.
  4.  請求項3に記載の殺菌ミストの生成方法であって、
     前記界面活性剤がエチルアルコールであることを特徴とする殺菌ミストの生成方法。
    A method for generating a sterilizing mist according to claim 3,
    A method for generating a sterilizing mist, wherein the surfactant is ethyl alcohol.
  5.  請求項1ないし4のいずれか一項に記載の殺菌ミストの生成方法であって、
     前記混合薬液が、
     60重量%以下のエチルアルコールを含むことを特徴とする殺菌ミストの生成方法。
    A method for generating a sterilizing mist according to any one of claims 1 to 4,
    The mixed chemical solution is
    A method for producing a sterilizing mist, characterized by containing 60% by weight or less of ethyl alcohol.
  6.  請求項1ないし5のいずれか一項に記載の殺菌ミストの生成方法であって、
     前記混合薬液を超音波振動して液柱を発生させて、
     前記液柱の表面に搬送気体を吹き付けて、
     殺菌ミストを空気中に飛散させることを特徴とする殺菌ミストの生成方法。
    A method for generating a sterilizing mist according to any one of claims 1 to 5,
    ultrasonically vibrating the mixed chemical to generate a liquid column,
    Blowing a carrier gas onto the surface of the liquid column,
    A method for generating a sterilizing mist, characterized by scattering the sterilizing mist in the air.
  7.  水と殺菌剤に加えて、
     水よりも低沸点の界面活性剤が添加された3成分以上の混合薬液からなる殺菌液を超音波振動する超音波振動子と、
     複数の前記超音波振動子を配列してなる霧化室と、
     前記霧化室内にあって、
      前記超音波振動子の超音波振動で発生する複数の液柱の表面に搬送気体を吹き付ける送風ダクトと、
     前記送風ダクトに搬送気体を強制送風する送風機とを備え、
     前記送風ダクトから液柱の表面に吹き付けられる搬送気体で殺菌ミストを空気中に飛散する殺菌ミストの生成装置。
    In addition to water and disinfectant,
    an ultrasonic vibrator for ultrasonically vibrating a sterilizing solution consisting of a mixed chemical solution of three or more components to which a surfactant having a boiling point lower than that of water is added;
    an atomization chamber in which a plurality of the ultrasonic transducers are arranged;
    in the atomization chamber,
    an air duct for blowing a carrier gas onto the surface of a plurality of liquid columns generated by the ultrasonic vibration of the ultrasonic transducer;
    a fan for forcibly blowing a carrier gas to the fan duct,
    A sterilizing mist generating device that scatters the sterilizing mist in the air with a carrier gas that is blown onto the surface of the liquid column from the air duct.
  8.  請求項7に記載の殺菌ミストの生成装置であって、
     前記霧化室が、線上に配置してなる複数の前記超音波振動子を有し、
     前記送風ダクトが、
      液柱に対向する対向壁に、
      前記超音波振動子の超音波振動で発生する液柱の表面に搬送気体を吹き付ける噴出開口を有し、
     液柱に前記噴出開口から吹き付けられる搬送気体で殺菌ミストを空気中に飛散する殺菌ミストの生成装置。
    The sterilizing mist generating device according to claim 7,
    the atomization chamber has a plurality of the ultrasonic transducers arranged in a line,
    The air duct is
    On the opposite wall facing the liquid column,
    having an ejection opening for blowing a carrier gas onto the surface of the liquid column generated by the ultrasonic vibration of the ultrasonic transducer,
    A sterilizing mist generating device that scatters the sterilizing mist into the air with a carrier gas that is blown onto the liquid column from the ejection opening.
  9.  請求項8に記載の殺菌ミストの生成装置であって、
     前記送風ダクトが、
      前記送風ダクトを多段で複数の分割ダクトに分割する1または複数の分割プレートを備え、
      前記分割プレートが、前記送風ダクトに供給される搬送気体を各々の前記噴出開口に分割して送風してなることを特徴とする殺菌ミストの生成装置。
    The sterilizing mist generating device according to claim 8,
    The air duct is
    comprising one or more dividing plates for dividing the air duct into a plurality of divided ducts in multiple stages;
    The sterilization mist generating device, wherein the dividing plate divides the carrier gas supplied to the air blowing duct and blows it to each of the ejection openings.
  10.  請求項8または9に記載の殺菌ミストの生成装置であって、
     前記超音波振動子が複数列に配置されて、
     複数列の前記超音波振動子で発生する複数列の液柱の間に配置されてなる前記送風ダクトを備え、
     前記送風ダクトが両側に前記噴出開口を開口して、
      両側の液柱に搬送気体を吹き付けてなることを特徴とする殺菌ミストの生成装置。
    The sterilizing mist generating device according to claim 8 or 9,
    The ultrasonic transducers are arranged in a plurality of rows,
    comprising the air duct disposed between the plurality of rows of liquid columns generated by the plurality of rows of the ultrasonic transducers,
    The air duct opens the ejection openings on both sides,
    A sterilizing mist generating device characterized by blowing a carrier gas onto liquid columns on both sides.
PCT/JP2022/044448 2021-12-17 2022-12-01 Method and device for generating germicidal mist WO2023112708A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205486 2021-12-17
JP2021-205486 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112708A1 true WO2023112708A1 (en) 2023-06-22

Family

ID=86774268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044448 WO2023112708A1 (en) 2021-12-17 2022-12-01 Method and device for generating germicidal mist

Country Status (1)

Country Link
WO (1) WO2023112708A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518133A (en) * 1998-06-23 2002-06-25 ノバファーム リサーチ (オーストラリア) プロプライアタリー リミティッド Improved disinfection
JP2008104917A (en) * 2006-10-24 2008-05-08 Nishimura Kikai Kk Ultrasonic atomizing apparatus
JP2011131140A (en) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk Ultrasonic atomization method and apparatus
JP2011147578A (en) * 2010-01-21 2011-08-04 Dainippon Printing Co Ltd Sterilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518133A (en) * 1998-06-23 2002-06-25 ノバファーム リサーチ (オーストラリア) プロプライアタリー リミティッド Improved disinfection
JP2008104917A (en) * 2006-10-24 2008-05-08 Nishimura Kikai Kk Ultrasonic atomizing apparatus
JP2011131140A (en) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk Ultrasonic atomization method and apparatus
JP2011147578A (en) * 2010-01-21 2011-08-04 Dainippon Printing Co Ltd Sterilizer

Similar Documents

Publication Publication Date Title
EP1436090B1 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
JP2005502463A5 (en)
KR20100035708A (en) Portable ultrasonic mist generating device
US9308544B2 (en) Atomization device
US7264773B2 (en) Method for bioeradication using fine mist of biocide solutions
WO2016151029A1 (en) An aerosol generator
JP7216978B2 (en) Hypochlorous acid water spray device
ES2369034T3 (en) APPARATUS FOR ATOMIZATION AND FILTRATION OF LIQUID.
JP6539468B2 (en) Ultrasonic atomizer
WO2023112708A1 (en) Method and device for generating germicidal mist
US11964294B2 (en) Mist-generating device
JP2011245480A (en) Nozzle body for droplet spray device
WO2016190118A1 (en) Device for imparting negative charge and discharging atomized liquid
WO2022196487A1 (en) Atomization device
KR102534771B1 (en) Vaporizer for Sterilization and Deinsectization
CN113660959B (en) Mist supply device
KR20130023664A (en) Liquid spray tank apparatus using ultrasonic vibration
WO2023112707A1 (en) Ultrasonic atomization device
KR101134912B1 (en) Ultrasonic wave generator using piezo type together with pneumatic type and gasification type spraying apparatus equipped with this
JP5054493B2 (en) Ion generator
JPH07256171A (en) Ultrasonic vibrator and atomizer
JP2006247443A (en) Hollow liquid droplet forming device
WO2022049949A1 (en) Ultrafine mist supply system
KR102642608B1 (en) Sterilization and insecticide Sprayer with enhanced atomization by circulation flow
JP2022032444A (en) Ultrasonic bactericide spraying method and ultrasonic bactericide spraying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907236

Country of ref document: EP

Kind code of ref document: A1