WO2023112285A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
WO2023112285A1
WO2023112285A1 PCT/JP2021/046637 JP2021046637W WO2023112285A1 WO 2023112285 A1 WO2023112285 A1 WO 2023112285A1 JP 2021046637 W JP2021046637 W JP 2021046637W WO 2023112285 A1 WO2023112285 A1 WO 2023112285A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiator
temperature
air passage
controller
light source
Prior art date
Application number
PCT/JP2021/046637
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 朝日
映吾 清水
浩志郎 ▲高▼野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/046637 priority Critical patent/WO2023112285A1/en
Publication of WO2023112285A1 publication Critical patent/WO2023112285A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • the present disclosure relates to blowers.
  • Patent Document 1 proposes a method of placing an ultraviolet irradiation device and an ozone generator indoors or in a vehicle, irradiating ultraviolet rays and generating ozone to sterilize the air in the room.
  • the present disclosure has been made to solve the problems described above, and aims to provide an air blower that is advantageous in improving the sanitation of the indoor space.
  • the air blower includes an air inlet communicating with the indoor space, an air outlet communicating with the indoor space, an internal air passage from the air inlet to the air outlet, and an internal air passage from the air inlet to the air outlet. It is provided with an electric blower that generates a directed airflow and a UV irradiator that irradiates at least part of the internal air passage with ultraviolet rays.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. 4 is a
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1.
  • FIG. FIG. 9 is a time chart showing an example of change in the average output of the UV irradiator and an example of change in the blowing volume of the electric blower when the flowchart of FIG. 8 is executed;
  • FIG. FIG. 2 is a cross-sectional side view showing the air blower according to Embodiment 1;
  • 5 is a time chart showing an example of changes in the heat radiation efficiency of the UV irradiator and an example of changes in the temperature detected by the temperature detector when the controller controls the wind direction changer according to the detection result of the temperature detector.
  • FIG. 4 is a cross-sectional side view of the air blower provided with the mover during heating operation;
  • FIG. 4 is a cross-sectional side view of the air blower provided with the mover during cooling operation;
  • Fig. 3 is a side view of the mover;
  • FIG. 4 is a cross-sectional side view of the air blower provided with a plurality of UV irradiators during heating operation;
  • FIG. 4 is a cross-sectional side view of the air blower provided with a plurality of UV irradiators during cooling operation;
  • 3 is a perspective view of a UV irradiator included in the air blower according to Embodiment 1.
  • FIG. 3 is an exploded perspective view of a UV irradiator included in the air blower according to Embodiment 1.
  • FIG. 4 is a front view of a UV irradiator included in the air blower according to Embodiment 1.
  • FIG. 4 is a rear view of a UV irradiator included in the air blower according to Embodiment 1.
  • FIG. FIG. 20 is a cross-sectional view of the UV irradiator included in the air blower according to Embodiment 1, taken along line BB in FIG. 19;
  • 4 is a cross-sectional view of a UV irradiator included in the air blower according to Embodiment 1.
  • FIG. 4 is a cross-sectional view showing a modification of the UV irradiator included in the air blower according to Embodiment 1.
  • FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1;
  • FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1;
  • FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1;
  • FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1;
  • FIG. 4 is a cross-sectional side view showing an example of attaching a UV irradiator to a wall of an internal air passage;
  • FIG. 10 is a cross-sectional side view showing another example of attaching the UV irradiator to the wall of the internal air passage;
  • FIG. 1 is a cross-sectional side view showing a blower device 1 according to Embodiment 1.
  • the blower device 1 according to Embodiment 1 includes a main housing 2 , an electric blower 10 and a UV irradiator 23 .
  • the body housing 2 includes an intake port 6 communicating with the indoor space, and an air outlet 7 communicating with the indoor space.
  • An internal air passage 5 from the intake port 6 to the blowout port 7 is formed inside the main housing 2 .
  • the electric blower 10 generates an airflow AF from the intake port 6 to the blowout port 7 through the internal air passage 5 .
  • the electric blower 10 is arranged inside the main housing 2 .
  • the UV irradiator 23 irradiates at least part of the internal air passage 5 with ultraviolet rays.
  • the main housing 2 has a wall portion 3 .
  • the wall portion 3 forms the wall surface of the internal air passage 5 .
  • FIG. 1 corresponds to a side view of the blower device 1 .
  • Electric blower 10 has an electric motor and a fan.
  • the term "blower” is used in a broad sense.
  • the “blower” in the present disclosure may be, for example, all or part of an air cleaner, all or part of an air conditioner, all or part of a dehumidifier, or a humidifier. It may be all or part.
  • the "blower” in the present disclosure may be all or part of a dryer, all or part of a drying device, all or part of a hand drying device, or all or part of an electric fan. It may be a unit, all or part of a heater, all or part of a moisturizing machine, or all or part of a device having a blower function.
  • the ultraviolet rays emitted by the UV irradiator 23 may be UVC, for example.
  • the ultraviolet rays emitted by the UV irradiator 23 have a sterilizing effect.
  • the light rays emitted from the UV irradiator 23 hit the inner wall surface of the internal air passage 5 and also hit the air passing through the internal air passage 5 .
  • the surface of the internal air duct 5 irradiated with ultraviolet rays, the components formed in the internal air duct 5, and the air in the internal air duct 5 are sterilized by the ultraviolet rays from the UV irradiator 23.
  • Components configured in the internal air duct 5 are, for example, an air filter, a fan, and the like.
  • the air from the air intake 6 into the main body housing 2 Air that is more hygienic than the sucked room air can be blown into the room from the outlet 7. - ⁇ Therefore, it is hygienic.
  • blower device 1 is used as an indoor unit of an air conditioner.
  • An upper heat exchanger 4 , an upper heat exchanger 8 , and a lower heat exchanger 9 are arranged inside the main body housing 2 .
  • the upper heat exchanger 4, the upper heat exchanger 8, and the lower heat exchanger 9 exchange heat between the air flowing through the internal air passage 5 and the refrigerant supplied from the outdoor unit (not shown) of the air conditioner. to replace.
  • At least part of the upper heat exchanger 8 is arranged on the front side.
  • All or part of the lower heat exchanger 9 is arranged on the front side.
  • the blower device 1 in this embodiment includes a panel 17 and louvers 18 .
  • the panel 17 forms the front surface of the main housing 2 .
  • the louver 18 operates or rotates so as to adjust the direction of airflow blown out from the outlet 7 into the room.
  • the louver 18 may have a rotation shaft along the left-right direction so that the blowing direction in the up-down direction can be adjusted.
  • the louver 18 may have a rotation shaft so that the blowing direction in the horizontal direction can be adjusted.
  • the louver 18 may have a plurality of rotating shafts so that the blowing direction in the vertical direction and the horizontal direction can be adjusted.
  • FIG. 2 is a functional block diagram of the blower device 1 according to the first embodiment.
  • the blower 1 includes a controller 22 that controls the operation of the electric blower 10 and the operation of the UV irradiator 23 .
  • FIG. 3 is a diagram showing an example of the hardware configuration of the processing circuit of the blower device 1 according to Embodiment 1.
  • the functions of the controller 22 may be achieved, for example, by the processing circuitry of the hardware configuration shown in FIG.
  • the functions of controller 22 may be achieved by processor 101 shown in FIG. 3 executing a program stored in memory 102 .
  • processor 101 shown in FIG. 3 executing a program stored in memory 102 .
  • multiple processors and multiple memories may work together to accomplish the functions of the controller 22 .
  • some of the functions of controller 22 may be implemented as electronic circuitry and other parts may be accomplished using processor 101 and memory 102 .
  • the UV irradiator 23 may include at least one of a heat sink 28 and a substrate 27, which will be described later. At least part of the heat sink 28 or at least part of the substrate 27 may be exposed to the internal air passage 5 . The air flowing through the internal air passage 5 can reliably cool the UV irradiator 23 . If the UV irradiator 23 does not have a heat sink 28, the substrate 27 is cooled.
  • the air volume generated by driving the electric blower 10 may be expressed as the air volume of the electric blower 10.
  • the controller 22 may change the average output of the UV irradiator 23 according to the air volume of the electric blower 10 .
  • the average output of the UV irradiator 23 may be, for example, the average output for 1 minute or the average output for 10 minutes.
  • the controller 22 may cause the UV irradiator 23 to turn on continuously with a constant output. In that case, the average output of the UV irradiator 23 is equal to the output of the UV irradiator 23 when lit.
  • the controller 22 may repeat turning on and off the UV irradiator 23 .
  • the average output of the UV irradiator 23 becomes a lower value than the output of the UV irradiator 23 during lighting. Also, in that case, the average output of the UV irradiator 23 is equal to the average output of the UV irradiator 23 when it is lit and the UV irradiator 23 when it is extinguished. Moreover, the output of the UV irradiator 23 may repeat the first output and the second output, or the output of the UV irradiator 23 may change with time. Also, in that case, the average output of the UV irradiator 23 is equal to the average output in the series of UV irradiator 23 controls.
  • the controller 22 may make the average output of the UV irradiator 23 higher when the air volume of the electric blower 10 is relatively high than the average output of the UV irradiator 23 when the air volume of the electric blower 10 is relatively low.
  • the UV irradiator 23 generates heat by light emission. If the UV irradiation is continued while the temperature of the UV irradiation device 23 is high, the life of the UV irradiation device 23 is shortened. That is, the time during which the UV irradiator 23 continues to emit light with high illuminance is shortened. For example, the UV irradiator 23 that can irradiate for 10000 hours under normal circumstances can irradiate for only 8000 hours.
  • the total luminous flux of the UV irradiator 23 gradually decreases as the total irradiation time increases.
  • the life of the UV irradiator 23 is defined as the end. Therefore, it is difficult to continuously irradiate the UV irradiator 23 with a high output.
  • the air volume of the electric blower 10 is high, the temperature of the UV irradiator 23 can be lowered by applying a part of the air to the UV irradiator 23 to cool it. Therefore, it is possible to irradiate the UV irradiator 23 in a high output state. As a result, shortening of the life of the UV irradiator 23 can be prevented, and sanitation can be improved.
  • the UV irradiator 23 may repeat turning on and off at predetermined intervals. In this case, when the air volume of the electric blower 10 is high, the turn-on time becomes longer than when the air volume of the electric blower 10 is low. may be controlled.
  • the human detector 39 detects a presence state in which there is a person in the indoor space and an absent state in which there is no person in the indoor space.
  • the human detector 39 may use, for example, a camera, a thermopile, a heat detection sensor, a carbon dioxide concentration detection sensor, or the like.
  • the controller 22 may change the average output of the UV irradiator 23 according to the detection result of the human detector 39 .
  • deterioration of the life of the light source 24 of the UV irradiator 23 is suppressed while keeping the indoor space hygienic. be done. It also reduces the exposure risk of the human body.
  • the light source 24 of the UV irradiator 23 may be hereinafter referred to as "UV light source”.
  • the operation mode in which the UV irradiator 23 irradiates ultraviolet rays is referred to as "sterilization mode".
  • the air conditioner of which the blower device 1 forms a part may be capable of performing cooling operation, heating operation, dehumidifying operation, blowing operation, humidifying operation, ventilation operation, cool air operation, warm air operation, and the like.
  • the sterilization mode may be operable independently of other functions such as cooling operation, heating operation, dehumidification operation, air blowing operation, humidification operation, ventilation operation, cool air operation, warm air operation, and the like.
  • the sterilization mode can also be used in combination with other functions such as cooling operation, heating operation, dehumidification operation, air blowing operation, humidification operation, ventilation operation, cold air operation, and warm air operation.
  • the controller 22 blows air by driving the electric blower 10 even in the sterilization mode alone. This makes it possible to sterilize the indoor space.
  • the controller 22 may lower the air volume of the electric blower 10 when driving in the sterilization mode alone than during the air blowing operation. This enables sterilization while operating silently.
  • UV irradiation and air blowing may be interlocked. For example, when the UV irradiation is turned on, air blowing is started at the same time or after some time. When the UV irradiation is turned off, air blowing ends at the same time or after some time. This is not the case when used in combination with other operation modes, and ON-OFF is switched by UV irradiation alone.
  • FIG. 4 is a flow chart showing an example of processing executed by the blower device 1 according to the first embodiment. It is assumed that the blower 1 is powered on and the sterilization mode is selected in step S1 of FIG. When the sterilization mode is selected, the UV irradiation may be turned ON or may be turned OFF, but if the UV irradiation is ON, sterilization becomes possible immediately. Note that the blower device 1 may not be equipped with a dedicated sterilization mode. For example, the cooling function may be provided with a sterilization mode as standard. The above is common throughout the present disclosure. A cooling operation, a heating operation, a dehumidifying operation, an air blowing operation, and the like may or may not be performed while the blower 1 is powered on. When the cooling operation, heating operation, dehumidifying operation, air blowing operation, etc. are not performed, the human detector 39 is in a state of only sensing.
  • step S2 the controller 22 determines whether the human detector 39 has detected the presence state.
  • step S3 the UV irradiation of the UV irradiator 23 is turned ON, and the air blowing of the electric blower 10 is turned ON during the single operation in the sterilization mode.
  • step S2 when the human detector 39 detects the absence state, the process proceeds from step S2 to step S4.
  • step S4 the UV irradiation of the UV irradiator 23 is turned off, and the air blowing of the electric blower 10 is turned off during the single operation in the sterilization mode.
  • “the UV irradiation is in an OFF state” or “the UV irradiation device 23 is turned off” means not only that the average output of the UV irradiation device 23 becomes zero, but also "the UV irradiation is in an ON state” or " It also includes operating the UV illuminator 23 at a lower average output than when the UV illuminator 23 is on.
  • the air blowing OFF state means not only that the output of the electric blower 10 becomes zero, but also that the electric blower 10 operates at a lower output or rotation speed than when the “air blowing ON state”. It also includes
  • FIG. 5 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment. Steps S1 to S4 in FIG. 5 are the same as steps S1 to S4 in FIG. 4, so the description is simplified or omitted.
  • the controller 22 determines whether the human detector 39 has detected the presence state. When the human detector 39 does not detect the presence state, that is, when the human detector 39 detects the absence state, the process proceeds from step S5 to step S6.
  • step S6 the controller 22 turns off the UV irradiation of the UV irradiator 23, and also turns off the blowing of the electric blower 10 during the single operation in the sterilization mode.
  • the UV irradiation is turned ON, and if the absence state is detected after that, the UV irradiation is turned OFF after a predetermined time has elapsed.
  • the sterilization mode independent operation it is desirable to turn the blowing air on and off in synchronization with the UV irradiation.
  • the body temperature detector 12 detects the body temperature of people in the indoor space.
  • the controller 22 may change the average output of the UV irradiator 23 according to the body temperature of people in the indoor space.
  • a person with a high body temperature may carry bacteria or viruses that can infect others.
  • the controller 22 reduces the average output of the UV irradiator 23 or turns off the UV irradiation after a predetermined period of time has elapsed.
  • FIG. 6 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment.
  • the body temperature detector 12 detects the body temperature of the person in the room. Processing proceeds from step S7 to step S8.
  • the controller 22 determines whether there is a person whose body temperature is higher than a predetermined body temperature. If there is a person whose body temperature is higher than the predetermined body temperature, the process proceeds from step S8 to step S9. In step S ⁇ b>9 , the controller 22 increases the average output of the UV irradiator 23 and increases the blowing volume of the electric blower 10 . Processing proceeds from step S9 to step S10.
  • step S10 the controller 22 determines whether there are still people whose body temperature is higher than the predetermined body temperature. When there is no person whose body temperature is higher than the predetermined body temperature, the process proceeds from step S10 to step S11.
  • step S11 the controller 22 waits for a predetermined time to pass, then turns off the UV irradiation of the UV irradiator 23 or lowers the average output, and turns off or blows air from the electric blower 10. Decrease airflow. In this manner, by irradiating UV rays for a predetermined period of time even after there is no one with a temperature higher than a predetermined temperature, sanitation can be improved.
  • step S10 If there is a person whose body temperature is higher than a predetermined value, the average output of the UV irradiator 23 is increased because there is a possibility that bacteria or viruses that infect humans are scattered in the air. Hygiene is improved by continuing to sterilize for a predetermined time even when a person with a high body temperature is absent. At the same time, ventilation is also continued for a predetermined time. As a result, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced. If it is determined in step S10 that there are still people whose body temperature is higher than the predetermined body temperature, the process proceeds from step S10 to step S12. In step S12, the average output of the UV irradiator 23 is maintained, and the blowing volume of the electric blower 10 is maintained. The process returns from step S12 to step S10.
  • the human identifier 13 identifies a person in the indoor space.
  • Body temperature detector 12 detects the body temperature of the individual identified by person identifier 13 .
  • the controller 22 may memorize the normal body temperature of the individual identified by the person identifier 13 by daily recording the body temperature of the individual.
  • the controller 22 may increase the average power of the UV irradiator 23 if the current body temperature of the individual identified by the person identifier 13 is higher than that individual's normal body temperature. In this way, by identifying a person and memorizing their normal body temperature, it is possible to more accurately determine whether the body temperature is higher or lower than the normal body temperature. Therefore, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced.
  • the human identifier 13 may identify or record features such as a face or body shape as a method of identifying a person.
  • the person identification device 13 may identify or record an employee ID card, a business card, a name tag, or the like.
  • the person identifier 13 may record a pattern such as a bar code or two-dimensional code for identification, or an identifier. For example, if an employee ID card, business card, name tag, or the like has a pattern such as a bar code or two-dimensional code, the person identifier 13 can identify the person.
  • the controller 22 determines whether the body temperature of the identified person is higher than the body temperature when identified in the past.
  • FIG. 7 is a flow chart showing an example of processing executed by the blower device 1 according to the first embodiment.
  • the human identifier 13 determines whether or not there is a person in the room. If there is a person in the room, the process proceeds from step S13 to step S14.
  • the person identifier 13 determines whether or not the person in the room can be identified. If the person in the room can be identified, the process proceeds from step S14 to step S15.
  • the controller 22 determines whether the identified individual's current body temperature is higher than the individual's normal body temperature. If the identified individual's current body temperature is higher than the individual's usual body temperature, processing proceeds from step S15 to step S16.
  • step S ⁇ b>16 the controller 22 increases the average output of the UV irradiator 23 and increases the blowing volume of the electric blower 10 .
  • a person with a higher than normal body temperature may be infected with the virus.
  • the controller 22 waits for a predetermined time to pass, then turns off the UV irradiation of the UV irradiator 23 or lowers the average output, and turns off or blows air from the electric blower 10. Decrease airflow.
  • the controller 22 may be configured to increase the average output of the UV irradiator 23 when the detection result of the human detector 39 changes from the presence state to the absence state.
  • the controller 22 may increase the average output of the UV irradiator 23 after a predetermined period of time has elapsed.
  • controller 22 reduces the average power of UV irradiator 23 . By doing so, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced.
  • FIG. 8 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment.
  • FIG. 9 is a time chart showing an example of changes in the average output of the UV irradiator 23 and an example of changes in the blowing volume of the electric blower 10 when the flowchart of FIG. 8 is executed.
  • step S18 in FIG. 8 when the human detector 39 confirms the existence of a person in the room, the process proceeds from step S18 to step S19.
  • step S19 UV irradiation by the UV irradiator 23 and air blowing by the electric blower 10 are performed. When people are present, safety is emphasized, and the controller 22 may lower the average output of the UV irradiator 23 and increase the amount of air blown by the electric blower 10 .
  • step S20 when the human detector 39 confirms that no one is in the room, the process proceeds from step S20 to step S21.
  • step S ⁇ b>21 the controller 22 increases the average output of the UV irradiator 23 and increases the amount of air blown by the electric blower 10 . In this way, when the person is gone, the controller 22 performs control with an emphasis on sterilization power.
  • step S21 the controller 22 determines whether a predetermined period of time has elapsed. After the predetermined time has passed, the process proceeds from step S22 to step S23. In step S ⁇ b>23 , the controller 22 reduces the average output of the UV irradiator 23 and reduces the amount of air blown by the electric blower 10 . Processing proceeds from step S23 to step S24. At step S24, the controller 22 again determines whether the predetermined time has elapsed. After a predetermined period of time has elapsed, the process proceeds from step S24 to step S25.
  • step S ⁇ b>25 the controller 22 reduces the average output of the UV irradiator 23 and reduces the amount of air blown by the electric blower 10 .
  • the life of the UV light source can be extended by lowering the average output of the UV irradiator 23 and the amount of air blown by the electric blower 10 over time after the person is gone.
  • the amount of air blown by the electric blower 10 may be simply referred to as “air volume”.
  • the average output of the UV irradiator 23 may be decreased or the air volume of the electric blower 10 may be decreased.
  • the reduction in the average output of the UV irradiator 23 and the reduction in the air volume may be reduced all at once, may be gradually reduced over time, or may be reduced in stages.
  • the average output of the UV irradiator 23 and the air volume do not necessarily need to be raised and lowered at the same time, and the timing may be different.
  • the average output of the UV irradiator 23 and the air volume are increased and decreased in different directions, such as increasing the average output of the UV irradiator 23 to decrease the air volume, or decreasing the average output of the UV irradiator 23 to increase the air volume.
  • By increasing the average output of the UV irradiator 23 while decreasing the air volume it is possible to maintain or improve the sterilization performance while reducing the noise.
  • the average output of the UV irradiator 23 and the air volume are respectively "a”, “b”, “c”, “d”, “e”, “f”, “g”, and “h”. , 'i', 'j', 'k', 'm', 'n'.
  • the contamination degree detection estimator 11 detects or estimates the degree of contamination of the air in the indoor space.
  • the controller 22 may change the average output of the UV irradiator 23 according to the degree of contamination.
  • the contamination level detection estimator 11 may detect, for example, the number of people in the room, or may detect the carbon dioxide concentration in the room.
  • the contamination degree detection estimator 11 may be, for example, a camera, a thermopile, a heat detection sensor, a carbon dioxide concentration detection sensor, or the like. For example, when there are many people in the indoor space, the contamination level detection and estimator 11 detects that the contamination level is high, or estimates that the contamination level will be high. The contamination level detection estimator 11 determines that the contamination level is high when the carbon dioxide concentration is high.
  • the controller 22 controls the average output of the UV irradiator 23 to be increased. Conversely, when the contamination level detection estimator 11 detects that the contamination level is low or estimates that the contamination level is low, the controller 22 controls the average output of the UV irradiator 23 to be low. Also, the air volume may be changed according to the average output of the UV irradiator 23 .
  • the risk of viral infection increases when there are many people in the room or when the carbon dioxide concentration in the room is high. A high carbon dioxide concentration corresponds to a large number of people in the room.
  • the indoor air can be made clean by increasing the average output of the UV irradiator 23 when it is determined that there are many people in the room.
  • At least part of the UV irradiator 23 may be exposed to the internal air passage 5.
  • the heat sink 28 or substrate 27 of the UV irradiator 23 is exposed to the internal air passage 5 .
  • a temperature detector 14 detects the temperature of the UV irradiator 23 .
  • the temperature detector 14 detects the temperature of the UV irradiator 23, particularly the substrate 27 or the temperature of the UV light source.
  • the air direction changer 15 changes the direction of the airflow AF in the internal air passage 5.
  • 10 is a cross-sectional side view showing the blower device 1 according to Embodiment 1.
  • FIG. FIG. 10 shows a state in which the airflow direction changer 15 changes the direction of the airflow AF in the internal air passage 5 so that the airflow AF hits the UV irradiator 23 more strongly than in FIG.
  • the controller 22 may change the direction of the airflow AF in the internal air passage 5 by using the air direction changer 15 according to the temperature of the UV irradiator 23 .
  • the temperature rise of the UV irradiator 23 can be suppressed more reliably, and the life of the UV light source can be extended.
  • the temperature detector 14 may use, for example, an IC sensor, a thermistor, an RTD, a thermocouple, or the like.
  • the wind direction changer 15 may be provided so as to be able to change the direction of the airflow that has flowed in from the intake port 6 .
  • the wind direction changer 15 may have, for example, a plurality of thin plate-like members arranged parallel to each other and change the direction of these thin plate-like members.
  • the wind deflector 15 is arranged near the air intake 6 .
  • the arrangement of the wind direction changer 15 is not limited to the vicinity of the intake port 6 . Any configuration and arrangement of the wind direction changer 15 may be used as long as the configuration and arrangement of the wind direction changer 15 change how the wind hits the UV irradiator 23 .
  • the controller 22 controls the wind direction changer 15 according to the detection result of the temperature detector 14 .
  • the controller 22 controls the wind direction changer 15 when the temperature detected by the temperature detector 14 is higher than a predetermined temperature.
  • the controller 22 causes the UV irradiator 23 to receive more wind than when the temperature detected by the temperature detector 14 is lower than the predetermined temperature.
  • the wind direction changer 15 is controlled.
  • the controller 22 causes more wind to hit the heat sink 28 or the substrate 27 than when the temperature detected by the temperature detector 14 is lower than the predetermined temperature.
  • the wind direction changer 15 is controlled as follows.
  • the air deflector 15 may be controlled to direct the airflow towards the UV irradiator 23 .
  • the efficiency with which the heat of the UV irradiator 23 is dissipated is referred to as "heat dissipation efficiency".
  • heat dissipation efficiency the efficiency with which the heat of the UV irradiator 23 is dissipated.
  • FIG. 11 shows an example of changes in the heat dissipation efficiency of the UV irradiator 23 and changes in the temperature detected by the temperature detector 14 when the controller 22 controls the wind direction changer 15 according to the detection result of the temperature detector 14.
  • 4 is a time chart showing an example;
  • the controller 22 controls the wind direction changer 15 so that more wind hits the UV irradiator 23. .
  • the controller 22 controls the wind direction changer 15 again to increase the amount of air hitting the UV irradiator 23. may be lowered.
  • the second predetermined temperature is a value lower than the (first) predetermined temperature.
  • the heat dissipation efficiency of the UV irradiator 23 after time T2 may be equal to the heat dissipation efficiency before time T1 when the first predetermined temperature is reached.
  • the heat radiation efficiency of the UV irradiator 23 after the time T2 is higher than the heat radiation efficiency before the time T1 when the first predetermined temperature is reached, and the heat radiation efficiency is higher than the heat radiation efficiency before the time T1 when the first predetermined temperature is reached. It may be a value lower than the heat dissipation efficiency up to. In the latter case, the temperature rise of the UV irradiator 23 can be more reliably prevented, and the life of the UV light source can be more reliably extended.
  • the controller 22 may change the air volume of the electric blower 10 according to the detection result of the temperature detector 14.
  • the controller 22 may increase the air volume of the electric blower 10 when the temperature detected by the temperature detector 14 is higher than the (first) predetermined temperature. Further, after the temperature detected by the temperature detector 14 exceeds the (first) predetermined temperature and the air volume of the electric blower 10 is increased, the temperature detected by the temperature detector 14 becomes lower than the second predetermined temperature. In that case, the controller 22 may reduce the air volume of the electric blower 10 .
  • the air volume at this time may be the same as the air volume before the temperature detected by the temperature detector 14 reaches the first predetermined temperature, or the temperature detected by the temperature detector 14 may be the same as the air volume when the temperature detected by the temperature detector 14 reaches the first predetermined temperature. It may be a value that is higher than the air volume before reaching and lower than the air volume after the temperature detected by the temperature sensor 14 reaches the first predetermined temperature. In the latter case, the temperature rise of the UV irradiator 23 can be more reliably prevented, and the life of the UV light source can be more reliably extended.
  • the blower device 1 may include a mover 16 that moves the UV irradiator 23 between the first position and the second position.
  • FIG. 12 is a cross-sectional side view of the air blower 1 having the mover 16 during heating operation.
  • FIG. 13 is a cross-sectional side view of the air blower 1 having the mover 16 during cooling operation.
  • 14 is a side view of the mover 16.
  • the UV irradiator 23 is at the first position.
  • the first position is in the air path from the air intake 6 to the upper heat exchanger 4 .
  • the first position is in the air passage upstream of the upper heat exchanger 4 in the internal air passage 5 .
  • the first position is the same position as the UV illuminator 23 in FIGS.
  • the UV irradiator 23 is at the second position.
  • a second position is in the air path from the upper heat exchanger 4 to the outlet 7 .
  • the second position is in the air passage downstream of the upper heat exchanger 4 in the internal air passage 5 .
  • the heat dissipation efficiency of the UV irradiator 23 at the first position and the heat dissipation efficiency of the UV irradiator 23 at the second position have different values.
  • the heat radiation efficiency may differ due to the difference in the amount of air hitting the UV irradiator 23 at the first position and the amount of air hitting the UV irradiator 23 at the second position.
  • the heat dissipation efficiency may differ due to the difference in the temperature of the air hitting the UV irradiator 23 at the first position and the temperature of the air hitting the UV irradiator 23 at the second position.
  • the controller 22 may move the UV irradiator 23 between the first position and the second position using the mover 16 according to the temperature of the UV irradiator 23 .
  • the controller 22 causes the mover 16 to move the UV irradiator 23 between the first position and the second position according to the temperature of the UV irradiator 23. , may be moved.
  • the controller 22 may move the UV irradiator 23 to the first position by the mover 16 during the heating operation, and move the UV irradiator 23 to the second position by the mover 16 during the cooling operation. .
  • the temperature of the air at the first location is lower than the temperature of the air at the second location.
  • the temperature of the air at the second location is lower than the temperature of the air at the first location.
  • the heating operation when the heating operation is switched to the cooling operation, it is desirable to move the UV irradiator 23 at the timing when a predetermined time has passed.
  • the UV irradiator 23 may be moved immediately after switching from the power OFF state or the fan operation state to the heating operation or the cooling operation.
  • it is desirable to move after a predetermined period of time because if the mode is switched from the heating mode to the cooling mode, the destination will be hot if the mode is moved immediately.
  • the moving direction of the UV irradiator 23 by the mover 16 may be the optical axis direction of the UV irradiator 23 or the direction perpendicular to the optical axis.
  • the position to which the UV irradiator 23 is moved by the mover 16 may be more than two.
  • the UV irradiator 23 moves, for example, in one axis.
  • the UV irradiator 23 moves vertically or horizontally, for example.
  • the UV irradiator 23 moves, for example, in the front-rear direction or in the left-right direction. In this embodiment, the UV irradiator 23 moves vertically.
  • the mover 16 may be configured using at least one of, for example, a linear actuator, a fluid pressure cylinder, a rack and pinion, a feed screw, and a link mechanism.
  • the blower device 1 may include a plurality of UV irradiators 23.
  • FIG. 15 is a cross-sectional side view of the air blower 1 having a plurality of UV irradiators 23 during heating operation.
  • FIG. 16 is a cross-sectional side view of the air blower 1 having a plurality of UV irradiators 23 during cooling operation.
  • the 15 and 16 includes a first UV irradiator 23A and a second UV irradiator 23B as the plurality of UV irradiators 23.
  • the first UV irradiator 23A and the second UV irradiator 23B may be the same.
  • the same light source, wavelength, specifications, model number, etc. may be used for the first UV irradiator 23A and the second UV irradiator 23B.
  • a first UV irradiator 23A is arranged in the air passage from the intake port 6 to the upper heat exchanger 4 . That is, the first UV irradiator 23A is arranged at the first position described above.
  • a second UV irradiator 23B is arranged in the air passage from the upper heat exchanger 4 to the outlet 7 .
  • the second UV irradiator 23B is arranged at the second position described above. Also, the first UV irradiator 23A is arranged upstream of at least one of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the second UV irradiator 23B is arranged downstream of at least one of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the first UV irradiator 23A is arranged upstream of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the second UV irradiator 23B is arranged downstream of the upper heat exchanger 8 and the lower heat exchanger 9 .
  • the controller 22 turns on the first UV irradiation device 23A and turns off the second UV irradiation device 23B during the heating operation, and turns off the first UV irradiation device 23A and turns off the second UV irradiation device 23B during the cooling operation.
  • the temperature of the air at the position of the first UV irradiator 23A is lower than the temperature of the air at the position of the second UV irradiator 23B.
  • the temperature of the air at the position of the second UV irradiator 23B is lower than the temperature of the air at the position of the first UV irradiator 23A.
  • the UV irradiator 23 with the lower air temperature is turned on, and the UV irradiator 23 with the higher air temperature is turned off. is increased, the temperature of the UV irradiator 23 can be lowered, and the life of the UV light source can be extended more reliably.
  • the UV irradiation device 23 is turned off means not only that the average output of the UV irradiation device 23 becomes zero, but also that "the UV irradiation is in an ON state" or "the UV irradiation device 23 is turned on”. It also includes operating the UV irradiator 23 at a lower average power than when.
  • both the first UV irradiator 23A and the second UV irradiator 23B may be lit.
  • the heat dissipation efficiency is increased, and the UV irradiator 23 temperature can be lowered, and the life of the UV light source can be extended more reliably.
  • the blower device 1 may include a heat source (not shown) arranged in the internal air passage 5 .
  • the heat source may be, for example, an electric heater, a heating wire, a heating element, or the like.
  • the heat source may include a heat exchanger.
  • the air blower 1 provided with a heat source may carry out a hot air operation in which hot air heated by the heat source is blown out from the outlet 7 .
  • the controller 22 may perform the same or similar control as described above during the warm air operation instead of the above control during the heating operation.
  • the temperature of the air is higher downstream or downwind from the heat source. Also, the temperature of the air at the second location is higher than the temperature of the air at the first location.
  • the temperature of the air at a second location downstream or downwind from the heat source is higher than the temperature of the air at a first location upstream or upwind from the heat source.
  • the controller 22 may move the UV irradiator 23 to the first position by the mover 16 . Further, the controller 22 may be configured to turn on the first UV irradiator 23A and turn off the second UV irradiator 23B during the warm air operation. Further, during hot air operation, the controller 22 makes the average output of the second UV irradiator 23B lower than the average output of the first UV irradiator 23A, or turns off the second UV irradiator 23B.
  • the heat dissipation efficiency is increased, the temperature of the UV irradiator 23, the first UV irradiator 23A, and the second UV irradiator 23B can be lowered, and the life of the UV light source can be extended more reliably.
  • the blower device 1 may include a cold source (not shown) arranged in the internal air passage 5 .
  • a cold source is defined as a word paired with a heat source.
  • the cold source may include, for example, ice, dry ice, water, a refrigerant, a coolant, or the like, or may be electrically cooled by a Peltier element or the like.
  • the cold source may include a heat exchanger.
  • the air blower 1 provided with a cold source may perform cold air operation in which cool air cooled by the cold source is blown out from the outlet 7 .
  • the controller 22 may perform the same or similar control as described above during cooling operation instead of the above control during cooling operation.
  • the temperature of the air is lower downstream or downwind from the cold source.
  • controller 22 may move UV irradiator 23 to a second position by mover 16 . Further, the controller 22 may be configured to turn off the first UV irradiator 23A and turn on the second UV irradiator 23B during cold wind operation.
  • the heat dissipation efficiency is increased, the temperature of the UV irradiator 23, the first UV irradiator 23A, and the second UV irradiator 23B can be lowered, and the life of the UV light source can be extended more reliably.
  • the blower device 1 may be provided with a plurality of temperature detectors 14 .
  • a plurality of temperature detectors 14 included in the blower 1 may detect the temperature of the first UV irradiator 23A and the temperature of the second UV irradiator 23B.
  • the air blower 1 may include a first temperature detector 14A that detects the temperature of the first UV irradiator 23A and a second temperature detector 14B that detects the temperature of the second UV irradiator 23B.
  • the controller 22 controls the average output of the first UV irradiator 23A and the average output of the second UV irradiator 23B according to the detection results of one or more temperature detectors 14, using a combination of the techniques described above. You may In this case, the controller 22 makes the average output of the UV irradiator 23 with relatively or absolutely higher air temperature lower than the average output of the other UV irradiator 23 . Alternatively, the controller 22 lowers the average output of the UV irradiator 23 whose temperature detected by the temperature detector 14 is relatively or absolutely higher than the average output of the other UV irradiator 23 .
  • the temperature difference is higher than a predetermined value or by what the temperature ratio is.
  • the controller 22 determines the average temperature of the second UV irradiator 23B according to the temperature of the second UV irradiator 23B detected by the second temperature detector 14B during heating operation, cooling operation, hot air operation, or cold air operation. It may be configured to vary the output. Alternatively, the controller 22 detects the temperature of the second UV irradiator 23B detected by the second temperature detector 14B and the temperature of the second UV irradiator 23B detected by the first temperature detector 14A during heating operation, cooling operation, hot air operation, or cold air operation. The average output of at least one of the average output of the second UV irradiator 23B and the average output of the first UV irradiator 23A is changed according to the temperature of the first UV irradiator 23A. may be
  • the heat dissipation efficiency is increased, the temperature of the UV irradiator 23 can be lowered, and the life of the UV light source can be more reliably extended.
  • the controller 22 controls the average output of the first UV irradiator 23A and the average output of the second UV irradiator 23B, when the average output of one is lowered, the average output of the other is raised.
  • the controller 22 increases the average power of the other while having less impact on the life of the UV light source. As a result, deterioration in sterilization performance can be suppressed.
  • the controller 22 may change the average output of the UV irradiator 23, the first UV irradiator 23A, or the second UV irradiator 23B accordingly. As a result, the life of the UV light source can be extended more reliably.
  • the UV irradiator 23 comprises a light source 24 that produces light.
  • the UV irradiator 23 irradiates the internal air passage 5 with the light generated by the light source 24 .
  • the UV irradiator 23 irradiates ultraviolet rays.
  • UV is an abbreviation for Ultra Violet. That is, the UV irradiator 23 is a device that irradiates ultraviolet rays.
  • ultraviolet light is a general term for light with a shorter wavelength than visible light, and is an electromagnetic wave with a wavelength of approximately 1 nm to 400 nm.
  • the wavelength range from 100 nm to 280 nm is called UVC
  • the wavelength range from 280 nm to 315 nm is called UVB
  • UVA the wavelength range from 315 nm to 400 nm
  • microorganisms include at least one of bacteria and viruses. Some microorganisms are harmful to humans. Ultraviolet rays act on microorganisms.
  • sterilization by ultraviolet light means that the deoxyribonucleic acid (hereinafter referred to as "DNA") of microorganisms is acted upon by light energy to render the microorganisms in an inactivated state where they cannot proliferate any more. Or defined as reducing the number of microorganisms.
  • DNA deoxyribonucleic acid
  • it may be expressed as inactivation ⁇ sterilization.
  • UVB has a higher ability to inactivate microorganisms than UVA
  • UVC has an even higher ability to inactivate microorganisms than UVB.
  • UVC wavelengths have a high ability to directly destroy DNA, thereby inactivating microorganisms at a high rate.
  • wavelengths of 200 nm to 285 nm have particularly high sterilizing power. More specifically, it is said to have high sterilizing power at wavelengths centered around 222 nm and 260 nm.
  • the dominant wavelength of the UV irradiator 23 is ultraviolet rays.
  • the wavelength with the highest output, ie, the highest radiation intensity is ultraviolet rays.
  • the light source 24 of the UV irradiator 23 in this embodiment is a light emitting diode (LED).
  • the light source 24 is an LED that produces ultraviolet light, hereinafter referred to as UV-LED.
  • UV-LEDs do not contain mercury. Mercury in general is toxic and has a bad side to the environment. Since UV-LEDs do not contain mercury, they are highly safe and have little risk of adversely affecting the environment. UV-LEDs, for example, are high power at only a single wavelength.
  • the wavelength with the highest radiant intensity is hereinafter referred to as the "dominant wavelength".
  • the dominant wavelength of light generated by light source 24 may be in any of the UVA, UVB, and UVC bands. In particular, it is desirable that the dominant wavelength of the light generated by the light source 24 is in the UVC region, which has high sterilizing power.
  • the dominant wavelength of the light generated by the light source 24 is preferably between 220 nm and 280 nm. More preferably, the dominant wavelength of light generated by light source 24 is in the range of 220 nm to 225 nm, or in the range of 250 nm to 285 nm. More preferably, the dominant wavelength of light generated by light source 24 is in the range of 255 nm to 280 nm. Since the sterilization power is particularly high within the above wavelength range, sterilization can be efficiently performed in a relatively short period of time, with relatively low output, or with a relatively small number of light sources 24 . The preferred wavelength range is the same for UV-lamps, which will be described later.
  • the light source 24 of the UV irradiator 23 may be a lamp instead of an LED. Also, the light source 24 may contain mercury or may not contain mercury (mercury-free). Those containing mercury have high sterilizing power due to their high efficiency and output. Mercury-free lamps are also highly safe and have a low risk of adversely affecting the environment.
  • ultraviolet rays are invisible wavelengths.
  • the light generated by the light source 24 of the present embodiment is in the ultraviolet region, the light generated by the light source 24 may include wavelengths in the visible light region.
  • light source 24 may produce blue or violet visible light along with ultraviolet light.
  • Visible light is light that can be seen by the human eye.
  • a person in the indoor space may be called a "person in the room".
  • the person in the room can identify the color of the emitted light.
  • the person in the room can identify what color the projected light is.
  • a person in the room can distinguish, for example, whether the emitted light is red, blue, or purple. This makes it possible to determine whether the light source 24 is on or off. For example, if it is found that the light source 24 is not lit when it should be lit, a failure is suspected. In other words, failures can be discovered early.
  • the UV irradiator 23 it is harmful to the human body, so that the light source 24 is turned on when a person is present in the room may not be the original specification. In such a specification, if the light source 24 is lit when there is a person in the room, it can be decided to stop using it.
  • the color of the internal air duct 5 when the light source 24 is on or the color of the light emitted from the UV irradiator 23 and the color of the internal air duct 5 or the color of the light emitted from the UV irradiator 23 when the light source 24 is off The effect described above can be achieved by making the color of the emitted light different.
  • the blower device 1 includes one or more UV irradiators 23.
  • the blower device 1 may include multiple UV irradiators 23 .
  • one UV irradiator 23 may have only one light source 24 , or one UV irradiator 23 may have a plurality of light sources 24 .
  • a plurality of UV irradiators 23 may be provided with a plurality of light sources 24 .
  • each light source 24 may have the same dominant wavelength, or each light source 24 may have different dominant wavelengths. If a plurality of light sources 24 having the same dominant wavelength, for example, a plurality of light sources 24 having the same specifications are used, the unit price may be reduced.
  • the sterilization speed may be faster. For example, when three light sources 24 with dominant wavelengths of 260 nm, 265 nm, and 275 nm are used, the sterilization speed is said to be faster than when three light sources 24 with dominant wavelengths of 265 nm are used. This allows more efficient sterilization.
  • a member for transmitting light rays including ultraviolet rays emitted from the light source 24 is called a window portion 26 . Details of the window portion 26 will be described later. Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from the front. Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized in a side view of the exterior of the air blower 1 . Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from above.
  • Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from the bottom.
  • both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 cannot be visually recognized.
  • 26 or either one of the light source 24 and the window 26 are arranged.
  • both the light source 24 and the window 26, or Either one of the light source 24 and the window portion 26 is covered with the main housing 2, so that either the light source 24 and the window portion 26 or either the light source 24 and the window portion 26 cannot be visually recognized. This reduces the possibility that a person in the room will look directly at both the light source 24 and the window 26, or either the light source 24 and the window 26, and also reduces the risk of light entering the eye. It is possible and safe.
  • the light beam emitted from the light source 24 is arranged so that the area behind and above the light source 24 is not irradiated. That is, the area behind and above the light source 24 is not included in the beam angle range. As a result, it is possible to reduce the risk of radiation exposure to people in the vicinity. In particular, it is possible to reduce the irradiation risk for the person in the room holding the blower 1 .
  • Both the light source 24 and the window part 26, or either one of the light source 24 and the window part 26 may be arranged at a position that cannot be visually recognized when viewed from the horizontal direction. Moreover, both the light source 24 and the window 26, or either one of the light source 24 and the window 26 may be arranged at a position that cannot be visually recognized from any direction from 0 degrees to 360 degrees in the horizontal direction. good. That is, both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 is covered with the main body housing 2 when the blower device 1 is viewed from any direction perpendicular to the vertical line. You may allow This can reduce the possibility that the person in the room will look directly at both the light source 24 and the window 26, or either the light source 24 and the window 26, and also reduce the risk of light rays entering the eye. can be done and is very safe.
  • the light source 24 and the UV irradiator 23 are not visible even when the air blower 1 is viewed from the outside of the main body housing 2 with a line of sight in all directions in the three-dimensional space.
  • the light source 24 and the UV irradiator 23 are covered by the main housing 2.
  • the main housing 2 As shown in FIG. In other words, assuming that the light source 24 or the UV irradiator 23 emits light in all directions in the three-dimensional space, the The light source 24 and the UV irradiator 23 are covered with the main housing 2 .
  • the risk of the light beam from the light source 24 entering the eye can be more reliably reduced, and the safety is even higher.
  • the air blower 1 of the present embodiment is configured such that the light source 24 is not visible even when the air blower 1 is viewed from outside the main body housing 2 with a line of sight in all directions in a three-dimensional space. is covered by the main housing 2 .
  • the light source 24 is positioned within the main body housing 2 so that no light beam directly exits the main body housing 2 from the light source 24. It is covered by body 2.
  • Both the light source 24 and the window portion 26, or either one of the light source 24 and the window portion 26, do not necessarily have to be arranged at positions that are not visible from all the above-described directions. However, it is desirable that both the light source 24 and the window 26 or either one of the light source 24 and the window 26 be placed at a position that is difficult to see as much as possible.
  • the light source 24 has, for example, a cuboid shape.
  • the shape of the light source 24 in the present disclosure is not particularly limited, and may be, for example, a cylindrical shape or a cannonball shape.
  • the cannonball shape is, for example, a shape obtained by joining a hemispherical shape and a cylindrical shape.
  • the light source 24 emits a myriad of rays radially around the optical axis.
  • the optical axis is a direction parallel to the thickness direction of the rectangular parallelepiped.
  • the thickness direction is the direction with the smallest dimension when the rectangular parallelepiped has three directions of the width direction, the depth direction, and the thickness direction.
  • the beam angle of the light source 24 may be, for example, 30 degrees to 150 degrees, or 360 degrees.
  • the beam angle of light source 24 is preferably between 50 degrees and 140 degrees.
  • a beam angle of 30 degrees indicates, for example, a direction inclined by 15 degrees to one side from the optical axis when viewed from a direction perpendicular to the optical axis.
  • the beam angle is, for example, the angle at which the radiant intensity is 50% when the radiant intensity in the direction of the optical axis is 100%.
  • a beam angle of 30 degrees means that when viewed from a direction perpendicular to the optical axis, the radiant intensity at a position inclined 15 degrees to one side from the optical axis is 50% of the radiant intensity in the optical axis direction. indicates If the beam angle is too small, there is a possibility that only part of the internal air passage 5 can be illuminated. If the beam angle is too wide, there is a possibility that the amount of irradiation outside the internal air duct 5 will increase. Therefore, it is desirable that the beam angle is neither too small nor too large.
  • FIG. 17 is a perspective view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • FIG. FIG. 18 is an exploded perspective view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • FIG. 19 is a front view of UV irradiator 23 included in blower device 1 according to Embodiment 1.
  • FIG. 20 is a rear view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • FIG. FIG. 21 is a cross-sectional view of the UV irradiator 23 included in the blower device 1 according to Embodiment 1, taken along line BB in FIG.
  • the UV irradiator 23 includes a light source 24, a case 25, a window 26, a substrate 27, a heat sink 28, a spacer 29, a seal member 30, and a fixture. 31 and wiring 32 . Note that the components of the UV irradiator 23 are not limited to these, and may be omitted, added, or replaced as appropriate.
  • the case 25 is a part that forms the appearance of the UV irradiator 23. Case 25 has an opening at a position where window 26 is attached.
  • a light source 24 is installed on the substrate 27 . Power is supplied from the substrate 27 to the light source 24 so that the light source 24 emits light.
  • Window 26 protects light source 24 .
  • the window part 26 covers the light source 24 from the side opposite to the substrate 27 . The light generated by the light source 24 is transmitted through the window portion 26 and then radiated onto the air passing through the internal air duct 5 and the surface of the internal air duct 5 .
  • the heat sink 28 is for dissipating the heat of the light source 24 and the substrate 27 heated by light emission.
  • the heat sink 28 in the illustrated example has fins to increase the surface area.
  • Spacer 29 is for maintaining the distance between window 26 and light source 24 .
  • a spacer 29 is arranged between the substrate 27 and the window 26 .
  • the sealing member 30 is, for example, a member that maintains airtightness and liquidtightness by sealing the gap between the case 25 and the window portion 26 .
  • the fixture 31 is for fixing the position or positional relationship of a plurality of members.
  • the fixture 31 is preferably detachable from the UV irradiator 23 or the internal air passage 5 .
  • the fixture 31 may be for fixing the UV irradiator 23 to the air blower 1 or the internal air passage 5 .
  • the fixture 31 may be for fixing at least one of the case 25 , the heat sink 28 and the substrate 27 to the blower device 1 or the internal air passage 5 .
  • the fixture 31 may be for fixing the positions of the case 25, the substrate 27 and the heat sink 28 by fastening them.
  • the fixture 31 may be for fixing the positions of the case 25 and the heat sink 28 by fastening them.
  • the fixture 31 may be, for example, a screw as in the illustrated example.
  • the wiring 32 is for connecting the substrate 27 to the power source.
  • the UV irradiator 23 may have a cooling section instead of or in addition to the heat sink 28 .
  • a cooling unit is, for example, a blower such as a fan.
  • the window part 26 is arranged with a gap with respect to the light source 24 .
  • the gap may be, for example, a distance of approximately 0.1 mm to 50 mm.
  • the window 26 protects the light source 24 .
  • the window part 26 in the illustrated example has a disk shape or a circular plate shape.
  • the window 26 may have, for example, a rectangular parallelepiped shape or a lens-like shape.
  • the lens-like shape of the window 26 allows the light emitted by the light source 24 to be collected and a relatively small beam angle to be achieved.
  • the thickness of the window portion 26 is thin. However, it is preferable that the window portion 26 has a thickness that can withstand vibrations during operation of the blower 1 or shocks that may occur during cleaning or maintenance of the blower 1 . In general, as the thickness of the window portion 26 increases, its transmittance tends to decrease. Therefore, the thickness of the window portion 26 is, for example, about 0.5 mm to 3 mm. Preferably, the thickness of the window portion 26 is about 1 mm to 2 mm.
  • the window part 26 has an entrance surface, an exit surface, and a peripheral surface.
  • the incident surface is the surface on which the light beam from the light source 24 is incident.
  • the exit surface is the surface opposite to the entrance surface.
  • the exit surface is a surface that emits light incident from the incident surface toward the facing surface of the internal air duct 5 or toward the air passing through the internal air duct 5 .
  • the peripheral surface is a surface located laterally of the incident surface.
  • the peripheral surface is a surface located laterally of the exit surface.
  • the plane of incidence may be parallel to the plane of exit.
  • the peripheral surface may be perpendicular to the entrance surface and the exit surface.
  • the direction from the entrance surface to the exit surface is the thickness direction.
  • the dimension of the window portion 26 in the thickness direction is preferably within the range described above (0.5 mm to 3 mm, or 1 mm to 2 mm), for example.
  • the lens-like curved surfaces are the entrance surface and the exit surface.
  • the window 26 has a central axis passing through the convex portion.
  • a central axis of the window 26 or an imaginary extension of the central axis intersects the light source 24 . That is, the lens-shaped window portion 26 and the light source 24 are arranged on a straight line.
  • the central axis of the window 26 or an imaginary extension of the central axis may pass through another window. That is, the lens-shaped window portion 26 and another window portion may be arranged on a straight line.
  • the light emitting surface of the light source 24 is desirably parallel to the incident surface of the window 26. If the light emitting surface of the light source 24 is not parallel to the incident surface of the window 26, the transmittance may decrease, and the illuminance of the internal air passage 5 to which the light from the output surface of the window 26 is emitted. may decline. If the light emitting surface of the light source 24 is parallel to the incident surface of the window portion 26, the decrease in transmittance can be reliably suppressed.
  • the light emitting surface of the light source 24 is provided at a position close to the incident surface of the window portion 26 . Since the light rays from the light source 24 travel radially, if the distance between the light source 24 and the incident surface of the window portion 26 increases, the number of light rays that do not enter the window portion 26 may increase. As a result, there is a possibility that the illuminance of the illuminated internal air passage 5 will decrease. In order for all the light rays from the light source 24 to enter the window 26, the larger the distance between the light source 24 and the window 26, the larger the size of the window 26 is required. If the distance between the light source 24 and the window portion 26 is short, all or most of the light beams from the light source 24 can enter the window portion 26 even if the size of the window portion 26 is small. can be raised.
  • the window part 26 is made of a material that transmits at least part of the wavelengths of the ultraviolet rays generated by the light source 24 .
  • the window 26 is desirably made of a material having a high ultraviolet transmittance. Transmittance is the rate at which incident light of a specific wavelength passes through the window section 26 . Incident light that is not transmitted is either reflected or absorbed by the window 26 .
  • the sum of transmittance, reflectance and absorptance is 100%.
  • the transmittance of the window 26 for UVA or UVB wavelengths is preferably 80% or more, more preferably 90% or more.
  • the transmittance of the window 26 for most of the UVA and UVB wavelengths is preferably 80% or more, more preferably 90% or more.
  • the transmittance of the window part 26 for wavelengths of 200 nm or more is preferably 80% or more, and more preferably 90% or more.
  • the transmittance of the window 26 for most UVC wavelengths of 200 nm or more is preferably 80% or more, more preferably 90% or more.
  • the transmittance of the window portion 26 for wavelengths of 250 nm to 285 nm is preferably 80% or more, more preferably 90% or more.
  • the transmittance of the window portion 26 for most wavelengths of 250 nm to 285 nm is preferably 80% or more, more preferably 90% or more.
  • the transmittance of the window portion 26 for the dominant wavelength of the light source 24 is preferably 80% or more, more preferably 90% or more.
  • FIG. 22 is a cross-sectional view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • FIG. The blower device 1 or the UV irradiator 23 is provided with screws 33 .
  • the screw 33 corresponds to a fixture for fixing the UV irradiator 23 to the wall 3 of the internal air passage 5 .
  • the UV irradiator 23 is detachably fixed to the wall portion 3 of the internal air passage 5 by a detachable fixture such as a screw 33 .
  • the UV irradiator 23 may be fixed to the wall portion 3 of the internal air passage 5 by a fixture other than the screw 33 as long as the fixture is detachable. In the example shown in FIG.
  • the window portion 26 and the portion of the case 25 corresponding to the window frame of the window portion 26 extend from the opening 3j formed in the wall portion 3 of the internal air passage 5 to the internal air passage 5.
  • a UV irradiator 23 is installed so as to expose the The wall portion 3 of the internal air duct 5 has bosses 3 k protruding from the back surface opposite to the surface facing the internal air duct 5 .
  • the UV irradiator 23 is fixed to the internal air passage 5 by fastening the case 25 to the boss 3 k with the screw 33 .
  • a single UV irradiator 23 may have a plurality of windows 26 .
  • the plurality of windows 26 may be arranged parallel to each other, or may be arranged substantially parallel to each other.
  • FIG. 23 is a cross-sectional view showing a modification of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • the UV irradiator 23 shown in FIG. 23 has a first window portion 26a and a second window portion 26b.
  • the first window portion 26 a and the second window portion 26 b correspond to the plurality of window portions 26 .
  • the first window portion 26 a covers the light source 24 .
  • the second window portion 26b covers the first window portion 26a.
  • the light source 24, the first window portion 26a and the second window portion 26b are arranged on a straight line.
  • the second window portion 26b is arranged parallel to the first window portion 26a.
  • the incident surface of the first window portion 26 a is arranged parallel to the light emitting surface of the light source 24 .
  • the first window portion 26a and the second window portion 26b are arranged at positions that intersect the optical axis of the light source 24 or an imaginary extension line of the optical axis.
  • At least one of the plurality of windows 26 included in one UV irradiator 23 may have a lens-like shape.
  • the first window portion 26a is arranged at a position closer to the light source 24 than the second window portion 26b.
  • the second window portion 26b is arranged at a position farther from the light source 24 than the first window portion 26a.
  • the second window portion 26 b prevents water or foreign matter from entering the inside of the UV irradiator 23 and the inside of the main housing 2 by cooperating with the sealing member 30 .
  • the second window portion 26b also has a function of preventing the light source 24 from being touched by a person's hand or the like.
  • the first window portion 26a has a function of preventing the light source 24 from coming into contact with water, a foreign object, a human hand, or the like. Also, the first window portion 26 a has a function of protecting the light source 24 .
  • a configuration in which one UV irradiator 23 has only one window 26 is more preferable if the above-described sealing property is maintained. A portion of the light is reflected or absorbed by the window 26 . Therefore, the smaller the number of windows 26, the more efficiently the ultraviolet rays can be irradiated. In particular, if there is one window portion 26, the ultraviolet rays can be irradiated more efficiently.
  • the window part 26 may have a property of not transmitting short wavelength ultraviolet rays. Moreover, the window part 26 may have a property of not transmitting short wavelength ultraviolet rays by a filter or a band pass. The window part 26 may have a property of not transmitting wavelengths of 180 nm or less, for example. Further, the window portion 26 may have a property of not transmitting wavelengths of 150 nm or less. Short-wave ultraviolet rays can have adverse effects on the human body. Safety is further improved by using the window 26 that does not transmit short-wave ultraviolet rays.
  • the window part 26 is preferably made of a material with high UV transparency.
  • the window 26 may be made of quartz glass, for example.
  • the window 26 may be made of synthetic quartz glass, for example.
  • the window part 26 may be made of, for example, UV cut glass that cuts part of UV.
  • the window part 26 may be made of, for example, a highly UV-transmissive resin material.
  • the window part 26 may be made of, for example, fluororesin. Examples of fluororesins include PFA, FEP, ETFE, and PCTFE.
  • An antireflection film may be formed on at least one of the entrance surface and the exit surface of the window 26 .
  • An antireflection film prevents reflection of light incident on an incident surface from a light source, and is generally called an AR coat (antireflection coating). Since the antireflection film is a known technology, the explanation of its mechanism is omitted. Light that is not reflected is either transmitted or absorbed. For example, most of the light that is not reflected is transmitted and some is absorbed. For example, when the transmittance of quartz glass in the UVB region is 90%, if one side is treated with an antireflection film, the transmittance becomes 94%. It becomes about 98%.
  • the material used for the window 26 is not limited to quartz glass, and may be treated with an antireflection film.
  • fluororesin which has higher transmittance than general materials but lower transmittance than quartz glass, may be treated with an antireflection film. Thereby, it is possible to increase the transmittance while suppressing the cost.
  • the window part 26 is made of, for example, a transparent material, a translucent material, or a highly transparent material.
  • the window 26 is for example made of a material with a higher UV transmittance than most of the walls 3 of the internal air duct 5 .
  • the window part 26 is made of, for example, a material having a higher UV transmittance than most of the wall part 3 of the internal air duct 5 facing the internal air duct 5 .
  • the window 26 may be filtered to reduce the radiation intensity of a specific wavelength.
  • a filter is, for example, a bandpass filter.
  • filtering may be applied to window 26 to reduce wavelengths harmful to the human body.
  • the window part 26 is arranged at a position close to the surface of the wall part 3 of the internal air duct 5 facing the internal air duct 5 .
  • the window 26 may cooperate with the fixture 31 or the case 25 to improve airtightness with the internal air passage 5 .
  • the window portion 26 may be arranged such that its thickness direction or central axis is parallel to the horizontal direction.
  • the window 26 may be arranged such that its thickness direction or central axis is not parallel to the horizontal direction.
  • the window part 26 may be fixed by being fitted into an opening provided in the wall part 3 of the internal air duct 5 .
  • the surface of the wall portion 3 of the internal air passage 5 on which the window portion 26 is arranged and the window portion 26 may be arranged substantially on the same plane. That is, the window portion 26 may be arranged at a position recessed from the surface of the wall portion 3 around the window portion 26 or at a position recessed by one step. This makes it difficult for the hand to touch the window part 26 even when the hand is inserted into the internal air passage 5, and the window part 26 is easily prevented from being damaged.
  • the case 25 forms the appearance of the UV irradiator 23.
  • a seal member 30 , a window 26 , a light source 24 , a spacer 29 and a substrate 27 are arranged between the case 25 and the heat sink 28 .
  • the case 25 is arranged in contact with the wall portion 3 of the internal air passage 5 .
  • the case 25 may be fixed so as to be in contact with the wall portion 3 of the internal air passage 5 via fixtures 31 .
  • the case 25 may be fixed to the wall portion 3 of the internal air passage 5 without using the fixtures 31 .
  • the case 25 may be secured to the wall 3 of the internal air passage 5 using press fit or snap fit techniques.
  • a male thread provided on the outer periphery of the case 25 is screwed into a female thread provided on the inner periphery of an opening formed in the wall portion 3 of the internal air passage 5, whereby the case 25 is secured to the internal airflow. It may be fixed to the wall 3 of the channel 5 .
  • the UV irradiator 23 does not necessarily have to include the case 25.
  • Components of the UV irradiator 23 other than the case 25 may be fixed to the wall 3 of the internal air passage 5 .
  • the case 25 is arranged at a position equivalent to the surface of the wall portion 3 of the internal air passage 5 or at a position recessed from the surface of the wall portion 3 of the internal air passage 5 .
  • the case 25 is located at a position equivalent to the wall portion 3 of the internal air passage 5, or at a distance from the wall portion 3 of the internal air passage 5, compared to the wall portion 3 of the internal air passage 5 around the case 25. placed slightly further away.
  • Case 25 has an opening near its center. The opening is for passing light emitted from the light source 24 .
  • Case 25 may have a groove for fixing seal member 30 . By fitting the seal member 30 into the groove, the seal member 30 is positioned in the circumferential direction.
  • the fixture 31 of the UV irradiator 23 is, for example, a screw. Fixtures 31 other than screws may be used.
  • the fixture 31 is for fixing the UV irradiator 23 to the wall 3 of the internal air passage 5, for example.
  • a seal member may be provided to fill the gap between the wall portion 3 of the internal air passage 5 and the UV irradiator 23 .
  • the sealing member and the aforementioned sealing member 30 are collectively referred to as "sealing member 30" hereinafter.
  • the sealing member 30 is made of, for example, a softer material than the wall portion 3 of the internal air passage 5 .
  • the sealing member 30 is made of, for example, a softer material than most of the walls 3 of the internal air passage 5 .
  • the sealing member 30 may be a component generally called packing, O-ring, gasket, or the like.
  • the seal member 30 is, for example, a soft material such as rubber, silicon, or elastomer.
  • the sealing member 30 may be an integrated component insert-molded into the wall portion 3 of the internal air passage 5 .
  • the UV irradiator 23 is fixed to the wall portion 3 of the internal air passage 5 via a fixture 31 or the like.
  • a plurality of sealing members 30 may be provided.
  • the sealing member 30 is, for example, interposed between the wall portion 3 of the internal air passage 5 and the case 25 to seal the wall portion 3 of the internal air passage 5 and the case 25 .
  • the sealing member 30 is, for example, interposed between the wall portion 3 of the internal air passage 5 and the window portion 26 to seal the wall portion 3 and the window portion 26 of the internal air passage 5 .
  • the sealing member 30 is, for example, interposed between the case 25 and the window 26 to seal the case 25 and the window 26 .
  • the cross section of the sealing member 30 is slightly crushed when the UV irradiator 23 is fixed by the fixture 31 .
  • the cross-sectional area of seal member 30 may be reduced by compression, eg, by 10%-20%.
  • Such deformation of the seal member 30 enhances the sealing performance.
  • water may enter the inside of the main body housing 2 or the inside of the UV irradiator 23 through a slight gap between the wall 3 of the internal air passage 5 and the UV irradiator 23.
  • water may enter the inside of the main housing 2 or the inside of the UV irradiator 23 through a slight gap between the case 25 and the window 26 . If water adheres to the UV irradiator 23, it may malfunction.
  • the sealing member 30 described above it is possible to suppress the entry of water.
  • the heat sink 28 dissipates the heat of the substrate 27 and the light source 24 to cool them and suppress their temperature rise.
  • the heat sink 28 is attached to the surface of the substrate 27 opposite to the light source 24 or in the vicinity of the surface.
  • the heat sink 28 is fixed so as to contact the substrate 27 directly or indirectly.
  • At least part of the substrate 27 or at least part of the heat sink 28 may be positioned to be exposed to the internal air passage 5 .
  • the substrate 27 or the heat sink 28 can be cooled by the airflow during operation of the blower 1 .
  • the heat dissipation efficiency can be further enhanced by forced convection during operation of the blower 1 .
  • the substrate 27 or the heat sink 28 may be cooled by operating the electric blower 10 in a gentle breeze.
  • the motor of the electric blower 10 is a brushless motor because the air volume can be easily controlled.
  • the substrate 27 is for causing the light source 24 to emit light.
  • Substrate 27 is electrically connected to light source 24 .
  • the board 27 is electrically connected to the power supply.
  • the substrate 27 may have a plate-like shape.
  • the optical axis of light source 24 is arranged perpendicular to substrate 27 .
  • Various other electronic components or electric components may be connected to the substrate 27 .
  • the substrate 27 may have hardness to the extent that it does not deform when an external force is applied, for example, when a force is applied by one hand.
  • the substrate 27 may have such rigidity that it deforms when force is applied with one hand.
  • the substrate 27 may have such rigidity that it bends due to its own weight.
  • the rigidity of that portion will be low.
  • the rigidity of that portion will be further reduced.
  • the substrate 27 has a shape with notches, the rigidity is lowered.
  • a portion of the substrate 27 may have a thin film-like portion. With such a configuration, the substrate 27 can be easily deformed and the bent state can be maintained.
  • the optical axes of the light sources 24 are arranged in parallel.
  • the optical axes of the two light sources 24 are arranged in a non-parallel state.
  • the substrate 27 can be used as a part of the UV irradiator 23 while being bent.
  • the spacer 29 has the function of keeping the distance between the substrate 27 and the window 26 constant.
  • the spacer 29 is made of resin material or metal material, for example.
  • the shape of the spacer 29 may be a hollow cylindrical shape or a hollow rectangular tube shape. Spacer 29 may have the same contour as window 26 .
  • the shape of the spacer 29 may be a hollow cylindrical shape.
  • the shape of the spacer 29 may be a hollow prismatic shape.
  • the substrate 27 is in contact with one end side of the spacer 29 .
  • the window portion 26 is in contact with the other end side of the spacer 29 .
  • the spacer 29 has a thickness direction, a width direction and a length direction.
  • the length of the spacer 29 in the width direction is equal to the length of the spacer 29 in the length direction.
  • the length of the spacer 29 in the thickness direction is shorter than the length of the spacer 29 in the width direction and shorter than the length of the spacer 29 in the length direction.
  • the dimension of the spacer 29 in the thickness direction corresponds to the dimension of the shortest direction among the three axes of the x-direction, the y-direction, and the z-direction which are orthogonal to each other.
  • the spacer 29 has surfaces facing each other in the thickness direction.
  • the length of the spacer 29 in the thickness direction is longer than the length of the light source 24 in the thickness direction.
  • the spacer 29 has an axis along the thickness direction.
  • the axis of spacer 29 is preferably parallel to the optical axis of light source 24 .
  • the axis of spacer 29 may be the central axis.
  • the light source 24 and the spacer 29 are arranged so that the virtual extension line of the optical axis of the light source 24 and the virtual extension line of the thickness direction axis of the spacer 29 pass through the opposing wall portions 3 of the internal air passage 5.
  • the spacer 29 may have a hollow shape, and the light source 24 may be arranged inside the spacer 29 , that is, in the hollow portion of the spacer 29 .
  • the light source 24 and the spacer 29 are arranged such that the thickness direction of the spacer 29 matches or substantially matches the thickness direction of the light source 24 .
  • One side surface of the spacer 29 in the thickness direction corresponds to a surface close to the wall portion 3 of the internal air passage 5, and a surface opposite to the one side surface is a surface far from the wall portion 3 of the internal air passage 5.
  • Equivalent to. Spacer 29 and light source 24 are in contact with substrate 27 .
  • a surface of the spacer 29 far from the wall 3 of the internal air duct 5 in the thickness direction and a surface of the light source 24 far from the wall 3 in the thickness direction are in contact with the substrate 27 .
  • the surface of the spacer 29 farther from the wall 3 of the internal air duct 5 in the thickness direction and the surface farther from the wall 3 of the internal air duct 5 in the thickness direction of the light source 24 are arranged on the same plane, They are arranged on almost the same plane. This is combined with the fact that the length of the spacer 29 in the thickness direction is longer than the length of the light source 24 in the thickness direction. , closer to the wall portion 3 of the internal air passage 5 than the surface closer to the wall portion 3 of the internal air passage 5 in the thickness direction of the light source 24 . Accordingly, the light beam emitted from the light source 24 hits the spacer 29 and is reflected on the front side of the surface of the internal air passage 5 near the wall portion 3 in the thickness direction of the light source 24 .
  • a light source 24 is mounted on the surface of the substrate 27 .
  • the light source 24 is arranged so as to be surrounded by the substrate 27 , the window 26 and the spacer 29 . By doing so, it is possible to more reliably prevent damage to the light source 24 due to impact from the outside of the light source 24 .
  • the spacer 29 may be made of a material with high UV reflectance.
  • the spacer 29 may be configured to reflect at least the dominant wavelength of the light generated by the light source 24 . For example, when the reflectance of the spacer 29 is low, such as when the spacer 29 has a high absorptivity, part of the light beam is absorbed by the spacer 29, and the light beam reaching the wall portion 3 of the internal air passage 5 is reduced. illuminance is reduced.
  • the reflectance of the spacer 29 when the reflectance of the spacer 29 is low, such as when the spacer 29 has a high transmittance, the light beam emitted from the light source 24 in a wide range is applied to the wall 3 of the internal air passage 5.
  • a window portion 26 having a large size is required. If the window portion 26 is large, its thickness must be increased in order to ensure its strength. As the thickness of the window portion 26 increases, the transmittance decreases.
  • Materials with high reflectance include, for example, fluororesins as resins, and aluminum, members subjected to surface treatment such as alumite processing and vapor deposition as metals.
  • High reflectance means, for example, that the reflectance for the dominant wavelength of the light source 24 is 80% or more, preferably 90% or more.
  • high reflectivity may be relatively high reflectivity when compared to other materials used for the walls 3 of the internal air passage 5 .
  • the spacer 29 does not have to be hollow. Although it is desirable that the light source 24 is surrounded by the spacer 29 360 degrees or all around, it is not limited to such a configuration.
  • light source 24 may be surrounded by multiple spacers 29 .
  • the light source 24 may be surrounded by a plurality of spaced apart spacers 29 .
  • the light source 24 may be surrounded by the spacers 29 over a range of 180 degrees or more around the center of the light source 24 and the optical axis, or the light source 24 may be surrounded by the spacers 29 over a range of 270 degrees or more.
  • the shape of the spacer 29 may not be circular or rectangular, but may be a columnar shape with a part missing, such as a C-shape, a U-shape, or an arch shape.
  • the shape of the spacer 29 is preferably a hollow circle or a hollow square with four sides closed. This is because the spacer 29 cooperates with the window portion 26 or the seal member 30 to provide a structure that makes it difficult for water or dust to enter the light source 24 .
  • the spacer 29 has a shape in which a part is missing, it is preferable to have a shape in which the missing range is as small as possible.
  • the missing portion of the spacer 29 be positioned on the lower side in the vertical direction.
  • the missing part of the spacer 29 may be within a range below the center of the light source 24 in the vertical direction.
  • the spacer 29 may be missing in a range below the lower end of the light source 24 with respect to the vertical position.
  • the shape of the spacer 29 may be a hollow prismatic C-shaped or U-shaped shape with a missing base or lower portion. Part of the light beam emitted from the light source 24 disposed inside the spacer 29 having a hollow cylindrical shape or a hollow prismatic shape, that is, in the hollow portion, strikes the spacer 29 and is reflected. A light ray that hits the spacer 29 only once and is reflected advances toward the wall portion 3 side of the internal air passage 5 .
  • the spacers 29 the light rays that strike the vertically lower part of the spacers 29 only once, are reflected, and then proceed to the wall portion 3 side of the internal air passage 5 without hitting the spacers 29, are vertically upward. move on. Such light beams do not hit the wall portion 3 of the internal air passage 5, but irradiate the space in which the blower device 1 is installed.
  • the spacer 29 lacks the lower portion in the vertical direction, it is possible to reduce the amount of light that strikes the spacer 29 and is reflected to irradiate the space in which the blower device 1 is installed. As a result, the risk of radiation exposure to people in the vicinity can be reduced.
  • the fixing of the UV irradiator 23 is not limited to the fixture 31.
  • the fixture 31 may be part of the blower device 1 or part of the wall 3 of the internal air passage 5 .
  • the fixture 31 may be part of the case 25 or part of the heat sink 28 . Further, if the UV irradiator 23 can be fixed, the fixture 31 may not be provided.
  • FIG. 24 to 27 are cross-sectional views showing other modifications of the UV irradiator 23 included in the air blower 1 according to Embodiment 1.
  • FIG. 24 to 27 each show a modification of the UV irradiator 23 that does not have the case 25.
  • the screws 33 fasten the heat sink 28 to the boss 3k of the wall 3 of the internal air passage 5 so that the UV irradiator 23 is attached to the wall 3 of the internal air passage 5. is fixed.
  • the seal member 30 seals the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 .
  • the modified examples shown in FIGS. 25 to 27 are examples without spacers 29 .
  • the window portion 26 is held by the wall portion 3 of the internal air duct 5 .
  • the window portion 26 is supported by a protruding portion 3m protruding from the boss 3k to the inner peripheral side.
  • the modified examples shown in FIGS. 26 and 27 are examples without the sealing member 30 .
  • the window part 26 is attached to the wall part 3 of the internal air duct 5 using bushes 34 .
  • the outer peripheral portion of the bush 34 fits into the inner peripheral portion of the opening formed in the wall portion 3 of the internal air passage 5 .
  • the outer peripheral portion of the window portion 26 fits into the inner peripheral portion of the bush 34 .
  • the bushing 34 has, for example, a structure similar to a cable bushing.
  • the bush 34 may also have the function of sealing the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 .
  • the window part 26 is attached by pushing the window part 26 from the wall part 3 side of the internal air passage 5 toward the light source 24 .
  • the air blower 1 may be configured such that the UV irradiator 23 is removable.
  • the UV irradiator 23 may be configured to be removable from the wall 3 of the internal air passage 5 .
  • the main body portion of the blower device 1 excluding the UV irradiator 23 can be separated from the UV irradiator 23, and the blower device 1 is configured so that the UV irradiator 23 can be removed from the main body portion. may be configured.
  • the blower device 1 may be configured such that the UV irradiator 23 can be removed and replaced with a new UV irradiator 23 .
  • the performance can be restored by replacing it with a new UV irradiator 23 .
  • the performance of the window part 26 or the sealing member 30 can be restored.
  • the light source 24 or the window portion 26 can be replaced while the case 25 or the sealing member 30 is still attached to the blower device 1.
  • FIG. That is, it is possible to easily replace the entire UV irradiator 23 or selectively replace a part of the UV irradiator 23 according to the part to be removed or as required.
  • the light source section including the light source 24 can be removed by removing the screw 33 as a fixture or the fixture 31 .
  • the light source unit can be removed by multiple methods or by removing multiple parts.
  • the upper portion of the light source 24 or the window portion 26 be positioned closer to the wall portion 3 of the internal air passage 5 than the lower portion of the light source 24 or the window portion 26 . That is, the upper portion of the UV irradiator 23 as a whole may be located closer to the wall portion 3 of the internal air passage 5 than the lower portion. In this case, when the fixture 31 is removed and the light source 24 or the window portion 26 is replaced, the sealing member 30 is less likely to fall off, thus facilitating attachment/detachment and replacement work.
  • the window part 26 is attached to the wall part 3 of the internal air passage 5 using double-sided adhesive tape 35 .
  • a peripheral edge portion of the window portion 26 is adhered to the edge portion of the opening formed in the wall portion 3 of the internal air passage 5 with a double-sided adhesive tape 35 .
  • a double-faced adhesive tape 35 seals the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 .
  • the window part 26 or the UV irradiator 23 can be removed by removing the screw 33 or the fixing tool 31 as a fixing tool.
  • the blower device 1 may be configured such that the window portion 26 is removable.
  • the blower 1 may be configured such that the window 26 can be removed and replaced with a new window 26 .
  • the window 26 may be removed without removing the UV irradiator 23 .
  • the window portion 26 may be replaced with a new one by replacing the entire UV irradiator 23 with a new one.
  • the blower device 1 may further comprise a controller 22 configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero in response to detection by the hand detector 21. good. Ultraviolet rays can be harmful when they hit the human body. If the controller 22 reduces the average output of the UV irradiator 23 or sets the average output of the UV irradiator 23 to zero in response to the detection of the hand by the hand detector 21, the human body is exposed to ultraviolet rays. You can more reliably prevent it from hitting you. Controller 22 can adjust the average output of UV irradiator 23 by adjusting the current of light source 24 .
  • the hand detector 21 can detect the presence or absence of a hand inserted into the internal air duct 5 or a hand placed on the wall 3 of the internal air duct 5 .
  • the controller 22 of the air blower 1 may be configured so that the UV irradiator 23 irradiates ultraviolet rays when the hand detector 21 detects that there is no hand.
  • the UV irradiator 23 irradiates ultraviolet rays when the wall 3 of the internal air passage 5 is free of hands, so that both safety and sanitation can be achieved more reliably.
  • the blower device 1 may further include the human detector 39.
  • a human detector 39 detects a human body approaching the blower 1 .
  • the human detector 39 may have, for example, a human sensor installed in the main housing 2 .
  • the blower device according to the present disclosure may not include a human detector.
  • the human detector 39 detects a human body located closer than a predetermined distance to the air blower 1 .
  • the human detector 39 detects movement of a human body located closer than a predetermined distance to the blower 1 .
  • the human detector 39 detects a person standing in a predetermined area with respect to the blower 1 .
  • the human detector 39 detects the posture of a human body.
  • the blower device 1 may further comprise a controller 22 configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero in response to detection by the occupant detector 39. good. If the controller 22 reduces the average output of the UV irradiator 23 or sets the average output of the UV irradiator 23 to zero in response to the detection of a person by the human detector 39, the human body is exposed to ultraviolet rays. You can more reliably prevent it from hitting you.
  • the amount of UV irradiation is proportional to the product of the illuminance and the irradiation time. Assuming that the illuminance is constant, it is possible to calculate the irradiation time corresponding to the amount of ultraviolet irradiation necessary for sufficiently sterilizing the indoor space or the inside of the internal air duct 5 .
  • the controller 22 reduces the average output of the UV irradiator 23 when the time for which the hand detector 21 continues to fail to detect a hand or the time for which the human detector 39 continues to fail to detect a person exceeds the reference. It may be configured to reduce or zero the average power of the UV illuminator 23 . This is advantageous in preventing deterioration of the constituent material of the wall portion 3 of the internal air passage 5 .
  • the controller 22 is configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero when the duration of UV irradiation by the UV irradiator 23 exceeds a reference. may be This can prevent one irradiation time from becoming longer than necessary. Therefore, it is advantageous in extending the life of the light source 24, preventing a decrease in the transmittance of the window portion 26, and preventing deterioration of the constituent material of the wall portion 3 of the internal air passage 5.
  • the controller 22 is configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero when the duration of UV irradiation by the UV irradiator 23 exceeds a reference. may be This can prevent one irradiation time from becoming longer than necessary. Therefore, it is advantageous in extending the life of the light source 24 , preventing a decrease in the transmittance of the window 26 , and preventing deterioration of the constituent material of the wall 3 .
  • the controller 22 reduces the average output of the UV irradiator 23 or may be configured to zero the average output of
  • the first reference is, for example, 50°C to 200°C, more preferably 80°C to 140°C.
  • the reference is, for example, the temperature of the UV irradiator 23 or the temperature of the substrate 27 or chip of the UV irradiator 23 as the reference junction temperature.
  • the controller 22 may also increase the average power of the UV illuminator 23 again when the temperature of the UV illuminator 23 or the temperature of the substrate 27 or chip of the UV illuminator 23 exceeds the second criterion.
  • the average output of the UV irradiator 23 in this case is the output before the output is reduced, or a value lower than the output before the average output of the UV irradiator 23 is reduced.
  • the second reference may be the same temperature as the first reference temperature. More preferably, the second reference is a temperature lower than the temperature of the first reference.
  • the blower device 1 may be provided with a junction temperature detector.
  • the junction temperature detector may derive the junction temperature by calculation or directly detect the junction temperature.
  • the junction temperature detectors may include, for example, a thermal resistance detector that detects thermal resistance, an ambient temperature detector that detects ambient temperature, and a case temperature detector that detects case temperature.
  • the following formula (1) or formula (2) may be used as a method of calculating the junction temperature.
  • Tj Ta+Rth(ja) ⁇ P (1) Tj: junction temperature Ta: ambient temperature Rth(ja): thermal resistance between junction and atmosphere P: power consumption
  • Tj Tc+Rth(j ⁇ c) ⁇ P (2) Tj: Junction temperature Tc: Case temperature Rth(j-c): Thermal resistance between junction and case P: Power consumption
  • FIG. 28 is a cross-sectional side view showing an example of attaching the UV irradiator 23 to the wall portion 3 of the internal air passage 5.
  • the internal air passage 5 has a bypass air passage 41 .
  • the bypass air passage 41 is formed by a cover 42 that covers the UV irradiator 23 from the heat sink 28 side.
  • a part of the airflow AF flowing through the internal airflow passage 5 is divided as a bypass airflow BAF and flows into the bypass airflow passage 41 from the inlet 43 .
  • the bypass airflow BAF that has passed through the bypass airflow path 41 joins the original airflow AF after exiting the outlet 44 .
  • a wall section 45 is provided facing the wall section 3 to which the UV irradiator 23 is attached.
  • An airflow AF flows between the wall portion 3 and the wall portion 45 .
  • the window portion 26 faces the wall portion 45 .
  • Airflow AF flows between the window portion 26 and the wall portion 45 .
  • the wall portion 45 may be omitted.
  • FIG. 29 is a cross-sectional side view showing another example of attaching the UV irradiator 23 to the wall portion 3 of the internal air passage 5.
  • FIG. 29 differs from FIG. 28 will be described.
  • the cover 42 is removably attached using fasteners 46 .
  • Fixtures 46 may be, for example, screws. Removing the fixture 46 allows the cover 42 to be removed. By removing the cover 42, the UV irradiator 23 can be easily removed.

Abstract

This blower device comprises: an air inlet communicating with indoor space; an air outlet communicating with the indoor space; an internal air path from the air inlet to the air outlet; an electric blower that generates an airflow from the air inlet to the air outlet through the internal air path; and a UV irradiator that irradiates at least part of the internal air path with ultraviolet rays. The UV irradiator may be equipped with a heat sink and a substrate. At least part of the heat sink or at least part of the substrate may be exposed to the internal air path. This blower device may further comprise a controller that changes the average output of the UV irradiator in response to the air flow rate of the electric blower.

Description

送風装置blower
 本開示は、送風装置に関する。 The present disclosure relates to blowers.
 下記特許文献1には、紫外線照射装置とオゾン発生装置とを屋内または車両内に置き、紫外線を照射させると同時にオゾンを発生させその室内の空気を殺菌する方法が提案されている。 Patent Document 1 below proposes a method of placing an ultraviolet irradiation device and an ozone generator indoors or in a vehicle, irradiating ultraviolet rays and generating ozone to sterilize the air in the room.
日本特開平03-215265号公報Japanese Patent Laid-Open No. 03-215265
 特許文献1が提案する方法では、室内の空気を必ずしも効率良く殺菌することが困難である。 With the method proposed in Patent Document 1, it is difficult to sterilize indoor air efficiently.
 本開示は、上述のような課題を解決するためになされたもので、室内空間の衛生性を良好にする上で有利になる送風装置を提供することを目的とする。 The present disclosure has been made to solve the problems described above, and aims to provide an air blower that is advantageous in improving the sanitation of the indoor space.
 本開示に係る送風装置は、室内空間に連通する吸気口と、室内空間に連通する吹出口と、吸気口から吹出口への内部風路と、吸気口から内部風路を通って吹出口へ向かう気流を発生させる電動送風機と、内部風路の少なくとも一部に紫外線を照射するUV照射器と、を備えるものである。 The air blower according to the present disclosure includes an air inlet communicating with the indoor space, an air outlet communicating with the indoor space, an internal air passage from the air inlet to the air outlet, and an internal air passage from the air inlet to the air outlet. It is provided with an electric blower that generates a directed airflow and a UV irradiator that irradiates at least part of the internal air passage with ultraviolet rays.
 本開示によれば、室内空間の衛生性を良好にする上で有利になる送風装置を提供することが可能となる。 According to the present disclosure, it is possible to provide an air blower that is advantageous in improving the hygiene of the indoor space.
実施の形態1による送風装置を示す断面側面図である。FIG. 2 is a cross-sectional side view showing the air blower according to Embodiment 1; 実施の形態1による送風装置の機能ブロック図である。2 is a functional block diagram of the blower device according to Embodiment 1; FIG. 実施の形態1による送風装置の処理回路のハードウェア構成の一例を示す図である。3 is a diagram showing an example of a hardware configuration of a processing circuit of the air blower according to Embodiment 1; FIG. 実施の形態1による送風装置が実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1. FIG. 実施の形態1による送風装置が実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1. FIG. 実施の形態1による送風装置が実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1. FIG. 実施の形態1による送風装置が実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1. FIG. 実施の形態1による送風装置が実行する処理の例を示すフローチャートである。4 is a flow chart showing an example of processing executed by the blower device according to Embodiment 1. FIG. 図8のフローチャートが実行されたときの、UV照射器の平均出力の変化の例及び電動送風機の送風量の変化の例を示すタイムチャートである。FIG. 9 is a time chart showing an example of change in the average output of the UV irradiator and an example of change in the blowing volume of the electric blower when the flowchart of FIG. 8 is executed; FIG. 実施の形態1による送風装置を示す断面側面図である。FIG. 2 is a cross-sectional side view showing the air blower according to Embodiment 1; 温度検知器の検知結果に応じてコントローラが風向変更器を制御したときの、UV照射器の放熱効率の変化の例と、温度検知器の検知温度の変化の例とを示すタイムチャートである。5 is a time chart showing an example of changes in the heat radiation efficiency of the UV irradiator and an example of changes in the temperature detected by the temperature detector when the controller controls the wind direction changer according to the detection result of the temperature detector. 移動器を備えた送風装置の暖房運転時の断面側面図である。FIG. 4 is a cross-sectional side view of the air blower provided with the mover during heating operation; 移動器を備えた送風装置の冷房運転時の断面側面図である。FIG. 4 is a cross-sectional side view of the air blower provided with the mover during cooling operation; 移動器の側面図である。Fig. 3 is a side view of the mover; 複数のUV照射器を備えた送風装置の暖房運転時の断面側面図である。FIG. 4 is a cross-sectional side view of the air blower provided with a plurality of UV irradiators during heating operation; 複数のUV照射器を備えた送風装置の冷房運転時の断面側面図である。FIG. 4 is a cross-sectional side view of the air blower provided with a plurality of UV irradiators during cooling operation; 実施の形態1による送風装置が備えるUV照射器の斜視図である。3 is a perspective view of a UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器の分解斜視図である。3 is an exploded perspective view of a UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器の正面図である。4 is a front view of a UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器の背面図である。4 is a rear view of a UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器を、図19中のB-B線で切断した断面図ある。FIG. 20 is a cross-sectional view of the UV irradiator included in the air blower according to Embodiment 1, taken along line BB in FIG. 19; 実施の形態1による送風装置が備えるUV照射器の断面図である。4 is a cross-sectional view of a UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器の変形例を示す断面図である。4 is a cross-sectional view showing a modification of the UV irradiator included in the air blower according to Embodiment 1. FIG. 実施の形態1による送風装置が備えるUV照射器の他の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1; 実施の形態1による送風装置が備えるUV照射器の他の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1; 実施の形態1による送風装置が備えるUV照射器の他の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1; 実施の形態1による送風装置が備えるUV照射器の他の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing another modification of the UV irradiator included in the air blower according to Embodiment 1; 内部風路の壁部へのUV照射器の取付例を示す断面側面図である。FIG. 4 is a cross-sectional side view showing an example of attaching a UV irradiator to a wall of an internal air passage; 内部風路の壁部へのUV照射器の他の取付例を示す断面側面図である。FIG. 10 is a cross-sectional side view showing another example of attaching the UV irradiator to the wall of the internal air passage;
 以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。なお、本開示で角度に言及した場合において、和が360度となる優角と劣角とがあるときには原則として劣角の角度を指すものとし、和が180度となる鋭角と鈍角とがある場合には原則として鋭角の角度を指すものとする。また、以下に示す実施の形態に示した構成は、本開示による技術的思想の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示に記載の複数の技術的思想を組み合わせることも可能である。また、本開示の要旨を逸脱しない範囲で、構成の一部を省略または変更することも可能である。 Embodiments will be described below with reference to the drawings. Elements that are common or correspond to each figure are denoted by the same reference numerals, and their explanations are simplified or omitted. In addition, when referring to angles in the present disclosure, when there is a dominant angle and a minor angle whose sum is 360 degrees, in principle, it refers to a minor angle, and there are an acute angle and an obtuse angle whose sum is 180 degrees. In principle, it refers to an acute angle. In addition, the configurations shown in the embodiments shown below are examples of technical ideas according to the present disclosure, and can be combined with other known technologies, and multiple technologies described in the present disclosure can be combined. It is also possible to combine different ideas. Also, part of the configuration can be omitted or changed without departing from the gist of the present disclosure.
実施の形態1.
 図1は、実施の形態1による送風装置1を示す断面側面図である。図1に示すように、実施の形態1による送風装置1は、本体筐体2と、電動送風機10と、UV照射器23とを備える。本体筐体2は、室内空間に連通する吸気口6と、室内空間に連通する吹出口7とを備える。吸気口6から吹出口7への内部風路5が本体筐体2の内部に形成されている。電動送風機10は、吸気口6から内部風路5を通って吹出口7へ向かう気流AFを発生させる。電動送風機10は、本体筐体2の内部に配置されている。UV照射器23は、内部風路5の少なくとも一部に紫外線を照射する。本体筐体2は、壁部3を有する。壁部3は、内部風路5の壁面を形成する。図1は、送風装置1を横から見た図に相当する。電動送風機10は、電動機とファンとを有する。
Embodiment 1.
FIG. 1 is a cross-sectional side view showing a blower device 1 according to Embodiment 1. FIG. As shown in FIG. 1 , the blower device 1 according to Embodiment 1 includes a main housing 2 , an electric blower 10 and a UV irradiator 23 . The body housing 2 includes an intake port 6 communicating with the indoor space, and an air outlet 7 communicating with the indoor space. An internal air passage 5 from the intake port 6 to the blowout port 7 is formed inside the main housing 2 . The electric blower 10 generates an airflow AF from the intake port 6 to the blowout port 7 through the internal air passage 5 . The electric blower 10 is arranged inside the main housing 2 . The UV irradiator 23 irradiates at least part of the internal air passage 5 with ultraviolet rays. The main housing 2 has a wall portion 3 . The wall portion 3 forms the wall surface of the internal air passage 5 . FIG. 1 corresponds to a side view of the blower device 1 . Electric blower 10 has an electric motor and a fan.
 本開示において、「送風装置」とは、広義の表現である。本開示における「送風装置」とは、例えば、空気清浄機の全部または一部でもよいし、空気調和機の全部または一部でもよいし、除湿機の全部または一部でもよいし、加湿機の全部または一部でもよい。また、本開示における「送風装置」とは、ドライヤーの全部または一部でもよいし、乾燥装置の全部または一部でもよいし、手乾燥装置の全部または一部でもよいし、扇風機の全部または一部でもよいし、ヒーターの全部または一部でもよいし、保湿機の全部または一部でもよいし、送風機能を有する装置の全部または一部でもよい。 In the present disclosure, the term "blower" is used in a broad sense. The "blower" in the present disclosure may be, for example, all or part of an air cleaner, all or part of an air conditioner, all or part of a dehumidifier, or a humidifier. It may be all or part. In addition, the "blower" in the present disclosure may be all or part of a dryer, all or part of a drying device, all or part of a hand drying device, or all or part of an electric fan. It may be a unit, all or part of a heater, all or part of a moisturizing machine, or all or part of a device having a blower function.
 UV照射器23が照射する紫外線は、例えばUVCでもよい。UV照射器23が照射する紫外線は、殺菌作用を有する。UV照射器23から照射された光線は、内部風路5の内壁面にあたり、また、内部風路5を通過する空気にもあたる。紫外線が照射された内部風路5の表面と、内部風路5に構成された構成物と、内部風路5中の空気とは、UV照射器23からの紫外線により、殺菌される。内部風路5に構成された構成物とは、例えばエアフィルタ、ファン等である。 The ultraviolet rays emitted by the UV irradiator 23 may be UVC, for example. The ultraviolet rays emitted by the UV irradiator 23 have a sterilizing effect. The light rays emitted from the UV irradiator 23 hit the inner wall surface of the internal air passage 5 and also hit the air passing through the internal air passage 5 . The surface of the internal air duct 5 irradiated with ultraviolet rays, the components formed in the internal air duct 5, and the air in the internal air duct 5 are sterilized by the ultraviolet rays from the UV irradiator 23. Components configured in the internal air duct 5 are, for example, an air filter, a fan, and the like.
 本実施の形態であれば、内部風路5の表面と、内部風路5中の構成物と、内部風路5中の空気とを殺菌することで、吸気口6から本体筐体2内に吸引された室内空気よりも衛生的な空気を、吹出口7から室内へ吹き出すことができる。それゆえ、衛生的である。 In the present embodiment, by sterilizing the surface of the internal air passage 5, the components in the internal air passage 5, and the air in the internal air passage 5, the air from the air intake 6 into the main body housing 2 Air that is more hygienic than the sucked room air can be blown into the room from the outlet 7. - 特許庁Therefore, it is hygienic.
 本実施の形態では、送風装置1が、空気調和機の室内機として用いられる例について、主として説明する。ただし、以下の説明は、空気調和機以外の、上述した各種の送風装置1にも、同様に適用可能である。本体筐体2の内部に、上部熱交換器4と、上部熱交換器8と、下部熱交換器9とが配置されている。上部熱交換器4、上部熱交換器8、及び下部熱交換器9は、内部風路5を流れる空気と、空気調和機の室外機(図示省略)から供給される冷媒との間で、熱を交換する。上部熱交換器8の少なくとも一部は、正面側に配置される。下部熱交換器9の全部または一部は、正面側に配置される。 In this embodiment, an example in which the blower device 1 is used as an indoor unit of an air conditioner will be mainly described. However, the following description is similarly applicable to the above-described various blower devices 1 other than air conditioners. An upper heat exchanger 4 , an upper heat exchanger 8 , and a lower heat exchanger 9 are arranged inside the main body housing 2 . The upper heat exchanger 4, the upper heat exchanger 8, and the lower heat exchanger 9 exchange heat between the air flowing through the internal air passage 5 and the refrigerant supplied from the outdoor unit (not shown) of the air conditioner. to replace. At least part of the upper heat exchanger 8 is arranged on the front side. All or part of the lower heat exchanger 9 is arranged on the front side.
 本実施の形態における送風装置1は、パネル17及びルーバー18を備える。パネル17は、本体筐体2の正面を形成する。ルーバー18は、吹出口7から室内へ吹き出される気流の向きを調整可能に稼働または回動する。ルーバー18は、上下方向への吹き出し方向を調整可能なよう、左右方向に沿う回動軸を有していてもよい。ルーバー18は、左右方向への吹き出し方向を調整可能なよう、回動軸を有していてもよい。ルーバー18は、上下方向と左右方向の吹き出し方向を調整可能なよう、複数の回動軸を有していてもよい。 The blower device 1 in this embodiment includes a panel 17 and louvers 18 . The panel 17 forms the front surface of the main housing 2 . The louver 18 operates or rotates so as to adjust the direction of airflow blown out from the outlet 7 into the room. The louver 18 may have a rotation shaft along the left-right direction so that the blowing direction in the up-down direction can be adjusted. The louver 18 may have a rotation shaft so that the blowing direction in the horizontal direction can be adjusted. The louver 18 may have a plurality of rotating shafts so that the blowing direction in the vertical direction and the horizontal direction can be adjusted.
 図2は、実施の形態1による送風装置1の機能ブロック図である。図2に示すように、送風装置1は、電動送風機10の動作とUV照射器23の動作とを制御するコントローラ22を備える。後述する、汚染度合検知推定器11、体温検知器12、人識別器13、温度検知器14、風向変更器15、移動器16、手検知器21、及び、人検知器39のうちの、少なくとも一つが、送風装置1に備えられていてもよい。 FIG. 2 is a functional block diagram of the blower device 1 according to the first embodiment. As shown in FIG. 2 , the blower 1 includes a controller 22 that controls the operation of the electric blower 10 and the operation of the UV irradiator 23 . At least one of the contamination level detection estimator 11, body temperature detector 12, human identifier 13, temperature detector 14, wind direction changer 15, mover 16, hand detector 21, and human detector 39, which will be described later, One may be provided in the blower device 1 .
 図3は、実施の形態1による送風装置1の処理回路のハードウェア構成の一例を示す図である。コントローラ22の機能は、例えば、図3に示したハードウェア構成の処理回路により達成されてもよい。例えば、図3に示すプロセッサ101が、メモリ102に記憶されたプログラムを実行することにより、コントローラ22の機能が達成されてもよい。また、複数のプロセッサ及び複数のメモリが連携して、コントローラ22の機能を達成してもよい。また、コントローラ22の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101及びメモリ102を用いて達成するようにしてもよい。 FIG. 3 is a diagram showing an example of the hardware configuration of the processing circuit of the blower device 1 according to Embodiment 1. As shown in FIG. The functions of the controller 22 may be achieved, for example, by the processing circuitry of the hardware configuration shown in FIG. For example, the functions of controller 22 may be achieved by processor 101 shown in FIG. 3 executing a program stored in memory 102 . Also, multiple processors and multiple memories may work together to accomplish the functions of the controller 22 . Also, some of the functions of controller 22 may be implemented as electronic circuitry and other parts may be accomplished using processor 101 and memory 102 .
 UV照射器23は、後述するヒートシンク28と基板27との少なくとも一方を備えていてもよい。ヒートシンク28の少なくとも一部または基板27の少なくとも一部は、内部風路5に露出していてもよい。内部風路5を流れる空気によって、UV照射器23を確実に冷却できる。UV照射器23がヒートシンク28を備えない場合、基板27が冷却される。 The UV irradiator 23 may include at least one of a heat sink 28 and a substrate 27, which will be described later. At least part of the heat sink 28 or at least part of the substrate 27 may be exposed to the internal air passage 5 . The air flowing through the internal air passage 5 can reliably cool the UV irradiator 23 . If the UV irradiator 23 does not have a heat sink 28, the substrate 27 is cooled.
 本開示では、電動送風機10の駆動により生じた風量のことを電動送風機10の風量と表現することがある。電動送風機10の風量に応じてコントローラ22がUV照射器23の平均出力を変えてもよい。本開示において、UV照射器23の平均出力は、例えば、1分間の平均出力でもよいし、10分間の平均出力でもよい。コントローラ22は、UV照射器23を一定の出力で連続的に点灯させてもよい。その場合、UV照射器23の平均出力は、点灯時のUV照射器23の出力に等しい。コントローラ22は、UV照射器23の点灯と消灯を繰り返してもよい。その場合、UV照射器23の平均出力は、点灯時のUV照射器23の出力よりも低い値になる。また、その場合、UV照射器23の平均出力は、点灯時のUV照射器23と消灯時のUV照射器23との平均出力に等しい。また、UV照射器23の出力は、第一の出力と第二の出力とを繰り返してもよく、UV照射器23の出力が経時変化するものであってもよい。また、その場合、UV照射器23の平均出力は一連のUV照射器23の制御における平均出力に等しい。 In the present disclosure, the air volume generated by driving the electric blower 10 may be expressed as the air volume of the electric blower 10. The controller 22 may change the average output of the UV irradiator 23 according to the air volume of the electric blower 10 . In the present disclosure, the average output of the UV irradiator 23 may be, for example, the average output for 1 minute or the average output for 10 minutes. The controller 22 may cause the UV irradiator 23 to turn on continuously with a constant output. In that case, the average output of the UV irradiator 23 is equal to the output of the UV irradiator 23 when lit. The controller 22 may repeat turning on and off the UV irradiator 23 . In that case, the average output of the UV irradiator 23 becomes a lower value than the output of the UV irradiator 23 during lighting. Also, in that case, the average output of the UV irradiator 23 is equal to the average output of the UV irradiator 23 when it is lit and the UV irradiator 23 when it is extinguished. Moreover, the output of the UV irradiator 23 may repeat the first output and the second output, or the output of the UV irradiator 23 may change with time. Also, in that case, the average output of the UV irradiator 23 is equal to the average output in the series of UV irradiator 23 controls.
 コントローラ22は、電動送風機10の風量が比較的高いときのUV照射器23の平均出力を、電動送風機10の風量が比較的低いときのUV照射器23の平均出力よりも高くしてもよい。UV照射器23は、発光により、発熱する。UV照射器23の温度が高い状態で照射し続けると、UV照射器23の寿命が短くなる。すなわち、UV照射器23が高い照度で発光しつづけられる時間が短くなる。例えば、本来であれば10000時間照射できるUV照射器23が、8000時間しか照射できない等である。一般に、UV照射器23の全光束は、通算の照射時間が長くなるにつれて、徐々に低下する。一般には、UV照射器23の全光束が、新品時の全光束に対して、所定の割合(例えば70%)まで低下すると、UV照射器23の寿命であると定義される。このため、常に高出力でUV照射器23を照射し続けることは難しい。しかし、電動送風機10の風量が高い場合にその風の一部をUV照射器23に当てて冷却することで、UV照射器23の温度を下げられる。それゆえ、高出力の状態でUV照射器23を照射することができる。これにより、UV照射器23の寿命を短くすることを防ぎ、かつ衛生性を高めることができる。 The controller 22 may make the average output of the UV irradiator 23 higher when the air volume of the electric blower 10 is relatively high than the average output of the UV irradiator 23 when the air volume of the electric blower 10 is relatively low. The UV irradiator 23 generates heat by light emission. If the UV irradiation is continued while the temperature of the UV irradiation device 23 is high, the life of the UV irradiation device 23 is shortened. That is, the time during which the UV irradiator 23 continues to emit light with high illuminance is shortened. For example, the UV irradiator 23 that can irradiate for 10000 hours under normal circumstances can irradiate for only 8000 hours. In general, the total luminous flux of the UV irradiator 23 gradually decreases as the total irradiation time increases. Generally, when the total luminous flux of the UV irradiator 23 decreases to a predetermined ratio (for example, 70%) of the total luminous flux when new, the life of the UV irradiator 23 is defined as the end. Therefore, it is difficult to continuously irradiate the UV irradiator 23 with a high output. However, when the air volume of the electric blower 10 is high, the temperature of the UV irradiator 23 can be lowered by applying a part of the air to the UV irradiator 23 to cool it. Therefore, it is possible to irradiate the UV irradiator 23 in a high output state. As a result, shortening of the life of the UV irradiator 23 can be prevented, and sanitation can be improved.
 前述したように、UV照射器23は、所定の間隔で点灯と消灯を繰り返すものであっても良い。この場合、電動送風機10の風量が高いときには消灯に対する点灯の時間が長くなり、電動送風機10の風量が低いときには、風量が高いときに比べ、消灯に対する点灯の時間が短くなるように、コントローラ22が制御してもよい。 As described above, the UV irradiator 23 may repeat turning on and off at predetermined intervals. In this case, when the air volume of the electric blower 10 is high, the turn-on time becomes longer than when the air volume of the electric blower 10 is low. may be controlled.
 人検知器39は、室内空間に人がいる在状態と、室内空間に人がいない不在状態とを検知する。人検知器39は、例えば、カメラ、サーモパイル、熱検知センサ、二酸化炭素濃度検知センサ等を用いたものでもよい。人検知器39の検知結果に応じてコントローラ22がUV照射器23の平均出力を変えてもよい。室内空間に人が在室しているか不在であるかに応じてUV照射器23の平均出力を変えることで、室内空間を衛生的に保ちつつ、UV照射器23の光源24の寿命劣化を抑えられる。人体の被ばくリスクも軽減する。UV照射器23の光源24を以下「UV光源」と呼ぶ場合がある。 The human detector 39 detects a presence state in which there is a person in the indoor space and an absent state in which there is no person in the indoor space. The human detector 39 may use, for example, a camera, a thermopile, a heat detection sensor, a carbon dioxide concentration detection sensor, or the like. The controller 22 may change the average output of the UV irradiator 23 according to the detection result of the human detector 39 . By changing the average output of the UV irradiator 23 depending on whether or not a person is present in the indoor space, deterioration of the life of the light source 24 of the UV irradiator 23 is suppressed while keeping the indoor space hygienic. be done. It also reduces the exposure risk of the human body. The light source 24 of the UV irradiator 23 may be hereinafter referred to as "UV light source".
 本開示では、UV照射器23により紫外線を照射する運転モードを「殺菌モード」と称する。送風装置1が一部を構成する空気調和機は、冷房運転、暖房運転、除湿運転、送風運転、加湿運転、換気運転、冷風運転、温風運転等を実施可能でもよい。殺菌モードは、冷房運転、暖房運転、除湿運転、送風運転、加湿運転、換気運転、冷風運転、温風運転等の他の機能と独立して操作可能でもよい。殺菌モードは、冷房運転、暖房運転、除湿運転、送風運転、加湿運転、換気運転、冷風運転、温風運転等の他の機能と併用することも可能である。 In the present disclosure, the operation mode in which the UV irradiator 23 irradiates ultraviolet rays is referred to as "sterilization mode". The air conditioner of which the blower device 1 forms a part may be capable of performing cooling operation, heating operation, dehumidifying operation, blowing operation, humidifying operation, ventilation operation, cool air operation, warm air operation, and the like. The sterilization mode may be operable independently of other functions such as cooling operation, heating operation, dehumidification operation, air blowing operation, humidification operation, ventilation operation, cool air operation, warm air operation, and the like. The sterilization mode can also be used in combination with other functions such as cooling operation, heating operation, dehumidification operation, air blowing operation, humidification operation, ventilation operation, cold air operation, and warm air operation.
 コントローラ22は、殺菌モード単独の場合でも電動送風機10の駆動による送風を行うことが望ましい。これにより、室内空間の殺菌が可能となる。また、コントローラ22は、殺菌モード単独での駆動の場合は、送風運転時よりも、電動送風機10の風量を低くしてもよい。これにより、静音で運転しつつ殺菌が可能となる。殺菌モードではUV照射と送風が連動していてもよい。例えば、UV照射がONになった場合には同時または多少時間の前後がありつつ送風も開始される。UV照射がOFFになった場合は同時または多少時間の前後がありつつ送風も終了する。その他の運転モードと併用している場合はその限りではなく、UV照射単独でON-OFFが切り替わる。 It is desirable that the controller 22 blows air by driving the electric blower 10 even in the sterilization mode alone. This makes it possible to sterilize the indoor space. In addition, the controller 22 may lower the air volume of the electric blower 10 when driving in the sterilization mode alone than during the air blowing operation. This enables sterilization while operating silently. In the sterilization mode, UV irradiation and air blowing may be interlocked. For example, when the UV irradiation is turned on, air blowing is started at the same time or after some time. When the UV irradiation is turned off, air blowing ends at the same time or after some time. This is not the case when used in combination with other operation modes, and ON-OFF is switched by UV irradiation alone.
 図4は、実施の形態1による送風装置1が実行する処理の例を示すフローチャートである。図4のステップS1で、送風装置1の電源がONされ、殺菌モードが選択されているものとする。殺菌モードが選択された時に、UV照射ON状態となってもよいし、UV照射OFF状態となってもよいが、UV照射ON状態であれば、すぐに殺菌が可能となる。なお、送風装置1に専用の殺菌モードが搭載されていなくてもよい。例えば、冷房機能に標準的に殺菌モードが備えられていてもよい。以上のことは、本開示の全体にわたって共通である。送風装置1の電源がONになった状態で、冷房運転、暖房運転、除湿運転、送風運転等が実施されてもよく、されなくてもよい。冷房運転、暖房運転、除湿運転、送風運転等が実施されない場合は人検知器39がセンシングしているだけの状態となる。 FIG. 4 is a flow chart showing an example of processing executed by the blower device 1 according to the first embodiment. It is assumed that the blower 1 is powered on and the sterilization mode is selected in step S1 of FIG. When the sterilization mode is selected, the UV irradiation may be turned ON or may be turned OFF, but if the UV irradiation is ON, sterilization becomes possible immediately. Note that the blower device 1 may not be equipped with a dedicated sterilization mode. For example, the cooling function may be provided with a sterilization mode as standard. The above is common throughout the present disclosure. A cooling operation, a heating operation, a dehumidifying operation, an air blowing operation, and the like may or may not be performed while the blower 1 is powered on. When the cooling operation, heating operation, dehumidifying operation, air blowing operation, etc. are not performed, the human detector 39 is in a state of only sensing.
 ステップS1からステップS2へ処理が進む。ステップS2で、コントローラ22は、人検知器39が在状態を検知したかどうかを判断する。人検知器39が在状態を検知した場合には、ステップS2からステップS3へ処理が進む。ステップS3で、UV照射器23のUV照射がON状態となり、殺菌モード単独運転時には合わせて電動送風機10の送風がON状態となる。 The process proceeds from step S1 to step S2. At step S2, the controller 22 determines whether the human detector 39 has detected the presence state. When the human detector 39 detects the presence state, the process proceeds from step S2 to step S3. In step S3, the UV irradiation of the UV irradiator 23 is turned ON, and the air blowing of the electric blower 10 is turned ON during the single operation in the sterilization mode.
 ステップS2で、人検知器39が不在状態を検知した場合には、ステップS2からステップS4へ処理が進む。ステップS4で、UV照射器23のUV照射がOFF状態となり、殺菌モード単独運転時には合わせて電動送風機10の送風がOFF状態となる。なお、本開示において、「UV照射がOFF状態」または「UV照射器23が消灯」とは、UV照射器23の平均出力がゼロになることだけでなく、「UV照射がON状態」または「UV照射器23が点灯」のときよりも低い平均出力でUV照射器23が動作することも包含する。また、本開示において、「送風がOFF状態」とは、電動送風機10の出力がゼロとなることだけでなく、「送風がON状態」のときよりも低い出力または回転速度で電動送風機10が動作することも包含する。 In step S2, when the human detector 39 detects the absence state, the process proceeds from step S2 to step S4. In step S4, the UV irradiation of the UV irradiator 23 is turned off, and the air blowing of the electric blower 10 is turned off during the single operation in the sterilization mode. In the present disclosure, "the UV irradiation is in an OFF state" or "the UV irradiation device 23 is turned off" means not only that the average output of the UV irradiation device 23 becomes zero, but also "the UV irradiation is in an ON state" or " It also includes operating the UV illuminator 23 at a lower average output than when the UV illuminator 23 is on. In addition, in the present disclosure, “the air blowing OFF state” means not only that the output of the electric blower 10 becomes zero, but also that the electric blower 10 operates at a lower output or rotation speed than when the “air blowing ON state”. It also includes
 図5は、実施の形態1による送風装置1が実行する処理の例を示すフローチャートである。図5のステップS1からステップS4は、図4のステップS1からステップS4と同様であるので、説明を簡略化または省略する。図5のステップS2で人検知器39が在状態を検知した後ステップS3でUV照射がON状態で送風がON状態となった場合に、ステップS3からステップS5へ処理が進む。ステップS5で、コントローラ22は、人検知器39が在状態を検知したかどうかを判断する。人検知器39が在状態を検知しない場合、すなわち、人検知器39が不在状態を検知した場合には、ステップS5からステップS6へ処理が進む。ステップS6で、コントローラ22は、UV照射器23のUV照射をOFF状態とし、殺菌モード単独運転時には合わせて電動送風機10の送風をOFF状態とする。このように、在状態を検知し、UV照射ONとなり、その後不在状態が検知された場合には、所定の時間経過後にUV照射OFFとする。このようにすることで、在状態の間に室内空間の空気を殺菌しきれなかった場合でも、不在時に殺菌を所定時間続行することで、衛生性を高めることができる。なお、殺菌モード単独運転時には、UV照射に合わせて送風のON-OFFが実施されることが望ましい。 FIG. 5 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment. Steps S1 to S4 in FIG. 5 are the same as steps S1 to S4 in FIG. 4, so the description is simplified or omitted. When the presence of the human detector 39 is detected in step S2 of FIG. 5 and the UV irradiation is turned ON and the air blowing is turned ON in step S3, the process proceeds from step S3 to step S5. At step S5, the controller 22 determines whether the human detector 39 has detected the presence state. When the human detector 39 does not detect the presence state, that is, when the human detector 39 detects the absence state, the process proceeds from step S5 to step S6. In step S6, the controller 22 turns off the UV irradiation of the UV irradiator 23, and also turns off the blowing of the electric blower 10 during the single operation in the sterilization mode. In this way, the presence state is detected, the UV irradiation is turned ON, and if the absence state is detected after that, the UV irradiation is turned OFF after a predetermined time has elapsed. By doing so, even if the air in the indoor space cannot be sterilized while the user is present, sterilization can be continued for a predetermined period of time while the user is absent, thereby improving sanitation. In the sterilization mode independent operation, it is desirable to turn the blowing air on and off in synchronization with the UV irradiation.
 体温検知器12は、室内空間にいる人の体温を検知する。コントローラ22は、室内空間にいる人の体温に応じてUV照射器23の平均出力を変えてもよい。体温が高い人は、他者に感染させる菌あるいはウイルスを保有している可能性がある。所定の体温よりも体温が高い人がいるときに、UV照射器23の平均出力を上げることで、感染リスクを低減させることができる。また、所定の体温よりも体温が高い人がいなくなった場合には、コントローラ22は、所定の時間経過後にUV照射器23の平均出力を低下させるかUV照射OFFにする。 The body temperature detector 12 detects the body temperature of people in the indoor space. The controller 22 may change the average output of the UV irradiator 23 according to the body temperature of people in the indoor space. A person with a high body temperature may carry bacteria or viruses that can infect others. By increasing the average output of the UV irradiator 23 when there is a person whose body temperature is higher than a predetermined body temperature, the risk of infection can be reduced. Further, when there is no longer a person whose body temperature is higher than the predetermined body temperature, the controller 22 reduces the average output of the UV irradiator 23 or turns off the UV irradiation after a predetermined period of time has elapsed.
 図6は、実施の形態1による送風装置1が実行する処理の例を示すフローチャートである。図6のステップS7で、体温検知器12は、室内空間にいる人の体温を検知する。ステップS7からステップS8へ処理が進む。ステップS8で、コントローラ22は、所定の体温よりも体温が高い人がいるかどうかを判断する。所定の体温よりも体温が高い人がいる場合には、ステップS8からステップS9へ処理が進む。ステップS9で、コントローラ22は、UV照射器23の平均出力を上げ、電動送風機10の送風量を上げる。ステップS9からステップS10へ処理が進む。ステップS10で、コントローラ22は、所定の体温よりも体温が高い人がまだいるかどうかを判断する。所定の体温よりも体温が高い人がいなくなった場合には、ステップS10からステップS11へ処理が進む。ステップS11で、コントローラ22は、所定の時間が経過することを待ってから、UV照射器23のUV照射をOFF状態とするか平均出力を下げ、電動送風機10の送風をOFF状態とするか送風量を下げる。このように、所定の体温より高い人がいなくなった後も所定の時間UVを照射することで、衛生性を高めることができる。 FIG. 6 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment. At step S7 in FIG. 6, the body temperature detector 12 detects the body temperature of the person in the room. Processing proceeds from step S7 to step S8. At step S8, the controller 22 determines whether there is a person whose body temperature is higher than a predetermined body temperature. If there is a person whose body temperature is higher than the predetermined body temperature, the process proceeds from step S8 to step S9. In step S<b>9 , the controller 22 increases the average output of the UV irradiator 23 and increases the blowing volume of the electric blower 10 . Processing proceeds from step S9 to step S10. At step S10, the controller 22 determines whether there are still people whose body temperature is higher than the predetermined body temperature. When there is no person whose body temperature is higher than the predetermined body temperature, the process proceeds from step S10 to step S11. In step S11, the controller 22 waits for a predetermined time to pass, then turns off the UV irradiation of the UV irradiator 23 or lowers the average output, and turns off or blows air from the electric blower 10. Decrease airflow. In this manner, by irradiating UV rays for a predetermined period of time even after there is no one with a temperature higher than a predetermined temperature, sanitation can be improved.
 所定の体温より高い人がいる場合には、人に感染する菌あるいはウイルスを空気中にばらまいている可能性があるため、UV照射器23の平均出力をUPする。体温の高い人が不在になっても所定の時間殺菌しつづけることで、衛生性が高まる。併せて送風も所定の時間続ける。これらのことで、衛生性が向上し、UV光源の劣化が抑制され、人体被ばくリスクが軽減する。なお、ステップS10で、所定の体温よりも体温が高い人がまだいる場合には、ステップS10からステップS12へ処理が進む。ステップS12で、UV照射器23の平均出力が維持され、電動送風機10の送風量が維持される。ステップS12からステップS10へ処理が戻る。 If there is a person whose body temperature is higher than a predetermined value, the average output of the UV irradiator 23 is increased because there is a possibility that bacteria or viruses that infect humans are scattered in the air. Hygiene is improved by continuing to sterilize for a predetermined time even when a person with a high body temperature is absent. At the same time, ventilation is also continued for a predetermined time. As a result, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced. If it is determined in step S10 that there are still people whose body temperature is higher than the predetermined body temperature, the process proceeds from step S10 to step S12. In step S12, the average output of the UV irradiator 23 is maintained, and the blowing volume of the electric blower 10 is maintained. The process returns from step S12 to step S10.
 人識別器13は、室内空間にいる人を識別する。体温検知器12は、人識別器13により識別された個人の体温を検知する。コントローラ22は、人識別器13により識別された個人の体温を日々記録することで、その個人の平熱を記憶してもよい。コントローラ22は、人識別器13により識別された個人の現在の体温が、その個人の平熱よりも高い場合に、UV照射器23の平均出力を上げてもよい。このように、人を特定し、普段の体温を記憶することで、普段の体温よりも高いか低いかを、より正確に判断できる。それゆえ、衛生性が向上し、UV光源の劣化が抑制され、人体被ばくリスクが軽減する。 The human identifier 13 identifies a person in the indoor space. Body temperature detector 12 detects the body temperature of the individual identified by person identifier 13 . The controller 22 may memorize the normal body temperature of the individual identified by the person identifier 13 by daily recording the body temperature of the individual. The controller 22 may increase the average power of the UV irradiator 23 if the current body temperature of the individual identified by the person identifier 13 is higher than that individual's normal body temperature. In this way, by identifying a person and memorizing their normal body temperature, it is possible to more accurately determine whether the body temperature is higher or lower than the normal body temperature. Therefore, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced.
 人識別器13は、人を識別する方法として、顔あるいは体形等の特徴を識別または記録をしておいてもよい。また、人識別器13は、社員証、名刺、名札等を識別または記録しておいてもよい。また、人識別器13は、識別するためのバーコードまたは二次元コードなどの模様、識別物を記録してもよい。例えば、社員証、名刺、名札等にバーコードまたは二次元コード等の模様があれば、人識別器13は、その人を識別できる。コントローラ22は、識別した人の体温が過去に識別したときの体温と比べて高いかどうかを判断する。 The human identifier 13 may identify or record features such as a face or body shape as a method of identifying a person. In addition, the person identification device 13 may identify or record an employee ID card, a business card, a name tag, or the like. Also, the person identifier 13 may record a pattern such as a bar code or two-dimensional code for identification, or an identifier. For example, if an employee ID card, business card, name tag, or the like has a pattern such as a bar code or two-dimensional code, the person identifier 13 can identify the person. The controller 22 determines whether the body temperature of the identified person is higher than the body temperature when identified in the past.
 図7は、実施の形態1による送風装置1が実行する処理の例を示すフローチャートである。図7のステップS13で、人識別器13は、室内に人がいるかどうかを判断する。室内に人がいる場合には、ステップS13からステップS14へ処理が進む。ステップS14で、人識別器13は、室内にいる人が誰であるか特定できるかどうかを判断する。室内にいる人が誰であるか特定できる場合には、ステップS14からステップS15へ処理が進む。ステップS15で、コントローラ22は、特定された個人の現在の体温が、その個人の普段の体温よりも高いかどうかを判断する。特定された個人の現在の体温が、その個人の普段の体温よりも高い場合には、ステップS15からステップS16へ処理が進む。ステップS16で、コントローラ22は、UV照射器23の平均出力を上げ、電動送風機10の送風量を上げる。普段よりも体温が高い人は、ウイルスに感染している場合がある。そのような人がいる場合にUV照射器23の平均出力を上げることで、室内を清浄化し、周囲の人への感染を抑制することができる。ステップS14で特定された個人の現在の体温が、その個人の普段の体温よりも高くない場合には、ステップS15からステップS17へ処理が進む。ステップS17で、コントローラ22は、所定の時間が経過することを待ってから、UV照射器23のUV照射をOFF状態とするか平均出力を下げ、電動送風機10の送風をOFF状態とするか送風量を下げる。 FIG. 7 is a flow chart showing an example of processing executed by the blower device 1 according to the first embodiment. At step S13 in FIG. 7, the human identifier 13 determines whether or not there is a person in the room. If there is a person in the room, the process proceeds from step S13 to step S14. At step S14, the person identifier 13 determines whether or not the person in the room can be identified. If the person in the room can be identified, the process proceeds from step S14 to step S15. At step S15, the controller 22 determines whether the identified individual's current body temperature is higher than the individual's normal body temperature. If the identified individual's current body temperature is higher than the individual's usual body temperature, processing proceeds from step S15 to step S16. In step S<b>16 , the controller 22 increases the average output of the UV irradiator 23 and increases the blowing volume of the electric blower 10 . A person with a higher than normal body temperature may be infected with the virus. By increasing the average output of the UV irradiator 23 when such people are present, it is possible to clean the room and suppress infection to the surrounding people. If the current body temperature of the individual identified in step S14 is not higher than the individual's usual body temperature, processing proceeds from step S15 to step S17. In step S17, the controller 22 waits for a predetermined time to pass, then turns off the UV irradiation of the UV irradiator 23 or lowers the average output, and turns off or blows air from the electric blower 10. Decrease airflow.
 コントローラ22は、人検知器39の検知結果が在状態から不在状態に変わるとUV照射器23の平均出力を上げるように構成されていてもよい。人検知器39が在人を検知した後に人検知器39が不在を検知した場合に、所定の時間経過後に、コントローラ22がUV照射器23の平均出力を上げてもよい。不在時にUV照射器23の平均出力を上げることで、人体への被曝リスクを抑えつつ、短時間で殺菌ができる。所定の時間殺菌した後、コントローラ22は、UV照射器23の平均出力を下げる。以上のようにすることで、衛生性が向上し、UV光源の劣化が抑制され、人体被ばくリスクが軽減する。 The controller 22 may be configured to increase the average output of the UV irradiator 23 when the detection result of the human detector 39 changes from the presence state to the absence state. When the human detector 39 detects the presence of a person and then detects the absence of a person, the controller 22 may increase the average output of the UV irradiator 23 after a predetermined period of time has elapsed. By increasing the average output of the UV irradiator 23 when the user is absent, sterilization can be performed in a short time while suppressing the risk of exposure to the human body. After sterilizing for a predetermined period of time, controller 22 reduces the average power of UV irradiator 23 . By doing so, sanitation is improved, deterioration of the UV light source is suppressed, and the risk of human exposure to radiation is reduced.
 図8は、実施の形態1による送風装置1が実行する処理の例を示すフローチャートである。図9は、図8のフローチャートが実行されたときの、UV照射器23の平均出力の変化の例及び電動送風機10の送風量の変化の例を示すタイムチャートである。 FIG. 8 is a flowchart showing an example of processing executed by the blower device 1 according to the first embodiment. FIG. 9 is a time chart showing an example of changes in the average output of the UV irradiator 23 and an example of changes in the blowing volume of the electric blower 10 when the flowchart of FIG. 8 is executed.
 図8のステップS18で、人検知器39が室内の在人を確認すると、ステップS18からステップS19へ処理が進む。ステップS19で、UV照射器23によるUV照射と、電動送風機10による送風が行われる。人がいるときは、安全重視とし、コントローラ22は、UV照射器23の平均出力を低めとし、電動送風機10による送風量を高めにしてもよい。ステップS19からステップS20へ処理が進む。ステップS20で、人検知器39が室内の不在を確認すると、ステップS20からステップS21へ処理が進む。ステップS21で、コントローラ22は、UV照射器23の平均出力を上げ、電動送風機10による送風量を上げる。このように、人がいなくなったときには、コントローラ22は、殺菌力を重視した制御を行う。 At step S18 in FIG. 8, when the human detector 39 confirms the existence of a person in the room, the process proceeds from step S18 to step S19. In step S19, UV irradiation by the UV irradiator 23 and air blowing by the electric blower 10 are performed. When people are present, safety is emphasized, and the controller 22 may lower the average output of the UV irradiator 23 and increase the amount of air blown by the electric blower 10 . Processing proceeds from step S19 to step S20. In step S20, when the human detector 39 confirms that no one is in the room, the process proceeds from step S20 to step S21. In step S<b>21 , the controller 22 increases the average output of the UV irradiator 23 and increases the amount of air blown by the electric blower 10 . In this way, when the person is gone, the controller 22 performs control with an emphasis on sterilization power.
 ステップS21からステップS22へ処理が進む。ステップS22で、コントローラ22は、所定の時間が経過したかどうかを判断する。所定の時間が経過すると、ステップS22からステップS23へ処理が進む。ステップS23で、コントローラ22は、UV照射器23の平均出力を下げ、電動送風機10による送風量を下げる。ステップS23からステップS24へ処理が進む。ステップS24で、コントローラ22は、所定の時間が経過したかどうかを再び判断する。所定の時間が経過すると、ステップS24からステップS25へ処理が進む。ステップS25で、コントローラ22は、UV照射器23の平均出力を下げ、電動送風機10による送風量を下げる。このように、人がいなくなった後、時間の経過に応じて、UV照射器23の平均出力を下げ、電動送風機10による送風量を下げることで、UV光源の寿命を延ばせる。本開示では、電動送風機10による送風量を単に「風量」と称する場合がある。 The process proceeds from step S21 to step S22. At step S22, the controller 22 determines whether a predetermined period of time has elapsed. After the predetermined time has passed, the process proceeds from step S22 to step S23. In step S<b>23 , the controller 22 reduces the average output of the UV irradiator 23 and reduces the amount of air blown by the electric blower 10 . Processing proceeds from step S23 to step S24. At step S24, the controller 22 again determines whether the predetermined time has elapsed. After a predetermined period of time has elapsed, the process proceeds from step S24 to step S25. In step S<b>25 , the controller 22 reduces the average output of the UV irradiator 23 and reduces the amount of air blown by the electric blower 10 . In this way, the life of the UV light source can be extended by lowering the average output of the UV irradiator 23 and the amount of air blown by the electric blower 10 over time after the person is gone. In the present disclosure, the amount of air blown by the electric blower 10 may be simply referred to as “air volume”.
 図8及び図9の制御によれば、UVが本体筐体2の外に漏れた場合の人体への影響を抑えつつ、在状態から不在状態になった際にUV照射器23の平均出力及び電動送風機10の風量を上げることで、衛生性を高めることが可能となる。上記のとおり、不在状態が所定の時間続いた場合には、UV照射器23の平均出力を低下させたり電動送風機10の風量を低下させても良い。UV照射器23の平均出力の低下、及び、風量の低下については、一気に低下させても良く、時間経過に併せて徐々に低下させてもよく、段階的に低下させてもよい。また、UV照射器23の平均出力と風量は必ずしも同時に上げ下げする必要はなく、タイミングが異なっていてもよい。また、UV照射器23の平均出力を上げて風量は低下させたり、UV照射器23の平均出力を下げて風量は上げたりする等、UV照射器23の平均出力と風量の上げ下げの方向は異なっていてもよい。例えば、UV照射器23の平均出力を下げつつ、風量を上げることで、人への安全性を確保しつつ、殺菌性能を維持または向上させることも可能である。風量を低下させつつ、UV照射器23の平均出力を上げることで、静音にしつつ、殺菌性能を維持または向上させることができる。 According to the control of FIGS. 8 and 9, while suppressing the influence on the human body when UV leaks out of the main body housing 2, the average output of the UV irradiator 23 and the By increasing the air volume of the electric blower 10, sanitation can be improved. As described above, when the absent state continues for a predetermined time, the average output of the UV irradiator 23 may be decreased or the air volume of the electric blower 10 may be decreased. The reduction in the average output of the UV irradiator 23 and the reduction in the air volume may be reduced all at once, may be gradually reduced over time, or may be reduced in stages. Moreover, the average output of the UV irradiator 23 and the air volume do not necessarily need to be raised and lowered at the same time, and the timing may be different. In addition, the average output of the UV irradiator 23 and the air volume are increased and decreased in different directions, such as increasing the average output of the UV irradiator 23 to decrease the air volume, or decreasing the average output of the UV irradiator 23 to increase the air volume. may be For example, by increasing the air volume while decreasing the average output of the UV irradiator 23, it is possible to maintain or improve the sterilization performance while ensuring safety for humans. By increasing the average output of the UV irradiator 23 while decreasing the air volume, it is possible to maintain or improve the sterilization performance while reducing the noise.
 図9において、UV照射器23の平均出力と、風量とのそれぞれは、「a」、「b」、「c」、「d」、「e」、「f」、「g」、「h」、「i」、「j」、「k」、「m」、「n」で示すように、変化しうる。 In FIG. 9, the average output of the UV irradiator 23 and the air volume are respectively "a", "b", "c", "d", "e", "f", "g", and "h". , 'i', 'j', 'k', 'm', 'n'.
 汚染度合検知推定器11は、室内空間の空気の汚染度合を検知または推定する。コントローラ22は、当該汚染度合に応じてUV照射器23の平均出力を変えてもよい。汚染度合検知推定器11は、例えば室内にいる人の数を検知してもよいし、室内の二酸化炭素濃度を検知してもよい。汚染度合検知推定器11は、例えば、カメラ、サーモパイル、熱検知センサ、二酸化炭素濃度検知センサ等でもよい。例えば、室内空間の人数が多い場合には、汚染度合検知推定器11は、汚染度合が高いと検知するか、汚染度合が高くなると推定する。汚染度合検知推定器11は、二酸化炭素濃度が高い場合には汚染度合が高いと判断する。汚染度合検知推定器11が、汚染度合が高いと検知するか、汚染度合が高くなると推定すると、コントローラ22は、UV照射器23の平均出力を高くするよう制御する。反対に、汚染度合検知推定器11が、汚染度合が低いと検知するか、汚染度合が低くなると推定すると、コントローラ22は、UV照射器23の平均出力を低くするよう制御する。また、UV照射器23の平均出力に応じて風量を変化させてもよい。室内の人数が多い場合、あるいは室内の二酸化炭素濃度が高い場合には、ウイルス感染のリスクが高くなる。二酸化炭素濃度が高いことは、室内の人の数が多いことに相当する。室内の人数が多いと判断した場合にUV照射器23の平均出力を上げることで、室内空気を清潔にできる。UV照射器23の平均出力を上げる際に併せて風量を大きくすることで、殺菌できる空気の量が多くなり、殺菌効率をさらに高めることができる。 The contamination degree detection estimator 11 detects or estimates the degree of contamination of the air in the indoor space. The controller 22 may change the average output of the UV irradiator 23 according to the degree of contamination. The contamination level detection estimator 11 may detect, for example, the number of people in the room, or may detect the carbon dioxide concentration in the room. The contamination degree detection estimator 11 may be, for example, a camera, a thermopile, a heat detection sensor, a carbon dioxide concentration detection sensor, or the like. For example, when there are many people in the indoor space, the contamination level detection and estimator 11 detects that the contamination level is high, or estimates that the contamination level will be high. The contamination level detection estimator 11 determines that the contamination level is high when the carbon dioxide concentration is high. When the contamination level detection estimator 11 detects that the contamination level is high or estimates that the contamination level is high, the controller 22 controls the average output of the UV irradiator 23 to be increased. Conversely, when the contamination level detection estimator 11 detects that the contamination level is low or estimates that the contamination level is low, the controller 22 controls the average output of the UV irradiator 23 to be low. Also, the air volume may be changed according to the average output of the UV irradiator 23 . The risk of viral infection increases when there are many people in the room or when the carbon dioxide concentration in the room is high. A high carbon dioxide concentration corresponds to a large number of people in the room. The indoor air can be made clean by increasing the average output of the UV irradiator 23 when it is determined that there are many people in the room. By increasing the air volume while increasing the average output of the UV irradiator 23, the amount of air that can be sterilized increases, and the sterilization efficiency can be further enhanced.
 UV照射器23の少なくとも一部は、内部風路5に露出していてもよい。好ましくはUV照射器23のヒートシンク28あるいは基板27が内部風路5に露出する。温度検知器14は、UV照射器23の温度を検知する。温度検知器14は、UV照射器23の特に基板27の温度あるいはUV光源の温度を検知する。 At least part of the UV irradiator 23 may be exposed to the internal air passage 5. Preferably, the heat sink 28 or substrate 27 of the UV irradiator 23 is exposed to the internal air passage 5 . A temperature detector 14 detects the temperature of the UV irradiator 23 . The temperature detector 14 detects the temperature of the UV irradiator 23, particularly the substrate 27 or the temperature of the UV light source.
 風向変更器15は、内部風路5の気流AFの向きを変更する。図10は、実施の形態1による送風装置1を示す断面側面図である。図10は、気流AFがUV照射器23に図1のときよりも強く当たるように、風向変更器15が内部風路5の気流AFの向きを変更した状態を示している。 The air direction changer 15 changes the direction of the airflow AF in the internal air passage 5. 10 is a cross-sectional side view showing the blower device 1 according to Embodiment 1. FIG. FIG. 10 shows a state in which the airflow direction changer 15 changes the direction of the airflow AF in the internal air passage 5 so that the airflow AF hits the UV irradiator 23 more strongly than in FIG.
 コントローラ22は、UV照射器23の温度に応じて風向変更器15により内部風路5の気流AFの向きを変更してもよい。これにより、UV照射器23の温度上昇をより確実に抑制できるので、UV光源の寿命を延ばせる。 The controller 22 may change the direction of the airflow AF in the internal air passage 5 by using the air direction changer 15 according to the temperature of the UV irradiator 23 . As a result, the temperature rise of the UV irradiator 23 can be suppressed more reliably, and the life of the UV light source can be extended.
 温度検知器14は、例えば、ICセンサ、サーミスタ、RTD、熱電対などを用いたものでもよい。風向変更器15は、吸気口6から流入した気流の風向を変更可能に設けられてもよい。風向変更器15は、例えば、互いに平行に配置された複数の薄板状の部材を有し、それらの薄板状の部材の向きを変えるものでもよい。図示の例において、風向変更器15は、吸気口6の付近に配置されている。風向変更器15の配置は、吸気口6付近に限定されない。UV照射器23に対する風の当たり方が変わるような風向変更器15の構成と、風向変更器15の配置であれば、いかなる構成及び配置でもよい。 The temperature detector 14 may use, for example, an IC sensor, a thermistor, an RTD, a thermocouple, or the like. The wind direction changer 15 may be provided so as to be able to change the direction of the airflow that has flowed in from the intake port 6 . The wind direction changer 15 may have, for example, a plurality of thin plate-like members arranged parallel to each other and change the direction of these thin plate-like members. In the illustrated example, the wind deflector 15 is arranged near the air intake 6 . The arrangement of the wind direction changer 15 is not limited to the vicinity of the intake port 6 . Any configuration and arrangement of the wind direction changer 15 may be used as long as the configuration and arrangement of the wind direction changer 15 change how the wind hits the UV irradiator 23 .
 コントローラ22は、温度検知器14の検知結果に応じて風向変更器15を制御する。コントローラ22は、温度検知器14の検知した温度が所定の温度より高い場合に風向変更器15を制御する。コントローラ22は、温度検知器14の検知した温度が所定の温度より高い場合には、温度検知器14の検知した温度が所定の温度より低い場合よりも、UV照射器23に多く風が当たるように風向変更器15を制御する。コントローラ22は、温度検知器14の検知した温度が所定の温度より高い場合には、温度検知器14の検知した温度が所定の温度より低い場合よりも、ヒートシンク28あるいは基板27に多く風が当たるように風向変更器15を制御する。気流がUV照射器23に向かうよう風向変更器15を制御してもよい。 The controller 22 controls the wind direction changer 15 according to the detection result of the temperature detector 14 . The controller 22 controls the wind direction changer 15 when the temperature detected by the temperature detector 14 is higher than a predetermined temperature. When the temperature detected by the temperature detector 14 is higher than a predetermined temperature, the controller 22 causes the UV irradiator 23 to receive more wind than when the temperature detected by the temperature detector 14 is lower than the predetermined temperature. , the wind direction changer 15 is controlled. When the temperature detected by the temperature detector 14 is higher than a predetermined temperature, the controller 22 causes more wind to hit the heat sink 28 or the substrate 27 than when the temperature detected by the temperature detector 14 is lower than the predetermined temperature. The wind direction changer 15 is controlled as follows. The air deflector 15 may be controlled to direct the airflow towards the UV irradiator 23 .
 本開示では、UV照射器23の熱が散逸する効率を「放熱効率」と称する。例として、UV照射器23に当たる風量が高いほど、放熱効率が高くなる。図11は、温度検知器14の検知結果に応じてコントローラ22が風向変更器15を制御したときの、UV照射器23の放熱効率の変化の例と、温度検知器14の検知温度の変化の例とを示すタイムチャートである。 In the present disclosure, the efficiency with which the heat of the UV irradiator 23 is dissipated is referred to as "heat dissipation efficiency". As an example, the higher the air volume hitting the UV irradiator 23, the higher the heat radiation efficiency. FIG. 11 shows an example of changes in the heat dissipation efficiency of the UV irradiator 23 and changes in the temperature detected by the temperature detector 14 when the controller 22 controls the wind direction changer 15 according to the detection result of the temperature detector 14. 4 is a time chart showing an example;
 以下、図11の例に基づいて説明する。温度検知器14の検知した温度が、時刻T1に、(第一の)所定の温度を超えると、コントローラ22は、風向変更器15を制御し、UV照射器23に風が多く当たるようにする。その後、温度検知器14の検知した温度が、時刻T2に、第二の所定の温度よりも低くなった場合には、コントローラ22は、風向変更器15を再び制御し、UV照射器23に当たる風量を低下させてもよい。第二の所定の温度は、(第一の)所定の温度よりも低い値である。時刻T2以降のUV照射器23の放熱効率は、第一の所定の温度に達する時刻T1の前の放熱効率に等しくてもよい。あるいは、時刻T2以降のUV照射器23の放熱効率は、第一の所定の温度に達する時刻T1の前の放熱効率よりも高く、かつ、第一の所定の温度に達した時刻T1から時刻T2までの間の放熱効率よりも低い値でもよい。後者の場合、UV照射器23の温度上昇をより確実に防止でき、UV光源の寿命をより確実に延ばせる。 A description will be given below based on the example of FIG. When the temperature detected by the temperature detector 14 exceeds the (first) predetermined temperature at time T1, the controller 22 controls the wind direction changer 15 so that more wind hits the UV irradiator 23. . After that, when the temperature detected by the temperature detector 14 becomes lower than the second predetermined temperature at time T2, the controller 22 controls the wind direction changer 15 again to increase the amount of air hitting the UV irradiator 23. may be lowered. The second predetermined temperature is a value lower than the (first) predetermined temperature. The heat dissipation efficiency of the UV irradiator 23 after time T2 may be equal to the heat dissipation efficiency before time T1 when the first predetermined temperature is reached. Alternatively, the heat radiation efficiency of the UV irradiator 23 after the time T2 is higher than the heat radiation efficiency before the time T1 when the first predetermined temperature is reached, and the heat radiation efficiency is higher than the heat radiation efficiency before the time T1 when the first predetermined temperature is reached. It may be a value lower than the heat dissipation efficiency up to. In the latter case, the temperature rise of the UV irradiator 23 can be more reliably prevented, and the life of the UV light source can be more reliably extended.
 コントローラ22は、温度検知器14の検知結果に応じて、電動送風機10の風量を変更してもよい。コントローラ22は、温度検知器14の検知した温度が(第一の)所定の温度より高い場合には、電動送風機10の風量を高めてもよい。また、温度検知器14の検知した温度が(第一の)所定の温度を超え、電動送風機10の風量を高めた後に、温度検知器14の検知した温度が第二の所定の温度より低くなった場合には、コントローラ22は、電動送風機10の風量を下げてもよい。このときの風量は、温度検知器14の検知した温度が第一の所定の温度に達する前の風量と同じとしてもよく、または、温度検知器14の検知した温度が第一の所定の温度に達する前の風量よりも高く、かつ、温度検知器14の検知した温度が第一の所定の温度に達した後の風量よりも低い値でもよい。後者の場合、UV照射器23の温度上昇をより確実に防止でき、UV光源の寿命をより確実に延ばせる。 The controller 22 may change the air volume of the electric blower 10 according to the detection result of the temperature detector 14. The controller 22 may increase the air volume of the electric blower 10 when the temperature detected by the temperature detector 14 is higher than the (first) predetermined temperature. Further, after the temperature detected by the temperature detector 14 exceeds the (first) predetermined temperature and the air volume of the electric blower 10 is increased, the temperature detected by the temperature detector 14 becomes lower than the second predetermined temperature. In that case, the controller 22 may reduce the air volume of the electric blower 10 . The air volume at this time may be the same as the air volume before the temperature detected by the temperature detector 14 reaches the first predetermined temperature, or the temperature detected by the temperature detector 14 may be the same as the air volume when the temperature detected by the temperature detector 14 reaches the first predetermined temperature. It may be a value that is higher than the air volume before reaching and lower than the air volume after the temperature detected by the temperature sensor 14 reaches the first predetermined temperature. In the latter case, the temperature rise of the UV irradiator 23 can be more reliably prevented, and the life of the UV light source can be more reliably extended.
 送風装置1は、UV照射器23を第一の位置と第二の位置とに移動させる移動器16を備えていてもよい。図12は、移動器16を備えた送風装置1の暖房運転時の断面側面図である。図13は、移動器16を備えた送風装置1の冷房運転時の断面側面図である。図14は、移動器16の側面図である。 The blower device 1 may include a mover 16 that moves the UV irradiator 23 between the first position and the second position. FIG. 12 is a cross-sectional side view of the air blower 1 having the mover 16 during heating operation. FIG. 13 is a cross-sectional side view of the air blower 1 having the mover 16 during cooling operation. 14 is a side view of the mover 16. FIG.
 図12のとき、UV照射器23は、第一の位置にある。第一の位置は、吸気口6から上部熱交換器4への風路にある。第一の位置は、内部風路5のうち、上部熱交換器4よりも上流の風路にある。第一の位置は、図1及び図10のUV照射器23の位置と同じ位置である。 At the time of FIG. 12, the UV irradiator 23 is at the first position. The first position is in the air path from the air intake 6 to the upper heat exchanger 4 . The first position is in the air passage upstream of the upper heat exchanger 4 in the internal air passage 5 . The first position is the same position as the UV illuminator 23 in FIGS.
 図13のとき、UV照射器23は、第二の位置にある。第二の位置は、上部熱交換器4から吹出口7への風路にある。第二の位置は、内部風路5のうち、上部熱交換器4よりも下流の風路にある。 At the time of FIG. 13, the UV irradiator 23 is at the second position. A second position is in the air path from the upper heat exchanger 4 to the outlet 7 . The second position is in the air passage downstream of the upper heat exchanger 4 in the internal air passage 5 .
 第一の位置におけるUV照射器23の放熱効率と、第二の位置におけるUV照射器23の放熱効率とは、互いに異なる値になる。例えば、第一の位置におけるUV照射器23に当たる風量と、第二の位置におけるUV照射器23に当たる風量とが異なることで、放熱効率が異なる場合もある。あるいは、第一の位置におけるUV照射器23に当たる空気の温度と、第二の位置におけるUV照射器23に当たる空気の温度とが異なることで、放熱効率が異なる場合もある。 The heat dissipation efficiency of the UV irradiator 23 at the first position and the heat dissipation efficiency of the UV irradiator 23 at the second position have different values. For example, the heat radiation efficiency may differ due to the difference in the amount of air hitting the UV irradiator 23 at the first position and the amount of air hitting the UV irradiator 23 at the second position. Alternatively, the heat dissipation efficiency may differ due to the difference in the temperature of the air hitting the UV irradiator 23 at the first position and the temperature of the air hitting the UV irradiator 23 at the second position.
 コントローラ22は、UV照射器23の温度に応じて、移動器16により、UV照射器23を第一の位置と第二の位置とに移動させてもよい。例えば、UV照射器23の温度が上がり、UV照射器23の温度が第一の所定の温度を超えた場合に、第一の位置と第二の位置とのうち、UV照射器23に風が強く当たる方の位置に、UV照射器23を移動させてもよい。これにより、放熱効率が高くなり、UV照射器23の温度上昇をより確実に防止でき、UV光源の寿命をより確実に延ばせる。図11の例と同様の考え方に基づいて、コントローラ22は、UV照射器23の温度に応じて、移動器16により、UV照射器23を、第一の位置と第二の位置との間で、移動させてもよい。 The controller 22 may move the UV irradiator 23 between the first position and the second position using the mover 16 according to the temperature of the UV irradiator 23 . For example, when the temperature of the UV irradiator 23 rises and the temperature of the UV irradiator 23 exceeds the first predetermined temperature, the wind blows to the UV irradiator 23 between the first position and the second position. The UV irradiator 23 may be moved to a position where it hits more strongly. As a result, the heat dissipation efficiency is increased, the temperature rise of the UV irradiator 23 can be more reliably prevented, and the life of the UV light source can be more reliably extended. Based on the same idea as the example of FIG. 11, the controller 22 causes the mover 16 to move the UV irradiator 23 between the first position and the second position according to the temperature of the UV irradiator 23. , may be moved.
 コントローラ22は、暖房運転のときにUV照射器23を移動器16により第一の位置に移動させ、冷房運転のときにUV照射器23を移動器16により第二の位置に移動させてもよい。暖房運転のときには、第一の位置の空気の温度が、第二の位置の空気の温度よりも低い。冷房運転のときには、第二の位置の空気の温度が、第一の位置の空気の温度よりも低い。空気の温度が低い方の位置に、UV照射器23を移動させることで、放熱効率が高くなり、UV照射器23の温度を低くでき、UV光源の寿命をより確実に延ばせる。移動のタイミングは、例えば、冷房運転と暖房運転を切り替えたタイミングでもよい。もしくは、暖房運転から冷房運転に切り替えた時は、所定の時間が経過したタイミングで、UV照射器23を移動させることが望ましい。電源OFF状態または送風運転状態から、暖房運転または冷房運転に切り替えられた場合には、即時、UV照射器23を移動してよい。但し、暖房から冷房運転に切り替えられた場合には、すぐに移動すると、移動先が高温なため、所定の時間が経過したタイミングで移動することが望ましい。 The controller 22 may move the UV irradiator 23 to the first position by the mover 16 during the heating operation, and move the UV irradiator 23 to the second position by the mover 16 during the cooling operation. . During heating operation, the temperature of the air at the first location is lower than the temperature of the air at the second location. During cooling operation, the temperature of the air at the second location is lower than the temperature of the air at the first location. By moving the UV irradiator 23 to a position where the temperature of the air is lower, the heat radiation efficiency is increased, the temperature of the UV irradiator 23 can be lowered, and the life of the UV light source can be extended more reliably. The timing of movement may be, for example, the timing of switching between cooling operation and heating operation. Alternatively, when the heating operation is switched to the cooling operation, it is desirable to move the UV irradiator 23 at the timing when a predetermined time has passed. The UV irradiator 23 may be moved immediately after switching from the power OFF state or the fan operation state to the heating operation or the cooling operation. However, when the heating mode is switched to the cooling mode, it is desirable to move after a predetermined period of time, because if the mode is switched from the heating mode to the cooling mode, the destination will be hot if the mode is moved immediately.
 移動器16によるUV照射器23の移動方向は、UV照射器23の光軸方向でもよいし、光軸に対して垂直な方向でもよい。移動器16によりUV照射器23が移動する位置は、2か所より多くてもよい。UV照射器23は、例えば、一軸に移動する。UV照射器23は、例えば、上下方向または水平方向に移動する。UV照射器23は、例えば、前後方向または左右方向に移動する。本実施の形態ではUV照射器23は上下方向に移動する。移動器16は、例えば、リニアアクチュエータ、流体圧シリンダ、ラック・アンド・ピニオン、送りねじ、リンク機構のうちの少なくとも一つを用いた構成でもよい。 The moving direction of the UV irradiator 23 by the mover 16 may be the optical axis direction of the UV irradiator 23 or the direction perpendicular to the optical axis. The position to which the UV irradiator 23 is moved by the mover 16 may be more than two. The UV irradiator 23 moves, for example, in one axis. The UV irradiator 23 moves vertically or horizontally, for example. The UV irradiator 23 moves, for example, in the front-rear direction or in the left-right direction. In this embodiment, the UV irradiator 23 moves vertically. The mover 16 may be configured using at least one of, for example, a linear actuator, a fluid pressure cylinder, a rack and pinion, a feed screw, and a link mechanism.
 送風装置1は、複数のUV照射器23を備えていてもよい。図15は、複数のUV照射器23を備えた送風装置1の暖房運転時の断面側面図である。図16は、複数のUV照射器23を備えた送風装置1の冷房運転時の断面側面図である。 The blower device 1 may include a plurality of UV irradiators 23. FIG. 15 is a cross-sectional side view of the air blower 1 having a plurality of UV irradiators 23 during heating operation. FIG. 16 is a cross-sectional side view of the air blower 1 having a plurality of UV irradiators 23 during cooling operation.
 図15及び図16の送風装置1は、複数のUV照射器23として、第一UV照射器23Aと第二UV照射器23Bとを備える。第一UV照射器23Aと第二UV照射器23Bとは同一のものであってもよい。第一UV照射器23Aと第二UV照射器23Bとは同一の光源、波長、スペック、型番等が用いられていてもよい。吸気口6から上部熱交換器4への風路に第一UV照射器23Aが配置されている。すなわち、上述した第一の位置に第一UV照射器23Aが配置されている。上部熱交換器4から吹出口7への風路に第二UV照射器23Bが配置されている。すなわち、上述した第二の位置に第二UV照射器23Bが配置されている。また、第一UV照射器23Aは、上部熱交換器8及び下部熱交換器9の少なくとも1つよりも上流側に配置される。また、第二UV照射器23Bは、上部熱交換器8及び下部熱交換器9の少なくとも1つよりも下流側に配置される。また、第一UV照射器23Aは、上部熱交換器8及び下部熱交換器9よりも上流側に配置される。また、第二UV照射器23Bは、上部熱交換器8及び下部熱交換器9よりも下流側に配置される。 15 and 16 includes a first UV irradiator 23A and a second UV irradiator 23B as the plurality of UV irradiators 23. The first UV irradiator 23A and the second UV irradiator 23B may be the same. The same light source, wavelength, specifications, model number, etc. may be used for the first UV irradiator 23A and the second UV irradiator 23B. A first UV irradiator 23A is arranged in the air passage from the intake port 6 to the upper heat exchanger 4 . That is, the first UV irradiator 23A is arranged at the first position described above. A second UV irradiator 23B is arranged in the air passage from the upper heat exchanger 4 to the outlet 7 . That is, the second UV irradiator 23B is arranged at the second position described above. Also, the first UV irradiator 23A is arranged upstream of at least one of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the second UV irradiator 23B is arranged downstream of at least one of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the first UV irradiator 23A is arranged upstream of the upper heat exchanger 8 and the lower heat exchanger 9 . Also, the second UV irradiator 23B is arranged downstream of the upper heat exchanger 8 and the lower heat exchanger 9 .
 コントローラ22は、暖房運転のときに第一UV照射器23Aを点灯させて第二UV照射器23Bを消灯し、冷房運転のときに第一UV照射器23Aを消灯させて第二UV照射器23Bを点灯させるように構成されていてもよい。暖房運転のときには、第一UV照射器23Aの位置の空気の温度が、第二UV照射器23Bの位置の空気の温度よりも低い。冷房運転のときには、第二UV照射器23Bの位置の空気の温度が、第一UV照射器23Aの位置の空気の温度よりも低い。第一UV照射器23A及び第二UV照射器23Bのうち、空気の温度が低い方のUV照射器23を点灯させ、空気の温度が高い方のUV照射器23を消灯させることで、放熱効率が高くなり、UV照射器23の温度を低くでき、UV光源の寿命をより確実に延ばせる。また、すでに記載のとおり、「UV照射器23の消灯」とはUV照射器23の平均出力がゼロになることだけでなく、「UV照射がON状態」または「UV照射器23が点灯」のときよりも低い平均出力でUV照射器23が動作することも包含する。すなわち、第一UV照射器23A及び第二UV照射器23Bをともに点灯させてもよい。この場合、空気の温度が高い方のUV照射器23の平均出力を、空気の温度が低い方のUV照射器23の平均出力よりも低くすることで、放熱効率が高くなり、UV照射器23の温度を低くでき、UV光源の寿命をより確実に延ばせる。 The controller 22 turns on the first UV irradiation device 23A and turns off the second UV irradiation device 23B during the heating operation, and turns off the first UV irradiation device 23A and turns off the second UV irradiation device 23B during the cooling operation. may be configured to light up. During heating operation, the temperature of the air at the position of the first UV irradiator 23A is lower than the temperature of the air at the position of the second UV irradiator 23B. During cooling operation, the temperature of the air at the position of the second UV irradiator 23B is lower than the temperature of the air at the position of the first UV irradiator 23A. Of the first UV irradiator 23A and the second UV irradiator 23B, the UV irradiator 23 with the lower air temperature is turned on, and the UV irradiator 23 with the higher air temperature is turned off. is increased, the temperature of the UV irradiator 23 can be lowered, and the life of the UV light source can be extended more reliably. Further, as already described, "the UV irradiation device 23 is turned off" means not only that the average output of the UV irradiation device 23 becomes zero, but also that "the UV irradiation is in an ON state" or "the UV irradiation device 23 is turned on". It also includes operating the UV irradiator 23 at a lower average power than when. That is, both the first UV irradiator 23A and the second UV irradiator 23B may be lit. In this case, by making the average output of the UV irradiator 23 with the higher air temperature lower than the average output of the UV irradiator 23 with the lower air temperature, the heat dissipation efficiency is increased, and the UV irradiator 23 temperature can be lowered, and the life of the UV light source can be extended more reliably.
 本開示による送風装置1は、内部風路5に配置された熱源(図示省略)を備えていてもよい。熱源は、例えば、電熱器、電熱線、発熱体等でもよい。熱源に熱交換器を含んでもよい。熱源を備えた送風装置1は、熱源により加熱された温風を吹出口7から吹き出す温風運転を実施してもよい。コントローラ22は、上記の暖房運転のときの制御に替えて、温風運転のときに、上記と同一または類似の制御を実行してもよい。熱源より下流または風下は空気の温度が高くなる。また、第二の位置の空気の温度が、第一の位置の空気の温度よりも高い。また、熱源より下流または風下の第二の位置の空気の温度が、熱源より上流または風上の第一の位置の空気の温度よりも高い。温風運転のときに、コントローラ22は、UV照射器23を移動器16により第一の位置に移動させてもよい。また、温風運転のときに、コントローラ22は、第一UV照射器23Aを点灯させて第二UV照射器23Bを消灯させるように構成されていてもよい。また、温風運転のときに、コントローラ22は、第一UV照射器23Aの平均出力よりも第二UV照射器23Bの平均出力を低くするか、または、第二UV照射器23Bを消灯させるように構成されていてもよい。これにより放熱効率が高くなり、UV照射器23、第一UV照射器23A、第二UV照射器23Bの温度を低くでき、UV光源の寿命をより確実に延ばせる。 The blower device 1 according to the present disclosure may include a heat source (not shown) arranged in the internal air passage 5 . The heat source may be, for example, an electric heater, a heating wire, a heating element, or the like. The heat source may include a heat exchanger. The air blower 1 provided with a heat source may carry out a hot air operation in which hot air heated by the heat source is blown out from the outlet 7 . The controller 22 may perform the same or similar control as described above during the warm air operation instead of the above control during the heating operation. The temperature of the air is higher downstream or downwind from the heat source. Also, the temperature of the air at the second location is higher than the temperature of the air at the first location. Also, the temperature of the air at a second location downstream or downwind from the heat source is higher than the temperature of the air at a first location upstream or upwind from the heat source. During hot air operation, the controller 22 may move the UV irradiator 23 to the first position by the mover 16 . Further, the controller 22 may be configured to turn on the first UV irradiator 23A and turn off the second UV irradiator 23B during the warm air operation. Further, during hot air operation, the controller 22 makes the average output of the second UV irradiator 23B lower than the average output of the first UV irradiator 23A, or turns off the second UV irradiator 23B. may be configured to As a result, the heat dissipation efficiency is increased, the temperature of the UV irradiator 23, the first UV irradiator 23A, and the second UV irradiator 23B can be lowered, and the life of the UV light source can be extended more reliably.
 本開示による送風装置1は、内部風路5に配置された冷源(図示省略)を備えていてもよい。冷源は熱源と対になる言葉と定義する。冷源は、例えば、氷、ドライアイス、水、保冷剤、冷却材等を備えたものでもよいし、ペルチェ素子等により電気的に冷却されるものでもよい。冷源に熱交換器を含んでもよい。冷源を備えた送風装置1は、冷源により冷却された冷風を吹出口7から吹き出す冷風運転を実施してもよい。コントローラ22は、上記の冷房運転のときの制御に替えて、冷風運転のときに、上記と同一または類似の制御を実行してもよい。冷源より下流または風下は空気の温度が低くなる。また、第二の位置の空気の温度が、第一の位置の空気の温度よりも低い。また、冷源より下流または風下の第二の位置の空気の温度が、冷源より上流または風上の第一の位置の空気の温度よりも低い。冷風運転のときに、コントローラ22は、UV照射器23を移動器16により第二の位置に移動させてもよい。また、冷風運転のときに、コントローラ22は、第一UV照射器23Aを消灯させて第二UV照射器23Bを点灯させるように構成されていてもよい。これにより放熱効率が高くなり、UV照射器23、第一UV照射器23A、第二UV照射器23Bの温度を低くでき、UV光源の寿命をより確実に延ばせる。 The blower device 1 according to the present disclosure may include a cold source (not shown) arranged in the internal air passage 5 . A cold source is defined as a word paired with a heat source. The cold source may include, for example, ice, dry ice, water, a refrigerant, a coolant, or the like, or may be electrically cooled by a Peltier element or the like. The cold source may include a heat exchanger. The air blower 1 provided with a cold source may perform cold air operation in which cool air cooled by the cold source is blown out from the outlet 7 . The controller 22 may perform the same or similar control as described above during cooling operation instead of the above control during cooling operation. The temperature of the air is lower downstream or downwind from the cold source. Also, the temperature of the air at the second location is lower than the temperature of the air at the first location. Also, the temperature of the air at a second location downstream or downwind from the cold source is lower than the temperature of the air at a first location upstream or upwind from the cold source. During cold air operation, controller 22 may move UV irradiator 23 to a second position by mover 16 . Further, the controller 22 may be configured to turn off the first UV irradiator 23A and turn on the second UV irradiator 23B during cold wind operation. As a result, the heat dissipation efficiency is increased, the temperature of the UV irradiator 23, the first UV irradiator 23A, and the second UV irradiator 23B can be lowered, and the life of the UV light source can be extended more reliably.
 また、本開示による送風装置1は、複数の温度検知器14が備えていてもよい。例えば、送風装置1が備える複数の温度検知器14が、第一UV照射器23Aの温度、及び、第二UV照射器23Bの温度を検知してもよい。送風装置1は、第一UV照射器23Aの温度を検知する第一温度検知器14Aと、第二UV照射器23Bの温度を検知する第二温度検知器14Bとを備えていてもよい。 Also, the blower device 1 according to the present disclosure may be provided with a plurality of temperature detectors 14 . For example, a plurality of temperature detectors 14 included in the blower 1 may detect the temperature of the first UV irradiator 23A and the temperature of the second UV irradiator 23B. The air blower 1 may include a first temperature detector 14A that detects the temperature of the first UV irradiator 23A and a second temperature detector 14B that detects the temperature of the second UV irradiator 23B.
 1つまたは複数の温度検知器14の検知結果に応じて、既に記載した技術の組合せにより、第一UV照射器23Aの平均出力、及び、第二UV照射器23Bの平均出力をコントローラ22が制御してもよい。この場合、コントローラ22は、相対的または絶対的に空気の温度が高い方のUV照射器23の平均出力を、他方のUV照射器23の平均出力よりも低くする。または、コントローラ22は、温度検知器14が検知した温度が、相対的または絶対的に高い方のUV照射器23の平均出力を、他方のUV照射器23の平均出力よりも低くする。相対的とは例えば、第一温度検知器14Aが検知した第一UV照射器23Aの温度と、第二温度検知器14Bが検知した第二UV照射器23Bの温度と、を比べた場合に、その温度差が所定の値より高いかどうか、または温度の比がどの程度かで判断する。 The controller 22 controls the average output of the first UV irradiator 23A and the average output of the second UV irradiator 23B according to the detection results of one or more temperature detectors 14, using a combination of the techniques described above. You may In this case, the controller 22 makes the average output of the UV irradiator 23 with relatively or absolutely higher air temperature lower than the average output of the other UV irradiator 23 . Alternatively, the controller 22 lowers the average output of the UV irradiator 23 whose temperature detected by the temperature detector 14 is relatively or absolutely higher than the average output of the other UV irradiator 23 . For example, when comparing the temperature of the first UV irradiator 23A detected by the first temperature detector 14A and the temperature of the second UV irradiator 23B detected by the second temperature detector 14B, It is determined whether the temperature difference is higher than a predetermined value or by what the temperature ratio is.
 コントローラ22は、暖房運転、冷房運転、温風運転、または冷風運転のときに、第二温度検知器14Bが検知した第二UV照射器23Bの温度に応じて、第二UV照射器23Bの平均出力を変化させるように構成されていてもよい。あるいは、コントローラ22は、暖房運転、冷房運転、温風運転、または冷風運転のときに、第二温度検知器14Bが検知した第二UV照射器23Bの温度と、第一温度検知器14Aが検知した第一UV照射器23Aの温度とに応じて、第二UV照射器23Bの平均出力と、第一UV照射器23Aの平均出力とのうちの少なくとも一方の平均出力を変化させるように構成されていてもよい。 The controller 22 determines the average temperature of the second UV irradiator 23B according to the temperature of the second UV irradiator 23B detected by the second temperature detector 14B during heating operation, cooling operation, hot air operation, or cold air operation. It may be configured to vary the output. Alternatively, the controller 22 detects the temperature of the second UV irradiator 23B detected by the second temperature detector 14B and the temperature of the second UV irradiator 23B detected by the first temperature detector 14A during heating operation, cooling operation, hot air operation, or cold air operation. The average output of at least one of the average output of the second UV irradiator 23B and the average output of the first UV irradiator 23A is changed according to the temperature of the first UV irradiator 23A. may be
 上述したこれらの制御によれば、放熱効率が高くなり、UV照射器23の温度を低くでき、UV光源の寿命をより確実に延ばせる。また、コントローラ22は、第一UV照射器23Aの平均出力、及び、第二UV照射器23Bの平均出力を制御した場合において、一方の平均出力を低くしたときに、他方の平均出力を高くしてもよい。好ましくは、コントローラ22は、UV光源の寿命に影響が少ない程度で他方の平均出力を高くすることが望ましい。これにより、殺菌性能の低下を抑えられる。 According to these controls described above, the heat dissipation efficiency is increased, the temperature of the UV irradiator 23 can be lowered, and the life of the UV light source can be more reliably extended. Further, when the controller 22 controls the average output of the first UV irradiator 23A and the average output of the second UV irradiator 23B, when the average output of one is lowered, the average output of the other is raised. may Preferably, the controller 22 increases the average power of the other while having less impact on the life of the UV light source. As a result, deterioration in sterilization performance can be suppressed.
 また、冷房運転、冷風運転、暖房運転、または温風運転から他の運転に切り替えた場合、あるいは、温度検知器14、第一温度検知器14A、第二温度検知器14Bの検知結果が変わった場合には、コントローラ22は、適宜、UV照射器23、第一UV照射器23A、または第二UV照射器23Bの平均出力を変更してよい。これにより、UV光源の寿命をより確実に延ばせる。 Also, when switching from cooling operation, cold air operation, heating operation, or hot air operation to another operation, or when the detection result of the temperature detector 14, the first temperature detector 14A, or the second temperature detector 14B changes. In some cases, the controller 22 may change the average output of the UV irradiator 23, the first UV irradiator 23A, or the second UV irradiator 23B accordingly. As a result, the life of the UV light source can be extended more reliably.
 以下、本実施の形態の送風装置1について、特にUV照射器23を中心に、さらに説明する。UV照射器23は、光を生成する光源24を備える。UV照射器23は、光源24が生成した光を内部風路5に照射する。 Below, the blower device 1 of the present embodiment will be further described, particularly focusing on the UV irradiator 23 . The UV irradiator 23 comprises a light source 24 that produces light. The UV irradiator 23 irradiates the internal air passage 5 with the light generated by the light source 24 .
 UV照射器23は紫外線を照射する。UVとはUltraVioletの略である。すなわちUV照射器23とは紫外線を照射する装置である。一般に紫外線は可視光線よりも波長が短い光の総称であり、およそ1nmから400nmの波長を持つ電磁波である。また、一般に100nmから280nmの波長域はUVCと称され、280nmから315nmの波長域はUVBと称され、315nmから400nmの波長域はUVAと称される。 The UV irradiator 23 irradiates ultraviolet rays. UV is an abbreviation for Ultra Violet. That is, the UV irradiator 23 is a device that irradiates ultraviolet rays. In general, ultraviolet light is a general term for light with a shorter wavelength than visible light, and is an electromagnetic wave with a wavelength of approximately 1 nm to 400 nm. Generally, the wavelength range from 100 nm to 280 nm is called UVC, the wavelength range from 280 nm to 315 nm is called UVB, and the wavelength range from 315 nm to 400 nm is called UVA.
 本開示において、「微生物」とは、細菌とウイルスとの少なくとも一方を含む。微生物には、人体に有害なものがある。紫外線は微生物に作用する。本開示において、紫外線による殺菌とは、光エネルギーにより微生物のデオキシリボ核酸(deoxyribo nucleic acid、以下「DNA」と称す)そのものに作用することで、微生物をそれ以上増殖させない不活化な状態にすること、あるいは微生物の数を減らすことと定義される。また、本開示では、不活化≒殺菌として表現することがある。一般に、UVAよりもUVBの方が微生物を不活化させる能力が高く、UVBよりもUVCの方が微生物を不活化させる能力がさらに高いといわれている。特に、UVCの波長はDNAを直接破壊する能力が高く、これにより微生物を不活化する速度が速い。さらに、UVC領域の中で、特に200nm~285nmの波長が、殺菌力が高い。より具体的には222nm、260nmを中心とした波長の殺菌力が高いといわれている。 In the present disclosure, "microorganisms" include at least one of bacteria and viruses. Some microorganisms are harmful to humans. Ultraviolet rays act on microorganisms. In the present disclosure, sterilization by ultraviolet light means that the deoxyribonucleic acid (hereinafter referred to as "DNA") of microorganisms is acted upon by light energy to render the microorganisms in an inactivated state where they cannot proliferate any more. Or defined as reducing the number of microorganisms. In addition, in the present disclosure, it may be expressed as inactivation≈sterilization. It is generally said that UVB has a higher ability to inactivate microorganisms than UVA, and UVC has an even higher ability to inactivate microorganisms than UVB. In particular, UVC wavelengths have a high ability to directly destroy DNA, thereby inactivating microorganisms at a high rate. Furthermore, in the UVC region, wavelengths of 200 nm to 285 nm have particularly high sterilizing power. More specifically, it is said to have high sterilizing power at wavelengths centered around 222 nm and 260 nm.
 UV照射器23の主波長は、紫外線である。換言するとUV照射器23が照射する光線のうち、出力すなわち放射強度が最も高い波長は紫外線である。本実施の形態であれば、UV照射器23から内部風路5の表面に紫外線を照射することにより、内部風路5の表面に付着している微生物を殺菌できる。 The dominant wavelength of the UV irradiator 23 is ultraviolet rays. In other words, among the rays emitted by the UV irradiator 23, the wavelength with the highest output, ie, the highest radiation intensity, is ultraviolet rays. According to the present embodiment, by irradiating the surface of the internal air passage 5 with ultraviolet rays from the UV irradiator 23, the microorganisms adhering to the surface of the internal air passage 5 can be sterilized.
 本実施の形態におけるUV照射器23の光源24は、発光ダイオード(LED)である。換言すると、光源24は、紫外線を生成するLEDであり、以下UV-LEDと称される。UV-LEDは水銀を含有していない。一般に、水銀は毒性があり、また、環境に悪い一面がある。UV-LEDは水銀を含有していないため、安全性が高く、環境へ悪影響を与えるリスクが小さい。UV-LEDは、例えば、単一波長のみの出力が高いものである。光源24が生成する光のうち、放射強度が最も高い波長を以下「主波長」という。光源24が生成する光の主波長は、UVA、UVB、UVCのいずれの帯域にあってもよい。特に、光源24が生成する光の主波長は、殺菌力の高いUVC領域にあることが望ましい。 The light source 24 of the UV irradiator 23 in this embodiment is a light emitting diode (LED). In other words, the light source 24 is an LED that produces ultraviolet light, hereinafter referred to as UV-LED. UV-LEDs do not contain mercury. Mercury in general is toxic and has a bad side to the environment. Since UV-LEDs do not contain mercury, they are highly safe and have little risk of adversely affecting the environment. UV-LEDs, for example, are high power at only a single wavelength. Among the light generated by the light source 24, the wavelength with the highest radiant intensity is hereinafter referred to as the "dominant wavelength". The dominant wavelength of light generated by light source 24 may be in any of the UVA, UVB, and UVC bands. In particular, it is desirable that the dominant wavelength of the light generated by the light source 24 is in the UVC region, which has high sterilizing power.
 殺菌力を高める場合、光源24が生成する光の主波長は、220nmから280nmの間にあることが好ましい。より好ましくは、光源24が生成する光の主波長は、220nmから225nmの範囲、または、250nmから285nmの範囲にあることが望ましい。さらに好ましくは、光源24が生成する光の主波長は、255nmから280nmの範囲にあることが望ましい。上記のような波長の範囲であれば、殺菌力が特に高いので、比較的短時間、または比較的低出力、または比較的少数の光源24で、効率良く殺菌することができる。なお、好ましい波長の範囲については、後述するUV-ランプについても同様である。 When enhancing the sterilization power, the dominant wavelength of the light generated by the light source 24 is preferably between 220 nm and 280 nm. More preferably, the dominant wavelength of light generated by light source 24 is in the range of 220 nm to 225 nm, or in the range of 250 nm to 285 nm. More preferably, the dominant wavelength of light generated by light source 24 is in the range of 255 nm to 280 nm. Since the sterilization power is particularly high within the above wavelength range, sterilization can be efficiently performed in a relatively short period of time, with relatively low output, or with a relatively small number of light sources 24 . The preferred wavelength range is the same for UV-lamps, which will be described later.
 UV照射器23の光源24は、LEDではなくランプであってもよい。また、光源24は水銀を有していてもよく、水銀を有していないもの(水銀フリー)であってもよい。水銀を有しているものは、効率・出力が高いため、殺菌力が高い。また、水銀フリーランプは、安全性が高く、環境へ悪影響を与えるリスクが小さい。 The light source 24 of the UV irradiator 23 may be a lamp instead of an LED. Also, the light source 24 may contain mercury or may not contain mercury (mercury-free). Those containing mercury have high sterilizing power due to their high efficiency and output. Mercury-free lamps are also highly safe and have a low risk of adversely affecting the environment.
 一般に紫外線は目に見えない波長である。本実施の形態の光源24が生成する光の主波長は紫外線領域の波長であるが、光源24が生成する光は、可視光領域の波長を含んでいてもよい。例えば、光源24は、青色あるいは紫色の可視光を紫外線とともに生成してもよい。可視光は目に見える光である。本開示において、室内空間にいる人を「在室者」と呼ぶ場合がある。例えば、光源24からの光線が照射された際、在室者は照射された光が何色かを識別することができる。例えば、光源24を視た際、または、光線を視た際、または光線が物体に照射された際、在室者は、照射された光が何色かを識別することができる。在室者は、例えば、照射された光が赤色か青色か紫色かといった識別をすることができる。これにより、光源24が点灯しているか消灯しているかを判断することができる。例えば、光源24が本来点灯すべきときに点灯していないことがわかれば、故障が疑われる。つまり、故障を早期に発見することができる。また、UV照射器23は仕様によっては人体に有害であるため、在室者がいるときに光源24が点灯していることが本来の仕様ではない場合がある。そのような仕様において、在室者がいるときに光源24が点灯していた場合には、使用を中止する判断に至ることができる。光源24が点灯しているときの内部風路5の色またはUV照射器23から照射される光の色と、光源24が消灯しているときの内部風路5の色またはUV照射器23から照射される光の色とが異なるようにすることで、上述した効果を達成できる。 In general, ultraviolet rays are invisible wavelengths. Although the dominant wavelength of the light generated by the light source 24 of the present embodiment is in the ultraviolet region, the light generated by the light source 24 may include wavelengths in the visible light region. For example, light source 24 may produce blue or violet visible light along with ultraviolet light. Visible light is light that can be seen by the human eye. In the present disclosure, a person in the indoor space may be called a "person in the room". For example, when the light from the light source 24 is emitted, the person in the room can identify the color of the emitted light. For example, when looking at the light source 24, or when looking at the light beam, or when the light beam is projected onto an object, the person in the room can identify what color the projected light is. A person in the room can distinguish, for example, whether the emitted light is red, blue, or purple. This makes it possible to determine whether the light source 24 is on or off. For example, if it is found that the light source 24 is not lit when it should be lit, a failure is suspected. In other words, failures can be discovered early. In addition, depending on the specification of the UV irradiator 23, it is harmful to the human body, so that the light source 24 is turned on when a person is present in the room may not be the original specification. In such a specification, if the light source 24 is lit when there is a person in the room, it can be decided to stop using it. The color of the internal air duct 5 when the light source 24 is on or the color of the light emitted from the UV irradiator 23 and the color of the internal air duct 5 or the color of the light emitted from the UV irradiator 23 when the light source 24 is off The effect described above can be achieved by making the color of the emitted light different.
 送風装置1は、1つ以上のUV照射器23を備える。送風装置1は、複数のUV照射器23を備えていてもよい。また、1つのUV照射器23が光源24を1つだけ備えていてもよく、1つのUV照射器23が複数の光源24を備えていてもよい。また、複数のUV照射器23が複数の光源24を備えていてもよい。送風装置1が複数の光源24を備えている場合には、それぞれの光源24が同じ主波長を有していてもよいし、それぞれの光源24が互いに異なる主波長を有していてもよい。主波長が同じ複数の光源24、例えば、同一仕様の複数の光源24を使用する場合には、単価を安くできる可能性がある。また、主波長が異なる複数の光源24を使用する場合には、殺菌速度がより速くなる可能性がある。例えば、主波長がそれぞれ260nm、265nm、275nmの3つの光源24を用いた場合には、主波長が265nmの光源24を3つ用いた場合よりも、殺菌速度が速くなるといわれている。これにより、さらに効率的に殺菌ができる。 The blower device 1 includes one or more UV irradiators 23. The blower device 1 may include multiple UV irradiators 23 . Also, one UV irradiator 23 may have only one light source 24 , or one UV irradiator 23 may have a plurality of light sources 24 . Also, a plurality of UV irradiators 23 may be provided with a plurality of light sources 24 . When the blower device 1 includes a plurality of light sources 24, each light source 24 may have the same dominant wavelength, or each light source 24 may have different dominant wavelengths. If a plurality of light sources 24 having the same dominant wavelength, for example, a plurality of light sources 24 having the same specifications are used, the unit price may be reduced. Also, if multiple light sources 24 with different dominant wavelengths are used, the sterilization speed may be faster. For example, when three light sources 24 with dominant wavelengths of 260 nm, 265 nm, and 275 nm are used, the sterilization speed is said to be faster than when three light sources 24 with dominant wavelengths of 265 nm are used. This allows more efficient sterilization.
 光源24から照射された紫外線を含む光線を透過させるための部材は、窓部26と呼ばれる。窓部26の詳細については後述する。光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、送風装置1の外観の正面視にて視認できない位置に配置される。光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、送風装置1の外観の側面視にて視認できない位置に配置される。光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、送風装置1の外観の上面視にて視認できない位置に配置される。光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、送風装置1の外観の下面視にて視認できない位置に配置される。本開示において、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が視認できないとは、換言すると、本体筐体2に覆われた位置に、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が配置されたという意味である。本実施の形態であれば、送風装置1の外観において、前面視と、後面視と、側面視と、上面視と、下面視とのいずれにおいても、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が、本体筐体2に覆われることで、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が視認できない。これにより、在室者が光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方を直視する可能性を減らすことができ、また、光線が眼に入るリスクを低減することができ、安全性が高い。 A member for transmitting light rays including ultraviolet rays emitted from the light source 24 is called a window portion 26 . Details of the window portion 26 will be described later. Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from the front. Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized in a side view of the exterior of the air blower 1 . Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from above. Both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 are arranged at a position that cannot be visually recognized when the blower device 1 is viewed from the bottom. In the present disclosure, both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 cannot be visually recognized. 26 or either one of the light source 24 and the window 26 are arranged. In the present embodiment, in the external appearance of the blower 1, both the light source 24 and the window 26, or Either one of the light source 24 and the window portion 26 is covered with the main housing 2, so that either the light source 24 and the window portion 26 or either the light source 24 and the window portion 26 cannot be visually recognized. This reduces the possibility that a person in the room will look directly at both the light source 24 and the window 26, or either the light source 24 and the window 26, and also reduces the risk of light entering the eye. It is possible and safe.
 光源24から照射される光線は光源24より後方かつ上方の領域には照射されないように配置される。すなわち光源24より後方かつ上方の領域はビーム角の範囲に含まれない。これにより、周囲にいる人への照射リスクを低減できる。特に送風装置1を把持した在室者に対する照射リスクを低減できる。 The light beam emitted from the light source 24 is arranged so that the area behind and above the light source 24 is not irradiated. That is, the area behind and above the light source 24 is not included in the beam angle range. As a result, it is possible to reduce the risk of radiation exposure to people in the vicinity. In particular, it is possible to reduce the irradiation risk for the person in the room holding the blower 1 .
 光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、水平方向から視て、視認できない位置に配置されてもよい。また、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、水平方向の0度~360度のいずれの方向から視ても視認できない位置に配置されていても良い。すなわち、鉛直線に垂直ないずれの方向から送風装置1を視たときにも、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が、本体筐体2に覆われるようにしてもよい。これにより、在室者が、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方を直視する可能性を減らすことができ、また、光線が眼に入るリスクを低減することができ、安全性が高い。 Both the light source 24 and the window part 26, or either one of the light source 24 and the window part 26 may be arranged at a position that cannot be visually recognized when viewed from the horizontal direction. Moreover, both the light source 24 and the window 26, or either one of the light source 24 and the window 26 may be arranged at a position that cannot be visually recognized from any direction from 0 degrees to 360 degrees in the horizontal direction. good. That is, both the light source 24 and the window portion 26 or either one of the light source 24 and the window portion 26 is covered with the main body housing 2 when the blower device 1 is viewed from any direction perpendicular to the vertical line. You may allow This can reduce the possibility that the person in the room will look directly at both the light source 24 and the window 26, or either the light source 24 and the window 26, and also reduce the risk of light rays entering the eye. can be done and is very safe.
 また、本実施の形態の送風装置1は、本体筐体2の外から、三次元空間内のあらゆる方向の視線によって送風装置1を視たときにも、光源24及びUV照射器23が視認されないように、光源24及びUV照射器23が本体筐体2により覆われている。換言すれば、光源24あるいはUV照射器23から、三次元空間内のあらゆる方向に光線が発せられたと仮定した場合に、光源24から本体筐体2の外へ直接出る光線が存在しないように、光源24及びUV照射器23が本体筐体2により覆われている。これにより、光源24からの光線が眼に入るリスクをより確実に低減することができ、さらに安全性が高い。 Further, in the air blower 1 of the present embodiment, the light source 24 and the UV irradiator 23 are not visible even when the air blower 1 is viewed from the outside of the main body housing 2 with a line of sight in all directions in the three-dimensional space. , the light source 24 and the UV irradiator 23 are covered by the main housing 2. As shown in FIG. In other words, assuming that the light source 24 or the UV irradiator 23 emits light in all directions in the three-dimensional space, the The light source 24 and the UV irradiator 23 are covered with the main housing 2 . As a result, the risk of the light beam from the light source 24 entering the eye can be more reliably reduced, and the safety is even higher.
 また、本実施の形態の送風装置1は、本体筐体2の外から、三次元空間内のあらゆる方向の視線によって送風装置1を視たときにも、光源24が視認されないように、光源24が本体筐体2により覆われている。換言すれば、光源24から、三次元空間内のあらゆる方向に光線が発せられたと仮定した場合に、光源24から本体筐体2の外へ直接出る光線が存在しないように、光源24が本体筐体2により覆われている。これにより、光源24からの光線が眼に入るリスクをより確実に低減することができ、さらに安全性が高い。 Further, the air blower 1 of the present embodiment is configured such that the light source 24 is not visible even when the air blower 1 is viewed from outside the main body housing 2 with a line of sight in all directions in a three-dimensional space. is covered by the main housing 2 . In other words, assuming that the light source 24 emits light in all directions in a three-dimensional space, the light source 24 is positioned within the main body housing 2 so that no light beam directly exits the main body housing 2 from the light source 24. It is covered by body 2. As a result, the risk of the light beam from the light source 24 entering the eye can be more reliably reduced, and the safety is even higher.
 なお、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方は、必ずしも、上述したすべての方向から視認できない位置に配置されていなくてもよい。しかしながら、可能な限り、視認しにくい位置に、光源24及び窓部26の両方、または、光源24及び窓部26のいずれか一方が配置されることが望ましい。 Both the light source 24 and the window portion 26, or either one of the light source 24 and the window portion 26, do not necessarily have to be arranged at positions that are not visible from all the above-described directions. However, it is desirable that both the light source 24 and the window 26 or either one of the light source 24 and the window 26 be placed at a position that is difficult to see as much as possible.
 本実施の形態では、光源24は、例えば、直方体形状を呈している。本開示における光源24の形状は、特に限定されず、例えば、円柱形状でもよいし、砲弾型の形状でもよい。砲弾型の形状とは、例えば、半球形状と円柱形状をくっつけたような形状である。 In the present embodiment, the light source 24 has, for example, a cuboid shape. The shape of the light source 24 in the present disclosure is not particularly limited, and may be, for example, a cylindrical shape or a cannonball shape. The cannonball shape is, for example, a shape obtained by joining a hemispherical shape and a cylindrical shape.
 光源24は光軸を中心に放射状に無数の光線を発する。光軸とは、例えば、光源24が直方体の場合、直方体の厚み方向に平行な方向である。厚み方向とは、直方体が幅方向、奥行き方向、厚み方向の3方向からなる場合、最も寸法が小さい方向である。光源24のビーム角は、例えば、30度~150度でもよいし、360度でもよい。光源24のビーム角は、好ましくは50度~140度である。ビーム角が30度とは、例えば、光軸に垂直な方向から視た際に、光軸から片側に15度ずつ傾いた向きを示している。ビーム角とは、例えば、光軸の方向への放射強度を100%としたときの放射強度が50%となる角度のことである。例えばビーム角が30度とは、光軸に垂直な方向から視た際に、光軸から片側に15度傾いた位置での放射強度が、光軸方向への放射強度の50%であることを示す。ビーム角が小さすぎると、内部風路5の一部しか照射できない可能性がある。ビーム角が広すぎると、内部風路5外への照射量が多くなってしまう可能性がある。したがって、ビーム角は、小さすぎず、大きすぎないことが望まれる。 The light source 24 emits a myriad of rays radially around the optical axis. For example, when the light source 24 is a rectangular parallelepiped, the optical axis is a direction parallel to the thickness direction of the rectangular parallelepiped. The thickness direction is the direction with the smallest dimension when the rectangular parallelepiped has three directions of the width direction, the depth direction, and the thickness direction. The beam angle of the light source 24 may be, for example, 30 degrees to 150 degrees, or 360 degrees. The beam angle of light source 24 is preferably between 50 degrees and 140 degrees. A beam angle of 30 degrees indicates, for example, a direction inclined by 15 degrees to one side from the optical axis when viewed from a direction perpendicular to the optical axis. The beam angle is, for example, the angle at which the radiant intensity is 50% when the radiant intensity in the direction of the optical axis is 100%. For example, a beam angle of 30 degrees means that when viewed from a direction perpendicular to the optical axis, the radiant intensity at a position inclined 15 degrees to one side from the optical axis is 50% of the radiant intensity in the optical axis direction. indicates If the beam angle is too small, there is a possibility that only part of the internal air passage 5 can be illuminated. If the beam angle is too wide, there is a possibility that the amount of irradiation outside the internal air duct 5 will increase. Therefore, it is desirable that the beam angle is neither too small nor too large.
 図17は、実施の形態1による送風装置1が備えるUV照射器23の斜視図である。図18は、実施の形態1による送風装置1が備えるUV照射器23の分解斜視図である。図19は、実施の形態1による送風装置1が備えるUV照射器23の正面図である。図20は、実施の形態1による送風装置1が備えるUV照射器23の背面図である。図21は、実施の形態1による送風装置1が備えるUV照射器23を、図19中のB-B線で切断した断面図である。 FIG. 17 is a perspective view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. FIG. FIG. 18 is an exploded perspective view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. FIG. FIG. 19 is a front view of UV irradiator 23 included in blower device 1 according to Embodiment 1. FIG. FIG. 20 is a rear view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. FIG. FIG. 21 is a cross-sectional view of the UV irradiator 23 included in the blower device 1 according to Embodiment 1, taken along line BB in FIG.
 図17から図21に示すように、UV照射器23は、光源24の他に、ケース25と、窓部26と、基板27と、ヒートシンク28と、スペーサー29と、シール部材30と、固定具31と、配線32とを備える。なお、UV照射器23の構成部品は、これらに限定されるものではなく、適宜省略、追加、代替されるものであってもよい。 As shown in FIGS. 17 to 21, the UV irradiator 23 includes a light source 24, a case 25, a window 26, a substrate 27, a heat sink 28, a spacer 29, a seal member 30, and a fixture. 31 and wiring 32 . Note that the components of the UV irradiator 23 are not limited to these, and may be omitted, added, or replaced as appropriate.
 ケース25は、UV照射器23の外観をなす部品である。ケース25は、窓部26が取り付けられる位置に開口を有する。基板27に光源24が設置されている。基板27から光源24に給電されることで、光源24が発光する。窓部26は、光源24を保護する。窓部26は、基板27と反対側から光源24を覆う。光源24により生成された光は、窓部26を透過した後、内部風路5を通る空気と、内部風路5の表面とに照射される。 The case 25 is a part that forms the appearance of the UV irradiator 23. Case 25 has an opening at a position where window 26 is attached. A light source 24 is installed on the substrate 27 . Power is supplied from the substrate 27 to the light source 24 so that the light source 24 emits light. Window 26 protects light source 24 . The window part 26 covers the light source 24 from the side opposite to the substrate 27 . The light generated by the light source 24 is transmitted through the window portion 26 and then radiated onto the air passing through the internal air duct 5 and the surface of the internal air duct 5 .
 ヒートシンク28は、発光により加熱された光源24及び基板27の熱を散逸させるためのものである。図示の例のヒートシンク28は、表面積を拡大するためのフィンを有している。スペーサー29は、窓部26と光源24の間の距離を保つためのものである。基板27と窓部26との間にスペーサー29が配置される。 The heat sink 28 is for dissipating the heat of the light source 24 and the substrate 27 heated by light emission. The heat sink 28 in the illustrated example has fins to increase the surface area. Spacer 29 is for maintaining the distance between window 26 and light source 24 . A spacer 29 is arranged between the substrate 27 and the window 26 .
 シール部材30は、例えば、ケース25と窓部26との隙間を封止することにより、気密性及び液密性を保つ部材である。固定具31は、複数の部材の位置または位置関係を固定するためのものである。固定具31は、UV照射器23あるいは内部風路5に対して、着脱自在であることが好ましい。固定具31は、UV照射器23を、送風装置1または内部風路5に固定するためのものでもよい。固定具31は、送風装置1または内部風路5に対して、ケース25、ヒートシンク28、基板27のうちの少なくとも1つを固定するためのものでもよい。固定具31は、ケース25と基板27とヒートシンク28とを締結することによりこれらの位置を固定するためのものでもよい。固定具31は、ケース25とヒートシンク28とを締結することによりこれらの位置を固定するためのものでもよい。固定具31は、例えば、図示の例のようなネジでもよい。配線32は、基板27を電源部につなぐためのものである。 The sealing member 30 is, for example, a member that maintains airtightness and liquidtightness by sealing the gap between the case 25 and the window portion 26 . The fixture 31 is for fixing the position or positional relationship of a plurality of members. The fixture 31 is preferably detachable from the UV irradiator 23 or the internal air passage 5 . The fixture 31 may be for fixing the UV irradiator 23 to the air blower 1 or the internal air passage 5 . The fixture 31 may be for fixing at least one of the case 25 , the heat sink 28 and the substrate 27 to the blower device 1 or the internal air passage 5 . The fixture 31 may be for fixing the positions of the case 25, the substrate 27 and the heat sink 28 by fastening them. The fixture 31 may be for fixing the positions of the case 25 and the heat sink 28 by fastening them. The fixture 31 may be, for example, a screw as in the illustrated example. The wiring 32 is for connecting the substrate 27 to the power source.
 UV照射器23は、ヒートシンク28に代えて、またはヒートシンク28に加えて、冷却部を備えていてもよい。冷却部とは、例えば、ファンなどの送風装置である。 The UV irradiator 23 may have a cooling section instead of or in addition to the heat sink 28 . A cooling unit is, for example, a blower such as a fan.
 図21に示すように、窓部26は、光源24に対して隙間を空けて配置される。当該隙間は、例えば、0.1mm~50mm程度の距離でもよい。窓部26により光源24が保護される。 As shown in FIG. 21, the window part 26 is arranged with a gap with respect to the light source 24 . The gap may be, for example, a distance of approximately 0.1 mm to 50 mm. The window 26 protects the light source 24 .
 図示の例の窓部26は、円盤状または円形の板状を呈する。変形例として、窓部26は、例えば、直方体形状を呈するものでもよいし、レンズ状の形状を呈するものでもよい。レンズ状の形状を呈する窓部26によれば、光源24から放射された光を集光することができ、比較的小さいビーム角を達成できる。 The window part 26 in the illustrated example has a disk shape or a circular plate shape. As a modification, the window 26 may have, for example, a rectangular parallelepiped shape or a lens-like shape. The lens-like shape of the window 26 allows the light emitted by the light source 24 to be collected and a relatively small beam angle to be achieved.
 窓部26の厚みは、薄く構成される。ただし、送風装置1の運転中の振動、あるいは送風装置1の清掃または保守の際に、生じる可能性のある衝撃に耐えうる厚みを窓部26が有することが好ましい。一般に、窓部26の厚みが増すと、その透過率が低下する傾向にある。このため、窓部26の厚みは、例えば、0.5mm~3mm程度である。好ましくは、窓部26の厚みは、1mm~2mm程度である。 The thickness of the window portion 26 is thin. However, it is preferable that the window portion 26 has a thickness that can withstand vibrations during operation of the blower 1 or shocks that may occur during cleaning or maintenance of the blower 1 . In general, as the thickness of the window portion 26 increases, its transmittance tends to decrease. Therefore, the thickness of the window portion 26 is, for example, about 0.5 mm to 3 mm. Preferably, the thickness of the window portion 26 is about 1 mm to 2 mm.
 窓部26は、入射面と出射面と周面とを備える。入射面は、光源24からの光線が入射する面である。出射面は、入射面とは反対側の面である。出射面は、入射面から入射した光を、対向する内部風路5の表面へ向けて、または内部風路5を通る空気へ向けて、出射させる面である。周面は、入射面の側方に位置する面である。周面は、出射面の側方に位置する面である。入射面は、出射面に対して、平行でもよい。周面は、入射面と出射面に対して、垂直でもよい。入射面から出射面に至る方向は、厚み方向である。厚み方向についての窓部26の寸法は、例えば、上述した範囲(0.5mm~3mm、または、1mm~2mm)にあることが好ましい。 The window part 26 has an entrance surface, an exit surface, and a peripheral surface. The incident surface is the surface on which the light beam from the light source 24 is incident. The exit surface is the surface opposite to the entrance surface. The exit surface is a surface that emits light incident from the incident surface toward the facing surface of the internal air duct 5 or toward the air passing through the internal air duct 5 . The peripheral surface is a surface located laterally of the incident surface. The peripheral surface is a surface located laterally of the exit surface. The plane of incidence may be parallel to the plane of exit. The peripheral surface may be perpendicular to the entrance surface and the exit surface. The direction from the entrance surface to the exit surface is the thickness direction. The dimension of the window portion 26 in the thickness direction is preferably within the range described above (0.5 mm to 3 mm, or 1 mm to 2 mm), for example.
 窓部26がレンズ状の形状を呈している場合には、レンズ状の曲面を呈している面が、入射面及び出射面である。また、窓部26がレンズ状の形状の場合、その凸部を通る中心軸を窓部26が有する。窓部26の中心軸、または中心軸の仮想延長線は、光源24と交差する。つまり、レンズ状の窓部26と、光源24とは、一直線上に配置される。窓部26の中心軸、または、中心軸の仮想延長線は、別の窓部を通過してもよい。つまり、レンズ状の窓部26と、別の窓部とは、一直線上に配置されていてもよい。 When the window portion 26 has a lens-like shape, the lens-like curved surfaces are the entrance surface and the exit surface. Moreover, when the window 26 has a lens-like shape, the window 26 has a central axis passing through the convex portion. A central axis of the window 26 or an imaginary extension of the central axis intersects the light source 24 . That is, the lens-shaped window portion 26 and the light source 24 are arranged on a straight line. The central axis of the window 26 or an imaginary extension of the central axis may pass through another window. That is, the lens-shaped window portion 26 and another window portion may be arranged on a straight line.
 光源24の発光面は、窓部26の入射面に対して平行であることが望ましい。光源24の発光面が窓部26の入射面に対して平行でない場合には、透過率が低下する可能性があり、窓部26の出射面からの光が照射される内部風路5の照度が低下する可能性がある。光源24の発光面が窓部26の入射面に対して平行であれば、透過率の低下を確実に抑制できる。 The light emitting surface of the light source 24 is desirably parallel to the incident surface of the window 26. If the light emitting surface of the light source 24 is not parallel to the incident surface of the window 26, the transmittance may decrease, and the illuminance of the internal air passage 5 to which the light from the output surface of the window 26 is emitted. may decline. If the light emitting surface of the light source 24 is parallel to the incident surface of the window portion 26, the decrease in transmittance can be reliably suppressed.
 光源24の発光面は、窓部26の入射面に近接した位置に設けられる。光源24からの光線は放射状に進むため、光源24と窓部26の入射面との距離が遠くなると、窓部26に入射しない光線が増える可能性がある。その結果、照射される内部風路5の照度が低下する可能性がある。光源24からの光線のすべてを窓部26に入射させるには、光源24と窓部26との距離が遠くなるほど、窓部26のサイズを大きくする必要がある。光源24と窓部26の距離が近ければ、窓部26のサイズが小さくても、光源24からの光線の全部または大部分を窓部26に入射させることができるので、内部風路5の照度を高くできる。 The light emitting surface of the light source 24 is provided at a position close to the incident surface of the window portion 26 . Since the light rays from the light source 24 travel radially, if the distance between the light source 24 and the incident surface of the window portion 26 increases, the number of light rays that do not enter the window portion 26 may increase. As a result, there is a possibility that the illuminance of the illuminated internal air passage 5 will decrease. In order for all the light rays from the light source 24 to enter the window 26, the larger the distance between the light source 24 and the window 26, the larger the size of the window 26 is required. If the distance between the light source 24 and the window portion 26 is short, all or most of the light beams from the light source 24 can enter the window portion 26 even if the size of the window portion 26 is small. can be raised.
 窓部26は、光源24が生成する紫外線のうち、少なくとも一部の波長の紫外線を透過する材料で作られている。窓部26は、紫外線の透過率が高い材料で作られていることが望ましい。透過率とは、特定の波長の入射光が窓部26を通過する割合である。透過しなかった入射光は、反射するか、窓部26により吸収される。透過率と、反射率と、吸収率との和は、100%になる。例えば、UVAまたはUVBの波長に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。例えば、UVA及びUVBの波長のうちの大部分に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。また、例えば、UVCのうち、200nm以上の波長に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。また、UVCのうち、200nm以上の波長の大部分に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。また、250nm~285nmの波長に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。また、250nm~285nmの波長の大部分に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。また、光源24の主波長に対する窓部26の透過率は、80%以上が好ましく、90%以上であることがより好ましい。 The window part 26 is made of a material that transmits at least part of the wavelengths of the ultraviolet rays generated by the light source 24 . The window 26 is desirably made of a material having a high ultraviolet transmittance. Transmittance is the rate at which incident light of a specific wavelength passes through the window section 26 . Incident light that is not transmitted is either reflected or absorbed by the window 26 . The sum of transmittance, reflectance and absorptance is 100%. For example, the transmittance of the window 26 for UVA or UVB wavelengths is preferably 80% or more, more preferably 90% or more. For example, the transmittance of the window 26 for most of the UVA and UVB wavelengths is preferably 80% or more, more preferably 90% or more. Further, for example, among UVC, the transmittance of the window part 26 for wavelengths of 200 nm or more is preferably 80% or more, and more preferably 90% or more. In addition, the transmittance of the window 26 for most UVC wavelengths of 200 nm or more is preferably 80% or more, more preferably 90% or more. Further, the transmittance of the window portion 26 for wavelengths of 250 nm to 285 nm is preferably 80% or more, more preferably 90% or more. Further, the transmittance of the window portion 26 for most wavelengths of 250 nm to 285 nm is preferably 80% or more, more preferably 90% or more. Further, the transmittance of the window portion 26 for the dominant wavelength of the light source 24 is preferably 80% or more, more preferably 90% or more.
 図22は、実施の形態1による送風装置1が備えるUV照射器23の断面図である。送風装置1またはUV照射器23は、ネジ33を備える。ネジ33はUV照射器23を内部風路5の壁部3に固定するための固定具に相当する。UV照射器23は、内部風路5の壁部3に対して、ネジ33等の着脱自在な固定具により、着脱自在に固定される。なお、着脱自在な固定具であれば、ネジ33以外の固定具によって、UV照射器23を内部風路5の壁部3に対して固定してもよい。図22に示す例では、内部風路5の壁部3に形成された開口3jから、窓部26と、窓部26の窓枠に相当する部分のケース25とが、内部風路5に対して露出するように、UV照射器23が設置されている。内部風路5の壁部3は、内部風路5に面する表面とは反対側の裏面から突出するボス3kを有する。ネジ33がケース25をボス3kに締結することによって、UV照射器23が内部風路5に対して固定されている。 FIG. 22 is a cross-sectional view of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. FIG. The blower device 1 or the UV irradiator 23 is provided with screws 33 . The screw 33 corresponds to a fixture for fixing the UV irradiator 23 to the wall 3 of the internal air passage 5 . The UV irradiator 23 is detachably fixed to the wall portion 3 of the internal air passage 5 by a detachable fixture such as a screw 33 . Note that the UV irradiator 23 may be fixed to the wall portion 3 of the internal air passage 5 by a fixture other than the screw 33 as long as the fixture is detachable. In the example shown in FIG. 22, the window portion 26 and the portion of the case 25 corresponding to the window frame of the window portion 26 extend from the opening 3j formed in the wall portion 3 of the internal air passage 5 to the internal air passage 5. A UV irradiator 23 is installed so as to expose the The wall portion 3 of the internal air duct 5 has bosses 3 k protruding from the back surface opposite to the surface facing the internal air duct 5 . The UV irradiator 23 is fixed to the internal air passage 5 by fastening the case 25 to the boss 3 k with the screw 33 .
 1つのUV照射器23が複数の窓部26を備えてもよい。複数の窓部26は、互いに平行に配置されてもよいし、互いにほぼ平行に配置されてもよい。図23は、実施の形態1による送風装置1が備えるUV照射器23の変形例を示す断面図である。図23に示すUV照射器23は、第一窓部26aと第二窓部26bを備える。第一窓部26aと第二窓部26bは、複数の窓部26に相当する。第一窓部26aは、光源24を覆う。第二窓部26bは、第一窓部26aを覆う。 A single UV irradiator 23 may have a plurality of windows 26 . The plurality of windows 26 may be arranged parallel to each other, or may be arranged substantially parallel to each other. FIG. 23 is a cross-sectional view showing a modification of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. As shown in FIG. The UV irradiator 23 shown in FIG. 23 has a first window portion 26a and a second window portion 26b. The first window portion 26 a and the second window portion 26 b correspond to the plurality of window portions 26 . The first window portion 26 a covers the light source 24 . The second window portion 26b covers the first window portion 26a.
 光源24と第一窓部26aと第二窓部26bは、一直線上に配置される。好ましくは、第二窓部26bは第一窓部26aに対して平行に配置される。好ましくは、第一窓部26aの入射面は、光源24の発光面に対して平行に配置される。例えば、第一窓部26aと第二窓部26bは、光源24の光軸、または光軸の仮想延長線と、交差する位置に配置される。1つのUV照射器23が備える複数の窓部26のうちの少なくとも1つが、レンズ状の形状を呈していてもよい。第一窓部26aは、第二窓部26bよりも光源24に近い位置に配置される。第二窓部26bは、第一窓部26aよりも光源24から遠い位置に配置される。第二窓部26bは、シール部材30と協働することで、UV照射器23の内部、及び、本体筐体2の内部に、水あるいは異物が侵入することを防ぐ。また、第二窓部26bは、光源24に人の手などが接触することを防ぐ機能を有する。第一窓部26aは、光源24に、水、異物、あるいは人の手などが接触することを防ぐ機能を有する。また、第一窓部26aは、光源24を保護する機能を有する。 The light source 24, the first window portion 26a and the second window portion 26b are arranged on a straight line. Preferably, the second window portion 26b is arranged parallel to the first window portion 26a. Preferably, the incident surface of the first window portion 26 a is arranged parallel to the light emitting surface of the light source 24 . For example, the first window portion 26a and the second window portion 26b are arranged at positions that intersect the optical axis of the light source 24 or an imaginary extension line of the optical axis. At least one of the plurality of windows 26 included in one UV irradiator 23 may have a lens-like shape. The first window portion 26a is arranged at a position closer to the light source 24 than the second window portion 26b. The second window portion 26b is arranged at a position farther from the light source 24 than the first window portion 26a. The second window portion 26 b prevents water or foreign matter from entering the inside of the UV irradiator 23 and the inside of the main housing 2 by cooperating with the sealing member 30 . The second window portion 26b also has a function of preventing the light source 24 from being touched by a person's hand or the like. The first window portion 26a has a function of preventing the light source 24 from coming into contact with water, a foreign object, a human hand, or the like. Also, the first window portion 26 a has a function of protecting the light source 24 .
 上述したようなシール性が保たれていれば、1つのUV照射器23が窓部26を1つだけ備える構成がより好ましい。窓部26により、光線の一部が、反射または吸収される。このため、窓部26の数が少ない方が、より効率的に紫外線を照射できる。特に、窓部26が1つであれば、さらに効率的に紫外線を照射できる。 A configuration in which one UV irradiator 23 has only one window 26 is more preferable if the above-described sealing property is maintained. A portion of the light is reflected or absorbed by the window 26 . Therefore, the smaller the number of windows 26, the more efficiently the ultraviolet rays can be irradiated. In particular, if there is one window portion 26, the ultraviolet rays can be irradiated more efficiently.
 窓部26は、短波長の紫外線を透過しない性質を有していてもよい。また、窓部26は、フィルタあるいはバンドパスにより、短波長の紫外線を透過しない性質を有していてもよい。窓部26は、例えば180nm以下の波長を透過しない性質を有していてもよい。また、窓部26は、150nm以下の波長を透過しない性質を有していてもよい。短波長の紫外線は人体へ悪影響を及ぼす可能性がある。短波長の紫外線を透過しない性質の窓部26を用いることで、安全性がより高くなる。 The window part 26 may have a property of not transmitting short wavelength ultraviolet rays. Moreover, the window part 26 may have a property of not transmitting short wavelength ultraviolet rays by a filter or a band pass. The window part 26 may have a property of not transmitting wavelengths of 180 nm or less, for example. Further, the window portion 26 may have a property of not transmitting wavelengths of 150 nm or less. Short-wave ultraviolet rays can have adverse effects on the human body. Safety is further improved by using the window 26 that does not transmit short-wave ultraviolet rays.
 窓部26は、UV透過性が高い材料で作られていることが好ましい。窓部26は、例えば石英ガラス製でもよい。窓部26は、例えば合成石英ガラスでもよい。窓部26は、例えば、一部のUVをカットするUVカットガラス製でもよい。窓部26は、例えば、UV透過性の高い樹脂材料で作られていてもよい。窓部26は、例えば、フッ素樹脂製であってもよい。フッ素樹脂とは、例えば、PFA、FEP、ETFE、PCTFEなどである。 The window part 26 is preferably made of a material with high UV transparency. The window 26 may be made of quartz glass, for example. The window 26 may be made of synthetic quartz glass, for example. The window part 26 may be made of, for example, UV cut glass that cuts part of UV. The window part 26 may be made of, for example, a highly UV-transmissive resin material. The window part 26 may be made of, for example, fluororesin. Examples of fluororesins include PFA, FEP, ETFE, and PCTFE.
 窓部26の入射面と出射面の少なくとも1面に、反射防止膜が形成されていてもよい。反射防止膜とは、光源から入射面に入射した光が反射することを防ぐものであり、一般にARコート(Anti Reflection Coating)と呼ばれている。反射防止膜は、公知技術のため、その仕組みの説明は割愛する。反射されなかった光は、透過するか吸収される。例えば、反射されなかった光の大部分は透過し、一部は吸収される。例えばUVB領域に対する石英ガラスの透過率が90%であったとき、反射防止膜による処理を片面に施すと、透過率は94%になり、反射防止膜による処理を両面に施すと、透過率は98%程度になる。このため、反射防止膜を窓部26に設けることで、より効率的に、紫外線を照射できる。石英ガラスに限らず、窓部26として使用する材料に反射防止膜による処理を施してよい。例えば、一般材料に比べ、透過率が高いものの、石英ガラスよりも透過率の劣るフッ素樹脂に反射防止膜による処理を施してもよい。これにより、コストを抑えつつ、透過率を高めることも可能である。 An antireflection film may be formed on at least one of the entrance surface and the exit surface of the window 26 . An antireflection film prevents reflection of light incident on an incident surface from a light source, and is generally called an AR coat (antireflection coating). Since the antireflection film is a known technology, the explanation of its mechanism is omitted. Light that is not reflected is either transmitted or absorbed. For example, most of the light that is not reflected is transmitted and some is absorbed. For example, when the transmittance of quartz glass in the UVB region is 90%, if one side is treated with an antireflection film, the transmittance becomes 94%. It becomes about 98%. Therefore, by providing the window portion 26 with the antireflection film, it is possible to irradiate the ultraviolet rays more efficiently. The material used for the window 26 is not limited to quartz glass, and may be treated with an antireflection film. For example, fluororesin, which has higher transmittance than general materials but lower transmittance than quartz glass, may be treated with an antireflection film. Thereby, it is possible to increase the transmittance while suppressing the cost.
 窓部26は、例えば、透明材料、半透明の材料、または透明性の高い材料で作られている。窓部26は、例えば、内部風路5の壁部3の大部分よりもUV透過率が高い材料で作られている。窓部26は、例えば、内部風路5の壁部3のうち、内部風路5に面する部分の大部分よりも、UV透過率が高い材料で作られている。 The window part 26 is made of, for example, a transparent material, a translucent material, or a highly transparent material. The window 26 is for example made of a material with a higher UV transmittance than most of the walls 3 of the internal air duct 5 . The window part 26 is made of, for example, a material having a higher UV transmittance than most of the wall part 3 of the internal air duct 5 facing the internal air duct 5 .
 また、窓部26は、特定の波長の放射強度を低減するフィルタ処理を施されたものであってもよい。フィルタとは例えば、バンドパスフィルタである。例えば、人体に有害な波長を低減するために、窓部26に対してフィルタ処理を適用してもよい。 Also, the window 26 may be filtered to reduce the radiation intensity of a specific wavelength. A filter is, for example, a bandpass filter. For example, filtering may be applied to window 26 to reduce wavelengths harmful to the human body.
 窓部26は、内部風路5の壁部3のうち、内部風路5に面する表面に近い位置に配置される。窓部26は、固定具31あるいはケース25との協働により、内部風路5との気密性を高めるものであってもよい。窓部26は、その厚み方向または中心軸が、水平方向に平行となるよう配置されていてもよい。また、窓部26は、その厚み方向または中心軸が、水平方向に平行でないように配置されてもよい。この場合、窓部26の上側が、窓部26の下側よりも、内部風路5側に位置するように、窓部26が傾く姿勢で配置されることが望ましい。すなわち、光源24の光軸も傾いていることが望ましい。この場合、光源24の光軸は、水平より下向きに傾斜する。このため、内部風路5のやや下側へ紫外線を照射でき、上方への光線の漏れを抑制できる。 The window part 26 is arranged at a position close to the surface of the wall part 3 of the internal air duct 5 facing the internal air duct 5 . The window 26 may cooperate with the fixture 31 or the case 25 to improve airtightness with the internal air passage 5 . The window portion 26 may be arranged such that its thickness direction or central axis is parallel to the horizontal direction. Also, the window 26 may be arranged such that its thickness direction or central axis is not parallel to the horizontal direction. In this case, it is desirable that the window 26 be arranged in an inclined posture so that the upper side of the window 26 is located closer to the internal air duct 5 than the lower side of the window 26 . That is, it is desirable that the optical axis of the light source 24 is also inclined. In this case, the optical axis of the light source 24 is inclined downward from the horizontal. Therefore, it is possible to irradiate the ultraviolet rays to a slightly lower side of the internal air passage 5, thereby suppressing upward leakage of light rays.
 窓部26は、内部風路5の壁部3に設けられた開口に、はめ込むようにして固定されてもよい。窓部26が配置されている内部風路5の壁部3の表面と、窓部26とが、ほぼ同一面上に配置されてもよい。つまり、窓部26は、窓部26の周囲の壁部3の表面よりも窪んだ位置、または一段窪んだ位置、に配置されてもよい。これにより、内部風路5に手を挿入した時にも窓部26に手が触れにくく、窓部26の傷つきを防止しやすい。 The window part 26 may be fixed by being fitted into an opening provided in the wall part 3 of the internal air duct 5 . The surface of the wall portion 3 of the internal air passage 5 on which the window portion 26 is arranged and the window portion 26 may be arranged substantially on the same plane. That is, the window portion 26 may be arranged at a position recessed from the surface of the wall portion 3 around the window portion 26 or at a position recessed by one step. This makes it difficult for the hand to touch the window part 26 even when the hand is inserted into the internal air passage 5, and the window part 26 is easily prevented from being damaged.
 ケース25は、UV照射器23の外観をなすものである。ケース25とヒートシンク28との間には、シール部材30、窓部26、光源24、スペーサー29、及び基板27が配置される。ケース25は、内部風路5の壁部3と接触するようにして配置される。ケース25は、固定具31を介して内部風路5の壁部3に接するように固定されてもよい。ケース25は、固定具31を介さずに内部風路5の壁部3に固定されてもよい。例えば、圧入またはスナップフィットの技術を用いて、ケース25が内部風路5の壁部3に固定されてもよい。あるいは、ケース25の外周に設けられた雄ネジが、内部風路5の壁部3に形成された開口の内周に設けられた雌ネジに対して螺合することによって、ケース25が内部風路5の壁部3に固定されてもよい。 The case 25 forms the appearance of the UV irradiator 23. A seal member 30 , a window 26 , a light source 24 , a spacer 29 and a substrate 27 are arranged between the case 25 and the heat sink 28 . The case 25 is arranged in contact with the wall portion 3 of the internal air passage 5 . The case 25 may be fixed so as to be in contact with the wall portion 3 of the internal air passage 5 via fixtures 31 . The case 25 may be fixed to the wall portion 3 of the internal air passage 5 without using the fixtures 31 . For example, the case 25 may be secured to the wall 3 of the internal air passage 5 using press fit or snap fit techniques. Alternatively, a male thread provided on the outer periphery of the case 25 is screwed into a female thread provided on the inner periphery of an opening formed in the wall portion 3 of the internal air passage 5, whereby the case 25 is secured to the internal airflow. It may be fixed to the wall 3 of the channel 5 .
 UV照射器23は、ケース25を必ずしも備えていなくてもよい。ケース25の以外のUV照射器23の部品が内部風路5の壁部3に固定されてもよい。ケース25は、内部風路5の壁部3の表面と同等の位置に配置されるか、内部風路5の壁部3の表面よりも奥まった位置に配置される。例えば、ケース25は、ケース25周辺の内部風路5の壁部3と比べて、内部風路5の壁部3から同等の距離の位置、または内部風路5の壁部3からの距離がわずかに遠い位置に配置される。これにより、在室者が内部風路5に手を入れたときにケース25に手を触れる可能性が少なく、衛生的である。ケース25は、その中心付近に開口を有する。当該開口は、光源24から照射された光を通すためのものである。ケース25は、シール部材30を固定するための溝を有していてもよい。シール部材30を溝にはめ込むことで、シール部材30の周方向への位置決めがされる。 The UV irradiator 23 does not necessarily have to include the case 25. Components of the UV irradiator 23 other than the case 25 may be fixed to the wall 3 of the internal air passage 5 . The case 25 is arranged at a position equivalent to the surface of the wall portion 3 of the internal air passage 5 or at a position recessed from the surface of the wall portion 3 of the internal air passage 5 . For example, the case 25 is located at a position equivalent to the wall portion 3 of the internal air passage 5, or at a distance from the wall portion 3 of the internal air passage 5, compared to the wall portion 3 of the internal air passage 5 around the case 25. placed slightly further away. As a result, there is little possibility of touching the case 25 when a person in the room puts his or her hand into the internal air duct 5, which is hygienic. Case 25 has an opening near its center. The opening is for passing light emitted from the light source 24 . Case 25 may have a groove for fixing seal member 30 . By fitting the seal member 30 into the groove, the seal member 30 is positioned in the circumferential direction.
 UV照射器23が有する固定具31は、例えばネジである。固定具31にネジ以外のその他のものが用いられてもよい。固定具31は、例えば、UV照射器23を内部風路5の壁部3に固定するためのものである。 The fixture 31 of the UV irradiator 23 is, for example, a screw. Fixtures 31 other than screws may be used. The fixture 31 is for fixing the UV irradiator 23 to the wall 3 of the internal air passage 5, for example.
 本開示では、内部風路5の壁部3とUV照射器23との隙間を埋めるためシール部材が設けられてもよい。当該シール部材と、前述したシール部材30とを総称して以下「シール部材30」と呼ぶ。シール部材30は、例えば、内部風路5の壁部3よりも柔らかい材料で構成される。シール部材30は、例えば、内部風路5の壁部3の大部分よりも柔らかい材料で構成される。シール部材30とは、一般にパッキン、オーリング、ガスケット等と呼ばれる部品であってもよい。シール部材30とは、例えば、ゴム、シリコン、エラストマ等の軟質材である。シール部材30は、内部風路5の壁部3に対して、インサート成型された一体型の部品であってもよい。UV照射器23は、固定具31等を介して、内部風路5の壁部3に固定される。シール部材30は、複数設けられていてもよい。シール部材30は、例えば、内部風路5の壁部3とケース25の間に介在し、内部風路5の壁部3とケース25をシールするためのものである。シール部材30は、例えば、内部風路5の壁部3と窓部26の間に介在し、内部風路5の壁部3と窓部26をシールするためのものである。シール部材30は、例えば、ケース25と窓部26の間に介在し、ケース25と窓部26をシールするためのものである。シール部材30は、固定具31によりUV照射器23が固定されたときに断面がややつぶされる。例えば、シール部材30の断面積は、例えば10%-20%程度、圧縮によって減少する。このようにシール部材30が変形することで、シール性が高められる。シール部材30が無い場合には、内部風路5の壁部3とUV照射器23のわずかな隙間から、本体筐体2の内側、あるいはUV照射器23の内部に、水が浸入する可能性がある。シール部材30が無い場合には、ケース25と窓部26とのわずかな隙間から、本体筐体2の内側、あるいはUV照射器23の内部に、水が浸入する可能性がある。UV照射器23に水が付着した場合には、故障する可能性がある。上述したシール部材30を用いることで、水の浸入を抑制することができる。 In the present disclosure, a seal member may be provided to fill the gap between the wall portion 3 of the internal air passage 5 and the UV irradiator 23 . The sealing member and the aforementioned sealing member 30 are collectively referred to as "sealing member 30" hereinafter. The sealing member 30 is made of, for example, a softer material than the wall portion 3 of the internal air passage 5 . The sealing member 30 is made of, for example, a softer material than most of the walls 3 of the internal air passage 5 . The sealing member 30 may be a component generally called packing, O-ring, gasket, or the like. The seal member 30 is, for example, a soft material such as rubber, silicon, or elastomer. The sealing member 30 may be an integrated component insert-molded into the wall portion 3 of the internal air passage 5 . The UV irradiator 23 is fixed to the wall portion 3 of the internal air passage 5 via a fixture 31 or the like. A plurality of sealing members 30 may be provided. The sealing member 30 is, for example, interposed between the wall portion 3 of the internal air passage 5 and the case 25 to seal the wall portion 3 of the internal air passage 5 and the case 25 . The sealing member 30 is, for example, interposed between the wall portion 3 of the internal air passage 5 and the window portion 26 to seal the wall portion 3 and the window portion 26 of the internal air passage 5 . The sealing member 30 is, for example, interposed between the case 25 and the window 26 to seal the case 25 and the window 26 . The cross section of the sealing member 30 is slightly crushed when the UV irradiator 23 is fixed by the fixture 31 . For example, the cross-sectional area of seal member 30 may be reduced by compression, eg, by 10%-20%. Such deformation of the seal member 30 enhances the sealing performance. Without the seal member 30, water may enter the inside of the main body housing 2 or the inside of the UV irradiator 23 through a slight gap between the wall 3 of the internal air passage 5 and the UV irradiator 23. There is Without the sealing member 30 , water may enter the inside of the main housing 2 or the inside of the UV irradiator 23 through a slight gap between the case 25 and the window 26 . If water adheres to the UV irradiator 23, it may malfunction. By using the sealing member 30 described above, it is possible to suppress the entry of water.
 ヒートシンク28は、基板27及び光源24の熱を散逸させることで、それらを冷却し、それらの温度上昇を抑制するためのものである。ヒートシンク28は、基板27に対して光源24とは反対側の面または当該面の近傍に取り付けられる。ヒートシンク28は基板27に直接または間接的に接するように固定される。基板27の少なくとも一部、またはヒートシンク28の少なくとも一部は、内部風路5にさらされるよう位置していてもよい。これにより、送風装置1の作動時の気流により、基板27またはヒートシンク28を冷却することができる。その結果、通常時の自然対流によるヒートシンク28の放熱に加え、送風装置1の運転中、強制対流により放熱効率をさらに高めることができる。また、電動送風機10を微風運転することで、基板27またはヒートシンク28を冷却してもよい。風量を調整する手段として、電動送風機10のモータがブラシレスモータであると、風量を制御しやすいため望ましい。 The heat sink 28 dissipates the heat of the substrate 27 and the light source 24 to cool them and suppress their temperature rise. The heat sink 28 is attached to the surface of the substrate 27 opposite to the light source 24 or in the vicinity of the surface. The heat sink 28 is fixed so as to contact the substrate 27 directly or indirectly. At least part of the substrate 27 or at least part of the heat sink 28 may be positioned to be exposed to the internal air passage 5 . As a result, the substrate 27 or the heat sink 28 can be cooled by the airflow during operation of the blower 1 . As a result, in addition to heat dissipation from the heat sink 28 by natural convection during normal operation, the heat dissipation efficiency can be further enhanced by forced convection during operation of the blower 1 . Also, the substrate 27 or the heat sink 28 may be cooled by operating the electric blower 10 in a gentle breeze. As a means for adjusting the air volume, it is desirable that the motor of the electric blower 10 is a brushless motor because the air volume can be easily controlled.
 基板27は光源24を発光させるためのものである。基板27は、光源24に対して、電気的に接続される。基板27は、電源部に対して、電気的に接続される。基板27は、板状の形状を呈していてもよい。例えば、光源24の光軸は、基板27に対して、垂直に配置される。基板27には、他の各種の電子部品あるいは電気部品が接続されていてもよい。基板27は、外力を加えた場合、例えば片手で力を加えた場合に、変形しない程度の固さを有してもよい。あるいは、基板27は、片手で力を加えた際に変形する程度の剛性を有してもよい。また、基板27は、自重により湾曲する程度の剛性を有してもよい。例えば、基板27の一部が1mm以下の厚みであれば、その部分の剛性が低くなる。例えば、基板27の一部が0.1mm以下の厚みであれば、その部分の剛性はさらに低くなる。また、切れ込みが入った形状を基板27が有していれば、剛性は低くなる。基板27の一部は、フィルム状の薄い部分があってもよい。このような構成であれば、基板27が容易に変形でき、かつ、曲がった状態を維持することができる。 The substrate 27 is for causing the light source 24 to emit light. Substrate 27 is electrically connected to light source 24 . The board 27 is electrically connected to the power supply. The substrate 27 may have a plate-like shape. For example, the optical axis of light source 24 is arranged perpendicular to substrate 27 . Various other electronic components or electric components may be connected to the substrate 27 . The substrate 27 may have hardness to the extent that it does not deform when an external force is applied, for example, when a force is applied by one hand. Alternatively, the substrate 27 may have such rigidity that it deforms when force is applied with one hand. Further, the substrate 27 may have such rigidity that it bends due to its own weight. For example, if a portion of the substrate 27 has a thickness of 1 mm or less, the rigidity of that portion will be low. For example, if a portion of the substrate 27 has a thickness of 0.1 mm or less, the rigidity of that portion will be further reduced. Further, if the substrate 27 has a shape with notches, the rigidity is lowered. A portion of the substrate 27 may have a thin film-like portion. With such a configuration, the substrate 27 can be easily deformed and the bent state can be maintained.
 例えば、平板状の1つの基板27に2つの光源24を配置する場合、光源24の光軸は、平行に配置されることになる。しかし、内部風路5の広範囲に紫外線を照射するには、2つの光源24の光軸が互いに非平行になるようにして照射する方が効率的である。この場合、1つの基板27に1つの光源24を搭載し、2つの基板27を異なる角度に配置することで、2つの光源24の光軸が非平行状態となるように配置される。例えば、上述したような基板27の剛性が低い場合には、基板27を曲げたままの状態で、UV照射器23の一部品として使用することができる。これにより、1つの基板27に複数の光源24を配置した上で、それら複数の光源24の光軸を異なる向きに配置することができる。これにより、基板27の数を少なくでき、省スペース化につながる。 For example, when two light sources 24 are arranged on one flat substrate 27, the optical axes of the light sources 24 are arranged in parallel. However, in order to irradiate the wide range of the internal air passage 5 with ultraviolet rays, it is more efficient to irradiate the two light sources 24 so that the optical axes thereof are non-parallel to each other. In this case, by mounting one light source 24 on one substrate 27 and arranging the two substrates 27 at different angles, the optical axes of the two light sources 24 are arranged in a non-parallel state. For example, when the rigidity of the substrate 27 is low as described above, the substrate 27 can be used as a part of the UV irradiator 23 while being bent. Thereby, after arranging a plurality of light sources 24 on one substrate 27, the optical axes of the plurality of light sources 24 can be arranged in different directions. As a result, the number of substrates 27 can be reduced, leading to space saving.
 スペーサー29は、基板27と窓部26の間の距離を一定に保つ機能を有する。スペーサー29は、例えば、樹脂材料または金属材料からなる。スペーサー29の形状は、中空の円筒形状でもよいし、中空の角筒形状でもよい。スペーサー29は、窓部26と同等の外形を有していてもよい。例えば、窓部26の外形が円形であれば、スペーサー29の形状は、中空の円筒形状であってもよい。また、窓部26の外形が直方体形状であれば、スペーサー29の形状は、中空の角筒形状であってもよい。スペーサー29の一端側には基板27が接する。スペーサー29の他端側には窓部26が接する。 The spacer 29 has the function of keeping the distance between the substrate 27 and the window 26 constant. The spacer 29 is made of resin material or metal material, for example. The shape of the spacer 29 may be a hollow cylindrical shape or a hollow rectangular tube shape. Spacer 29 may have the same contour as window 26 . For example, if the outer shape of the window portion 26 is circular, the shape of the spacer 29 may be a hollow cylindrical shape. Moreover, if the outer shape of the window portion 26 is a rectangular parallelepiped shape, the shape of the spacer 29 may be a hollow prismatic shape. The substrate 27 is in contact with one end side of the spacer 29 . The window portion 26 is in contact with the other end side of the spacer 29 .
 スペーサー29は、厚み方向、幅方向、及び、長さ方向を有する。スペーサー29が中空の円筒形状の場合、幅方向についてのスペーサー29の長さは、長さ方向についてのスペーサー29の長さに等しい。厚み方向についてのスペーサー29の長さは、幅方向についてのスペーサー29の長さより短く、かつ、長さ方向についてのスペーサー29の長さより短い。例えば、互いに直交するx方向、y方向、及びz方向の3軸のうち、最も長さが短い方向についての寸法が、スペーサー29の厚み方向の寸法に相当する。スペーサー29は、厚み方向において、対向する面を有する。厚み方向についてのスペーサー29の長さは、厚み方向についての光源24の長さより長い。スペーサー29は、厚み方向に沿った軸を有する。スペーサー29の軸は、光源24の光軸と平行であることが望ましい。スペーサー29の軸は、中心軸であってもよい。また、光源24の光軸の仮想延長線、及び、スペーサー29の厚み方向の軸の仮想延長線が、内部風路5の対向する壁部3を通るように、光源24及びスペーサー29が配置されることが好ましい。スペーサー29が中空形状を有し、スペーサー29の内側、つまりスペーサー29の中空部分に、光源24が配置されてもよい。スペーサー29の厚み方向が、光源24の厚み方向と、一致するか、ほぼ一致するように、光源24及びスペーサー29が配置されることが好ましい。スペーサー29の厚み方向における一側の面は、内部風路5の壁部3に近い面に相当し、当該一側の面に対向する面は、内部風路5の壁部3から遠い面に相当する。スペーサー29及び光源24は、基板27に接する。スペーサー29の厚み方向における内部風路5の壁部3から遠い面と、光源24の厚み方向における内部風路5の壁部3から遠い面とは、基板27に接する。つまり、スペーサー29の厚み方向における内部風路5の壁部3から遠い面と、光源24の厚み方向における内部風路5の壁部3から遠い面とは、同一平面上に配置されるか、ほぼ同一の平面上に配置される。このことと、厚み方向についてのスペーサー29の長さが、厚み方向についての光源24の長さよりも長いこととの結び付きにより、スペーサー29の厚み方向における内部風路5の壁部3に近い面は、光源24の厚み方向における内部風路5の壁部3に近い面よりも、内部風路5の壁部3に近い位置に配置される。これにより、光源24から照射された光線は、光源24の厚み方向における内部風路5の壁部3に近い面よりも前側で、スペーサー29に当たって反射する。 The spacer 29 has a thickness direction, a width direction and a length direction. When the spacer 29 has a hollow cylindrical shape, the length of the spacer 29 in the width direction is equal to the length of the spacer 29 in the length direction. The length of the spacer 29 in the thickness direction is shorter than the length of the spacer 29 in the width direction and shorter than the length of the spacer 29 in the length direction. For example, the dimension of the spacer 29 in the thickness direction corresponds to the dimension of the shortest direction among the three axes of the x-direction, the y-direction, and the z-direction which are orthogonal to each other. The spacer 29 has surfaces facing each other in the thickness direction. The length of the spacer 29 in the thickness direction is longer than the length of the light source 24 in the thickness direction. The spacer 29 has an axis along the thickness direction. The axis of spacer 29 is preferably parallel to the optical axis of light source 24 . The axis of spacer 29 may be the central axis. Further, the light source 24 and the spacer 29 are arranged so that the virtual extension line of the optical axis of the light source 24 and the virtual extension line of the thickness direction axis of the spacer 29 pass through the opposing wall portions 3 of the internal air passage 5. preferably. The spacer 29 may have a hollow shape, and the light source 24 may be arranged inside the spacer 29 , that is, in the hollow portion of the spacer 29 . It is preferable that the light source 24 and the spacer 29 are arranged such that the thickness direction of the spacer 29 matches or substantially matches the thickness direction of the light source 24 . One side surface of the spacer 29 in the thickness direction corresponds to a surface close to the wall portion 3 of the internal air passage 5, and a surface opposite to the one side surface is a surface far from the wall portion 3 of the internal air passage 5. Equivalent to. Spacer 29 and light source 24 are in contact with substrate 27 . A surface of the spacer 29 far from the wall 3 of the internal air duct 5 in the thickness direction and a surface of the light source 24 far from the wall 3 in the thickness direction are in contact with the substrate 27 . In other words, the surface of the spacer 29 farther from the wall 3 of the internal air duct 5 in the thickness direction and the surface farther from the wall 3 of the internal air duct 5 in the thickness direction of the light source 24 are arranged on the same plane, They are arranged on almost the same plane. This is combined with the fact that the length of the spacer 29 in the thickness direction is longer than the length of the light source 24 in the thickness direction. , closer to the wall portion 3 of the internal air passage 5 than the surface closer to the wall portion 3 of the internal air passage 5 in the thickness direction of the light source 24 . Accordingly, the light beam emitted from the light source 24 hits the spacer 29 and is reflected on the front side of the surface of the internal air passage 5 near the wall portion 3 in the thickness direction of the light source 24 .
 基板27の表面には光源24が実装される。光源24は、基板27、窓部26、及びスペーサー29に囲まれるようにして、配置される。このようにすることで、光源24の外部からの衝撃による光源24の破損をより確実に防止することができる。スペーサー29は、紫外線反射率が高い材料で構成されていてもよい。スペーサー29は、光源24が生成する光のうち、少なくとも、主波長の光を反射するように構成されていてもよい。例えば、スペーサー29が高い吸収率を有する場合のように、スペーサー29の反射率が低い場合には、スペーサー29に一部の光線が吸収されてしまい、内部風路5の壁部3に届く光線の照度が低下してしまう。また、例えば、スペーサー29が高い透過率を有する場合のように、スペーサー29の反射率が低い場合には、光源24から広範囲に照射された光線を内部風路5の壁部3に照射させるために、サイズの大きい窓部26が必要となる。窓部26が大きい場合、その強度を確保するため、その厚みを厚くする必要がある。窓部26の厚みが増すと、透過率が低下してしまう。使用する光源24が生成する紫外線の波長に対する反射率が高いスペーサー29を用いることで、広角に照射された光線を反射させることができ、窓部26のサイズを抑え、薄肉化でき、照度の低下を抑制することができる。反射率が高い材料とは、例えば、樹脂としてはフッ素樹脂が挙げられ、金属としては、アルミニウム、アルマイト加工、蒸着等の表面処理を施した部材などが挙げられる。反射率が高いとは、例えば、光源24の主波長に対する反射率が80%以上、好ましくは90%以上のものである。あるいは、反射率が高いとは、内部風路5の壁部3に使用されるその他の材料と比較したときに相対的に反射率が高いことであってもよい。 A light source 24 is mounted on the surface of the substrate 27 . The light source 24 is arranged so as to be surrounded by the substrate 27 , the window 26 and the spacer 29 . By doing so, it is possible to more reliably prevent damage to the light source 24 due to impact from the outside of the light source 24 . The spacer 29 may be made of a material with high UV reflectance. The spacer 29 may be configured to reflect at least the dominant wavelength of the light generated by the light source 24 . For example, when the reflectance of the spacer 29 is low, such as when the spacer 29 has a high absorptivity, part of the light beam is absorbed by the spacer 29, and the light beam reaching the wall portion 3 of the internal air passage 5 is reduced. illuminance is reduced. Further, for example, when the reflectance of the spacer 29 is low, such as when the spacer 29 has a high transmittance, the light beam emitted from the light source 24 in a wide range is applied to the wall 3 of the internal air passage 5. In addition, a window portion 26 having a large size is required. If the window portion 26 is large, its thickness must be increased in order to ensure its strength. As the thickness of the window portion 26 increases, the transmittance decreases. By using the spacer 29 that has a high reflectance with respect to the wavelength of the ultraviolet rays generated by the light source 24 used, it is possible to reflect light rays irradiated at a wide angle, suppress the size and thickness of the window 26, and reduce the illuminance. can be suppressed. Materials with high reflectance include, for example, fluororesins as resins, and aluminum, members subjected to surface treatment such as alumite processing and vapor deposition as metals. High reflectance means, for example, that the reflectance for the dominant wavelength of the light source 24 is 80% or more, preferably 90% or more. Alternatively, high reflectivity may be relatively high reflectivity when compared to other materials used for the walls 3 of the internal air passage 5 .
 なお、スペーサー29は、中空の形状でなくてもよい。光源24がスペーサー29に、360度または全周、囲まれていることが望ましいが、そのような構成に限定されない。例えば、光源24は複数のスペーサー29によって囲まれていてもよい。例えば、光源24は間隔を空けて設けられた複数のスペーサー29によって囲まれていてもよい。例えば、光源24の中心及び光軸を中心として、180度以上の範囲にわたって、光源24がスペーサー29に囲まれていてもよいし、270度以上の範囲にわたって、光源24がスペーサー29に囲まれていてもよい。スペーサー29の形状は、円形あるいは角形ではなく、例えば、C字状、U字状、またはアーチ状のように、一部が欠けているような柱形状であってもよい。ただし、スペーサー29の形状は、四方がふさがれた中空の円形または中空の角形が好ましい。スペーサー29が窓部26あるいはシール部材30と協働して、光源24に水あるいは塵埃が入りにくい構造となるからである。同じ理由から、一部が欠けている形状をスペーサー29が有する場合には、その欠けた範囲がなるべく少ない形状であることが好ましい。また、スペーサー29の欠けた部分の位置は、鉛直方向の下側の位置であることが好ましい。例えば、光源24の中心よりも鉛直方向の下側における範囲内に、スペーサー29の欠けた部分があってもよい。例えば、鉛直方向の位置に関して光源24の下端よりも下側における範囲で、スペーサー29が欠けていてもよい。例えば、スペーサー29の形状は、中空の角柱の、底辺つまり下側の部分が欠けた、C字状またはU字状の形状であってもよい。中空の円筒形状または中空の角柱形状を有するスペーサー29の内側すなわち中空部分に配置された光源24から照射された光線の一部は、スペーサー29に当たって反射する。スペーサー29に一度だけ当たって反射した光線は、内部風路5の壁部3側へ進む。このとき、スペーサー29のうち、鉛直方向の下側の部分に一度だけ当たって反射し、その後スペーサー29に当たらずに内部風路5の壁部3側へ進んだ光線は、鉛直方向の上方へ進む。このような光線は、内部風路5の壁部3に当たらず、送風装置1が設置されている空間に照射されることになる。これに対し、鉛直方向の下側の部分が欠けたスペーサー29であれば、スペーサー29に当たって反射して送風装置1が設置されている空間に照射される光線を少なくすることができる。これにより、周辺にいる人に被ばくするリスクを低減できる。 It should be noted that the spacer 29 does not have to be hollow. Although it is desirable that the light source 24 is surrounded by the spacer 29 360 degrees or all around, it is not limited to such a configuration. For example, light source 24 may be surrounded by multiple spacers 29 . For example, the light source 24 may be surrounded by a plurality of spaced apart spacers 29 . For example, the light source 24 may be surrounded by the spacers 29 over a range of 180 degrees or more around the center of the light source 24 and the optical axis, or the light source 24 may be surrounded by the spacers 29 over a range of 270 degrees or more. may The shape of the spacer 29 may not be circular or rectangular, but may be a columnar shape with a part missing, such as a C-shape, a U-shape, or an arch shape. However, the shape of the spacer 29 is preferably a hollow circle or a hollow square with four sides closed. This is because the spacer 29 cooperates with the window portion 26 or the seal member 30 to provide a structure that makes it difficult for water or dust to enter the light source 24 . For the same reason, when the spacer 29 has a shape in which a part is missing, it is preferable to have a shape in which the missing range is as small as possible. Moreover, it is preferable that the missing portion of the spacer 29 be positioned on the lower side in the vertical direction. For example, the missing part of the spacer 29 may be within a range below the center of the light source 24 in the vertical direction. For example, the spacer 29 may be missing in a range below the lower end of the light source 24 with respect to the vertical position. For example, the shape of the spacer 29 may be a hollow prismatic C-shaped or U-shaped shape with a missing base or lower portion. Part of the light beam emitted from the light source 24 disposed inside the spacer 29 having a hollow cylindrical shape or a hollow prismatic shape, that is, in the hollow portion, strikes the spacer 29 and is reflected. A light ray that hits the spacer 29 only once and is reflected advances toward the wall portion 3 side of the internal air passage 5 . At this time, of the spacers 29, the light rays that strike the vertically lower part of the spacers 29 only once, are reflected, and then proceed to the wall portion 3 side of the internal air passage 5 without hitting the spacers 29, are vertically upward. move on. Such light beams do not hit the wall portion 3 of the internal air passage 5, but irradiate the space in which the blower device 1 is installed. On the other hand, if the spacer 29 lacks the lower portion in the vertical direction, it is possible to reduce the amount of light that strikes the spacer 29 and is reflected to irradiate the space in which the blower device 1 is installed. As a result, the risk of radiation exposure to people in the vicinity can be reduced.
 UV照射器23の固定は、固定具31に限定されない。例えば、固定具31は、送風装置1の一部でもよいし、内部風路5の壁部3の一部であってもよい。固定具31は、ケース25の一部でもよいし、ヒートシンク28の一部であってもよい。また、UV照射器23を固定できれば、固定具31は備えていなくてもよい。 The fixing of the UV irradiator 23 is not limited to the fixture 31. For example, the fixture 31 may be part of the blower device 1 or part of the wall 3 of the internal air passage 5 . The fixture 31 may be part of the case 25 or part of the heat sink 28 . Further, if the UV irradiator 23 can be fixed, the fixture 31 may not be provided.
 図24から図27のそれぞれは、実施の形態1による送風装置1が備えるUV照射器23の他の変形例を示す断面図である。図24から図27のそれぞれが示すUV照射器23の変形例は、ケース25を有しない例である。図24から図27のそれぞれの変形例では、ネジ33がヒートシンク28を内部風路5の壁部3のボス3kに締結することによって、UV照射器23が内部風路5の壁部3に対して固定されている。 24 to 27 are cross-sectional views showing other modifications of the UV irradiator 23 included in the air blower 1 according to Embodiment 1. FIG. 24 to 27 each show a modification of the UV irradiator 23 that does not have the case 25. FIG. 24 to 27, the screws 33 fasten the heat sink 28 to the boss 3k of the wall 3 of the internal air passage 5 so that the UV irradiator 23 is attached to the wall 3 of the internal air passage 5. is fixed.
 図24が示す変形例及び図25が示す変形例では、窓部26と内部風路5の壁部3との隙間をシール部材30が封止している。 In the modified example shown in FIG. 24 and the modified example shown in FIG. 25, the seal member 30 seals the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 .
 図25から図27のそれぞれが示す変形例は、スペーサー29を有しない例である。これらの変形例では、窓部26が内部風路5の壁部3によって保持されている。 The modified examples shown in FIGS. 25 to 27 are examples without spacers 29 . In these modifications, the window portion 26 is held by the wall portion 3 of the internal air duct 5 .
 図25が示す変形例では、ボス3kから内周側へ突出する突出部3mによって、窓部26が支持されている。 In the modification shown in FIG. 25, the window portion 26 is supported by a protruding portion 3m protruding from the boss 3k to the inner peripheral side.
 図26及び図27のそれぞれが示す変形例は、シール部材30を有しない例である。 The modified examples shown in FIGS. 26 and 27 are examples without the sealing member 30 .
 図26が示す変形例では、ブッシュ34を用いて窓部26が内部風路5の壁部3に取り付けられている。ブッシュ34の外周部は、内部風路5の壁部3に形成された開口の内周部に嵌合する。窓部26の外周部は、ブッシュ34の内周部に嵌合する。ブッシュ34は、例えば、ケーブルブッシュに似た構造を有する。ブッシュ34は、窓部26と内部風路5の壁部3との隙間を封止する機能を兼ね備えてもよい。この場合、窓部26を内部風路5の壁部3側から光源24に向かって押し込むことで窓部26が取り付けられる。 In the modification shown in FIG. 26, the window part 26 is attached to the wall part 3 of the internal air duct 5 using bushes 34 . The outer peripheral portion of the bush 34 fits into the inner peripheral portion of the opening formed in the wall portion 3 of the internal air passage 5 . The outer peripheral portion of the window portion 26 fits into the inner peripheral portion of the bush 34 . The bushing 34 has, for example, a structure similar to a cable bushing. The bush 34 may also have the function of sealing the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 . In this case, the window part 26 is attached by pushing the window part 26 from the wall part 3 side of the internal air passage 5 toward the light source 24 .
 送風装置1は、UV照射器23が取り外し可能となるように構成されていてもよい。換言すると、UV照射器23は、内部風路5の壁部3から、取り外し可能となるように構成されていてもよい。また、送風装置1のうち、UV照射器23を除いた本体部分と、UV照射器23とが分離可能であり、当該本体部分からUV照射器23を取り外すことができるように、送風装置1が構成されていてもよい。送風装置1は、UV照射器23を取り外して、新しいUV照射器23に取り換えることができるように構成されていてもよい。そのようにすることで、光源24が寿命に達して性能が低下した場合に、新しいUV照射器23に取り換えることで、性能を回復させることができる。また、新しいUV照射器23に取り換えることで、窓部26あるいはシール部材30などの性能も回復することができる。また、固定具31を取り外すことにより、ケース25あるいはシール部材30を送風装置1に取り付けたままで、光源24あるいは窓部26を交換することもできる。つまり、取り外す部位に応じて、また必要に応じて、UV照射器23の全体を交換したり、UV照射器23の一部を選択的に交換したりすることを、容易に行うことができる。また、固定具としてのネジ33、あるいは固定具31を取り外すことで、光源24を含む光源部を取り外すことができる。つまり、複数の方法または複数の部位の取り外しにより、当該光源部を取り外すことができる。既に述べた通り、光源24あるいは窓部26の上側の部分が、光源24あるいは窓部26の下側の部分よりも、内部風路5の壁部3側に位置することが好ましい。つまり、UV照射器23全体として、上側の部分が、下側の部分よりも、内部風路5の壁部3側に位置していてもよい。この場合、固定具31を取り外して、光源24あるいは窓部26を交換する際に、シール部材30が落下しにくくなるので、着脱と交換の作業が容易となる。 The air blower 1 may be configured such that the UV irradiator 23 is removable. In other words, the UV irradiator 23 may be configured to be removable from the wall 3 of the internal air passage 5 . In addition, the main body portion of the blower device 1 excluding the UV irradiator 23 can be separated from the UV irradiator 23, and the blower device 1 is configured so that the UV irradiator 23 can be removed from the main body portion. may be configured. The blower device 1 may be configured such that the UV irradiator 23 can be removed and replaced with a new UV irradiator 23 . By doing so, when the light source 24 reaches the end of its life and its performance deteriorates, the performance can be restored by replacing it with a new UV irradiator 23 . Also, by replacing with a new UV irradiator 23, the performance of the window part 26 or the sealing member 30 can be restored. Further, by removing the fixture 31, the light source 24 or the window portion 26 can be replaced while the case 25 or the sealing member 30 is still attached to the blower device 1. FIG. That is, it is possible to easily replace the entire UV irradiator 23 or selectively replace a part of the UV irradiator 23 according to the part to be removed or as required. Further, the light source section including the light source 24 can be removed by removing the screw 33 as a fixture or the fixture 31 . That is, the light source unit can be removed by multiple methods or by removing multiple parts. As already mentioned, it is preferable that the upper portion of the light source 24 or the window portion 26 be positioned closer to the wall portion 3 of the internal air passage 5 than the lower portion of the light source 24 or the window portion 26 . That is, the upper portion of the UV irradiator 23 as a whole may be located closer to the wall portion 3 of the internal air passage 5 than the lower portion. In this case, when the fixture 31 is removed and the light source 24 or the window portion 26 is replaced, the sealing member 30 is less likely to fall off, thus facilitating attachment/detachment and replacement work.
 図27が示す変形例では、両面粘着テープ35を用いて窓部26が内部風路5の壁部3に取り付けられている。窓部26の周縁部が、内部風路5の壁部3に形成された開口の縁部に対して、両面粘着テープ35により接着されている。窓部26と内部風路5の壁部3との隙間を両面粘着テープ35が封止している。 In the modified example shown in FIG. 27, the window part 26 is attached to the wall part 3 of the internal air passage 5 using double-sided adhesive tape 35 . A peripheral edge portion of the window portion 26 is adhered to the edge portion of the opening formed in the wall portion 3 of the internal air passage 5 with a double-sided adhesive tape 35 . A double-faced adhesive tape 35 seals the gap between the window portion 26 and the wall portion 3 of the internal air passage 5 .
 固定具としてのネジ33あるいは固定具31を取り外すことで、窓部26あるいはUV照射器23を取り外すことができる。このように、送風装置1は、窓部26が取り外し可能となるように構成されていてもよい。送風装置1は、窓部26を取り外して、新しい窓部26に取り換えることができるように構成されていてもよい。そのようにすることで、窓部26が劣化して透過率が低下した場合に、新しい窓部26に取り換えることで、透過率を回復させることができる。なお、窓部26がUV照射器23とは別体の場合には、UV照射器23を取り外すことなく窓部26を取り外せるように構成されていてもよい。また、窓部26がUV照射器23と一体の場合には、UV照射器23ごと新しいものに取り換えることで、窓部26を新しいものに取り換えてもよい。 The window part 26 or the UV irradiator 23 can be removed by removing the screw 33 or the fixing tool 31 as a fixing tool. Thus, the blower device 1 may be configured such that the window portion 26 is removable. The blower 1 may be configured such that the window 26 can be removed and replaced with a new window 26 . By doing so, when the window part 26 deteriorates and the transmittance decreases, the transmittance can be recovered by replacing it with a new window part 26 . If the window 26 is separate from the UV irradiator 23 , the window 26 may be removed without removing the UV irradiator 23 . Moreover, when the window portion 26 is integrated with the UV irradiator 23, the window portion 26 may be replaced with a new one by replacing the entire UV irradiator 23 with a new one.
 送風装置1は、手検知器21による検知に応じて、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されたコントローラ22をさらに備えてもよい。紫外線は、人体に当たると有害な場合がある。手検知器21が手を検知したことに応じて、コントローラ22が、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするようにすれば、人体に紫外線が当たることをより確実に防止できる。コントローラ22は、光源24の電流を調整することで、UV照射器23の平均出力を調整できる。 The blower device 1 may further comprise a controller 22 configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero in response to detection by the hand detector 21. good. Ultraviolet rays can be harmful when they hit the human body. If the controller 22 reduces the average output of the UV irradiator 23 or sets the average output of the UV irradiator 23 to zero in response to the detection of the hand by the hand detector 21, the human body is exposed to ultraviolet rays. You can more reliably prevent it from hitting you. Controller 22 can adjust the average output of UV irradiator 23 by adjusting the current of light source 24 .
 ここで、手検知器21は、内部風路5に挿入された手、または、内部風路5の壁部3に配置された手、の有無を検知できる。送風装置1のコントローラ22は、手が無いことを手検知器21が検知している場合に、UV照射器23が紫外線を照射するように構成されていてもよい。内部風路5の壁部3に手が無いときにUV照射器23が紫外線を照射することで、安全性と衛生性をより確実に両立できる。 Here, the hand detector 21 can detect the presence or absence of a hand inserted into the internal air duct 5 or a hand placed on the wall 3 of the internal air duct 5 . The controller 22 of the air blower 1 may be configured so that the UV irradiator 23 irradiates ultraviolet rays when the hand detector 21 detects that there is no hand. The UV irradiator 23 irradiates ultraviolet rays when the wall 3 of the internal air passage 5 is free of hands, so that both safety and sanitation can be achieved more reliably.
 前述したように、送風装置1は、人検知器39をさらに備えてもよい。人検知器39は、送風装置1に近づいた人体を検出する。人検知器39は、例えば、本体筐体2に設置された人感センサを有していてもよい。なお、本開示による送風装置は、人検知器を備えていないものでもよい。例えば、人検知器39は、送風装置1に対して、所定の距離よりも近い位置にいる人体を検知する。例えば、人検知器39は、送風装置1に対して、所定の距離よりも近い位置にいる人体が動いたことを検知する。例えば、人検知器39は、送風装置1に対して、所定の領域に立っている人を検知する。例えば、人検知器39は、人体の姿勢を検知する。 As described above, the blower device 1 may further include the human detector 39. A human detector 39 detects a human body approaching the blower 1 . The human detector 39 may have, for example, a human sensor installed in the main housing 2 . It should be noted that the blower device according to the present disclosure may not include a human detector. For example, the human detector 39 detects a human body located closer than a predetermined distance to the air blower 1 . For example, the human detector 39 detects movement of a human body located closer than a predetermined distance to the blower 1 . For example, the human detector 39 detects a person standing in a predetermined area with respect to the blower 1 . For example, the human detector 39 detects the posture of a human body.
 送風装置1は、人検知器39による検知に応じて、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されたコントローラ22をさらに備えてもよい。人検知器39が人を検知したことに応じて、コントローラ22が、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするようにすれば、人体に紫外線が当たることをより確実に防止できる。 The blower device 1 may further comprise a controller 22 configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero in response to detection by the occupant detector 39. good. If the controller 22 reduces the average output of the UV irradiator 23 or sets the average output of the UV irradiator 23 to zero in response to the detection of a person by the human detector 39, the human body is exposed to ultraviolet rays. You can more reliably prevent it from hitting you.
 紫外線照射量は、照度と、照射時間との積に比例する。照度が一定であるとすれば、室内空間または内部風路5内を十分に殺菌するために必要な紫外線照射量に対応した照射時間を算出できる。 The amount of UV irradiation is proportional to the product of the illuminance and the irradiation time. Assuming that the illuminance is constant, it is possible to calculate the irradiation time corresponding to the amount of ultraviolet irradiation necessary for sufficiently sterilizing the indoor space or the inside of the internal air duct 5 .
 コントローラ22は、手検知器21が手を検知しない状態が続いた時間、または、人検知器39が人を検知しない状態が続いた時間が、基準を超えると、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されていてもよい。これにより、内部風路5の壁部3の構成材料の劣化を防止したりする上で、有利になる。 The controller 22 reduces the average output of the UV irradiator 23 when the time for which the hand detector 21 continues to fail to detect a hand or the time for which the human detector 39 continues to fail to detect a person exceeds the reference. It may be configured to reduce or zero the average power of the UV illuminator 23 . This is advantageous in preventing deterioration of the constituent material of the wall portion 3 of the internal air passage 5 .
 コントローラ22は、UV照射器23による紫外線の照射が続いている時間が基準を超えると、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されていてもよい。これにより、1回の照射時間が必要以上に長くなることを防止できる。それゆえ、光源24の寿命を延ばしたり、窓部26の透過率低下を防止したり、内部風路5の壁部3の構成材料の劣化を防止したりする上で、有利になる。 The controller 22 is configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero when the duration of UV irradiation by the UV irradiator 23 exceeds a reference. may be This can prevent one irradiation time from becoming longer than necessary. Therefore, it is advantageous in extending the life of the light source 24, preventing a decrease in the transmittance of the window portion 26, and preventing deterioration of the constituent material of the wall portion 3 of the internal air passage 5.
 コントローラ22は、UV照射器23による紫外線の照射が続いている時間が基準を超えると、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されていてもよい。これにより、1回の照射時間が必要以上に長くなることを防止できる。それゆえ、光源24の寿命を延ばしたり、窓部26の透過率低下を防止したり、壁部3の構成材料の劣化を防止したりする上で、有利になる。 The controller 22 is configured to reduce the average output of the UV irradiator 23 or set the average output of the UV irradiator 23 to zero when the duration of UV irradiation by the UV irradiator 23 exceeds a reference. may be This can prevent one irradiation time from becoming longer than necessary. Therefore, it is advantageous in extending the life of the light source 24 , preventing a decrease in the transmittance of the window 26 , and preventing deterioration of the constituent material of the wall 3 .
 また、コントローラ22は、UV照射器23の温度、またはUV照射器23の基板27またはチップの温度が、第一基準を超えると、UV照射器23の平均出力を低下させるか、UV照射器23の平均出力をゼロにするように構成されていてもよい。第一基準とは、例えば、50℃から200℃であり、より好ましくは80℃から140℃の間である。基準とは例えば、UV照射器23の温度、またはUV照射器23の基板27またはチップの温度が基準のジャンクション温度である。また、コントローラ22は、UV照射器23の温度、またはUV照射器23の基板27またはチップの温度が、第二基準を超えると、UV照射器23の平均出力を再び増加させてよい。この場合のUV照射器23の平均出力は、出力が低下する前の出力、またはUV照射器23の平均出力が低下する前の出力より低い値である。第二基準とは、第一基準の温度と同じ温度でもよい。より好ましくは、第二基準は、第一基準の温度より低い温度である。また、送風装置1がジャンクション温度検知器を備えていてもよい。ジャンクション温度検知器は、ジャンクション温度を計算により導き出してもよく、直接ジャンクション温度を検知してもよい。ジャンクション温度検知器は、例えば、熱抵抗を検知する熱抵抗検知器、周囲の温度を検知する周囲温度検知器、ケース温度を検知するケース温度検知器を備えていてもよい。ジャンクション温度の計算方法として、例えば、下記の式(1)または式(2)を用いてもよい。これらのことにより、UV照射器23の故障、劣化を抑制することができる。 Further, when the temperature of the UV irradiator 23 or the temperature of the substrate 27 or chip of the UV irradiator 23 exceeds the first reference, the controller 22 reduces the average output of the UV irradiator 23 or may be configured to zero the average output of The first reference is, for example, 50°C to 200°C, more preferably 80°C to 140°C. The reference is, for example, the temperature of the UV irradiator 23 or the temperature of the substrate 27 or chip of the UV irradiator 23 as the reference junction temperature. The controller 22 may also increase the average power of the UV illuminator 23 again when the temperature of the UV illuminator 23 or the temperature of the substrate 27 or chip of the UV illuminator 23 exceeds the second criterion. The average output of the UV irradiator 23 in this case is the output before the output is reduced, or a value lower than the output before the average output of the UV irradiator 23 is reduced. The second reference may be the same temperature as the first reference temperature. More preferably, the second reference is a temperature lower than the temperature of the first reference. Moreover, the blower device 1 may be provided with a junction temperature detector. The junction temperature detector may derive the junction temperature by calculation or directly detect the junction temperature. The junction temperature detectors may include, for example, a thermal resistance detector that detects thermal resistance, an ambient temperature detector that detects ambient temperature, and a case temperature detector that detects case temperature. As a method of calculating the junction temperature, for example, the following formula (1) or formula (2) may be used. By these things, failure and deterioration of the UV irradiator 23 can be suppressed.
 Tj=Ta+Rth(j-a)×P ・・・(1)
  Tj:ジャンクション温度
  Ta:周囲温度
  Rth(j-a):ジャンクション-雰囲気間の熱抵抗
  P:消費電力
Tj=Ta+Rth(ja)×P (1)
Tj: junction temperature Ta: ambient temperature Rth(ja): thermal resistance between junction and atmosphere P: power consumption
 Tj=Tc+Rth(j-c)×P ・・・(2)
  Tj:ジャンクション温度
  Tc:ケース温度
  Rth(j-c):ジャンクション-ケース間の熱抵抗
  P:消費電力
Tj=Tc+Rth(j−c)×P (2)
Tj: Junction temperature Tc: Case temperature Rth(j-c): Thermal resistance between junction and case P: Power consumption
 図28は、内部風路5の壁部3へのUV照射器23の取付例を示す断面側面図である。図28の例において、内部風路5は、バイパス風路41を有する。バイパス風路41は、UV照射器23をヒートシンク28側から覆うカバー42によって、形成されている。内部風路5を流れる気流AFの一部が、バイパス気流BAFとして分かれて、入口43からバイパス風路41に流入する。バイパス風路41を通過したバイパス気流BAFは、出口44を出ると、元の気流AFに合流する。バイパス風路41を通過するバイパス気流BAFにより、UV照射器23の特にヒートシンク28を効率良く冷却できる。 28 is a cross-sectional side view showing an example of attaching the UV irradiator 23 to the wall portion 3 of the internal air passage 5. FIG. In the example of FIG. 28 , the internal air passage 5 has a bypass air passage 41 . The bypass air passage 41 is formed by a cover 42 that covers the UV irradiator 23 from the heat sink 28 side. A part of the airflow AF flowing through the internal airflow passage 5 is divided as a bypass airflow BAF and flows into the bypass airflow passage 41 from the inlet 43 . The bypass airflow BAF that has passed through the bypass airflow path 41 joins the original airflow AF after exiting the outlet 44 . By the bypass airflow BAF passing through the bypass airflow path 41, the heat sink 28 in particular of the UV irradiator 23 can be efficiently cooled.
 図28の例では、UV照射器23が取り付けられた壁部3に向かい合う壁部45が設けられている。壁部3と壁部45との間を気流AFが流れる。窓部26は、壁部45に向かい合う。窓部26と壁部45との間を気流AFが流れる。壁部45は、無くてもよい。 In the example of FIG. 28, a wall section 45 is provided facing the wall section 3 to which the UV irradiator 23 is attached. An airflow AF flows between the wall portion 3 and the wall portion 45 . The window portion 26 faces the wall portion 45 . Airflow AF flows between the window portion 26 and the wall portion 45 . The wall portion 45 may be omitted.
 図29は、内部風路5の壁部3へのUV照射器23の他の取付例を示す断面側面図である。図29の例について、図28との相違点を説明する。図29の例では、固定具46を用いて、カバー42が取り外し可能に取り付けられている。固定具46は、例えば、ネジでもよい。固定具46を取り外すと、カバー42を取り外すことができる。カバー42を取り外すと、UV照射器23を容易に取り外すことができる。 29 is a cross-sectional side view showing another example of attaching the UV irradiator 23 to the wall portion 3 of the internal air passage 5. FIG. Regarding the example of FIG. 29, differences from FIG. 28 will be described. In the example of FIG. 29, the cover 42 is removably attached using fasteners 46 . Fixtures 46 may be, for example, screws. Removing the fixture 46 allows the cover 42 to be removed. By removing the cover 42, the UV irradiator 23 can be easily removed.
1 送風装置、 2 本体筐体、 3 壁部、 3j 開口、 3k ボス、 3m 突出部、 4 上部熱交換器、 5 内部風路、 6 吸気口、 7 吹出口、 8 上部熱交換器、 9 下部熱交換器、 10 電動送風機、 11 汚染度合検知推定器、 12 体温検知器、 13 人識別器、 14 温度検知器、 14A 第一温度検知器、 14B 第二温度検知器、 15 風向変更器、 16 移動器、 17 パネル、 18 ルーバー、 21 手検知器、 22 コントローラ、 23 UV照射器、 23A 第一UV照射器、 23B 第二UV照射器、 24 光源、 25 ケース、 26 窓部、 26a 第一窓部、 26b 第二窓部、 27 基板、 28 ヒートシンク、 29 スペーサー、 30 シール部材、 31 固定具、 32 配線、 33 ネジ、 34 ブッシュ、 35 両面粘着テープ、 39 人検知器、 41 バイパス風路、 42 カバー、 43 入口、 44 出口、 45 壁部、 46 固定具、 101 プロセッサ、 102 メモリ 1 blower, 2 main body, 3 wall, 3j opening, 3k boss, 3m protrusion, 4 upper heat exchanger, 5 internal air passage, 6 air intake, 7 outlet, 8 upper heat exchanger, 9 lower Heat exchanger, 10 Electric blower, 11 Contamination level detection estimator, 12 Body temperature detector, 13 Person identifier, 14 Temperature detector, 14A First temperature detector, 14B Second temperature detector, 15 Wind direction changer, 16 Mover, 17 Panel, 18 Louver, 21 Hand detector, 22 Controller, 23 UV irradiator, 23A First UV irradiator, 23B Second UV irradiator, 24 Light source, 25 Case, 26 Window, 26a First window Part 26b Second window part 27 Substrate 28 Heat sink 29 Spacer 30 Sealing member 31 Fixing tool 32 Wiring 33 Screw 34 Bushing 35 Double-sided adhesive tape 39 Human detector 41 Bypass airway 42 cover, 43 inlet, 44 outlet, 45 wall, 46 fixture, 101 processor, 102 memory

Claims (13)

  1.  室内空間に連通する吸気口と、
     前記室内空間に連通する吹出口と、
     前記吸気口から前記吹出口への内部風路と、
     前記吸気口から前記内部風路を通って前記吹出口へ向かう気流を発生させる電動送風機と、
     前記内部風路の少なくとも一部に紫外線を照射するUV照射器と、
     を備える送風装置。
    an intake port communicating with the indoor space;
    an air outlet communicating with the indoor space;
    an internal air passage from the inlet to the outlet;
    an electric blower that generates an airflow from the intake port to the blowout port through the internal air passage;
    a UV irradiator that irradiates at least part of the internal air passage with ultraviolet rays;
    A blower with.
  2.  前記UV照射器は、ヒートシンクと基板とを備え、
     前記ヒートシンクの少なくとも一部または前記基板の少なくとも一部は、前記内部風路に露出し、
     前記電動送風機の風量に応じて前記UV照射器の平均出力を変えるコントローラをさらに備える請求項1に記載の送風装置。
    The UV irradiator comprises a heat sink and a substrate,
    at least part of the heat sink or at least part of the substrate is exposed to the internal air passage;
    2. The blower device according to claim 1, further comprising a controller that changes the average output of said UV irradiator according to the air volume of said electric blower.
  3.  前記室内空間に人がいる在状態と、前記室内空間に人がいない不在状態とを検知する人検知器と、
     前記人検知器の検知結果に応じて前記UV照射器の平均出力を変えるコントローラと、
     をさらに備える請求項1に記載の送風装置。
    a human detector that detects a presence state in which a person is present in the indoor space and an absence state in which no person is present in the indoor space;
    a controller that changes the average output of the UV irradiator according to the detection result of the human detector;
    The blower device of claim 1, further comprising:
  4.  前記コントローラは、前記在状態から前記不在状態に変わると前記UV照射器の平均出力を上げるように構成されている請求項3に記載の送風装置。 The blower device according to claim 3, wherein the controller is configured to increase the average output of the UV irradiator when changing from the present state to the absent state.
  5.  前記室内空間の汚染度合を検知または推定する汚染度合検知推定器と、
     前記汚染度合に応じて前記UV照射器の平均出力を変えるコントローラと、
     をさらに備える請求項1に記載の送風装置。
    a contamination level detection and estimator for detecting or estimating the contamination level of the indoor space;
    a controller that changes the average output of the UV irradiator according to the degree of contamination;
    The blower device of claim 1, further comprising:
  6.  前記室内空間にいる人の体温を検知する体温検知器と、
     前記体温に応じて前記UV照射器の平均出力を変えるコントローラと、
     をさらに備える請求項1に記載の送風装置。
    a body temperature detector that detects the body temperature of a person in the indoor space;
    a controller that changes the average output of the UV irradiator according to the body temperature;
    The blower device of claim 1, further comprising:
  7.  前記室内空間にいる人を識別する人識別器と、
     前記室内空間にいる人の体温を検知する体温検知器と、
     前記人識別器により識別された人の現在の体温が、当該人の平熱よりも高い場合に、前記UV照射器の平均出力を上げるコントローラと、
     をさらに備える請求項1に記載の送風装置。
    a person identifier that identifies a person in the indoor space;
    a body temperature detector that detects the body temperature of a person in the indoor space;
    a controller that increases the average output of the UV irradiator when the current body temperature of the person identified by the person identifier is higher than the person's normal temperature;
    The blower device of claim 1, further comprising:
  8.  前記UV照射器の少なくとも一部は、前記内部風路に露出し、
     前記UV照射器の温度を検知する温度検知器と、
     前記内部風路の気流の向きを変更する風向変更器と、
     前記UV照射器の温度に応じて前記風向変更器により前記内部風路の気流の向きを変更するコントローラと、
     をさらに備える請求項1に記載の送風装置。
    At least part of the UV irradiator is exposed to the internal air passage,
    a temperature detector for detecting the temperature of the UV irradiator;
    an air direction changer that changes the direction of airflow in the internal air passage;
    a controller that changes the direction of the airflow in the internal air passage with the wind direction changer according to the temperature of the UV irradiator;
    The blower device of claim 1, further comprising:
  9.  前記UV照射器を第一の位置と第二の位置とに移動させる移動器と、
     前記UV照射器の温度を検知する温度検知器と、
     前記UV照射器の温度に応じて前記移動器により前記UV照射器を移動させるコントローラと、
     をさらに備え、
     前記第一の位置において前記UV照射器の熱が散逸する放熱効率と、前記第二の位置において前記UV照射器の熱が散逸する放熱効率とが異なる請求項1に記載の送風装置。
    a mover for moving the UV irradiator between a first position and a second position;
    a temperature detector for detecting the temperature of the UV irradiator;
    a controller for moving the UV irradiator by the mover according to the temperature of the UV irradiator;
    further comprising
    2. The blower device according to claim 1, wherein the heat dissipation efficiency of the UV irradiator at the first position is different from the heat dissipation efficiency of the UV irradiator at the second position.
  10.  空気調和機の室内機として用いられる請求項1から請求項8のいずれか一項に記載の送風装置であって、
     前記内部風路に配置された熱交換器と、
     前記吸気口から前記熱交換器への風路にある第一の位置と、前記熱交換器から前記吹出口への風路にある第二の位置とに、前記UV照射器を移動させる移動器と、
     暖房運転のときに前記UV照射器を前記第一の位置に移動させ、冷房運転のときに前記UV照射器を前記第二の位置に移動させるコントローラと、
     をさらに備える送風装置。
    The blower device according to any one of claims 1 to 8, which is used as an indoor unit of an air conditioner,
    a heat exchanger arranged in the internal air passage;
    a mover for moving the UV irradiator between a first position in the air path from the inlet to the heat exchanger and a second position in the air path from the heat exchanger to the outlet; and,
    a controller that moves the UV irradiator to the first position during heating operation and moves the UV irradiator to the second position during cooling operation;
    A blower device further comprising:
  11.  空気調和機の室内機として用いられる請求項1から請求項8のいずれか一項に記載の送風装置であって、
     前記UV照射器は、第一UV照射器であり、
     前記内部風路の少なくとも一部に紫外線を照射する第二UV照射器と、
     前記内部風路に配置された熱交換器と、
     コントローラと、
     をさらに備え、
     前記吸気口から前記熱交換器への風路に前記第一UV照射器が配置され、
     前記熱交換器から前記吹出口への風路に前記第二UV照射器が配置され、
     前記コントローラは、暖房運転のときに前記第一UV照射器を点灯させて前記第二UV照射器を消灯し、冷房運転のときに前記第一UV照射器を消灯させて前記第二UV照射器を点灯させるように構成されている送風装置。
    The blower device according to any one of claims 1 to 8, which is used as an indoor unit of an air conditioner,
    The UV irradiator is a first UV irradiator,
    a second UV irradiator that irradiates ultraviolet rays to at least part of the internal air passage;
    a heat exchanger arranged in the internal air passage;
    a controller;
    further comprising
    The first UV irradiator is arranged in an air passage from the air inlet to the heat exchanger,
    The second UV irradiator is arranged in an air passage from the heat exchanger to the outlet,
    The controller turns on the first UV irradiator and turns off the second UV irradiator during heating operation, and turns off the first UV irradiator and turns off the second UV irradiator during cooling operation. A blower configured to illuminate a
  12.  前記UV照射器は、第一UV照射器であり、
     前記内部風路の少なくとも一部に紫外線を照射する第二UV照射器と、
     前記内部風路に配置された熱源と、
     コントローラと、
     をさらに備え、
     前記吸気口から前記熱源への風路に前記第一UV照射器が配置され、
     前記熱源から前記吹出口への風路に前記第二UV照射器が配置され、
     前記コントローラは、温風運転のときに、前記第一UV照射器の平均出力よりも前記第二UV照射器の平均出力を低くするか、または、前記第二UV照射器を消灯するように構成されている請求項1に記載の送風装置。
    The UV irradiator is a first UV irradiator,
    a second UV irradiator that irradiates ultraviolet rays to at least part of the internal air passage;
    a heat source arranged in the internal air passage;
    a controller;
    further comprising
    The first UV irradiator is arranged in an air passage from the air inlet to the heat source,
    The second UV irradiator is arranged in an air passage from the heat source to the outlet,
    The controller is configured to make the average output of the second UV irradiator lower than the average output of the first UV irradiator or turn off the second UV irradiator during hot air operation. 2. The blower device according to claim 1.
  13.  前記UV照射器は、第一UV照射器であり、
     前記内部風路の少なくとも一部に紫外線を照射する第二UV照射器と、
     前記内部風路に配置された熱源と、
     コントローラと、
     前記第一UV照射器の温度を検知する第一温度検知器と、
     前記第二UV照射器の温度を検知する第二温度検知器と、
     をさらに備え、
     前記吸気口から前記熱源への風路に前記第一UV照射器が配置され、
     前記熱源から前記吹出口への風路に前記第二UV照射器が配置され、
     前記コントローラは、前記第二温度検知器が検知した前記第二UV照射器の温度に応じて前記第二UV照射器の平均出力を変化させるように構成されているか、または、前記第二温度検知器が検知した前記第二UV照射器の温度と前記第一温度検知器が検知した前記第一UV照射器の温度とに応じて前記第二UV照射器の平均出力を変化させるように構成されている請求項1に記載の送風装置。
    The UV irradiator is a first UV irradiator,
    a second UV irradiator that irradiates ultraviolet rays to at least part of the internal air passage;
    a heat source arranged in the internal air passage;
    a controller;
    a first temperature detector that detects the temperature of the first UV irradiator;
    a second temperature detector that detects the temperature of the second UV irradiator;
    further comprising
    The first UV irradiator is arranged in an air passage from the air inlet to the heat source,
    The second UV irradiator is arranged in an air passage from the heat source to the outlet,
    The controller is configured to vary the average output of the second UV illuminator in response to the temperature of the second UV illuminator sensed by the second temperature sensor, or to change the average output of the second UV irradiator according to the temperature of the second UV irradiator detected by the device and the temperature of the first UV irradiator detected by the first temperature detector. The blower device according to claim 1.
PCT/JP2021/046637 2021-12-16 2021-12-16 Blower device WO2023112285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046637 WO2023112285A1 (en) 2021-12-16 2021-12-16 Blower device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046637 WO2023112285A1 (en) 2021-12-16 2021-12-16 Blower device

Publications (1)

Publication Number Publication Date
WO2023112285A1 true WO2023112285A1 (en) 2023-06-22

Family

ID=86773909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046637 WO2023112285A1 (en) 2021-12-16 2021-12-16 Blower device

Country Status (1)

Country Link
WO (1) WO2023112285A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126485A (en) * 1995-09-16 1997-05-16 Samsung Electronics Co Ltd Air conditioner with sterilizer and control method thereof
JP2004000413A (en) * 2002-04-18 2004-01-08 Matsushita Refrig Co Ltd Local deodorizing apparatus
JP2004225927A (en) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp Air conditioning device and method
JP2007082904A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Hand dryer
KR20200044333A (en) * 2018-10-19 2020-04-29 엘지이노텍 주식회사 Purification apparatus
CN112432301A (en) * 2020-11-25 2021-03-02 山西中科潞安紫外光电科技有限公司 Air purification and sterilization system for enclosed space

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126485A (en) * 1995-09-16 1997-05-16 Samsung Electronics Co Ltd Air conditioner with sterilizer and control method thereof
JP2004000413A (en) * 2002-04-18 2004-01-08 Matsushita Refrig Co Ltd Local deodorizing apparatus
JP2004225927A (en) * 2003-01-20 2004-08-12 Mitsubishi Electric Corp Air conditioning device and method
JP2007082904A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Hand dryer
KR20200044333A (en) * 2018-10-19 2020-04-29 엘지이노텍 주식회사 Purification apparatus
CN112432301A (en) * 2020-11-25 2021-03-02 山西中科潞安紫外光电科技有限公司 Air purification and sterilization system for enclosed space

Similar Documents

Publication Publication Date Title
JP5812970B2 (en) Air purifier
KR101858806B1 (en) Air conditioner
CA2971014C (en) Uv decontamination system for climate control systems
JP2018162898A (en) Air conditioning device
US20210318008A1 (en) Uv-c germicidal led strip kits for hvac ducts
KR102312928B1 (en) Sterilization apparatus and home appliance including the same
KR101539985B1 (en) Lamp device
WO2023112285A1 (en) Blower device
KR20200102864A (en) Indoor unit of an air conditioner
CN211694590U (en) Ceiling lamp with ultraviolet sterilization and disinfection functions
JP2022181188A (en) Uvc led disinfecting device
KR102191549B1 (en) Sterilization apparatus and home appliance including the same
TW202206125A (en) Ultraviolet ray irradiation device and air blowing system using the same efficiently irradiating an entire filter with ultraviolet rays by using fewer ultraviolet light emitting elements
KR20070089002A (en) Uv lamp visual device of air-conditioner
CN210772490U (en) Air conditioner
WO2022255185A1 (en) Ultraviolet ray radiation apparatus
JP2020008181A (en) Air conditioner
JP2023100474A (en) Air conditioning device
KR102596208B1 (en) Air conditioner
JP7037099B2 (en) Air treatment equipment
JP7471635B2 (en) Air sterilizer
CN211119704U (en) Air conditioner
JP2022160292A (en) Ultraviolet irradiation device, and indoor unit for air conditioner equipped with the ultraviolet irradiation device
TWM626438U (en) Ceiling-mounted type disinfection device
KR20230111914A (en) Apparatus for air sterilizing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567462

Country of ref document: JP