WO2022049949A1 - Ultrafine mist supply system - Google Patents

Ultrafine mist supply system Download PDF

Info

Publication number
WO2022049949A1
WO2022049949A1 PCT/JP2021/028361 JP2021028361W WO2022049949A1 WO 2022049949 A1 WO2022049949 A1 WO 2022049949A1 JP 2021028361 W JP2021028361 W JP 2021028361W WO 2022049949 A1 WO2022049949 A1 WO 2022049949A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
decontamination
liquid
preliminary
ultrasonic
Prior art date
Application number
PCT/JP2021/028361
Other languages
French (fr)
Japanese (ja)
Inventor
康司 川崎
嘉貴 緒方
大輔 角田
純 益留
志強 郭
司 北野
Original Assignee
株式会社エアレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアレックス filed Critical 株式会社エアレックス
Priority to JP2022546166A priority Critical patent/JPWO2022049949A1/ja
Publication of WO2022049949A1 publication Critical patent/WO2022049949A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising

Definitions

  • the present invention relates to an ultrafine mist supply system that supplies a decontamination liquid as an ultrafine mist, and more particularly to an ultrafine mist supply system that supplies a fine mist as an ultrafine mist.
  • Patent Document 1 the decontamination effect of hydrogen peroxide is due to the condensed film of hydrogen peroxide solution that condenses on the surface of the decontamination target site. That is, decontamination is performed by condensing the hydrogen peroxide gas supplied by gasification on the surface of the decontamination target portion such as the wall surface of the decontamination target chamber. Therefore, in order to perfect the decontamination effect of the decontamination target room and improve the efficiency of the decontamination operation, the supply amount of hydrogen peroxide gas is increased to quickly generate a condensed film of hydrogen peroxide solution. Alternatively, it is conceivable to supply the hydrogen peroxide solution in a liquid state (for example, in droplets).
  • the present invention addresses the above-mentioned problems and uses an ultrafine mist as the decontamination liquid to supply a small amount of an appropriate amount of the decontamination liquid to the decontamination target room and the decontamination target room.
  • the purpose is to do.
  • the present inventors have made a decontamination liquid into a mist as a result of diligent research, and by applying a converged ultrasonic acoustic flow to the mist, the decontamination liquid becomes a finer ultrafine mist and peroxidation.
  • the gasification of hydrogen can be promoted, and have completed the present invention.
  • the numbers in parentheses described in each of the following claims are symbols indicating each component of the embodiment according to the present invention.
  • the mist discharging means (30) that discharges the mist (61) of the decontamination liquid into the decontamination target chamber (10) and the mist of the discharged decontamination liquid are made ultrafine to promote gasification. It has a convergent ultrasonic wave generating means (40) that disperses and reaches the inside of the decontamination target room.
  • the mist discharging means includes an ultrasonic atomizing device (32) that converts the decontaminating liquid into fine mist and discharges it from a discharge port into the inside of the decontamination target chamber.
  • the convergent ultrasonic generating means is provided with a plurality of vibrating discs (41a to 41d) in the vicinity of the discharge port of the ultrasonic atomizing device, and the plurality of vibrating discs are ultrasonically vibrated in the same phase to be ultrasonically vibrated from each disc surface.
  • a directional ultrasonic acoustic flow (42a to 42d) is generated by ultrasonic waves in the vertical direction, and the directing direction of each ultrasonic acoustic flow is in front of the discharge direction of the mist discharged from the discharge port of the ultrasonic atomizer.
  • the mist discharged from the discharge port of the ultrasonic atomizer is converted into finer ultrafine mist (60) and gasification is promoted, and the ultrafine mist reaches a position away from the discharge port. It is characterized by letting it.
  • the mist discharging means has a preliminary mist supplying means (50) for supplying the decontaminating liquid as a preliminary mist.
  • the preliminary mist supply means comprises a compressed air generator (51) for generating compressed air, a decontamination liquid supply device (52) for supplying the decontamination liquid, and a gas solution of the compressed air and the decontamination liquid.
  • the pre-mist generator (53) that mixes and generates pre-mist, the air supply pipe (51a) that communicates between the compressed air generator and the pre-mist generator, and the decontamination liquid supply device to the above-mentioned
  • a decontamination liquid supply pipe (52a) that communicates with the preliminary mist generator and a spare mist supply pipe (53a) that communicates from the preliminary mist generator to the mist discharging means are provided.
  • the mist releasing means includes a preliminary mist receptor (31), and the preliminary mist receptor is an air vent (31b) that discharges air separated from the preliminary mist supplied through the preliminary mist supply pipe to the outside.
  • the ultrasonic atomizer is a porous vibration in which a plurality of micropores for atomizing the decontamination liquid separated by gas and liquid are provided through the front and back by the vibration of the piezoelectric vibrator (32b) and the piezoelectric vibrator.
  • a plate (32a) is provided, and the surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as the discharge port.
  • the present invention is the ultrafine mist supply system according to claim 1 or 2.
  • the ultrasonic atomizer is disposed with the front surface of the porous diaphragm facing the inside of the decontamination target chamber as the discharge port and the back surface facing the inside of the preliminary mist receptor.
  • the preliminary mist supplied to the preliminary mist receiver is discharged from the preliminary mist supply pipe toward the back surface of the porous diaphragm and separated into gas and liquid, and the separated decontamination liquid is discharged from the back surface to the front surface of the porous diaphragm. It is characterized in that it is atomized when it moves to the inside of the decontamination target chamber and is discharged from the surface to the inside of the decontamination target chamber.
  • the present invention is the ultrafine mist supply system according to claim 1 or 2.
  • the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as the discharge port, and the back surface is directed toward the liquid pool provided at the inner lower end of the preliminary mist receptor.
  • the preliminary mist supplied to the preliminary mist receptor is discharged from the preliminary mist supply pipe into the inside of the preliminary mist receptor and separated into gas and liquid, and the separated decontamination liquid is the liquid pool of the preliminary mist receptor. It is characterized in that it is atomized when it moves from the back surface to the front surface of the porous diaphragm and is discharged from the surface to the inside of the decontamination target chamber.
  • the mist discharging means for discharging the mist of the decontamination liquid into the decontamination target chamber and the mist of the discharged decontamination liquid are made ultrafine. It has a convergent ultrasonic wave generating means that disperses and reaches the inside of the decontamination target chamber by promoting gasification.
  • the mist discharging means includes an ultrasonic atomizing device that converts the decontaminating liquid into fine mist and discharges it from the discharge port into the inside of the decontamination target chamber.
  • the convergent ultrasonic generation means is provided with a plurality of vibrating discs near the emission port of the ultrasonic atomizer, and these vibrating discs are ultrasonically vibrated in the same phase to be directed by ultrasonic waves in the vertical direction from each disc surface. Generates an ultrasonic acoustic flow.
  • a plurality of vibrating discs are arranged so that the directivity direction of these ultrasonic acoustic flows converges in front of the emission direction of the mist emitted from the emission port of the ultrasonic atomizer.
  • the mist emitted from the discharge port of the ultrasonic atomizer is converted into finer ultrafine mist and gasification is promoted, and the ultrafine mist reaches a position away from the discharge port. Can be done.
  • the decontamination liquid an ultrafine mist
  • a small amount of an appropriate amount of the decontamination liquid is supplied to the decontamination target room, and the inside of the decontamination target room is completely filled. Since it can be dispersed and reached, it is possible to provide an ultrafine mist supply system that can achieve perfect decontamination effect, shorten work time such as aeration, and improve efficiency of decontamination work.
  • the ultrafine mist supply system has a preliminary mist supply means for supplying the decontamination liquid as a preliminary mist to the mist discharge means.
  • the preliminary mist supply means is a compressed air generator that generates compressed air, a decontamination liquid supply device that supplies a decontamination liquid, and a preliminary mist that generates a preliminary mist by mixing the compressed air and the decontamination liquid in a gas-liquid manner.
  • An air supply pipe that communicates between the generator and the compressed air generator to the spare mist generator, a decontamination liquid supply pipe that communicates from the decontamination liquid supply device to the spare mist generator, and a spare mist generator. It is equipped with a spare mist supply pipe that communicates between the device and the mist discharging means.
  • the mist discharging means includes a spare mist receptor, and the spare mist receptor is equipped with an air vent that discharges air separated from the spare mist supplied through the spare mist supply pipe to the outside.
  • the ultrasonic atomizer includes a piezoelectric vibrator and a porous diaphragm provided with a plurality of micropores penetrating the front and back to atomize the decontamination liquid separated by gas and liquid by the vibration of the piezoelectric vibrator. The surface of this porous diaphragm is directed toward the inside of the decontamination target chamber as a discharge port. This makes it possible to exert the above-mentioned action and effect more concretely.
  • the ultrasonic atomizer is arranged so that the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber and the back surface is directed toward the inside of the preliminary mist receptor.
  • the spare mist supplied to the spare mist receptor is discharged from the spare mist supply pipe toward the back surface of the porous diaphragm and separated into gas and liquid, and the separated decontamination liquid moves from the back surface to the front surface of the porous diaphragm. At the time, it atomizes and is released from the surface into the decontamination target chamber. This makes it possible to exert the above-mentioned action and effect more concretely.
  • the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as a discharge port, and the back surface is a liquid pool provided at the inner lower end of the preliminary mist receptor. Arranged toward you.
  • the spare mist supplied to the spare mist receptor was discharged from the spare mist supply pipe into the inside of the spare mist receptor and separated into gas and liquid, and the separated decontamination liquid was collected in the pool of the spare mist receptor. Later, when it moves from the back surface to the front surface of the porous diaphragm, it is atomized and released from the front surface into the decontamination target chamber. This makes it possible to exert the above-mentioned action and effect more concretely.
  • FIG. 1 is a schematic configuration diagram of the ultrafine mist supply system of FIG. 1 as viewed from the inside of the isolator, and is a front view (A) and a perspective view (B). It is (A) front view and (B) side sectional view which shows an example of the mist discharging means constituting the ultrafine mist supply system of FIG. It is a graph which shows the measurement result of the hydrogen peroxide gas concentration inside the isolator in each test of an Example. The decontamination effect of each part of the work glove deployed inside the isolator in each test of the example, (A) the part where the enzyme indicator is attached to the work glove, and (B) the LRD value of the enzyme indicator. It is a graph which shows.
  • the decontamination target room is a clean room, an isolator, a RABS, or the inside of a pass room, a pass box, etc. connected to these decontamination target rooms, or these decontamination target rooms.
  • a supply system for supplying a decontamination liquid to the inside of the decontamination target room in order to decontaminate the decontamination target device or the decontamination target article arranged inside the decontamination target room refers to a supply system in which the decontamination liquid is converted into ultrafine mist and supplied, unlike the conventional supply device that gasifies and supplies the decontamination liquid.
  • the ultrafine mist supply system according to the present invention not only converts the decontamination liquid into ultrafine mist and supplies it, but also converts other liquids such as water into ultrafine mist and supplies it. Can be used.
  • the ultrafine mist supply system according to the present invention is used to supply ultrafine water mist (also referred to as fog) into the room for decontamination. It may be used when adjusting the humidity to the optimum humidity.
  • mist is broadly interpreted as a state of droplets that are atomized and suspended in the air, a state in which gas and droplets are mixed, and a state of condensation between gas and droplets. It shall include the state where the phase change between the gas and the evaporation is repeated.
  • these “mists” are further subdivided and used as “preliminary mist”, “mist”, and “ultrafine mist” in order from the one having the largest particle size according to the particle size of the main components constituting the mist. do.
  • the "preliminary mist" referred to in the present invention does not contain only particles having a particle size of 10 ⁇ m or less, which is generally defined as mist, but also contains droplets having a particle size larger than that. It means that the state of the droplets floating inside is the main component (main, not all).
  • the preliminary mist generating means include a one-fluid spray nozzle for directly mistizing a liquid, a piezo high-pressure injection device, an immersion type ultrasonic atomizing device, a disk type atomizing device, and a disk mesh type atomizing device.
  • the "mist” referred to in the present invention is a particle having a size of 10 ⁇ m or less, which is generally defined as a mist, as a main component (mainly, not all) by the action of ultrasonic vibration. It also includes particles of 5 ⁇ m or less, which is generally defined as fog.
  • the "ultrafine mist” referred to in the present invention includes a fog of 5 ⁇ m or less in which the mist generated by the action of ultrasonic vibration is affected by the action of the convergent ultrasonic generation means (details will be described later), but is further super. It refers to those whose main component (main but not all) is homogenized into fine ultrafine particles of 3 ⁇ m or less. Since the particle size of this ultrafine mist is very small, the surface area is large, and the phase change between condensation and evaporation is actively repeated between the gas and the mist. Therefore, when the decontamination liquid is an ultrafine mist, the decontamination effect and decontamination efficiency should be maintained high by the phase change between condensation and evaporation in which the decontamination liquid is actively repeated between the gas and the mist. Can be done.
  • the ultrafine mist supply system according to the present invention will be described in detail with specific embodiments.
  • the present invention is not limited to the following embodiments.
  • hydrogen peroxide solution is used as the decontamination liquid.
  • the decontamination solution supplied by the ultrafine mist supply system according to the present invention is not limited to the hydrogen peroxide solution, and may be a liquid decontamination solution such as an aqueous solution of peracetic acid.
  • FIG. 1 is a schematic perspective view showing the inside of an isolator in which the ultrafine mist supply system according to the present invention is deployed.
  • an ultrafine mist supply system 20 is deployed on the upper part of the right side wall surface of the isolator 10.
  • the ultrafine mist supply system 20 has a mist discharging means 30 and a convergent ultrasonic wave generating means 40 (details will be described later).
  • the spare mist supply means 50 includes an air compressor 51 that generates compressed air, a hydrogen peroxide solution tank 52, and an ejector 53.
  • the air compressor 51 acts as a compressed air generator for generating compressed air as a carrier gas for transporting a hydrogen peroxide solution.
  • the generated compressed air is supplied to the ejector 53 via the air supply pipe 51a.
  • the air compressor 51 can be arranged at a position away from the isolator 10.
  • the hydrogen peroxide solution tank 52 acts as a decontamination liquid supply device for storing the hydrogen peroxide solution, which is a source of the ultrafine mist of the hydrogen peroxide solution as the decontamination mist.
  • the hydrogen peroxide solution is supplied to the ejector 53 by the supply pump 52b via the decontamination liquid supply pipe 52a.
  • the hydrogen peroxide solution tank 52 can be arranged in the vicinity of the air compressor 51 and at a position away from the isolator 10.
  • the concentration of the hydrogen peroxide solution stored in the hydrogen peroxide solution tank 52 is not particularly limited, but in general, 30 to 35% by weight should be used in consideration of handling of dangerous substances and the like. Is preferable.
  • the hydrogen peroxide solution tank 52 includes a weighing meter 52c for detecting the remaining amount of the hydrogen peroxide solution inside, and a control device (not shown) for controlling the remaining amount.
  • the ejector 53 acts as a preliminary mist generator for generating a preliminary mist by mixing a hydrogen peroxide solution with compressed air.
  • the generated spare mist is supplied to the ultrafine mist supply system 20 via the spare mist supply pipe 53a.
  • the ejector 53 can be arranged in the vicinity of the air compressor 51 and the hydrogen peroxide solution tank 52 at a position away from the isolator 10.
  • the preliminary mist generator is not limited to the ejector, but is not limited to the above-mentioned one-fluid spray nozzle, piezo high-pressure injection device, immersion type ultrasonic atomization device, disk type atomization device, and disk mesh type atomization device. , A two-fluid spray nozzle or the like may be adopted.
  • FIG. 1 shows the ultrafine mist 60 of the hydrogen peroxide solution supplied from the ultrafine mist supply system 20 to the inside of the isolator 10.
  • a hydrogen peroxide gas concentration measuring device 70 for measuring the hydrogen peroxide gas concentration inside the isolator 10 is provided. It has been deployed. Further, a pair of work gloves 80 are arranged on the left wall surface of the isolator 10 in the drawing. The hydrogen peroxide gas concentration measuring device 70 and the working glove 80 are used for confirming the decontamination effect in the examples described later.
  • FIG. 2 is a schematic configuration diagram of an ultrafine mist supply system as viewed from the inside of the isolator 10, and is a front view (A) and a perspective view (B).
  • the ultrafine mist supply system 20 has a mist discharging means 30 and a convergent ultrasonic wave generating means 40.
  • the side wall surface of the isolator 10 is omitted, and the mist discharging means 30 is clearly shown.
  • the mist discharging means 30 includes a preliminary mist receptor 31 and an ultrasonic atomizing device 32.
  • the preliminary mist receptor 31 receives the preliminary mist supplied via the preliminary mist supply pipe (not shown) and separates the gas and liquid into the hydrogen peroxide solution and the air, and the air separated from the preliminary mist. Is released to the outside (detailed structure will be described later).
  • the ultrasonic atomizer 32 converts the hydrogen peroxide solution separated by the preliminary mist receptor 31 into a fine mist 61 and discharges it into the isolator 10.
  • the convergent ultrasonic wave generating means 40 is composed of four vibrating discs 41a to 41d arranged on the upper part of the inner side wall surface of the isolator 10 so as to surround the discharge port of the ultrasonic atomizing device 32.
  • the distance from the discharge port of the ultrasonic atomizer 32 to each of the vibrating discs 41a to 41d is not particularly limited, but may be, for example, 0 to 200 mm, preferably about 0 to 100 mm. ..
  • super-directional ultrasonic transmitters DC12V, 50mA that transmit ultrasonic waves having a frequency of around 40 kHz are used as the four vibrating discs 41a to 41d.
  • the number of vibrating discs may be two or more, preferably three or more.
  • the type and number, size and structure, output, etc. of the ultrasonic transmitters arranged in each vibrating panel are not particularly limited.
  • the ultrasonic wave generation mechanism, frequency range, output, etc. of the ultrasonic wave transmitter are not particularly limited.
  • the four vibrating discs 41a to 41d that transmit super-directional ultrasonic waves have an ultrasonic acoustic flow due to ultrasonic vibration in front of the discharge axis of the discharge port of the ultrasonic atomizer 32 located at the center.
  • the sound wave directions of each other are attached at an inward angle so as to converge.
  • the inward angle is a mounting angle such that the elevation angle of the ultrasonic acoustic flow is larger than 0 ° and smaller than 90 ° with respect to the discharge axis of the discharge port of the ultrasonic atomizer 32, and is preferable.
  • a mounting angle that is 30 ° or more and 60 ° or less.
  • the four vibrating discs 41a to 41d are ultrasonically vibrated in the same phase to generate directional ultrasonic acoustic flows 42a to 42d from each disc surface in the vertical direction. Further, the wave transmission direction from each board surface is converged in front of the emission axis of the emission port of the ultrasonic atomizer 32. As a result, the ultrasonic acoustic flows 42a to 42d emitted from the vibrating discs 41a to 41d strengthen each other at the focal point 43 (converging portion 43), and the maximum energy is concentrated in this portion.
  • the fine mist 61 of the hydrogen peroxide solution discharged into the inside of the isolator 10 from the discharge port of the ultrasonic atomizer 32 obtains the maximum energy of the concentrated acoustic flow, and is further refined. It becomes an ultrafine mist 60 of hydrogen peroxide water. Further, the energy of the converged ultrasonic acoustic flow forms the ultrafine mist 60 and promotes gasification, and further causes the ultrafine mist 60 to press the ultrasonic acoustic flow in the mist traveling direction. As a result, the ultrafine mist 60 can be dispersed and reached evenly to a distant position inside the isolator 10.
  • each ultrasonic transmitter of the four vibrating discs 41a to 41d is controlled, and the ultrasonic transmission is intermittently operated or strengthened. By operating it, the pressure due to the acoustic radiation pressure acting on the ultrafine mist 60 may be changed to control the dispersion / arrival.
  • the ultrafine mist 60 of the hydrogen peroxide solution that has been dispersed and reached the inside of the isolator 10 has a small particle size and a large surface area, so that the evaporation efficiency of the mist is high and evaporation and condensation are actively repeated.
  • the concentration of hydrogen peroxide gas in the ultrafine mist 60 becomes high, and a uniform and thin condensed film is formed on the inner wall surface of the isolator 10 and the outer surface of the equipment arranged inside.
  • a high degree of decontamination environment is developed by supplying a small amount of hydrogen peroxide solution without causing unnecessary condensation on the inner wall surface of the isolator 10 and the outer surface of the internal equipment.
  • decontamination can be efficiently performed with a small amount of hydrogen peroxide solution, the efficiency of aeration of the condensed film of the ultrafine mist 60 remaining inside the isolator 10 is improved, and the decontamination operation can be shortened.
  • FIG. 3 is a front view (A) and a side sectional view (B) showing an example of a mist discharging means constituting an ultrafine mist supply system.
  • the mist discharging means 30 is composed of a preliminary mist receptor 31 and an ultrasonic atomizing device 32.
  • the preliminary mist receptor 31 constitutes a space having a semi-spindle-shaped cross section inside the front surface, and an ultrasonic atomizer 32 is attached to the lower end portion of the front surface where the width of the semi-spindle shape is focused.
  • the lower end of this internal space is narrowed in width because it has the function of a liquid reservoir 31a of a small amount of hydrogen peroxide solution separated by gas and liquid.
  • the end of the spare mist supply pipe 53a communicates with the inside of the spare mist receiver 31 at the lower end portion of the back surface of the spare mist receiver 31 (position facing the ultrasonic atomizer 32).
  • An air vent 31b is opened at the upper end of the back surface of the preliminary mist receptor 31.
  • a baffle plate 31c is provided between the end of the spare mist supply pipe 53a in the center of the inside of the spare mist receiver 31 and the air vent 31b.
  • the ultrasonic atomizer 32 includes a substantially disk-shaped porous diaphragm 32a provided with a plurality of micropores (not shown) penetrating the front and back surfaces for atomizing the gas-liquid separated hydrogen peroxide solution. It is composed of a piezoelectric vibrator 32b formed in a substantially annular plate shape that causes the porous diaphragm 32a to vibrate in a film, and a control device (not shown) for controlling the vibration of the piezoelectric vibrator 32b.
  • the porous diaphragm 32a is attached to the piezoelectric vibrator 32b so as to cover the inner hole portion of the piezoelectric vibrator 32b.
  • the porous diaphragm 32a is attached with its front surface facing the inside of the isolator 10 (in the left direction in the drawing) and the back surface facing the inside of the preliminary mist receptor 31, and a plurality of micropores of the porous diaphragm 32a are attached. It penetrates the inside of the isolator 10 and the inside of the reserve mist receptor 31.
  • the surface of the porous diaphragm 32a is arranged so as to discharge the hydrogen peroxide solution mist in the horizontal direction, but the present invention is not limited to this, and the perforated diaphragm 32a is arranged downward or arranged. Depending on the position, it may be discharged upward.
  • the spare mist is discharged to the inside of the spare mist receptor 31 via the spare mist supply pipe 53a.
  • the back surface of the porous diaphragm 32a and the end of the spare mist supply pipe 53a face each other.
  • the released preliminary mist is directly discharged to the back surface of the porous diaphragm 32a and separated into gas and liquid.
  • This gas-liquid separated hydrogen peroxide solution becomes fine mist (hydrogen peroxide solution mist) through a plurality of micropores of the porous diaphragm 32a that vibrates ultrasonically, and is released to the inside of the isolator 10 to remove the hydrogen peroxide solution. Demonstrates a dyeing effect.
  • the pore diameter and the number of fine pores of the porous diaphragm 32a are not particularly limited, and may be any one as long as it can secure the ultrasonic atomization effect and a sufficient supply amount of hydrogen peroxide solution mist.
  • the pore size is about 4 to 11 ⁇ m, but if a pore size smaller than the size of the spore of the bacterium (for example, about 0.5 to 3 ⁇ m) is selected, the filter effect is exhibited and the bacteria can exert the effect. Hydrogen peroxide solution is not contaminated.
  • the operation and effect of the ultrafine mist supply system according to the above configuration will be described by way of examples.
  • the isolator 10 shown in FIG. 1 was used. Inside the isolator 10, the ultrafine mist supply system 20, the hydrogen peroxide gas concentration measuring device 70, and the work glove 80 are arranged at separate positions.
  • the isolator 10 is a closed space having a volume of 4 m 3 (width 3 m ⁇ depth 1 m ⁇ height 1.3 m), and four types of decontamination tests (Example 1 and Comparative Examples 1 to 3) are performed. went.
  • Example 1 referred to as Test X
  • hydrogen peroxide solution 35% by weight
  • the preliminary mist was supplied to the mist discharging means 30 of the ultrafine mist supply system 20 by using the preliminary mist supplying means 50.
  • the amount of hydrogen peroxide solution supplied in Test X was 12.5 g / m 3 and a decontamination time of 60 minutes (including aeration time) based on the results of the preliminary test conducted in advance.
  • Comparative Example 1 this is referred to as test W
  • test W only the mist discharging means 30 of the ultrafine mist supply system 20 is used, the convergent ultrasonic generating means 40 is stopped, and the inside of the isolator 10 is peroxidized. Hydrogen peroxide water was supplied.
  • the preliminary mist was supplied to the mist discharging means 30 by using the preliminary mist supplying means 50 as in Example 1 (Test X).
  • the amount of hydrogen peroxide solution supplied in Test W was 12.5 g / m 3 and a decontamination time of 60 minutes (including aeration time) as in Example 1 (Test X).
  • the isolator 10 uses a conventional hydrogen peroxide gas supply device (flash evaporator) without using the ultrafine mist supply system 20. Hydrogen peroxide gas was supplied to the inside.
  • hydrogen peroxide solution was supplied from the hydrogen peroxide solution tank to the hydrogen peroxide gas supply device without using the preliminary mist supply means 50.
  • the amount of hydrogen peroxide solution supplied in Test Y was 12.5 g / m 3 and the decontamination time was 60 minutes (including the aeration time) as in Example 1 (Test X).
  • Comparative Example 3 this is referred to as Test Z
  • a hydrogen peroxide gas supply device flash evaporator
  • flash evaporator which is a conventional method as in Comparative Example 2 (Test Y)
  • Hydrogen peroxide solution was supplied.
  • the amount of hydrogen peroxide solution supplied in Test Z was increased to 40.0 g / m 3 as compared with Comparative Example 2 (Test Y), and the decontamination time was also lengthened to 90 minutes (including aeration time).
  • Example 1 Test X
  • Comparative Examples 1 to 3 Tests W, Y, Z
  • the inside of the isolator 10 before the decontamination step is subjected to a predetermined temperature and humidity control operation before conducting an experiment. went. Further, the inside of the isolator 10 after the decontamination step was subjected to a predetermined aeration operation.
  • FIG. 4 is a graph showing the measurement results of the hydrogen peroxide gas concentration inside the isolator in each test of this example.
  • the tests X, W, and Y supplied with the same amount of hydrogen peroxide solution (12.5 g / m 3 ) are compared, the hydrogen peroxide gas concentration in Example 1 (Test X) becomes very high. You can see that there is.
  • Comparative Example 1 Comparative Example 1
  • Comparative Example 2 Comparative Example 2
  • the hydrogen peroxide gas concentration is higher.
  • the concentration of hydrogen peroxide gas is lower than that of Example 1 (Test X).
  • the hydrogen peroxide gas concentration in Comparative Example 2 (Test Y) which is a conventional method, is uneven and partially thick because it cannot be uniformly dispersed and reached even though it is supplied with hydrogen peroxide gas. It is considered that a condensed film is formed.
  • Comparative Example 3 in which the supply amount of hydrogen peroxide solution was increased to 3 times or more was slightly higher than that of Comparative Example 1 (Test W), but the example. The value is still lower than that of 1 (test X). Further, in Comparative Example 3 (Test Z), it can be seen that the humidity inside the isolator fluctuates considerably because the supply amount of the hydrogen peroxide solution is large.
  • Example 1 Test results of the decontamination effect in Example 1 (Test X) and Comparative Examples 1 to 3 (Tests W, Y, Z) are shown.
  • the enzyme indicator: EI Enzyme Indicator
  • Enzyme indicator is to confirm the decontamination effect by fluorescently measuring the residual enzyme activity after the test, and it does not require a culture operation and confirms the decontamination effect in a short time compared to the conventional BI (Biological Indicator). Can be done. In recent years, comparative equivalence with BI has been confirmed, and it is becoming more widespread. The LRD value (Log Spore Reduction) converted from the fluorescence intensity of EI after decontamination converted into the logarithm reduction of the number of bacteria was calculated, and 4 to 6 LRD or more recognized as a sufficient decontamination effect inside the isolator was judged to be acceptable. ..
  • FIG. 5 shows the decontamination effect of each part of the work glove deployed inside the isolator in each test of this example, (A) the part where the enzyme indicator is attached to the work glove, and (B) the enzyme. It is a graph which shows the LRD value of an indicator. Table 1 shows the LRD values of these 12 enzyme indicators.
  • Comparative Example 3 (Test Z) is a hydrogen peroxide solution as compared with Example 1 (Test X).
  • the amount of hydrogen peroxide supplied is large, and the decontamination time is long.
  • Example 1 (Test X) has a larger LRD value as a whole and is efficiently decontaminated with a small amount of hydrogen peroxide solution.
  • the decontamination liquid by making the decontamination liquid an ultrafine mist, a small amount of an appropriate amount of the decontamination liquid is supplied to the decontamination target room, and the decontamination liquid is evenly dispersed inside the decontamination target room. -Since it can be reached, it is possible to provide an ultrafine mist supply system that can achieve perfect decontamination effect, shorten work time such as aeration, and improve efficiency of decontamination work.
  • the preliminary mist is supplied to the mist discharging means of the ultrafine mist supply system by using the preliminary mist supplying means.
  • the present invention is not limited to this, and the hydrogen peroxide solution may be directly supplied to the mist discharging means without using the preliminary mist.
  • a plurality of vibrating discs are arranged on the upper part of the inner side wall surface of the isolator so as to surround the discharge port of the ultrasonic atomizer.
  • the present invention is not limited to this, and the ultrasonic acoustic flow transmitted from the ultrasonic oscillator of each vibrating disc can be converged at the center of the mist emitted from the discharge port of the ultrasonic atomizer. All you need is.
  • the ultrafine mist supply system is installed on the upper side wall surface of the isolator. However, it is not limited to this, and if it is possible to uniformly disperse and reach the ultrafine mist of hydrogen peroxide solution inside the decontamination target room such as an isolator, deploy it on another wall surface. You may.
  • one ultrafine mist supply system is provided for one isolator.
  • the present invention is not limited to this, and if the volume of the decontamination target chamber such as an isolator is large, a plurality of ultrafine mist supply systems may be deployed. As a result, the ultrafine mist of the hydrogen peroxide solution can be uniformly dispersed and reached inside the decontamination target chamber, and the decontamination efficiency is improved.
  • the spare mist is supplied from one spare mist supply means to one isolator in one chamber.
  • the present invention is not limited to this, and the spare mist may be supplied from one spare mist supply means to a plurality of isolators in which an ultrafine mist supply system is provided in each room.
  • 10 isolator, 20 ... ultrafine mist supply system, 30 ... mist release means, 31 ... Reserve mist receptor, 31a ... Liquid pool, 31b ... Air bleeder, 31c ... Obstacle plate, 32 ... ultrasonic atomizer, 32a ... porous diaphragm, 32b ... piezoelectric vibrator, 40 ... Convergent ultrasonic generation means, 41a to 41d ... Vibration disc, 42a to 42d ... Ultrasonic acoustic flow, 43 ... Focus (convergence site), 50 ... Preliminary mist supply means, 51 ... Air compressor, 51a ... Air supply pipe, 52 ... Hydrogen peroxide water tank, 52a ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Nozzles (AREA)

Abstract

Provided is an ultrafine mist supply system in which a decontamination liquid is formed into an ultrafine mist, allowing a small and appropriate amount of the decontamination liquid to be supplied to a room being decontaminated and to be dispersed and delivered everywhere inside the room being decontaminated. Thus, the ultrafine mist supply system makes it possible to ensure that the effect of decontamination is complete and to improve the efficiency of decontamination work by shortening the time of work for aeration or the like. The ultrafine mist supply system comprises a mist releasing means and a focused ultrasonic generating means. The mist releasing means includes an ultrasonic atomization device that turns a decontamination liquid into a fine mist and that releases the fine mist through a release port into a room being decontaminated. The focused ultrasound generating means has a plurality of vibration panels in the vicinity of the release port of the ultrasonic atomization device, and ultrasonically vibrates the vibration panels in the same phase to cause an ultrasonic acoustic flow with ultrasonic directionality to be generated from each panel surface in the vertical direction. The plurality of vibration panels are arranged so that the directions of directionality of the respective ultrasonic acoustic flows converge ahead in a release direction of the mist being released through the release port of the ultrasonic atomization device.

Description

超微細ミスト供給システムUltra-fine mist supply system
 本発明は、除染液を超微細ミストとして供給する超微細ミスト供給システムに関するものであり、特に、微細なミストを更に微細化した超微細ミストとして供給する超微細ミスト供給システムに関するものである。 The present invention relates to an ultrafine mist supply system that supplies a decontamination liquid as an ultrafine mist, and more particularly to an ultrafine mist supply system that supplies a fine mist as an ultrafine mist.
 医薬品或いは食品などを製造する製造現場、或いは、手術室などの医療現場においては、室内の無菌状態を維持することが重要である。特に医薬品製造の作業室である無菌室の除染においては、GMP(Good Manufacturing Practice)に即した高度な除染バリデーションを完了させる必要がある。 It is important to maintain the aseptic condition in the room at the manufacturing site where pharmaceuticals or foods are manufactured, or at the medical site such as an operating room. In particular, in the decontamination of a sterile room, which is a working room for manufacturing pharmaceutical products, it is necessary to complete advanced decontamination validation in line with GMP (Good Manufacturing Practice).
 近年、無菌室などの作業室(以下、除染対象室という)の除染には、過酸化水素(ガス又はミスト)が広く採用されている。この過酸化水素は、強力な滅菌効果を有し、安価で入手しやすく、且つ、最終的には酸素と水に分解する環境に優しい除染ガスとして有効である。そこで、除染対象室の内部に過酸化水素水をガス化して効率よく供給する提案が下記特許文献1など多くなされている。 In recent years, hydrogen peroxide (gas or mist) has been widely adopted for decontamination of work rooms such as sterile rooms (hereinafter referred to as decontamination target rooms). This hydrogen peroxide has a strong sterilizing effect, is inexpensive and easily available, and is effective as an environment-friendly decontamination gas that finally decomposes into oxygen and water. Therefore, many proposals such as the following Patent Document 1 have been made to gasify hydrogen peroxide solution into the decontamination target chamber and efficiently supply it.
 一方、過酸化水素による除染効果は、除染対象部位の表面に凝縮する過酸化水素水の凝縮膜によるものであることが下記特許文献1に記載されている。つまり、ガス化して供給した過酸化水素ガスを除染対象室の壁面など除染対象部位の表面に凝縮させることにより除染が行われる。従って、除染対象室の除染効果の完璧を図ると共に除染操作の効率化を図るためには、過酸化水素ガスの供給量を多くして過酸化水素水の凝縮膜を速やかに発生させるか、或いは、過酸化水素水を液状のまま(例えば、液滴で)供給することが考えられる。 On the other hand, it is described in Patent Document 1 below that the decontamination effect of hydrogen peroxide is due to the condensed film of hydrogen peroxide solution that condenses on the surface of the decontamination target site. That is, decontamination is performed by condensing the hydrogen peroxide gas supplied by gasification on the surface of the decontamination target portion such as the wall surface of the decontamination target chamber. Therefore, in order to perfect the decontamination effect of the decontamination target room and improve the efficiency of the decontamination operation, the supply amount of hydrogen peroxide gas is increased to quickly generate a condensed film of hydrogen peroxide solution. Alternatively, it is conceivable to supply the hydrogen peroxide solution in a liquid state (for example, in droplets).
特開2006-320392号公報Japanese Unexamined Patent Publication No. 2006-320392 特公昭61-4543号公報Special Publication No. 61-4543
 ところで、除染対象室に過剰量の過酸化水素ガスを供給し、或いは、過酸化水素水の液滴を直接供給すれば過度な凝縮やムラの多い凝縮が起こり、除染対象室の内部に配置されている各種製造設備や精密測定機器或いは除染対象室の壁面などが発生した高濃度の過酸化水素水の凝縮膜により腐食されるという不具合が生じる。また、過酸化水素による除染の後には、除染対象室の内部に残留した過酸化水素や凝縮膜を清浄空気で除去するエアレーションを行う。しかし、過剰量の過酸化水素ガスや過酸化水素水の液滴を供給した場合には、除染対象室の壁面などに発生した高濃度の過酸化水素水の凝縮膜を除去するエアレーションに多くに時間を要するという問題があった。 By the way, if an excessive amount of hydrogen peroxide gas is supplied to the decontamination target room or a droplet of hydrogen peroxide solution is directly supplied, excessive condensation or uneven condensation occurs inside the decontamination target room. There is a problem that the various manufacturing equipment, precision measuring equipment, or the wall surface of the decontamination target room, which are arranged, are corroded by the condensed film of high-concentration hydrogen peroxide solution generated. In addition, after decontamination with hydrogen peroxide, aeration is performed to remove the hydrogen peroxide and the condensed film remaining inside the decontamination target chamber with clean air. However, when an excessive amount of hydrogen peroxide gas or droplets of hydrogen peroxide solution is supplied, it is often used for aeration to remove the condensed film of high-concentration hydrogen peroxide solution generated on the wall surface of the decontamination target room. There was a problem that it took time.
 そこで、本発明は、上記の諸問題に対処して、除染液を超微細なミストとすることにより、除染対象室に少量で適正量の除染液を供給すると共に、除染対象室の内部に隈なく分散・到達させることができるので、除染効果の完璧を図ると共に、エアレーションなどの作業時間を短縮して除染作業の効率化を図ることのできる超微細ミスト供給システムを提供することを目的とする。 Therefore, the present invention addresses the above-mentioned problems and uses an ultrafine mist as the decontamination liquid to supply a small amount of an appropriate amount of the decontamination liquid to the decontamination target room and the decontamination target room. We provide an ultra-fine mist supply system that can completely disperse and reach the inside of the room, so that the decontamination effect can be perfected, and the work time for aeration etc. can be shortened to improve the efficiency of decontamination work. The purpose is to do.
 上記課題の解決にあたり、本発明者らは、鋭意研究の結果、除染液をミスト化すると共に、これに収束した超音波音響流を作用させることで更に微細化した超微細ミストとなり、過酸化水素のガス化を促進できることを見出し本発明の完成に至った。なお、下記の各請求項に記載の括弧内の数字は、本発明に係る実施形態の各構成要素を示す符号である。 In order to solve the above problems, the present inventors have made a decontamination liquid into a mist as a result of diligent research, and by applying a converged ultrasonic acoustic flow to the mist, the decontamination liquid becomes a finer ultrafine mist and peroxidation. We have found that the gasification of hydrogen can be promoted, and have completed the present invention. The numbers in parentheses described in each of the following claims are symbols indicating each component of the embodiment according to the present invention.
 即ち、本発明に係る超微細ミスト供給システム(20)は、請求項1の記載によれば、
 除染対象室(10)の内部に除染液のミスト(61)を放出するミスト放出手段(30)と、放出された前記除染液のミストを超微細化してガス化を促進し、前記除染対象室の内部に隈なく分散・到達させる収束超音波発生手段(40)とを有し、
 前記ミスト放出手段は、前記除染液を微細なミストに変換して放出口から前記除染対象室の内部に放出する超音波霧化装置(32)を備え、
 前記収束超音波発生手段は、前記超音波霧化装置の放出口の付近に複数の振動盤(41a~41d)を備え、当該複数の振動盤を同位相で超音波振動させて各盤面からそれぞれ垂直方向に超音波による指向性の超音波音響流(42a~42d)を発生させ、各超音波音響流の指向方向が前記超音波霧化装置の放出口から放出される前記ミストの放出方向前方で収束するように前記複数の振動盤を配置することにより、
 前記超音波霧化装置の放出口から放出された前記ミストを更に微細化した超微細ミスト(60)に変換すると共にガス化を促進し、当該超微細ミストを前記放出口から離れた位置まで到達させることを特徴とする。
That is, according to the description of claim 1, the ultrafine mist supply system (20) according to the present invention is described.
The mist discharging means (30) that discharges the mist (61) of the decontamination liquid into the decontamination target chamber (10) and the mist of the discharged decontamination liquid are made ultrafine to promote gasification. It has a convergent ultrasonic wave generating means (40) that disperses and reaches the inside of the decontamination target room.
The mist discharging means includes an ultrasonic atomizing device (32) that converts the decontaminating liquid into fine mist and discharges it from a discharge port into the inside of the decontamination target chamber.
The convergent ultrasonic generating means is provided with a plurality of vibrating discs (41a to 41d) in the vicinity of the discharge port of the ultrasonic atomizing device, and the plurality of vibrating discs are ultrasonically vibrated in the same phase to be ultrasonically vibrated from each disc surface. A directional ultrasonic acoustic flow (42a to 42d) is generated by ultrasonic waves in the vertical direction, and the directing direction of each ultrasonic acoustic flow is in front of the discharge direction of the mist discharged from the discharge port of the ultrasonic atomizer. By arranging the plurality of vibrating discs so as to converge at
The mist discharged from the discharge port of the ultrasonic atomizer is converted into finer ultrafine mist (60) and gasification is promoted, and the ultrafine mist reaches a position away from the discharge port. It is characterized by letting it.
 また、本発明は、請求項2の記載によれば、請求項1に記載の超微細ミスト供給システムであって、
 前記ミスト放出手段に前記除染液を予備ミストとして供給する予備ミスト供給手段(50)を有し、
 前記予備ミスト供給手段は、圧縮空気を発生する圧縮空気発生装置(51)と、前記除染液を供給する除染液供給装置(52)と、前記圧縮空気と前記除染液とを気液混合して予備ミストを発生する予備ミスト発生装置(53)と、前記圧縮空気発生装置から前記予備ミスト発生装置までの間を連通する空気供給配管(51a)と、前記除染液供給装置から前記予備ミスト発生装置までの間を連通する除染液供給配管(52a)と、前記予備ミスト発生装置から前記ミスト放出手段までの間を連通する予備ミスト供給配管(53a)とを備え、
 前記ミスト放出手段は、予備ミスト受容器(31)を備え、当該予備ミスト受容器は、前記予備ミスト供給配管を介して供給された予備ミストから気液分離した空気を外部に放出する空気抜き(31b)を具備し、
 前記超音波霧化装置は、圧電振動子(32b)と当該圧電振動子の振動により、気液分離された除染液を霧化する複数の微細孔が表裏を貫通して設けられた多孔振動板(32a)とを備え、当該多孔振動板の表面を前記放出口として前記除染対象室の内部に向けていることを特徴とする。
Further, according to the second aspect of the present invention, the ultrafine mist supply system according to the first aspect of the present invention.
The mist discharging means has a preliminary mist supplying means (50) for supplying the decontaminating liquid as a preliminary mist.
The preliminary mist supply means comprises a compressed air generator (51) for generating compressed air, a decontamination liquid supply device (52) for supplying the decontamination liquid, and a gas solution of the compressed air and the decontamination liquid. The pre-mist generator (53) that mixes and generates pre-mist, the air supply pipe (51a) that communicates between the compressed air generator and the pre-mist generator, and the decontamination liquid supply device to the above-mentioned A decontamination liquid supply pipe (52a) that communicates with the preliminary mist generator and a spare mist supply pipe (53a) that communicates from the preliminary mist generator to the mist discharging means are provided.
The mist releasing means includes a preliminary mist receptor (31), and the preliminary mist receptor is an air vent (31b) that discharges air separated from the preliminary mist supplied through the preliminary mist supply pipe to the outside. )
The ultrasonic atomizer is a porous vibration in which a plurality of micropores for atomizing the decontamination liquid separated by gas and liquid are provided through the front and back by the vibration of the piezoelectric vibrator (32b) and the piezoelectric vibrator. A plate (32a) is provided, and the surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as the discharge port.
 また、本発明は、請求項3の記載によれば、請求項1又は2に記載の超微細ミスト供給システムであって、
 前記超音波霧化装置は、前記多孔振動板の表面を前記放出口として前記除染対象室の内部に向け、裏面を前記予備ミスト受容器の内部に向けて配設され、
 前記予備ミスト受容器に供給された予備ミストは、前記予備ミスト供給配管から前記多孔振動板の裏面に向けて吐出されて気液分離し、分離した除染液が当該多孔振動板の裏面から表面に移動する際に霧化して当該表面から前記除染対象室の内部に放出されることを特徴とする。
Further, according to the description of claim 3, the present invention is the ultrafine mist supply system according to claim 1 or 2.
The ultrasonic atomizer is disposed with the front surface of the porous diaphragm facing the inside of the decontamination target chamber as the discharge port and the back surface facing the inside of the preliminary mist receptor.
The preliminary mist supplied to the preliminary mist receiver is discharged from the preliminary mist supply pipe toward the back surface of the porous diaphragm and separated into gas and liquid, and the separated decontamination liquid is discharged from the back surface to the front surface of the porous diaphragm. It is characterized in that it is atomized when it moves to the inside of the decontamination target chamber and is discharged from the surface to the inside of the decontamination target chamber.
 また、本発明は、請求項4の記載によれば、請求項1又は2に記載の超微細ミスト供給システムであって、
 前記超音波霧化装置は、前記多孔振動板の表面を前記放出口として前記除染対象室の内部に向け、裏面を前記予備ミスト受容器の内部下端部に設けられた液溜りに向けて配設され、
 前記予備ミスト受容器に供給された予備ミストは、前記予備ミスト供給配管から前記予備ミスト受容器の内部に放出されて気液分離し、分離した除染液が当該予備ミスト受容器の前記液溜りに回収された後に、前記多孔振動板の裏面から表面に移動する際に霧化して当該表面から前記除染対象室の内部に放出されることを特徴とする。
Further, according to the description of claim 4, the present invention is the ultrafine mist supply system according to claim 1 or 2.
In the ultrasonic atomizer, the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as the discharge port, and the back surface is directed toward the liquid pool provided at the inner lower end of the preliminary mist receptor. Set up,
The preliminary mist supplied to the preliminary mist receptor is discharged from the preliminary mist supply pipe into the inside of the preliminary mist receptor and separated into gas and liquid, and the separated decontamination liquid is the liquid pool of the preliminary mist receptor. It is characterized in that it is atomized when it moves from the back surface to the front surface of the porous diaphragm and is discharged from the surface to the inside of the decontamination target chamber.
 上記構成によれば、本発明に係る超微細ミスト供給システムは、除染対象室の内部に除染液のミストを放出するミスト放出手段と、放出された除染液のミストを超微細化してガス化を促進することで除染対象室の内部に隈なく分散・到達させる収束超音波発生手段とを有している。ミスト放出手段は、除染液を微細なミストに変換して放出口から除染対象室の内部に放出する超音波霧化装置を備えている。収束超音波発生手段は、超音波霧化装置の放出口の付近に複数の振動盤を備え、これらの振動盤を同位相で超音波振動させて各盤面からそれぞれ垂直方向に超音波による指向性の超音波音響流を発生させる。 According to the above configuration, in the ultrafine mist supply system according to the present invention, the mist discharging means for discharging the mist of the decontamination liquid into the decontamination target chamber and the mist of the discharged decontamination liquid are made ultrafine. It has a convergent ultrasonic wave generating means that disperses and reaches the inside of the decontamination target chamber by promoting gasification. The mist discharging means includes an ultrasonic atomizing device that converts the decontaminating liquid into fine mist and discharges it from the discharge port into the inside of the decontamination target chamber. The convergent ultrasonic generation means is provided with a plurality of vibrating discs near the emission port of the ultrasonic atomizer, and these vibrating discs are ultrasonically vibrated in the same phase to be directed by ultrasonic waves in the vertical direction from each disc surface. Generates an ultrasonic acoustic flow.
 これらの超音波音響流の指向方向が超音波霧化装置の放出口から放出されるミストの放出方向前方で収束するように複数の振動盤を配置する。このことにより、超音波霧化装置の放出口から放出されたミストを更に微細化した超微細ミストに変換すると共にガス化を促進し、この超微細ミストを放出口から離れた位置まで到達させることができる。 A plurality of vibrating discs are arranged so that the directivity direction of these ultrasonic acoustic flows converges in front of the emission direction of the mist emitted from the emission port of the ultrasonic atomizer. As a result, the mist emitted from the discharge port of the ultrasonic atomizer is converted into finer ultrafine mist and gasification is promoted, and the ultrafine mist reaches a position away from the discharge port. Can be done.
 このように、上記構成によれば、除染液を超微細なミストとすることにより、除染対象室に少量で適正量の除染液を供給すると共に、除染対象室の内部に隈なく分散・到達させることができるので、除染効果の完璧を図ると共に、エアレーションなどの作業時間を短縮して除染作業の効率化を図ることのできる超微細ミスト供給システムを提供することができる。 As described above, according to the above configuration, by making the decontamination liquid an ultrafine mist, a small amount of an appropriate amount of the decontamination liquid is supplied to the decontamination target room, and the inside of the decontamination target room is completely filled. Since it can be dispersed and reached, it is possible to provide an ultrafine mist supply system that can achieve perfect decontamination effect, shorten work time such as aeration, and improve efficiency of decontamination work.
 また、上記構成によれば、超微細ミスト供給システムは、ミスト放出手段に除染液を予備ミストとして供給する予備ミスト供給手段を有している。予備ミスト供給手段は、圧縮空気を発生する圧縮空気発生装置と、除染液を供給する除染液供給装置と、圧縮空気と除染液とを気液混合して予備ミストを発生する予備ミスト発生装置と、圧縮空気発生装置から予備ミスト発生装置までの間を連通する空気供給配管と、除染液供給装置から予備ミスト発生装置までの間を連通する除染液供給配管と、予備ミスト発生装置からミスト放出手段までの間を連通する予備ミスト供給配管とを備えている。 Further, according to the above configuration, the ultrafine mist supply system has a preliminary mist supply means for supplying the decontamination liquid as a preliminary mist to the mist discharge means. The preliminary mist supply means is a compressed air generator that generates compressed air, a decontamination liquid supply device that supplies a decontamination liquid, and a preliminary mist that generates a preliminary mist by mixing the compressed air and the decontamination liquid in a gas-liquid manner. An air supply pipe that communicates between the generator and the compressed air generator to the spare mist generator, a decontamination liquid supply pipe that communicates from the decontamination liquid supply device to the spare mist generator, and a spare mist generator. It is equipped with a spare mist supply pipe that communicates between the device and the mist discharging means.
 ミスト放出手段は、予備ミスト受容器を備え、当該予備ミスト受容器は、予備ミスト供給配管を介して供給された予備ミストから気液分離した空気を外部に放出する空気抜きを具備している。超音波霧化装置は、圧電振動子と当該圧電振動子の振動により、気液分離された除染液を霧化する複数の微細孔が表裏を貫通して設けられた多孔振動板とを備え、この多孔振動板の表面を放出口として除染対象室の内部に向けている。このことにより、上記作用効果をより具体的に発揮することができる。 The mist discharging means includes a spare mist receptor, and the spare mist receptor is equipped with an air vent that discharges air separated from the spare mist supplied through the spare mist supply pipe to the outside. The ultrasonic atomizer includes a piezoelectric vibrator and a porous diaphragm provided with a plurality of micropores penetrating the front and back to atomize the decontamination liquid separated by gas and liquid by the vibration of the piezoelectric vibrator. The surface of this porous diaphragm is directed toward the inside of the decontamination target chamber as a discharge port. This makes it possible to exert the above-mentioned action and effect more concretely.
 また、上記構成によれば、超音波霧化装置は、多孔振動板の表面を放出口として除染対象室の内部に向け、裏面を予備ミスト受容器の内部に向けて配設される。予備ミスト受容器に供給された予備ミストは、予備ミスト供給配管から多孔振動板の裏面に向けて吐出されて気液分離し、分離した除染液が当該多孔振動板の裏面から表面に移動する際に霧化して表面から除染対象室の内部に放出される。このことにより、上記作用効果をより具体的に発揮することができる。 Further, according to the above configuration, the ultrasonic atomizer is arranged so that the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber and the back surface is directed toward the inside of the preliminary mist receptor. The spare mist supplied to the spare mist receptor is discharged from the spare mist supply pipe toward the back surface of the porous diaphragm and separated into gas and liquid, and the separated decontamination liquid moves from the back surface to the front surface of the porous diaphragm. At the time, it atomizes and is released from the surface into the decontamination target chamber. This makes it possible to exert the above-mentioned action and effect more concretely.
 また、上記構成によれば、超音波霧化装置は、多孔振動板の表面を放出口として除染対象室の内部に向け、裏面を予備ミスト受容器の内部下端部に設けられた液溜りに向けて配設される。予備ミスト受容器に供給された予備ミストは、予備ミスト供給配管から予備ミスト受容器の内部に放出されて気液分離し、分離した除染液が当該予備ミスト受容器の液溜りに回収された後に、多孔振動板の裏面から表面に移動する際に霧化して表面から除染対象室の内部に放出される。このことにより、上記作用効果をより具体的に発揮することができる。 Further, according to the above configuration, in the ultrasonic atomizer, the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as a discharge port, and the back surface is a liquid pool provided at the inner lower end of the preliminary mist receptor. Arranged toward you. The spare mist supplied to the spare mist receptor was discharged from the spare mist supply pipe into the inside of the spare mist receptor and separated into gas and liquid, and the separated decontamination liquid was collected in the pool of the spare mist receptor. Later, when it moves from the back surface to the front surface of the porous diaphragm, it is atomized and released from the front surface into the decontamination target chamber. This makes it possible to exert the above-mentioned action and effect more concretely.
本発明に係る超微細ミスト供給システムを配備したアイソレーターの内部を透視する概略斜視図である。It is a schematic perspective view which sees through the inside of the isolator which deployed the ultrafine mist supply system which concerns on this invention. 図1の超微細ミスト供給システムをアイソレーターの内部から見た概略構成図であって、(A)正面図、(B)斜視図である。FIG. 1 is a schematic configuration diagram of the ultrafine mist supply system of FIG. 1 as viewed from the inside of the isolator, and is a front view (A) and a perspective view (B). 図1の超微細ミスト供給システムを構成するミスト放出手段の1例を示す(A)正面図、(B)側面断面図である。It is (A) front view and (B) side sectional view which shows an example of the mist discharging means constituting the ultrafine mist supply system of FIG. 実施例の各試験におけるアイソレーターの内部の過酸化水素ガス濃度の測定結果を示すグラフである。It is a graph which shows the measurement result of the hydrogen peroxide gas concentration inside the isolator in each test of an Example. 実施例の各試験におけるアイソレーターの内部に配備された作業用グローブの各部位の除染効果であって、(A)作業用グローブに酵素インジケーターを貼付した部位、(B)酵素インジケーターのLRD値を示すグラフである。The decontamination effect of each part of the work glove deployed inside the isolator in each test of the example, (A) the part where the enzyme indicator is attached to the work glove, and (B) the LRD value of the enzyme indicator. It is a graph which shows.
 本発明に係る超微細ミスト供給システムは、除染対象室としてクリーンルームやアイソレーター、RABS、或いは、これらの除染対象室に連接するパスルーム、パスボックスなどの内部、又は、これらの除染対象室の内部に配置された除染対象装置又は除染対象物品などを除染するために、これらの除染対象室の内部に除染液を供給するための供給システムをいう。また、本発明に係る超微細ミスト供給システムは、除染液をガス化して供給する従来の供給装置とは異なり、除染液を超微細なミストに変換して供給する供給システムをいう。 In the ultrafine mist supply system according to the present invention, the decontamination target room is a clean room, an isolator, a RABS, or the inside of a pass room, a pass box, etc. connected to these decontamination target rooms, or these decontamination target rooms. Refers to a supply system for supplying a decontamination liquid to the inside of the decontamination target room in order to decontaminate the decontamination target device or the decontamination target article arranged inside the decontamination target room. Further, the ultrafine mist supply system according to the present invention refers to a supply system in which the decontamination liquid is converted into ultrafine mist and supplied, unlike the conventional supply device that gasifies and supplies the decontamination liquid.
 また、本発明に係る超微細ミスト供給システムは、除染液を超微細なミストに変換して供給するのみならず、水など他の液体を超微細なミストに変換して供給する際にも使用できる。例えば、除染に先立ってアイソレーター内部の調湿を行う際に、本発明に係る超微細ミスト供給システムを使用して超微細な水のミスト(フォグともいう)を室内に供給して、除染に最適な湿度に調湿する際に使用してもよい。 Further, the ultrafine mist supply system according to the present invention not only converts the decontamination liquid into ultrafine mist and supplies it, but also converts other liquids such as water into ultrafine mist and supplies it. Can be used. For example, when the humidity inside the isolator is adjusted prior to decontamination, the ultrafine mist supply system according to the present invention is used to supply ultrafine water mist (also referred to as fog) into the room for decontamination. It may be used when adjusting the humidity to the optimum humidity.
 本発明において、「ミスト」とは、広義に解釈するものであって、微細化して空気中に浮遊する液滴の状態、ガスと液滴が混在した状態、ガスと液滴との間で凝縮と蒸発との相変化を繰り返している状態などを含むものとする。なお、本発明においては、これらの「ミスト」を更に細分化し、ミストを構成する主な成分の粒径により大きなものから順に「予備ミスト」、「ミスト」、「超微細ミスト」と使い分けるものとする。 In the present invention, "mist" is broadly interpreted as a state of droplets that are atomized and suspended in the air, a state in which gas and droplets are mixed, and a state of condensation between gas and droplets. It shall include the state where the phase change between the gas and the evaporation is repeated. In the present invention, these "mists" are further subdivided and used as "preliminary mist", "mist", and "ultrafine mist" in order from the one having the largest particle size according to the particle size of the main components constituting the mist. do.
 まず、本発明にいう「予備ミスト」とは、一般にミストと定義される10μm以下の粒子だけを含むものではなく、それ以上の粒径を持つ液滴を含むものであって、微細化して空気中に浮遊する液滴の状態を主な成分(主であって全てではない)とするものをいう。予備ミスト発生手段としては、例えば、液体を直接ミスト化する一流体スプレーノズル、ピエゾ高圧噴射装置、浸漬型超音波霧化装置、円盤型霧化装置、円盤メッシュ型霧化装置などがある。また、高圧空気などで液体をミスト化するエジェクタや二流体スプレーノズルなどがある。 First, the "preliminary mist" referred to in the present invention does not contain only particles having a particle size of 10 μm or less, which is generally defined as mist, but also contains droplets having a particle size larger than that. It means that the state of the droplets floating inside is the main component (main, not all). Examples of the preliminary mist generating means include a one-fluid spray nozzle for directly mistizing a liquid, a piezo high-pressure injection device, an immersion type ultrasonic atomizing device, a disk type atomizing device, and a disk mesh type atomizing device. In addition, there are ejectors and two-fluid spray nozzles that mist liquids with high-pressure air.
 次に、本発明にいう「ミスト」とは、超音波振動の作用により、一般にミストと定義される10μm以下の粒子を主な成分(主であって全てではない)とするものであって、一般にフォグと定義される5μm以下の粒子をも含むものをいう。 Next, the "mist" referred to in the present invention is a particle having a size of 10 μm or less, which is generally defined as a mist, as a main component (mainly, not all) by the action of ultrasonic vibration. It also includes particles of 5 μm or less, which is generally defined as fog.
 更に、本発明にいう「超微細ミスト」とは、超音波振動の作用により発生したミストが収束超音波発生手段(詳細は後述する)の作用を受けて、5μm以下のフォグを含むが更に超微細な3μm以下の超微細粒子に均一化されたものを主な成分(主であって全てではない)とするものをいう。この超微細ミストは、粒径が非常に小さいことから表面積が大きく、ガスとミストとの間で凝縮と蒸発との相変化を盛んに繰り返している状態である。従って、除染液を超微細ミストとした場合には、除染液がガスとミストとの間で盛んに繰り返される凝縮と蒸発との相変化により除染効果と除染効率を高く維持することができる。 Further, the "ultrafine mist" referred to in the present invention includes a fog of 5 μm or less in which the mist generated by the action of ultrasonic vibration is affected by the action of the convergent ultrasonic generation means (details will be described later), but is further super. It refers to those whose main component (main but not all) is homogenized into fine ultrafine particles of 3 μm or less. Since the particle size of this ultrafine mist is very small, the surface area is large, and the phase change between condensation and evaporation is actively repeated between the gas and the mist. Therefore, when the decontamination liquid is an ultrafine mist, the decontamination effect and decontamination efficiency should be maintained high by the phase change between condensation and evaporation in which the decontamination liquid is actively repeated between the gas and the mist. Can be done.
 以下、本発明に係る超微細ミスト供給システムを具体的な実施形態により詳細に説明する。なお、本発明は、下記の実施形態にのみ限定されるものではない。下記に示す実施形態に係る超微細ミスト供給システムにおいては、除染液として過酸化水素水を使用する。なお、本発明に係る超微細ミスト供給システムで供給する除染液は、過酸化水素水に限るものではなく、例えば、過酢酸の水溶液など液状の除染液であればよい。 Hereinafter, the ultrafine mist supply system according to the present invention will be described in detail with specific embodiments. The present invention is not limited to the following embodiments. In the ultrafine mist supply system according to the embodiment shown below, hydrogen peroxide solution is used as the decontamination liquid. The decontamination solution supplied by the ultrafine mist supply system according to the present invention is not limited to the hydrogen peroxide solution, and may be a liquid decontamination solution such as an aqueous solution of peracetic acid.
 本実施形態は、除染対象室としてのアイソレーターに配備した超微細ミスト供給システムに関するものである。図1は、本発明に係る超微細ミスト供給システムを配備したアイソレーターの内部を透視する概略斜視図である。図1において、アイソレーター10の図示右側壁面上部には、超微細ミスト供給システム20が配備されている。超微細ミスト供給システム20は、ミスト放出手段30と収束超音波発生手段40とを有している(詳細は後述する)。 This embodiment relates to an ultrafine mist supply system installed in an isolator as a decontamination target room. FIG. 1 is a schematic perspective view showing the inside of an isolator in which the ultrafine mist supply system according to the present invention is deployed. In FIG. 1, an ultrafine mist supply system 20 is deployed on the upper part of the right side wall surface of the isolator 10. The ultrafine mist supply system 20 has a mist discharging means 30 and a convergent ultrasonic wave generating means 40 (details will be described later).
 また、アイソレーター10の外部には、超微細ミスト供給システム20に予備ミストを供給する予備ミスト供給手段50が配備されている。予備ミスト供給手段50は、圧縮空気を発生する空気圧縮機51と過酸化水素水タンク52とエジェクタ53とを備えている。空気圧縮機51は、過酸化水素水を搬送するためのキャリアガスとしての圧縮空気を発生するための圧縮空気発生装置として作用する。発生した圧縮空気は、空気供給配管51aを介してエジェクタ53に供給される。なお、空気圧縮機51は、アイソレーター10から離れた位置に配設することができる。 Further, outside the isolator 10, a spare mist supply means 50 for supplying the spare mist to the ultrafine mist supply system 20 is provided. The spare mist supply means 50 includes an air compressor 51 that generates compressed air, a hydrogen peroxide solution tank 52, and an ejector 53. The air compressor 51 acts as a compressed air generator for generating compressed air as a carrier gas for transporting a hydrogen peroxide solution. The generated compressed air is supplied to the ejector 53 via the air supply pipe 51a. The air compressor 51 can be arranged at a position away from the isolator 10.
 過酸化水素水タンク52は、除染用ミストとしての過酸化水素水の超微細ミストの発生源である過酸化水素水を貯留するための除染液供給装置として作用する。過酸化水素水は、除染液供給配管52aを介して供給ポンプ52bによりエジェクタ53に供給される。なお、過酸化水素水タンク52は、空気圧縮機51の近傍にあって、アイソレーター10から離れた位置に配設することができる。 The hydrogen peroxide solution tank 52 acts as a decontamination liquid supply device for storing the hydrogen peroxide solution, which is a source of the ultrafine mist of the hydrogen peroxide solution as the decontamination mist. The hydrogen peroxide solution is supplied to the ejector 53 by the supply pump 52b via the decontamination liquid supply pipe 52a. The hydrogen peroxide solution tank 52 can be arranged in the vicinity of the air compressor 51 and at a position away from the isolator 10.
 ここで、過酸化水素水タンク52に貯留される過酸化水素水の濃度は特に限定するものではないが、一般に、危険物などの取扱いを考慮して30~35重量%のものを使用することが好ましい。また、過酸化水素水タンク52は、内部の過酸化水素水の残量を検知する秤量計52cと、残量を制御する制御装置(図示せず)を備えている。 Here, the concentration of the hydrogen peroxide solution stored in the hydrogen peroxide solution tank 52 is not particularly limited, but in general, 30 to 35% by weight should be used in consideration of handling of dangerous substances and the like. Is preferable. Further, the hydrogen peroxide solution tank 52 includes a weighing meter 52c for detecting the remaining amount of the hydrogen peroxide solution inside, and a control device (not shown) for controlling the remaining amount.
 エジェクタ53は、過酸化水素水を圧縮空気中に気液混合して予備ミストを発生するための予備ミスト発生装置として作用する。発生した予備ミストは、予備ミスト供給配管53aを介して超微細ミスト供給システム20に供給される。なお、エジェクタ53は、空気圧縮機51及び過酸化水素水タンク52の近傍にあって、アイソレーター10から離れた位置に配設することができる。 The ejector 53 acts as a preliminary mist generator for generating a preliminary mist by mixing a hydrogen peroxide solution with compressed air. The generated spare mist is supplied to the ultrafine mist supply system 20 via the spare mist supply pipe 53a. The ejector 53 can be arranged in the vicinity of the air compressor 51 and the hydrogen peroxide solution tank 52 at a position away from the isolator 10.
 ここで、予備ミスト発生装置は、エジェクタに限定されるものではなく、上述の一流体スプレーノズル、ピエゾ高圧噴射装置、浸漬型超音波霧化装置、円盤型霧化装置、円盤メッシュ型霧化装置、二流体スプレーノズルなどを採用してもよい。 Here, the preliminary mist generator is not limited to the ejector, but is not limited to the above-mentioned one-fluid spray nozzle, piezo high-pressure injection device, immersion type ultrasonic atomization device, disk type atomization device, and disk mesh type atomization device. , A two-fluid spray nozzle or the like may be adopted.
 なお、図1においては、超微細ミスト供給システム20からアイソレーター10の内部に供給される過酸化水素水の超微細ミスト60が図示されている。また、アイソレーター10の内部の図示底面左端(超微細ミスト供給システム20から最も離れた位置)には、アイソレーター10の内部の過酸化水素ガス濃度を測定するための過酸化水素ガス濃度測定装置70が配備されている。また、アイソレーター10の図示左側壁面には、1対の作業用グローブ80が配備されている。なお、過酸化水素ガス濃度測定装置70及び作業用グローブ80は、後述の実施例において除染効果の確認に使用する。 Note that FIG. 1 shows the ultrafine mist 60 of the hydrogen peroxide solution supplied from the ultrafine mist supply system 20 to the inside of the isolator 10. Further, at the left end of the illustrated bottom surface inside the isolator 10 (the position farthest from the ultrafine mist supply system 20), a hydrogen peroxide gas concentration measuring device 70 for measuring the hydrogen peroxide gas concentration inside the isolator 10 is provided. It has been deployed. Further, a pair of work gloves 80 are arranged on the left wall surface of the isolator 10 in the drawing. The hydrogen peroxide gas concentration measuring device 70 and the working glove 80 are used for confirming the decontamination effect in the examples described later.
 次に、超微細ミスト供給システム20について説明する。図2は、超微細ミスト供給システムをアイソレーター10の内部から見た概略構成図であって、(A)正面図、(B)斜視図である。図2において、超微細ミスト供給システム20は、ミスト放出手段30と収束超音波発生手段40とを有している。なお、図2においては、アイソレーター10の側壁面を省略して、ミスト放出手段30を明瞭に図示している。 Next, the ultrafine mist supply system 20 will be described. FIG. 2 is a schematic configuration diagram of an ultrafine mist supply system as viewed from the inside of the isolator 10, and is a front view (A) and a perspective view (B). In FIG. 2, the ultrafine mist supply system 20 has a mist discharging means 30 and a convergent ultrasonic wave generating means 40. In FIG. 2, the side wall surface of the isolator 10 is omitted, and the mist discharging means 30 is clearly shown.
 ミスト放出手段30は、予備ミスト受容器31と超音波霧化装置32とを備えている。予備ミスト受容器31は、予備ミスト供給配管(図示せず)を介して供給される予備ミストを受容して過酸化水素水と空気とに気液分離すると共に、予備ミストから気液分離した空気を外部に放出する(詳細な構造は後述する)。超音波霧化装置32は、予備ミスト受容器31が気液分離した過酸化水素水を微細なミスト61に変換してアイソレーター10の内部に放出する。 The mist discharging means 30 includes a preliminary mist receptor 31 and an ultrasonic atomizing device 32. The preliminary mist receptor 31 receives the preliminary mist supplied via the preliminary mist supply pipe (not shown) and separates the gas and liquid into the hydrogen peroxide solution and the air, and the air separated from the preliminary mist. Is released to the outside (detailed structure will be described later). The ultrasonic atomizer 32 converts the hydrogen peroxide solution separated by the preliminary mist receptor 31 into a fine mist 61 and discharges it into the isolator 10.
 収束超音波発生手段40は、超音波霧化装置32の放出口を取り囲むようにアイソレーター10の内部側壁面上部に配置した4個の振動盤41a~41dから構成されている。ここで、超音波霧化装置32の放出口から各振動盤41a~41dまでの距離は、特に限定するものではないが、例えば、0~200mm、好ましくは、0~100mm程度であってもよい。 The convergent ultrasonic wave generating means 40 is composed of four vibrating discs 41a to 41d arranged on the upper part of the inner side wall surface of the isolator 10 so as to surround the discharge port of the ultrasonic atomizing device 32. Here, the distance from the discharge port of the ultrasonic atomizer 32 to each of the vibrating discs 41a to 41d is not particularly limited, but may be, for example, 0 to 200 mm, preferably about 0 to 100 mm. ..
 本実施形態においては、4個の振動盤41a~41dとして、いずれも周波数40kHz付近の超音波を送波する超指向性の超音波発信子(DC12V、50mA)を使用した。なお、振動盤の個数は、2個以上好ましくは3個以上の複数であればよい。また、各振動盤に配置する超音波発信子の種類と個数、大きさと構造、出力等に関しては、特に限定するものではない。また、本実施形態においては、超音波発信子における超音波発生機構、周波数域及び出力等について特に限定するものではない。 In this embodiment, super-directional ultrasonic transmitters (DC12V, 50mA) that transmit ultrasonic waves having a frequency of around 40 kHz are used as the four vibrating discs 41a to 41d. The number of vibrating discs may be two or more, preferably three or more. Further, the type and number, size and structure, output, etc. of the ultrasonic transmitters arranged in each vibrating panel are not particularly limited. Further, in the present embodiment, the ultrasonic wave generation mechanism, frequency range, output, etc. of the ultrasonic wave transmitter are not particularly limited.
 超指向性の超音波を送波する4個の振動盤41a~41dは、中心に位置する超音波霧化装置32の放出口の放出軸線上の前方で、超音波振動による超音波音響流が収束するように、互いの送波方向を内向きの角度で取り付けられている。ここで、内向きの角度とは、超音波霧化装置32の放出口の放出軸線に対して超音波音響流の仰角が0°より大きく90°より小さくなるような取付角度であり、好ましくは30°以上60°以下となるような取付角度をいう。 The four vibrating discs 41a to 41d that transmit super-directional ultrasonic waves have an ultrasonic acoustic flow due to ultrasonic vibration in front of the discharge axis of the discharge port of the ultrasonic atomizer 32 located at the center. The sound wave directions of each other are attached at an inward angle so as to converge. Here, the inward angle is a mounting angle such that the elevation angle of the ultrasonic acoustic flow is larger than 0 ° and smaller than 90 ° with respect to the discharge axis of the discharge port of the ultrasonic atomizer 32, and is preferable. A mounting angle that is 30 ° or more and 60 ° or less.
 なお、本実施形態においては、4個の振動盤41a~41dを同位相で超音波振動させて、各盤面からそれぞれ垂直方向に超音波による指向性の超音波音響流42a~42dを発生させる。また、各盤面からの送波方向を超音波霧化装置32の放出口の放出軸線上の前方で収束させる。その結果、各振動盤41a~41dから発せられた各超音波音響流42a~42dが焦点43(収束部位43)において互いに強め合うこととなり、この部位に最大のエネルギーが集中する。 In the present embodiment, the four vibrating discs 41a to 41d are ultrasonically vibrated in the same phase to generate directional ultrasonic acoustic flows 42a to 42d from each disc surface in the vertical direction. Further, the wave transmission direction from each board surface is converged in front of the emission axis of the emission port of the ultrasonic atomizer 32. As a result, the ultrasonic acoustic flows 42a to 42d emitted from the vibrating discs 41a to 41d strengthen each other at the focal point 43 (converging portion 43), and the maximum energy is concentrated in this portion.
 このことから、超音波霧化装置32の放出口からアイソレーター10の内部に放出された過酸化水素水の微細なミスト61は、集中した音響流の最大エネルギーを得ることとなり、更に微細化して過酸化水素水の超微細ミスト60となる。更に、収束した超音波音響流のエネルギーは、超微細ミスト60を形成すると共にガス化を促進し、更に超微細ミスト60に対してミスト進行方向への超音波音響流の押圧を作用させる。このことにより、超微細ミスト60は、アイソレーター10の内部のより離れた位置まで隈なく分散・到達することができる。 From this, the fine mist 61 of the hydrogen peroxide solution discharged into the inside of the isolator 10 from the discharge port of the ultrasonic atomizer 32 obtains the maximum energy of the concentrated acoustic flow, and is further refined. It becomes an ultrafine mist 60 of hydrogen peroxide water. Further, the energy of the converged ultrasonic acoustic flow forms the ultrafine mist 60 and promotes gasification, and further causes the ultrafine mist 60 to press the ultrasonic acoustic flow in the mist traveling direction. As a result, the ultrafine mist 60 can be dispersed and reached evenly to a distant position inside the isolator 10.
 なお、制御装置(図示せず)を採用することにより、4個の振動盤41a~41dの各超音波発信子の周波数、出力、発信時間を制御すると共に、超音波の発信を間欠作動又は強弱作動させることにより、超微細ミスト60に作用する音響放射圧による押圧を変化させて分散・到達を制御するようにしてもよい。 By adopting a control device (not shown), the frequency, output, and transmission time of each ultrasonic transmitter of the four vibrating discs 41a to 41d are controlled, and the ultrasonic transmission is intermittently operated or strengthened. By operating it, the pressure due to the acoustic radiation pressure acting on the ultrafine mist 60 may be changed to control the dispersion / arrival.
 アイソレーター10の内部に隈なく分散・到達した過酸化水素水の超微細ミスト60は、その粒径が小さく表面積が大きくなることから、ミストの蒸発効率が高く蒸発と凝縮とを盛んに繰り返す。その結果、超微細ミスト60中の過酸化水素ガス濃度が高くなり、アイソレーター10の内壁面及び内部に配置された機器類の外表面に均一且つ薄層の凝縮膜を形成する。このことにより、アイソレーター10の内壁面や内部の機器類の外表面に無駄な凝縮を起こすことがなく、少量の過酸化水素水の供給で高度な除染環境を発現する。また、少量の過酸化水素水で効率よく除染できるので、アイソレーター10の内部に残留した超微細ミスト60の凝縮膜のエアレーションの効率も向上し除染操作の短時間化が可能となる。 The ultrafine mist 60 of the hydrogen peroxide solution that has been dispersed and reached the inside of the isolator 10 has a small particle size and a large surface area, so that the evaporation efficiency of the mist is high and evaporation and condensation are actively repeated. As a result, the concentration of hydrogen peroxide gas in the ultrafine mist 60 becomes high, and a uniform and thin condensed film is formed on the inner wall surface of the isolator 10 and the outer surface of the equipment arranged inside. As a result, a high degree of decontamination environment is developed by supplying a small amount of hydrogen peroxide solution without causing unnecessary condensation on the inner wall surface of the isolator 10 and the outer surface of the internal equipment. Further, since decontamination can be efficiently performed with a small amount of hydrogen peroxide solution, the efficiency of aeration of the condensed film of the ultrafine mist 60 remaining inside the isolator 10 is improved, and the decontamination operation can be shortened.
 ここで、ミスト放出手段30について説明する。図3は、超微細ミスト供給システムを構成するミスト放出手段の1例を示す(A)正面図、(B)側面断面図である。図3において、ミスト放出手段30は、予備ミスト受容器31と超音波霧化装置32とから構成されている。 Here, the mist discharging means 30 will be described. FIG. 3 is a front view (A) and a side sectional view (B) showing an example of a mist discharging means constituting an ultrafine mist supply system. In FIG. 3, the mist discharging means 30 is composed of a preliminary mist receptor 31 and an ultrasonic atomizing device 32.
 予備ミスト受容器31は、正面内部が半紡錘形の断面をした空間を構成し、半紡錘形の幅が集束する正面下端部に超音波霧化装置32が取り付けられている。この内部空間の下端部は、気液分離した少量の過酸化水素水の液溜り31aの機能を有するために幅が集束している。また、予備ミスト受容器31の背面下端部(超音波霧化装置32に対向する位置)には、予備ミスト供給配管53aの末端が予備ミスト受容器31の内部に向けて連通している。予備ミスト受容器31の背面内部の上端部には、空気抜き31bが開口している。予備ミスト受容器31の内部中央の予備ミスト供給配管53aの末端と空気抜き31bとの間に邪魔板31cが設けられている。 The preliminary mist receptor 31 constitutes a space having a semi-spindle-shaped cross section inside the front surface, and an ultrasonic atomizer 32 is attached to the lower end portion of the front surface where the width of the semi-spindle shape is focused. The lower end of this internal space is narrowed in width because it has the function of a liquid reservoir 31a of a small amount of hydrogen peroxide solution separated by gas and liquid. Further, the end of the spare mist supply pipe 53a communicates with the inside of the spare mist receiver 31 at the lower end portion of the back surface of the spare mist receiver 31 (position facing the ultrasonic atomizer 32). An air vent 31b is opened at the upper end of the back surface of the preliminary mist receptor 31. A baffle plate 31c is provided between the end of the spare mist supply pipe 53a in the center of the inside of the spare mist receiver 31 and the air vent 31b.
 超音波霧化装置32は、気液分離した過酸化水素水を霧化する複数の微細孔(図示せず)が表裏を貫通して設けられた略円板状の多孔振動板32aと、この多孔振動板32aを膜振動させる略円環板状に形成された圧電振動子32bと、この圧電振動子32bの振動を制御する制御装置(図示せず)とから構成されている。多孔振動板32aは、圧電振動子32bの内孔部を覆うように圧電振動子32bに貼り合わされている。 The ultrasonic atomizer 32 includes a substantially disk-shaped porous diaphragm 32a provided with a plurality of micropores (not shown) penetrating the front and back surfaces for atomizing the gas-liquid separated hydrogen peroxide solution. It is composed of a piezoelectric vibrator 32b formed in a substantially annular plate shape that causes the porous diaphragm 32a to vibrate in a film, and a control device (not shown) for controlling the vibration of the piezoelectric vibrator 32b. The porous diaphragm 32a is attached to the piezoelectric vibrator 32b so as to cover the inner hole portion of the piezoelectric vibrator 32b.
 また、多孔振動板32aは、その表面をアイソレーター10の内部(図示左方向)に向け、裏面を予備ミスト受容器31の内部に向けて取り付けられており、多孔振動板32aの複数の微細孔がアイソレーター10の内部と予備ミスト受容器31の内部とを貫通している。なお、図3においては、多孔振動板32aの表面から水平方向に向けて過酸化水素水ミストを放出するように配設されているが、これに限るものではなく、下方に向けて或いは配設位置によっては上方に向けて放出するようにしてもよい。 Further, the porous diaphragm 32a is attached with its front surface facing the inside of the isolator 10 (in the left direction in the drawing) and the back surface facing the inside of the preliminary mist receptor 31, and a plurality of micropores of the porous diaphragm 32a are attached. It penetrates the inside of the isolator 10 and the inside of the reserve mist receptor 31. In FIG. 3, the surface of the porous diaphragm 32a is arranged so as to discharge the hydrogen peroxide solution mist in the horizontal direction, but the present invention is not limited to this, and the perforated diaphragm 32a is arranged downward or arranged. Depending on the position, it may be discharged upward.
 この状態において、予備ミストが予備ミスト供給配管53aを介して予備ミスト受容器31の内部に放出される。予備ミスト受容器31の内部では多孔振動板32aの裏面と予備ミスト供給配管53aの末端とが対向している。このことにより、放出された予備ミストは、直接、多孔振動板32aの裏面に吐出されて気液分離される。この気液分離された過酸化水素水は、超音波振動する多孔振動板32aの複数の微細孔を介して微細なミスト(過酸化水素水ミスト)となって、アイソレーター10の内部に放出され除染効果を発揮する。 In this state, the spare mist is discharged to the inside of the spare mist receptor 31 via the spare mist supply pipe 53a. Inside the spare mist receiver 31, the back surface of the porous diaphragm 32a and the end of the spare mist supply pipe 53a face each other. As a result, the released preliminary mist is directly discharged to the back surface of the porous diaphragm 32a and separated into gas and liquid. This gas-liquid separated hydrogen peroxide solution becomes fine mist (hydrogen peroxide solution mist) through a plurality of micropores of the porous diaphragm 32a that vibrates ultrasonically, and is released to the inside of the isolator 10 to remove the hydrogen peroxide solution. Demonstrates a dyeing effect.
 なお、多孔振動板32aの裏面で気液分離した過酸化水素水の一部が液溜り31aに留保されることがあっても、これらは極少量であり多孔振動板32aの複数の微細孔を介して微細なミストとなって、アイソレーター10の内部に放出される。一方、気液分離された空気は、空気抜き31bから外部に放出される。 Even if a part of the hydrogen peroxide solution separated by gas and liquid on the back surface of the porous diaphragm 32a is retained in the liquid pool 31a, these are extremely small amounts and form a plurality of micropores in the porous diaphragm 32a. It becomes a fine mist through it and is discharged into the inside of the isolator 10. On the other hand, the air separated by gas and liquid is discharged to the outside from the air vent 31b.
 このように、超音波霧化装置32に供給する過酸化水素水の量を必要最小限に精度よく制御できるので、除染対象とする1室又は複数室のアイソレーター10に対して長い距離の配管を設置した場合でも、過酸化水素水の残留を回避して効率的な除染を行うことができる。更に、このようにアイソレーター10に正確な量の過酸化水素水ミストを供給できるので、過酸化水素水が欠乏して超音波霧化装置32の心臓部である超音波振動子に故障が発生することがない。また、必要最小限の過酸化水素水の量で十分な除染効果を得ることができ、過酸化水素水の効率的利用を図ることができる。 In this way, since the amount of hydrogen peroxide solution supplied to the ultrasonic atomizer 32 can be accurately controlled to the minimum necessary, piping over a long distance with respect to the isolator 10 in one room or a plurality of rooms to be decontaminated. Even when the above is installed, it is possible to avoid the residual hydrogen peroxide solution and perform efficient decontamination. Further, since an accurate amount of hydrogen peroxide solution mist can be supplied to the isolator 10 in this way, the hydrogen peroxide solution is deficient and the ultrasonic vibrator, which is the heart of the ultrasonic atomizer 32, fails. Never. In addition, a sufficient decontamination effect can be obtained with the minimum amount of hydrogen peroxide solution required, and the hydrogen peroxide solution can be efficiently used.
 ここで、多孔振動板32aの微細孔の孔径及び穴数は、特に限定するものではなく、超音波霧化効果と過酸化水素水ミストの十分な供給量を確保できるものであればよい。なお、通常は4~11μm程度の孔径を有するものであるが、細菌の芽胞のサイズより小さいもの(例えば、0.5~3μm程度)の孔径を選択すれば、フィルタ効果を発揮して細菌によって過酸化水素水が汚染することがない。 Here, the pore diameter and the number of fine pores of the porous diaphragm 32a are not particularly limited, and may be any one as long as it can secure the ultrasonic atomization effect and a sufficient supply amount of hydrogen peroxide solution mist. Normally, the pore size is about 4 to 11 μm, but if a pore size smaller than the size of the spore of the bacterium (for example, about 0.5 to 3 μm) is selected, the filter effect is exhibited and the bacteria can exert the effect. Hydrogen peroxide solution is not contaminated.
 ここで、上記構成に係る超微細ミスト供給システムの作用効果を実施例により説明する。なお、本実施例においては、図1に示したアイソレーター10で実施した。アイソレーター10の内部には、超微細ミスト供給システム20と、過酸化水素ガス濃度測定装置70及び作業用グローブ80とが離れた位置に配備されている。 Here, the operation and effect of the ultrafine mist supply system according to the above configuration will be described by way of examples. In this example, the isolator 10 shown in FIG. 1 was used. Inside the isolator 10, the ultrafine mist supply system 20, the hydrogen peroxide gas concentration measuring device 70, and the work glove 80 are arranged at separate positions.
 本実施例において、アイソレーター10は、容積4m(幅3m×奥行1m×高さ1.3m)の閉鎖空間であって、4種類の除染試験(実施例1及び比較例1~3)を行った。まず、本発明に係る実施例1(これを試験Xとする)として、超微細ミスト供給システム20を使用してアイソレーター10の内部に過酸化水素水(35重量%)を供給した。なお、試験Xにおいては、予備ミスト供給手段50を使用して、超微細ミスト供給システム20のミスト放出手段30に予備ミストを供給した。なお、試験Xにおける過酸化水素水の供給量は、予め行った予備試験の結果から12.5g/m、除染時間60分(エアレーション時間を含む)とした。 In this embodiment, the isolator 10 is a closed space having a volume of 4 m 3 (width 3 m × depth 1 m × height 1.3 m), and four types of decontamination tests (Example 1 and Comparative Examples 1 to 3) are performed. went. First, as Example 1 (referred to as Test X) according to the present invention, hydrogen peroxide solution (35% by weight) was supplied to the inside of the isolator 10 using the ultrafine mist supply system 20. In the test X, the preliminary mist was supplied to the mist discharging means 30 of the ultrafine mist supply system 20 by using the preliminary mist supplying means 50. The amount of hydrogen peroxide solution supplied in Test X was 12.5 g / m 3 and a decontamination time of 60 minutes (including aeration time) based on the results of the preliminary test conducted in advance.
 次に、比較例1(これを試験Wとする)として、超微細ミスト供給システム20のうちミスト放出手段30のみを使用し、収束超音波発生手段40を停止してアイソレーター10の内部に過酸化水素水を供給した。なお、試験Wにおいては、実施例1(試験X)と同様に予備ミスト供給手段50を使用して、ミスト放出手段30に予備ミストを供給した。なお、試験Wにおける過酸化水素水の供給量は、実施例1(試験X)と同様に12.5g/m、除染時間60分(エアレーション時間を含む)とした。 Next, as Comparative Example 1 (this is referred to as test W), only the mist discharging means 30 of the ultrafine mist supply system 20 is used, the convergent ultrasonic generating means 40 is stopped, and the inside of the isolator 10 is peroxidized. Hydrogen peroxide water was supplied. In Test W, the preliminary mist was supplied to the mist discharging means 30 by using the preliminary mist supplying means 50 as in Example 1 (Test X). The amount of hydrogen peroxide solution supplied in Test W was 12.5 g / m 3 and a decontamination time of 60 minutes (including aeration time) as in Example 1 (Test X).
 次に、比較例2(これを試験Yとする)として、超微細ミスト供給システム20を使用することなく、従来法である過酸化水素ガス供給装置(フラッシュ・エバポレーター)を使用してアイソレーター10の内部に過酸化水素ガスを供給した。なお、試験Yにおいては、予備ミスト供給手段50を使用することなく、過酸化水素水タンクから過酸化水素ガス供給装置に過酸化水素水を供給した。なお、試験Yにおける過酸化水素水の供給量は、実施例1(試験X)と同様に12.5g/m、除染時間60分(エアレーション時間を含む)とした。 Next, as Comparative Example 2 (this is referred to as Test Y), the isolator 10 uses a conventional hydrogen peroxide gas supply device (flash evaporator) without using the ultrafine mist supply system 20. Hydrogen peroxide gas was supplied to the inside. In Test Y, hydrogen peroxide solution was supplied from the hydrogen peroxide solution tank to the hydrogen peroxide gas supply device without using the preliminary mist supply means 50. The amount of hydrogen peroxide solution supplied in Test Y was 12.5 g / m 3 and the decontamination time was 60 minutes (including the aeration time) as in Example 1 (Test X).
 次に、比較例3(これを試験Zとする)として、比較例2(試験Y)と同様に従来法である過酸化水素ガス供給装置(フラッシュ・エバポレーター)を使用してアイソレーター10の内部に過酸化水素水を供給した。なお、試験Zにおける過酸化水素水の供給量は、比較例2(試験Y)よりも増量して40.0g/mとし、除染時間も90分(エアレーション時間を含む)と長くした。 Next, as Comparative Example 3 (this is referred to as Test Z), a hydrogen peroxide gas supply device (flash evaporator), which is a conventional method as in Comparative Example 2 (Test Y), is used inside the isolator 10. Hydrogen peroxide solution was supplied. The amount of hydrogen peroxide solution supplied in Test Z was increased to 40.0 g / m 3 as compared with Comparative Example 2 (Test Y), and the decontamination time was also lengthened to 90 minutes (including aeration time).
 なお、実施例1(試験X)及び比較例1~3(試験W、Y、Z)において、除染工程前のアイソレーター10の内部は、所定の調温・調湿操作を行ってから実験を行った。また、除染工程後のアイソレーター10の内部は、所定のエアレーション操作を行った。 In Example 1 (Test X) and Comparative Examples 1 to 3 (Tests W, Y, Z), the inside of the isolator 10 before the decontamination step is subjected to a predetermined temperature and humidity control operation before conducting an experiment. went. Further, the inside of the isolator 10 after the decontamination step was subjected to a predetermined aeration operation.
 ここで、実施例1(試験X)及び比較例1~3(試験W、Y、Z)における過酸化水素ガス濃度の試験結果を示す。図4は、本実施例の各試験におけるアイソレーターの内部の過酸化水素ガス濃度の測定結果を示すグラフである。図4において、過酸化水素水を同じ量(12.5g/m)供給した試験X、W、Yを比較すると、実施例1(試験X)における過酸化水素ガス濃度が非常に高くなっていることが分かる。このことから、超微細ミスト供給システム20の収束超音波発生手段40の作用により、超微細ミストと凝縮膜の再蒸発と凝縮とが繰り返されてガス化が促進され、過酸化水素ガス濃度が高くなっているものと考えられる。 Here, the test results of the hydrogen peroxide gas concentration in Example 1 (Test X) and Comparative Examples 1 to 3 (Tests W, Y, Z) are shown. FIG. 4 is a graph showing the measurement results of the hydrogen peroxide gas concentration inside the isolator in each test of this example. In FIG. 4, when the tests X, W, and Y supplied with the same amount of hydrogen peroxide solution (12.5 g / m 3 ) are compared, the hydrogen peroxide gas concentration in Example 1 (Test X) becomes very high. You can see that there is. From this, due to the action of the convergent ultrasonic generation means 40 of the ultrafine mist supply system 20, reevaporation and condensation of the ultrafine mist and the condensed film are repeated to promote gasification, and the concentration of hydrogen peroxide gas is high. It is thought that it has become.
 一方、比較例1(試験W)における過酸化水素ガス濃度は、超音波振動子の作用で微細なミストを形成していることから、超音波振動子の作用を介さない比較例2(試験Y)に比べても過酸化水素ガス濃度は高くなっている。しかし、実施例1(試験X)に比べると、過酸化水素ガス濃度は低いものとなっている。また、従来法である比較例2(試験Y)における過酸化水素ガス濃度は、過酸化水素ガスで供給されているにも拘らず、均一な分散・到達ができず不均一で部分的な厚い凝縮膜が形成されているものと考えられる。 On the other hand, since the hydrogen peroxide gas concentration in Comparative Example 1 (Test W) forms a fine mist by the action of the ultrasonic transducer, Comparative Example 2 (Test Y) does not involve the action of the ultrasonic transducer. ), The hydrogen peroxide gas concentration is higher. However, the concentration of hydrogen peroxide gas is lower than that of Example 1 (Test X). Further, the hydrogen peroxide gas concentration in Comparative Example 2 (Test Y), which is a conventional method, is uneven and partially thick because it cannot be uniformly dispersed and reached even though it is supplied with hydrogen peroxide gas. It is considered that a condensed film is formed.
 また、過酸化水素水の供給量を3倍以上と多くした比較例3(試験Z)における過酸化水素ガス濃度は、比較例1(試験W)を若干上回るものとなっているが、実施例1(試験X)に比べて依然低い値となっている。更に、比較例3(試験Z)においては、過酸化水素水の供給量が多いことから、アイソレーターの内部の湿度がかなり変動していることが分かる。 Further, the hydrogen peroxide gas concentration in Comparative Example 3 (Test Z) in which the supply amount of hydrogen peroxide solution was increased to 3 times or more was slightly higher than that of Comparative Example 1 (Test W), but the example. The value is still lower than that of 1 (test X). Further, in Comparative Example 3 (Test Z), it can be seen that the humidity inside the isolator fluctuates considerably because the supply amount of the hydrogen peroxide solution is large.
 次に、実施例1(試験X)及び比較例1~3(試験W、Y、Z)における除染効果の試験結果を示す。本実施例においては、アイソレーター10の内部に配備された作業用グローブ80の12か所に酵素インジケーター:EI(Enzyme Indicator)を貼付して除染効果を確認した。 Next, the test results of the decontamination effect in Example 1 (Test X) and Comparative Examples 1 to 3 (Tests W, Y, Z) are shown. In this example, the enzyme indicator: EI (Enzyme Indicator) was attached to 12 places of the work glove 80 deployed inside the isolator 10 to confirm the decontamination effect.
 酵素インジケーター:EIは、試験後に残存酵素活性を蛍光測定し除染効果を確認するものであり、従来のBI(Biological Indicator)に比べ、培養操作が不要で短時間で除染効果を確認することができる。近年、BIとの比較同等性が確認され、普及が進んでいる。除染後のEIの蛍光強度から菌数の対数減少に換算したLRD値(Log Spore Reduction)を計算し、アイソレーター内部の充分な除染効果として認められる4~6LRD又はそれ以上を合格と判断した。 Enzyme indicator: EI is to confirm the decontamination effect by fluorescently measuring the residual enzyme activity after the test, and it does not require a culture operation and confirms the decontamination effect in a short time compared to the conventional BI (Biological Indicator). Can be done. In recent years, comparative equivalence with BI has been confirmed, and it is becoming more widespread. The LRD value (Log Spore Reduction) converted from the fluorescence intensity of EI after decontamination converted into the logarithm reduction of the number of bacteria was calculated, and 4 to 6 LRD or more recognized as a sufficient decontamination effect inside the isolator was judged to be acceptable. ..
 図5は、本実施例の各試験におけるアイソレーターの内部に配備された作業用グローブの各部位の除染効果であって、(A)作業用グローブに酵素インジケーターを貼付した部位、(B)酵素インジケーターのLRD値を示すグラフである。また、これら12か所の酵素インジケーターのLRD値を表1に示す。 FIG. 5 shows the decontamination effect of each part of the work glove deployed inside the isolator in each test of this example, (A) the part where the enzyme indicator is attached to the work glove, and (B) the enzyme. It is a graph which shows the LRD value of an indicator. Table 1 shows the LRD values of these 12 enzyme indicators.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 図5及び表1から分かるように、LRD値が4~6LRD又はそれ以上を合格と判断した場合、実施例1(試験X)及び比較例3(試験Z)においては、12か所の全てで4LRDに達して合格となり、均一に除染されていることが分かる。これに対して、比較例1、2(試験W、Y)のLRD値は、4LRDに達しない除染不十分領域が多く認められた。 As can be seen from FIG. 5 and Table 1, when the LRD value of 4 to 6 LRD or more is judged to be acceptable, in Example 1 (Test X) and Comparative Example 3 (Test Z), all 12 locations are used. It reaches 4 LRD and passes, and it can be seen that the decontamination is uniform. On the other hand, the LRD values of Comparative Examples 1 and 2 (Tests W and Y) showed many insufficient decontamination regions that did not reach 4 LRD.
 除染効果が合格とされた実施例1(試験X)と比較例3(試験Z)を比べると、比較例3(試験Z)は、実施例1(試験X)に比べて過酸化水素水の供給量が多く、除染時間も長く要している。更に、LRD値を比較しても、実施例1(試験X)の方が、全体にLRD値が大きく少量の過酸化水素水で効率よく除染されていることが分かる。これらのことから、本実施形態に係る除染装置の効果として、過酸化水素水投入量の大幅削減が明らかであると共に、過酸化水素水の超微細ミストが放出口から離れた位置まで隈なく分散・到達していることが分かる。また、これに伴い、除染後のエアレーションの時間も短縮されることが分かる。 Comparing Example 1 (Test X) and Comparative Example 3 (Test Z) in which the decontamination effect was passed, Comparative Example 3 (Test Z) is a hydrogen peroxide solution as compared with Example 1 (Test X). The amount of hydrogen peroxide supplied is large, and the decontamination time is long. Furthermore, even when the LRD values are compared, it can be seen that Example 1 (Test X) has a larger LRD value as a whole and is efficiently decontaminated with a small amount of hydrogen peroxide solution. From these facts, it is clear that the effect of the decontamination apparatus according to the present embodiment is that the amount of hydrogen peroxide solution input is significantly reduced, and that the ultrafine mist of hydrogen peroxide solution is completely removed from the discharge port. It can be seen that it is dispersed and reached. In addition, it can be seen that the aeration time after decontamination is also shortened accordingly.
 よって、本実施形態によれば、除染液を超微細なミストとすることにより、除染対象室に少量で適正量の除染液を供給すると共に、除染対象室の内部に隈なく分散・到達させることができるので、除染効果の完璧を図ると共に、エアレーションなどの作業時間を短縮して除染作業の効率化を図ることのできる超微細ミスト供給システムを提供することができる。 Therefore, according to the present embodiment, by making the decontamination liquid an ultrafine mist, a small amount of an appropriate amount of the decontamination liquid is supplied to the decontamination target room, and the decontamination liquid is evenly dispersed inside the decontamination target room. -Since it can be reached, it is possible to provide an ultrafine mist supply system that can achieve perfect decontamination effect, shorten work time such as aeration, and improve efficiency of decontamination work.
 なお、本発明の実施にあたり、上記実施形態に限らず、次のような種々の変形例が挙げられる。
(1)上記実施形態においては、予備ミスト供給手段を使用して、超微細ミスト供給システムのミスト放出手段に予備ミストを供給した。しかし、これに限るものではなく、予備ミストを介することなくミスト放出手段に過酸化水素水を直接供給するようにしてもよい。
(2)上記実施形態においては、複数の振動盤を超音波霧化装置の放出口を取り囲むようにアイソレーターの内部側壁面上部に配置した。しかし、これに限るものではなく、超音波霧化装置の放出口から放出されるミストの中心部に、各振動盤の超音波発振子から送波された超音波音響流を収束させられる位置であればよい。
(3)上記実施形態においては、超微細ミスト供給システムをアイソレーターの側壁面上部に配備した。しかし、これに限るものではなく、アイソレーターなどの除染対象室の内部へ過酸化水素水の超微細ミストの均一な分散・到達を行うことができるのであれば、他の壁面に配備するようにしてもよい。
(4)上記実施形態においては、1室のアイソレーターに対して1台の超微細ミスト供給システムを配備した。しかし、これに限るものではなく、アイソレーターなどの除染対象室の容積が大きい場合には、複数の超微細ミスト供給システムを配備するようにしてもよい。このことにより、除染対象室の内部への過酸化水素水の超微細ミストの均一な分散・到達を図ることができ、除染効率が向上する。
(5)上記実施形態においては、1台の予備ミスト供給手段から1室のアイソレーターに対して予備ミストを供給した。しかし、これに限るものではなく、各室にそれぞれ超微細ミスト供給システムを配備した複数のアイソレーターに対して、1台の予備ミスト供給手段から予備ミストを供給するようにしてもよい。
In carrying out the present invention, not only the above-described embodiment but also various modifications as follows can be mentioned.
(1) In the above embodiment, the preliminary mist is supplied to the mist discharging means of the ultrafine mist supply system by using the preliminary mist supplying means. However, the present invention is not limited to this, and the hydrogen peroxide solution may be directly supplied to the mist discharging means without using the preliminary mist.
(2) In the above embodiment, a plurality of vibrating discs are arranged on the upper part of the inner side wall surface of the isolator so as to surround the discharge port of the ultrasonic atomizer. However, the present invention is not limited to this, and the ultrasonic acoustic flow transmitted from the ultrasonic oscillator of each vibrating disc can be converged at the center of the mist emitted from the discharge port of the ultrasonic atomizer. All you need is.
(3) In the above embodiment, the ultrafine mist supply system is installed on the upper side wall surface of the isolator. However, it is not limited to this, and if it is possible to uniformly disperse and reach the ultrafine mist of hydrogen peroxide solution inside the decontamination target room such as an isolator, deploy it on another wall surface. You may.
(4) In the above embodiment, one ultrafine mist supply system is provided for one isolator. However, the present invention is not limited to this, and if the volume of the decontamination target chamber such as an isolator is large, a plurality of ultrafine mist supply systems may be deployed. As a result, the ultrafine mist of the hydrogen peroxide solution can be uniformly dispersed and reached inside the decontamination target chamber, and the decontamination efficiency is improved.
(5) In the above embodiment, the spare mist is supplied from one spare mist supply means to one isolator in one chamber. However, the present invention is not limited to this, and the spare mist may be supplied from one spare mist supply means to a plurality of isolators in which an ultrafine mist supply system is provided in each room.
10…アイソレーター、20…超微細ミスト供給システム、30…ミスト放出手段、
31…予備ミスト受容器、31a…液溜り、31b…空気抜き、31c…邪魔板、
32…超音波霧化装置、32a…多孔振動板、32b…圧電振動子、
40…収束超音波発生手段、41a~41d…振動盤、42a~42d…超音波音響流、
43…焦点(収束部位)、50…予備ミスト供給手段、51…空気圧縮機、
51a…空気供給配管、52…過酸化水素水タンク、52a…除染液供給配管、
52b…供給ポンプ、52c…秤量計、53…エジェクタ、
53a…予備ミスト供給配管、60…超微細ミスト、61…ミスト、
70…過酸化水素ガス濃度測定装置、80…作業用グローブ。
10 ... isolator, 20 ... ultrafine mist supply system, 30 ... mist release means,
31 ... Reserve mist receptor, 31a ... Liquid pool, 31b ... Air bleeder, 31c ... Obstacle plate,
32 ... ultrasonic atomizer, 32a ... porous diaphragm, 32b ... piezoelectric vibrator,
40 ... Convergent ultrasonic generation means, 41a to 41d ... Vibration disc, 42a to 42d ... Ultrasonic acoustic flow,
43 ... Focus (convergence site), 50 ... Preliminary mist supply means, 51 ... Air compressor,
51a ... Air supply pipe, 52 ... Hydrogen peroxide water tank, 52a ... Decontamination liquid supply pipe,
52b ... Supply pump, 52c ... Weighing meter, 53 ... Ejector,
53a ... Spare mist supply piping, 60 ... Ultrafine mist, 61 ... Mist,
70 ... Hydrogen peroxide gas concentration measuring device, 80 ... Working gloves.

Claims (4)

  1.  除染対象室の内部に除染液のミストを放出するミスト放出手段と、放出された前記除染液のミストを超微細化してガス化を促進し、前記除染対象室の内部に隈なく分散・到達させる収束超音波発生手段とを有し、
     前記ミスト放出手段は、前記除染液を微細なミストに変換して放出口から前記除染対象室の内部に放出する超音波霧化装置を備え、
     前記収束超音波発生手段は、前記超音波霧化装置の放出口の付近に複数の振動盤を備え、当該複数の振動盤を同位相で超音波振動させて各盤面からそれぞれ垂直方向に超音波による指向性の超音波音響流を発生させ、各超音波音響流の指向方向が前記超音波霧化装置の放出口から放出される前記ミストの放出方向前方で収束するように前記複数の振動盤を配置することにより、
     前記超音波霧化装置の放出口から放出された前記ミストを更に微細化した超微細ミストに変換すると共にガス化を促進し、当該超微細ミストを前記放出口から離れた位置まで到達させることを特徴とする超微細ミスト供給システム。
    A mist discharging means that discharges the mist of the decontamination liquid into the decontamination target room, and the released decontamination liquid mist is made ultrafine to promote gasification, and the inside of the decontamination target room is completely filled. It has a means for generating convergent ultrasonic waves to disperse and reach.
    The mist discharging means includes an ultrasonic atomizing device that converts the decontaminating liquid into fine mist and discharges it from a discharge port into the inside of the decontamination target chamber.
    The convergent ultrasonic generating means is provided with a plurality of vibrating discs in the vicinity of the discharge port of the ultrasonic atomizing device, and the plurality of vibrating discs are ultrasonically vibrated in the same phase to ultrasonic waves in the vertical direction from each disc surface. The plurality of vibrating discs generate a directional ultrasonic acoustic flow due to the above, and the directing direction of each ultrasonic acoustic flow converges in front of the emission direction of the mist emitted from the emission port of the ultrasonic atomizer. By arranging
    The mist discharged from the discharge port of the ultrasonic atomizer is converted into finer ultrafine mist and gasification is promoted so that the ultrafine mist reaches a position away from the discharge port. An ultra-fine mist supply system that features it.
  2.  前記ミスト放出手段に前記除染液を予備ミストとして供給する予備ミスト供給手段を有し、
     前記予備ミスト供給手段は、圧縮空気を発生する圧縮空気発生装置と、前記除染液を供給する除染液供給装置と、前記圧縮空気と前記除染液とを気液混合して予備ミストを発生する予備ミスト発生装置と、前記圧縮空気発生装置から前記予備ミスト発生装置までの間を連通する空気供給配管と、前記除染液供給装置から前記予備ミスト発生装置までの間を連通する除染液供給配管と、前記予備ミスト発生装置から前記ミスト放出手段までの間を連通する予備ミスト供給配管とを備え、
     前記ミスト放出手段は、予備ミスト受容器を備え、当該予備ミスト受容器は、前記予備ミスト供給配管を介して供給された予備ミストから気液分離した空気を外部に放出する空気抜きを具備し、
     前記超音波霧化装置は、圧電振動子と当該圧電振動子の振動により、気液分離された除染液を霧化する複数の微細孔が表裏を貫通して設けられた多孔振動板とを備え、当該多孔振動板の表面を前記放出口として前記除染対象室の内部に向けていることを特徴とする請求項1に記載の超微細ミスト供給システム。
    The mist discharging means has a preliminary mist supplying means for supplying the decontaminating liquid as a preliminary mist.
    The preliminary mist supply means is a gas-liquid mixture of a compressed air generator that generates compressed air, a decontamination liquid supply device that supplies the decontamination liquid, and the compressed air and the decontamination liquid to form a preliminary mist. Decontamination that communicates between the generated preliminary mist generator, the air supply pipe that communicates from the compressed air generator to the preliminary mist generator, and the decontamination liquid supply device to the preliminary mist generator. A liquid supply pipe and a spare mist supply pipe that communicates between the spare mist generator and the mist discharge means are provided.
    The mist discharging means includes a spare mist receptor, and the spare mist receptor is provided with an air vent that discharges air separated from the spare mist supplied through the spare mist supply pipe to the outside.
    The ultrasonic atomizer has a piezoelectric vibrator and a porous diaphragm provided with a plurality of micropores penetrating the front and back to atomize the decontamination liquid separated by gas and liquid by the vibration of the piezoelectric vibrator. The ultrafine mist supply system according to claim 1, wherein the surface of the porous diaphragm is directed to the inside of the decontamination target chamber as the discharge port.
  3.  前記超音波霧化装置は、前記多孔振動板の表面を前記放出口として前記除染対象室の内部に向け、裏面を前記予備ミスト受容器の内部に向けて配設され、
     前記予備ミスト受容器に供給された予備ミストは、前記予備ミスト供給配管から前記多孔振動板の裏面に向けて吐出されて気液分離し、分離した除染液が当該多孔振動板の裏面から表面に移動する際に霧化して当該表面から前記除染対象室の内部に放出されることを特徴とする請求項1又は2に記載の超微細ミスト供給システム。
    The ultrasonic atomizer is disposed with the front surface of the porous diaphragm facing the inside of the decontamination target chamber as the discharge port and the back surface facing the inside of the preliminary mist receptor.
    The spare mist supplied to the preliminary mist receiver is discharged from the preliminary mist supply pipe toward the back surface of the porous diaphragm and separated into gas and liquid, and the separated decontamination liquid is discharged from the back surface to the front surface of the porous diaphragm. The ultrafine mist supply system according to claim 1 or 2, wherein the ultrafine mist supply system is atomized and discharged from the surface of the decontamination target chamber into the inside of the decontamination target chamber.
  4.  前記超音波霧化装置は、前記多孔振動板の表面を前記放出口として前記除染対象室の内部に向け、裏面を前記予備ミスト受容器の内部下端部に設けられた液溜りに向けて配設され、
     前記予備ミスト受容器に供給された予備ミストは、前記予備ミスト供給配管から前記予備ミスト受容器の内部に放出されて気液分離し、分離した除染液が当該予備ミスト受容器の前記液溜りに回収された後に、前記多孔振動板の裏面から表面に移動する際に霧化して当該表面から前記除染対象室の内部に放出されることを特徴とする請求項1又は2に記載の超微細ミスト供給システム。
    In the ultrasonic atomizer, the front surface of the porous diaphragm is directed toward the inside of the decontamination target chamber as the discharge port, and the back surface is directed toward the liquid pool provided at the inner lower end of the preliminary mist receptor. Set up,
    The preliminary mist supplied to the preliminary mist receptor is discharged from the preliminary mist supply pipe into the inside of the preliminary mist receptor and separated into gas and liquid, and the separated decontamination liquid is the liquid pool of the preliminary mist receptor. The superimposing method according to claim 1 or 2, wherein the porous diaphragm is atomized when it moves from the back surface to the front surface of the porous diaphragm and is discharged from the surface to the inside of the decontamination target chamber. Fine mist supply system.
PCT/JP2021/028361 2020-09-04 2021-07-30 Ultrafine mist supply system WO2022049949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546166A JPWO2022049949A1 (en) 2020-09-04 2021-07-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148995 2020-09-04
JP2020-148995 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022049949A1 true WO2022049949A1 (en) 2022-03-10

Family

ID=80491927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028361 WO2022049949A1 (en) 2020-09-04 2021-07-30 Ultrafine mist supply system

Country Status (3)

Country Link
JP (1) JPWO2022049949A1 (en)
TW (1) TW202210109A (en)
WO (1) WO2022049949A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208407A (en) * 1988-02-16 1989-08-22 Nkk Corp Method and apparatus for manufacturing metal powder
JPH04247254A (en) * 1991-01-31 1992-09-03 Mazda Motor Corp Coating device for reaction-curing paint
JP2004267893A (en) * 2003-03-07 2004-09-30 Samco International Inc Atomizer for forming ceramic thin film and thin film manufacturing method using the atomizer
JP2007283164A (en) * 2006-04-12 2007-11-01 Choonpa Jozosho Kk Ultrasonic atomizer for solution
JP2007321227A (en) * 2006-06-05 2007-12-13 Nippon Handa Kk Method for producing particulate metal and particulate metal or alloy thereby
WO2021095465A1 (en) * 2019-11-15 2021-05-20 株式会社エアレックス Decontamination system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208407A (en) * 1988-02-16 1989-08-22 Nkk Corp Method and apparatus for manufacturing metal powder
JPH04247254A (en) * 1991-01-31 1992-09-03 Mazda Motor Corp Coating device for reaction-curing paint
JP2004267893A (en) * 2003-03-07 2004-09-30 Samco International Inc Atomizer for forming ceramic thin film and thin film manufacturing method using the atomizer
JP2007283164A (en) * 2006-04-12 2007-11-01 Choonpa Jozosho Kk Ultrasonic atomizer for solution
JP2007321227A (en) * 2006-06-05 2007-12-13 Nippon Handa Kk Method for producing particulate metal and particulate metal or alloy thereby
WO2021095465A1 (en) * 2019-11-15 2021-05-20 株式会社エアレックス Decontamination system

Also Published As

Publication number Publication date
TW202210109A (en) 2022-03-16
JPWO2022049949A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US6883724B2 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
US20080156320A1 (en) Ultrasonic nebulizer and method for atomizing liquid
KR20170108057A (en) Ultrasonic evaporation element
WO2021090661A1 (en) Decontamination system
US20210228753A1 (en) Decontamination equipment
US9339836B2 (en) Ultrasonic atomization apparatus
JP6539468B2 (en) Ultrasonic atomizer
WO2022049949A1 (en) Ultrafine mist supply system
US20220378964A1 (en) Decontamination system
WO2020196036A1 (en) Decontamination device and pass box in which same is disposed
WO2020230449A1 (en) Pass box
CN113660959B (en) Mist supply device
WO2024075429A1 (en) Decontamination solution and device and method for decontamination using same
TWI839579B (en) Decontamination System (II)
TWI836153B (en) Decontamination system
KR101134912B1 (en) Ultrasonic wave generator using piezo type together with pneumatic type and gasification type spraying apparatus equipped with this
JP2006289219A (en) Mist generator
WO2016019479A1 (en) Ultrasonic atomiser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864007

Country of ref document: EP

Kind code of ref document: A1