WO2023112438A1 - Shunt resistor and current detection device - Google Patents

Shunt resistor and current detection device Download PDF

Info

Publication number
WO2023112438A1
WO2023112438A1 PCT/JP2022/037221 JP2022037221W WO2023112438A1 WO 2023112438 A1 WO2023112438 A1 WO 2023112438A1 JP 2022037221 W JP2022037221 W JP 2022037221W WO 2023112438 A1 WO2023112438 A1 WO 2023112438A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
shunt resistor
detection section
resistor
voltage detection
Prior art date
Application number
PCT/JP2022/037221
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 北川
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2023112438A1 publication Critical patent/WO2023112438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids

Definitions

  • the present invention relates to shunt resistors and current detection devices.
  • Shunt resistors are widely used for current sensing applications.
  • Such a shunt resistor comprises a resistor and electrodes joined across the resistor.
  • resistors are made of resistance alloys such as copper-nickel alloys, copper-manganese alloys, iron-chromium alloys, and nickel-chromium alloys
  • electrodes are made of highly conductive metals such as copper. It is configured.
  • a voltage detection section is provided on the electrode, and the voltage generated at both ends of the resistor is detected by connecting a conducting wire (for example, an aluminum wire) to the voltage detection section.
  • the temperature coefficient of resistance (TCR) characteristics are important in order to enable current detection under conditions where the influence of temperature fluctuations is small.
  • the temperature coefficient of resistance is an index that indicates the rate of change in resistance value due to temperature, and the smaller the absolute value, the smaller the change in resistance value.
  • an object of the present invention is to provide a shunt resistor and a current detection device capable of reducing the absolute value of the temperature coefficient of resistance.
  • a shunt resistor used for current sensing comprises a resistor and a pair of electrodes connected across the resistor in a first direction.
  • the shunt resistor has a first protrusion formed on a first side surface of the shunt resistor parallel to the first direction, and the shunt resistor a surface opposite to the first side surface.
  • a second protrusion formed on a second side surface of the second protrusion, the first protrusion having a portion of the resistor and a portion of the pair of electrodes;
  • the projecting portion has a portion of the resistor and a portion of the pair of electrodes.
  • the first protrusion includes a first voltage detection section and a second voltage detection section connected to both ends of the resistor in the first direction
  • the second protrusion includes the It has a third voltage detection section and a fourth voltage detection section connected to both ends of the resistor in the first direction
  • the first voltage detection section and the third voltage detection section are arranged on the same electrode.
  • the second voltage detection section and the fourth voltage detection section are arranged on the same electrode.
  • the first protrusion has a first corner and a second corner connected to the pair of electrodes
  • the second protrusion has a second corner connected to the pair of electrodes.
  • the shunt resistor has a first recess formed in the first side surface and a second recess formed in the second side surface, and the first protrusion is formed in the It is arranged in the first recess, and the second protrusion is arranged in the second recess.
  • a current detection device in one aspect, includes the shunt resistor and a current detection circuit board having a voltage signal wiring that transmits a voltage signal from the shunt resistor.
  • the voltage signal wiring is electrically connected to the first voltage detection section and the second voltage detection section of the first protrusion, and the third voltage detection section and the fourth voltage detection section of the second protrusion. ing.
  • the current detection circuit board further includes a voltage terminal pad, and the voltage terminal pad comprises the first voltage detection section, the second voltage detection section, the third voltage detection section, It is connected to the fourth voltage detection section and the voltage signal wiring.
  • the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the second voltage detector. and the voltage value measured between the third voltage detection unit and the fourth voltage detection unit are averaged, and the averaged voltage value is a detected voltage value. to decide.
  • the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the fourth voltage detector. or the voltage value measured between the second voltage detector and the third voltage detector is determined as the detected voltage value.
  • the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the fourth voltage detector. and the voltage value measured between the second voltage detection unit and the third voltage detection unit are averaged, and the averaged voltage value is a detected voltage value. to decide.
  • the shunt resistor has a first protrusion and a second protrusion.
  • a shunt resistor having such a structure can reduce the absolute value of its temperature coefficient of resistance.
  • FIG. 11 illustrates one embodiment of a shunt resistor; It is a figure which shows the shunt resistor to which the wiring member was connected. It is an enlarged view of a 1st protrusion part. It is an enlarged view of a 2nd protrusion part.
  • FIG. 5A is a diagram showing corners formed on the first protrusion.
  • FIG. 5B is a diagram showing a corner formed on the second protrusion.
  • FIG. 6A is a diagram showing another embodiment of the corner.
  • FIG. 6B is a diagram showing another embodiment of the corner.
  • FIG. 3 illustrates a current sensing device with a shunt resistor according to one embodiment.
  • FIG. 8A is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side.
  • FIG. 8B is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side.
  • FIG. 8C is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side.
  • FIG. 8D is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side.
  • FIG. 9A is a diagram showing a wiring member connected to a shunt resistor according to one embodiment
  • 9B is a diagram illustrating wiring members connected to a shunt resistor according to one embodiment
  • FIG. 9C is a diagram showing wiring members connected to a shunt resistor according to one embodiment
  • FIG. 9D is a diagram illustrating a wiring member connected to a shunt resistor according to one embodiment
  • FIG. 5 is a graph showing the rate of change in resistance value with temperature change of a conventional shunt resistor having a protrusion on only one side as a comparative example
  • FIG. 5 is a graph showing the rate of change in resistance value of the shunt resistor according to the embodiment with temperature change.
  • FIG. 11 illustrates another embodiment of a shunt resistor;
  • FIG. 1 is a diagram showing one embodiment of a shunt resistor.
  • the shunt resistor 1 includes a resistor 5 made of a resistor alloy plate material having a predetermined thickness and a predetermined width, and both ends of the resistor 5 in the first direction (that is, both side connection surfaces).
  • a pair of electrodes 6,7 composed of a highly conductive metal connected to 5a,5b.
  • the electrode 6 has a contact surface 6a that contacts one end (one connection surface) 5a of the resistor 5, and the electrode 7 has a contact surface that contacts the other end (other connection surface) 5b of the resistor 5. 7a.
  • Bolt holes 8 and 9 for fixing the shunt resistor 1 with screws or the like are formed in the electrodes 6 and 7, respectively.
  • FIG. 2 is a diagram showing a shunt resistor to which wiring members are connected.
  • the electrodes 6 are connected to wiring members (busbars) 40 and the electrodes 7 are connected to wiring members (busbars) 41 .
  • Each of the wiring members 40 and 41 is made of a conductive metal.
  • a bolt hole 48 communicating with the bolt hole 8 is formed in the wiring member 40
  • a bolt hole 49 communicating with the bolt hole 9 is formed in the wiring member 41 .
  • the first direction is the length direction of the resistor 5 and corresponds to the length direction of the shunt resistor 1.
  • the length direction of the shunt resistor 1 is the direction in which the electrode 6, the resistor 5, and the electrode 7 are arranged in this order.
  • the direction perpendicular to this first direction is the second direction.
  • the second direction is the width direction of the shunt resistor 1 .
  • electrodes 6 and 7 have the same structure and are arranged symmetrically with respect to resistor 5 .
  • Both ends 5a and 5b of the resistor 5 are connected (joined) to electrodes 6 and 7 by means of welding (for example, electron beam welding, laser beam welding, brazing, or soldering).
  • An example of the material of the resistor 5 is a low-resistance alloy material such as a Cu--Mn alloy.
  • An example of the material of the electrodes 6 and 7 is copper (Cu).
  • the resistor 5 has a higher resistivity than the electrodes 6,7.
  • the shunt resistor 1 has a first protrusion 11 formed on its first side S1 and a second protrusion 11 formed on a second side S2 opposite to the first side S1. and a projecting portion 12 .
  • the first side surface S1 and the second side surface S2 are surfaces parallel to the first direction.
  • the first protrusion 11 extends outward from the first side surface S1
  • the second protrusion 12 extends outward from the second side surface S2.
  • the first protrusion 11 and the second protrusion 12 are arranged symmetrically with respect to the center of the shunt resistor 1 .
  • FIG. 3 is an enlarged view of the first protrusion.
  • the first projecting portion 11 has a portion of the resistor 5 and a portion of the electrodes 6 and 7 .
  • the first projecting portion 11 has voltage detecting portions 21 and 22 for measuring voltages generated across the resistor 5 at both ends 5a and 5b.
  • the voltage detection unit 21 is connected to the connection surface 5b of the resistor 5, and the voltage detection unit 22 is connected to the connection surface 5a of the resistor 5.
  • Voltage detector 21 is part of electrode 7 and voltage detector 22 is part of electrode 6 .
  • the electrode 7 has the voltage detection section 21 and the electrode 6 has the voltage detection section 22 .
  • FIG. 4 is an enlarged view of the second protrusion.
  • the second protrusion 12 has the same shape as the first protrusion 11 .
  • the second projecting portion 12 has a portion of the resistor 5 and a portion of the electrodes 6 and 7 .
  • the second projecting portion 12 has voltage detecting portions 23 and 24 for measuring voltages generated across the resistor 5 at both ends 5 a and 5 b.
  • the voltage detection section 23 is connected to the connection surface 5b of the resistor 5, and the voltage detection section 24 is connected to the connection surface 5a of the resistor 5.
  • Voltage detector 23 is part of electrode 7 and voltage detector 24 is part of electrode 6 .
  • the electrode 7 has the voltage detection section 23 and the electrode 6 has the voltage detection section 24 .
  • the voltage detection section 21 and the voltage detection section 23 are arranged on the same electrode 7 , and the voltage detection section 22 and the voltage detection section 24 are arranged on the same electrode 6 .
  • Voltage detection unit 23 is arranged in the same direction as voltage detection unit 21 in the second direction, and voltage detection unit 24 is arranged in the same direction as voltage detection unit 22 in the second direction.
  • FIG. 5A is a diagram showing corners formed on the first protrusion
  • FIG. 5B is a diagram showing corners formed on the second protrusion.
  • the first projecting portion 11 has a corner portion 53 connected to the electrode 6 and a corner portion 54 connected to the electrode 7
  • the second projecting portion 12 has a corner portion 55 connected to the electrode 6 and a corner portion 56 connected to the electrode 7 .
  • the corner portion 53 is disposed between the side surface 11a of the first protrusion 11 and the side surface 6c of the electrode 6, and the corner portion 54 is located between the side surface 11b of the first protrusion 11 and the electrode 7. It is arranged between the side surface 7c.
  • the corner portion 55 is disposed between the side surface 12a of the second protrusion 12 and the side surface 6b of the electrode 6, and the corner portion 56 is located between the side surface 12b of the second protrusion 12 and the electrode 7. It is arranged between the side surface 7b.
  • each of the corners 53, 54, 55, 56 has a curved shape.
  • at least one of corners 53, 54, 55, 56 may have a curvilinear shape.
  • the corners 53, 54, 55, 56 may have the same curvature (or radius of curvature) or may have different curvatures (or radius of curvature).
  • the rate of change of the resistance value with temperature rise can be changed to the positive side.
  • the rate of change in resistance value with temperature rise can be changed to the negative side.
  • the temperature coefficient of resistance of the shunt resistor 1 can be adjusted.
  • FIGS. 6A and 6B are diagrams showing other embodiments of corners. As shown in Figures 6A and 6B, at least one of the corners 53, 54, 55, 56 may have an obtuse or rectilinear shape. In the embodiment shown in FIG. 6A, angle ⁇ 1 of corner 53 is greater than 90 degrees and less than 180 degrees (ie obtuse). In the embodiment shown in FIG. 6B, angle ⁇ 2 of corner 53 is 180 degrees (ie, linear shape). With such a configuration, the temperature coefficient of resistance of the shunt resistor 1 can also be adjusted.
  • FIG. 7 is a diagram showing a current detection device with a shunt resistor according to one embodiment.
  • the current detection device 30 includes a shunt resistor 1 and a voltage output device 31 that outputs the voltage of the resistor 5 to the outside.
  • a voltage output device 31 is connected to the shunt resistor 1 .
  • the voltage output device 31 has an output connector (output terminal) 35 for outputting a voltage signal (voltage of the resistor 5) from the shunt resistor 1.
  • FIG. 7 is a diagram showing a current detection device with a shunt resistor according to one embodiment.
  • the current detection device 30 includes a shunt resistor 1 and a voltage output device 31 that outputs the voltage of the resistor 5 to the outside.
  • a voltage output device 31 is connected to the shunt resistor 1 .
  • the voltage output device 31 has an output connector (output terminal) 35 for outputting a voltage signal (voltage of the resistor 5) from the shunt resistor 1.
  • the voltage output device 31 further includes a current detection circuit board 34.
  • the current detection circuit board 34 has voltage signal wirings 46A, 46B, 46C, and 46D for transmitting the voltage signal (voltage of the resistor 5) from the shunt resistor 1 to the output connector 35, and ground wirings 50 and 51. are doing.
  • the voltage signal wirings 46A, 46B, 46C, and 46D are wired on the voltage detection circuit board 34 so as to be line symmetrical.
  • a current detection circuit board 34 is arranged on the shunt resistor 1 .
  • the current detection circuit board 34 further includes voltage terminal pads (more specifically, copper foil portions) 36A, 36B, 36C, and 36D.
  • One end of the voltage signal wiring 46 A is connected to the voltage terminal pad 36 A, and the other end is connected to the output connector 35 .
  • One end of the voltage signal wiring 46 B is connected to the voltage terminal pad 36 B, and the other end is connected to the output connector 35 .
  • One end of the voltage signal wiring 46C is connected to the voltage terminal pad 36C, and the other end is connected to the output connector 35.
  • One end of the voltage signal wiring 46D is connected to the voltage terminal pad 36D, and the other end is connected to the output connector 35.
  • One end of the ground wiring 50 is connected to the voltage terminal pad 36D (or voltage terminal pad 36C), and the other end is connected to the output connector 35 .
  • One end of the ground wiring 51 is connected to the voltage terminal pad 36C (or the voltage terminal pad 36D).
  • the voltage terminal pad 36A is electrically connected to the voltage detection position 16A of the voltage detection portion 21 of the first projecting portion 11 via internal wiring (not shown) of the current detection circuit board 34.
  • the voltage terminal pad 36B is electrically connected to the voltage detection position 16B of the voltage detection portion 23 of the second projecting portion 12 via internal wiring (not shown) of the current detection circuit board 34 .
  • the voltage terminal pad 36 ⁇ /b>C is electrically connected to the voltage detection position 16 ⁇ /b>C of the voltage detection portion 24 of the second projecting portion 12 via internal wiring (not shown) of the current detection circuit board 34 .
  • the voltage terminal pad 36 ⁇ /b>D is electrically connected to the voltage detection position 16 ⁇ /b>D of the voltage detection portion 22 of the first projecting portion 11 via internal wiring (not shown) of the current detection circuit board 34 .
  • the internal wiring and the voltage detection units 21, 22, 23, and 24 are connected by means such as soldering.
  • voltage detection terminals (vertically extending conductive pins) are provided on the voltage detection units 21, 22, 23, and 24 by means of soldering or the like, and the voltage detection terminals are connected to conductive wires (eg, aluminum wires). or a means for inserting the voltage detection terminal into a through hole formed in the circuit board.
  • current detection circuit board 34 may include an operational amplifier (amplifier) for amplifying the voltage signal from shunt resistor 1, an A/D converter, and/or a temperature sensor.
  • the current detection device 30 includes a voltage calculator 65 connected to the shunt resistor 1 via the output connector 35 and the current detection circuit board 34 .
  • the voltage calculation section 65 is a calculation device that determines the detected voltage value of the shunt resistor 1, and an example of the voltage calculation section 65 is a microcomputer or a voltage calculation circuit. In one embodiment, the voltage calculator 65 may be provided on the current detection circuit board 34 .
  • Voltage calculation unit 65 calculates a voltage obtained by combining the voltage value measured between voltage detection unit 21 and voltage detection unit 22 and the voltage value measured between voltage detection unit 23 and voltage detection unit 24. It is configured to average the values and determine the averaged voltage value as the detected voltage value. In this way, the voltage calculator 65 may determine the average value of the voltages measured by the voltage detectors arranged along the first direction of the shunt resistor 1 as the detected voltage value.
  • the voltage calculation unit 65 can output a more stable detected voltage even if the temperature coefficient of resistance is affected by variations in the material, shape, etc. of the shunt resistor 1 .
  • the voltage calculation unit 65 calculates the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 and the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23. , are averaged, and the averaged voltage value is determined as the detected voltage value. In this way, the voltage calculator 65 may determine the average value of the voltages measured by the voltage detectors arranged on the diagonal line in the second direction of the shunt resistor 1 as the detected voltage value.
  • the voltage calculation unit 65 calculates the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 or the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23. It is configured to determine the detected voltage value. In this way, the voltage calculation section 65 may determine the voltage value measured by the voltage detection section arranged diagonally in the second direction of the shunt resistor 1 as the detected voltage value.
  • FIGS. 8A to 8D are diagrams showing a wiring member connected to a conventional shunt resistor having a protrusion on only one side as a comparative example.
  • 9A-9D illustrate wiring members connected to a shunt resistor according to one embodiment. Arrows in FIGS. 8A to 8D and arrows in FIGS. 9A to 9D indicate the direction of current flow.
  • 9A, wiring members 40, 41 are connected to electrodes 6, 7 along the first direction of shunt resistor 1. In FIG.
  • the arrangement shown in FIG. 9A may be referred to as a serial arrangement.
  • the wiring members 40 and 41 are connected to the electrodes 6 and 7 along the second direction so as to extend toward the first protrusion 11 side.
  • the arrangement shown in FIG. 9B may be referred to as a U-shaped arrangement.
  • the wiring members 40 and 41 are connected to the electrodes 6 and 7 along the second direction so as to extend toward the second projection 12 side.
  • the arrangement shown in FIG. 9C may be referred to as an inverted U-shaped arrangement.
  • the wiring member 40 is connected to the electrode 6 along the second direction so as to extend toward the first projecting portion 11, and the wiring member 41 extends toward the second projecting portion 12. It is connected to the electrode 7 along the second direction.
  • the arrangement shown in FIG. 9D may be referred to as an S-shaped arrangement.
  • the shunt resistor does not have a protrusion corresponding to the protrusion 12 of the shunt resistor 1 according to this embodiment.
  • the shunt resistors are arranged in series
  • the shunt resistors are arranged in a U shape
  • the shunt resistors are arranged in an inverted U shape.
  • the shunt resistors are arranged in an S-shape.
  • FIG. 10 is a graph showing the rate of change in resistance value with temperature change of a conventional shunt resistor having a protrusion on only one side as a comparative example.
  • FIG. 11 is a graph showing the rate of change in resistance value of the shunt resistor according to this embodiment with temperature change.
  • the horizontal axis indicates the temperature of the shunt resistor
  • the vertical axis indicates the change rate of the resistance value of the shunt resistor.
  • the voltage value obtained by combining the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 and the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23 is The change rate of the resistance value is shown when the averaged voltage value is used as the detected voltage value.
  • a curve connecting points x indicates the rate of change in the resistance value of the shunt resistor when the wiring members 40 and 41 are arranged in series
  • a curve connecting points ⁇ indicates the rate of change in the resistance value of the wiring members 40 and 41 when the wiring members 40 and 41 are arranged in a U shape.
  • the curve connecting the circles shows the rate of change in the resistance value of the shunt resistor when the wiring members 40 and 41 are arranged in an inverted U shape.
  • the rate of change in the resistance value of the shunt resistor is low.
  • the rate of change of resistance of the shunt resistor is very high.
  • the rate of change in resistance varies depending on the direction in which the wiring members 40 and 41 are connected to the shunt resistor. It may be a design restriction such as restricting the mounting position.
  • the rate of change in the resistance value of the shunt resistor 1 is It is significantly lower than the rate of change of resistance of a shunt resistor with protrusions on only one side.
  • the change rate of the resistance value of the shunt resistor 1 is remarkably low.
  • the change rate of the resistance value of the shunt resistor 1 is remarkably low.
  • the shunt resistor 1 since the shunt resistor 1 has the first projecting portion 11 and the second projecting portion 12, the shunt resistor 1 does not change depending on the arrangement of the wiring members 40 and 41. Resistance can be measured. In other words, the shunt resistor 1 can measure the resistance value without being changed by the current path through itself.
  • the shunt resistor 1 can reduce the change rate of its own resistance value as a whole.
  • stable current detection is possible regardless of the connection direction of the wiring members 40 and 41 to the shunt resistor 1.
  • the mounting position of the shunt resistor 1 Increased design freedom.
  • the change rate of the resistance value of the shunt resistor 1 can be significantly reduced.
  • the shunt resistance even if the contact positions of the wiring members 40 and 41 with the shunt resistor 1 change due to thermal expansion or contraction due to temperature change, and the current path changes, the shunt resistance The influence on the temperature coefficient of resistance of the device 1 can be reduced.
  • FIG. 12 is a diagram showing another embodiment of the shunt resistor.
  • the shunt resistor 1 has a first recess 71 formed on the first side S1 and a second recess 72 formed on the second side S2.
  • the first projection 11 is arranged in the first recess 71 and the second projection 12 is arranged in the second recess 72 .
  • a slit 71b is formed between the first projecting portion 11 and the electrode 6, and a slit 71a is formed between the first projecting portion 11 and the electrode 7.
  • a slit 72 b is formed between the second projecting portion 12 and the electrode 6 and a slit 72 a is formed between the second projecting portion 12 and the electrode 7 .
  • the shunt resistor 1 has the first projecting portion 11 and the second projecting portion 12, so that the same effect as the embodiment described above can be achieved.
  • the present invention can be used for shunt resistors and current detection devices.

Abstract

The present invention relates to a shunt resistor and a current detection device. A shunt resistor (1) comprises a first protrusion (11) and a second protrusion (12). The first protrusion (11) includes a part of a resistive body (5) and a part of a pair of electrodes (6, 7). The second protrusion (12) includes a part of the resistive body (5) and a part of the pair of electrodes (6, 7).

Description

シャント抵抗器および電流検出装置Shunt resistors and current sensing devices
 本発明は、シャント抵抗器および電流検出装置に関する。 The present invention relates to shunt resistors and current detection devices.
 シャント抵抗器は、電流検出用途に広く用いられている。このようなシャント抵抗器は、抵抗体と、抵抗体の両端に接合された電極と、を備えている。一般に、抵抗体は、銅・ニッケル系合金、銅・マンガン系合金、鉄・クロム系合金、ニッケル・クロム系合金等の抵抗合金で構成されており、電極は、銅等の高導電性金属から構成されている。電極には電圧検出部が設けられており、電圧検出部に導線(例えば、アルミワイヤー)を接続することにより抵抗体の両端部で発生した電圧を検出する。 Shunt resistors are widely used for current sensing applications. Such a shunt resistor comprises a resistor and electrodes joined across the resistor. In general, resistors are made of resistance alloys such as copper-nickel alloys, copper-manganese alloys, iron-chromium alloys, and nickel-chromium alloys, and electrodes are made of highly conductive metals such as copper. It is configured. A voltage detection section is provided on the electrode, and the voltage generated at both ends of the resistor is detected by connecting a conducting wire (for example, an aluminum wire) to the voltage detection section.
特開2007-329421号公報Japanese Patent Application Laid-Open No. 2007-329421 特表2013-504213号公報Japanese Patent Publication No. 2013-504213 特開2020-102626号公報Japanese Patent Application Laid-Open No. 2020-102626
 シャント抵抗器において、温度変動による影響が小さい条件下での電流の検出を可能にするために、抵抗温度係数(TCR)の特性は、重要である。なお、抵抗温度係数は、温度による抵抗値の変化の割合を示す指標であり、その絶対値が小さいほど抵抗値の変化が小さくなる。 In shunt resistors, the temperature coefficient of resistance (TCR) characteristics are important in order to enable current detection under conditions where the influence of temperature fluctuations is small. The temperature coefficient of resistance is an index that indicates the rate of change in resistance value due to temperature, and the smaller the absolute value, the smaller the change in resistance value.
 そこで、本発明は、抵抗温度係数の絶対値を小さくすることができるシャント抵抗器および電流検出装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a shunt resistor and a current detection device capable of reducing the absolute value of the temperature coefficient of resistance.
 一態様では、電流検出に用いられるシャント抵抗器が提供される。シャント抵抗器は、抵抗体と、第1方向における前記抵抗体の両端に接続された一対の電極と、を備える。前記シャント抵抗器は、前記第1方向に平行な面である、前記シャント抵抗器の第1側面に形成された第1突出部と、前記第1側面の反対側の面である前記シャント抵抗器の第2側面に形成された第2突出部と、を有しており、前記第1突出部は、前記抵抗体の一部および前記一対の電極の一部を有しており、前記第2突出部は、前記抵抗体の一部および前記一対の電極の一部を有している。 In one aspect, a shunt resistor used for current sensing is provided. A shunt resistor comprises a resistor and a pair of electrodes connected across the resistor in a first direction. The shunt resistor has a first protrusion formed on a first side surface of the shunt resistor parallel to the first direction, and the shunt resistor a surface opposite to the first side surface. a second protrusion formed on a second side surface of the second protrusion, the first protrusion having a portion of the resistor and a portion of the pair of electrodes; The projecting portion has a portion of the resistor and a portion of the pair of electrodes.
 一態様では、前記第1突出部は、前記第1方向における前記抵抗体の両端に接続された第1電圧検出部および第2電圧検出部を有しており、前記第2突出部は、前記第1方向における前記抵抗体の両端に接続された第3電圧検出部および第4電圧検出部を有しており、前記第1電圧検出部および前記第3電圧検出部は、同一の電極に配置されており、前記第2電圧検出部および前記第4電圧検出部は、同一の電極に配置されている。
 一態様では、前記第1突出部は、前記一対の電極に接続された第1角部および第2角部を有しており、前記第2突出部は、前記一対の電極に接続された第3角部および第4角部を有しており、前記第1角部、前記第2角部、前記第3角部、および前記第4角部の少なくとも1つは、鈍角形状、直線形状または曲線形状を有している。
 一態様では、前記シャント抵抗器は、前記第1側面に形成された第1凹部と、前記第2側面に形成された第2凹部と、を有しており、前記第1突出部は、前記第1凹部に配置されており、前記第2突出部は、前記第2凹部に配置されている。
In one aspect, the first protrusion includes a first voltage detection section and a second voltage detection section connected to both ends of the resistor in the first direction, and the second protrusion includes the It has a third voltage detection section and a fourth voltage detection section connected to both ends of the resistor in the first direction, and the first voltage detection section and the third voltage detection section are arranged on the same electrode. The second voltage detection section and the fourth voltage detection section are arranged on the same electrode.
In one aspect, the first protrusion has a first corner and a second corner connected to the pair of electrodes, and the second protrusion has a second corner connected to the pair of electrodes. It has a triangular portion and a fourth corner portion, and at least one of the first corner portion, the second corner portion, the third corner portion, and the fourth corner portion has an obtuse angle, a linear shape, or a It has a curvilinear shape.
In one aspect, the shunt resistor has a first recess formed in the first side surface and a second recess formed in the second side surface, and the first protrusion is formed in the It is arranged in the first recess, and the second protrusion is arranged in the second recess.
 一態様では、上記シャント抵抗器と、前記シャント抵抗器からの電圧信号を伝達する電圧信号配線を有する電流検出回路基板と、を備える電流検出装置が提供される。前記電圧信号配線は、前記第1突出部の第1電圧検出部および第2電圧検出部と、前記第2突出部の第3電圧検出部および第4電圧検出部と、に電気的に接続されている。 In one aspect, a current detection device is provided that includes the shunt resistor and a current detection circuit board having a voltage signal wiring that transmits a voltage signal from the shunt resistor. The voltage signal wiring is electrically connected to the first voltage detection section and the second voltage detection section of the first protrusion, and the third voltage detection section and the fourth voltage detection section of the second protrusion. ing.
 一態様では、前記電流検出回路基板は、電圧端子用パッドをさらに有しており、前記電圧端子用パッドは、前記第1電圧検出部、前記第2電圧検出部、前記第3電圧検出部、前記第4電圧検出部、および前記電圧信号配線に接続されている。
 一態様では、前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、前記電圧演算部は、前記第1電圧検出部と前記第2電圧検出部との間で測定された電圧値と、前記第3電圧検出部と前記第4電圧検出部との間で測定された電圧値と、を組み合わせた電圧値を平均化し、前記平均化された電圧値を検出電圧値に決定する。
 一態様では、前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、前記電圧演算部は、前記第1電圧検出部と前記第4電圧検出部との間で測定された電圧値、または前記第2電圧検出部と前記第3電圧検出部との間で測定された電圧値を検出電圧値に決定する。
 一態様では、前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、前記電圧演算部は、前記第1電圧検出部と前記第4電圧検出部との間で測定された電圧値と、前記第2電圧検出部と前記第3電圧検出部との間で測定された電圧値と、を組み合わせた電圧値を平均化し、前記平均化された電圧値を検出電圧値に決定する。
In one aspect, the current detection circuit board further includes a voltage terminal pad, and the voltage terminal pad comprises the first voltage detection section, the second voltage detection section, the third voltage detection section, It is connected to the fourth voltage detection section and the voltage signal wiring.
In one aspect, the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the second voltage detector. and the voltage value measured between the third voltage detection unit and the fourth voltage detection unit are averaged, and the averaged voltage value is a detected voltage value. to decide.
In one aspect, the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the fourth voltage detector. or the voltage value measured between the second voltage detector and the third voltage detector is determined as the detected voltage value.
In one aspect, the current detection device includes a voltage calculator connected to the shunt resistor, the voltage calculator measuring between the first voltage detector and the fourth voltage detector. and the voltage value measured between the second voltage detection unit and the third voltage detection unit are averaged, and the averaged voltage value is a detected voltage value. to decide.
 シャント抵抗器は、第1突出部および第2突出部を有している。このような構造を有するシャント抵抗器は、その抵抗温度係数の絶対値を小さくすることができる。 The shunt resistor has a first protrusion and a second protrusion. A shunt resistor having such a structure can reduce the absolute value of its temperature coefficient of resistance.
シャント抵抗器の一実施形態を示す図である。FIG. 11 illustrates one embodiment of a shunt resistor; 配線部材が接続されたシャント抵抗器を示す図である。It is a figure which shows the shunt resistor to which the wiring member was connected. 第1突出部の拡大図である。It is an enlarged view of a 1st protrusion part. 第2突出部の拡大図である。It is an enlarged view of a 2nd protrusion part. 図5Aは第1突出部に形成された角部を示す図である。FIG. 5A is a diagram showing corners formed on the first protrusion. 図5Bは第2突出部に形成された角部を示す図である。FIG. 5B is a diagram showing a corner formed on the second protrusion. 図6Aは、角部の他の実施形態を示す図である。FIG. 6A is a diagram showing another embodiment of the corner. 図6Bは、角部の他の実施形態を示す図である。FIG. 6B is a diagram showing another embodiment of the corner. 一実施形態に係るシャント抵抗器を備えた電流検出装置を示す図である。FIG. 3 illustrates a current sensing device with a shunt resistor according to one embodiment. 図8Aは、比較例として、片側のみに突出部を備える従来のシャント抵抗器に接続された配線部材を示す図である。FIG. 8A is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side. 図8Bは、比較例として、片側のみに突出部を備える従来のシャント抵抗器に接続された配線部材を示す図である。FIG. 8B is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side. 図8Cは、比較例として、片側のみに突出部を備える従来のシャント抵抗器に接続された配線部材を示す図である。FIG. 8C is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side. 図8Dは、比較例として、片側のみに突出部を備える従来のシャント抵抗器に接続された配線部材を示す図である。FIG. 8D is a diagram showing, as a comparative example, a wiring member connected to a conventional shunt resistor having protrusions on only one side. 図9Aは、一実施形態に係るシャント抵抗器に接続された配線部材を示す図である。FIG. 9A is a diagram showing a wiring member connected to a shunt resistor according to one embodiment; 図9Bは、一実施形態に係るシャント抵抗器に接続された配線部材を示す図である。9B is a diagram illustrating wiring members connected to a shunt resistor according to one embodiment; FIG. 図9Cは、一実施形態に係るシャント抵抗器に接続された配線部材を示す図である。FIG. 9C is a diagram showing wiring members connected to a shunt resistor according to one embodiment. 図9Dは、一実施形態に係るシャント抵抗器に接続された配線部材を示す図である。FIG. 9D is a diagram illustrating a wiring member connected to a shunt resistor according to one embodiment; 比較例としての片側のみに突出部を備える従来のシャント抵抗器の、温度変化に伴う抵抗値の変化率を示すグラフである。FIG. 5 is a graph showing the rate of change in resistance value with temperature change of a conventional shunt resistor having a protrusion on only one side as a comparative example; FIG. 本実施形態に係るシャント抵抗器の、温度変化に伴う抵抗値の変化率を示すグラフである。5 is a graph showing the rate of change in resistance value of the shunt resistor according to the embodiment with temperature change. シャント抵抗器の他の実施形態を示す図である。FIG. 11 illustrates another embodiment of a shunt resistor;
 以下、本発明の実施形態について図面を参照して説明する。なお、以下で説明する図面において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。以下で説明する複数の実施形態において、特に説明しない一実施形態の構成は、他の実施形態と同じであるので、その重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings described below, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the multiple embodiments described below, the configuration of one embodiment that is not particularly described is the same as that of the other embodiments, so redundant description thereof will be omitted.
 図1は、シャント抵抗器の一実施形態を示す図である。図1に示すように、シャント抵抗器1は、所定の厚みおよび所定の幅を有する抵抗合金板材から構成された抵抗体5と、第1方向における抵抗体5の両端(すなわち、両側接続面)5a,5bに接続された、高導電性金属から構成された一対の電極6,7と、を備えている。 FIG. 1 is a diagram showing one embodiment of a shunt resistor. As shown in FIG. 1, the shunt resistor 1 includes a resistor 5 made of a resistor alloy plate material having a predetermined thickness and a predetermined width, and both ends of the resistor 5 in the first direction (that is, both side connection surfaces). a pair of electrodes 6,7 composed of a highly conductive metal connected to 5a,5b.
 電極6は、抵抗体5の一端(一方の接続面)5aに接触する接触面6aを有しており、電極7は、抵抗体5の他端(他方の接続面)5bに接触する接触面7aを有している。電極6,7には、シャント抵抗器1をねじなどで固定するためのボルト穴8,9がそれぞれ形成されている。 The electrode 6 has a contact surface 6a that contacts one end (one connection surface) 5a of the resistor 5, and the electrode 7 has a contact surface that contacts the other end (other connection surface) 5b of the resistor 5. 7a. Bolt holes 8 and 9 for fixing the shunt resistor 1 with screws or the like are formed in the electrodes 6 and 7, respectively.
 図2は、配線部材が接続されたシャント抵抗器を示す図である。図2に示すように、電極6は配線部材(バスバー)40に接続されており、電極7は配線部材(バスバー)41に接続されている。配線部材40,41のそれぞれは、導電性を有する金属から構成されている。配線部材40には、ボルト穴8に連通するボルト穴48が形成されており、配線部材41には、ボルト穴9に連通するボルト穴49が形成されている。 FIG. 2 is a diagram showing a shunt resistor to which wiring members are connected. As shown in FIG. 2, the electrodes 6 are connected to wiring members (busbars) 40 and the electrodes 7 are connected to wiring members (busbars) 41 . Each of the wiring members 40 and 41 is made of a conductive metal. A bolt hole 48 communicating with the bolt hole 8 is formed in the wiring member 40 , and a bolt hole 49 communicating with the bolt hole 9 is formed in the wiring member 41 .
 第1方向は、抵抗体5の長さ方向であり、シャント抵抗器1の長さ方向に相当する。シャント抵抗器1の長さ方向は、電極6、抵抗体5、および電極7がこの順に配置される方向である。この第1方向に垂直な方向は、第2方向である。第2方向は、シャント抵抗器1の幅方向である。図1に示すように、電極6,7は、同一の構造を有しており、抵抗体5に関して、対称的に配置されている。 The first direction is the length direction of the resistor 5 and corresponds to the length direction of the shunt resistor 1. The length direction of the shunt resistor 1 is the direction in which the electrode 6, the resistor 5, and the electrode 7 are arranged in this order. The direction perpendicular to this first direction is the second direction. The second direction is the width direction of the shunt resistor 1 . As shown in FIG. 1, electrodes 6 and 7 have the same structure and are arranged symmetrically with respect to resistor 5 .
 抵抗体5の両端5a,5bのそれぞれは、電極6,7のそれぞれに溶接(例えば、電子ビーム溶接、レーザービーム溶接、または、ろう接、はんだ)などの手段によって接続(接合)されている。抵抗体5の材質の一例として、Cu-Mn系合金などの低抵抗合金材を挙げることができる。電極6,7の材質の一例として、銅(Cu)を挙げることができる。抵抗体5は、電極6,7よりも高い抵抗率を有している。 Both ends 5a and 5b of the resistor 5 are connected (joined) to electrodes 6 and 7 by means of welding (for example, electron beam welding, laser beam welding, brazing, or soldering). An example of the material of the resistor 5 is a low-resistance alloy material such as a Cu--Mn alloy. An example of the material of the electrodes 6 and 7 is copper (Cu). The resistor 5 has a higher resistivity than the electrodes 6,7.
 図1に示すように、シャント抵抗器1は、その第1側面S1に形成された第1突出部11と、第1側面S1の反対側の面である第2側面S2に形成された第2突出部12と、を有している。第1側面S1および第2側面S2は、第1方向に平行な面である。第1突出部11は第1側面S1から外側に延びており、第2突出部12は第2側面S2から外側に延びている。第1突出部11および第2突出部12は、シャント抵抗器1の中心に関して、対称的に配置されている。 As shown in FIG. 1, the shunt resistor 1 has a first protrusion 11 formed on its first side S1 and a second protrusion 11 formed on a second side S2 opposite to the first side S1. and a projecting portion 12 . The first side surface S1 and the second side surface S2 are surfaces parallel to the first direction. The first protrusion 11 extends outward from the first side surface S1, and the second protrusion 12 extends outward from the second side surface S2. The first protrusion 11 and the second protrusion 12 are arranged symmetrically with respect to the center of the shunt resistor 1 .
 図3は、第1突出部の拡大図である。図3に示すように、第1突出部11は、抵抗体5の一部および電極6,7の一部を有している。第1突出部11は、抵抗体5の両端5a,5bに発生する電圧を測定するための電圧検出部21,22を有している。 FIG. 3 is an enlarged view of the first protrusion. As shown in FIG. 3, the first projecting portion 11 has a portion of the resistor 5 and a portion of the electrodes 6 and 7 . The first projecting portion 11 has voltage detecting portions 21 and 22 for measuring voltages generated across the resistor 5 at both ends 5a and 5b.
 電圧検出部21は抵抗体5の接続面5bに接続されており、電圧検出部22は抵抗体5の接続面5aに接続されている。電圧検出部21は電極7の一部であり、電圧検出部22は電極6の一部である。言い換えれば、電極7は電圧検出部21を有しており、電極6は電圧検出部22を有している。 The voltage detection unit 21 is connected to the connection surface 5b of the resistor 5, and the voltage detection unit 22 is connected to the connection surface 5a of the resistor 5. Voltage detector 21 is part of electrode 7 and voltage detector 22 is part of electrode 6 . In other words, the electrode 7 has the voltage detection section 21 and the electrode 6 has the voltage detection section 22 .
 図4は、第2突出部の拡大図である。図4に示すように、第2突出部12は、第1突出部11と同一の形状を有している。第2突出部12は、抵抗体5の一部および電極6,7の一部を有している。第2突出部12は、抵抗体5の両端5a,5bに発生する電圧を測定するための電圧検出部23,24を有している。 FIG. 4 is an enlarged view of the second protrusion. As shown in FIG. 4 , the second protrusion 12 has the same shape as the first protrusion 11 . The second projecting portion 12 has a portion of the resistor 5 and a portion of the electrodes 6 and 7 . The second projecting portion 12 has voltage detecting portions 23 and 24 for measuring voltages generated across the resistor 5 at both ends 5 a and 5 b.
 電圧検出部23は抵抗体5の接続面5bに接続されており、電圧検出部24は抵抗体5の接続面5aに接続されている。電圧検出部23は電極7の一部であり、電圧検出部24は電極6の一部である。言い換えれば、電極7は電圧検出部23を有しており、電極6は電圧検出部24を有している。 The voltage detection section 23 is connected to the connection surface 5b of the resistor 5, and the voltage detection section 24 is connected to the connection surface 5a of the resistor 5. Voltage detector 23 is part of electrode 7 and voltage detector 24 is part of electrode 6 . In other words, the electrode 7 has the voltage detection section 23 and the electrode 6 has the voltage detection section 24 .
 電圧検出部21および電圧検出部23は同一の電極7に配置されており、電圧検出部22および電圧検出部24は同一の電極6に配置されている。電圧検出部23は第2方向において電圧検出部21と同一方向に配置されており、電圧検出部24は第2方向において電圧検出部22と同一方向に配置されている。 The voltage detection section 21 and the voltage detection section 23 are arranged on the same electrode 7 , and the voltage detection section 22 and the voltage detection section 24 are arranged on the same electrode 6 . Voltage detection unit 23 is arranged in the same direction as voltage detection unit 21 in the second direction, and voltage detection unit 24 is arranged in the same direction as voltage detection unit 22 in the second direction.
 図5Aは第1突出部に形成された角部を示す図であり、図5Bは第2突出部に形成された角部を示す図である。図5Aに示すように、第1突出部11は、電極6に接続された角部53と、電極7に接続された角部54と、を有している。同様に、図5Bに示すように、第2突出部12は、電極6に接続された角部55と、電極7に接続された角部56と、を有している。 FIG. 5A is a diagram showing corners formed on the first protrusion, and FIG. 5B is a diagram showing corners formed on the second protrusion. As shown in FIG. 5A, the first projecting portion 11 has a corner portion 53 connected to the electrode 6 and a corner portion 54 connected to the electrode 7 . Similarly, as shown in FIG. 5B, the second projecting portion 12 has a corner portion 55 connected to the electrode 6 and a corner portion 56 connected to the electrode 7 .
 図5Aに示すように、角部53は第1突出部11の側面11aと電極6の側面6cとの間に配置されており、角部54は第1突出部11の側面11bと電極7の側面7cとの間に配置されている。図5Bに示すように、角部55は第2突出部12の側面12aと電極6の側面6bとの間に配置されており、角部56は第2突出部12の側面12bと電極7の側面7bとの間に配置されている。 As shown in FIG. 5A, the corner portion 53 is disposed between the side surface 11a of the first protrusion 11 and the side surface 6c of the electrode 6, and the corner portion 54 is located between the side surface 11b of the first protrusion 11 and the electrode 7. It is arranged between the side surface 7c. As shown in FIG. 5B, the corner portion 55 is disposed between the side surface 12a of the second protrusion 12 and the side surface 6b of the electrode 6, and the corner portion 56 is located between the side surface 12b of the second protrusion 12 and the electrode 7. It is arranged between the side surface 7b.
 図5Aおよび図5Bに示す実施形態では、角部53,54,55,56のそれぞれは、曲線形状を有している。一実施形態では、角部53,54,55,56のうちの少なくとも1つは、曲線形状を有してもよい。曲面としての角部53,54,55,56の曲率を変えることにより、シャント抵抗器1は、突出部11,12に流れ込む電流を変更することができる。結果として、シャント抵抗器1は、その抵抗温度係数を調整することができる。 5A and 5B, each of the corners 53, 54, 55, 56 has a curved shape. In one embodiment, at least one of corners 53, 54, 55, 56 may have a curvilinear shape. By changing the curvature of the corners 53 , 54 , 55 , 56 as curved surfaces, the shunt resistor 1 can change the current flowing into the protrusions 11 , 12 . As a result, the shunt resistor 1 can adjust its temperature coefficient of resistance.
 角部53,54,55,56は、同一の曲率(または曲率半径)を有してもよく、異なる曲率(または曲率半径)を有してもよい。曲率を小さくすることにより(すなわち、曲率半径を大きくすることにより)、温度上昇に伴う抵抗値の変化率を正側に変化させることができる。逆に、曲率を大きくすることにより(すなわち、曲率半径を小さくすることにより)、温度上昇に伴う抵抗値の変化率を負側に変化させることができる。このように、本実施形態では、シャント抵抗器1の抵抗温度係数を調整することができる。 The corners 53, 54, 55, 56 may have the same curvature (or radius of curvature) or may have different curvatures (or radius of curvature). By reducing the curvature (that is, by increasing the radius of curvature), the rate of change of the resistance value with temperature rise can be changed to the positive side. Conversely, by increasing the curvature (that is, by decreasing the radius of curvature), the rate of change in resistance value with temperature rise can be changed to the negative side. Thus, in this embodiment, the temperature coefficient of resistance of the shunt resistor 1 can be adjusted.
 図6Aおよび図6Bは、角部の他の実施形態を示す図である。図6Aおよび図6Bに示すように、角部53,54,55,56の少なくとも1つは、鈍角形状または直線形状を有してもよい。図6Aに示す実施形態では、角部53の角度θ1は90度よりも大きく、180度よりも小さな角度である(すなわち、鈍角形状)。図6Bに示す実施形態では、角部53の角度θ2は180度である(すなわち、直線形状)。このような構成によっても、シャント抵抗器1の抵抗温度係数を調整することができる。 6A and 6B are diagrams showing other embodiments of corners. As shown in Figures 6A and 6B, at least one of the corners 53, 54, 55, 56 may have an obtuse or rectilinear shape. In the embodiment shown in FIG. 6A, angle θ1 of corner 53 is greater than 90 degrees and less than 180 degrees (ie obtuse). In the embodiment shown in FIG. 6B, angle θ2 of corner 53 is 180 degrees (ie, linear shape). With such a configuration, the temperature coefficient of resistance of the shunt resistor 1 can also be adjusted.
 図7は、一実施形態に係るシャント抵抗器を備えた電流検出装置を示す図である。図7に示すように、電流検出装置30は、シャント抵抗器1と、抵抗体5の電圧を外部に出力する電圧出力装置31と、を備えている。電圧出力装置31は、シャント抵抗器1に接続されている。電圧出力装置31は、シャント抵抗器1からの電圧信号(抵抗体5の電圧)を出力するための出力コネクタ(出力端子)35を備えている。 FIG. 7 is a diagram showing a current detection device with a shunt resistor according to one embodiment. As shown in FIG. 7, the current detection device 30 includes a shunt resistor 1 and a voltage output device 31 that outputs the voltage of the resistor 5 to the outside. A voltage output device 31 is connected to the shunt resistor 1 . The voltage output device 31 has an output connector (output terminal) 35 for outputting a voltage signal (voltage of the resistor 5) from the shunt resistor 1. FIG.
 電圧出力装置31は、電流検出回路基板34をさらに備えている。電流検出回路基板34は、シャント抵抗器1からの電圧信号(抵抗体5の電圧)を出力コネクタ35に伝達する電圧信号配線46A,46B,46C,46Dと、グランド配線50,51と、を有している。電圧信号配線46A,46B,46C,46Dは電圧検出回路基板34上に線対称となるように配線されている。電流検出回路基板34は、シャント抵抗器1上に配置されている。 The voltage output device 31 further includes a current detection circuit board 34. The current detection circuit board 34 has voltage signal wirings 46A, 46B, 46C, and 46D for transmitting the voltage signal (voltage of the resistor 5) from the shunt resistor 1 to the output connector 35, and ground wirings 50 and 51. are doing. The voltage signal wirings 46A, 46B, 46C, and 46D are wired on the voltage detection circuit board 34 so as to be line symmetrical. A current detection circuit board 34 is arranged on the shunt resistor 1 .
 電流検出回路基板34は、電圧端子用パッド(より具体的には、銅箔部)36A,36B,36C,36Dをさらに備えている。電圧信号配線46Aの一端は電圧端子用パッド36Aに接続されており、他端は出力コネクタ35に接続されている。電圧信号配線46Bの一端は電圧端子用パッド36Bに接続されており、他端は出力コネクタ35に接続されている。電圧信号配線46Cの一端は電圧端子用パッド36Cに接続されており、他端は出力コネクタ35に接続されている。電圧信号配線46Dの一端は電圧端子用パッド36Dに接続されており、他端は出力コネクタ35に接続されている。グランド配線50の一端は電圧端子用パッド36D(または電圧端子用パッド36C)に接続されており、他端は出力コネクタ35に接続されている。グランド配線51の一端は電圧端子用パッド36C(または電圧端子用パッド36D)に接続されている。 The current detection circuit board 34 further includes voltage terminal pads (more specifically, copper foil portions) 36A, 36B, 36C, and 36D. One end of the voltage signal wiring 46 A is connected to the voltage terminal pad 36 A, and the other end is connected to the output connector 35 . One end of the voltage signal wiring 46 B is connected to the voltage terminal pad 36 B, and the other end is connected to the output connector 35 . One end of the voltage signal wiring 46C is connected to the voltage terminal pad 36C, and the other end is connected to the output connector 35. As shown in FIG. One end of the voltage signal wiring 46D is connected to the voltage terminal pad 36D, and the other end is connected to the output connector 35. As shown in FIG. One end of the ground wiring 50 is connected to the voltage terminal pad 36D (or voltage terminal pad 36C), and the other end is connected to the output connector 35 . One end of the ground wiring 51 is connected to the voltage terminal pad 36C (or the voltage terminal pad 36D).
 電圧端子用パッド36Aは、電流検出回路基板34の内部配線(図示しない)を介して第1突出部11の電圧検出部21の電圧検出位置16Aに電気的に接続されている。電圧端子用パッド36Bは、電流検出回路基板34の内部配線(図示しない)を介して第2突出部12の電圧検出部23の電圧検出位置16Bに電気的に接続されている。電圧端子用パッド36Cは、電流検出回路基板34の内部配線(図示しない)を介して第2突出部12の電圧検出部24の電圧検出位置16Cに電気的に接続されている。電圧端子用パッド36Dは、電流検出回路基板34の内部配線(図示しない)を介して第1突出部11の電圧検出部22の電圧検出位置16Dに電気的に接続されている。 The voltage terminal pad 36A is electrically connected to the voltage detection position 16A of the voltage detection portion 21 of the first projecting portion 11 via internal wiring (not shown) of the current detection circuit board 34. The voltage terminal pad 36B is electrically connected to the voltage detection position 16B of the voltage detection portion 23 of the second projecting portion 12 via internal wiring (not shown) of the current detection circuit board 34 . The voltage terminal pad 36</b>C is electrically connected to the voltage detection position 16</b>C of the voltage detection portion 24 of the second projecting portion 12 via internal wiring (not shown) of the current detection circuit board 34 . The voltage terminal pad 36</b>D is electrically connected to the voltage detection position 16</b>D of the voltage detection portion 22 of the first projecting portion 11 via internal wiring (not shown) of the current detection circuit board 34 .
 上記内部配線と電圧検出部21,22,23,24とは、半田付けなどの手段により接続される。一実施形態では、電圧検出部21,22,23,24上に、半田付けなどの手段により電圧検出端子(垂直に延びる導電性のピン)を設け、電圧検出端子に導線(例えば、アルミワイヤー)を接続する手段や、回路基板に形成したスルーホールに電圧検出端子を挿通する手段により接続してもよい。 The internal wiring and the voltage detection units 21, 22, 23, and 24 are connected by means such as soldering. In one embodiment, voltage detection terminals (vertically extending conductive pins) are provided on the voltage detection units 21, 22, 23, and 24 by means of soldering or the like, and the voltage detection terminals are connected to conductive wires (eg, aluminum wires). or a means for inserting the voltage detection terminal into a through hole formed in the circuit board.
 作業者は、出力コネクタ35に嵌合するコネクタを備えたケーブルを接続して抵抗体5の両端5a,5bに発生した電圧を測定する。このような構成により、簡単に抵抗体5の電圧を測定することができる。一実施形態では、シャント抵抗器1からの電圧信号を増幅するためのオペアンプ(増幅器)、A/D変換器、および/または温度センサなどを電流検出回路基板34に搭載してもよい。 The operator connects a cable with a connector that fits to the output connector 35 and measures the voltage generated at both ends 5 a and 5 b of the resistor 5 . With such a configuration, the voltage of the resistor 5 can be easily measured. In one embodiment, current detection circuit board 34 may include an operational amplifier (amplifier) for amplifying the voltage signal from shunt resistor 1, an A/D converter, and/or a temperature sensor.
 図7に示すように、電流検出装置30は、出力コネクタ35および電流検出回路基板34を介してシャント抵抗器1に接続された電圧演算部65を備えている。電圧演算部65は、シャント抵抗器1の検出電圧値を決定する演算装置であり、電圧演算部65の一例として、マイクロコンピュータまたは電圧演算回路を挙げることができる。一実施形態では、電圧演算部65を電流検出回路基板34に備えてもよい。 As shown in FIG. 7, the current detection device 30 includes a voltage calculator 65 connected to the shunt resistor 1 via the output connector 35 and the current detection circuit board 34 . The voltage calculation section 65 is a calculation device that determines the detected voltage value of the shunt resistor 1, and an example of the voltage calculation section 65 is a microcomputer or a voltage calculation circuit. In one embodiment, the voltage calculator 65 may be provided on the current detection circuit board 34 .
 電圧演算部65は、電圧検出部21と電圧検出部22との間で測定された電圧値と、電圧検出部23と電圧検出部24との間で測定された電圧値と、を組み合わせた電圧値を平均化し、平均化された電圧値を検出電圧値に決定するように構成されている。このように、電圧演算部65は、シャント抵抗器1の第1方向に沿って配置された電圧検出部で測定された電圧の平均値を検出電圧値に決定してもよい。 Voltage calculation unit 65 calculates a voltage obtained by combining the voltage value measured between voltage detection unit 21 and voltage detection unit 22 and the voltage value measured between voltage detection unit 23 and voltage detection unit 24. It is configured to average the values and determine the averaged voltage value as the detected voltage value. In this way, the voltage calculator 65 may determine the average value of the voltages measured by the voltage detectors arranged along the first direction of the shunt resistor 1 as the detected voltage value.
 このような構成により、電圧演算部65は、シャント抵抗器1の材料や形状などのばらつきによって抵抗温度係数が影響を受けたとしても、より安定的な検出電圧を出力することができる。 With such a configuration, the voltage calculation unit 65 can output a more stable detected voltage even if the temperature coefficient of resistance is affected by variations in the material, shape, etc. of the shunt resistor 1 .
 一実施形態では、電圧演算部65は、電圧検出部21と電圧検出部24との間で測定された電圧値と、電圧検出部22と電圧検出部23との間で測定された電圧値と、を組み合わせた電圧値を平均化し、平均化された電圧値を検出電圧値に決定するように構成されてもよい。このように、電圧演算部65は、シャント抵抗器1の第2方向において、対角線上に配置された電圧検出部で測定された電圧の平均値を検出電圧値に決定してもよい。 In one embodiment, the voltage calculation unit 65 calculates the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 and the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23. , are averaged, and the averaged voltage value is determined as the detected voltage value. In this way, the voltage calculator 65 may determine the average value of the voltages measured by the voltage detectors arranged on the diagonal line in the second direction of the shunt resistor 1 as the detected voltage value.
 一実施形態では、電圧演算部65は、電圧検出部21と電圧検出部24との間で測定された電圧値、または電圧検出部22と電圧検出部23との間で測定された電圧値を検出電圧値に決定するように構成されている。このように、電圧演算部65は、シャント抵抗器1の第2方向において、対角線上に配置された電圧検出部で測定された電圧値を検出電圧値に決定してもよい。 In one embodiment, the voltage calculation unit 65 calculates the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 or the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23. It is configured to determine the detected voltage value. In this way, the voltage calculation section 65 may determine the voltage value measured by the voltage detection section arranged diagonally in the second direction of the shunt resistor 1 as the detected voltage value.
 図8A乃至図8Dは、比較例として、片側のみに突出部を備える従来のシャント抵抗器に接続された配線部材を示す図である。図9A乃至図9Dは、一実施形態に係るシャント抵抗器に接続された配線部材を示す図である。図8A乃至図8Dにおける矢印、および図9A乃至図9Dにおける矢印は、電流の流れ方向を示している。図9Aでは、配線部材40,41はシャント抵抗器1の第1方向に沿って電極6,7に接続されている。図9Aに示す配置を、便宜的に、直列配置と呼ぶことがある。 8A to 8D are diagrams showing a wiring member connected to a conventional shunt resistor having a protrusion on only one side as a comparative example. 9A-9D illustrate wiring members connected to a shunt resistor according to one embodiment. Arrows in FIGS. 8A to 8D and arrows in FIGS. 9A to 9D indicate the direction of current flow. 9A, wiring members 40, 41 are connected to electrodes 6, 7 along the first direction of shunt resistor 1. In FIG. For convenience, the arrangement shown in FIG. 9A may be referred to as a serial arrangement.
 図9Bでは、配線部材40,41は、第1突出部11側に延びるように、第2方向に沿って電極6,7に接続されている。図9Bに示す配置を、便宜的に、U字配置と呼ぶことがある。図9Cでは、配線部材40,41は、第2突出部12側に延びるように、第2方向に沿って電極6,7に接続されている。図9Cに示す配置を、便宜的に、逆U字配置と呼ぶことがある。 In FIG. 9B, the wiring members 40 and 41 are connected to the electrodes 6 and 7 along the second direction so as to extend toward the first protrusion 11 side. For convenience, the arrangement shown in FIG. 9B may be referred to as a U-shaped arrangement. In FIG. 9C, the wiring members 40 and 41 are connected to the electrodes 6 and 7 along the second direction so as to extend toward the second projection 12 side. For convenience, the arrangement shown in FIG. 9C may be referred to as an inverted U-shaped arrangement.
 図9Dでは、配線部材40は、第1突出部11側に延びるように、第2方向に沿って電極6に接続されており、配線部材41は、第2突出部12側に延びるように、第2方向に沿って電極7に接続されている。図9Dに示す配置を、便宜的に、S字配置と呼ぶことがある。 In FIG. 9D, the wiring member 40 is connected to the electrode 6 along the second direction so as to extend toward the first projecting portion 11, and the wiring member 41 extends toward the second projecting portion 12. It is connected to the electrode 7 along the second direction. For convenience, the arrangement shown in FIG. 9D may be referred to as an S-shaped arrangement.
 図8A乃至図8Dにおいて、シャント抵抗器は、本実施形態に係るシャント抵抗器1の突出部12に相当する突出部を有していない。図8Aでは、シャント抵抗器は直列的に配置されており、図8Bでは、シャント抵抗器は、U字状に配置されており、図8Cでは、シャント抵抗器は、逆U字状に配置されており、図8Dでは、シャント抵抗器は、S字状に配置されている。 In FIGS. 8A to 8D, the shunt resistor does not have a protrusion corresponding to the protrusion 12 of the shunt resistor 1 according to this embodiment. In FIG. 8A the shunt resistors are arranged in series, in FIG. 8B the shunt resistors are arranged in a U shape and in FIG. 8C the shunt resistors are arranged in an inverted U shape. 8D, the shunt resistors are arranged in an S-shape.
 図10は、比較例としての片側のみに突出部を備える従来のシャント抵抗器の、温度変化に伴う抵抗値の変化率を示すグラフである。図11は、本実施形態に係るシャント抵抗器の、温度変化に伴う抵抗値の変化率を示すグラフである。図10および図11のそれぞれにおいて、横軸はシャント抵抗器の温度を示しており、縦軸はシャント抵抗器の抵抗値の変化率を示している。 FIG. 10 is a graph showing the rate of change in resistance value with temperature change of a conventional shunt resistor having a protrusion on only one side as a comparative example. FIG. 11 is a graph showing the rate of change in resistance value of the shunt resistor according to this embodiment with temperature change. In each of FIGS. 10 and 11, the horizontal axis indicates the temperature of the shunt resistor, and the vertical axis indicates the change rate of the resistance value of the shunt resistor.
 図11では、電圧検出部21と電圧検出部24との間で測定された電圧値と、電圧検出部22と電圧検出部23との間で測定された電圧値と、を組み合わせた電圧値を平均化し、平均化された電圧値を検出電圧値としたときの抵抗値の変化率が示されている。 In FIG. 11, the voltage value obtained by combining the voltage value measured between the voltage detection unit 21 and the voltage detection unit 24 and the voltage value measured between the voltage detection unit 22 and the voltage detection unit 23 is The change rate of the resistance value is shown when the averaged voltage value is used as the detected voltage value.
 ×点を結ぶ曲線は、配線部材40,41が直列配置されたときのシャント抵抗器の抵抗値の変化率を示しており、△点を結ぶ曲線は、配線部材40,41がU字配置されたときのシャント抵抗器の抵抗値の変化率を示しており、○点を結ぶ曲線は、配線部材40,41が逆U字配置されたときのシャント抵抗器の抵抗値の変化率を示している。 A curve connecting points x indicates the rate of change in the resistance value of the shunt resistor when the wiring members 40 and 41 are arranged in series, and a curve connecting points Δ indicates the rate of change in the resistance value of the wiring members 40 and 41 when the wiring members 40 and 41 are arranged in a U shape. The curve connecting the circles shows the rate of change in the resistance value of the shunt resistor when the wiring members 40 and 41 are arranged in an inverted U shape. there is
 図10に示すように、配線部材40,41が直列配置された場合、シャント抵抗器の抵抗値の変化率は低いが、配線部材40,41がU字配置および逆U字配置された場合、シャント抵抗器の抵抗値の変化率は非常に高い。このように、片側のみに突出部を備える従来のシャント抵抗器の構造では、配線部材40,41の、シャント抵抗器への接続方向によって抵抗値変化率が異なるため、結果として、シャント抵抗器の取り付け位置を制限する等、設計上の制約になることがある。 As shown in FIG. 10, when the wiring members 40 and 41 are arranged in series, the rate of change in the resistance value of the shunt resistor is low. The rate of change of resistance of the shunt resistor is very high. As described above, in the structure of the conventional shunt resistor having a protrusion on only one side, the rate of change in resistance varies depending on the direction in which the wiring members 40 and 41 are connected to the shunt resistor. It may be a design restriction such as restricting the mounting position.
 その一方で、図11に示すように、配線部材40,41が直線上に配置されない、例えば、配線部材40,41がU字配置された場合、シャント抵抗器1の抵抗値の変化率は、片側のみに突出部を備えるシャント抵抗器の抵抗値の変化率よりも著しく低い。配線部材40,41が逆U字配置された場合であっても、同様に、シャント抵抗器1の抵抗値の変化率は著しく低い。図11から明らかなように、本実施形態では、配線部材40,41の配置にかかわらず、シャント抵抗器1の抵抗値の変化率は著しく低い。 On the other hand, as shown in FIG. 11, when the wiring members 40 and 41 are not arranged on a straight line, for example, when the wiring members 40 and 41 are arranged in a U shape, the rate of change in the resistance value of the shunt resistor 1 is It is significantly lower than the rate of change of resistance of a shunt resistor with protrusions on only one side. Similarly, even when the wiring members 40 and 41 are arranged in an inverted U shape, the change rate of the resistance value of the shunt resistor 1 is remarkably low. As is clear from FIG. 11, in this embodiment, regardless of the arrangement of the wiring members 40 and 41, the change rate of the resistance value of the shunt resistor 1 is remarkably low.
 本実施形態によれば、シャント抵抗器1は、第1突出部11および第2突出部12を有しているため、シャント抵抗器1は、配線部材40,41の配置によって変化することなく、抵抗値を測定することができる。言い換えれば、シャント抵抗器1は、自身に流れる電流経路によって変化することなく、抵抗値を測定することができる。 According to this embodiment, since the shunt resistor 1 has the first projecting portion 11 and the second projecting portion 12, the shunt resistor 1 does not change depending on the arrangement of the wiring members 40 and 41. Resistance can be measured. In other words, the shunt resistor 1 can measure the resistance value without being changed by the current path through itself.
 本実施形態によれば、シャント抵抗器1は、自身の抵抗値の変化率を全体的に低減することができる。このようなシャント抵抗器1を採用することにより、配線部材40,41の、シャント抵抗器1への接続方向にかかわらず、安定した電流検出が可能となり、結果として、シャント抵抗器1の取り付け位置の設計上の自由度が増す。なお、図11では示されていないが、配線部材40,41をS字配置した場合であっても、シャント抵抗器1の抵抗値の変化率を著しく低減させることができる。 According to this embodiment, the shunt resistor 1 can reduce the change rate of its own resistance value as a whole. By adopting such a shunt resistor 1, stable current detection is possible regardless of the connection direction of the wiring members 40 and 41 to the shunt resistor 1. As a result, the mounting position of the shunt resistor 1 Increased design freedom. Although not shown in FIG. 11, even when the wiring members 40 and 41 are arranged in an S shape, the change rate of the resistance value of the shunt resistor 1 can be significantly reduced.
 さらに本実施形態によれば、温度変化による熱膨張または熱収縮に起因して、配線部材40,41の、シャント抵抗器1との接点位置が変化し、電流経路が変化したとしても、シャント抵抗器1の抵抗温度係数に与える影響を小さくすることができる。 Furthermore, according to the present embodiment, even if the contact positions of the wiring members 40 and 41 with the shunt resistor 1 change due to thermal expansion or contraction due to temperature change, and the current path changes, the shunt resistance The influence on the temperature coefficient of resistance of the device 1 can be reduced.
 図12は、シャント抵抗器の他の実施形態を示す図である。図12に示すように、シャント抵抗器1は、第1側面S1に形成された第1凹部71と、第2側面S2に形成された第2凹部72と、を有している。図12に示す実施形態では、第1突出部11は第1凹部71に配置されており、第2突出部12は第2凹部72に配置されている。 FIG. 12 is a diagram showing another embodiment of the shunt resistor. As shown in FIG. 12, the shunt resistor 1 has a first recess 71 formed on the first side S1 and a second recess 72 formed on the second side S2. In the embodiment shown in FIG. 12, the first projection 11 is arranged in the first recess 71 and the second projection 12 is arranged in the second recess 72 .
 このような配置により、第1突出部11と電極6との間には、スリット71bが形成され、第1突出部11と電極7との間には、スリット71aが形成される。同様に、第2突出部12と電極6との間には、スリット72bが形成され、第2突出部12と電極7との間には、スリット72aが形成される。 With this arrangement, a slit 71b is formed between the first projecting portion 11 and the electrode 6, and a slit 71a is formed between the first projecting portion 11 and the electrode 7. Similarly, a slit 72 b is formed between the second projecting portion 12 and the electrode 6 and a slit 72 a is formed between the second projecting portion 12 and the electrode 7 .
 図12に示す実施形態においても、シャント抵抗器1は、第1突出部11および第2突出部12を有するため、上述した実施形態と同様の効果を奏することができる。 Also in the embodiment shown in FIG. 12, the shunt resistor 1 has the first projecting portion 11 and the second projecting portion 12, so that the same effect as the embodiment described above can be achieved.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling those who have ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiments can be made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in its broadest scope in accordance with the technical spirit defined by the claims.
 本発明は、シャント抵抗器および電流検出装置に利用可能である。 The present invention can be used for shunt resistors and current detection devices.
 1   シャント抵抗器
 5   抵抗体
5a,5b   両側接続面
 6   電極
6a   接触面
6b,6c   側面
 7   電極
7a   接触面
7b,7c   側面
8,9  ボルト穴
11   第1突出部
11a,11b   側面
12   第2突出部
12a,12b   側面
16A,16B,16C,16D   電圧検出位置
21,22,23,24   電圧検出部
30   電流検出装置
31   電圧出力装置
34   電流検出回路基板
35   出力コネクタ
36A,36B,36C,36D   電圧端子用パッド
40,41   配線部材
46A,46B,46C,46D   電圧信号配線
48,49   ボルト穴
50,51   グランド配線
53,54,55,56   角部
65   電圧演算部
71   第1凹部
71a,71b   スリット
72   第2凹部
72a,72b   スリット
Reference Signs List 1 shunt resistor 5 resistor 5a, 5b both side connection surfaces 6 electrode 6a contact surface 6b, 6c side surface 7 electrode 7a contact surface 7b, 7c side surface 8, 9 bolt hole 11 first projecting portion 11a, 11b side surface 12 second projecting portion 12a, 12b Sides 16A, 16B, 16C, 16D Voltage detection positions 21, 22, 23, 24 Voltage detection unit 30 Current detection device 31 Voltage output device 34 Current detection circuit board 35 Output connectors 36A, 36B, 36C, 36D For voltage terminals Pads 40, 41 Wiring members 46A, 46B, 46C, 46D Voltage signal wirings 48, 49 Bolt holes 50, 51 Ground wirings 53, 54, 55, 56 Corners 65 Voltage calculator 71 First recesses 71a, 71b Slits 72 Second Recesses 72a, 72b Slit

Claims (9)

  1.  電流検出に用いられるシャント抵抗器であって、
     抵抗体と、
     第1方向における前記抵抗体の両端に接続された一対の電極と、を備え、
     前記シャント抵抗器は、
      前記第1方向に平行な面である、前記シャント抵抗器の第1側面に形成された第1突出部と、
      前記第1側面の反対側の面である前記シャント抵抗器の第2側面に形成された第2突出部と、を有しており、
     前記第1突出部は、前記抵抗体の一部および前記一対の電極の一部を有しており、
     前記第2突出部は、前記抵抗体の一部および前記一対の電極の一部を有している、シャント抵抗器。
    A shunt resistor used for current sensing,
    a resistor;
    a pair of electrodes connected to both ends of the resistor in a first direction;
    The shunt resistor is
    a first protrusion formed on a first side surface of the shunt resistor, which is parallel to the first direction;
    a second protrusion formed on a second side of the shunt resistor opposite to the first side;
    The first projecting portion has a portion of the resistor and a portion of the pair of electrodes,
    A shunt resistor, wherein the second projection has a portion of the resistor and a portion of the pair of electrodes.
  2.  前記第1突出部は、前記第1方向における前記抵抗体の両端に接続された第1電圧検出部および第2電圧検出部を有しており、
     前記第2突出部は、前記第1方向における前記抵抗体の両端に接続された第3電圧検出部および第4電圧検出部を有しており、
     前記第1電圧検出部および前記第3電圧検出部は、同一の電極に配置されており、
     前記第2電圧検出部および前記第4電圧検出部は、同一の電極に配置されている、請求項1に記載のシャント抵抗器。
    The first projecting portion has a first voltage detecting portion and a second voltage detecting portion connected to both ends of the resistor in the first direction,
    The second projecting portion has a third voltage detecting portion and a fourth voltage detecting portion connected to both ends of the resistor in the first direction,
    The first voltage detection unit and the third voltage detection unit are arranged on the same electrode,
    2. The shunt resistor according to claim 1, wherein said second voltage detector and said fourth voltage detector are arranged on the same electrode.
  3.  前記第1突出部は、前記一対の電極に接続された第1角部および第2角部を有しており、
     前記第2突出部は、前記一対の電極に接続された第3角部および第4角部を有しており、
     前記第1角部、前記第2角部、前記第3角部、および前記第4角部の少なくとも1つは、鈍角形状、直線形状または曲線形状を有している、請求項1または請求項2に記載のシャント抵抗器。
    The first protrusion has a first corner and a second corner connected to the pair of electrodes,
    The second projecting portion has a third corner and a fourth corner connected to the pair of electrodes,
    At least one of the first corner, the second corner, the third corner, and the fourth corner has an obtuse angle, a linear shape, or a curved shape. 3. The shunt resistor according to 2.
  4.  前記シャント抵抗器は、
      前記第1側面に形成された第1凹部と、
      前記第2側面に形成された第2凹部と、を有しており、
     前記第1突出部は、前記第1凹部に配置されており、
     前記第2突出部は、前記第2凹部に配置されている、請求項1~請求項3のいずれか一項に記載のシャント抵抗器。
    The shunt resistor is
    a first recess formed on the first side surface;
    a second recess formed on the second side surface;
    The first protrusion is arranged in the first recess,
    The shunt resistor according to any one of claims 1 to 3, wherein said second protrusion is arranged in said second recess.
  5.  請求項1~請求項4のいずれか一項に記載のシャント抵抗器と、
     前記シャント抵抗器からの電圧信号を伝達する電圧信号配線を有する電流検出回路基板と、を備え、
     前記電圧信号配線は、前記第1突出部の第1電圧検出部および第2電圧検出部と、前記第2突出部の第3電圧検出部および第4電圧検出部と、に電気的に接続されている、電流検出装置。
    A shunt resistor according to any one of claims 1 to 4;
    a current detection circuit board having a voltage signal wiring that transmits a voltage signal from the shunt resistor,
    The voltage signal wiring is electrically connected to the first voltage detection section and the second voltage detection section of the first protrusion, and the third voltage detection section and the fourth voltage detection section of the second protrusion. current sensing device.
  6.  前記電流検出回路基板は、電圧端子用パッドをさらに有しており、
     前記電圧端子用パッドは、前記第1電圧検出部、前記第2電圧検出部、前記第3電圧検出部、前記第4電圧検出部、および前記電圧信号配線に接続されている、請求項5に記載の電流検出装置。
    The current detection circuit board further has voltage terminal pads,
    6. The voltage terminal pad according to claim 5, wherein said voltage terminal pad is connected to said first voltage detection section, said second voltage detection section, said third voltage detection section, said fourth voltage detection section, and said voltage signal wiring. A current sensing device as described.
  7.  前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、
     前記電圧演算部は、
      前記第1電圧検出部と前記第2電圧検出部との間で測定された電圧値と、前記第3電圧検出部と前記第4電圧検出部との間で測定された電圧値と、を組み合わせた電圧値を平均化し、
      前記平均化された電圧値を検出電圧値に決定する、請求項5または請求項6に記載の電流検出装置。
    The current detection device includes a voltage calculator connected to the shunt resistor,
    The voltage calculation unit is
    combining the voltage value measured between the first voltage detection section and the second voltage detection section and the voltage value measured between the third voltage detection section and the fourth voltage detection section; average the voltage values obtained,
    7. The current detection device according to claim 5, wherein said averaged voltage value is determined as a detected voltage value.
  8.  前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、
     前記電圧演算部は、
      前記第1電圧検出部と前記第4電圧検出部との間で測定された電圧値、または前記第2電圧検出部と前記第3電圧検出部との間で測定された電圧値を検出電圧値に決定する、請求項5または請求項6に記載の電流検出装置。
    The current detection device includes a voltage calculator connected to the shunt resistor,
    The voltage calculation unit is
    A detected voltage value is a voltage value measured between the first voltage detection section and the fourth voltage detection section or a voltage value measured between the second voltage detection section and the third voltage detection section. 7. The current detection device according to claim 5 or 6, wherein the current detection device determines:
  9.  前記電流検出装置は、前記シャント抵抗器に接続された電圧演算部を備えており、
     前記電圧演算部は、
      前記第1電圧検出部と前記第4電圧検出部との間で測定された電圧値と、前記第2電圧検出部と前記第3電圧検出部との間で測定された電圧値と、を組み合わせた電圧値を平均化し、
      前記平均化された電圧値を検出電圧値に決定する、請求項5または請求項6に記載の電流検出装置。
    The current detection device includes a voltage calculator connected to the shunt resistor,
    The voltage calculation unit is
    combining the voltage value measured between the first voltage detection section and the fourth voltage detection section and the voltage value measured between the second voltage detection section and the third voltage detection section; average the voltage values obtained,
    7. The current detection device according to claim 5, wherein said averaged voltage value is determined as a detected voltage value.
PCT/JP2022/037221 2021-12-14 2022-10-05 Shunt resistor and current detection device WO2023112438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-202160 2021-12-14
JP2021202160A JP2023087721A (en) 2021-12-14 2021-12-14 Shunt resistor and current detector

Publications (1)

Publication Number Publication Date
WO2023112438A1 true WO2023112438A1 (en) 2023-06-22

Family

ID=86774348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037221 WO2023112438A1 (en) 2021-12-14 2022-10-05 Shunt resistor and current detection device

Country Status (2)

Country Link
JP (1) JP2023087721A (en)
WO (1) WO2023112438A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514841A (en) * 2013-04-05 2016-05-23 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Measuring resistor and corresponding measuring method
DE202021105281U1 (en) * 2021-02-11 2021-10-12 Isabellenhütte Heusler Gmbh & Co. Kg Current sense resistor
JP2021174802A (en) * 2020-04-20 2021-11-01 Koa株式会社 Shunt resistor
JP2021176195A (en) * 2020-04-27 2021-11-04 Koa株式会社 Shunt resistor, shunt resistor manufacturing method, and current detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514841A (en) * 2013-04-05 2016-05-23 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Measuring resistor and corresponding measuring method
JP2021174802A (en) * 2020-04-20 2021-11-01 Koa株式会社 Shunt resistor
JP2021176195A (en) * 2020-04-27 2021-11-04 Koa株式会社 Shunt resistor, shunt resistor manufacturing method, and current detection device
DE202021105281U1 (en) * 2021-02-11 2021-10-12 Isabellenhütte Heusler Gmbh & Co. Kg Current sense resistor

Also Published As

Publication number Publication date
JP2023087721A (en) 2023-06-26

Similar Documents

Publication Publication Date Title
CN111354523B (en) Resistor with low temperature coefficient of resistance
EP4145472A1 (en) Current detection device
US10969408B2 (en) Current measuring device
US20230162894A1 (en) Shunt resistor
WO2016035256A1 (en) Shunt resistor
JP7173755B2 (en) Mounting structure of shunt resistor
WO2021220758A1 (en) Shunt resistor
WO2023112438A1 (en) Shunt resistor and current detection device
JP2023087730A (en) Shunt resistor and current detection device
WO2022244595A1 (en) Current detection device
WO2023135977A1 (en) Current detecting device, and method for manufacturing same
WO2023199611A1 (en) Shunt resistor and shunt resistance device
JP5445193B2 (en) Resistor, mounting method of resistor, measuring method of resistor
WO2023189742A1 (en) Shunt resistor and current detection device
WO2024084761A1 (en) Shunt resistor and shunt resistor manufacturing method
CN113077950B (en) Resistor with a resistor element
JP2023083751A (en) Resistor
WO2021090905A1 (en) Shunt resistance module, and implementation structure of shunt resistance module
JP2024058790A (en) Shunt resistor and method for manufacturing the same
JP2023043841A (en) Resistance assembly
JP2016038232A (en) Resistance measuring electro-conductor, resistance measuring apparatus for electro-conductors, and electric current detecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906973

Country of ref document: EP

Kind code of ref document: A1