WO2023112509A1 - Carbon dioxide emission amount calculation device and program - Google Patents

Carbon dioxide emission amount calculation device and program Download PDF

Info

Publication number
WO2023112509A1
WO2023112509A1 PCT/JP2022/040207 JP2022040207W WO2023112509A1 WO 2023112509 A1 WO2023112509 A1 WO 2023112509A1 JP 2022040207 W JP2022040207 W JP 2022040207W WO 2023112509 A1 WO2023112509 A1 WO 2023112509A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
unit
resource
actual
coffee
Prior art date
Application number
PCT/JP2022/040207
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 近藤
昭彦 松村
Original Assignee
Tesnology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesnology株式会社 filed Critical Tesnology株式会社
Publication of WO2023112509A1 publication Critical patent/WO2023112509A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Definitions

  • the present invention relates to technology for calculating greenhouse gas emissions.
  • Patent Document 1 discloses a technique for understanding greenhouse gas emissions related to the production of each product.
  • Patent Document 1 requires the construction of a large-scale database, and a large capital investment is required for its realization.
  • the present invention has been completed based on the recognition of the above problems, and its main purpose is to provide a technology that can determine the amount of greenhouse gas emissions related to the products manufactured by business operators through appropriate and simple calculations. It is to be.
  • a carbon dioxide emission calculation device includes an input unit for inputting the total quantity of resources used and the quantity of each type of product manufactured, with respect to the manufacture of a plurality of types of products using a common resource;
  • the first condition is that the overall quantity used matches the sum of the product of the basic unit of resources for each type and the production volume of that type.
  • a basic unit calculation unit that calculates the basic unit of resources for each type so as to satisfy the 2 conditions, and indicates the amount of carbon dioxide emitted by the production and / or use of resources in the basic unit of resources for each type.
  • an emissions calculation unit for calculating, by multiplying a predetermined rate, emissions of carbon dioxide caused by resources to obtain each type of product.
  • the amount of greenhouse gas emissions related to the products manufactured by a business can be calculated properly and simply.
  • FIG. 1(A) is a diagram showing the manufacturing process of product A: black coffee.
  • FIG. 1(B) is a diagram showing the manufacturing process of product B: standard coffee.
  • FIG. 1(C) is a diagram showing the manufacturing process of product C: milk coffee.
  • FIG. 2A is a configuration diagram of planned consumption consumption data for product A: black coffee.
  • FIG. 2B is a configuration diagram of planned CO2 emission data for product A: black coffee.
  • FIG. 3A is a configuration diagram of planned consumption consumption data for product B: standard coffee.
  • FIG. 3B is a configuration diagram of planned CO2 emission data for product B: standard coffee.
  • FIG. 4A is a configuration diagram of planned consumption consumption data for product C: milk coffee.
  • FIG. 4B is a configuration diagram of planned consumption consumption data for product C: milk coffee.
  • FIG. 2 illustrates an example of multiple dedicated manufacturing lines
  • FIG. 4 is a diagram showing an example of one shared production line
  • FIG. 2 illustrates serial operation of multiple manufacturing processes
  • FIG. 2 illustrates parallel operation of multiple manufacturing processes
  • FIG. 10 is a diagram showing an example of factors of variation in usage quantity
  • FIG. 10 is a configuration diagram of planned usage quantity data
  • Product A It is a configuration diagram of calculation data of black coffee.
  • Product B A configuration diagram of calculation data for standard coffee.
  • Product C It is a configuration diagram of calculation data of milk coffee. It is a functional block diagram of a CO2 discharge
  • 4 is a flow chart showing a main processing process; It is a flow chart which shows an input screen processing process. It is a figure which shows the example of an input screen.
  • FIG. 4 is a flow chart showing a main processing process
  • It is a flow chart which shows an input screen processing process. It is a figure which shows the example of an input screen.
  • FIG. 4 is a flow
  • FIG. 4 is a configuration diagram of CO2 emission data of coffee grounds; 4 is a configuration diagram of CO2 emission rate data; FIG. It is a figure which shows the example of a proportional division ratio screen.
  • FIG. 4 is a configuration diagram of proportional division ratio data; 4 is a flowchart showing an output screen processing process;
  • FIG. 10 is a diagram showing an example of an output screen;
  • Product A It is a configuration diagram of CO2 emission data of black coffee. It is a figure which shows the example of a specific consumption screen.
  • FIG. 10 is a diagram showing an example of a CO2 emission amount display screen; 3 is a functional block diagram of a user terminal; FIG.
  • CO2 carbon dioxide
  • Resources in this embodiment is a generic term for raw materials, parts and energy required to manufacture a product.
  • FIG. 1A is a diagram showing a manufacturing process 106 for product A: black coffee.
  • Product A The black coffee manufacturing process 106 includes a coffee liquid extraction step 100 a , a black coffee mixing step 102 and a black coffee bottling step 104 .
  • gas and electric power are used to extract coffee concentrate from coffee grounds and water.
  • the black coffee mixing step 102 uses gas and electricity to mix the coffee concentrate, sugar and water to produce a black coffee liquor.
  • the black coffee bottling process 104 uses electricity to bottle and cap the black coffee liquid to produce bottled black coffee 108 .
  • Black coffee generally refers to coffee without milk, whether sweetened or unsweetened. In the present application, sweetened coffee will be described as an example.
  • FIG. 1B is a diagram illustrating the manufacturing process 116 for product B: standard coffee.
  • Product B The standard coffee manufacturing process 116 includes a coffee liquor extraction step 100b, a standard coffee mixing step 112, and a standard coffee bottling step 114.
  • the coffee liquid extraction step 100b is similar to the coffee liquid extraction step 100a.
  • the standard coffee mixing step 112 uses gas and power to mix the coffee stock, milk, sugar and water to form a standard coffee liquor.
  • the standard coffee bottling process 114 uses electricity to bottle and cap the black coffee liquid to produce bottled standard coffee 118 .
  • FIG. 1(C) is a diagram showing a manufacturing process 126 for product C: milk coffee.
  • Product C The milk coffee manufacturing process 126 includes a coffee liquid extraction step 100 c , a milk coffee mixing step 122 and a milk coffee bottling step 124 .
  • the coffee liquid extraction step 100c is similar to the coffee liquid extraction step 100a.
  • the milk coffee bottling process 124 similar to the standard coffee mixing process 112, uses gas and power to mix the coffee concentrate, milk, sugar and water to produce a milk coffee liquor. However, the mixing ratio is different from standard coffee.
  • the milk coffee bottling process 124 uses electricity to bottle and cap the black coffee liquid to produce bottled milk coffee 128 .
  • FIG. 2A is a configuration diagram of planned consumption consumption data for product A: black coffee.
  • the basic unit indicates the expected or actual quantity of raw materials, parts, energy (fuel, electric power), etc. required to produce one product or a prescribed quantity of products.
  • the planned basic unit indicates the basic unit scheduled at the planning stage.
  • Raw materials, parts and energy are examples of categories of resources used to manufacture products.
  • the planned basic unit data indicates the planned consumption of raw materials, parts, and energy resources. For example, when making one product A, it is planned to use 12 g of coffee powder, 10 g of sugar, and 0.2 L of water as raw materials. As parts, we plan to use one bottle and one cap. In addition, we plan to use 0.1 kWh of electric power and 6 L of gas as energy. Milk is not used in product A, but for comparison with other products, the expected basic unit of milk is indicated as 0 g.
  • FIG. 2B is a configuration diagram of planned CO2 emission data for product A: black coffee.
  • the planned basic unit is multiplied by the CO2 emission rate for that resource to obtain the CO2 emissions based on the planned basic unit (hereinafter referred to as "planned CO2 emissions").
  • the CO2 emission rate indicates the amount of CO2 emission per unit amount of resource (eg, g (gram), L (liter), number and kWh, etc.) (see Figure 19).
  • a CO2 emission rate may be empirically determined as the weight of CO2 produced when a unit amount of a resource is produced and when a unit amount is used.
  • the planned CO2 emissions generated to obtain the planned amount of coffee grounds used for one product A is: It is calculated as “12 ⁇ Rc[g]”. If 3 g of CO2 is emitted to obtain 1 g of ground coffee, the CO2 emission rate "Rc” is 3 [g/g]. This means that 12 ⁇ 3 [g] of CO2 will be discharged from one product A if it is carried out as planned. Since no milk is used, the projected CO2 emissions for milk is 0 g. "Rm” in the figure indicates the CO2 emission rate of milk. “Rs” indicates the CO2 emission rate of sugar.
  • the CO2 emission rate of gas takes into account the amount of CO2 emitted during the gas production process and the amount of CO2 generated by combustion of gas in the beverage factory.
  • the CO2 emission rate of a resource is the amount of carbon dioxide emitted by the production and/or use of the resource as a value per unit amount of the resource (e.g., g (grams), L (liters), number and kWh, etc.). Indicates the amount of carbon. Then, by totaling the planned CO2 emissions for each resource, the planned CO2 emissions corresponding to one product A can be obtained.
  • FIG. 3A is a configuration diagram of planned consumption consumption data for product B: standard coffee.
  • Product B Standard coffee differs from black coffee in that it also uses milk as an ingredient.
  • the planned unit consumption of ground coffee, sugar, water, electricity and gas is different from that of product A: black coffee.
  • the planned unit consumption of bottles and caps is the same as for product A: black coffee.
  • Product B standard coffee has a smaller amount of raw coffee liquid to be mixed than product A: black coffee.
  • FIG. 3B is a configuration diagram of planned CO2 emission data for product B: standard coffee.
  • the method of obtaining the planned CO2 emission amount is the same as in the case of product A: black coffee.
  • FIG. 4A is a configuration diagram of planned consumption consumption data for product C: milk coffee.
  • Product C Milk coffee also uses milk as an ingredient.
  • the planned unit consumption of ground coffee, sugar, water, electricity and gas is different for product A: black coffee and product B: standard coffee.
  • the planned unit consumption of milk is higher than that of product B: standard coffee.
  • the planned unit consumption of bottles and caps is the same as for product A: black coffee and product B: standard coffee.
  • Product C With milk coffee, the amount of undiluted coffee solution to be mixed is even smaller, so the planned basic unit of coffee grounds is smaller than that of product B.
  • FIG. 4B is a configuration diagram of planned CO2 emission amount data for product C: milk coffee.
  • the method of obtaining the planned CO2 emission amount is the same as in the case of product A: black coffee and product B: standard coffee.
  • the planned basic unit is an estimated value and may differ from the actual amount used.
  • resources are not necessarily consumed according to the planned basic unit.
  • electricity and gas in particular, it is difficult to accurately predict the unit consumption, and it may not match the actual amount used.
  • this embodiment proposes a method of calculating CO2 emissions based on the actual amount of resource usage.
  • a basic unit hereinafter referred to as “actual basic unit”
  • actual basic unit For example, in the case of a beverage factory that manufactures the three products mentioned above, if it is possible to obtain the quantity of resources used in each of the manufacturing processes for each of the three products, divide the quantity used by the quantity produced.
  • the actual basic unit can be obtained by In the following, the quantity of resources used will be referred to as the “quantity used,” the quantity of products manufactured will be referred to as the “manufactured quantity,” and the quantity of CO2 emitted (e.g., weight and volume) will be referred to as the “CO2 emission "Quantity”. Further, the scheduled basic unit is the quantity planned to be used per product before manufacturing, and the actual basic unit is the quantity actually used per product in manufacturing. Planned basic unit and actual basic unit both mean the quantity of resources per product, and both are basic units.
  • FIG. 5 is a diagram illustrating an example of multiple dedicated manufacturing lines. Ideally, a product A production line dedicated to the production process 106 of product A: black coffee, a production line of product B dedicated to the production process 116 of standard coffee, and a product C: production process 126 of milk coffee. A dedicated production line for the product C is provided separately.
  • the production line for product A includes a coffee liquid extraction machine 700a dedicated to the coffee liquid extraction process 100a, a liquid mixer 702a dedicated to the black coffee mixing process 102, and a bottling machine 704a dedicated to the black coffee bottling process 104.
  • Power meter 710a measures the amount of power used by coffee brewer 700a, liquid blender 702a and bottling machine 704a.
  • Gas meter 712a also measures the amount of gas used in coffee liquor extractor 700a and liquid blender 702a.
  • the actual basic unit of power for product A: black coffee can be obtained. Further, by dividing the measured amount of gas by the number of bottled black coffees 108 produced, the actual unit consumption of gas in product A: black coffee can be obtained.
  • the production line for product B includes a coffee liquid extraction machine 700b dedicated to the coffee liquid extraction process 100b, a liquid mixer 702b dedicated to the standard coffee mixing process 112, and a bottling machine 704a dedicated to the standard coffee bottling process 114.
  • the power meter 710b measures the amount of power used for the coffee liquid extractor 700b, the liquid mixer 702b, and the bottling machine 704b
  • the gas meter 712b measures the amount of gas used for the liquid coffee extractor 700b and the liquid mixer 702b. measure.
  • the actual basic unit of power for product B standard coffee can be obtained. Further, by dividing the measured amount of gas used by the number of bottled standard coffees 118 produced, the actual gas consumption rate for product B: standard coffee can be obtained.
  • the production line for product C includes a coffee liquid extraction machine 700c dedicated to the coffee liquid extraction process 100c, a liquid mixer 702c dedicated to the milk coffee mixing process 122, and a bottling machine 704c dedicated to the milk coffee bottling process 124.
  • the power meter 710c measures the amount of power used for the coffee liquid extractor 700c, the liquid mixer 702c, and the bottling machine 704c
  • the gas meter 712c measures the amount of gas used for the liquid coffee extractor 700c and the liquid mixer 702c. measure.
  • the actual power consumption of product C: milk coffee can be obtained. Further, by dividing the measured amount of gas used by the number of bottled milk coffees 128 produced, the actual gas consumption in product C: milk coffee can be obtained.
  • the gas meter 712d measures the total amount of gas supplied to the beverage factory from the city gas pipe.
  • Power meter 710d measures the total usage of power supplied to the beverage plant from the power company transmission lines.
  • FIG. 6 is a diagram showing an example of one shared manufacturing line.
  • the manufacturing line is often shared for each product.
  • product A, product B and product C are manufactured on one shared manufacturing line.
  • the shared production line includes a coffee liquor extractor 700d, a liquor blender 702d and a bottling machine 704d.
  • the coffee liquid extractor 700d is used in the coffee liquid extraction processes 100a-100c.
  • Liquid blender 702 d is used in black coffee blending process 102 , standard coffee blending process 112 and milk coffee blending process 122 .
  • Liquid mixer 702d is used in black coffee bottling process 104, standard coffee bottling process 114 and milk coffee bottling process 124.
  • no gas meter is provided for the production line. Only a gas meter 712d is installed to collectively measure the amount of gas used in the beverage factory. As for power, similarly, no power meter is provided for the production line. Only a power meter 710d is installed to collectively measure the amount of power used in the beverage factory.
  • Water heater 724 uses gas to heat water used when cleaning equipment and instruments.
  • a lighting device 714 that illuminates the interior of the factory and an air conditioner 716 that air-conditions the interior of the factory use electric power. Since these facilities are also part of the environment necessary for the production of products, the CO2 emissions required for their energy are also included. However, it is not easy to decide how to distribute to the three products.
  • photovoltaic power generation is performed by the solar panel 718 as in-house power generation.
  • the power that enters the distribution board 722 from the power controller 720 is preferentially used. Since power generated by photovoltaic power generation does not generate CO2 during power generation, CO2 emissions need only be considered for power supplied from power companies. Therefore, less power is supplied by the power company on sunny days, resulting in less CO2 emissions associated with power generation. Conversely, on cloudy or rainy days, more power is supplied by the power company, resulting in higher CO2 emissions associated with power generation.
  • the use of photovoltaic power generation reduces CO2 emissions overall, but the extent to which photovoltaic power generation contributes to the reduction of CO2 emissions varies depending on the weather.
  • FIG. 7 is a diagram illustrating serial operation of multiple manufacturing processes.
  • executing a plurality of manufacturing processes in a certain time period in parallel without executing them in another time period is called "serial operation".
  • coffee liquid extraction of the manufacturing process 106 of product A black coffee is started at 9:00, and bottling of product A is finished by 11:00.
  • 12:00 Product B The coffee liquid extraction of the standard coffee manufacturing process 116 is started, and the bottling of Product B is finished by 14:00.
  • coffee liquid extraction of the production process 126 of product C milk coffee is started, and bottling of product C is finished by 17:00.
  • the operating hours of the manufacturing process 106 for product A, the operating hours of the manufacturing process 116 of product B, and the operating hours of the manufacturing process 126 of product C are separated and do not overlap.
  • the CO2 emissions due to the amount of gas and electricity used during the operating hours (9:00 to 11:00) of the manufacturing process 106 of product A should be allocated to the manufacturing process 106 of product A.
  • the CO2 emissions due to the amount of gas and electricity used during the operating time (12:00 to 14:00) of the manufacturing process 116 of product B are allocated to the manufacturing process 116 of product B.
  • the CO2 emissions due to the amount of electricity and gas used during the operating hours (15:00 to 17:00) can be allocated to the manufacturing process 126 of product C. Therefore, in the case of serial operation, it is easy to grasp the amount of electricity and gas used for each manufacturing process and reflect it in the amount of CO2 emissions for each product.
  • the measurement includes the act of visually counting the number of parts, the act of measuring the volume of liquid and powder with a weighing scale, and the act of measuring the weight of the raw material itself excluding the container with a weighing scale. In other words, the measurement may be performed manually, or may be performed automatically by a sensor or the like attached to the device.
  • FIG. 8 is a diagram illustrating parallel operation of multiple manufacturing processes.
  • executing multiple manufacturing processes at the same time during a certain period of time is called "parallel operation”.
  • the coffee liquid extraction process 100d from 9:00 to 10:00, the undiluted coffee liquids for the products A, B, and C are extracted together. That is, the coffee liquid extraction process 100d substantially corresponds to the coffee liquid extraction process 100a, the coffee liquid extraction process 100b, and the coffee liquid extraction process 100c.
  • the amount of ground coffee used in the coffee liquid extraction step 100d is the sum of the amounts used for product A, product B and product C.
  • the black coffee mixing process 102 is performed alone.
  • the black coffee bottling step 104 and the standard coffee mixing step 112 are performed simultaneously.
  • the standard coffee bottling process 114 and the milk coffee mixing process 122 are performed simultaneously.
  • the milk coffee bottling step 124 is performed alone.
  • This embodiment proposes a method for simply estimating the actual unit consumption, assuming that the balance between products is correctly estimated regarding the unit consumption of resources such as electricity and gas. Details of the estimation method will be described later.
  • the planned total amount of gas used is 240 L, but the total amount actually used is 480 L, double that amount.
  • the planned ratio of the gas consumption unit for the three types of products is 6:8:10
  • the ratio of the actual consumption unit is also estimated to be 6:8:10.
  • the scheduled gas unit consumption for product A is 6 L
  • the scheduled gas unit consumption for product B is 8 L
  • the scheduled gas unit consumption for product C is 10 L. This is the basis for the total planned usage of 240L of gas mentioned above.
  • the exact gas intensity for each pizza used in the ovens for baking the large and small pizzas is not known.
  • the gas usage per pizza is estimated by the weight and area of the pizza.
  • gas unit consumption of the large and small pizzas is calculated so that the weight ratio or area ratio of the large pizza and the small pizza is constant, the actual unit consumption is estimated to some extent correct.
  • gas is exemplified here, other resources such as electric power and coffee grounds (any resource classified into raw materials, parts, energy, etc.) are the same.
  • weight and area other indicators such as product volume or selling price may be substituted. It is quite possible that the volume or selling price will have a correlation with the basic unit resources related to CO2 emissions depending on the circumstances of each individual product.
  • FIG. 9 is a diagram showing an example of factors of variation in usage quantity. As described above, the actual specific consumption is not necessarily the same as the planned specific consumption. One of the reasons for this is that it is difficult to accurately measure the quantity used, which is the basis of the basic unit, but another reason is that the quantity used varies due to various factors each time a product is manufactured. FIG. 9 shows an example of an event that happened at a beverage factory one day (February 10th) that resulted in different usage quantities for some resources than planned.
  • the amount of coffee ingredients coming out of the coffee powder was less than usual, and the undiluted coffee solution seemed to be diluted, so the amount of coffee powder was increased by 10%. Therefore, the actual amount of ground coffee used is 10% more than planned.
  • the black coffee bottling step 104 one cap was broken, so one cap was replenished. Therefore, the number of caps actually used is one more than planned.
  • the milk coffee mixing step 122 1000 g of milk of questionable quality was discarded and 1000 g of milk was added. Therefore, the actual amount of milk used is 1000g more than planned.
  • the weather was fine that day (February 10)
  • the amount of solar power generated was large, and the amount of power received from the electric power company was less than usual. Therefore, the actual amount of electricity used will be less than planned due to the amount of electricity obtained from solar power generation.
  • FIG. 10 is a configuration diagram of the planned usage quantity data. Planned usage data can be generated prior to production implementation. The planned usage quantity data is generated based on the planned production quantity of each product and the planned basic unit data of each product. The term "planned production quantity" as used herein means the planned production quantity of a certain product per day.
  • total planned quantity of product A is "100”
  • planned production quantity of product B is "150”
  • planned production quantity of product C is "50”
  • planned total quantity is "300”.
  • a planned usage quantity for that resource is determined. For example, for coffee grounds of product A, by multiplying the scheduled unit consumption of product A's coffee grounds “12 g" by the scheduled production quantity of product A "100", the planned usage quantity of coffee grounds in the manufacturing process 106 of product A is "1200g" is required.
  • the overall planned usage quantity can be obtained.
  • the total planned quantity to be used is ⁇ 3100'' by adding the planned quantity to be used for product A, ⁇ 1200g'', the planned quantity to be used for product B, ⁇ 1500g'', and the planned quantity to be used for product C, ⁇ 400g''. be done. Therefore, 3100 g of coffee grounds are required to manufacture products A, B, and C on February 10th. At this point, the planning stage ends.
  • the actual quantity used (hereinafter referred to as "actual quantity used") is measured.
  • the measurement range is the “whole” including the manufacturing process 106 of product A, the manufacturing process 116 of product B, and the manufacturing process 126 of product C.
  • the measurement range is the manufacturing process 106 of product A, the manufacturing process 116 of product B, or the manufacturing process 126 of product C.
  • coffee grounds "3100 g" is planned to be used in "total”, but how much coffee grounds are actually used is measured. As for sugar, how much is actually used in the manufacturing process 106 of product A, and how much is actually used in the manufacturing process 106 of product A? In addition, how much "2000 g" is actually used in the manufacturing process 126 of the product C is planned to be used.
  • FIG. 11 is a configuration diagram of calculation data for product A: black coffee.
  • the calculated data is the actual basic unit and actual CO2 emissions (hereinafter referred to as " This is data showing the process of calculating the actual CO2 emissions.
  • the measured amount of usage is enclosed in a thick line frame.
  • planned values are shown in parentheses.
  • the calculated data includes the actual production quantity. In this example, 100 bottled black coffee 108 were produced, all of which passed the final inspection to be shippable conforming. Non-conforming products in the final inspection are not included in the actual production quantity.
  • the estimated quantity used is the quantity consumed in the manufacturing process 106 of the product A (hereinafter referred to as “consumed quantity").
  • the estimated amount of use “1320 g” of the manufacturing process 106 of the product A estimated from the actual amount of use "3410 g” of “whole” is copied as it is, and the consumption amount of the manufacturing process 106 of the product A "1320 g” is copied as it is. becomes.
  • Consumption quantity refers to the quantity that forms the basis for calculating the actual basic unit. How to determine the estimated usage quantity of “1320 g” for the manufacturing process 106 of product A will be described later in relation to Equation 7.
  • the actual usage quantity becomes the consumption quantity in that manufacturing process.
  • the actual usage quantity of "1000 g" in the manufacturing process 106 of product A is copied as it is and becomes the consumption quantity of "1000 g" in the manufacturing process 106 of product A.
  • the actual basic unit is obtained by dividing the consumption quantity by the actual production quantity. For example, with respect to coffee grounds, by dividing the consumption amount of product A in the manufacturing process 106 of 1320 g by the actual production amount of product A of 100 pieces, the actual basic unit of product A is 13.2 g. As for sugar, by dividing the consumption amount of product A in the manufacturing process 106 of 1000 g by the actual production amount of product A of 100 units, the actual basic unit of product A of 10 g is obtained.
  • the actual CO2 emission amount is calculated. be done.
  • the actual basic unit of product A "13.2 g” by the CO2 emissions of coffee grounds “Rc” by multiplying the actual basic unit of product A "13.2 g” by the CO2 emissions of coffee grounds "Rc”, the actual CO2 emissions of product A "13.2 x Rc" can be obtained.
  • sugar by multiplying the actual unit consumption of product A “10 g” by the CO2 emission amount “Rs” of sugar, the actual CO2 emission amount “10 ⁇ Rs” of product A is obtained.
  • the actual CO2 emissions of each resource are summed up to obtain the actual CO2 emissions per product A.
  • FIG. 12 is a configuration diagram of calculation data for product B: standard coffee.
  • ground coffee both the amount of actual use and the amount of actual CO2 emissions have increased from the planned values.
  • electric power both the actual quantity used and the actual CO2 emissions are lower than planned values.
  • FIG. 13 is a configuration diagram of calculation data for product C: milk coffee.
  • product C milk coffee
  • both the actual amount of coffee powder and milk used and the actual amount of CO2 emissions are higher than the planned values.
  • electric power both the actual quantity used and the actual CO2 emissions are lower than planned values.
  • the actual basic unit of each product is associated with the date of manufacture and stored as actual basic unit data in the actual basic unit data storage unit 262, which will be described later with reference to FIG.
  • the actual CO2 emissions per product is associated with the date of manufacture and stored as actual CO2 emissions data in the actual CO2 emissions data storage unit 264, which will be described later with reference to FIG.
  • the first condition is that the actual usage quantity of a resource (for example, coffee grounds) measured “overall” is converted into the actual unit consumption of that resource for each type of product (for example, product A, product B, and product C). It means that it matches the sum of the values (products) multiplied by the actual production quantity of the type of product.
  • a resource for example, coffee grounds
  • the actual usage quantity “3410 g” measured “total” for the exemplified coffee grounds is the actual basic unit of product A “13.2 g” ⁇ the actual production quantity of product A “100”, and the actual basic unit of product B It matches the sum of "11g” x "150 pcs” of actual production quantity of product B and "8.8g” of actual basic unit of product C x "50 pcs" of actual production quantity of product B (1320g + 1650g + 440g).
  • the second condition is that the ratio of the actual unit consumption of the resource (eg, coffee grounds) measured “total” in each type of product (eg, product A, product B, and product C) matches a predetermined proportional division ratio.
  • the predetermined proportional division ratio indicates the ratio of consumption per piece of each type of product with respect to the "total" measured resource.
  • the predetermined proportional division ratio is composed of terms for each type of product as shown in Equation (1).
  • Predetermined proportional division ratio Product A term: Product B term: Product C term (Formula 1)
  • the ratio reference in this case is the scheduled basic unit of coffee grounds.
  • a ratio basis refers to the type of information used as a predetermined proportional division ratio.
  • An example of this predetermined apportionment ratio is that one of product A: black coffee consumes 20% more ground coffee than one of product B: standard coffee, and one of product C: milk coffee consumes product B. : Means consuming 20% less ground coffee than one cup of standard coffee.
  • Expression 2 holds when the estimated quantity used in the manufacturing process of each product is expressed in the form of a ratio.
  • Equation 2 we focus on the fact that the weight of the resource used is proportional to the amount of the extracted component. It is easy to understand if you imagine that the ratio of the weight of the resources and the ratio of the amount of the extracted components are the same for the three types of products.
  • the left side of Equation 2 corresponds to the weight ratio of the resource
  • each product term is taken to be the amount of ingredients per product.
  • the estimated usage quantity of each product in the manufacturing process can be obtained by proportionally dividing the "total" actual usage quantity according to the ratio of the estimated usage quantity in the manufacturing process of each product shown in Equation 2.
  • the estimated usage quantity for the manufacturing process 106 of Product A is determined by Equations 4 and 5.
  • Estimated quantity used in the manufacturing process 106 of product A actual quantity used of “total” ⁇ (term of product A ⁇ actual quantity manufactured of product A / denominator) (Formula 4)
  • Denominator Product A term x Product A actual manufacturing quantity + Product B term x Product B actual manufacturing quantity + Product C term x Product C actual manufacturing quantity (Formula 5)
  • the estimated usage quantity of the manufacturing process 116 for the product B is obtained by Equation 8, and the estimated usage quantity of the manufacturing process 126 for the product C is obtained by Equation 9.
  • Estimated usage quantity of manufacturing process 116 of product B actual usage quantity of “total” ⁇ (term of product B x actual production quantity of product B / denominator) (Formula 8)
  • Estimated quantity used in the manufacturing process 126 of product C actual quantity used of “total” ⁇ (term of product C ⁇ actual quantity manufactured of product C/denominator) (Formula 9)
  • the estimated usage of process 106 for product A, process 116 for product B, and process 126 for product C is calculated. can be asked for.
  • coffee powder is used as an example here, water, electric power and gas are the same.
  • the estimated amount of water used in the manufacturing process 106 for product A, the manufacturing process 116 for product B, and the manufacturing process 126 for product C is obtained. be able to.
  • the actual production quantity will be less than the planned production quantity.
  • the planned production quantity For example, in the manufacturing process 106 of product A, production is started with the planned production quantity of "100", and if one nonconforming product is found in the final inspection, the actual production quantity becomes "99". Therefore, compared to the case where the actual manufacturing quantity is "100", the actual basic unit for each resource is 100/99 times, which is slightly larger. In other words, when the yield is poor, the actual basic unit increases.
  • FIG. 14 is a functional block diagram of the CO2 emission calculation device 200.
  • Each component of the CO2 emission calculation device 200 includes computing units such as a CPU (Central Processing Unit) and various coprocessors, storage devices such as memory and storage, and hardware including a wired or wireless communication line connecting them. It is implemented by hardware and software stored in a storage device and supplying processing instructions to the computing unit.
  • a computer program may consist of a device driver, an operating system, various application programs located in their higher layers, and a library that provides common functions to these programs.
  • Each illustrated block mainly indicates a functional unit block. Each block may be implemented by causing a computer to execute a program stored in a storage device. The same applies to the user terminal 500, which will be described later.
  • the CO2 emission calculation device 200 includes a user interface processing unit 210 , a data processing unit 280 , a network communication unit 240 , a short-range wireless communication unit 242 , a wired communication unit 244 and a data storage unit 250 .
  • the user interface processing unit 210 receives operations from an operator via a mouse or a touch panel, and is in charge of user interface processing such as image display and audio output.
  • the network communication unit 240 is in charge of communication processing via the network.
  • the short-range wireless communication unit 242 takes charge of communication processing by short-range wireless.
  • the wired communication unit 244 is in charge of wired communication processing.
  • the data storage unit 250 stores various data.
  • the data processing unit 280 executes various processes based on the data acquired by the network communication unit 240 , the short-range wireless communication unit 242 and the wired communication unit 244 and the data stored in the data storage unit 250 .
  • Data processing unit 280 also functions as an interface for user interface processing unit 210 , network communication unit 240 , short-range wireless communication unit 242 , wired communication unit 244 and data storage unit 250 .
  • the CO2 emission calculation device 200 can communicate with a graphic code reader 300, an RFID (Radio Frequency Identification) reader 302, a graphic code printer 306, and an RFID writer 308 by short-range wireless or wired communication.
  • the CO2 emission calculation device 200 can communicate with devices such as smartphones and tablet terminals by short-range wireless or wired communication.
  • the CO2 emission calculation system can include CO2 emission calculation device 200, graphic code reader 300, RFID reader 302, information input terminal 304, graphic code printer 306 and RFID writer 308.
  • the user interface processing unit 210 has an input unit 220 for inputting data by operator's operation and an output unit 230 for outputting data to be provided to the operator.
  • an output method an example of displaying on a display is shown, but printing or transmission to an information processing terminal (for example, administrator terminal) may be used.
  • the data processing unit 280 has an acquisition unit 282 , a calculation unit 284 , an upload unit 286 , a URL (Uniform Resource Locator) recording unit 288 and an encryption/decryption unit 290 .
  • the acquisition unit 282 accesses the URL of the WEB server and acquires CO2 emission data such as raw materials and parts.
  • the calculation unit 284 calculates the basic unit and the amount of CO2 emissions, and includes a basic unit calculation unit 292 and an emission amount calculation unit 294 .
  • the specific consumption calculating unit 292 calculates the actual specific consumption.
  • the emissions calculation unit 294 calculates the actual CO2 emissions.
  • the upload unit 286 uploads the CO2 emission data to the WEB server.
  • the URL recording unit 288 records the CO2 emission data URL on a recording medium.
  • the encryption/decryption unit 290 encrypts various data and decrypts various encrypted data.
  • the data storage unit 250 includes a planned specific consumption data storage unit 252, a CO2 emission rate data storage unit 254, a planned CO2 emission amount data storage unit 256, a planned usage amount data storage unit 258, a calculated data storage unit 260, and an actual specific consumption data storage unit. 262 , an actual CO2 emissions data storage unit 264 and a proportional division ratio data storage unit 266 .
  • the planned specific consumption data storage unit 252 stores planned specific consumption data (FIGS. 2(A), 3(A), and 4(A)). It is assumed that the initial planned basic unit has been received by the input unit 220 in the preparatory stage before starting operation.
  • the CO2 emission rate data storage unit 254 stores CO2 emission rate data (FIG. 19).
  • the planned CO2 emission amount data storage unit 256 stores planned CO2 emission amount data (FIGS. 1(B), 2(B), and 3(B)).
  • the planned usage quantity data storage unit 258 stores planned usage quantity data (FIG. 10).
  • the calculated data storage unit 260 stores calculated data (FIGS. 11, 12, and 13).
  • the actual basic unit data storage unit 262 stores actual basic unit data including past data and storing the actual basic unit of each resource for each product.
  • the actual CO2 emission amount data storage unit 264 stores actual CO2 emission amount data including the past data, in which the actual CO2 emission amount of each product and the actual CO2 emission amount of each resource of the product are stored.
  • the proportional division ratio data storage unit 266 stores proportional division ratio data (FIG. 21).
  • the graphic code reader 300 reads various information (eg, URL) from the graphic code (eg, bar code or QR code (registered trademark)).
  • the RFID reader 302 reads various information (eg, URL) from RFID tags.
  • a graphic code printer 306 prints a graphic code (for example, a bar code or a QR code) on a seal label or the like.
  • the RFID writer 308 writes various information (eg, URL) to the RFID tag.
  • FIG. 15 is a flow chart showing the main processing steps.
  • the input unit 220 inputs the planned production quantity of each product (S10).
  • the calculation unit 284 calculates the planned usage quantity as described with reference to FIG. 10 (S12). Planned usage quantities are calculated for reference purposes only. Since the actual basic unit and the actual CO2 emission amount can be obtained without using the planned quantity of use, the calculation of the planned quantity of use may be omitted.
  • the output unit 230 displays the planned usage quantity of each product and the planned usage quantity of "whole" shown in FIG. 10 (S14).
  • the data processing unit 280 executes input screen processing (S16). Input screen processing will be described later with reference to FIG.
  • the data processing unit 280 executes output screen processing (S18). Output screen processing will be described later with reference to FIG.
  • FIG. 16 is a flow chart showing the input screen processing process.
  • the flowchart shown in FIG. 16 shows detailed processing in the input screen processing (S16) shown in FIG.
  • the output unit 230 displays an input screen (S30). The input screen will be described later with reference to FIG.
  • the acquisition unit 282 executes acquisition processing for acquiring the CO2 emission rate (S34). The acquisition process will be described later with reference to FIG.
  • the output unit 230 displays the proportional division ratio screen (S38).
  • the proportional division ratio screen will be described later with reference to FIG.
  • specific consumption calculation unit 292 executes actual consumption consumption calculation processing (S42). In the actual specific consumption calculation process, the specific consumption calculation unit 292 calculates the actual specific consumption as described with reference to FIGS. 10 to 12 .
  • the emission calculation unit 294 executes CO2 emission calculation processing (S44). In the CO2 emission calculation process, the emission calculation unit 294 calculates the actual CO2 emission as described with reference to FIGS. 10 to 12. FIG. Then, the process returns to the output screen process (S18) shown in FIG.
  • FIG. 17 is a diagram showing an example of an input screen.
  • the output unit 230 displays the CO2 emission rate of each resource included in the CO2 emission rate data (FIG. 19). If the CO2 emission rate has not yet been set for the first time, the CO2 emission rate will not be displayed.
  • a recording medium e.g., barcode, QR code, RFID tag, etc.
  • a URL (hereinafter referred to as "CO2 emission data URL") is recorded.
  • CO2 emission data URL is recorded.
  • the graphic code reader 300 or RFID reader 302 reads the CO2 emissions data URL from recording media such as raw materials and parts.
  • the read CO2 emission data URL is input to the CO2 emission calculation device 200 .
  • the obtaining unit 282 accesses the CO2 emission data URL and obtains the CO2 emission data of raw materials, parts, and the like.
  • the network communication unit 240 accesses the CO2 emission data URL and downloads the CO2 emission data.
  • FIG. 18 is a configuration diagram of CO2 emission data of coffee grounds.
  • the acquisition unit 282 obtains the coffee grounds CO2 emission data URL "https://bbb.css" by reading the figure code 800a attached to the container of the coffee grounds with the figure code reader 300. xxx/trace/0122".
  • the obtaining unit 282 obtains the coffee powder CO2 emission data URL from the RFID tag attached to the coffee powder container in the RFID reader 302 .
  • the obtaining unit 282 accesses the coffee powder CO2 emission data URL of the WEB server 400b of the business operator “bbb” that provides the coffee powder, and obtains the coffee powder CO2 emission data based on the response from the WEB server 400b.
  • the coffee powder as a product contains 100 g, and the total CO2 emission amount is shown as the CO2 emission amount (total). Also, the CO2 emission amount per 1 g is shown as the CO2 emission rate.
  • the acquisition unit 282 associates the CO2 emission rate included in the CO2 emission data and the accessed CO2 emission data URL with the resource and writes them into the CO2 emission rate data.
  • FIG. 19 is a configuration diagram of CO2 emission rate data.
  • the CO2 emission rate data stores the CO2 emission rate and the CO2 emission amount data URL for each resource.
  • the CO2 emissions data URL may be obtained by reading the graphic code displayed on the website of the gas company.
  • the output unit 230 displays the CO2 emission rate obtained as described above. If there is no need to update the CO2 emission rate, the CO2 emission rate displayed on the input screen can be used without touching the read button 802 .
  • the output unit 230 displays a numeric area 804 of the actual quantity used for each resource.
  • the worker inputs the value of the actual usage quantity in the numeric area 804, and the input unit 220 accepts the actual usage quantity of each resource and sets it in the calculation data (FIGS. 11, 12, and 13).
  • the output unit 230 displays a numeric area 808 of the actual production quantity for each product.
  • the operator inputs the value of the actual production quantity in the numeric area 808, and the input section 220 receives the actual production quantity of each product and sets it in the calculation data (FIGS. 11, 12, and 13).
  • the output unit 230 displays the proportional division ratio screen for that resource.
  • the ratio button 806 is displayed only for the resource whose actual usage quantity is measured by "whole". This is because, for resources whose actual usage quantity is measured for each product, the usage quantity for each product is not estimated by proportional division (see FIGS. 11, 12, and 13).
  • FIG. 20 is a diagram showing an example of the proportional division ratio screen.
  • the output unit 230 displays the predetermined proportional division ratio of electric power with a large number.
  • the term for product A is '0.10'
  • the term for product B is '0.12'
  • the term for product C is '0.14' at the predetermined proportional division ratio of power.
  • These values match the values of the planned specific consumption of electric power (FIGS. 2(A), 3(A), and 4(A)). That is, in the predetermined proportional division ratio of electric power shown in this example, the planned basic unit of electric power is used as the ratio standard.
  • the output section 230 displays the ratio criterion candidates and the value of each product in the candidates.
  • lot manufacturing time, lot heating time, capacity, product selling price, profit rate, cost rate, arbitrary criteria and scheduled unit consumption related to attributes other than those attributes are shown as candidates for ratio criteria.
  • any item can be a candidate for the ratio criterion.
  • the operator can change the ratio criterion by selecting a ratio criterion candidate with the radio button 810 . In that case, each product's term in the proration ratio is replaced by each product's value in the modified ratio basis.
  • the value input by the worker in the numeric area 812 is adopted as the arbitrary value of each product.
  • the decision button 814 is touched, the ratio standard selected on the proportional division ratio screen and the proportional division ratio based on that ratio basis are set as the proportional division ratio data. If the cancel button 816 is touched, the process ends without updating the proportional division ratio data.
  • the proportional division ratio data will be described later with reference to FIG.
  • a product basic data storage unit is included in the data storage unit 250 .
  • FIG. 21 is a configuration diagram of proportional division ratio data.
  • the apportionment ratio data stores the ratio standard and the ratio standard regarding the resource for which the actual usage quantity is measured "total".
  • the figure also shows units such as g (grams) and L (liters) for ease of understanding.
  • the calculation button 809 When the calculation button 809 is touched at the stage where the actual usage quantities of all resources and the actual production quantities of all products have been entered, the actual usage quantities of all resources and the actual production quantities of all products are converted into calculated data. (FIGS. 11, 12, and 13) is stored in the calculated data storage unit 260. FIG. Then, the specific consumption calculation unit 292 executes the actual consumption consumption calculation process shown in S42 of FIG. 16, and the emissions calculation unit 294 executes the CO2 emissions calculation process shown in S44. Then, the input screen processing ends, and the processing returns to S18 shown in FIG. When the calculation button 809 is touched, if any actual usage quantity has not been input, or if any actual production quantity of any product has not been input, the output unit 230 Display to prompt for input of quantity.
  • the basic unit calculation unit 292 calculates the actual basic unit for each resource (coffee powder, water, electric power, and gas) measured in the “total”. As described with reference to FIGS. 11, 12, and 13, the specific consumption calculator 292 first obtains the estimated usage quantity based on Equations 4, 5, 8, and 9.
  • Estimated quantity used in the manufacturing process 106 of product A actual quantity used of “total” ⁇ (term of product A ⁇ actual quantity manufactured of product A / denominator) (Formula 4)
  • Denominator Product A term x Product A actual manufacturing quantity + Product B term x Product B actual manufacturing quantity + Product C term x Product C actual manufacturing quantity (Formula 5)
  • Estimated usage quantity of manufacturing process 116 of product B actual usage quantity of “total” ⁇ (term of product B x actual production quantity of product B / denominator) (Formula 8)
  • the product A term, product B term, and product C term in the resource to be calculated are obtained from the proportional division ratio data of the proportional division ratio data storage unit 266 (FIG. 21).
  • the actual production quantity of product A, the actual production quantity of product B, and the actual production quantity of product C are obtained from the calculation data (FIGS. 11, 12, and 13) in the calculation data storage unit 260.
  • FIG. By substituting these into the above equations, the estimated quantity used in the manufacturing process 106 of product A, the estimated quantity used in the manufacturing process 116 of product B, and the estimated quantity used in the manufacturing process 126 of product C are calculated.
  • Each estimated usage quantity is stored in the calculated data storage unit 260 as calculated data (FIGS. 11, 12, and 13).
  • the basic unit calculation unit 292 specifies the consumption quantity of each resource for each product and stores it in calculation data. Then, the basic unit calculation unit 292 calculates the actual basic unit by dividing the consumption quantity by the actual production quantity of the product for each resource of each product.
  • the calculated actual specific consumption is stored as calculation data (FIGS. 11, 12, and 13) in the calculated data storage unit 260, and is further stored as actual specific consumption data in the actual specific consumption data storage unit 262 in association with the manufacturing date. Stored.
  • the CO2 emissions calculation process (S44 in FIG. 16) will be explained.
  • the emissions calculation unit 294 calculates the actual CO2 emissions for each resource for each product by multiplying the actual basic unit by the CO2 emission rate of the resource.
  • the resource CO2 emission rate is obtained from the CO2 emission rate data (FIG. 19) in the CO2 emission rate data storage unit 254.
  • FIG. 19 The calculated actual CO2 emissions are stored in calculation data.
  • the emissions calculation unit 294 adds up the actual CO2 emissions of each resource for each product to calculate the actual CO2 emissions per product.
  • the actual CO2 emission amount of the product and the actual CO2 emission amount of each resource of the product are stored as actual CO2 emission amount data in the actual CO2 emission amount data storage unit 264 in association with the manufacturing date.
  • FIG. 22 is a flow chart showing the output screen processing process.
  • the flowchart shown in FIG. 22 shows detailed processing in the output screen processing (S18) shown in FIG.
  • the output unit 230 repeats the following process for each product (S50).
  • Output unit 230 processes product A, product B, and product C in this order, for example.
  • the output unit 230 displays the output screen of each product (S52). The output screen will be described later with reference to FIG.
  • FIG. 23 is a diagram showing an example of an output screen. Calculation results are mainly displayed on the output screen. Specifically, the output unit 230 displays the planned basic unit of each resource included in the planned basic unit data of the target product (FIGS. 1(A), 2(A), and 3(A)). Planned unit consumption is displayed as reference information for comparison with the calculated actual unit consumption.
  • the output unit 230 displays the actual basic unit of each resource of the target product included in the actual basic unit data. Furthermore, the output unit 230 displays the actual CO2 emissions of each resource of the target product included in the actual CO2 emissions data, and the total actual CO2 emissions of the target product.
  • the input unit 220 accepts the touch of the back button 820, the input screen processing for the product is re-executed, and the numerical values in the actual usage quantity numerical area 804 and the actual production quantity numerical area 808 are input again. can be recalculated.
  • the output unit 230 displays the consumption consumption screen for the product.
  • the specific consumption screen will be described later with reference to FIG.
  • the upload unit 286 uploads the CO2 emissions data to the WEB server in the upload process (S60 in FIG. 22). That is, the product CO2 emission data is stored in the storage location indicated by the product CO2 emission data URL.
  • the URL recording unit 288 may record the CO2 emission data URL on a recording medium attached to the product. The process of recording on the recording medium by the URL recording unit 288 may be performed before uploading or may be performed after uploading.
  • FIG. 24 is a configuration diagram of CO2 emission data for product A: black coffee.
  • the illustrated product A black coffee of CO2 emissions data is stored. Therefore, when the black coffee CO2 emission data URL recorded in the graphic code 800b attached to the bottled black coffee 108 is accessed, this CO2 emission data is transmitted as a response.
  • the CO2 emissions data includes the CO2 emissions of each resource in addition to the CO2 emissions (total) that indicates the CO2 emissions of the entire product.
  • Each resource is associated with a CO2 emission data URL in which emission data of the resource is stored. Also included is a CO2 emission rate that indicates the amount of CO2 emitted per unit volume (ml in this example).
  • FIG. 25 is a diagram showing an example of a specific consumption screen.
  • the worker can refer to current and past actual consumption consumption on the consumption consumption screen, and can modify the planned consumption consumption.
  • the output unit 230 displays the planned consumption of the resources included in the planned consumption consumption data of the target product (FIGS. 1A, 2A, and 3A) in the numerical area 830 of the planned consumption of each resource. Show units. The worker can rewrite the value of the planned basic unit of resource displayed in the numeric area 830 . The input unit 220 accepts the rewritten value of the planned specific consumption of the resource.
  • the output unit 230 displays the current actual unit consumption and past actual unit consumption of each resource. In addition, the output unit 230 displays the average of the actual basic unit for 10 days including the current time for each resource. In this example, actual basic units and averages for 10 days including the current time are displayed, but a period longer than 10 days or a period shorter than 10 days may be targeted.
  • the actual unit consumption of each resource (coffee grounds, water, electricity, and gas) measured in the “total” is based on estimates, so there is a possibility of errors if the apportionment ratio does not match the actual situation.
  • the balance of the actual production quantity of each product fluctuates (for example, if there are days when more product A is manufactured and there are days when more product C is manufactured)
  • the error in the apportionment ratio will cause the actual basic unit to increase. Variation is possible.
  • the worker can grasp the magnitude of the variation and estimate the appropriateness of the apportionment ratio.
  • the average value of the actual basic unit for 10 days is displayed in the planned basic unit numerical value area 830. copied. In other words, the average value of the actual specific consumption can be fed back to the planned specific consumption.
  • the automatic updating unit (not shown) of the data processing unit updates the actual data for a predetermined period (for example, 10 days) including this time at predetermined intervals (for example, every 10 days). Find the average of the units and copy the average value to the scheduled intensity. In other words, the average value of the actual specific consumption is automatically fed back to the planned specific consumption.
  • a predetermined period for example, 10 days
  • predetermined intervals for example, every 10 days.
  • the standard for the apportionment ratio of a certain resource is set as the planned unit consumption of that resource, and the average value of the actual unit consumption is manually or automatically fed back to the planned unit consumption, the variation in the actual unit consumption will naturally decrease, and the planned unit consumption will decrease. is expected to be adjusted to match the actual situation.
  • the input unit 220 receives a touch on the enter button 838, the value of the planned consumption consumption numerical value area 830 is written in the planned consumption consumption data. Also, if the automatic application switch 834 is ON, the automatic updating unit starts the process of automatically feeding back the average value of the actual specific consumption of the resource to the planned specific consumption. Then, the processing of the basic unit screen is completed. When the input unit 220 accepts the cancel button 840, the processing of the specific consumption screen is terminated.
  • FIG. 26 is a diagram showing an example of a CO2 emission amount display screen.
  • a user such as a purchaser of the product can refer to the contents of the CO2 emission amount data shown in FIG. 24 by reading the graphic code or RFID tag with the user terminal.
  • the CO2 emissions of each resource are also displayed in addition to the "whole" CO2 emissions of the product.
  • a CO2 emissions data window showing the contents of CO2 emissions data obtained from the CO2 emissions data URL of the resource is displayed.
  • This figure shows an example in which the ground coffee reference button 850 is touched and the ground coffee CO2 emissions data window 604 is displayed.
  • the graphic code or RFID tag may be changed so that the display is changed for each product lot, or the latest data may be displayed regardless of the product lot.
  • FIG. 27 is a functional block diagram of the user terminal 500.
  • the user terminal 500 includes a user interface processing section 510 , a data processing section 580 , a network communication section 540 , a near field communication section 542 and a data storage section 550 .
  • the user interface processing unit 510 receives user operations via a mouse or a touch panel, and is in charge of user interface processing such as image display and audio output.
  • a network communication unit 540 is in charge of communication processing via a network.
  • the short-range wireless communication unit 542 takes charge of communication processing by short-range wireless.
  • the data storage unit 550 stores various data.
  • the data processing unit 580 executes various processes based on the data acquired by the network communication unit 540 and the short-range wireless communication unit 542 and the data stored in the data storage unit 550 .
  • Data processing unit 580 also functions as an interface for user interface processing unit 510 , network communication unit 540 , short-range wireless communication unit 542 and data storage unit 550 .
  • user terminal 500 incorporates RFID reader 544 and camera 546 (or graphic code reader). The RFID reader 544 and camera 546 (or graphic code reader) may be external.
  • the user interface processing unit 510 has a reception unit 520 for inputting data by user operation and an output unit 530 for outputting data to be provided to the user.
  • Output unit 530 includes a CO2 emission data output unit 532 that outputs CO2 emission data.
  • the data processing unit 580 includes a URL acquisition unit 582 that acquires the CO2 emissions data URL, and a window control unit 584 that controls windows displayed on the display.
  • the URL acquisition unit 582 causes the camera 546 (or a graphic code reader) to photograph the graphic code (for example, bar code or QR code) attached to the product, or causes the RFID reader 544 to read the RF tag attached to the product. to obtain the CO2 emissions data URL of the product.
  • the graphic code for example, bar code or QR code
  • the network communication unit 540 accesses the acquired CO2 emission data URL and downloads the product's CO2 emission data.
  • Downloading means receiving data from a computer (for example, a WEB server) on a network.
  • the received data may be stored in a non-volatile storage area (e.g. hard disk drive) or only in a volatile storage area (e.g. random access memory) without being stored in non-volatile storage area. may be stored.
  • the CO2 emission data output unit 532 generates a product CO2 emission data window based on the downloaded CO2 emission data and displays it on the display.
  • the CO2 emission data output unit 532 may display part of the CO2 emission data of the product, or may display all of the CO2 emission data of the product.
  • the CO2 emission data output unit 532 may output part or all of the product CO2 emission data in a manner other than display (for example, printing or transmission).
  • window control portion 584 When accepting portion 520 accepts a touch on reference button 850, window control portion 584 refers to the CO2 emission rate data (FIG. 19) of CO2 emission rate data storage portion 254 to obtain the resource CO2 emission amount data URL. Identify. Then, a window for resource CO2 emission data is displayed in the same manner as in the case of product CO2 emission data.
  • the CO2 emissions of the resources used by the business can be allocated to any product manufactured by the business.
  • the CO2 emissions of the consumed resources are covered by the entire product manufactured by the business without omission or duplication.
  • the reason for focusing on the planned basic unit ratio is that it is expected that the business operator, as a party and an expert, will accurately anticipate the balance between products regarding the resource basic unit. In other words, there is a high possibility that the actual unit consumption can be estimated more accurately if the ratio of the planned unit consumption is used for proportional division.
  • the CO2 emission data URL is recorded on a recording medium (for example, barcode, QR code, RFID tag, etc.), but the CO2 emission data may be recorded on the recording medium. good.
  • the acquisition unit 282 of the CO2 emission calculation device 200 can acquire the CO2 emission data directly from the recording medium.
  • an emission data writing unit (not shown) is provided instead of the upload unit 286 of the CO2 emission calculation device 200.
  • the emissions data writing unit writes CO2 emissions data on a recording medium attached to the product (for example, bar code, QR code, RFID tag, etc.).
  • a discharge amount data acquisition unit (not shown) may be provided.
  • the emissions data acquisition unit acquires CO2 emissions data directly from a recording medium attached to the product (eg, barcode, QR code, RFID tag, etc.).
  • the CO2 emission data is encrypted in the encryption/decryption unit 290 of the CO2 emission calculation device 200 and then encrypted on the recording medium (for example, barcode, QR code, or RFID tag, etc.).
  • the CO2 emission data uploaded in the embodiment may be encrypted by the encryption/decryption unit 290 before being uploaded.
  • an encryption/decryption unit (not shown) may be provided in the user terminal 500, and the encrypted CO2 emission data may be decrypted in the encryption/decryption unit.
  • the web server that stores the CO2 emissions data does not have to be a web server operated by the product operator.
  • a web server or the like that collectively manages CO2 emission data on products of a plurality of businesses may be used.
  • a printer may be used to print the CO2 emissions in numbers and characters on the product body, product packaging, product container, seal label, slip, or the like.
  • gas and electric power are shown as energy resources, but other fuels such as coke, petroleum, light oil, and gasoline may also be targeted. Also, as indirect energy, resources such as heat and steam may be targeted. Resources also include catalysts and the like.
  • coffee and pizza have been described as easy-to-understand examples, but the disclosure herein can also be applied to the manufacture of other products such as batteries, automobiles, and energy. It goes without saying that we can.
  • the production of products that can absorb CO2 during the production process eg, carbonated water, beer, etc.
  • Greenhouse gases are not limited to CO2, but also include methane and nitrous oxide generated by livestock, and fluorocarbons used in the semiconductor process and manufacturing of home appliances.
  • the techniques of the embodiment and modifications may be applied to emissions of greenhouse gases other than CO2.
  • the emissions of greenhouse gases other than CO2 may be converted into CO2 emissions, and the techniques of the embodiments and modifications may be applied.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This carbon dioxide emission amount calculation device comprises: an input unit that inputs, regarding manufacturing of multiple types of articles using common resources, the overall use quantity of the resources and the quantity of the respective types of manufactured articles; a primary unit calculation unit that calculates primary units of the resources for the respective types so as to meet a first condition that the total use quantity becomes equal to a total of products between the primary units of the resources for the respective types and the quantity of manufactured articles for the respective types and a second condition that the ratio of the primary units of the resources for the respective types becomes equal to a prescribed proportional division ratio; and an emission amount calculation unit that calculates, by multiplying the primary units of the resources for the respective types by a prescribed rate indicating the amount of carbon dioxide to be emitted through manufacturing and/or use of the resources, the emission amount of carbon dioxide generated resulting from the resources to acquire the respective types of articles.

Description

二酸化炭素排出量算出装置およびプログラムCarbon dioxide emissions calculator and program
 本発明は、温室効果ガスの排出量を算出する技術に関する。 The present invention relates to technology for calculating greenhouse gas emissions.
 二酸化炭素をはじめとする温室効果ガスの排出量削減は、排出規制および排出枠を見据え、仕組みづくりの重要性が増している。たとえば、地球温暖化の抑止に向けた企業の社会貢献アピールおよびカーボンクレジットなどの観点での活動も起こり始めている。  In order to reduce emissions of greenhouse gases such as carbon dioxide, it is becoming increasingly important to create mechanisms in view of emission regulations and emission limits. For example, activities from the perspective of corporate social contribution appeals and carbon credits aimed at curbing global warming are beginning to take place.
 特許文献1には、製品単位でその生産にかかわる温室効果ガス排出を把握するための技術が開示されている。 Patent Document 1 discloses a technique for understanding greenhouse gas emissions related to the production of each product.
特許第5097728号公報Japanese Patent No. 5097728
 しかしながら、特許文献1に開示された技術は、大がかりなデータベースを構築する必要があり、実現に向けては、大きな設備投資が必要となる。特に、複数の製品を製造する場合に、原材料、部品およびエネルギーなどの資源を製造する過程あるいは使用する過程で生じる二酸化炭素排出量を、複数の製品それぞれに対して割り振ることは難しいという問題がある。 However, the technology disclosed in Patent Document 1 requires the construction of a large-scale database, and a large capital investment is required for its realization. In particular, when manufacturing multiple products, it is difficult to allocate carbon dioxide emissions generated in the process of manufacturing or using resources such as raw materials, parts, and energy to each of the multiple products. .
 本発明は、上記課題認識に基づいて完成された発明であり、その主たる目的は、事業者が製造する製品に関する温室効果ガスの排出量を、適正かつ簡便な計算により求めることができる技術を提供することである。 The present invention has been completed based on the recognition of the above problems, and its main purpose is to provide a technology that can determine the amount of greenhouse gas emissions related to the products manufactured by business operators through appropriate and simple calculations. It is to be.
 本発明のある態様における二酸化炭素排出量算出装置は、共通の資源を用いた複数種類の製品の製造に関して、資源の全体使用数量と、各種類の製品の製造数量とを入力する入力部と、全体使用数量が、各種類における資源の原単位と当該種類の製造数量の積の合計と一致するという第1条件と、各種類における資源の原単位の比率が所定の按分比率と一致するという第2条件とを満たすように、各種類における資源の原単位を算出する原単位算出部と、各種類における資源の原単位に、資源の製造及び/又は使用によって排出される二酸化炭素の量を示す所定レートを乗ずることによって、各種類の製品を得るために資源に起因して生じた二酸化炭素の排出量を算出する排出量算出部と、を備える。 A carbon dioxide emission calculation device according to an aspect of the present invention includes an input unit for inputting the total quantity of resources used and the quantity of each type of product manufactured, with respect to the manufacture of a plurality of types of products using a common resource; The first condition is that the overall quantity used matches the sum of the product of the basic unit of resources for each type and the production volume of that type. A basic unit calculation unit that calculates the basic unit of resources for each type so as to satisfy the 2 conditions, and indicates the amount of carbon dioxide emitted by the production and / or use of resources in the basic unit of resources for each type. and an emissions calculation unit for calculating, by multiplying a predetermined rate, emissions of carbon dioxide caused by resources to obtain each type of product.
 本発明によれば、事業者が製造する製品に関する温室効果ガスの排出量を、適正かつ簡便に計算により求めることができる。 According to the present invention, the amount of greenhouse gas emissions related to the products manufactured by a business can be calculated properly and simply.
図1(A)は、製品A:ブラックコーヒーの製造プロセスを示す図である。図1(B)は、製品B:標準コーヒーの製造プロセスを示す図である。図1(C)は、製品C:ミルクコーヒーの製造プロセスを示す図である。FIG. 1(A) is a diagram showing the manufacturing process of product A: black coffee. FIG. 1(B) is a diagram showing the manufacturing process of product B: standard coffee. FIG. 1(C) is a diagram showing the manufacturing process of product C: milk coffee. 図2(A)は、製品A:ブラックコーヒーの予定原単位データの構成図である。図2(B)は、製品A:ブラックコーヒーの予定CO2排出量データの構成図である。FIG. 2A is a configuration diagram of planned consumption consumption data for product A: black coffee. FIG. 2B is a configuration diagram of planned CO2 emission data for product A: black coffee. 図3(A)は、製品B:標準コーヒーの予定原単位データの構成図である。図3(B)は、製品B:標準コーヒーの予定CO2排出量データの構成図である。FIG. 3A is a configuration diagram of planned consumption consumption data for product B: standard coffee. FIG. 3B is a configuration diagram of planned CO2 emission data for product B: standard coffee. 図4(A)は、製品C:ミルクコーヒーの予定原単位データの構成図である。図4(B)は、製品C:ミルクコーヒーの予定原単位データの構成図である。FIG. 4A is a configuration diagram of planned consumption consumption data for product C: milk coffee. FIG. 4B is a configuration diagram of planned consumption consumption data for product C: milk coffee. 複数の専用の製造ラインの例を示す図である。FIG. 2 illustrates an example of multiple dedicated manufacturing lines; 1つの共用の製造ラインの例を示す図である。FIG. 4 is a diagram showing an example of one shared production line; 複数の製造プロセスの直列稼働を示す図である。FIG. 2 illustrates serial operation of multiple manufacturing processes; 複数の製造プロセスの並列稼働を示す図である。FIG. 2 illustrates parallel operation of multiple manufacturing processes; 使用数量の変動要因の例を示す図である。FIG. 10 is a diagram showing an example of factors of variation in usage quantity; 予定使用数量データの構成図である。FIG. 10 is a configuration diagram of planned usage quantity data; 製品A:ブラックコーヒーの算出データの構成図である。Product A: It is a configuration diagram of calculation data of black coffee. 製品B:標準コーヒーの算出データの構成図である。Product B: A configuration diagram of calculation data for standard coffee. 製品C:ミルクコーヒーの算出データの構成図である。Product C: It is a configuration diagram of calculation data of milk coffee. CO2排出量算出装置の機能ブロック図である。It is a functional block diagram of a CO2 discharge|emission calculation apparatus. メイン処理過程を示すフローチャートである。4 is a flow chart showing a main processing process; 入力画面処理過程を示すフローチャートである。It is a flow chart which shows an input screen processing process. 入力画面の例を示す図である。It is a figure which shows the example of an input screen. コーヒー粉のCO2排出量データの構成図である。FIG. 4 is a configuration diagram of CO2 emission data of coffee grounds; CO2排出レートデータの構成図である。4 is a configuration diagram of CO2 emission rate data; FIG. 按分比率画面の例を示す図である。It is a figure which shows the example of a proportional division ratio screen. 按分比率データの構成図である。FIG. 4 is a configuration diagram of proportional division ratio data; 出力画面処理過程を示すフローチャートである。4 is a flowchart showing an output screen processing process; 出力画面の例を示す図である。FIG. 10 is a diagram showing an example of an output screen; 製品A:ブラックコーヒーのCO2排出量データの構成図である。Product A: It is a configuration diagram of CO2 emission data of black coffee. 原単位画面の例を示す図である。It is a figure which shows the example of a specific consumption screen. CO2排出量表示画面の例を示す図である。FIG. 10 is a diagram showing an example of a CO2 emission amount display screen; ユーザ端末の機能ブロック図である。3 is a functional block diagram of a user terminal; FIG.
[実施形態]
 製品A:ブラックコーヒー、製品B:標準コーヒーおよび製品C:ミルクコーヒーを製造する飲料工場の例を示す。本実施形態では、各製品について各製品を得る過程で排出された二酸化炭素(以下、「CO2」と記す)を算出する。飲料工場の工程におけるガスの燃焼などによって排出されるCO2のみならず、飲料工場の工程で使用される原材料、部品およびエネルギーなどの資源に関する上流工程の生産過程で排出されたCO2も、各製品の排出CO2量に含める。本実施形態における「資源」とは、製品を製造するために必要とされる原材料、部品およびエネルギーの総称である。
[Embodiment]
An example of a beverage plant producing Product A: Black Coffee, Product B: Standard Coffee and Product C: Milk Coffee is shown. In this embodiment, carbon dioxide (hereinafter referred to as "CO2") emitted in the process of obtaining each product is calculated for each product. Not only CO2 emitted from the combustion of gas in the beverage factory process, but also CO2 emitted in the upstream production process related to resources such as raw materials, parts and energy used in the beverage factory process Included in CO2 emissions. "Resources" in this embodiment is a generic term for raw materials, parts and energy required to manufacture a product.
 図1(A)は、製品A:ブラックコーヒーの製造プロセス106を示す図である。
  製品A:ブラックコーヒーの製造プロセス106は、コーヒー液抽出工程100aと、ブラックコーヒー混合工程102と、ブラックコーヒーボトリング工程104を含む。コーヒー液抽出工程100aでは、ガスと電力を使用して、コーヒー粉と水からコーヒー原液を抽出する。ブラックコーヒー混合工程102では、ガスと電力を使用して、コーヒー原液と砂糖と水を混合し、ブラックコーヒー液を生成する。ブラックコーヒーボトリング工程104では、電力を使用して、ブラックコーヒー液をボトルに入れてキャップを付けて、ボトル入りブラックコーヒー108を生成する。一般的に、ブラックコーヒーは、ミルクが入っていないコーヒーのことを指し、加糖か無糖かは問わない。本願においては、加糖コーヒーを例に説明する。
FIG. 1A is a diagram showing a manufacturing process 106 for product A: black coffee.
Product A: The black coffee manufacturing process 106 includes a coffee liquid extraction step 100 a , a black coffee mixing step 102 and a black coffee bottling step 104 . In the coffee liquid extraction step 100a, gas and electric power are used to extract coffee concentrate from coffee grounds and water. The black coffee mixing step 102 uses gas and electricity to mix the coffee concentrate, sugar and water to produce a black coffee liquor. The black coffee bottling process 104 uses electricity to bottle and cap the black coffee liquid to produce bottled black coffee 108 . Black coffee generally refers to coffee without milk, whether sweetened or unsweetened. In the present application, sweetened coffee will be described as an example.
 図1(B)は、製品B:標準コーヒーの製造プロセス116を示す図である。
 製品B:標準コーヒーの製造プロセス116は、コーヒー液抽出工程100bと、標準コーヒー混合工程112と、標準コーヒーボトリング工程114を含む。コーヒー液抽出工程100bは、コーヒー液抽出工程100aと同様である。標準コーヒー混合工程112では、ガスと電力を使用して、コーヒー原液と牛乳と砂糖と水を混合し、標準コーヒー液を生成する。標準コーヒーボトリング工程114では、電力を使用して、ブラックコーヒー液をボトルに入れてキャップを付けて、ボトル入り標準コーヒー118を生成する。
FIG. 1B is a diagram illustrating the manufacturing process 116 for product B: standard coffee.
Product B: The standard coffee manufacturing process 116 includes a coffee liquor extraction step 100b, a standard coffee mixing step 112, and a standard coffee bottling step 114. The coffee liquid extraction step 100b is similar to the coffee liquid extraction step 100a. The standard coffee mixing step 112 uses gas and power to mix the coffee stock, milk, sugar and water to form a standard coffee liquor. The standard coffee bottling process 114 uses electricity to bottle and cap the black coffee liquid to produce bottled standard coffee 118 .
 図1(C)は、製品C:ミルクコーヒーの製造プロセス126を示す図である。
 製品C:ミルクコーヒーの製造プロセス126は、コーヒー液抽出工程100cと、ミルクコーヒー混合工程122と、ミルクコーヒーボトリング工程124を含む。コーヒー液抽出工程100cは、コーヒー液抽出工程100aと同様である。ミルクコーヒーボトリング工程124では、標準コーヒー混合工程112と同様に、ガスと電力を使用して、コーヒー原液と牛乳と砂糖と水を混合し、ミルクコーヒー液を生成する。但し、標準コーヒーとは混合割合が異なる。ミルクコーヒーボトリング工程124では、電力を使用して、ブラックコーヒー液をボトルに入れてキャップを付けて、ボトル入りミルクコーヒー128を生成する。
FIG. 1(C) is a diagram showing a manufacturing process 126 for product C: milk coffee.
Product C: The milk coffee manufacturing process 126 includes a coffee liquid extraction step 100 c , a milk coffee mixing step 122 and a milk coffee bottling step 124 . The coffee liquid extraction step 100c is similar to the coffee liquid extraction step 100a. The milk coffee bottling process 124, similar to the standard coffee mixing process 112, uses gas and power to mix the coffee concentrate, milk, sugar and water to produce a milk coffee liquor. However, the mixing ratio is different from standard coffee. The milk coffee bottling process 124 uses electricity to bottle and cap the black coffee liquid to produce bottled milk coffee 128 .
 図2(A)は、製品A:ブラックコーヒーの予定原単位データの構成図である。
 原単位は、製品1個あるいは所定数量の生産物をつくるために必要とされる原材料、部品およびエネルギー(燃料、電力)などの予定の数量あるいは実際の数量を示す。予定原単位は、計画段階で予定している原単位を示す。原材料、部品およびエネルギーは、製品を製造するために用いられる資源の分類の例である。予定原単位データは、原材料、部品およびエネルギーの各資源に関する予定使用量を示している。たとえば、製品Aを1個作る場合に、原材料として、コーヒー粉12gと、砂糖10gと、水0.2Lを使用すると予定している。部品として、ボトル1個とキャップ1個を使用すると予定している。また、エネルギーとして、電力0.1kWhとガス6Lを使用すると予定している。製品Aでは牛乳は使用されないが、他の製品との比較のため、牛乳の予定原単位を0gと記す。
FIG. 2A is a configuration diagram of planned consumption consumption data for product A: black coffee.
The basic unit indicates the expected or actual quantity of raw materials, parts, energy (fuel, electric power), etc. required to produce one product or a prescribed quantity of products. The planned basic unit indicates the basic unit scheduled at the planning stage. Raw materials, parts and energy are examples of categories of resources used to manufacture products. The planned basic unit data indicates the planned consumption of raw materials, parts, and energy resources. For example, when making one product A, it is planned to use 12 g of coffee powder, 10 g of sugar, and 0.2 L of water as raw materials. As parts, we plan to use one bottle and one cap. In addition, we plan to use 0.1 kWh of electric power and 6 L of gas as energy. Milk is not used in product A, but for comparison with other products, the expected basic unit of milk is indicated as 0 g.
 図2(B)は、製品A:ブラックコーヒーの予定CO2排出量データの構成図である。
 各資源について、予定原単位にその資源に関するCO2排出レートを乗ずると、予定原単位に基づくCO2排出量(以下、「予定CO2排出量」という)が求められる。CO2排出レートは、資源の単位量(たとえは、g(グラム)、L(リットル)、個数およびkWhなど)当たりのCO2排出量を示す(図19参照)。CO2排出レートは、ある資源の単位量を製造したときおよび単位量を使用したときに生じるCO2の重量として実験により定められてもよい。
FIG. 2B is a configuration diagram of planned CO2 emission data for product A: black coffee.
For each resource, the planned basic unit is multiplied by the CO2 emission rate for that resource to obtain the CO2 emissions based on the planned basic unit (hereinafter referred to as "planned CO2 emissions"). The CO2 emission rate indicates the amount of CO2 emission per unit amount of resource (eg, g (gram), L (liter), number and kWh, etc.) (see Figure 19). A CO2 emission rate may be empirically determined as the weight of CO2 produced when a unit amount of a resource is produced and when a unit amount is used.
 たとえば、コーヒー粉の予定原単位「12g」にコーヒー粉のCO2排出レート「Rc」を乗ずれば、製品A1個で使用される予定量のコーヒー粉を得るために生じた予定CO2排出量は、「12×Rc[g]」として算出される。コーヒー粉1gを得るためにCO2が3g排出されるとすれば、CO2排出レート「Rc」は3[g/g]である。そして、予定通りに実施されれば製品A1個において12×3[g]のCO2が排出されることを意味する。牛乳は使用しないので、牛乳に関する予定CO2排出量は、0gである。図中の「Rm」は、牛乳のCO2排出レートを示す。「Rs」は、砂糖のCO2排出レートを示す。「Rw」は、水のCO2排出レートを示す。「Rb」は、ボトルのCO2排出レートを示す。「Rp」は、キャップのCO2排出レートを示す。「Re」は、電力のCO2排出レートを示す。「Rg」は、ガスのCO2排出レートを示す。ガスのCO2排出レートは、ガスの生産過程で排出されたCO2の量と飲料工場におけるガスの燃焼によって生じるCO2の量を加味している。このように、資源のCO2排出レートは、資源の単位量当たり(たとえば、g(グラム)、L(リットル)、個数およびkWhなど)の値として、資源の製造及び/又は使用によって排出される二酸化炭素の量を示す。そして、各資源の予定CO2排出量を合計すると、製品A1個に相当する予定CO2排出量が得られる。 For example, if the planned basic unit of coffee grounds "12g" is multiplied by the CO2 emission rate of coffee grounds "Rc", the planned CO2 emissions generated to obtain the planned amount of coffee grounds used for one product A is: It is calculated as “12×Rc[g]”. If 3 g of CO2 is emitted to obtain 1 g of ground coffee, the CO2 emission rate "Rc" is 3 [g/g]. This means that 12×3 [g] of CO2 will be discharged from one product A if it is carried out as planned. Since no milk is used, the projected CO2 emissions for milk is 0 g. "Rm" in the figure indicates the CO2 emission rate of milk. "Rs" indicates the CO2 emission rate of sugar. "Rw" indicates the CO2 emission rate of water. "Rb" indicates the CO2 emission rate of the bottle. "Rp" indicates the CO2 emission rate of the cap. "Re" indicates the CO2 emission rate of electricity. "Rg" indicates the CO2 emission rate of the gas. The CO2 emission rate of gas takes into account the amount of CO2 emitted during the gas production process and the amount of CO2 generated by combustion of gas in the beverage factory. Thus, the CO2 emission rate of a resource is the amount of carbon dioxide emitted by the production and/or use of the resource as a value per unit amount of the resource (e.g., g (grams), L (liters), number and kWh, etc.). Indicates the amount of carbon. Then, by totaling the planned CO2 emissions for each resource, the planned CO2 emissions corresponding to one product A can be obtained.
 図3(A)は、製品B:標準コーヒーの予定原単位データの構成図である。
 製品B:標準コーヒーは、ブラックコーヒーとの違いは、原材料として牛乳も使用する点である。コーヒー粉、砂糖、水、電力およびガスの予定原単位は、製品A:ブラックコーヒーの場合と異なる。ボトルとキャップの予定原単位は、製品A:ブラックコーヒーの場合と同じである。製品B:標準コーヒーでは、混合するコーヒー原液の量が、製品A:ブラックコーヒーよりも少ないので、コーヒー粉の予定原単位が製品Aよりも少ない。
FIG. 3A is a configuration diagram of planned consumption consumption data for product B: standard coffee.
Product B: Standard coffee differs from black coffee in that it also uses milk as an ingredient. The planned unit consumption of ground coffee, sugar, water, electricity and gas is different from that of product A: black coffee. The planned unit consumption of bottles and caps is the same as for product A: black coffee. Product B: standard coffee has a smaller amount of raw coffee liquid to be mixed than product A: black coffee.
 図3(B)は、製品B:標準コーヒーの予定CO2排出量データの構成図である。
 予定CO2排出量の求め方は、製品A:ブラックコーヒーの場合と同様である。
FIG. 3B is a configuration diagram of planned CO2 emission data for product B: standard coffee.
The method of obtaining the planned CO2 emission amount is the same as in the case of product A: black coffee.
 図4(A)は、製品C:ミルクコーヒーの予定原単位データの構成図である。
 製品C:ミルクコーヒーでは、原材料として牛乳も使用する。コーヒー粉、砂糖、水、電力およびガスの予定原単位は、製品A:ブラックコーヒーの場合および製品B:標準コーヒーの場合と異なる。また、牛乳の予定原単位は、製品B:標準コーヒーの場合よりも多い。ボトルとキャップの予定原単位は、製品A:ブラックコーヒーおよび製品B:標準コーヒーの場合と同じである。製品C:ミルクコーヒーでは、混合するコーヒー原液の量が更に少ないので、コーヒー粉の予定原単位が製品Bよりも少ない。
FIG. 4A is a configuration diagram of planned consumption consumption data for product C: milk coffee.
Product C: Milk coffee also uses milk as an ingredient. The planned unit consumption of ground coffee, sugar, water, electricity and gas is different for product A: black coffee and product B: standard coffee. In addition, the planned unit consumption of milk is higher than that of product B: standard coffee. The planned unit consumption of bottles and caps is the same as for product A: black coffee and product B: standard coffee. Product C: With milk coffee, the amount of undiluted coffee solution to be mixed is even smaller, so the planned basic unit of coffee grounds is smaller than that of product B.
 図4(B)は、製品C:ミルクコーヒーの予定CO2排出量データの構成図である。
 予定CO2排出量の求め方は、製品A:ブラックコーヒーおよび製品B:標準コーヒーの場合と同様である。
FIG. 4B is a configuration diagram of planned CO2 emission amount data for product C: milk coffee.
The method of obtaining the planned CO2 emission amount is the same as in the case of product A: black coffee and product B: standard coffee.
 一般的には、上述のように予定原単位に基づいてCO2排出量を計算する方法が考えられている。ただし、予定原単位は、見込値であって、実際の使用数量とは異なることがある。つまり、予定原単位の通りに資源を消費するとは限らない。特に電力およびガスなどは、原単位を正確に予測すること自体がむずかしく、実際の使用数量と合っていないこともある。 Generally, a method of calculating CO2 emissions based on the planned basic unit as described above is considered. However, the planned basic unit is an estimated value and may differ from the actual amount used. In other words, resources are not necessarily consumed according to the planned basic unit. For electricity and gas, in particular, it is difficult to accurately predict the unit consumption, and it may not match the actual amount used.
 そこで、本実施形態では、資源の実際の使用数量に基づいてCO2排出量を計算する方法を提案する。そのために、実情に即した原単位(以下、「実原単位」)を求めることとする。たとえば、上述した3つの製品を製造する飲料工場の場合、3つの製品の製造プロセスのそれぞれに関して、そのプロセスで使用された資源の使用数量を得ることができれば、その使用数量を製造数量で割ることによって、実原単位を求めることができる。なお、以下では、使用される資源の数量を「使用数量」といい、製造される製品の数量と「製造数量」といい、排出されるCO2の数量(たとえば、重量や体積)を「CO2排出量」という。また、予定原単位は、製造前に製品1個当たりに使用すると予定した数量であり、実原単位は製造で実際に製品1当たりに使用した数量である。予定原単位と実原単位は、共に製品1個あたりの資源の数量を示す意味で、いずれも原単位である。 Therefore, this embodiment proposes a method of calculating CO2 emissions based on the actual amount of resource usage. For this purpose, we will obtain a basic unit (hereinafter referred to as “actual basic unit”) that is in line with the actual situation. For example, in the case of a beverage factory that manufactures the three products mentioned above, if it is possible to obtain the quantity of resources used in each of the manufacturing processes for each of the three products, divide the quantity used by the quantity produced. The actual basic unit can be obtained by In the following, the quantity of resources used will be referred to as the “quantity used,” the quantity of products manufactured will be referred to as the “manufactured quantity,” and the quantity of CO2 emitted (e.g., weight and volume) will be referred to as the “CO2 emission "Quantity". Further, the scheduled basic unit is the quantity planned to be used per product before manufacturing, and the actual basic unit is the quantity actually used per product in manufacturing. Planned basic unit and actual basic unit both mean the quantity of resources per product, and both are basic units.
 図5は、複数の専用の製造ラインの例を示す図である。
 理想的には、製品A:ブラックコーヒーの製造プロセス106専用の製品Aの製造ラインと、製品B:標準コーヒーの製造プロセス116専用の製品Bの製造ラインと、製品C:ミルクコーヒーの製造プロセス126専用の製品Cの製造ラインとを別々に設ける。
FIG. 5 is a diagram illustrating an example of multiple dedicated manufacturing lines.
Ideally, a product A production line dedicated to the production process 106 of product A: black coffee, a production line of product B dedicated to the production process 116 of standard coffee, and a product C: production process 126 of milk coffee. A dedicated production line for the product C is provided separately.
 製品Aの製造ラインは、コーヒー液抽出工程100a専用のコーヒー液抽出機700aと、ブラックコーヒー混合工程102専用の液体混合機702aと、ブラックコーヒーボトリング工程104専用のボトリング機704aとを含む。電力計量器710aは、コーヒー液抽出機700aと液体混合機702aとボトリング機704aで使用される電力の量を計測する。また、ガス計量器712aは、コーヒー液抽出機700aと液体混合機702aで使用されるガスの量を計測する。 The production line for product A includes a coffee liquid extraction machine 700a dedicated to the coffee liquid extraction process 100a, a liquid mixer 702a dedicated to the black coffee mixing process 102, and a bottling machine 704a dedicated to the black coffee bottling process 104. Power meter 710a measures the amount of power used by coffee brewer 700a, liquid blender 702a and bottling machine 704a. Gas meter 712a also measures the amount of gas used in coffee liquor extractor 700a and liquid blender 702a.
 そして、計測された電力量を、製造したボトル入りブラックコーヒー108の個数で割れば、製品A:ブラックコーヒーにおける電力の実原単位が求められる。また、計測されたガス量を、製造したボトル入りブラックコーヒー108の個数で割れば、製品A:ブラックコーヒーにおけるガスの実原単位が求められる。 Then, by dividing the measured amount of power by the number of bottled black coffee 108 produced, the actual basic unit of power for product A: black coffee can be obtained. Further, by dividing the measured amount of gas by the number of bottled black coffees 108 produced, the actual unit consumption of gas in product A: black coffee can be obtained.
 製品Bの製造ラインについても同様に、コーヒー液抽出工程100b専用のコーヒー液抽出機700bと、標準コーヒー混合工程112専用の液体混合機702bと、標準コーヒーボトリング工程114専用のボトリング機704aとを含む。電力計量器710bで、コーヒー液抽出機700bと液体混合機702bとボトリング機704bに関する電力の使用量を計測し、ガス計量器712bでコーヒー液抽出機700bと液体混合機702bに関するガスの使用量を計測する。 Similarly, the production line for product B includes a coffee liquid extraction machine 700b dedicated to the coffee liquid extraction process 100b, a liquid mixer 702b dedicated to the standard coffee mixing process 112, and a bottling machine 704a dedicated to the standard coffee bottling process 114. . The power meter 710b measures the amount of power used for the coffee liquid extractor 700b, the liquid mixer 702b, and the bottling machine 704b, and the gas meter 712b measures the amount of gas used for the liquid coffee extractor 700b and the liquid mixer 702b. measure.
 そして、計測された電力の使用量を、製造したボトル入り標準コーヒー118の個数で割れば、製品B:標準コーヒーにおける電力の実原単位が求められる。また、計測されたガスの使用量を、製造したボトル入り標準コーヒー118の個数で割れば、製品B:標準コーヒーにおけるガスの実原単位が求められる。 Then, by dividing the measured amount of power consumption by the number of standard bottled coffees 118 produced, the actual basic unit of power for product B: standard coffee can be obtained. Further, by dividing the measured amount of gas used by the number of bottled standard coffees 118 produced, the actual gas consumption rate for product B: standard coffee can be obtained.
 製品Cの製造ラインについても同様に、コーヒー液抽出工程100c専用のコーヒー液抽出機700cと、ミルクコーヒー混合工程122専用の液体混合機702cと、ミルクコーヒーボトリング工程124専用のボトリング機704cとを含む。電力計量器710cで、コーヒー液抽出機700cと液体混合機702cとボトリング機704cに関する電力の使用量を計測し、ガス計量器712cでコーヒー液抽出機700cと液体混合機702cに関するガスの使用量を計測する。 Similarly, the production line for product C includes a coffee liquid extraction machine 700c dedicated to the coffee liquid extraction process 100c, a liquid mixer 702c dedicated to the milk coffee mixing process 122, and a bottling machine 704c dedicated to the milk coffee bottling process 124. . The power meter 710c measures the amount of power used for the coffee liquid extractor 700c, the liquid mixer 702c, and the bottling machine 704c, and the gas meter 712c measures the amount of gas used for the liquid coffee extractor 700c and the liquid mixer 702c. measure.
 そして、計測された電力の使用量を、製造したボトル入りミルクコーヒー128の個数で割れば、製品C:ミルクコーヒーにおける電力の実原単位が求められる。また、計測されたガスの使用量を、製造したボトル入りミルクコーヒー128の個数で割れば、製品C:ミルクコーヒーにおけるガスの実原単位が求められる。 Then, by dividing the measured amount of power consumption by the number of bottled milk coffee 128 produced, the actual power consumption of product C: milk coffee can be obtained. Further, by dividing the measured amount of gas used by the number of bottled milk coffees 128 produced, the actual gas consumption in product C: milk coffee can be obtained.
 このように、製品のライン別に計量器が設けられていれば、製品別のガス使用量および電力使用量を計測できる。なお、ガス計量器712dは、都市ガスのガス管から飲料工場に供給されるガスの全体使用量を計測する。電力計量器710dは、電力会社送電線から飲料工場に供給される電力の全体使用量を計測する。 In this way, if a meter is installed for each product line, it is possible to measure the amount of gas and electricity used for each product. The gas meter 712d measures the total amount of gas supplied to the beverage factory from the city gas pipe. Power meter 710d measures the total usage of power supplied to the beverage plant from the power company transmission lines.
 図6は、1つの共用の製造ラインの例を示す図である。
 複数種類の製品を製造する工場では、各製品に関して製造ラインを共用することも多い。この例では、1つの共用の製造ラインで製品A、製品Bおよび製品Cが製造される。共用の製造ラインは、コーヒー液抽出機700d、液体混合機702dおよびボトリング機704dを含む。コーヒー液抽出機700dは、コーヒー液抽出工程100a~100cで使用される。液体混合機702dは、ブラックコーヒー混合工程102、標準コーヒー混合工程112およびミルクコーヒー混合工程122で使用される。液体混合機702dは、ブラックコーヒーボトリング工程104、標準コーヒーボトリング工程114およびミルクコーヒーボトリング工程124で使用される。
FIG. 6 is a diagram showing an example of one shared manufacturing line.
In factories that manufacture multiple types of products, the manufacturing line is often shared for each product. In this example, product A, product B and product C are manufactured on one shared manufacturing line. The shared production line includes a coffee liquor extractor 700d, a liquor blender 702d and a bottling machine 704d. The coffee liquid extractor 700d is used in the coffee liquid extraction processes 100a-100c. Liquid blender 702 d is used in black coffee blending process 102 , standard coffee blending process 112 and milk coffee blending process 122 . Liquid mixer 702d is used in black coffee bottling process 104, standard coffee bottling process 114 and milk coffee bottling process 124.
 この例では、製造ラインに対するガス計量器は設けられていない。飲料工場におけるガス使用量をまとめて計測するガス計量器712dのみが設置されている。電力に関しても同様に、製造ラインに対する電力計量器は設けられていない。飲料工場における電力使用量をまとめて計測する電力計量器710dのみが設置されている。 In this example, no gas meter is provided for the production line. Only a gas meter 712d is installed to collectively measure the amount of gas used in the beverage factory. As for power, similarly, no power meter is provided for the production line. Only a power meter 710d is installed to collectively measure the amount of power used in the beverage factory.
 また、飲料工場では、製造ラインに含まれない装置も稼働している。装置および器具類を洗浄する時に使われるお湯を沸かすための給湯器724は、ガスを使用する。工場内を照らす照明装置714および工場内の空調を行う空調装置716は、電力を使用する。これらの設備も製品の製造に必要な環境の一部であるので、そのエネルギーに要するCO2排出量も計上する。ただし、3つ製品に対してどのように分配するかを簡単には決められない。 In addition, at the beverage factory, equipment that is not included in the production line is also in operation. Water heater 724 uses gas to heat water used when cleaning equipment and instruments. A lighting device 714 that illuminates the interior of the factory and an air conditioner 716 that air-conditions the interior of the factory use electric power. Since these facilities are also part of the environment necessary for the production of products, the CO2 emissions required for their energy are also included. However, it is not easy to decide how to distribute to the three products.
 この例では、自家発電として太陽光パネル718による太陽光発電が行われる。パワーコントローラー720から分電盤722に入る電力を優先して使用する。太陽光発電による電力は、電力生成時にCO2が生じないので、電力会社から供給される電力に関してのみCO2排出量を考慮すれば良い。したがって、晴れた日には電力会社から供給される電力は少なくて済むので、電力生成に係るCO2排出量は少なくなる。反対に、曇りまたは雨の日には、電力会社から供給される電力が多くなるので、電力生成に係るCO2排出量は多くなる。太陽光発電を利用することによって総合的にはCO2排出量が少なくなるが、その時々の天候によって太陽光発電がCO2排出量削減に寄与する程度は異なる。 In this example, photovoltaic power generation is performed by the solar panel 718 as in-house power generation. The power that enters the distribution board 722 from the power controller 720 is preferentially used. Since power generated by photovoltaic power generation does not generate CO2 during power generation, CO2 emissions need only be considered for power supplied from power companies. Therefore, less power is supplied by the power company on sunny days, resulting in less CO2 emissions associated with power generation. Conversely, on cloudy or rainy days, more power is supplied by the power company, resulting in higher CO2 emissions associated with power generation. The use of photovoltaic power generation reduces CO2 emissions overall, but the extent to which photovoltaic power generation contributes to the reduction of CO2 emissions varies depending on the weather.
 このように、ガス計量器712dで計測される工場全体としてのガス消費量および電力計量器710dで計測される工場全体の電力消費量に基づくCO2排出量を、3種類の製品の製造プロセスに対してどのように割り振るかを判断することは難しい問題である。 In this way, the CO2 emissions based on the gas consumption of the entire factory measured by the gas meter 712d and the power consumption of the entire factory measured by the power meter 710d are calculated for the manufacturing processes of the three types of products. It is a difficult problem to decide how to allocate
 図7は、複数の製造プロセスの直列稼働を示す図である。
 図7の例では、複数の製造プロセスをある時間帯に並行して実行することなく、別の時間帯に実行することを、「直列稼働」と呼ぶ。具体的には、9時に製品A:ブラックコーヒーの製造プロセス106のコーヒー液抽出を始め、11時までに製品Aのボトリングを終える。12時に製品B:標準コーヒーの製造プロセス116のコーヒー液抽出を始め、14時までに製品Bのボトリングを終える。15時に製品C:ミルクコーヒーの製造プロセス126のコーヒー液抽出を始め、17時までに製品Cのボトリングを終える。このように、製品Aの製造プロセス106の稼働時間と、製品Bの製造プロセス116の稼働時間と、製品Cの製造プロセス126の稼働時間帯が分離しており、重ならない。
FIG. 7 is a diagram illustrating serial operation of multiple manufacturing processes.
In the example of FIG. 7, executing a plurality of manufacturing processes in a certain time period in parallel without executing them in another time period is called "serial operation". Specifically, coffee liquid extraction of the manufacturing process 106 of product A: black coffee is started at 9:00, and bottling of product A is finished by 11:00. 12:00 Product B: The coffee liquid extraction of the standard coffee manufacturing process 116 is started, and the bottling of Product B is finished by 14:00. At 15:00, coffee liquid extraction of the production process 126 of product C: milk coffee is started, and bottling of product C is finished by 17:00. Thus, the operating hours of the manufacturing process 106 for product A, the operating hours of the manufacturing process 116 of product B, and the operating hours of the manufacturing process 126 of product C are separated and do not overlap.
 この場合には、製品Aの製造プロセス106の稼働時間(9時~11時)に使用されたガスと電力の使用量によるCO2排出量を、製品Aの製造プロセス106に割り振ればよい。同様に、製品Bの製造プロセス116の稼働時間(12時~14時)に使用されたガスと電力の使用量によるCO2排出量を製品Bの製造プロセス116に割り振り、製品Cの製造プロセス126の稼働時間(15時~17時)に使用された電力とガスの使用量によるCO2排出量を製品Cの製造プロセス126に割り振ることができる。したがって、直列稼働の場合には、製造プロセス毎に電力とガスの使用量を把握して、各製品におけるCO2排出量に反映しやすい。 In this case, the CO2 emissions due to the amount of gas and electricity used during the operating hours (9:00 to 11:00) of the manufacturing process 106 of product A should be allocated to the manufacturing process 106 of product A. Similarly, the CO2 emissions due to the amount of gas and electricity used during the operating time (12:00 to 14:00) of the manufacturing process 116 of product B are allocated to the manufacturing process 116 of product B, The CO2 emissions due to the amount of electricity and gas used during the operating hours (15:00 to 17:00) can be allocated to the manufacturing process 126 of product C. Therefore, in the case of serial operation, it is easy to grasp the amount of electricity and gas used for each manufacturing process and reflect it in the amount of CO2 emissions for each product.
 また、原材料と部品の使用タイミングについても時間的に分かれているので、製造プロセス毎の使用数量を計測しやすい。ここでいう計測には、目視で部品の数をカウントする行為、計量器で液体および粉体の容積を測る行為、および重量計で容器を除く原材料自体の重さを測る行為なども含まれる。つまり、手作業で計測してもよいし、装置に付属するセンサなどで自動的に計測してもよい。 In addition, since the timing of using raw materials and parts is also divided in terms of time, it is easy to measure the quantity used for each manufacturing process. The measurement here includes the act of visually counting the number of parts, the act of measuring the volume of liquid and powder with a weighing scale, and the act of measuring the weight of the raw material itself excluding the container with a weighing scale. In other words, the measurement may be performed manually, or may be performed automatically by a sensor or the like attached to the device.
 図8は、複数の製造プロセスの並列稼働を示す図である。
 図8の例では、複数の製造プロセスがある時間帯に同時に実行されることを、「並列稼働」と呼ぶ。具体的には、9時から10時までのコーヒー液抽出工程100dでは、製品A、製品Bおよび製品Cの分のコーヒー原液をまとめて抽出する。つまり、コーヒー液抽出工程100dは、実質的にコーヒー液抽出工程100aとコーヒー液抽出工程100bとコーヒー液抽出工程100cに相当する。コーヒー液抽出工程100dで使用されたコーヒー粉の使用量は、製品A、製品Bおよび製品Cのための使用量の合計である。
FIG. 8 is a diagram illustrating parallel operation of multiple manufacturing processes.
In the example of FIG. 8, executing multiple manufacturing processes at the same time during a certain period of time is called "parallel operation". Specifically, in the coffee liquid extraction process 100d from 9:00 to 10:00, the undiluted coffee liquids for the products A, B, and C are extracted together. That is, the coffee liquid extraction process 100d substantially corresponds to the coffee liquid extraction process 100a, the coffee liquid extraction process 100b, and the coffee liquid extraction process 100c. The amount of ground coffee used in the coffee liquid extraction step 100d is the sum of the amounts used for product A, product B and product C.
 その後、10時から12時までの間に、ブラックコーヒー混合工程102が単独で実施される。12時から14時までの間に、ブラックコーヒーボトリング工程104と標準コーヒー混合工程112が同時に実施される。14時から16時までの間に、標準コーヒーボトリング工程114とミルクコーヒー混合工程122が同時に実施される。16時から18時までの間に、ミルクコーヒーボトリング工程124が単独で実施される。 After that, between 10:00 and 12:00, the black coffee mixing process 102 is performed alone. Between 12:00 and 14:00, the black coffee bottling step 104 and the standard coffee mixing step 112 are performed simultaneously. Between 14:00 and 16:00, the standard coffee bottling process 114 and the milk coffee mixing process 122 are performed simultaneously. Between 16:00 and 18:00, the milk coffee bottling step 124 is performed alone.
 このように、時間帯によって単独の製造プロセスが実施されることもあるし、複数の製造プロセスが同時に実施されることもある。実際には、図示した例よりも複雑になることもある。そのため、複雑に組み合わされる製造プロセスの実施状況に合わせて、電力およびガスなどの消費量を計測することはむずかしい。本実施形態では、電力およびガスなどの資源の原単位に関して製品間でのバランスが正しく見込まれていると想定して、実原単位を簡単に推定する方法を提案する。推定方法の詳細については、後述する。 In this way, depending on the time of day, a single manufacturing process may be carried out, or multiple manufacturing processes may be carried out at the same time. In practice, it may be more complicated than the example shown. Therefore, it is difficult to measure the consumption of electric power, gas, etc. according to the implementation status of manufacturing processes that are intricately combined. This embodiment proposes a method for simply estimating the actual unit consumption, assuming that the balance between products is correctly estimated regarding the unit consumption of resources such as electricity and gas. Details of the estimation method will be described later.
 たとえば、3種類の製品をそれぞれ10個製造するときに、ガスの全体の予定使用数量が240Lであるのに対して、実際には全体としてその2倍の480Lが使用されたとする。3種類の製品におけるガスの予定原単位の比率(所定比率の例)が6:8:10であったとすれば、実原単位の比率も6:8:10になるように推定する。図2~図4に示したように、製品Aのガスの予定原単位は6Lであり、製品Bのガスの予定原単位は8Lであり、製品Cのガスの予定原単位は10Lである。上述したガスの全体の予定使用数量240Lは、これを根拠としている。上述のように実使用量が予定の2倍の480Lになったとすれば、製品Aのガスの実原単位も2倍の12Lになり、製品Bのガスの実原単位も2倍の16Lになり、製品Cのガスの実原単位も2倍の20Lになったと推定する。詳しい推定方法については、後述する。 For example, when manufacturing 10 of each of the 3 types of products, the planned total amount of gas used is 240 L, but the total amount actually used is 480 L, double that amount. Assuming that the planned ratio of the gas consumption unit for the three types of products (example of the predetermined ratio) is 6:8:10, the ratio of the actual consumption unit is also estimated to be 6:8:10. As shown in FIGS. 2 to 4, the scheduled gas unit consumption for product A is 6 L, the scheduled gas unit consumption for product B is 8 L, and the scheduled gas unit consumption for product C is 10 L. This is the basis for the total planned usage of 240L of gas mentioned above. As mentioned above, if the actual amount used is doubled to 480 liters, the actual gas consumption of product A will be doubled to 12 liters, and the actual gas consumption of product B will also be doubled to 16 liters. As a result, it is estimated that the actual unit consumption of gas for product C has doubled to 20L. A detailed estimation method will be described later.
 なお、ガスの予定原単位を高い精度で求めることが難しいケースでは、ガス原単位と相関関係があると推定される別の指標を代用してもよい。たとえば、ピザ屋で大きさの異なるピザを製造する場合に、大きいピザと小さいピザを焼くためのオーブンで使用されるそれぞれのピザの正確なガス原単位はわからない。しかし、大きいピザはオーブン内の広い領域を専有して焼かれ、一方小さいピザは狭い領域に収まり、一度にたくさん焼かれることを考慮すれば、ピザ1個のガス使用量はピザの重量および面積と相関関係を有すると推定される。したがって、大きいピザと小さいピザの重量の比率または面積の比率が一定になるように大きいピザと小さいピザのガス原単位を算出すれば、ある程度正しい実原単位を推測したことになる。ここでは、ガスに関する例示をしたが、電力およびコーヒー粉など他の資源(原材料、部品およびエネルギーなどに分類される任意の資源)についても同様である。また、重量および面積以外に製品の体積または売価など、他の指標を代用してもよい。体積または売価などが、CO2排出量に関わる原単位の資源と相関関係を有することは、製品個別の事情によって十分に起こり得ることである。 In addition, in cases where it is difficult to obtain the planned gas consumption rate with a high degree of accuracy, another index that is estimated to have a correlation with the gas consumption rate may be substituted. For example, if a pizzeria manufactures pizzas of different sizes, the exact gas intensity for each pizza used in the ovens for baking the large and small pizzas is not known. However, considering that large pizzas occupy a large area in the oven, while small pizzas fit in a small area and are baked in large quantities at one time, the gas usage per pizza is estimated by the weight and area of the pizza. is estimated to have a correlation with Therefore, if the gas unit consumption of the large and small pizzas is calculated so that the weight ratio or area ratio of the large pizza and the small pizza is constant, the actual unit consumption is estimated to some extent correct. Although gas is exemplified here, other resources such as electric power and coffee grounds (any resource classified into raw materials, parts, energy, etc.) are the same. In addition to weight and area, other indicators such as product volume or selling price may be substituted. It is quite possible that the volume or selling price will have a correlation with the basic unit resources related to CO2 emissions depending on the circumstances of each individual product.
 図9は、使用数量の変動要因の例を示す図である。
 上述したように実原単位は、必ずしも予定原単位と同じにならない。原単位の元となる使用数量などを正確に計測することが難しいこともその理由であるが、製品を製造する度にいろいろな要因で使用数量が変動することも理由の一つである。図9では、ある日(2月10日)の飲料工場で起きた出来事によって、幾つかの資源において使用数量が予定と違った例を示す。
FIG. 9 is a diagram showing an example of factors of variation in usage quantity.
As described above, the actual specific consumption is not necessarily the same as the planned specific consumption. One of the reasons for this is that it is difficult to accurately measure the quantity used, which is the basis of the basic unit, but another reason is that the quantity used varies due to various factors each time a product is manufactured. FIG. 9 shows an example of an event that happened at a beverage factory one day (February 10th) that resulted in different usage quantities for some resources than planned.
 コーヒー液抽出工程100dで、コーヒー粉から出るコーヒー成分が通常よりも少なくコーヒー原液が薄くなりそうだったので、コーヒー粉を1割増やした。したがって、コーヒー粉の実際の使用数量が予定よりも1割多くなる。ブラックコーヒーボトリング工程104で、キャップが1個破損していたので、キャップを1個補充した。したがって、キャップの実際の使用数量が予定よりも1個多くなる。ミルクコーヒー混合工程122で、品質に疑いのある牛乳1000gを捨てて、牛乳1000gを補充した。したがって、牛乳の実際の使用数量が予定よりも1000g多くなる。また、その日(2月10日)は晴天であったため太陽光発電量が多く、電力会社から受ける電力が通常よりも少なくて済んだ。したがって、電力の実際の使用数量が、太陽光発電で多く電力を得られた分だけ、予定よりも少なくなる。 In the coffee liquid extraction process 100d, the amount of coffee ingredients coming out of the coffee powder was less than usual, and the undiluted coffee solution seemed to be diluted, so the amount of coffee powder was increased by 10%. Therefore, the actual amount of ground coffee used is 10% more than planned. In the black coffee bottling step 104, one cap was broken, so one cap was replenished. Therefore, the number of caps actually used is one more than planned. In the milk coffee mixing step 122, 1000 g of milk of questionable quality was discarded and 1000 g of milk was added. Therefore, the actual amount of milk used is 1000g more than planned. In addition, since the weather was fine that day (February 10), the amount of solar power generated was large, and the amount of power received from the electric power company was less than usual. Therefore, the actual amount of electricity used will be less than planned due to the amount of electricity obtained from solar power generation.
 図10は、予定使用数量データの構成図である。
 予定使用数量データは、製造を実施する前に生成可能である。予定使用数量データは、各製品の予定製造数量および各製品の予定原単位データに基づいて生成される。ここでいう「予定製造数量」とは、ある製品の一日あたりの製造個数として予定されている数量を意味する。
FIG. 10 is a configuration diagram of the planned usage quantity data.
Planned usage data can be generated prior to production implementation. The planned usage quantity data is generated based on the planned production quantity of each product and the planned basic unit data of each product. The term "planned production quantity" as used herein means the planned production quantity of a certain product per day.
 その日(2月10日)の製造予定として、製品Aを100個、製品Bを150個、製品Cを50個製造することにした。したがって、予定したトータルの製造数量(以下、「予定全数量」という)は、300個(=100+150+50)である。図示するように、製品Aの予定製造数量「100個」、製品Bの予定製造数量「150個」、製品Cの予定製造数量「50個」および予定全数量「300個」が予定使用数量データに含まれる。 We decided to manufacture 100 units of product A, 150 units of product B, and 50 units of product C for that day (February 10th). Therefore, the planned total production quantity (hereinafter referred to as “total planned quantity”) is 300 (=100+150+50). As shown in the figure, the planned production quantity of product A is "100", the planned production quantity of product B is "150", the planned production quantity of product C is "50", and the planned total quantity is "300". include.
 3製品の各資源について、その製品のその資源における予定原単位(図2(A)、図3(A)、図4(A))にその製品の予定製造数量を乗じることによって、その製品のその資源における予定使用数量が求められる。たとえば、製品Aのコーヒー粉について、製品Aのコーヒー粉における予定原単位「12g」に製品Aの予定製造数量「100個」を乗じることによって、製品Aの製造プロセス106におけるコーヒー粉の予定使用数量「1200g」が求められる。 For each resource of the 3 products, by multiplying the planned basic unit of the resource for that product (Figures 2(A), 3(A), and 4(A)) by the planned production quantity of that product, A planned usage quantity for that resource is determined. For example, for coffee grounds of product A, by multiplying the scheduled unit consumption of product A's coffee grounds "12 g" by the scheduled production quantity of product A "100", the planned usage quantity of coffee grounds in the manufacturing process 106 of product A is "1200g" is required.
 また、資源毎に各製品の予定使用数量を合算することによって、全体の予定使用数量が求められる。たとえば、コーヒー粉について、製品Aの予定使用数量「1200g」と製品Bの予定使用数量「1500g」と製品Cの予定使用数量「400g」を合算して、全体の予定使用数量「3100」が求められる。したがって、2月10日の製品A、B、Cの製造に必要なコーヒー粉は、3100gである。この時点で、計画段階を終了する。 In addition, by summing up the planned usage quantity of each product for each resource, the overall planned usage quantity can be obtained. For example, for coffee grounds, the total planned quantity to be used is ``3100'' by adding the planned quantity to be used for product A, ``1200g'', the planned quantity to be used for product B, ``1500g'', and the planned quantity to be used for product C, ``400g''. be done. Therefore, 3100 g of coffee grounds are required to manufacture products A, B, and C on February 10th. At this point, the planning stage ends.
 製造段階に移って、実際の使用数量(以下、「実使用数量」という)を計測する。コーヒー粉、水、電力およびガスについては、すべての製品の分をまとめた実使用数量を計測する。つまり計測範囲が、製品Aの製造プロセス106と製品Bの製造プロセス116と製品Cの製造プロセス126を包含する「全体」である。一方、牛乳、砂糖、ボトルおよびキャップについては、製品プロセス別の実使用数量を計測する。つまり計測範囲が、製品Aの製造プロセス106、製品Bの製造プロセス116または製品Cの製造プロセス126である。この図では、製造段階で計測される実使用数量に対応する予定使用数量を太線枠で囲っている。たとえば、コーヒー粉については、「全体」で「3100g」を使用する予定であるのに対して、実際にはどれだけコーヒー粉が使用されたかを計測する。また、砂糖については、製品Aの製造プロセス106で「1000g」使用する予定であるのに対して実際にはどれだけ使用されたか、製品Bの製造プロセス116で「3000g」使用する予定であるのに対して実際にはどれだけ使用されたか、さらに製品Cの製造プロセス126で「2000g」使用する予定であるのに対して実際にはどれだけ使用されたか、を計測する。 At the manufacturing stage, the actual quantity used (hereinafter referred to as "actual quantity used") is measured. For coffee grounds, water, electricity and gas, we measure the total amount of actual usage for all products. That is, the measurement range is the "whole" including the manufacturing process 106 of product A, the manufacturing process 116 of product B, and the manufacturing process 126 of product C. On the other hand, for milk, sugar, bottles and caps, we will measure the actual quantity used for each product process. That is, the measurement range is the manufacturing process 106 of product A, the manufacturing process 116 of product B, or the manufacturing process 126 of product C. FIG. In this figure, the planned usage quantity corresponding to the actual usage quantity measured at the manufacturing stage is surrounded by a thick line frame. For example, as for coffee grounds, "3100 g" is planned to be used in "total", but how much coffee grounds are actually used is measured. As for sugar, how much is actually used in the manufacturing process 106 of product A, and how much is actually used in the manufacturing process 106 of product A? In addition, how much "2000 g" is actually used in the manufacturing process 126 of the product C is planned to be used.
 図11は、製品A:ブラックコーヒーの算出データの構成図である。
 算出データは、製造段階で実際に製造された製品の数量(以下、「実製造数量」という)と、計測された実使用数量とに基づいて実原単位および実際のCO2排出量(以下、「実CO2排出量」という)を算出する過程を示すデータである。この図で、計測された使用数量を太線枠で囲っている。また、参考のために予定値をかっこ書きで表している。算出データは、実製造数量を含む。この例では、100個のボトル入りブラックコーヒー108が製造され、すべて最終検査で出荷可能な適合品となったことを示している。最終検査で不適合品となったものについては、実製造数量に加えられない。
FIG. 11 is a configuration diagram of calculation data for product A: black coffee.
The calculated data is the actual basic unit and actual CO2 emissions (hereinafter referred to as " This is data showing the process of calculating the actual CO2 emissions. In this figure, the measured amount of usage is enclosed in a thick line frame. For reference, planned values are shown in parentheses. The calculated data includes the actual production quantity. In this example, 100 bottled black coffee 108 were produced, all of which passed the final inspection to be shippable conforming. Non-conforming products in the final inspection are not included in the actual production quantity.
 たとえば、コーヒー粉については、「全体」で「3100g」を使用する予定であったのに対して、実際には1割増しの「3410g」が使用されている。キャップについて、製品Aの製造プロセス106で「100個」を使用する予定であったのに対して、実際には1個多い「101個」が使用されている。また、電力について、「全体」で「35kWh」の電力量を使用する予定であったのに対して、実際には半分の「17.5kWh」が使用されている。 For example, for the coffee grounds, "3100g" was planned to be used for "whole", but in reality, "3410g", which is 10% more, is used. As for the caps, although "100" were planned to be used in the manufacturing process 106 of the product A, "101", which is one more, is actually used. Also, with respect to the electric power, "35 kWh" was planned to be used "total", but in reality, "17.5 kWh", which is half, is used.
 「全体」の実使用数量を計測したコーヒー粉、水、電力およびガスについては、その実使用数量から製品Aの製造プロセス106の実使用数量に相当する使用数量(以下、「推定使用数量」という)が推定される。推定方法については、後述する。その推定使用数量が、製品Aの製造プロセス106において消費された数量(以下、「消費数量」という)となる。たとえば、コーヒー粉に関して、「全体」の実使用数量「3410g」から推定された製品Aの製造プロセス106の推定使用数量「1320g」がそのままコピーされ、製品Aの製造プロセス106の消費数量「1320g」となる。消費数量は、実原単位を求める基礎となる数量を指す。製品Aの製造プロセス106の推定使用数量「1320g」の求め方については、式7に関連して後述する。 Regarding the coffee grounds, water, electricity and gas for which the "total" actual usage quantity was measured, the usage quantity equivalent to the actual usage quantity of the manufacturing process 106 of product A from the actual usage quantity (hereinafter referred to as "estimated usage quantity") is estimated. The estimation method will be described later. The estimated quantity used is the quantity consumed in the manufacturing process 106 of the product A (hereinafter referred to as "consumed quantity"). For example, with respect to coffee grounds, the estimated amount of use "1320 g" of the manufacturing process 106 of the product A estimated from the actual amount of use "3410 g" of "whole" is copied as it is, and the consumption amount of the manufacturing process 106 of the product A "1320 g" is copied as it is. becomes. Consumption quantity refers to the quantity that forms the basis for calculating the actual basic unit. How to determine the estimated usage quantity of “1320 g” for the manufacturing process 106 of product A will be described later in relation to Equation 7.
 一方、製造プロセス別の実使用数量を計測した牛乳、砂糖、ボトルおよびキャップについては、その実使用数量が、そのままその製造プロセスにおける消費数量となる。たとえば、砂糖に関して、製品Aの製造プロセス106の実使用数量「1000g」がそのままコピーされ、製品Aの製造プロセス106の消費数量「1000g」となる。 On the other hand, for milk, sugar, bottles, and caps, for which the actual usage quantity was measured by manufacturing process, the actual usage quantity becomes the consumption quantity in that manufacturing process. For example, with regard to sugar, the actual usage quantity of "1000 g" in the manufacturing process 106 of product A is copied as it is and becomes the consumption quantity of "1000 g" in the manufacturing process 106 of product A.
 各資源について、消費数量を実製造数量で除することによって、実原単位が求められる。たとえば、コーヒー粉に関して、製品Aの製造プロセス106の消費数量「1320g」を製品Aの実製造数量「100個」で除することによって、製品Aの実原単位「13.2g」が求められる。また、砂糖に関して、製品Aの製造プロセス106の消費数量「1000g」を製品Aの実製造数量「100個」で除することによって、製品Aの実原単位「10g」が求められる。 For each resource, the actual basic unit is obtained by dividing the consumption quantity by the actual production quantity. For example, with respect to coffee grounds, by dividing the consumption amount of product A in the manufacturing process 106 of 1320 g by the actual production amount of product A of 100 pieces, the actual basic unit of product A is 13.2 g. As for sugar, by dividing the consumption amount of product A in the manufacturing process 106 of 1000 g by the actual production amount of product A of 100 units, the actual basic unit of product A of 10 g is obtained.
 そして、各資源について、実原単位にその資源におけるCO2排出レートを乗ずることによって、製品Aの1個を得るために実際に排出されたCO2量(以下、「実CO2排出量」という)が算出される。たとえば、コーヒー粉に関して、製品Aの実原単位「13.2g」にコーヒー粉のCO2排出量「Rc」を乗ずることによって、製品Aの実CO2排出量「13.2×Rc」が求められる。また、砂糖に関して、製品Aの実原単位「10g」に砂糖のCO2排出量「Rs」を乗ずることによって、製品Aの実CO2排出量「10×Rs」が求められる。最終的に、製品Aについて、各資源の実CO2排出量が合算され、製品A1個当たりの実CO2排出量が求められる。 Then, for each resource, by multiplying the actual basic unit by the CO2 emission rate for that resource, the amount of CO2 actually emitted to obtain one piece of product A (hereinafter referred to as "actual CO2 emission amount") is calculated. be done. For example, with regard to coffee grounds, by multiplying the actual basic unit of product A "13.2 g" by the CO2 emissions of coffee grounds "Rc", the actual CO2 emissions of product A "13.2 x Rc" can be obtained. As for sugar, by multiplying the actual unit consumption of product A “10 g” by the CO2 emission amount “Rs” of sugar, the actual CO2 emission amount “10×Rs” of product A is obtained. Finally, for product A, the actual CO2 emissions of each resource are summed up to obtain the actual CO2 emissions per product A.
 図12は、製品B:標準コーヒーの算出データの構成図である。
 コーヒー粉については、実使用数量と実CO2排出量ともに予定値よりも増加している。電力については、実使用数量と実CO2排出量ともに予定値よりも減少している。
FIG. 12 is a configuration diagram of calculation data for product B: standard coffee.
As for ground coffee, both the amount of actual use and the amount of actual CO2 emissions have increased from the planned values. As for electric power, both the actual quantity used and the actual CO2 emissions are lower than planned values.
 図13は、製品C:ミルクコーヒーの算出データの構成図である。
 製品C:ミルクコーヒーの場合も、コーヒー粉と牛乳については、実使用数量と実CO2排出量ともに予定値よりも増加している。電力については、実使用数量と実CO2排出量ともに予定値よりも減少している。
FIG. 13 is a configuration diagram of calculation data for product C: milk coffee.
In the case of product C: milk coffee, both the actual amount of coffee powder and milk used and the actual amount of CO2 emissions are higher than the planned values. As for electric power, both the actual quantity used and the actual CO2 emissions are lower than planned values.
 各製品の実原単位は製造日付と対応付けられ、実原単位データとして図14に関連して後述する実原単位データ記憶部262に記憶される。各製品の1個当たりの実CO2排出量は製造日付と対応付けられ、実CO2排出量データとして、図14に関連して後述する実CO2排出量データ記憶部264に記憶される。 The actual basic unit of each product is associated with the date of manufacture and stored as actual basic unit data in the actual basic unit data storage unit 262, which will be described later with reference to FIG. The actual CO2 emissions per product is associated with the date of manufacture and stored as actual CO2 emissions data in the actual CO2 emissions data storage unit 264, which will be described later with reference to FIG.
 ここで、「全体」の実使用数量から製品Aの製造プロセス106の実使用数量を推定する方法について説明する。この方法では、以下に示す2つ条件を満たすように推定の計算を行う。 Here, a method for estimating the actual usage quantity of the manufacturing process 106 of product A from the "whole" actual usage quantity will be described. In this method, estimation calculation is performed so as to satisfy the following two conditions.
 第1条件は、「全体」で計測された資源(たとえば、コーヒー粉)の実使用数量が、各種類の製品(たとえば、製品A、製品Bおよび製品C)におけるその資源の実原単位にその種類の製品の実製造数量を乗じた値(積)の合計と一致するということである。例示したコーヒー粉について「全体」で計測された実使用数量「3410g」は、製品Aの実原単位「13.2g」×製品Aの実製造数量「100個」と、製品Bの実原単位「11g」×製品Bの実製造数量「150個」と、製品Cの実原単位「8.8g」×製品Bの実製造数量「50個」の合計(1320g+1650g+440g)と一致する。 The first condition is that the actual usage quantity of a resource (for example, coffee grounds) measured “overall” is converted into the actual unit consumption of that resource for each type of product (for example, product A, product B, and product C). It means that it matches the sum of the values (products) multiplied by the actual production quantity of the type of product. The actual usage quantity “3410 g” measured “total” for the exemplified coffee grounds is the actual basic unit of product A “13.2 g” × the actual production quantity of product A “100”, and the actual basic unit of product B It matches the sum of "11g" x "150 pcs" of actual production quantity of product B and "8.8g" of actual basic unit of product C x "50 pcs" of actual production quantity of product B (1320g + 1650g + 440g).
 第2条件は、各種類の製品(たとえば、製品A、製品Bおよび製品C)における「全体」で計測された資源(たとえば、コーヒー粉)の実原単位の比率が所定の按分比率と一致する。所定の按分比率は、「全体」で計測された資源に関する各種類の製品の1個当たりの消費量の比率を示す。所定の按分比率は、式1のように各種類の製品の項によって構成される。

 所定の按分比率=製品Aの項:製品Bの項:製品Cの項 (式1)
The second condition is that the ratio of the actual unit consumption of the resource (eg, coffee grounds) measured “total” in each type of product (eg, product A, product B, and product C) matches a predetermined proportional division ratio. . The predetermined proportional division ratio indicates the ratio of consumption per piece of each type of product with respect to the "total" measured resource. The predetermined proportional division ratio is composed of terms for each type of product as shown in Equation (1).

Predetermined proportional division ratio = Product A term: Product B term: Product C term (Formula 1)
 たとえばコーヒー粉の所定の按分比率について、製品Aの項=12、製品Bの項=10、製品Cの項=8であるものとする(図21参照)。この例では各製品の項の値を、各製品におけるコーヒー粉の予定原単位(「12g」、「10g」および「8g」)と一致させている(図2(A)、図3(A)、図4(A))。つまり、この場合の比率基準は、コーヒー粉の予定原単位である。比率基準とは、所定の按分比率として使用される情報の種類を指す。この所定の按分比率の例は、製品A:ブラックコーヒーの1個は、製品B:標準コーヒーの1個よりも2割多くコーヒー粉を消費し、製品C:ミルクコーヒーの1個は、製品B:標準コーヒーの1個よりも2割少ないコーヒー粉を消費することを意味している。 For example, assume that the product A term = 12, the product B term = 10, and the product C term = 8 (see Fig. 21). In this example, the value of each product item is matched with the planned basic unit of coffee grounds (“12 g”, “10 g” and “8 g”) for each product (Fig. 2 (A), Fig. 3 (A) , FIG. 4(A)). In other words, the ratio reference in this case is the scheduled basic unit of coffee grounds. A ratio basis refers to the type of information used as a predetermined proportional division ratio. An example of this predetermined apportionment ratio is that one of product A: black coffee consumes 20% more ground coffee than one of product B: standard coffee, and one of product C: milk coffee consumes product B. : Means consuming 20% less ground coffee than one cup of standard coffee.
 そして、各製品の製造プロセスの推定使用数量を比の形式で表すと式2が成り立つ。式2の理解について助けを必要とする読者のために補足説明する。たとえば、使用された資源の重量と、抽出された成分量とが比例することに着目する。そして、製品3種に関して資源の重量の比と、抽出された成分量の比とが一致することをイメージするとわかりやすい。つまり、このイメージでは、式2の左辺は、資源の重量の比に相当し、式2の右辺は、成分量(=1製品当たりの成分量と製品数の積)の比に相当すると考える。この場合、各製品の項は、1製品当たりの成分量であるととらえられる。ただし、ここで述べたイメージは式2の理解を助けるためのものであって、式2の意味を限定する意図はない。便宜的な例示であって、必ずしも成分量をイメージすべきものではなく、熱量、時間あるいは商品価値など他の概念をイメージして理解できることもある。

 製品Aの製造プロセス106の推定使用数量:製品Bの製造プロセス116の推定使用数量:製品Cの製造プロセス16の推定使用数量
 =製品Aの項×製品Aの実製造数量:製品Bの項×製品Bの実製造数量:製品Cの項×製品Cの実製造数量 (式2)
Expression 2 holds when the estimated quantity used in the manufacturing process of each product is expressed in the form of a ratio. For those readers who need help understanding Equation 2, a supplementary explanation is provided. For example, we focus on the fact that the weight of the resource used is proportional to the amount of the extracted component. It is easy to understand if you imagine that the ratio of the weight of the resources and the ratio of the amount of the extracted components are the same for the three types of products. In other words, in this image, the left side of Equation 2 corresponds to the weight ratio of the resource, and the right side of Equation 2 corresponds to the ratio of the amount of ingredients (=the product of the amount of ingredients per product and the number of products). In this case, each product term is taken to be the amount of ingredients per product. However, the image described here is for helping understanding of Formula 2, and is not intended to limit the meaning of Formula 2. It is a convenient example, and the amount of ingredients should not necessarily be imagined, and it may be understood by imagining other concepts such as heat quantity, time, or commercial value.

Estimated quantity used in the manufacturing process 106 of product A: Estimated quantity used in the manufacturing process 116 of product B: Estimated quantity used in the manufacturing process 16 of product C = Product A term x Actual manufactured quantity of product A: Product B term x Actual production quantity of product B: Item of product C × Actual production quantity of product C (Formula 2)
 コーヒー粉について例示した数値を式2に当てはめると、式3のようになる。

 1320g:1650g:440g=12×100個:10×150個:8×50個
 =1200:1500:400 (式3)
Applying the numerical values exemplified for the coffee powder to Equation 2 yields Equation 3.

1320 g: 1650 g: 440 g = 12 x 100 pieces: 10 x 150 pieces: 8 x 50 pieces = 1200: 1500: 400 (Formula 3)
 したがって、式2に示した各製品の製造プロセスの推定使用数量の比に従って「全体」の実使用数量を按分して、各製品の製造プロセスの推定使用数量を求めることができる。製品Aの製造プロセス106の推定使用数量は、式4と式5によって求められる。

 製品Aの製造プロセス106の推定使用数量
 =「全体」の実使用数量×(製品Aの項×製品Aの実製造数量/分母)(式4)

 分母=製品Aの項×製品Aの実製造数量+製品Bの項×製品Bの実製造数量+製品Cの項×製品Cの実製造数量 (式5)
Therefore, the estimated usage quantity of each product in the manufacturing process can be obtained by proportionally dividing the "total" actual usage quantity according to the ratio of the estimated usage quantity in the manufacturing process of each product shown in Equation 2. The estimated usage quantity for the manufacturing process 106 of Product A is determined by Equations 4 and 5.

Estimated quantity used in the manufacturing process 106 of product A = actual quantity used of “total” × (term of product A × actual quantity manufactured of product A / denominator) (Formula 4)

Denominator = Product A term x Product A actual manufacturing quantity + Product B term x Product B actual manufacturing quantity + Product C term x Product C actual manufacturing quantity (Formula 5)
 コーヒー粉について例示した数値を式5と式4に当てはめると、式6と式7のようになる。

 分母=12×100個+10×150個+8×50個
   =1200+1500+400=3100 (式6)

 製品Aの製造プロセス106の推定使用数量
 =3410g×(12×100個/3100)
 =1320g (式7)
Applying the numerical values exemplified for coffee powder to Equations 5 and 4 yields Equations 6 and 7.

Denominator = 12 x 100 + 10 x 150 + 8 x 50 = 1200 + 1500 + 400 = 3100 (Formula 6)

Estimated quantity used in manufacturing process 106 of product A = 3410 g x (12 x 100/3100)
= 1320 g (equation 7)
 なお製品Bの製造プロセス116の推定使用数量は、式8よって求められ、製品Cの製造プロセス126の推定使用数量は、式9によって求められる。

 製品Bの製造プロセス116の推定使用数量
 =「全体」の実使用数量×(製品Bの項×製品Bの実製造数量/分母)(式8)

 製品Cの製造プロセス126の推定使用数量
 =「全体」の実使用数量×(製品Cの項×製品Cの実製造数量/分母)(式9)
The estimated usage quantity of the manufacturing process 116 for the product B is obtained by Equation 8, and the estimated usage quantity of the manufacturing process 126 for the product C is obtained by Equation 9.

Estimated usage quantity of manufacturing process 116 of product B = actual usage quantity of “total” × (term of product B x actual production quantity of product B / denominator) (Formula 8)

Estimated quantity used in the manufacturing process 126 of product C = actual quantity used of “total” × (term of product C × actual quantity manufactured of product C/denominator) (Formula 9)
 このように、コーヒー粉の「全体」の実使用数量およびコーヒー粉の所定の按分比率に基づいて、製品Aの製造プロセス106、製品Bの製造プロセス116および製品Cの製造プロセス126の推定使用数量を求めることができる。また、ここではコーヒー粉の例を示したが、水、電力およびガスについても同様である。つまり、水の「全体」の実使用数量および水の所定の按分比率に基づいて、製品Aの製造プロセス106、製品Bの製造プロセス116および製品Cの製造プロセス126における水の推定使用数量を求めることができる。電力の「全体」の実使用数量および電力の所定の按分比率に基づいて、製品Aの製造プロセス106、製品Bの製造プロセス116および製品Cの製造プロセス126における電力の推定使用数量を求めることができる。ガスの「全体」の実使用数量およびガスの所定の按分比率に基づいて、製品Aの製造プロセス106、製品Bの製造プロセス116および製品Cの製造プロセス126におけるガスの推定使用数量を求めることができる。 Thus, based on the "total" actual usage of ground coffee and the predetermined proportion of ground coffee, the estimated usage of process 106 for product A, process 116 for product B, and process 126 for product C is calculated. can be asked for. Also, although coffee powder is used as an example here, water, electric power and gas are the same. In other words, based on the "total" actual amount of water used and a predetermined proportionate ratio of water, the estimated amount of water used in the manufacturing process 106 for product A, the manufacturing process 116 for product B, and the manufacturing process 126 for product C is obtained. be able to. Based on the "total" actual amount of power usage and a predetermined proportional division ratio of power, it is possible to determine the estimated amount of power usage in the manufacturing process 106 for product A, the manufacturing process 116 for product B, and the manufacturing process 126 for product C. can. Based on the "total" actual usage of gas and a predetermined proportional ratio of gas, the estimated usage of gas in the product A manufacturing process 106, the product B manufacturing process 116, and the product C manufacturing process 126 can be determined. can.
 なお、最終検査で不適合品が見つかると、実製造数量が予定製造数量よりも少なくなる。たとえば、製品Aの製造プロセス106において予定製造数量「100個」で製造を開始して、最終検査で不適合品が1個見つかると実製造数量が「99個」になる。したがって、実製造数量が「100個」である場合に比べて、各資源の実原単位は100/99倍となり、少し大きくなる。つまり、歩留りが悪いと、実原単位は大きくなる。 In addition, if non-conforming products are found in the final inspection, the actual production quantity will be less than the planned production quantity. For example, in the manufacturing process 106 of product A, production is started with the planned production quantity of "100", and if one nonconforming product is found in the final inspection, the actual production quantity becomes "99". Therefore, compared to the case where the actual manufacturing quantity is "100", the actual basic unit for each resource is 100/99 times, which is slightly larger. In other words, when the yield is poor, the actual basic unit increases.
 図14は、CO2排出量算出装置200の機能ブロック図である。
 CO2排出量算出装置200の各構成要素は、CPU(Central Processing Unit)および各種コプロセッサ(Coprocessor)などの演算器、メモリおよびストレージといった記憶装置、それらを連結する有線または無線の通信線を含むハードウェアと、記憶装置に格納され、演算器に処理命令を供給するソフトウェアによって実現される。コンピュータプログラムは、デバイスドライバ、オペレーティングシステム、それらの上位層に位置する各種アプリケーションプログラム、また、これらのプログラムに共通機能を提供するライブラリによって構成されてもよい。図示した各ブロックは、主に機能単位のブロックを示している。各ブロックは、記憶装置に記憶されているプログラムを演算器に実行させることによって実現してもよい。後述するユーザ端末500の場合も同様である。
FIG. 14 is a functional block diagram of the CO2 emission calculation device 200. As shown in FIG.
Each component of the CO2 emission calculation device 200 includes computing units such as a CPU (Central Processing Unit) and various coprocessors, storage devices such as memory and storage, and hardware including a wired or wireless communication line connecting them. It is implemented by hardware and software stored in a storage device and supplying processing instructions to the computing unit. A computer program may consist of a device driver, an operating system, various application programs located in their higher layers, and a library that provides common functions to these programs. Each illustrated block mainly indicates a functional unit block. Each block may be implemented by causing a computer to execute a program stored in a storage device. The same applies to the user terminal 500, which will be described later.
 CO2排出量算出装置200は、ユーザインターフェース処理部210、データ処理部280、ネットワーク通信部240、近距離無線通信部242、有線通信部244およびデータ格納部250を含む。ユーザインターフェース処理部210は、マウスまたはタッチパネルなどを介して作業者からの操作を受け付けるほか、画像表示および音声出力など、ユーザインターフェース処理を担当する。ネットワーク通信部240は、ネットワークを介した通信処理を担当する。近距離無線通信部242は、近距離無線による通信処理を担当する。有線通信部244は、有線による通信処理を担当する。データ格納部250は各種データを格納する。データ処理部280は、ネットワーク通信部240と近距離無線通信部242と有線通信部244により取得されたデータおよびデータ格納部250に格納されているデータに基づいて各種処理を実行する。データ処理部280は、ユーザインターフェース処理部210、ネットワーク通信部240、近距離無線通信部242、有線通信部244およびデータ格納部250のインターフェースとしても機能する。CO2排出量算出装置200は、図形コードリーダ300、RFID(Radio Frequency Identification)リーダ302、図形コードプリンタ306およびRFIDライタ308と近距離無線あるいは有線によって通信可能である。また、CO2排出量算出装置200は、スマートフォンおよびタブレット端末などの装置と近距離無線あるいは有線によって通信可能である。このように、CO2排出量算出システムは、CO2排出量算出装置200、図形コードリーダ300、RFIDリーダ302、情報入力端末304、図形コードプリンタ306およびRFIDライタ308を含むことができる。 The CO2 emission calculation device 200 includes a user interface processing unit 210 , a data processing unit 280 , a network communication unit 240 , a short-range wireless communication unit 242 , a wired communication unit 244 and a data storage unit 250 . The user interface processing unit 210 receives operations from an operator via a mouse or a touch panel, and is in charge of user interface processing such as image display and audio output. The network communication unit 240 is in charge of communication processing via the network. The short-range wireless communication unit 242 takes charge of communication processing by short-range wireless. The wired communication unit 244 is in charge of wired communication processing. The data storage unit 250 stores various data. The data processing unit 280 executes various processes based on the data acquired by the network communication unit 240 , the short-range wireless communication unit 242 and the wired communication unit 244 and the data stored in the data storage unit 250 . Data processing unit 280 also functions as an interface for user interface processing unit 210 , network communication unit 240 , short-range wireless communication unit 242 , wired communication unit 244 and data storage unit 250 . The CO2 emission calculation device 200 can communicate with a graphic code reader 300, an RFID (Radio Frequency Identification) reader 302, a graphic code printer 306, and an RFID writer 308 by short-range wireless or wired communication. In addition, the CO2 emission calculation device 200 can communicate with devices such as smartphones and tablet terminals by short-range wireless or wired communication. Thus, the CO2 emission calculation system can include CO2 emission calculation device 200, graphic code reader 300, RFID reader 302, information input terminal 304, graphic code printer 306 and RFID writer 308. FIG.
 ユーザインターフェース処理部210は、作業者の操作によってデータを入力する入力部220と作業者へ提供するデータを出力する出力部230を有する。出力方法として、ディスプレイに表示する例を示すが、印刷または情報処理端末(たとえば、管理者端末)への送信などであってもよい。 The user interface processing unit 210 has an input unit 220 for inputting data by operator's operation and an output unit 230 for outputting data to be provided to the operator. As an output method, an example of displaying on a display is shown, but printing or transmission to an information processing terminal (for example, administrator terminal) may be used.
 データ処理部280は、取得部282、算出部284、アップロード部286、URL(Uniform Resource Locator)記録部288および暗号化/復号部290を有する。取得部282は、WEBサーバのURLへアクセスして、原材料および部品などのCO2排出量データを得る。算出部284は、原単位およびCO2排出量など算出を行い、原単位算出部292および排出量算出部294を含む。原単位算出部292は、実原単位を算出する。排出量算出部294は、実CO2排出量を算出する。アップロード部286は、CO2排出量データをWEBサーバにアップロードする。URL記録部288は、CO2排出量データURLを記録媒体に記録する。暗号化/復号部290は、各種データを暗号化し、暗号化されている各種データを復号する。 The data processing unit 280 has an acquisition unit 282 , a calculation unit 284 , an upload unit 286 , a URL (Uniform Resource Locator) recording unit 288 and an encryption/decryption unit 290 . The acquisition unit 282 accesses the URL of the WEB server and acquires CO2 emission data such as raw materials and parts. The calculation unit 284 calculates the basic unit and the amount of CO2 emissions, and includes a basic unit calculation unit 292 and an emission amount calculation unit 294 . The specific consumption calculating unit 292 calculates the actual specific consumption. The emissions calculation unit 294 calculates the actual CO2 emissions. The upload unit 286 uploads the CO2 emission data to the WEB server. The URL recording unit 288 records the CO2 emission data URL on a recording medium. The encryption/decryption unit 290 encrypts various data and decrypts various encrypted data.
 データ格納部250は、予定原単位データ記憶部252、CO2排出レートデータ記憶部254、予定CO2排出量データ記憶部256、予定使用数量データ記憶部258、算出データ記憶部260、実原単位データ記憶部262、実CO2排出量データ記憶部264および按分比率データ記憶部266を有する。
 予定原単位データ記憶部252は、予定原単位データ(図2(A)、図3(A)、図4(A))を記憶する。初期の予定原単位は、運用を開始する前の準備段階で入力部220によって受け付けられているものとする。CO2排出レートデータ記憶部254は、CO2排出レートデータ(図19)を記憶する。予定CO2排出量データ記憶部256は、予定CO2排出量データ(図1(B)、図2(B)、図3(B))を記憶する。予定使用数量データ記憶部258は、予定使用数量データ(図10)を記憶する。算出データ記憶部260は、算出データ(図11、図12、図13)を記憶する。実原単位データ記憶部262は、過去分を含み、製品毎の各資源の実原単位が格納される実原単位データを記憶する。実CO2排出量データ記憶部264は、過去分を含み、各製品の実CO2排出量と、その製品の各資源の実CO2排出量とが格納される実CO2排出量データを記憶する。按分比率データ記憶部266は、按分比率データ(図21)を記憶する。
The data storage unit 250 includes a planned specific consumption data storage unit 252, a CO2 emission rate data storage unit 254, a planned CO2 emission amount data storage unit 256, a planned usage amount data storage unit 258, a calculated data storage unit 260, and an actual specific consumption data storage unit. 262 , an actual CO2 emissions data storage unit 264 and a proportional division ratio data storage unit 266 .
The planned specific consumption data storage unit 252 stores planned specific consumption data (FIGS. 2(A), 3(A), and 4(A)). It is assumed that the initial planned basic unit has been received by the input unit 220 in the preparatory stage before starting operation. The CO2 emission rate data storage unit 254 stores CO2 emission rate data (FIG. 19). The planned CO2 emission amount data storage unit 256 stores planned CO2 emission amount data (FIGS. 1(B), 2(B), and 3(B)). The planned usage quantity data storage unit 258 stores planned usage quantity data (FIG. 10). The calculated data storage unit 260 stores calculated data (FIGS. 11, 12, and 13). The actual basic unit data storage unit 262 stores actual basic unit data including past data and storing the actual basic unit of each resource for each product. The actual CO2 emission amount data storage unit 264 stores actual CO2 emission amount data including the past data, in which the actual CO2 emission amount of each product and the actual CO2 emission amount of each resource of the product are stored. The proportional division ratio data storage unit 266 stores proportional division ratio data (FIG. 21).
 図形コードリーダ300は、図形コード(たとえば、バーコードまたはQRコード(登録商標))から各種情報(たとえば、URL)を読み取る。RFIDリーダ302は、RFIDタグから各種情報(たとえば、URL)を読み取る。図形コードプリンタ306は、図形コード(たとえば、バーコードまたはQRコード)をシールラベルなどに印刷する。RFIDライタ308は、RFIDタグに各種情報(たとえば、URL)を書き込む。 The graphic code reader 300 reads various information (eg, URL) from the graphic code (eg, bar code or QR code (registered trademark)). The RFID reader 302 reads various information (eg, URL) from RFID tags. A graphic code printer 306 prints a graphic code (for example, a bar code or a QR code) on a seal label or the like. The RFID writer 308 writes various information (eg, URL) to the RFID tag.
 図15は、メイン処理過程を示すフローチャートである。
 入力部220は、各製品の予定製造数量を入力する(S10)。算出部284は、図10に関連して説明したように、予定使用数量を算出する(S12)。予定使用数量は、参考として表示するために算出される。予定使用数量を用いなくても、実原単位および実CO2排出量を求めることができるので、予定使用数量の算出は省いてもよい。出力部230は、図10に示した各製品の予定使用数量および「全体」の予定使用数量を表示する(S14)。データ処理部280は、入力画面処理を実行する(S16)。入力画面処理については、図16に関連して後述する。データ処理部280は、出力画面処理を実行する(S18)。出力画面処理については、図22に関連して後述する。
FIG. 15 is a flow chart showing the main processing steps.
The input unit 220 inputs the planned production quantity of each product (S10). The calculation unit 284 calculates the planned usage quantity as described with reference to FIG. 10 (S12). Planned usage quantities are calculated for reference purposes only. Since the actual basic unit and the actual CO2 emission amount can be obtained without using the planned quantity of use, the calculation of the planned quantity of use may be omitted. The output unit 230 displays the planned usage quantity of each product and the planned usage quantity of "whole" shown in FIG. 10 (S14). The data processing unit 280 executes input screen processing (S16). Input screen processing will be described later with reference to FIG. The data processing unit 280 executes output screen processing (S18). Output screen processing will be described later with reference to FIG.
 図16は、入力画面処理過程を示すフローチャートである。図16に示すフローチャートは、図15に示した入力画面処理(S16)における詳細な処理を示している。
 出力部230は、入力画面を表示する(S30)。入力画面については、図17に関連して後述する。入力部220が、読取ボタン802(図17)へのタッチを受け付けると(S32のY)、取得部282は、CO2排出レートを取得する取得処理を実行する(S34)。取得処理については、図18に関連して後述する。
FIG. 16 is a flow chart showing the input screen processing process. The flowchart shown in FIG. 16 shows detailed processing in the input screen processing (S16) shown in FIG.
The output unit 230 displays an input screen (S30). The input screen will be described later with reference to FIG. When the input unit 220 receives a touch on the read button 802 (FIG. 17) (Y of S32), the acquisition unit 282 executes acquisition processing for acquiring the CO2 emission rate (S34). The acquisition process will be described later with reference to FIG.
 入力部220が、比率ボタン806(図17)へのタッチを受け付けると(S36のY)、出力部230は、按分比率画面を表示する(S38)。按分比率画面については、図20に関連して後述する。入力部220が、計算ボタン809(図17)へのタッチを受け付けると(S40)、原単位算出部292は、実原単位算出処理を実行する(S42)。実原単位算出処理において、原単位算出部292は、図10~図12に関連して説明したように、実原単位を算出する。排出量算出部294は、CO2排出量算出処理を実行する(S44)。CO2排出量算出処理において、排出量算出部294は、図10~図12に関連して説明したように、実CO2排出量を算出する。そして、図15に示した出力画面処理(S18)へ戻る。 When the input unit 220 receives a touch on the ratio button 806 (FIG. 17) (Y of S36), the output unit 230 displays the proportional division ratio screen (S38). The proportional division ratio screen will be described later with reference to FIG. When input unit 220 receives a touch on calculation button 809 (FIG. 17) (S40), specific consumption calculation unit 292 executes actual consumption consumption calculation processing (S42). In the actual specific consumption calculation process, the specific consumption calculation unit 292 calculates the actual specific consumption as described with reference to FIGS. 10 to 12 . The emission calculation unit 294 executes CO2 emission calculation processing (S44). In the CO2 emission calculation process, the emission calculation unit 294 calculates the actual CO2 emission as described with reference to FIGS. 10 to 12. FIG. Then, the process returns to the output screen process (S18) shown in FIG.
 図17は、入力画面の例を示す図である。
 出力部230は、CO2排出レートデータ(図19)に含まれる各資源のCO2排出レートを表示する。初回でCO2排出レートがまだ設定されていない場合には、CO2排出レートは表示されない。
FIG. 17 is a diagram showing an example of an input screen.
The output unit 230 displays the CO2 emission rate of each resource included in the CO2 emission rate data (FIG. 19). If the CO2 emission rate has not yet been set for the first time, the CO2 emission rate will not be displayed.
 原材料および部品などの本体、容器または包装には、記録媒体(たとえば、バーコード、QRコードまたはRFIDタグなど)が付されており、記録媒体にはCO2排出量データのネットワーク上の格納場所を示すURL(以下、「CO2排出量データURL」という)が記録されている。入力部220が、いずれかの資源の読取ボタン802へのタッチを受け付けると、図形コードリーダ300とRFIDリーダ302が読取可能な状態になる。原材料および部品などの記録媒体から図形コードリーダ300またはRFIDリーダ302でCO2排出量データURLを読み取る。読み取られたCO2排出量データURLは、CO2排出量算出装置200に入力される。取得部282は、CO2排出量データURLへアクセスして、原材料および部品などのCO2排出量データを得る。このとき、ネットワーク通信部240は、CO2排出量データURLにアクセスして、CO2排出量データをダウンロードする。 A recording medium (e.g., barcode, QR code, RFID tag, etc.) is affixed to the main body, container, or package of raw materials and parts, and the storage location of CO2 emission data on the network is indicated on the recording medium. A URL (hereinafter referred to as "CO2 emission data URL") is recorded. When the input unit 220 receives a touch on the read button 802 of any resource, the graphic code reader 300 and the RFID reader 302 are ready for reading. The graphic code reader 300 or RFID reader 302 reads the CO2 emissions data URL from recording media such as raw materials and parts. The read CO2 emission data URL is input to the CO2 emission calculation device 200 . The obtaining unit 282 accesses the CO2 emission data URL and obtains the CO2 emission data of raw materials, parts, and the like. At this time, the network communication unit 240 accesses the CO2 emission data URL and downloads the CO2 emission data.
 図18は、コーヒー粉のCO2排出量データの構成図である。
 図示したように、たとえばコーヒー粉の場合、取得部282は、図形コードリーダ300においてコーヒー粉の容器に付された図形コード800aを読み取ることによってコーヒー粉CO2排出量データURL「https://bbb.xxx/trace/0122」を得る。あるいは、取得部282は、RFIDリーダ302においてコーヒー粉の容器に付されたRFIDタグからコーヒー粉CO2排出量データURLを得る。そして、取得部282は、コーヒー粉を提供する事業者「bbb」のWEBサーバ400bのコーヒー粉CO2排出量データURLにアクセスして、WEBサーバ400bからのレスポンスによってコーヒー粉のCO2排出量データを得る。製品としてのコーヒー粉は、100g入りでありその全体のCO2排出量を、CO2排出量(全体)として示している。また、1g当たりのCO2排出量を、CO2排出レートとして示している。
FIG. 18 is a configuration diagram of CO2 emission data of coffee grounds.
As shown in the figure, in the case of coffee grounds, for example, the acquisition unit 282 obtains the coffee grounds CO2 emission data URL "https://bbb.css" by reading the figure code 800a attached to the container of the coffee grounds with the figure code reader 300. xxx/trace/0122". Alternatively, the obtaining unit 282 obtains the coffee powder CO2 emission data URL from the RFID tag attached to the coffee powder container in the RFID reader 302 . Then, the obtaining unit 282 accesses the coffee powder CO2 emission data URL of the WEB server 400b of the business operator “bbb” that provides the coffee powder, and obtains the coffee powder CO2 emission data based on the response from the WEB server 400b. . The coffee powder as a product contains 100 g, and the total CO2 emission amount is shown as the CO2 emission amount (total). Also, the CO2 emission amount per 1 g is shown as the CO2 emission rate.
 取得部282は、CO2排出量データに含まれるCO2排出レートと、アクセスしたCO2排出量データURLを、その資源と対応付けてCO2排出レートデータに書き込む。 The acquisition unit 282 associates the CO2 emission rate included in the CO2 emission data and the accessed CO2 emission data URL with the resource and writes them into the CO2 emission rate data.
 図19は、CO2排出レートデータの構成図である。
 CO2排出レートデータは、資源毎に、CO2排出レートとCO2排出量データURLを格納するようになっている。
FIG. 19 is a configuration diagram of CO2 emission rate data.
The CO2 emission rate data stores the CO2 emission rate and the CO2 emission amount data URL for each resource.
 なお、電力については、電力会社のWEBサイトにおいて表示された図形コードを読み取ることによって、CO2排出量データURLを得るようにすることが考えられる。また、同様にガスについても、ガス会社のWEBサイトにおいて表示された図形コードを読み取ることによって、CO2排出量データURLを得るようにしてもよい。 Regarding electricity, it is conceivable to obtain the CO2 emissions data URL by reading the graphic code displayed on the website of the electric power company. Similarly, for gas, the CO2 emission data URL may be obtained by reading the graphic code displayed on the website of the gas company.
 図17に示した入力画面の説明に戻る。出力部230は、上述のようにして得られたCO2排出レートを表示する。CO2排出レートを更新する必要がない場合には、読取ボタン802にタッチせずに、入力画面に表示されているCO2排出レートを使用することができる。 Return to the description of the input screen shown in FIG. The output unit 230 displays the CO2 emission rate obtained as described above. If there is no need to update the CO2 emission rate, the CO2 emission rate displayed on the input screen can be used without touching the read button 802 .
 出力部230は、各資源に関する実使用数量の数値エリア804を表示する。作業者は、数値エリア804に実使用数量の値を入力し、入力部220は、各資源の実使用数量を受け付け、算出データ(図11、図12、図13)に設定する。 The output unit 230 displays a numeric area 804 of the actual quantity used for each resource. The worker inputs the value of the actual usage quantity in the numeric area 804, and the input unit 220 accepts the actual usage quantity of each resource and sets it in the calculation data (FIGS. 11, 12, and 13).
 出力部230は、各製品に関する実製造数量の数値エリア808を表示する。作業者は、数値エリア808に実製造数量の値を入力し、入力部220は、各製品の実製造数量を受け付け、算出データ(図11、図12、図13)に設定する。 The output unit 230 displays a numeric area 808 of the actual production quantity for each product. The operator inputs the value of the actual production quantity in the numeric area 808, and the input section 220 receives the actual production quantity of each product and sets it in the calculation data (FIGS. 11, 12, and 13).
 入力部220が資源に対応する比率ボタン806のタッチを受け付けた場合には、出力部230は、その資源に関する按分比率画面を表示する。ただし、実使用数量を「全体」で計測する資源に限り、比率ボタン806が表示される。製品毎に実使用数量を計測する資源については、按分による製品別の使用数量の推定を行わないからである(図11、図12、図13参照)。 When the input unit 220 receives the touch of the ratio button 806 corresponding to the resource, the output unit 230 displays the proportional division ratio screen for that resource. However, the ratio button 806 is displayed only for the resource whose actual usage quantity is measured by "whole". This is because, for resources whose actual usage quantity is measured for each product, the usage quantity for each product is not estimated by proportional division (see FIGS. 11, 12, and 13).
 図20は、按分比率画面の例を示す図である。
 ここでは、電力に関する按分比率画面の例を示す。出力部230は、電力の所定の按分比率を大きい数字で表示する。この例で、電力の所定の按分比率における製品Aの項は「0.10」であり、製品Bの項は「0.12」、製品Cの項は「0.14」である。これらの値は、電力の予定原単位の値と一致する(図2(A)、図3(A)、図4(A))。つまり、この例に示した電力の所定の按分比率では、電力の予定原単位を比率基準としている。
FIG. 20 is a diagram showing an example of the proportional division ratio screen.
Here, an example of the proportional division ratio screen regarding electric power is shown. The output unit 230 displays the predetermined proportional division ratio of electric power with a large number. In this example, the term for product A is '0.10', the term for product B is '0.12', and the term for product C is '0.14' at the predetermined proportional division ratio of power. These values match the values of the planned specific consumption of electric power (FIGS. 2(A), 3(A), and 4(A)). That is, in the predetermined proportional division ratio of electric power shown in this example, the planned basic unit of electric power is used as the ratio standard.
 原則として、その資源の予定原単位を比率基準とすることを推奨している。ただし、その資源の予定原単位以外を比率基準とすることもできる。出力部230は、比率基準の候補とその候補における各製品の値を表示する。この例では、比率基準の候補として、ロットの製造時間、ロットの加熱時間、容量、製品売値、利益率、原価率、任意基準およびその属性以外の属性に関する予定原単位などを示しているが、これに限らず、任意の項目を比率基準の候補にすることができる。作業者が、ラジオボタン810で比率基準の候補を選択すれば、比率基準を変更することができる。その場合には、按分比率の各製品の項が、変更された比率基準における各製品の値に置き換えられる。比率基準として、任意基準が選択された場合には、作業者が各製品の任意値として数値エリア812に入力した値が採用される。決定ボタン814がタッチされた場合には、按分比率画面で選択されている比率基準と、その比率基準による按分比率とが、按分比率データに設定される。取消ボタン816がタッチされた場合には、按分比率データを更新せずにそのまま処理を終える。按分比率データについては、図21に関連して後述する。 As a general rule, we recommend that the planned basic unit of the resource be used as the ratio standard. However, it is also possible to use a ratio standard other than the planned basic unit of the resource. The output section 230 displays the ratio criterion candidates and the value of each product in the candidates. In this example, lot manufacturing time, lot heating time, capacity, product selling price, profit rate, cost rate, arbitrary criteria and scheduled unit consumption related to attributes other than those attributes are shown as candidates for ratio criteria. Not limited to this, any item can be a candidate for the ratio criterion. The operator can change the ratio criterion by selecting a ratio criterion candidate with the radio button 810 . In that case, each product's term in the proration ratio is replaced by each product's value in the modified ratio basis. When the arbitrary criterion is selected as the ratio criterion, the value input by the worker in the numeric area 812 is adopted as the arbitrary value of each product. When the decision button 814 is touched, the ratio standard selected on the proportional division ratio screen and the proportional division ratio based on that ratio basis are set as the proportional division ratio data. If the cancel button 816 is touched, the process ends without updating the proportional division ratio data. The proportional division ratio data will be described later with reference to FIG.
 なお、予定原単位以外の比率基準に関する情報は、製品基礎データとして製品基礎データ記憶部(不図示)に記憶されている。製品基礎データ記憶部は、データ格納部250に含まれる。 In addition, information on the ratio standard other than the planned basic unit is stored in the product basic data storage unit (not shown) as product basic data. A product basic data storage unit is included in the data storage unit 250 .
 図21は、按分比率データの構成図である。
 按分比率データは、実使用数量を「全体」で計測する資源に関して、比率基準と比率基準を格納している。この図では、理解しやすくするために、g(グラム)およびL(リットル)などの単位も示している。
FIG. 21 is a configuration diagram of proportional division ratio data.
The apportionment ratio data stores the ratio standard and the ratio standard regarding the resource for which the actual usage quantity is measured "total". The figure also shows units such as g (grams) and L (liters) for ease of understanding.
 図17に示した入力画面の説明に戻る。すべての資源に関する実使用数量およびすべての製品に関する実製造数量が入力された段階で、計算ボタン809がタッチされると、すべての資源に関する実使用数量およびすべての製品に関する実製造数量が、算出データ(図11、図12、図13)として算出データ記憶部260に格納される。そして、原単位算出部292は、図16のS42に示した実原単位算出処理を実行し、排出量算出部294は、S44に示したCO2排出量算出処理を実行する。そして、入力画面処理が終わり、図15に示したS18の処理へ戻る。計算ボタン809がタッチされたときに、いずれかの実使用数量が未入力であった場合、あるいはいずれかの製品の実製造数量が未入力であった場合には、出力部230は、未入力の数量の入力を促す表示をする。 Return to the description of the input screen shown in FIG. When the calculation button 809 is touched at the stage where the actual usage quantities of all resources and the actual production quantities of all products have been entered, the actual usage quantities of all resources and the actual production quantities of all products are converted into calculated data. (FIGS. 11, 12, and 13) is stored in the calculated data storage unit 260. FIG. Then, the specific consumption calculation unit 292 executes the actual consumption consumption calculation process shown in S42 of FIG. 16, and the emissions calculation unit 294 executes the CO2 emissions calculation process shown in S44. Then, the input screen processing ends, and the processing returns to S18 shown in FIG. When the calculation button 809 is touched, if any actual usage quantity has not been input, or if any actual production quantity of any product has not been input, the output unit 230 Display to prompt for input of quantity.
 実原単位算出処理(図16のS42)について説明する。原単位算出部292は、「全体」で計測した各資源(コーヒー粉、水、電力およびガス)について実原単位を算出する。図11、図12および図13に関連して説明したように、原単位算出部292は、まず式4、式5、式8および式9に基づいて推定使用数量を求める。

 製品Aの製造プロセス106の推定使用数量
 =「全体」の実使用数量×(製品Aの項×製品Aの実製造数量/分母)(式4)

 分母=製品Aの項×製品Aの実製造数量+製品Bの項×製品Bの実製造数量+製品Cの項×製品Cの実製造数量 (式5)

 製品Bの製造プロセス116の推定使用数量
 =「全体」の実使用数量×(製品Bの項×製品Bの実製造数量/分母)(式8)

 製品Cの製造プロセス126の推定使用数量=
 =「全体」の実使用数量×(製品Cの項×製品Cの実製造数量/分母)(式9)
The actual specific consumption calculation process (S42 in FIG. 16) will be described. The basic unit calculation unit 292 calculates the actual basic unit for each resource (coffee powder, water, electric power, and gas) measured in the “total”. As described with reference to FIGS. 11, 12, and 13, the specific consumption calculator 292 first obtains the estimated usage quantity based on Equations 4, 5, 8, and 9.

Estimated quantity used in the manufacturing process 106 of product A = actual quantity used of “total” × (term of product A × actual quantity manufactured of product A / denominator) (Formula 4)

Denominator = Product A term x Product A actual manufacturing quantity + Product B term x Product B actual manufacturing quantity + Product C term x Product C actual manufacturing quantity (Formula 5)

Estimated usage quantity of manufacturing process 116 of product B = actual usage quantity of “total” × (term of product B x actual production quantity of product B / denominator) (Formula 8)

Estimated quantity used in manufacturing process 126 for product C =
= “Overall” actual quantity used x (term of product C x actual manufactured quantity of product C/denominator) (Formula 9)
 算出対象の資源における製品Aの項、製品Bの項および製品Cの項は、按分比率データ記憶部266の按分比率データ(図21)から得られる。製品Aの実製造数量、製品Bの実製造数量および製品Cの実製造数量は、算出データ記憶部260の算出データ(図11、図12、図13)から得られる。これらを上述の式に代入すれば、製品Aの製造プロセス106における推定使用数量、製品Bの製造プロセス116における推定使用数量および製品Cの製造プロセス126における推定使用数量が算出される。各推定使用数量は、算出データ記憶部260に算出データ(図11、図12、図13)として格納される。 The product A term, product B term, and product C term in the resource to be calculated are obtained from the proportional division ratio data of the proportional division ratio data storage unit 266 (FIG. 21). The actual production quantity of product A, the actual production quantity of product B, and the actual production quantity of product C are obtained from the calculation data (FIGS. 11, 12, and 13) in the calculation data storage unit 260. FIG. By substituting these into the above equations, the estimated quantity used in the manufacturing process 106 of product A, the estimated quantity used in the manufacturing process 116 of product B, and the estimated quantity used in the manufacturing process 126 of product C are calculated. Each estimated usage quantity is stored in the calculated data storage unit 260 as calculated data (FIGS. 11, 12, and 13).
 原単位算出部292は、図11、図12および図13に関連して説明したように、製品毎に各資源の消費数量を特定して算出データに格納する。そして、原単位算出部292は、製品毎の各資源について、消費数量をその製品の実製造数量で除して実原単位を算出する。算出された実原単位は、算出データ記憶部260に算出データ(図11、図12、図13)として格納され、さらに実原単位データ記憶部262に実原単位データとして製造日付と対応付けて格納される。 The basic unit calculation unit 292, as described with reference to FIGS. 11, 12 and 13, specifies the consumption quantity of each resource for each product and stores it in calculation data. Then, the basic unit calculation unit 292 calculates the actual basic unit by dividing the consumption quantity by the actual production quantity of the product for each resource of each product. The calculated actual specific consumption is stored as calculation data (FIGS. 11, 12, and 13) in the calculated data storage unit 260, and is further stored as actual specific consumption data in the actual specific consumption data storage unit 262 in association with the manufacturing date. Stored.
 CO2排出量算出処理(図16のS44)について説明する。排出量算出部294は、製品毎の各資源について、実原単位にその資源のCO2排出レートを乗じて実CO2排出量を算出する。資源のCO2排出レートは、CO2排出レートデータ記憶部254のCO2排出レートデータ(図19)から得られる。算出された実CO2排出量は、算出データに格納される。排出量算出部294は、製品毎に各資源の実CO2排出量を合算して、その製品1個当たりの実CO2排出量を算出する。製品の実CO2排出量とその製品の各資源の実CO2排出量は、製造日付と対応付けて実CO2排出量データ記憶部264に実CO2排出量データとして格納される。 The CO2 emissions calculation process (S44 in FIG. 16) will be explained. The emissions calculation unit 294 calculates the actual CO2 emissions for each resource for each product by multiplying the actual basic unit by the CO2 emission rate of the resource. The resource CO2 emission rate is obtained from the CO2 emission rate data (FIG. 19) in the CO2 emission rate data storage unit 254. FIG. The calculated actual CO2 emissions are stored in calculation data. The emissions calculation unit 294 adds up the actual CO2 emissions of each resource for each product to calculate the actual CO2 emissions per product. The actual CO2 emission amount of the product and the actual CO2 emission amount of each resource of the product are stored as actual CO2 emission amount data in the actual CO2 emission amount data storage unit 264 in association with the manufacturing date.
 図22は、出力画面処理過程を示すフローチャートである。
 図22に示すフローチャートは、図15に示した出力画面処理(S18)における詳細な処理を示している。出力部230は、製品毎に以下の処理を繰り返す(S50)。出力部230は、たとえば製品A、製品B、製品Cの順に処理する。出力部230は、各製品の出力画面を表示する(S52)。出力画面については、図23に関連して後述する。
FIG. 22 is a flow chart showing the output screen processing process.
The flowchart shown in FIG. 22 shows detailed processing in the output screen processing (S18) shown in FIG. The output unit 230 repeats the following process for each product (S50). Output unit 230 processes product A, product B, and product C in this order, for example. The output unit 230 displays the output screen of each product (S52). The output screen will be described later with reference to FIG.
 入力部220が原単位ボタンへのタッチを受け付けると(S54のY)、原単位画面処理(S56)に移る。原単位画面処理については、図25に関連して後述する。入力部220は、登録ボタンへのタッチを受け付けると(S58のY)、アップロード処理に移る(S60)。アップロード処理については、図23に関連して後述する。アップロード処理を終えると、その製品の出力画面が閉じられる。出力部230が未処理の製品があると判定した場合には(S62のY)、S50に戻って次の製品に関する処理を繰り返す。未処理の製品がなければ、出力画面処理を終える。 When the input unit 220 receives a touch on the specific consumption button (Y in S54), the process proceeds to specific consumption screen processing (S56). The specific consumption screen processing will be described later with reference to FIG. When the input unit 220 receives a touch on the registration button (Y of S58), the process proceeds to upload processing (S60). The upload process will be described later with reference to FIG. After finishing the upload process, the output screen of the product is closed. When the output unit 230 determines that there is an unprocessed product (Y of S62), the process returns to S50 and repeats the process for the next product. If there are no unprocessed products, output screen processing ends.
 図23は、出力画面の例を示す図である。
 出力画面には、主として算出結果が表示される。具体的には、出力部230は、対象製品の予定原単位データ(図1(A)、図2(A)、図3(A))に含まれる各資源の予定原単位を表示する。予定原単位は、計算された実原単位と比較する参考情報として表示される。
FIG. 23 is a diagram showing an example of an output screen.
Calculation results are mainly displayed on the output screen. Specifically, the output unit 230 displays the planned basic unit of each resource included in the planned basic unit data of the target product (FIGS. 1(A), 2(A), and 3(A)). Planned unit consumption is displayed as reference information for comparison with the calculated actual unit consumption.
 出力部230は、実原単位データに含まれる対象製品の各資源の実原単位を表示する。さらに、出力部230は、実CO2排出量データに含まれる対象製品の各資源の実CO2排出量と、それらの合計である対象製品の実CO2排出量を表示する。 The output unit 230 displays the actual basic unit of each resource of the target product included in the actual basic unit data. Furthermore, the output unit 230 displays the actual CO2 emissions of each resource of the target product included in the actual CO2 emissions data, and the total actual CO2 emissions of the target product.
 入力部220が、戻るボタン820へのタッチを受け付けた場合には、その製品に関する入力画面処理を再実行し、実使用数量の数値エリア804と実製造数量の数値エリア808の数値を入力し直して、再計算できる。 When the input unit 220 accepts the touch of the back button 820, the input screen processing for the product is re-executed, and the numerical values in the actual usage quantity numerical area 804 and the actual production quantity numerical area 808 are input again. can be recalculated.
 入力部220が、原単位ボタン822へのタッチを受け付けた場合には、出力部230は、その製品に関する原単位画面を表示する。原単位画面については、図25に関連して後述する。 When the input unit 220 receives a touch on the consumption unit button 822, the output unit 230 displays the consumption consumption screen for the product. The specific consumption screen will be described later with reference to FIG.
 入力部220が、登録ボタン824へのタッチを受け付けた場合には、アップロード部286は、アップロード処理(図22のS60)において、CO2排出量データをWEBサーバにアップロードする。つまり、製品のCO2排出量データURLが示す格納場所に製品のCO2排出量データが格納される。また、URL記録部288が、製品に付される記録媒体にCO2排出量データURLを記録する処理を行うようにしてもよい。URL記録部288が記録媒体に記録する処理は、アップロードの前に行われていてもよいし、アップロードの後に行われてもよい。 When the input unit 220 receives a touch on the registration button 824, the upload unit 286 uploads the CO2 emissions data to the WEB server in the upload process (S60 in FIG. 22). That is, the product CO2 emission data is stored in the storage location indicated by the product CO2 emission data URL. Alternatively, the URL recording unit 288 may record the CO2 emission data URL on a recording medium attached to the product. The process of recording on the recording medium by the URL recording unit 288 may be performed before uploading or may be performed after uploading.
 図24は、製品A:ブラックコーヒーのCO2排出量データの構成図である。
 この例では、飲料工場の事業者「aaa」のWEBサーバ400aのブラックコーヒーCO2排出量データURL「https://aaa.xxx/trace/0121」が示す格納場所に、図示した製品A:ブラックコーヒーのCO2排出量データが格納される。したがって、ボトル入りブラックコーヒー108に付された図形コード800bに記録されたブラックコーヒーCO2排出量データURLにアクセスされた場合に、このCO2排出量データがレスポンスとして送信されるようになっている。
FIG. 24 is a configuration diagram of CO2 emission data for product A: black coffee.
In this example, the illustrated product A: black coffee of CO2 emissions data is stored. Therefore, when the black coffee CO2 emission data URL recorded in the graphic code 800b attached to the bottled black coffee 108 is accessed, this CO2 emission data is transmitted as a response.
 CO2排出量データには、製品全体のCO2排出量を示すCO2排出量(全体)の他に、各資源のCO2排出量も含まれる。各資源には、その資源の排出量データが格納されているCO2排出量データURLが対応付けられている。また、単位量(この例では、ml)当たりのCO2排出量を示すCO2排出レートも含まれる。 The CO2 emissions data includes the CO2 emissions of each resource in addition to the CO2 emissions (total) that indicates the CO2 emissions of the entire product. Each resource is associated with a CO2 emission data URL in which emission data of the resource is stored. Also included is a CO2 emission rate that indicates the amount of CO2 emitted per unit volume (ml in this example).
 図25は、原単位画面の例を示す図である。
 作業者は、原単位画面において今回および過去分の実原単位を参照するとともに、予定原単位を修正することができる。
FIG. 25 is a diagram showing an example of a specific consumption screen.
The worker can refer to current and past actual consumption consumption on the consumption consumption screen, and can modify the planned consumption consumption.
 出力部230は、各資源の予定原単位の数値エリア830に、対象製品の予定原単位データ(図1(A)、図2(A)、図3(A))に含まれる資源の予定原単位を表示する。作業者は、数値エリア830に表示された資源の予定原単位の値を書き換えることができる。入力部220は、書き換えられた資源の予定原単位の値を受け付ける。 The output unit 230 displays the planned consumption of the resources included in the planned consumption consumption data of the target product (FIGS. 1A, 2A, and 3A) in the numerical area 830 of the planned consumption of each resource. Show units. The worker can rewrite the value of the planned basic unit of resource displayed in the numeric area 830 . The input unit 220 accepts the rewritten value of the planned specific consumption of the resource.
 出力部230は、各資源の今回の実原単位と過去分の実原単位を表示する。また、出力部230は、各資源について今回を含む10日分の実原単位の平均を表示する。この例では、今回を含む10日分の実原単位と平均を表示しているが、10日より長い期間を対象としてもよいし、10日より短い期間を対象としてもよい。 The output unit 230 displays the current actual unit consumption and past actual unit consumption of each resource. In addition, the output unit 230 displays the average of the actual basic unit for 10 days including the current time for each resource. In this example, actual basic units and averages for 10 days including the current time are displayed, but a period longer than 10 days or a period shorter than 10 days may be targeted.
 特に「全体」で計測した各資源(コーヒー粉、水、電力およびガス)の実原単位は、推定に基づく値であるので、按分比率が実態と一致していない場合には誤差が生じる可能性がある。各製品の実製造数量のバランスが変動する場合(たとえば製品Aを多く製造する日がある一方、製品Cを多く製造する日があるような場合)には、按分比率の誤差によって実原単位がばらつくことが考えられる。過去分の実原単位を参照することによって、作業者はばらつきの大きさを把握して、按分比率の適正度合いを推測することができる。作業者が適用ボタン832にタッチして、入力部220が、適用ボタン832へのタッチを受け付けた場合には、10日分の実原単位の平均の値が、予定原単位の数値エリア830にコピーされる。つまり、実原単位の平均の値を予定原単位にフィードバックすることができる。 In particular, the actual unit consumption of each resource (coffee grounds, water, electricity, and gas) measured in the “total” is based on estimates, so there is a possibility of errors if the apportionment ratio does not match the actual situation. There is If the balance of the actual production quantity of each product fluctuates (for example, if there are days when more product A is manufactured and there are days when more product C is manufactured), the error in the apportionment ratio will cause the actual basic unit to increase. Variation is possible. By referring to the actual basic unit for the past, the worker can grasp the magnitude of the variation and estimate the appropriateness of the apportionment ratio. When the worker touches the apply button 832 and the input unit 220 accepts the touch on the apply button 832, the average value of the actual basic unit for 10 days is displayed in the planned basic unit numerical value area 830. copied. In other words, the average value of the actual specific consumption can be fed back to the planned specific consumption.
 作業者が自動適用スイッチ834をONにすると、データ処理部の自動更新部(不図示)が、所定間隔(たとえば、10日おき)で今回を含む所定期間(たとえば、10日分)の実原単位の平均を求めて、その平均の値を予定原単位にコピーする。つまり、実原単位の平均の値が自動的に予定原単位にフィードバックされる。作業者が全自動適用スイッチ836をONにした場合には、表示されているすべての自動適用スイッチ834がONになる。ここでは、平均の例を示したが、最頻値または中央値など他の統計値を用いるようにしてもよい。 When the operator turns on the automatic application switch 834, the automatic updating unit (not shown) of the data processing unit updates the actual data for a predetermined period (for example, 10 days) including this time at predetermined intervals (for example, every 10 days). Find the average of the units and copy the average value to the scheduled intensity. In other words, the average value of the actual specific consumption is automatically fed back to the planned specific consumption. When the operator turns on the fully automatic application switch 836, all the displayed automatic application switches 834 are turned on. Here, an example of average is shown, but other statistical values such as mode or median may be used.
 ある資源の按分比率の基準をその資源の予定原単位とし、さらに手動あるいは自動で実原単位の平均の値を予定原単位にフィードバックすれば、自ずと実原単位のばらつきが小さくなり、予定原単位のバランスが実態に合うように調整されると期待される。 If the standard for the apportionment ratio of a certain resource is set as the planned unit consumption of that resource, and the average value of the actual unit consumption is manually or automatically fed back to the planned unit consumption, the variation in the actual unit consumption will naturally decrease, and the planned unit consumption will decrease. is expected to be adjusted to match the actual situation.
 入力部220が、決定ボタン838へのタッチを受け付けた場合には、予定原単位の数値エリア830の値が、予定原単位データに書き込まれる。また、自動適用スイッチ834がONであれば、自動更新部によってその資源における実原単位の平均の値を自動的に予定原単位にフィードバックする処理を開始する。そして、原単位画面の処理を終える。入力部220が取消ボタン840を受け付けた場合には、そのまま原単位画面の処理を終える。 When the input unit 220 receives a touch on the enter button 838, the value of the planned consumption consumption numerical value area 830 is written in the planned consumption consumption data. Also, if the automatic application switch 834 is ON, the automatic updating unit starts the process of automatically feeding back the average value of the actual specific consumption of the resource to the planned specific consumption. Then, the processing of the basic unit screen is completed. When the input unit 220 accepts the cancel button 840, the processing of the specific consumption screen is terminated.
 図26は、CO2排出量表示画面の例を示す図である。
 製品の購入者などのユーザは、ユーザ端末で図形コードあるいはRFIDタグを読み取ることによって、図24に示したCO2排出量データの内容を参照することができる。ここで示したブラックコーヒーCO2排出量データウィンドウ602には、製品としての「全体」のCO2排出量の他に、各資源のCO2排出量も表示される。
FIG. 26 is a diagram showing an example of a CO2 emission amount display screen.
A user such as a purchaser of the product can refer to the contents of the CO2 emission amount data shown in FIG. 24 by reading the graphic code or RFID tag with the user terminal. In the black coffee CO2 emissions data window 602 shown here, the CO2 emissions of each resource are also displayed in addition to the "whole" CO2 emissions of the product.
 また、資源名を表示する参照ボタン850がタッチされると、その資源のCO2排出量データURLから得られるCO2排出量データの内容を示すCO2排出量データウィンドウが表示される。この図では、コーヒー粉の参照ボタン850がタッチされ、コーヒー粉CO2排出量データウィンドウ604が表示される例を示している。なお、CO2排出量データの内容については、製品ロット単位で表示を変えるように図形コードあるいはRFIDタグを変えてもよいし、製品ロットに関わらず、最新データを表示させるようにしてもよい。 Also, when a reference button 850 displaying a resource name is touched, a CO2 emissions data window showing the contents of CO2 emissions data obtained from the CO2 emissions data URL of the resource is displayed. This figure shows an example in which the ground coffee reference button 850 is touched and the ground coffee CO2 emissions data window 604 is displayed. As for the content of the CO2 emission data, the graphic code or RFID tag may be changed so that the display is changed for each product lot, or the latest data may be displayed regardless of the product lot.
 図27は、ユーザ端末500の機能ブロック図である。
 ユーザ端末500は、ユーザインターフェース処理部510、データ処理部580、ネットワーク通信部540、近距離無線通信部542およびデータ格納部550を含む。ユーザインターフェース処理部510は、マウスまたはタッチパネルなどを介してユーザからの操作を受け付けるほか、画像表示および音声出力など、ユーザインターフェース処理を担当する。ネットワーク通信部540は、ネットワークを介した通信処理を担当する。近距離無線通信部542は、近距離無線による通信処理を担当する。データ格納部550は各種データを格納する。データ処理部580は、ネットワーク通信部540と近距離無線通信部542により取得されたデータおよびデータ格納部550に格納されているデータに基づいて各種処理を実行する。データ処理部580は、ユーザインターフェース処理部510、ネットワーク通信部540、近距離無線通信部542およびデータ格納部550のインターフェースとしても機能する。この他、ユーザ端末500は、RFIDリーダ544とカメラ546(あるいは、図形コードリーダ)を内蔵する。RFIDリーダ544とカメラ546(あるいは、図形コードリーダ)は、外付けでもよい。
FIG. 27 is a functional block diagram of the user terminal 500. As shown in FIG.
The user terminal 500 includes a user interface processing section 510 , a data processing section 580 , a network communication section 540 , a near field communication section 542 and a data storage section 550 . The user interface processing unit 510 receives user operations via a mouse or a touch panel, and is in charge of user interface processing such as image display and audio output. A network communication unit 540 is in charge of communication processing via a network. The short-range wireless communication unit 542 takes charge of communication processing by short-range wireless. The data storage unit 550 stores various data. The data processing unit 580 executes various processes based on the data acquired by the network communication unit 540 and the short-range wireless communication unit 542 and the data stored in the data storage unit 550 . Data processing unit 580 also functions as an interface for user interface processing unit 510 , network communication unit 540 , short-range wireless communication unit 542 and data storage unit 550 . In addition, user terminal 500 incorporates RFID reader 544 and camera 546 (or graphic code reader). The RFID reader 544 and camera 546 (or graphic code reader) may be external.
 ユーザインターフェース処理部510は、ユーザの操作によってデータを入力する受付部520とユーザへ提供するデータを出力する出力部530を有する。出力部530は、CO2排出量データを出力するCO2排出量データ出力部532を含む。 The user interface processing unit 510 has a reception unit 520 for inputting data by user operation and an output unit 530 for outputting data to be provided to the user. Output unit 530 includes a CO2 emission data output unit 532 that outputs CO2 emission data.
 データ処理部580は、CO2排出量データURLを取得するURL取得部582と、ディスプレイに表示するウィンドウを制御するウィンドウ制御部584を含む。 The data processing unit 580 includes a URL acquisition unit 582 that acquires the CO2 emissions data URL, and a window control unit 584 that controls windows displayed on the display.
 URL取得部582は、製品に付された図形コード(たとえば、バーコードまたはQRコード)をカメラ546(あるいは、図形コードリーダ)に撮影させ、あるいは製品に付されたRFタグをRFIDリーダ544に読み取らせることによって、製品のCO2排出量データURLを取得する。 The URL acquisition unit 582 causes the camera 546 (or a graphic code reader) to photograph the graphic code (for example, bar code or QR code) attached to the product, or causes the RFID reader 544 to read the RF tag attached to the product. to obtain the CO2 emissions data URL of the product.
 ネットワーク通信部540は、取得されたCO2排出量データURLへアクセスして、製品のCO2排出量データをダウンロードする。ダウンロードは、ネットワーク上のコンピュータ(たとえば、WEBサーバ)からデータを受信することを意味する。受信されたデータは、不揮発性の記憶領域(たとえば、ハードディスク装置)に記憶されてもよいし、不揮発性の記憶領域に記憶されずに、揮発性の記憶領域(たとえば、ランダムアクセスメモリ)にのみ記憶されてもよい。CO2排出量データ出力部532は、ダウンロードされたCO2排出量データに基づいて、製品のCO2排出量データウィンドウを生成して、ディスプレイに表示する。CO2排出量データ出力部532は、製品のCO2排出量データの一部を表示してもよいし、製品のCO2排出量データの全部を表示してもよい。CO2排出量データ出力部532は、表示以外の態様(たとえば印刷または送信など)によって製品のCO2排出量データの一部または全部を出力するようにしてもよい。 The network communication unit 540 accesses the acquired CO2 emission data URL and downloads the product's CO2 emission data. Downloading means receiving data from a computer (for example, a WEB server) on a network. The received data may be stored in a non-volatile storage area (e.g. hard disk drive) or only in a volatile storage area (e.g. random access memory) without being stored in non-volatile storage area. may be stored. The CO2 emission data output unit 532 generates a product CO2 emission data window based on the downloaded CO2 emission data and displays it on the display. The CO2 emission data output unit 532 may display part of the CO2 emission data of the product, or may display all of the CO2 emission data of the product. The CO2 emission data output unit 532 may output part or all of the product CO2 emission data in a manner other than display (for example, printing or transmission).
 受付部520が、参照ボタン850へのタッチを受け付けると、ウィンドウ制御部584は、CO2排出レートデータ記憶部254のCO2排出レートデータ(図19)を参照して、資源のCO2排出量データURLを特定する。そして、製品のCO2排出量データの場合と同様に資源のCO2排出量データのウィンドウが表示される。 When accepting portion 520 accepts a touch on reference button 850, window control portion 584 refers to the CO2 emission rate data (FIG. 19) of CO2 emission rate data storage portion 254 to obtain the resource CO2 emission amount data URL. Identify. Then, a window for resource CO2 emission data is displayed in the same manner as in the case of product CO2 emission data.
 実施形態によれば、コーヒー粉、電力およびガスなどの資源の消費量に関して製品間でのバランスが正しく見込まれていると想定して、実情に合った実原単位を簡単に推定することができる。これにより、事業者が使用した資源のCO2排出量を、事業者が製造するいずれかの製品に割り振ることができるようになる。つまり、消費された資源のCO2排出量を、漏れなく且つ重複なく、事業者が製造する製品全体によってカバーする。また、多くの事業者が、自らの製品におけるCO2排出量を算出し、製品のCO2排出量を需要者などに開示するようになると期待される。 According to embodiments, it is possible to easily estimate the actual unit consumption that fits the actual situation, assuming that the consumption of resources such as coffee grounds, electricity and gas is correctly estimated among the products. . As a result, the CO2 emissions of the resources used by the business can be allocated to any product manufactured by the business. In other words, the CO2 emissions of the consumed resources are covered by the entire product manufactured by the business without omission or duplication. In addition, it is expected that many businesses will calculate the CO2 emissions from their own products and disclose the CO2 emissions from their products to consumers and the like.
 予定原単位の比率に着目する理由は、事業者が当事者且つ専門家として、資源の原単位に関する製品間でのバランスを正確に見込んでいるものと期待されるからである。つまり、予定原単位の比率を用いて按分すれば、より正確に実原単位を推定される可能性が高い。 The reason for focusing on the planned basic unit ratio is that it is expected that the business operator, as a party and an expert, will accurately anticipate the balance between products regarding the resource basic unit. In other words, there is a high possibility that the actual unit consumption can be estimated more accurately if the ratio of the planned unit consumption is used for proportional division.
 また、記録媒体およびWEB環境を利用して、製品の購入者などのユーザがCO2排出量を簡単に参照できる仕組みを提供した。 In addition, we provided a mechanism that allows users such as product purchasers to easily refer to CO2 emissions using recording media and a web environment.
[変形例]
 上述した例では、記録媒体(たとえば、バーコード、QRコードおよびRFIDタグなど)にCO2排出量データURLが記録される例を示したが、記録媒体にCO2排出量データを記録するようにしてもよい。その場合には、CO2排出量算出装置200の取得部282は、記録媒体から直接CO2排出量データを取得することができる。また、CO2排出量算出装置200のアップロード部286に代えて、排出量データ書込み部(不図示)を設ける。排出量データ書込み部は、製品に付される記録媒体(たとえば、バーコード、QRコードまたはRFIDタグなど)に、CO2排出量データを書き込む。また、ユーザ端末500のURL取得部582に代えて、排出量データ取得部(不図示)を設けるようにしてもよい。排出量データ取得部は、製品に付される記録媒体(たとえば、バーコード、QRコードまたはRFIDタグなど)から直接CO2排出量データを取得する。
[Modification]
In the above example, the CO2 emission data URL is recorded on a recording medium (for example, barcode, QR code, RFID tag, etc.), but the CO2 emission data may be recorded on the recording medium. good. In that case, the acquisition unit 282 of the CO2 emission calculation device 200 can acquire the CO2 emission data directly from the recording medium. Further, instead of the upload unit 286 of the CO2 emission calculation device 200, an emission data writing unit (not shown) is provided. The emissions data writing unit writes CO2 emissions data on a recording medium attached to the product (for example, bar code, QR code, RFID tag, etc.). Also, instead of the URL acquisition unit 582 of the user terminal 500, a discharge amount data acquisition unit (not shown) may be provided. The emissions data acquisition unit acquires CO2 emissions data directly from a recording medium attached to the product (eg, barcode, QR code, RFID tag, etc.).
 さらに、記録媒体にCO2排出量データを記録する場合に、CO2排出量算出装置200の暗号化/復号部290においてCO2排出量データを暗号化した上で記録媒体(たとえば、バーコード、QRコードまたはRFIDタグなど)に書き込むようにしてもよい。また、実施形態でアップロードされるCO2排出量データを、暗号化/復号部290において暗号化した上でアップロードするようにしてもよい。また、ユーザ端末500に暗号化/復号部(不図示)を設けて、その暗号化/復号部において暗号化されているCO2排出量データを復号するようにしてもよい。 Furthermore, when recording the CO2 emission data on a recording medium, the CO2 emission data is encrypted in the encryption/decryption unit 290 of the CO2 emission calculation device 200 and then encrypted on the recording medium (for example, barcode, QR code, or RFID tag, etc.). Further, the CO2 emission data uploaded in the embodiment may be encrypted by the encryption/decryption unit 290 before being uploaded. Further, an encryption/decryption unit (not shown) may be provided in the user terminal 500, and the encrypted CO2 emission data may be decrypted in the encryption/decryption unit.
 CO2排出量データが格納されるWEBサーバは、製品の事業者が運営するWEBサーバでなくてもよい。複数の事業者の製品に関するCO2排出量データをまとめて管理するWEBサーバなどを利用してもよい。 The web server that stores the CO2 emissions data does not have to be a web server operated by the product operator. A web server or the like that collectively manages CO2 emission data on products of a plurality of businesses may be used.
 出力部230において、プリンタを用いてCO2排出量を数字および文字で、製品本体、製品の包装、製品の容器、シールラベルまたは伝票などに印刷するようにしてもよい。 In the output unit 230, a printer may be used to print the CO2 emissions in numbers and characters on the product body, product packaging, product container, seal label, slip, or the like.
 実施形態では、エネルギーの資源としてガスと電力の例を示したが、コークス、石油、軽油およびガソリンなどの他の燃料を対象としてもよい。また、間接的なエネルギーとして、熱および蒸気などの資源を対象としてもよい。さらに、触媒なども資源に含まれる。 In the embodiment, examples of gas and electric power are shown as energy resources, but other fuels such as coke, petroleum, light oil, and gasoline may also be targeted. Also, as indirect energy, resources such as heat and steam may be targeted. Resources also include catalysts and the like.
 実施形態および変形例では、分かりやすい事例としてコーヒーおよびピザについて説明したが、これに限らず、バッテリー、自動車およびエネルギーなど他の製品の製造についても、本明細書に開示した内容を適用することができることは言うまでもない。また、製造の過程でCO2を吸収させることができる製品(たとえば、炭酸水やビールなど)の製造の場合は、「マイナス量の排出」としてカウントしてもよい。つまり、CO2排出量を負の値として計算してもよい。 In the embodiments and variations, coffee and pizza have been described as easy-to-understand examples, but the disclosure herein can also be applied to the manufacture of other products such as batteries, automobiles, and energy. It goes without saying that we can. In addition, the production of products that can absorb CO2 during the production process (eg, carbonated water, beer, etc.) may be counted as "negative emissions." That is, the CO2 emission amount may be calculated as a negative value.
 温室効果ガス(GHG:greenhouse gas)はCO2に限らず、家畜等が発生させるメタンおよび亜酸化窒素、あるいは半導体プロセスおよび家電の製造で使用されるフルオロカーボン系なども温室効果ガスに含まれる。実施形態および変形例の技術をCO2以外の温室効果ガスの排出量に適用するようにしてもよい。また、CO2以外の温室効果ガスの排出量をCO2排出量に換算して、実施形態および変形例の技術を適用してもよい。 Greenhouse gases (GHG) are not limited to CO2, but also include methane and nitrous oxide generated by livestock, and fluorocarbons used in the semiconductor process and manufacturing of home appliances. The techniques of the embodiment and modifications may be applied to emissions of greenhouse gases other than CO2. Alternatively, the emissions of greenhouse gases other than CO2 may be converted into CO2 emissions, and the techniques of the embodiments and modifications may be applied.
 なお、本発明は上記実施形態や変形例に限定されるものではなく、要旨を逸脱しない範囲で構成要素を変形して具体化することができる。上記実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成してもよい。また、上記実施形態や変形例に示される全構成要素からいくつかの構成要素を削除してもよい。 It should be noted that the present invention is not limited to the above embodiments and modifications, and can be embodied by modifying the constituent elements without departing from the scope of the invention. Various inventions may be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments and modifications. Also, some components may be deleted from all the components shown in the above embodiments and modifications.

Claims (6)

  1.  共通の資源を用いた複数種類の製品の製造に関して、前記資源の全体使用数量と、各種類の製品の製造数量とを入力する入力部と、
     前記全体使用数量が、前記各種類における前記資源の原単位と当該種類の前記製造数量の積の合計と一致するという第1条件と、前記各種類における前記資源の前記原単位の比率が所定の按分比率と一致するという第2条件とを満たすように、前記各種類における前記資源の前記原単位を算出する原単位算出部と、
     前記各種類における前記資源の前記原単位に、前記資源の製造及び/又は使用によって排出される二酸化炭素の量を示す所定レートを乗ずることによって、前記各種類の製品を得るために前記資源に起因して生じた二酸化炭素の排出量を算出する排出量算出部と、を備えることを特徴とする二酸化炭素排出量算出装置。
    an input unit for inputting the overall quantity of resources used and the quantity of each type of product manufactured, with respect to the manufacture of multiple types of products using a common resource;
    A first condition that the total quantity used matches the sum of the product of the basic unit of the resource for each type and the production quantity of the type, and the ratio of the basic unit of the resource for each type to a predetermined a basic unit calculation unit that calculates the basic unit of the resource for each of the types so as to satisfy a second condition of matching the proportional division ratio;
    attributing said resource to obtain each said type of product by multiplying said unit consumption of said resource in said each type by a predetermined rate indicative of the amount of carbon dioxide emitted by the production and/or use of said resource. and a carbon dioxide emissions calculation unit that calculates the emissions of carbon dioxide generated by:
  2.  前記入力部は、前記各種類における前記資源の前記原単位として予定されている予定原単位を入力し、
     前記所定の按分比率は、前記各種類における前記予定原単位の比率であることを特徴とする請求項1に記載の二酸化炭素排出量算出装置。
    The input unit inputs a planned basic unit planned as the basic unit of the resource in each of the types;
    2. The carbon dioxide emission calculation apparatus according to claim 1, wherein the predetermined proportional division ratio is a ratio of the planned basic unit for each of the types.
  3.  前記原単位算出部によって算出された前記各種類における前記資源の前記原単位に基づいて、後の製造機会における前記各種類における前記資源の予定原単位を更新する更新部を、更に備えることを特徴とする請求項2に記載の二酸化炭素排出量算出装置。 Further comprising an update unit that updates the planned unit consumption of the resource for each type in a subsequent manufacturing opportunity based on the unit consumption of the resource for each type calculated by the unit consumption calculation unit. The carbon dioxide emission calculation device according to claim 2.
  4.  ネットワークを介して外部装置から前記所定レートを取得し、あるいは前記資源に付された記録媒体から前記所定レートを取得する取得部と、
     取得された前記所定レートが暗号化されている場合に、暗号化されている前記所定レートを復号する復号部と、を更に備えることを特徴とする請求項1から3のいずれか1項に記載の二酸化炭素排出量算出装置。
    an acquisition unit that acquires the predetermined rate from an external device via a network or acquires the predetermined rate from a recording medium attached to the resource;
    4. The apparatus according to any one of claims 1 to 3, further comprising a decryption unit that decrypts the encrypted predetermined rate when the obtained predetermined rate is encrypted. carbon dioxide emissions calculator.
  5.  前記製品に付される記録媒体に記録されるアドレスが示すネットワーク上の格納場所に、算出された前記二酸化炭素の前記排出量に基づく情報をアップロードするアップロード部、あるいは前記製品に付される記録媒体に、算出された前記二酸化炭素の前記排出量に基づく情報を書き込む書込み部を、更に備えることを特徴とする請求項1から4のいずれか1項に記載の二酸化炭素排出量算出装置。 An upload unit for uploading information based on the calculated carbon dioxide emissions to a storage location on a network indicated by an address recorded on a recording medium attached to the product, or a recording medium attached to the product. 5. The carbon dioxide emissions calculation device according to claim 1, further comprising a writing unit for writing information based on the calculated carbon dioxide emissions.
  6.  共通の資源を用いた複数種類の製品の製造に関して、前記資源の全体使用数量と、各種類の製品の製造数量とを入力する機能と、
     前記全体使用数量が、前記各種類における前記資源の原単位と当該種類の前記製造数量の積の合計と一致するという第1条件と、前記各種類における前記資源の前記原単位の比率が所定の按分比率と一致するという第2条件とを満たすように、前記各種類における前記資源の前記原単位を算出する機能と、
     前記各種類における前記資源の前記原単位に、前記資源の製造及び/又は使用によって排出される二酸化炭素の量を示す所定レートを乗ずることによって、前記各種類の製品を得るために前記資源に起因して生じた二酸化炭素の排出量を算出する機能と、をコンピュータに発揮させることを特徴とするプログラム。
    a function of inputting the overall quantity of resources used and the quantity of each type of product to be manufactured, with respect to the manufacture of multiple types of products using a common resource;
    A first condition that the total quantity used matches the sum of the product of the basic unit of the resource for each type and the production quantity of the type, and the ratio of the basic unit of the resource for each type to a predetermined a function of calculating the basic unit of the resource for each of the types so as to satisfy a second condition of matching the proportional division ratio;
    attributing said resource to obtain each said type of product by multiplying said unit consumption of said resource in said each type by a predetermined rate indicative of the amount of carbon dioxide emitted by the production and/or use of said resource. A program characterized by causing a computer to exhibit a function of calculating the amount of carbon dioxide emissions generated by
PCT/JP2022/040207 2021-12-17 2022-10-27 Carbon dioxide emission amount calculation device and program WO2023112509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021204897A JP2023090112A (en) 2021-12-17 2021-12-17 Carbon dioxide emission calculation device and program
JP2021-204897 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112509A1 true WO2023112509A1 (en) 2023-06-22

Family

ID=86774488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040207 WO2023112509A1 (en) 2021-12-17 2022-10-27 Carbon dioxide emission amount calculation device and program

Country Status (2)

Country Link
JP (1) JP2023090112A (en)
WO (1) WO2023112509A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165469A (en) * 2003-11-28 2005-06-23 Toshiba Corp Evaluation device and method and its program
JP2005339504A (en) * 2004-04-27 2005-12-08 Fujitsu Ltd Environmental load evaluation system and environmental load evaluation server
JP2011204217A (en) * 2010-03-03 2011-10-13 Shiseido Co Ltd Device, method and program for simulating environmental load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165469A (en) * 2003-11-28 2005-06-23 Toshiba Corp Evaluation device and method and its program
JP2005339504A (en) * 2004-04-27 2005-12-08 Fujitsu Ltd Environmental load evaluation system and environmental load evaluation server
JP2011204217A (en) * 2010-03-03 2011-10-13 Shiseido Co Ltd Device, method and program for simulating environmental load

Also Published As

Publication number Publication date
JP2023090112A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
Ghosh et al. Analyzing a stochastic dual-channel supply chain under consumers’ low carbon preferences and cap-and-trade regulation
US7092896B2 (en) Interface for merchandise promotion optimization
US7130811B1 (en) Apparatus for merchandise promotion optimization
US20070219864A1 (en) Automated broadcast advertising transaction system and method
US20020029176A1 (en) Inventory management system and method
BR112019018269A2 (en) system
Tempelmeier et al. Dynamic multi-machine lotsizing and sequencing with simultaneous scheduling of a common setup resource
KR102411060B1 (en) Platform server linking commerce of affiliates and consumers and commerce linkage method using the same
WO2017195429A1 (en) Coupon distribution device and coupon distribution program
JP2005051866A (en) Method and apparatus for developing electricity trading plan
JP6862678B2 (en) Coupon distribution device and coupon distribution program
KR20170101565A (en) Cloud-based manufacturing system
WO2023112509A1 (en) Carbon dioxide emission amount calculation device and program
WO2023068135A1 (en) Information processing device, information processing system, and program
US20190005521A1 (en) Point-of-sale terminal with questionnaire function
WO2010067716A1 (en) Emission allowance trading system and emission allowance trading method
CN101398924A (en) Analysis apparatus, program and analysis method
Singh et al. Integrating operations and marketing decisions to manage perishability risks with target minimum remaining shelf-life available to consumers
Mickein et al. A decision support system for brewery production planning at Feldschlösschen
JP2014021564A (en) Order reception management device, order reception management method and order reception management program
JP5844293B2 (en) Data editing apparatus and program
JP2017204118A (en) Information distribution device, information distribution program and information distribution system
US20010032123A1 (en) Electronic commerce utilizing a value parameter
US20190122290A1 (en) Container, settlement apparatus, and shop system
CN111861658A (en) Data management method, terminal and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907043

Country of ref document: EP

Kind code of ref document: A1