WO2023112134A1 - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
WO2023112134A1
WO2023112134A1 PCT/JP2021/046000 JP2021046000W WO2023112134A1 WO 2023112134 A1 WO2023112134 A1 WO 2023112134A1 JP 2021046000 W JP2021046000 W JP 2021046000W WO 2023112134 A1 WO2023112134 A1 WO 2023112134A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
turret
tip
life
cutting tool
Prior art date
Application number
PCT/JP2021/046000
Other languages
French (fr)
Japanese (ja)
Inventor
揚子 岩井
数善 幸村
裕也 大塚
奈緒美 廣田
太智 中川
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/046000 priority Critical patent/WO2023112134A1/en
Publication of WO2023112134A1 publication Critical patent/WO2023112134A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/24Tool holders for a plurality of cutting tools, e.g. turrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • This disclosure relates to the replacement position of the tip of the machine tool.
  • the machine tool disclosed in Patent Document 1 below includes a so-called slant-type bed, and moves a turret along the inclined surface of the bed.
  • a machine tool indexes a tool to be used from among a plurality of tools held on a turret, and executes machining on a workpiece using the indexed tool.
  • the above-described turret for example, is provided with tool mounting portions at predetermined rotational angles in the rotational direction, and a cutting tool for machining a workpiece is mounted on each of the plurality of tool mounting portions.
  • a predetermined number of machining operations are performed and the tip of the cutting tool wears out, it becomes necessary to replace the tip.
  • the mounting position of the chip varies depending on the shape to be processed. For this reason, if the same exchange operation is performed uniformly, the tool exchange positions for exchanging the tip will be scattered, and there is a risk that the burden of the tip exchanging operation will increase.
  • the present disclosure has been made in view of the above problems, and provides a machine tool capable of arranging a cutting tool held by a turret at a tool change position according to the mounting state of the chip. intended to
  • the present specification provides a workpiece holding device that holds a workpiece and rotates around a spindle, and a cutting tool that has a detachable tip, and performs machining on the workpiece with the tip.
  • a turret a slide device for sliding the turret in a first direction parallel to the main axis and a second direction perpendicular to the first direction, and rotating the turret about a rotation axis along the first direction and a control unit, wherein the turret is provided with tool mounting portions at predetermined rotation angle intervals in the direction of rotation, and the cutting tool can be mounted on each of the plurality of tool mounting portions.
  • control unit includes a judgment unit for judging whether or not there is an end-of-life insert, which is the insert that needs to be replaced, among the inserts attached to the cutting tool held by the turret;
  • the slide device is controlled to place the life chip at the tool change position, and the tool change position is determined according to the holding position of the life chip in the turret.
  • a machine tool is disclosed having a position adjuster for adjusting the .
  • the tip is attached to different attachment positions depending on the shape of the cutting tool attached to the tool attachment portion.
  • the control unit places the life chip at the tool change position.
  • the control unit adjusts the tool change position according to the holding position of the end-of-life chip on the turret.
  • FIG. 1 is a perspective view of a machine tool according to a first embodiment
  • FIG. FIG. 2 is a perspective view of the machine tool with the main body cover removed
  • FIG. 4 is a schematic diagram showing a state in which the position of the tool change position in the Z-axis direction is adjusted; The figure which shows the machine tool of 2nd Example. The figure which shows the machine tool of 3rd Example. The figure which shows the machine tool of 4th Example.
  • FIG. 1 shows a perspective view of a machine tool 10 of the first embodiment as seen from the front side.
  • FIG. 2 shows the machine tool 10 with the device cover 15 removed. 2 shows a state in which some members such as a chuck mechanism 12 (see FIG. 1) and tips 60B and 63B (see FIG. 4), which will be described later, are not attached.
  • the machine tool 10 is a so-called NC lathe, and includes a main spindle device 11 having a main shaft along the machine body width direction (Z-axis direction) and a chuck mechanism 12 of the main spindle device 11 (see FIG. 2).
  • the direction along the main shaft of the spindle device 11 is the Z-axis direction
  • the direction perpendicular to the Z-axis direction moves the turret device 13 along a guide surface 20 described later.
  • the X-axis direction is referred to as the X-axis direction
  • the Z-axis direction which is the width direction of the machine and is horizontal to the installation surface of the device, may be referred to as the left-right direction with reference to the direction in which the machine tool 10 is viewed from the front.
  • Each device such as the spindle device 11 and the turret device 13 is placed on a bed 14 serving as a base and covered with a device cover 15 .
  • a slide door 15A is provided in the center of the front surface of the device cover 15 .
  • the slide door 15A slides in the left-right direction to open and close the center of the front surface of the device cover 15.
  • a processing chamber for processing a work is formed in the device cover 15 with the slide door 15A opened.
  • the user can access the processing chamber by opening the slide door 15A, and can perform work loading and unloading.
  • the user can replace the contact metal 12A and the child claws 12B of the chuck mechanism 12 by opening the slide door 15A.
  • the user can replace the tips 60B and 63B (see FIG.
  • FIG. 1 shows a state in which the slide door 15A is open.
  • the opening and closing of the slide door 15A may be performed manually by the user, or may be performed automatically by the machine tool 10 .
  • the loading and unloading of workpieces and the replacement of chips 60B and 63B may be performed manually by the user or may be performed by a robot.
  • FIG. 3 shows a block diagram of the machine tool 10.
  • the operation panel 16 includes a control section 17, a storage device 18, and an operation section 19.
  • FIG. The control unit 17 is a processing device mainly composed of a computer including a CPU and the like, and executes numerical control and sequence control to comprehensively control the operation of the machine tool 10 .
  • the control unit 17 is electrically connected to each device (turret device 13, etc.) of the machine tool 10, and is capable of controlling the operation of each device.
  • the storage device 18 includes, for example, RAM, ROM, flash memory, hard disk, and the like.
  • the storage device 18 stores various control data 18A.
  • the control data 18A includes, for example, data such as a program for controlling the operation of the spindle device 11 and the turret device 13, the type of work to be produced, the type of tool used for work, and the position of the tool relative to the work during work.
  • the program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like.
  • the control data 18A also contains a program for executing a cutting tool replacement process shown in FIG. 5, which will be described later.
  • a program is set for arranging the life chip at the tool change position where the life chip is to be replaced.
  • Threshold data for determining the number of times of use of the cutting tools 60 and 63 to which the tips 60B and 63B are attached is set in the control data 18A.
  • the control data 18A also stores a plurality of types of NC programs corresponding to the relative holding positions (cutting tools 60, 63) of the chips 60B, 63B in the turret 43.
  • FIG. The control unit 17 executes control based on this program, and arranges the life chip at the tool change position. In the following description, the fact that the control unit 17 executes the program of the control data 18A to control each device may be simply referred to as the device name.
  • the turret 43 rotates means that "the control unit 17 executes the program of the control data 18A to control the turret servomotor 47 (see FIG. 3), and the turret servomotor 47 is driven to rotate the turret 43. rotates”.
  • the operation unit 19 is a user interface, and includes, for example, a touch panel 19A and operation switches 19B.
  • the operation unit 19 changes the display content of the touch panel 19A and the lighting state of the lamp provided in the operation unit 19 based on the control of the control unit 17 . Further, the operation unit 19 outputs a signal to the control unit 17 according to an operation input to the touch panel 19A or the operation switch 19B. Note that the operation unit 19 may be configured without the touch panel 19A and the operation switches 19B.
  • the machine tool 10 is, for example, a turret lathe in which the A-axis, which is the rotation axis of the turret device 13, is parallel to the Z-axis direction.
  • the bed 14 is formed with a box-shaped chip collection section 14A that is open upward, and collects chips generated by machining the workpiece into the chip collection section 14A. Further, the bed 14 is of a slant type having a guide surface 20 inclined toward the chip collection section 14A in front of the apparatus.
  • the spindle device 11 is fixed to the bed 14 and has a chuck mechanism 12 (see FIG. 1), a headstock 21 and a drive device 23 .
  • the chuck mechanism 12 is attached to the tip of the headstock 21 and arranged above the scrap collector 14A in the machining chamber (see FIG. 1).
  • the chuck mechanism 12 can be attached with, for example, three child claws 12B.
  • the child claw 12B is opened and closed according to the supply amount.
  • the chuck mechanism 12 rotates around the main shaft while chucking a work placed on the contact metal 12A with three child claws 12B.
  • the spindle device 11 is not limited to a structure in which the headstock 21 and the like are fixed, and may be structured such that the headstock 21 and the like slides relative to the bed 14 in the Z-axis direction or the like.
  • a spindle (not shown) is rotatably supported inside the headstock 21 by bearings.
  • a chuck mechanism 12 (see FIG. 1) is attached to one end side (turret device 13 side) of the spindle in the Z-axis direction, and a spindle side pulley 27 is attached to the other end side.
  • the driving device 23 has a servomotor 29 and a timing belt 31 .
  • the servomotor 29 functions as a drive source for rotating the main shaft, and its rotation operation is controlled based on the control of the control section 17 .
  • the timing belt 31 is stretched over a motor-side pulley 33 attached to the output shaft of the servomotor 29 and the spindle-side pulley 27 .
  • the rotational force of the servomotor 29 is transmitted to the main shaft via the timing belt 31 and rotates according to the rotation of the servomotor 29 .
  • the control unit 17 controls the rotational speed, rotational position, etc. of the main shaft by numerical control or the like based on the rotational position information of the encoder 35 (see FIG. 3) attached to the servomotor 29 .
  • the turret device 13 has a turret main body 41 and a turret 43 .
  • the turret main body 41 has a box-like shape and is attached to the inclined guide surface 20 of the bed 14 .
  • the turret 43 is rotatably attached to the surface of the turret main body 41 on the headstock 21 side.
  • the turret 43 has a predetermined thickness in the Z-axis direction, and has, for example, a substantially regular decagon shape when viewed from the Z-axis direction.
  • the turret 43 has ten sides and a tool mounting portion 49 on which a tool can be mounted.
  • the tool attachment portion 49 has a structure capable of attaching a tool or the like to the surface of the turret 43 on the spindle device 11 side or the outer peripheral surface of the turret 43 .
  • Cutting tools 60 and 63 (see FIG. 4) or rotary tools such as end mills and drills are detachably attached to the tool attachment portion 49 . Details of the tool mounting portion 49 will be described later.
  • FIG. 2 shows a state in which a pusher 45 for pushing the workpiece toward the spindle device 11 is attached to one of the plurality of tool attachment portions 49 .
  • the turret device 13 has, for example, a turret servomotor 47 (see FIG. 3) built in the turret main body 41 .
  • the control unit 17 controls the rotation of the turret servomotor 47 in the turret device 13 to rotate the turret 43 around a rotation axis (A axis) parallel to the Z-axis direction.
  • the turret servomotor 47 functions as a drive source for rotating a rotary tool (such as an end mill) attached to the turret 43 .
  • the control unit 17 performs rotation indexing of the turret 43 and rotation of a rotary tool attached to the turret 43 by, for example, controlling the turret servomotor 47 .
  • the turret device 13 may be configured to include a drive source for rotating the rotary tool, in addition to the drive source for turning.
  • the machine tool 10 also includes an X-axis driving device 71 (see FIG. 3) that moves the turret device 13 in the X-axis direction, and a Z-axis driving device 73 (see FIG. 3) that moves the turret device 13 in the Z-axis direction.
  • the Z-axis driving device 73 includes a Z-axis guide rail 73A arranged on the guide surface 20 of the bed 14 and a Z-axis slide 73B slidable relative to the Z-axis guide rail 73A.
  • the Z-axis guide rail 73A is arranged in a direction parallel to the Z-axis direction, and holds the Z-axis slide 73B slidably in the Z-axis direction.
  • the Z-axis drive device 73 includes a Z-axis servomotor 73C (see FIG. 3), and transmits the rotation output of the Z-axis servomotor 73C to the Z-axis slide 73B via a transmission mechanism (for example, a ball screw).
  • the axial slide 73B is moved in the Z-axis direction.
  • the Z-axis drive device 73 also includes a Z-axis encoder 73D that outputs encoder information such as the rotational position of the Z-axis servomotor 73C.
  • the control unit 17 executes feedback control for controlling the rotational speed of the Z-axis servomotor 73C, etc., based on the encoder information (rotational position information, etc.) of the Z-axis encoder 73D.
  • the control unit 17 controls the Z-axis servomotor 73C to move the Z-axis slide 73B to any position in the Z-axis direction.
  • the X-axis drive device 71 also includes an X-axis guide rail 71A arranged on the upper surface of the Z-axis slide 73B. In the following description of the X-axis driving device 71, the description of the configuration similar to that of the Z-axis driving device 73 will be omitted as appropriate.
  • the X-axis guide rail 71A is arranged in a direction parallel to the X-axis direction, and holds the turret main body 41 so as to be slidable in the X-axis direction.
  • the X-axis driving device 71 includes an X-axis servomotor 71C (see FIG.
  • the X-axis drive device 71 includes an X-axis encoder 71D that outputs encoder information for an X-axis servomotor 71C.
  • the control unit 17 controls the X-axis servomotor 71C based on the encoder information of the X-axis encoder 71D to move the turret main body 41 to an arbitrary position in the X-axis direction.
  • the control unit 17 can move the turret device 13 (tool) to any position in the X-axis direction and the Z-axis direction by controlling the X-axis driving device 71 and the Z-axis driving device 73 . Further, the turret device 13 is moved in the X-axis direction by the X-axis driving device 71, so that the distance in the X-axis direction between the turret device 13 and the slide door 15A shown in FIG. 1 changes. That is, the turret 43 advances and retreats with respect to the slide door 15A.
  • the method for detecting the position information of the Z-axis slide 73B and the turret main body 41 is not limited to the encoder.
  • the control unit 17 may control the slide positions of the Z-axis slide 73B and the turret main body 41 using another position detection device such as a linear scale.
  • FIG. 4 shows two types of cutting tools 60 and 63 attached to the turret 43 .
  • the turret 43 is provided with tool mounting portions 49 at predetermined rotation angle intervals in the rotation direction 55 .
  • the turret 43 of this embodiment is provided with a tool mounting portion 49 every 36 degrees, and a total of 10 tool mounting portions 49 are provided.
  • the tool mounting portion 49 is provided with a first mounting portion 57 and a second mounting portion 58 .
  • the first attachment portion 57 has a flat surface formed on the outer peripheral surface of the turret 43, and has a threaded portion 57A for threading a threaded member 59 such as a bolt or a screw.
  • a cutting tool 60 is attached to the first attachment portion 57 by a holder 61 .
  • the cutting tool 60 has a cutting edge 60A, a tip 60B and a shank 60C.
  • the shank 60C is fixed to the first mounting portion 57 by a holder 61.
  • the holder 61 is fixed to a predetermined first attachment portion 57 (tool attachment portion 49 ) by a threaded member 59 .
  • the shank 60 ⁇ /b>C is a substantially cylindrical or rectangular prism-shaped member elongated in the Z-axis direction, and is held by the holder 61 with its base end inserted into the holder 61 .
  • the shank 60 ⁇ /b>C is fixed in position in the Z-axis direction by a bolt screwed into the holder 61 . By loosening this bolt, the shank 60C can move relative to the holder 61 in the Z-axis direction.
  • a tip 60B is detachably attached to the cutting edge 60A at the tip of the shank 60C.
  • the tip 60B is fixed to the cutting edge 60A by a threaded member 62 such as a bolt or screw.
  • the cutting tool 63 is attached to the second attachment portion 58 .
  • a groove formed along the radial direction of the turret 43 is formed in the second mounting portion 58 .
  • the cutting tool 63 has a cutting edge 63A, a tip 63B and a shank 63C.
  • the shank 63C is attached to the second attachment portion 58 by a clamper 64. As shown in FIG. The clamper 64 is inserted into the groove of the second mounting portion 58 together with the base end portion of the shank 63C, and is screwed with the screwing member 64A.
  • the clamper 64 is inserted into the groove of the second mounting portion 58 together with, for example, a wedge-shaped adjusting member (so-called liner), and the force for clamping the shank 63C is changed according to the amount of screwing of the screwing member 64A. . Therefore, the shank 63C is fitted into the groove together with the clamper 64 and fixed in position in the radial direction by screwing the screw member 64A.
  • the shank 63 ⁇ /b>C is a radially elongated, substantially circular prism-shaped member, and its base end is held by a clamper 64 .
  • a tip 63B is detachably attached to the cutting edge 63A at the tip of the shank 63C.
  • the tip 63B is fixed to the cutting edge 63A by a threaded member 65 such as a bolt or screw. Therefore, the cutting tools 60, 63 are so-called indexable tools in which the tips 60B, 63B can be attached to and detached from the cutting edges 60A, 63A.
  • the user replaces the chips 60B and 63B by loosening the threaded member 62 of the cutting tool 60 and the threaded member 65 of the cutting tool 63 for the life chips that need to be replaced.
  • FIG. 5 shows a flowchart of cutting tool replacement processing executed by the control unit 17 .
  • the control unit 17 reads out an NC program or the like corresponding to the work from the control data 18A and executes it, and performs cutting or drilling on the work held by the spindle device 11. Machining is performed by a tool attached to the turret device 13 .
  • the control unit 17 starts the processing shown in FIG. 5 each time machining of one workpiece is completed.
  • the control unit 17 may execute another program on the CPU to count up the number of uses without using the ladder circuit.
  • the condition for starting the processing shown in FIG. 5 is not limited to the condition that machining of one workpiece is completed, but may be the condition that machining of a predetermined number of workpieces is completed, or the condition that an execution instruction is received from the user.
  • step (hereinafter simply referred to as S) 11 the number of times of use of the cutting tools 60 and 63 used in machining one workpiece is counted up. do.
  • the control unit 17 individually manages the number of uses of each of the cutting tools 60 and 63 attached to the turret 43 using a ladder circuit.
  • the control unit 17 sets zero as the initial value of the number of uses of each of the cutting tools 60 and 63 .
  • the control unit 17 counts up by one each of the cutting tools 60 and 63 that have been used even once during machining of one workpiece.
  • the control unit 17 of this embodiment counts up the number of times of use of the cutting tools 60 and 63 to which the tips 60B and 63B used in machining the workpiece are attached each time the machining of the workpiece is completed. Then, as will be described later, when the cumulative number of times of use reaches or exceeds a predetermined threshold number of times, the control unit 17 determines that the chips 60B and 63B attached to the cutting tools 60 and 63 that have exceeded the threshold number of times are life chips. Then, the user is instructed to replace the end-of-life chip. In addition, when chips 60B and 63B, which will be described later, are replaced, the control unit 17 resets the accumulated number of times of use to zero (S29).
  • the method of determining the life chip is not limited to the above method.
  • the control unit 17 rotates the turret 43 to switch the cutting tools 60 and 63 in machining one workpiece, and when the same cutting tools 60 and 63 are used multiple times, the number of times the cutting tools 60 and 63 are used is It may be counted up by the number of times it is used. Also, time may be used as a method for judging the life chip. After the arbitrary cutting tools 60 and 63 are attached, the control unit 17 measures the cumulative time used for machining as the usage time, and when the usage time reaches a predetermined threshold time or longer, the threshold time or longer is reached. The chips 60B and 63B of the cutting tools 60 and 63 may be judged as life chips. Also, the control unit 17 may set a ladder circuit for each of the chips 60B and 63B and count up the number of times the chips 60B and 63B are used.
  • the control unit 17 selects an arbitrary cutting tool to be used from among the cutting tools 60 and 63 used for processing (hereinafter sometimes referred to as cutting tools to be used). For example, numbers 1 to 10 are assigned to the ten tool mounting portions 49 . As shown in FIG. 4, the number of the tool mounting portion 49 is written in the center of the surface of the turret 43 on the spindle device 11 side. The tool mounting portions 49 are numbered 1 to 10 counterclockwise. In S13, the control unit 17 selects, for example, one of the cutting tools to be used in order from the one with the smaller number of the tool attachment portion 49 .
  • the control unit 17 determines whether the number of times of use of the selected cutting tool to be used is equal to or greater than the threshold number of times (S15).
  • the threshold number of times different values may be set according to the shapes, purposes and functions of the tips 60B and 63B and the shapes of the cutting tools 60 and 63. A common value is used for all the cutting tools 60 and 63. can be
  • the control unit 17 determines that the number of times of use is less than the threshold number of times (S15: NO), there are cutting tools that have not been selected among the cutting tools in use, that is, judgment of the threshold number of times in S15 is not executed. (S31).
  • the control unit 17 selects an arbitrary cutting tool to be used from the unselected cutting tools to be used (S13).
  • the control unit 17 determines that the number of times of use of the cutting tool selected in S15 is equal to or greater than the threshold number of times (S15: YES), that is, the chips held by the cutting edges 60A and 63A of the selected cutting tool
  • S17 to S19 are executed to place the life chips at the tool change position.
  • the control unit 17 of the present embodiment determines that the accumulated number of times of use of the cutting tools 60, 63 to which the chips 60B, 63B used for machining the work are attached after the machining of one work is completed is equal to or greater than the threshold number of times. It is judged whether or not there is (S15), and the chips 60B and 63B attached to the cutting tools 60 and 63 whose accumulated number of times of use is equal to or greater than the threshold number of times are judged to be life chips. As a result, the life chip can be efficiently determined using the threshold number of times. It is possible to reduce the processing load of the control unit 17 in the life chip determination processing.
  • the shanks 60C, 63C and cutting edges 60A, 63A attached to the turret 43 have different structures depending on the shape to be machined. have different lengths in the radial direction of Each of the chips 60B and 63B is held at different holding positions relative to the turret 43 in the Z-axis direction and the X-axis direction. For this reason, if the turret 43 is slid to a specific position in the Z-axis direction and the X-axis direction when exchanging the tips 60B and 63B and each of the tips 60B and 63B is indexed to the same rotational position, the tip Each of 60B and 63B is arranged at a different position. Therefore, when the same NC program is used as the NC program for arranging the life chips at the tool change position, the life chips are arranged at different positions.
  • the control data 18A of this embodiment stores a plurality of types of NC programs corresponding to the relative holding positions of the chips 60B and 63B on the turret 43, as described above. More specifically, the control data 18A includes, for example, cutting tools 60 and 63 having a long length from the turret 43 to the holding position in the direction parallel to the rotation axis of the turret 43 (the Z-axis direction in this embodiment).
  • the NC program is set so that the tool change position and the tool change position of the cutting tools 60, 63 having a short length from the turret 43 to the holding position in the Z-axis direction are the same.
  • the number of the tool mounting portion 49 and the NC program used for exchanging the cutting tools 60 and 63 mounted on the tool mounting portion 49 of that number are associated in advance and set in the control data 18A.
  • Each NC program separates the tool change position in the Z-axis direction from the spindle device 11 as the length L in the Z-axis direction of the arbitrary cutting tools 60, 63 (holding positions) shown in FIG. direction is adjusted.
  • Each NC program is adjusted so that the tool change positions of the tips 60B and 63B attached to the cutting edges 60A and 63A are the same in the Z-axis direction.
  • the control unit 17 executes NC programs corresponding to relatively different holding positions, thereby adjusting the positions of the tool change positions in the Z-axis direction to the same position.
  • FIG. 6 schematically shows the state of adjusting the position of the tool change position in the Z-axis direction, and shows the state of adjusting the tool change position of the tip 60B attached to the cutting tool 60 as an example.
  • the control unit 17 arranges the chips 60B and 63B that have reached the end of life at the same tool change position P.
  • the control unit 17 adjusts the tool change position P so that the position in the Z-axis direction is the same.
  • Fig. 6 shows cutting tools 81 and 82 as comparative examples.
  • the cutting tool 81 has a shank 81C and a tip 81B attached to a cutting edge 81A at the tip of the shank 81C.
  • the cutting tool 82 has a shank 82C and a tip 82B held by a cutting edge 82A at the tip of the shank 82C.
  • the cutting tools 60, 81 and 82 have different lengths in the Z-axis direction, they are attached to the holder 61 at the same position in the Z-axis direction.
  • the base ends of the shanks 60C, 81C, and 82C match the base end of the holder 61 (the right end in FIG. 6).
  • the reference position in the Z-axis direction of the length (distance) from the turret 43 to the holding positions 85, 85A, and 85B of the tips 60B, 81B, and 82B is set to the shanks 60C, 81C, 82C (holder 61) in the Z-axis direction (right end in FIG. 6).
  • the length of the shank 81C of the cutting tool 81 in the Z-axis direction is shorter than the length of the shank 60C of the cutting tool 60.
  • the length L1 along the Z-axis direction of the holding position 85A of the tip 81B held by the cutting edge 81A of the cutting tool 81 is compared to the length L of the holding position 85 of the tip 60B held by the cutting edge 60A of the cutting tool 60. is shorter.
  • the length of the shank 82C of the cutting tool 82 in the Z-axis direction is longer than the length of the shank 60C of the cutting tool 60.
  • the length L2 along the Z-axis direction of the holding position 85B of the tip 82B held by the cutting edge 82A of the cutting tool 82 is longer than the length L. As shown in FIG.
  • the lengths L, L1, and L2 are, for example, when the holding positions 85, 85A, and 85B are the centers of the tips 60B, 81B, and 82B, and the right ends (spindle device 11) to the centers of chips 60B, 81B, and 82B.
  • the definitions of the lengths L, L1, and L2 are not limited to those defined above.
  • the distance may be the length of the holding positions 85, 85A, 85B from the turret 43.
  • the definitions of the lengths L, L1, and L2 may be appropriately corrected/changed according to the holding positions of the shanks 60C, 81C, and 82C with respect to the holder 61.
  • the holding position 85A of the cutting tool 81 is closer to the turret 43 than the holding position 85, and the holding position 85B of the tip 82B is farther from the turret 43 than the holding position 85 is.
  • the NC program is adjusted so that the tips 60B, 81B, and 82B arranged at these relatively different holding positions 85, 85A, and 85B can be arranged at the same tool change position P in the Z-axis direction.
  • the control unit 17 calls an NC program corresponding to the cutting tool to be used selected in S13, which arranges the tips 60B and 63B of the cutting tool to be used at the tool change position P. .
  • the control unit 17 reads the NC program from the control data 18A using the ladder circuit that determined the number of times of use in S15, and starts executing the NC program using the CPU. After starting the execution of the NC program in S17, the control unit 17 moves the turret 43 to the slide position corresponding to the cutting tool to be used selected in S13 (S18).
  • the control unit 17 controls the Z-axis driving device 73 to move the turret 43 to the spindle device 11 in the Z-axis direction for the holding position 85A (cutting tool 81) with the shorter length L1. (leftward in FIG. 6) to align the holding positions 85 and 85A in the Z-axis direction.
  • the tool change positions P of the cutting tools 60 and 81 match in the Z-axis direction.
  • the control unit 17 moves the turret 43 away from the spindle device 11 in the Z-axis direction (to the right in FIG. 6) for the holding position 85B (cutting tool 82) having a longer length L2. , and the holding positions 85 and 85B in the Z-axis direction.
  • the tool change positions P of the cutting tools 60 and 82 are aligned in the Z-axis direction.
  • the control unit 17 of the present embodiment controls the tool change position P of the cutting tool 82 having a long length L from the turret 43 to the holding position 85 along the Z-axis direction, which is the rotation axis of the turret 43, and the length L
  • the tool change position P in the Z-axis direction is adjusted so that the tool change position P of the cutting tool 81 with a short length approaches.
  • the control unit 17 adjusts the tool change position P so that the positions of the tool change positions P in the Z-axis direction are the same.
  • the tips 60B, 81B, and 82B held at relatively different holding positions 85, 85A, and 85B can be arranged at the same tool changing position P in the Z-axis direction.
  • the tips 60B, 81B, and 82B to be replaced can be arranged at the same position in the Z-axis direction every time the life tip is replaced. Since the user can remove the threaded member 62 at the same tool changing position P every time, the tool can be replaced efficiently.
  • control unit 17 adjusts the position of the tool change position P in the Z-axis direction, and adjusts the cutting tool 82 having a long length L in the Z-axis direction as compared with the cutting tool 81 having a short length L. It is moved in a parallel direction away from the spindle device 11 .
  • the tool change position P can be adjusted by moving the cutting tool 82 having a longer length L in the direction away from the spindle device 11 (rightward direction in FIG. 6).
  • the tool change position P can be adjusted while avoiding interference between the tips 60B, 81B, 82B and the spindle device 11.
  • the tip 60B has been described in the example shown in FIG. 6, the tip 63B can be similarly adjusted in the Z-axis direction.
  • the distance from the base end of the turret 43 (the far end from the spindle device 11 in the Z-axis direction) to the center of the tip 63B is the distance from the turret 43 to the tip 63B holding position.
  • the length L to the position may be defined, and the control unit 17 may perform adjustment to match the tool change position P according to the length L. Further, in S17, the control unit 17 performs position adjustment not only in the Z-axis direction but also in the X-axis direction.
  • the control unit 17 performs position adjustment according to the length from the turret 43 to the holding positions 85, 85A, and 85B along the X-axis direction also in the X-axis direction in the same manner as in the Z-axis direction.
  • the control unit 17 controls the X-axis driving device 71 so that the tool change position P of the cutting tools 60 and 63 having a long length in the X-axis direction (length Lx shown in FIG. 6) and The tool change position P in the X-axis direction is adjusted so that the tool change positions P of the cutting tools 60 and 63 having the short length Lx are closer to each other.
  • the length Lx in the X-axis direction from the turret 43 to the holding positions 85, 85A, and 85B is, for example, can be defined as the distance to That is, the length Lx is the distance from the turret 43 to the holding positions 85, 85A, 85B along the X-axis direction orthogonal to the rotation axis of the turret 43.
  • the control unit 17 may perform only one position adjustment in the X-axis direction or the Z-axis direction. For example, the control unit 17 may match only the positions of the tool change positions P in the Z-axis direction. Also, the control unit 17 may perform position adjustment of only one of the tip 60B and the tip 63B. For example, the control unit 17 may match only the tool change position P of the tip 60B.
  • the control unit 17 determines the cutting tool to be used selected in S13 to the tool change position P (S19).
  • the control unit 17 controls the turret servomotor 47 to place the chips 60B and 63B of the cutting tool to be used at the tool change position P shown in FIG.
  • the end-of-life inserts requiring replacement can be arranged at the same tool replacement position P regardless of the holding positions 85 of the inserts 60B and 63B.
  • the control unit 17 After executing S19, the control unit 17 ends the execution of the NC program, stops the turret device 13, etc., and notifies the user that the life chip has been placed at the tool change position P (S20).
  • the control unit 17, for example, emits a warning lamp or a warning lamp attached to the operation panel 16 or the device cover 15 to notify that the life chip has been placed at the tool change position P (S20). Further, the control unit 17 may perform notification by a method such as sounding a buzzer or displaying characters prompting replacement on the touch panel 19A.
  • the control unit 17 determines whether or not the replacement of the life chip has been completed (S27).
  • the control unit 17 determines whether or not the replacement of the life chip has been completed based on the operation input on the touch panel 19A.
  • the user confirms the notification of S20, the user opens the slide door 15A and removes the end-of-life chips arranged at the tool change position P from the cutting edges 60A and 63A and replaces them.
  • the user operates the touch panel 19A to execute an operation instruction indicating that the replacement is completed.
  • the control unit 17 makes a negative determination in S27 (S27: NO) and repeats the determination process of S27 until the operation instruction is accepted.
  • the control unit 17 receives an operation instruction indicating replacement (S27: YES), it resets the number of times of use of the used cutting tool selected in S13 to zero (S29).
  • control unit 17 After executing S29, the control unit 17 executes S31, and if there is an unselected cutting tool to be used (S31: NO), executes S13 again. If there is another life chip, the control unit 17 executes S17 to S19, executes the NC program corresponding to the cutting tools 60, 63 to which the other life chip is attached, and Place the life chip at the tool change position P.
  • the control unit 17 determines that it is necessary to replace the first life insert and the second life insert, which is different from the first life insert, after indexing the first life insert to the tool replacement position P, the first life insert
  • the touch panel 19A accepts an operation input to the effect that the replacement of the end-of-life chip has been completed.
  • the control unit 17 moves the turret 43 in the Z-axis direction and the X-axis direction according to the length from the turret 43 of the second life chip to the holding position 85, and controls the turret device 13.
  • the second life insert is indexed to the tool change position P.
  • the life chips can be arranged at the same tool change position P each time the chips 60B and 63B are replaced.
  • the user's workload in exchanging a plurality of chips 60B and 63B can be greatly reduced.
  • the control unit 17 may perform position adjustment only for the first life chip. For example, after arranging the first longevity chip at the tool change position P, the control unit 17 does not change the position of the turret 43 in the Z-axis direction or the X-axis direction when receiving an operation input indicating that the change has been completed. , the turret 43 may be rotated to index the second life chips. Alternatively, after arranging the first longevity chip at the tool change position P, the control unit 17 may arrange the second longevity chip at the tool change position P desired by the user according to the user's operation input to the operation unit 19 . .
  • control section 17 of the operation panel 16 has a determination section 17A and a position adjustment section 17B.
  • the determination unit 17A and the like are processing modules realized by executing control data 18A (NC program, ladder circuit, etc.) in the CPU of the control unit 17, for example.
  • control data 18A NC program, ladder circuit, etc.
  • the determination unit 17A and the like may be configured by hardware instead of software, or may be configured by combining software and hardware.
  • the judging section 17A has a function of judging whether or not there are chips 60B and 63B that require replacement among the chips 60B and 63B attached to the cutting tools 60 and 63 held in the turret device 13 and whether or not there is a life chip. Department.
  • the position adjustment unit 17B controls the X-axis driving device 71 and the Z-axis driving device 73 to place the life chip at the tool change position P, and the turret 43 It is a functional unit that adjusts the tool change position P according to the holding positions 85, 85A, and 85B of the life chips in the .
  • the spindle device 11 is an example of a work holding device.
  • the turret servomotor 47 of the turret device 13 is an example of a rotating device.
  • the operation unit 19 is an example of a reception device.
  • the X-axis driving device 71 and the Z-axis driving device 73 are examples of slide devices.
  • the Z-axis direction is an example of a first direction.
  • the X-axis direction is an example of a second direction.
  • the control unit 17 determines that, of the chips 60B and 63B attached to the cutting tools 60 and 63 held by the turret 43, the chips 60B and 63B that require replacement exist. (S15). If the control unit 17 determines that there is a life chip (S15: YES), it controls the X-axis driving device 71 and the Z-axis driving device 73 to control the holding positions 85, 85A, and 85B of the life chip on the turret 43. The tool change position P is adjusted (S18).
  • the control unit 17 targets the cutting tools 60 and 63, which are so-called throwaway tools whose tips 60B and 63B can be attached to and removed from the cutting edges 60A and 63A, as the cutting tools of the present disclosure.
  • the replacement position P has been adjusted, the present invention is not limited to this.
  • the control unit 17 of the present disclosure may perform adjustment of the tool change position P for an integrated cutting tool in which a cutting edge and a shank are integrally provided.
  • FIG. 7 shows the mounting state of the cutting tool of the second embodiment.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate.
  • the turret 43 is fitted with integral cutting tools 86 and 87 in addition to the cutting tools 60 and 63 .
  • the integrated cutting tool 86 is, for example, a so-called solid bit (finished bit) in which the shank and cutting edge are integrally formed from the same material.
  • the integrated cutting tool 86 has a tip 88 formed by grinding a cutting edge and is provided integrally with the shank.
  • the integrated cutting tool 86 is attached to the first attachment portion 57 of the turret 43 by the holder 61 .
  • the integrated cutting tool 87 is, for example, a so-called brazing bit (attached blade bit) in which a tip 89 made of a harder material such as cemented carbide is brazed to the tip of a shank made of steel.
  • Integrated cutting tool 87 is attached to second attachment portion 58 of turret 43 by clamper 64 . Similar to the cutting tools 60 and 63, such integrated cutting tools 86 and 87 require polishing or replacement after being used a certain number of times. For example, the integrated cutting tools 86, 87 may be removed from the turret 43, and reattached to the turret 43 after the tips 88, 89 are ground by a grinder or tool grinder. Alternatively, the integrated cutting tools 86,87 are replaced with integrated cutting tools 86,87 of the same type.
  • the integrated cutting tools 86 and 87 are configured such that when the number of times of use reaches the threshold number of times or more, the entire cutting tool including the shank is removed from the tool attachment portion 49 (first and second attachment portions 57 and 58). ) must be removed.
  • the control unit 17 adjusts the position of the holder 61 or clamper 64 of the tool in the Z-axis direction.
  • the Z-axis driving device 73 is controlled so that the tool change position P is reached at . Thereby, the user can remove the integrated cutting tools 86 and 87 from the turret 43 (the holder 61 and the clamper 64) at the same tool exchange position P, and can efficiently perform the exchange work.
  • the integrated cutting tools 86 and 87 are removed from or attached to the turret 43 during the replacement work, if the integrated cutting tools 86 and 87 increase in weight, removal becomes difficult and the work load increases. For example, in the case of the integrated cutting tool 86, the longer the length in the Z-axis direction, the more the weight increases, and the work load for extracting and removing from the holder 61 and inserting and attaching increases. Further, if the integrated cutting tool 87 is used, the weight increases as the radial length of the turret 43 increases, and the work load of loosening the clamper 64 and replacing the integrated cutting tool 87 increases.
  • control unit 17 brings the tool change position P of the integrated cutting tools 86 and 87 closer to the slide door 15A than the cutting tools 60 and 63 in the X-axis direction.
  • control unit 17 brings the tool change position P of the heavier integrated cutting tools 86 and 87 closer to the slide door 15A in the X-axis direction.
  • the device cover 15 of the machine tool 10 covers the processing chamber for processing the workpiece held by the spindle device 11, and includes the slide door 15A (an example of the door of the present disclosure) for opening and closing the processing chamber.
  • the turret 43 is moved in the X-axis direction (an example of the second direction of the present disclosure) by the X-axis driving device 71 to change the distance between the turret 43 and the slide door 15A.
  • At least one of the plurality of tool mounts 49 is mountable with an integrated cutting tool 86,87.
  • the control unit 17 determines whether or not the integrated cutting tools 86, 87 held by the turret 43 need to be replaced in the same manner as in the first embodiment (see FIG. 5).
  • the control unit 17 controls the X-axis driving device 71 and the Z-axis driving device 73 to select the integrated cutting tool that needs to be replaced. 86 and 87 are placed at the tool change position P. Further, the control unit 17 controls the X-axis drive device 71 to move the turret 43 in the X-axis direction, and moves the tool change position P to the slide door 15A as the integrated cutting tools 86 and 87 become heavier. Perform a closer adjustment. As a result, the burden of replacing the integrated cutting tools 86 and 87 for removing the cutting tools themselves from the turret 43 can be reduced.
  • an NC program may be set in the control data 18A to bring the tool change position P closer to the slide door 15A according to the weight of the integrated cutting tools 86, 87. . Then, the control unit 17 executes the NC program corresponding to the integrated cutting tools 86, 87 that need to be replaced, thereby sliding the tool replacement position P according to the weight of the integrated cutting tools 86, 87. It can be brought closer to the door 15A.
  • the control unit 17 controls the cutting tool when cutting tools 60 and 63 for replacing only the tips 60B and 63B and integrated cutting tools 86 and 87 for removing the cutting tool itself are mixed. Adjustment may be made to bring the tool change position P of the integrated cutting tools 86, 87 closer to the slide door 15A than the tool change position P of 60, 63. As a result, for the integrated cutting tools 86 and 87, which have a large work load, the work load can be reduced by setting the tool change position P at a position closer to the slide door 15A. For the cutting tools 60 and 63 with a relatively small work load, by setting the tool change position P at a position relatively far from the slide door 15A, it takes time to arrange the life chip at the tool change position P. can be shortened.
  • FIG. 8 shows a machine tool 91 of the third embodiment.
  • the machine tool 91 has two sets of combinations of a spindle device 92 and a turret device 93 .
  • Each of the two spindle devices 92 rotates a work (not shown) around a rotation axis parallel to the longitudinal direction of the device.
  • each of the two turret devices 93 rotates the turret 94 around a rotation axis along a direction parallel to the longitudinal direction of the device. Therefore, the machine tool 91 is a so-called front parallel twin-axis lathe.
  • Each of the two turret devices 93 is slidable in the front-rear direction and the left-right direction by a slide device 101 provided on the bed 99 . Therefore, the turret device 93 can change its position in the front-back direction and the left-right direction with respect to the workpiece held by the spindle device 92 .
  • the turret 94 holds a cutting tool 98 with a tip 97 attached.
  • FIG. 8 shows a state in which the cutting tools 98 are attached only to some of the plurality of tool attachment portions of the turret 94 .
  • a turret device 93 when the cutting tool 98 held by the turret 94 is held at different positions in the front-rear direction (direction parallel to the rotation axis of the turret 94) or the left-right direction (radial direction of the turret 94) , may perform life chip adjustments. Specifically, the machine tool 91 moves the cutting tool 98 having a long length from the turret 94 to the holding position of the tip 97 along the front-rear direction (an example of the first direction of the present disclosure) at the tool change position. When disposing, the turret 94 is moved forward in a direction away from the spindle device 92 .
  • the machine tool 91 is arranged so that the tool change position of the tip 97 of the cutting tool 98 having a long length to the holding position in the front-back direction and the tool changing position of the cutting tool 98 having a short length to the holding position in the front-back direction are aligned. to control. As a result, even if the lengths to the holding position are different, the tool changing position can be set at the same place, and the load of the tip 97 changing work can be reduced. Also in the machine tool 91 of the third embodiment, similarly to the second embodiment, when the integrated cutting tools 86 and 87 are attached, the tool exchange position P of the integrated cutting tools 86 and 87 is changed to the cutting position.
  • the tool change position P of the tool 98 may be on the door side of the device (for example, on the front side away from the spindle device 92). Also, the tool change position P of the heavier integrated cutting tools 86, 87 may be closer to the door that the user opens and closes for replacement.
  • FIG. 9 shows a machine tool 111 of the fourth embodiment.
  • a main shaft 117 for rotating a workpiece 115 by the main shaft device 11 and a rotation shaft 119 of the turret 43 are perpendicular to each other.
  • the tip 60B attached to the cutting tool 60 held by the turret 43 is rotated in the X-axis direction (parallel to the rotating shaft 119 of the turret 43) and Z-axis direction (parallel to the main shaft 117). ), the tool change position P may be adjusted.
  • the machine tool 111 moves the life chip attached to the cutting edge 60A at the tip of the cutting tool 60 having a long length L along the X-axis direction (an example of the first direction of the present disclosure) to the tool change position P. 9, which is the direction away from the spindle device 11 (separation direction in the direction parallel to the rotating shaft 119).
  • the machine tool 111 has a tool change position P of a tip 60B attached to a cutting edge 60A at the tip of a cutting tool 60 with a long length L in the X-axis direction, and a tip of the cutting tool 60 with a short length L in the X-axis direction.
  • the tool change position P of the tip 60B attached to the cutting edge 60A is controlled to match.
  • the tool change position P of the tips 60B having different holding positions 85 can be set to the same place, and the load of the tip 60B replacement work can be reduced.
  • adjustment in the Z-axis direction may be performed in the same manner as in the X-axis direction. That is, the tool change position P in the Z-axis direction may be adjusted according to the length Lz from the turret 43 to the holding position 85 in the Z-axis direction.
  • the length Lz is, for example, the distance from the plane of the first mounting portion 57 (the outer peripheral surface of the turret 43) along the Z-axis direction to the center of the chip 60B.
  • the main shaft 117 and the rotating shaft 119 are perpendicular to each other, but the present invention is not limited to this.
  • the direction along the rotating shaft 119 may form a predetermined angle with respect to the main shaft 117 (such as an angle rotated clockwise by 45 degrees in FIG. 9).
  • the machine tool 111 moves the turret 43 in a direction parallel to the rotation axis 119 of the turret 43, and adjusts the tool change position P of the tip 60B attached to the cutting tool 60 having a different length L.
  • the tool change position P of the integrated cutting tools 86 and 87 is changed to the cutting
  • the tool 60 may be located on the door side of the device (for example, on the side away from the main shaft device 11 in the direction parallel to the main shaft 117) compared to the tool change position P of the tool 60. Also, the tool change position P of the heavier integrated cutting tools 86, 87 may be closer to the door that the user opens and closes for replacement.
  • the control unit 17 adjusts the tool change position P so that the positions in the Z-axis direction and the X-axis direction are the same, but the positions need not be the same.
  • the control unit 17 sets the tool change position P of the cutting tool 82 (see FIG. 6) having a long length L along the Z-axis direction and the tool change position P of the cutting tool 81 having a short length L within a certain range. You can bring it closer to the inside.
  • FIG. 6 shows a tool change position P of the cutting tool 82 having a long length L along the Z-axis direction and the tool change position P of the cutting tool 81 having a short length L within a certain range. You can bring it closer to the inside.
  • the control unit 17 moves the cutting tool 82 having the longer length L away from the main spindle device 11 and brings the shorter cutting tool 81 closer to the main spindle device 11.
  • the tool exchange position P was made to match by moving in the direction, the moving direction is not limited to this.
  • the other cutting tools 60 and 81 are moved in a direction approaching the holding position 85B, that is, in a direction approaching the spindle device 11 in the Z-axis direction.
  • the tool change position P may be matched.
  • control unit 17 performs adjustment in the Z-axis direction and the X-axis direction in S18, and then rotates the turret 43 in S19 to determine the life chip, but the order is not limited to this.
  • the control unit 17 may first rotate the turret 43 and then adjust the position in the Z-axis direction or the like to place the life chip at the tool change position P. FIG. That is, the control unit 17 may execute S18 after S19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Provided is a machine tool that can be positioned at a tool replacement position that corresponds with a tip attachment state when a cutting tool held by a turret is positioned at the tool replacement position. This machine tool comprises: a workpiece-holding device that holds a workpiece and rotates about a main axis; a turret to which is attached a cutting tool on which a tip can be mounted and removed, the turret executing a process on the workpiece using the tip; a slide device that causes the turret to move in a sliding manner in each of a first direction parallel to the main axis and a second direction perpendicular to the first direction; a rotation device that rotates the turret; and a control unit. The control unit has: a determination unit that determines whether or not an end-of-service-life tip, which is a tip that needs to be replaced, is present among tips attached to the cutting tool held by the turret; and a position adjustment unit that, when the determination unit determines that an end-of-service-life tip is present, controls the slide device to position the end-of-service-life tip at a tool replacement position and adjusts the tool replacement position in accordance with the position on the turret where the end-of-service-life tip is held.

Description

工作機械Machine Tools
 本開示は、工作機械のチップの交換位置に関するものである。 This disclosure relates to the replacement position of the tip of the machine tool.
 従来、タレットに保持した工具によってワークに対する加工を実行する工作機械について種々提案されている。例えば、下記特許文献1の工作機械は、所謂スラント型のベッドを備え、ベッドの傾斜面に沿ってタレットを移動させる。工作機械は、タレットに保持した複数の工具の中から使用する工具を割り出し、割り出した工具よってワークに対する加工を実行する。 Conventionally, various proposals have been made for machine tools that machine workpieces using tools held in a turret. For example, the machine tool disclosed in Patent Document 1 below includes a so-called slant-type bed, and moves a turret along the inclined surface of the bed. A machine tool indexes a tool to be used from among a plurality of tools held on a turret, and executes machining on a workpiece using the indexed tool.
特開2017-196682号公報JP 2017-196682 A
 上記したタレットは、例えば、回転方向において所定の回転角度ごとに工具取付部が設けられ、ワークを加工する切削工具が複数の工具取付部の各々に取り付けられる。所定の加工回数が実行され切削工具のチップが摩耗するとチップの交換が必要となる。チップの取り付け位置は、加工する形状などに応じて異なってくる。このため、一律に同じ交換動作を実行すると、チップの交換を行なう工具交換位置がばらばらとなり、チップの交換作業の負担が増加する虞があった。 The above-described turret, for example, is provided with tool mounting portions at predetermined rotational angles in the rotational direction, and a cutting tool for machining a workpiece is mounted on each of the plurality of tool mounting portions. When a predetermined number of machining operations are performed and the tip of the cutting tool wears out, it becomes necessary to replace the tip. The mounting position of the chip varies depending on the shape to be processed. For this reason, if the same exchange operation is performed uniformly, the tool exchange positions for exchanging the tip will be scattered, and there is a risk that the burden of the tip exchanging operation will increase.
 本開示は、上記の課題に鑑みてなされたものであり、タレットに保持された切削工具を工具交換位置に配置する際に、チップの取り付け状態に応じた工具交換位置に配置できる工作機械を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides a machine tool capable of arranging a cutting tool held by a turret at a tool change position according to the mounting state of the chip. intended to
 上記課題を解決するために、本明細書は、ワークを保持して主軸を中心に回転するワーク保持装置と、チップが着脱可能な切削工具を取り付けられ、前記チップにより前記ワークに対する加工を実行するタレットと、前記主軸と平行な第1方向と、前記第1方向に垂直な第2方向に前記タレットをスライド移動させるスライド装置と、前記第1方向に沿った回転軸を中心に前記タレットを回転させる回転装置と、制御部と、を備え、前記タレットには、回転方向において所定の回転角度ごとに工具取付部が設けられ、複数の前記工具取付部の各々には、前記切削工具が取り付け可能であり、前記制御部は、前記タレットに保持された前記切削工具に取り付けられた前記チップのうち、交換が必要な前記チップである寿命チップが存在するか否かを判断する判断部と、前記判断部により前記寿命チップが存在すると判断した場合に、前記スライド装置を制御して前記寿命チップを工具交換位置に配置し、且つ、前記タレットにおける前記寿命チップの保持位置に応じて前記工具交換位置を調整する位置調整部と、を有する、工作機械を開示する。 In order to solve the above problems, the present specification provides a workpiece holding device that holds a workpiece and rotates around a spindle, and a cutting tool that has a detachable tip, and performs machining on the workpiece with the tip. a turret, a slide device for sliding the turret in a first direction parallel to the main axis and a second direction perpendicular to the first direction, and rotating the turret about a rotation axis along the first direction and a control unit, wherein the turret is provided with tool mounting portions at predetermined rotation angle intervals in the direction of rotation, and the cutting tool can be mounted on each of the plurality of tool mounting portions. wherein the control unit includes a judgment unit for judging whether or not there is an end-of-life insert, which is the insert that needs to be replaced, among the inserts attached to the cutting tool held by the turret; When the judging unit determines that the life chip exists, the slide device is controlled to place the life chip at the tool change position, and the tool change position is determined according to the holding position of the life chip in the turret. A machine tool is disclosed having a position adjuster for adjusting the .
 本開示の工作機械によれば、チップは、工具取付部に取り付けられた切削工具の形状などに応じて異なる取り付け位置に取り付けられる。制御部は、交換が必要な寿命チップが存在する場合、寿命チップを工具交換位置に配置する。この際、制御部は、この寿命チップのタレットにおける保持位置に応じて工具交換位置を調整する。これにより、異なる位置に取り付けたチップによってワークに対する所望の加工が実行できるとともに、保持位置に応じて工具交換位置を調整できる。工具交換位置を調整することで交換作業の作業効率を向上できる。 According to the machine tool of the present disclosure, the tip is attached to different attachment positions depending on the shape of the cutting tool attached to the tool attachment portion. When there is a life chip that needs to be replaced, the control unit places the life chip at the tool change position. At this time, the control unit adjusts the tool change position according to the holding position of the end-of-life chip on the turret. As a result, it is possible to perform desired machining on the workpiece by inserts attached at different positions, and to adjust the tool changing position according to the holding position. By adjusting the tool change position, the work efficiency of the change work can be improved.
第1実施例に係わる工作機械の斜視図。1 is a perspective view of a machine tool according to a first embodiment; FIG. 本体カバーを取り除いた工作機械の斜視図。FIG. 2 is a perspective view of the machine tool with the main body cover removed; 工作機械のブロック図。A block diagram of a machine tool. チップを取り付けたタレットの拡大図。Enlarged view of the turret with the tip attached. 切削工具交換処理のフローチャート。A flow chart of cutting tool exchange processing. 工具交換位置のZ軸方向の位置を調整する状態を示す模式図。FIG. 4 is a schematic diagram showing a state in which the position of the tool change position in the Z-axis direction is adjusted; 第2実施例の工作機械を示す図。The figure which shows the machine tool of 2nd Example. 第3実施例の工作機械を示す図。The figure which shows the machine tool of 3rd Example. 第4実施例の工作機械を示す図。The figure which shows the machine tool of 4th Example.
 以下、本開示の工作機械を具体化した一実施例について図面を参照しながら説明する。図1は、第1実施例の工作機械10を正面側から見た斜視図を示している。図2は、工作機械10の装置カバー15を取り除いた状態を示している。尚、図2は、後述するチャック機構12(図1参照)やチップ60B,63B(図4参照)などの一部の部材を取り付けていない状態を示している。図1及び図2に示すように、工作機械10は、所謂、NC旋盤であり、機体幅方向(Z軸方向)に沿った主軸を有する主軸装置11と、主軸装置11のチャック機構12(図1参照)にチャックされたワーク(図示略)に対する加工を実行するタレット装置13(図2参照)を備えている。以下の説明では、図1及び図2に示すように、主軸装置11の主軸に沿った方向をZ軸方向、Z軸方向に直交しタレット装置13を後述する案内面20に沿って移動させる方向をX軸方向、X軸方向及びZ軸方向に直交する方向をY軸方向と称して説明する。また、説明の便宜上、工作機械10を正面から見た方向を基準として、機械幅方向であって装置の設置面に水平なZ軸方向を、左右方向と称する場合がある。 An embodiment embodying the machine tool of the present disclosure will be described below with reference to the drawings. FIG. 1 shows a perspective view of a machine tool 10 of the first embodiment as seen from the front side. FIG. 2 shows the machine tool 10 with the device cover 15 removed. 2 shows a state in which some members such as a chuck mechanism 12 (see FIG. 1) and tips 60B and 63B (see FIG. 4), which will be described later, are not attached. As shown in FIGS. 1 and 2, the machine tool 10 is a so-called NC lathe, and includes a main spindle device 11 having a main shaft along the machine body width direction (Z-axis direction) and a chuck mechanism 12 of the main spindle device 11 (see FIG. 2). 1) is provided with a turret device 13 (see FIG. 2) for machining a workpiece (not shown) chucked in the machine. In the following description, as shown in FIGS. 1 and 2, the direction along the main shaft of the spindle device 11 is the Z-axis direction, and the direction perpendicular to the Z-axis direction moves the turret device 13 along a guide surface 20 described later. is referred to as the X-axis direction, and the direction perpendicular to the X-axis direction and the Z-axis direction is referred to as the Y-axis direction. For convenience of explanation, the Z-axis direction, which is the width direction of the machine and is horizontal to the installation surface of the device, may be referred to as the left-right direction with reference to the direction in which the machine tool 10 is viewed from the front.
 主軸装置11やタレット装置13などの各装置は、基台となるベッド14の上に載置され、装置カバー15によって覆われている。装置カバー15の前面の中央には、スライド扉15Aが設けられている。スライド扉15Aは、左右方向へスライド移動し、装置カバー15の前面の中央を開閉する。スライド扉15Aを開けた装置カバー15内には、ワークを加工する加工室が形成されている。ユーザは、スライド扉15Aを開けることで加工室にアクセスでき、ワークの出し入れ等を実行できる。また、ユーザは、スライド扉15Aを開けることで、チャック機構12の当金12Aや子爪12Bを交換することができる。また、ユーザは、スライド扉15Aを開けることで、タレット装置13に取り付けられた切削工具60,63のチップ60B,63B(図4参照)の交換を行なうことができる。図1は、スライド扉15Aが開いた状態を示している。尚、スライド扉15Aの開閉は、ユーザが手動で実施しても良く、工作機械10が自動で実施しても良い。また、ワークの出し入れやチップ60B,63Bの交換についても、ユーザが手動で実施しても良く、ロボットが作業しても良い。 Each device such as the spindle device 11 and the turret device 13 is placed on a bed 14 serving as a base and covered with a device cover 15 . A slide door 15A is provided in the center of the front surface of the device cover 15 . The slide door 15A slides in the left-right direction to open and close the center of the front surface of the device cover 15. As shown in FIG. A processing chamber for processing a work is formed in the device cover 15 with the slide door 15A opened. The user can access the processing chamber by opening the slide door 15A, and can perform work loading and unloading. Further, the user can replace the contact metal 12A and the child claws 12B of the chuck mechanism 12 by opening the slide door 15A. Further, the user can replace the tips 60B and 63B (see FIG. 4) of the cutting tools 60 and 63 attached to the turret device 13 by opening the slide door 15A. FIG. 1 shows a state in which the slide door 15A is open. The opening and closing of the slide door 15A may be performed manually by the user, or may be performed automatically by the machine tool 10 . Also, the loading and unloading of workpieces and the replacement of chips 60B and 63B may be performed manually by the user or may be performed by a robot.
 装置カバー15の前面におけるスライド扉15Aの右側には、操作盤16が設けられている。図3は、工作機械10のブロック図を示している。図1及び図3に示すように、操作盤16は、制御部17、記憶装置18、操作部19を備えている。制御部17は、CPU等を備えコンピュータを主体とする処理装置であり、数値制御やシーケンス制御を実行し工作機械10の動作を統括的に制御する。制御部17は、工作機械10の各装置(タレット装置13等)と電気的に接続され、各装置の動作を制御可能となっている。記憶装置18は、例えば、RAM、ROM、フラッシュメモリ、ハードディスク等を備えている。記憶装置18には、各種の制御データ18Aが記憶されている。 A control panel 16 is provided on the right side of the slide door 15A on the front surface of the device cover 15 . FIG. 3 shows a block diagram of the machine tool 10. As shown in FIG. As shown in FIGS. 1 and 3, the operation panel 16 includes a control section 17, a storage device 18, and an operation section 19. FIG. The control unit 17 is a processing device mainly composed of a computer including a CPU and the like, and executes numerical control and sequence control to comprehensively control the operation of the machine tool 10 . The control unit 17 is electrically connected to each device (turret device 13, etc.) of the machine tool 10, and is capable of controlling the operation of each device. The storage device 18 includes, for example, RAM, ROM, flash memory, hard disk, and the like. The storage device 18 stores various control data 18A.
 制御データ18Aは、例えば、主軸装置11やタレット装置13の動作を制御するプログラム、生産するワークの種類、作業に使用する工具の種類、作業時におけるワークに対する工具の位置等のデータが設定されている。ここで言うプログラムは、例えば、シーケンス制御のプログラム(ラダー回路)やNCプログラムなどである。また、制御データ18Aには、後述する図5に示す切削工具交換処理を実行するプログラム、具体的には、使用回数の判断や、使用回数の判断により交換が必要となったチップ60B,63B(以下、寿命チップという場合がある)を交換する工具交換位置に寿命チップを配置するためのプログラムが設定されている。また、制御データ18Aには、各チップ60B,63Bを取り付けられた切削工具60,63の使用回数を判断するための閾値データ(後述する閾値回数)が設定されている。また、制御データ18Aには、タレット43におけるチップ60B,63Bの相対的な保持位置(切削工具60,63)に対応した複数の種類のNCプログラムが記憶されている。制御部17は、このプログラムに基づいた制御を実行し、工具交換位置に寿命チップを配置する。尚、以下の説明では、制御部17が、制御データ18Aのプログラムを実行して各装置を制御することを、単に装置名で記載する場合がある。例えば、「タレット43が回転する」とは、「制御部17が制御データ18Aのプログラムを実行してタレット用サーボモータ47(図3参照)を制御し、タレット用サーボモータ47の駆動によってタレット43が回転する」ことを意味している。 The control data 18A includes, for example, data such as a program for controlling the operation of the spindle device 11 and the turret device 13, the type of work to be produced, the type of tool used for work, and the position of the tool relative to the work during work. there is The program referred to here is, for example, a sequence control program (ladder circuit), an NC program, or the like. The control data 18A also contains a program for executing a cutting tool replacement process shown in FIG. 5, which will be described later. A program is set for arranging the life chip at the tool change position where the life chip is to be replaced. Threshold data (threshold number of times described later) for determining the number of times of use of the cutting tools 60 and 63 to which the tips 60B and 63B are attached is set in the control data 18A. The control data 18A also stores a plurality of types of NC programs corresponding to the relative holding positions (cutting tools 60, 63) of the chips 60B, 63B in the turret 43. FIG. The control unit 17 executes control based on this program, and arranges the life chip at the tool change position. In the following description, the fact that the control unit 17 executes the program of the control data 18A to control each device may be simply referred to as the device name. For example, "the turret 43 rotates" means that "the control unit 17 executes the program of the control data 18A to control the turret servomotor 47 (see FIG. 3), and the turret servomotor 47 is driven to rotate the turret 43. rotates”.
 操作部19は、ユーザインタフェースであり、例えば、タッチパネル19Aと操作スイッチ19B等を備えている。操作部19は、制御部17の制御に基づいてタッチパネル19Aの表示内容や操作部19に設けられたランプの点灯状態を変更する。また、操作部19は、タッチパネル19Aや操作スイッチ19Bに対する操作入力に応じた信号を制御部17へ出力する。尚、操作部19は、タッチパネル19Aや操作スイッチ19Bを備えない構成でも良い。 The operation unit 19 is a user interface, and includes, for example, a touch panel 19A and operation switches 19B. The operation unit 19 changes the display content of the touch panel 19A and the lighting state of the lamp provided in the operation unit 19 based on the control of the control unit 17 . Further, the operation unit 19 outputs a signal to the control unit 17 according to an operation input to the touch panel 19A or the operation switch 19B. Note that the operation unit 19 may be configured without the touch panel 19A and the operation switches 19B.
 また、図2に示すように、工作機械10は、例えば、タレット装置13の回転軸であるA軸がZ軸方向と平行なタレット旋盤である。ベッド14には、上方に開口した箱型の切り屑回収部14Aが形成され、ワークの加工によって発生する切り屑を切り屑回収部14Aに回収する。また、ベッド14は、装置手前の切り屑回収部14Aに向けて傾斜した案内面20を有するスラント型である。 Also, as shown in FIG. 2, the machine tool 10 is, for example, a turret lathe in which the A-axis, which is the rotation axis of the turret device 13, is parallel to the Z-axis direction. The bed 14 is formed with a box-shaped chip collection section 14A that is open upward, and collects chips generated by machining the workpiece into the chip collection section 14A. Further, the bed 14 is of a slant type having a guide surface 20 inclined toward the chip collection section 14A in front of the apparatus.
 主軸装置11は、ベッド14に対して固定され、チャック機構12(図1参照)、主軸台21と、駆動装置23を備えている。チャック機構12は、主軸台21の先端に取り付けられ、加工室内において屑回収部14Aの上方に配置されている(図1参照)。チャック機構12は、例えば、3つの子爪12Bを取り付け可能であり、エア供給装置77(図3参照)から主軸台21に内蔵されたエアシリンダ(図示略)に供給されるエアの供給方向や供給量に応じて子爪12Bを開閉する。チャック機構12は、当金12Aに配置されたワークを3つの子爪12Bでチャックした状態で主軸を中心に回転する。尚、主軸装置11は、主軸台21等が固定された構成に限らず、主軸台21等がベッド14に対してZ軸方向等にスライド移動する構成でも良い。 The spindle device 11 is fixed to the bed 14 and has a chuck mechanism 12 (see FIG. 1), a headstock 21 and a drive device 23 . The chuck mechanism 12 is attached to the tip of the headstock 21 and arranged above the scrap collector 14A in the machining chamber (see FIG. 1). The chuck mechanism 12 can be attached with, for example, three child claws 12B. The child claw 12B is opened and closed according to the supply amount. The chuck mechanism 12 rotates around the main shaft while chucking a work placed on the contact metal 12A with three child claws 12B. The spindle device 11 is not limited to a structure in which the headstock 21 and the like are fixed, and may be structured such that the headstock 21 and the like slides relative to the bed 14 in the Z-axis direction or the like.
 また、主軸台21の内部には、主軸(図示略)が軸受によって回転自在に支持されている。Z軸方向における主軸の一端側(タレット装置13側)には、チャック機構12(図1参照)が取り付けられ、他端側には主軸側プーリ27が取り付けられている。駆動装置23は、サーボモータ29と、タイミングベルト31を備えている。サーボモータ29は、主軸を回転させる駆動源として機能し、制御部17の制御に基づいて回転動作を制御される。タイミングベルト31は、サーボモータ29の出力軸に取り付けられたモータ側プーリ33と、主軸側プーリ27とに掛け渡されている。これにより、主軸は、サーボモータ29の回転力を、タイミングベルト31を介して伝達され、サーボモータ29の回転に応じて回転する。制御部17は、サーボモータ29に取り付けられたエンコーダ35(図3参照)の回転位置情報に基づいた数値制御等により、主軸の回転速度や回転位置等を制御する。 A spindle (not shown) is rotatably supported inside the headstock 21 by bearings. A chuck mechanism 12 (see FIG. 1) is attached to one end side (turret device 13 side) of the spindle in the Z-axis direction, and a spindle side pulley 27 is attached to the other end side. The driving device 23 has a servomotor 29 and a timing belt 31 . The servomotor 29 functions as a drive source for rotating the main shaft, and its rotation operation is controlled based on the control of the control section 17 . The timing belt 31 is stretched over a motor-side pulley 33 attached to the output shaft of the servomotor 29 and the spindle-side pulley 27 . As a result, the rotational force of the servomotor 29 is transmitted to the main shaft via the timing belt 31 and rotates according to the rotation of the servomotor 29 . The control unit 17 controls the rotational speed, rotational position, etc. of the main shaft by numerical control or the like based on the rotational position information of the encoder 35 (see FIG. 3) attached to the servomotor 29 .
(タレット装置13)
 タレット装置13は、タレット本体部41と、タレット43を備えている。タレット本体部41は、箱形形状をなし、ベッド14の傾斜した案内面20に取り付けられている。タレット43は、タレット本体部41における主軸台21側の面に回転可能に取り付けられている。タレット43は、Z軸方向に所定の厚みを有し、例えば、Z軸方向から見た形状が略正10角形をなしている。タレット43は、10個の辺及びその周囲に工具を取り付け可能な工具取付部49が形成されている。工具取付部49は、タレット43における主軸装置11側の面やタレット43の外周面に工具等を取り付け可能な構造を有している。工具取付部49には、切削工具60,63(図4参照)、あるいはエンドミルやドリルなどの回転工具が着脱可能に取り付けられる。工具取付部49の詳細については後述する。尚、図2は、複数の工具取付部49の1つにワークを主軸装置11側に押すプッシャ45が取り付けられた状態を示している。
(turret device 13)
The turret device 13 has a turret main body 41 and a turret 43 . The turret main body 41 has a box-like shape and is attached to the inclined guide surface 20 of the bed 14 . The turret 43 is rotatably attached to the surface of the turret main body 41 on the headstock 21 side. The turret 43 has a predetermined thickness in the Z-axis direction, and has, for example, a substantially regular decagon shape when viewed from the Z-axis direction. The turret 43 has ten sides and a tool mounting portion 49 on which a tool can be mounted. The tool attachment portion 49 has a structure capable of attaching a tool or the like to the surface of the turret 43 on the spindle device 11 side or the outer peripheral surface of the turret 43 . Cutting tools 60 and 63 (see FIG. 4) or rotary tools such as end mills and drills are detachably attached to the tool attachment portion 49 . Details of the tool mounting portion 49 will be described later. Note that FIG. 2 shows a state in which a pusher 45 for pushing the workpiece toward the spindle device 11 is attached to one of the plurality of tool attachment portions 49 .
 また、タレット装置13は、例えば、タレット本体部41にタレット用サーボモータ47(図3参照)が内蔵されている。タレット装置13は、制御部17によってタレット用サーボモータ47の回転動作を制御され、タレット43をZ軸方向と平行な方向に沿った回転軸(A軸)を中心に回転させる。また、タレット用サーボモータ47は、タレット43を回転させることに加え、タレット43に取り付けた回転工具(エンドミルなど)を回転させるための駆動源として機能する。制御部17は、例えば、タレット用サーボモータ47を制御することで、タレット43の旋回割出しや、タレット43に取り付けられた回転工具の回転を実行する。尚、タレット装置13は、旋回用の駆動源とは別に、回転工具を回転させる駆動源を備える構成でも良い。 Further, the turret device 13 has, for example, a turret servomotor 47 (see FIG. 3) built in the turret main body 41 . The control unit 17 controls the rotation of the turret servomotor 47 in the turret device 13 to rotate the turret 43 around a rotation axis (A axis) parallel to the Z-axis direction. In addition to rotating the turret 43 , the turret servomotor 47 functions as a drive source for rotating a rotary tool (such as an end mill) attached to the turret 43 . The control unit 17 performs rotation indexing of the turret 43 and rotation of a rotary tool attached to the turret 43 by, for example, controlling the turret servomotor 47 . The turret device 13 may be configured to include a drive source for rotating the rotary tool, in addition to the drive source for turning.
(Z軸駆動装置73)
 また、工作機械10は、タレット装置13をX軸方向へ移動させるX軸駆動装置71(図3参照)、及びZ軸方向へ移動させるZ軸駆動装置73(図3参照)を備えている。Z軸駆動装置73は、ベッド14の案内面20に配置されたZ軸案内レール73Aと、Z軸案内レール73Aに対してスライド移動可能なZ軸スライド73Bを備えている。Z軸案内レール73Aは、Z軸方向と平行な方向に配設され、Z軸スライド73BをZ軸方向へスライド移動可能に保持する。Z軸駆動装置73は、Z軸サーボモータ73C(図3参照)を備え、Z軸サーボモータ73Cの回転出力を、伝達機構(例えば、ボールネジなど)を介してZ軸スライド73Bに伝達し、Z軸スライド73BをZ軸方向に移動させる。
(Z-axis drive device 73)
The machine tool 10 also includes an X-axis driving device 71 (see FIG. 3) that moves the turret device 13 in the X-axis direction, and a Z-axis driving device 73 (see FIG. 3) that moves the turret device 13 in the Z-axis direction. The Z-axis driving device 73 includes a Z-axis guide rail 73A arranged on the guide surface 20 of the bed 14 and a Z-axis slide 73B slidable relative to the Z-axis guide rail 73A. The Z-axis guide rail 73A is arranged in a direction parallel to the Z-axis direction, and holds the Z-axis slide 73B slidably in the Z-axis direction. The Z-axis drive device 73 includes a Z-axis servomotor 73C (see FIG. 3), and transmits the rotation output of the Z-axis servomotor 73C to the Z-axis slide 73B via a transmission mechanism (for example, a ball screw). The axial slide 73B is moved in the Z-axis direction.
 また、Z軸駆動装置73は、例えば、Z軸サーボモータ73Cの回転位置等のエンコーダ情報を出力するZ軸エンコーダ73Dを備えている。制御部17は、Z軸エンコーダ73Dのエンコーダ情報(回転位置情報など)に基づいてZ軸サーボモータ73Cの回転速度等を制御するフィードバック制御を実行する。制御部17は、Z軸サーボモータ73Cを制御し、Z軸スライド73BをZ軸方向における任意の位置へ移動させる。 The Z-axis drive device 73 also includes a Z-axis encoder 73D that outputs encoder information such as the rotational position of the Z-axis servomotor 73C. The control unit 17 executes feedback control for controlling the rotational speed of the Z-axis servomotor 73C, etc., based on the encoder information (rotational position information, etc.) of the Z-axis encoder 73D. The control unit 17 controls the Z-axis servomotor 73C to move the Z-axis slide 73B to any position in the Z-axis direction.
(X軸駆動装置71)
 また、X軸駆動装置71は、Z軸スライド73Bの上面に配置されたX軸案内レール71Aを備えている。尚、以下のX軸駆動装置71の説明において、上記したZ軸駆動装置73と同様の構成についてはその説明を適宜省略する。X軸案内レール71Aは、X軸方向と平行な方向に配設され、タレット本体部41をX軸方向へスライド移動可能に保持する。X軸駆動装置71は、X軸サーボモータ71C(図3参照)を備え、X軸サーボモータ71Cの駆動に応じてタレット本体部41をX軸方向へ移動させる。X軸駆動装置71は、X軸サーボモータ71Cのエンコーダ情報を出力するX軸エンコーダ71Dを備えている。制御部17は、X軸エンコーダ71Dのエンコーダ情報に基づいてX軸サーボモータ71Cを制御し、タレット本体部41をX軸方向における任意の位置へ移動させる。従って、制御部17は、X軸駆動装置71及びZ軸駆動装置73を制御することで、タレット装置13(工具)をX軸方向及びZ軸方向の任意の位置に移動させることができる。また、タレット装置13は、X軸駆動装置71によりX軸方向へ移動させられることで図1に示すスライド扉15Aとの間のX軸方向における距離が変動する。即ち、タレット43がスライド扉15Aに対して進退する。尚、Z軸スライド73Bやタレット本体部41の位置情報を検出する方法は、エンコーダに限らない。制御部17は、リニアスケールなどの他の位置検出装置を用いて、Z軸スライド73Bやタレット本体部41のスライド位置を制御しても良い。
(X-axis drive device 71)
The X-axis drive device 71 also includes an X-axis guide rail 71A arranged on the upper surface of the Z-axis slide 73B. In the following description of the X-axis driving device 71, the description of the configuration similar to that of the Z-axis driving device 73 will be omitted as appropriate. The X-axis guide rail 71A is arranged in a direction parallel to the X-axis direction, and holds the turret main body 41 so as to be slidable in the X-axis direction. The X-axis driving device 71 includes an X-axis servomotor 71C (see FIG. 3), and moves the turret main body 41 in the X-axis direction according to the drive of the X-axis servomotor 71C. The X-axis drive device 71 includes an X-axis encoder 71D that outputs encoder information for an X-axis servomotor 71C. The control unit 17 controls the X-axis servomotor 71C based on the encoder information of the X-axis encoder 71D to move the turret main body 41 to an arbitrary position in the X-axis direction. Therefore, the control unit 17 can move the turret device 13 (tool) to any position in the X-axis direction and the Z-axis direction by controlling the X-axis driving device 71 and the Z-axis driving device 73 . Further, the turret device 13 is moved in the X-axis direction by the X-axis driving device 71, so that the distance in the X-axis direction between the turret device 13 and the slide door 15A shown in FIG. 1 changes. That is, the turret 43 advances and retreats with respect to the slide door 15A. Incidentally, the method for detecting the position information of the Z-axis slide 73B and the turret main body 41 is not limited to the encoder. The control unit 17 may control the slide positions of the Z-axis slide 73B and the turret main body 41 using another position detection device such as a linear scale.
 (切削工具60,63の取り付け)
 次に、タレット43に取り付けられた切削工具60,63の状態について説明する。以下の説明では、工具として刃先60A,63Aに対してチップ60B,63Bを着脱可能な切削工具60,63をタレット43に取り付け、チップ60B,63Bを交換する場合について説明する。図4は、2種類の切削工具60,63をタレット43に取り付けた状態を示している。図4に示すように、タレット43には、回転方向55において所定の回転角度ごとに工具取付部49が設けられている。本実施例のタレット43は、36度ごとに工具取付部49が設けられ、合計で10個の工具取付部49が設けられている。
(Installation of cutting tools 60 and 63)
Next, the state of the cutting tools 60, 63 attached to the turret 43 will be described. In the following description, cutting tools 60 and 63 are attached to the turret 43 so that the tips 60B and 63B can be attached to and removed from the cutting edges 60A and 63A, and the tips 60B and 63B are replaced. FIG. 4 shows two types of cutting tools 60 and 63 attached to the turret 43 . As shown in FIG. 4 , the turret 43 is provided with tool mounting portions 49 at predetermined rotation angle intervals in the rotation direction 55 . The turret 43 of this embodiment is provided with a tool mounting portion 49 every 36 degrees, and a total of 10 tool mounting portions 49 are provided.
 工具取付部49には、第1取付部57と、第2取付部58が設けられている。第1取付部57は、タレット43の外周面に形成された平面を有し、ボルトやネジなどの螺合部材59を螺合する被螺合部57Aが形成されている。切削工具60は、ホルダ61によって第1取付部57に取り付けられている。切削工具60は、刃先60Aと、チップ60Bと、シャンク60Cを有している。シャンク60Cは、ホルダ61によって第1取付部57に固定されている。ホルダ61は、螺合部材59によって所定の第1取付部57(工具取付部49)に固定される。シャンク60Cは、Z軸方向に長い略円柱や略四角柱の部材であり、基端部をホルダ61に挿入した状態でホルダ61によって保持されている。例えば、シャンク60Cは、ホルダ61に螺合したボルトによってZ軸方向における位置を固定される。シャンク60Cは、このボルトを緩めることで、ホルダ61に対してZ軸方向に相対的に移動可能となっている。シャンク60Cの先端部の刃先60Aには、チップ60Bが着脱可能に取り付けられる。チップ60Bは、ボルトやネジなどの螺合部材62によって刃先60Aに固定されている。 The tool mounting portion 49 is provided with a first mounting portion 57 and a second mounting portion 58 . The first attachment portion 57 has a flat surface formed on the outer peripheral surface of the turret 43, and has a threaded portion 57A for threading a threaded member 59 such as a bolt or a screw. A cutting tool 60 is attached to the first attachment portion 57 by a holder 61 . The cutting tool 60 has a cutting edge 60A, a tip 60B and a shank 60C. The shank 60C is fixed to the first mounting portion 57 by a holder 61. As shown in FIG. The holder 61 is fixed to a predetermined first attachment portion 57 (tool attachment portion 49 ) by a threaded member 59 . The shank 60</b>C is a substantially cylindrical or rectangular prism-shaped member elongated in the Z-axis direction, and is held by the holder 61 with its base end inserted into the holder 61 . For example, the shank 60</b>C is fixed in position in the Z-axis direction by a bolt screwed into the holder 61 . By loosening this bolt, the shank 60C can move relative to the holder 61 in the Z-axis direction. A tip 60B is detachably attached to the cutting edge 60A at the tip of the shank 60C. The tip 60B is fixed to the cutting edge 60A by a threaded member 62 such as a bolt or screw.
 また、切削工具63は、第2取付部58に取り付けられている。第2取付部58には、タレット43の半径方向に沿って形成された溝が形成されている。切削工具63は、刃先63A、チップ63B、シャンク63Cを有している。シャンク63Cは、クランパ64によって第2取付部58に取り付けられている。クランパ64は、シャンク63Cの基端部とともに第2取付部58の溝に挿入され、螺合部材64Aを螺合されている。クランパ64は、例えば、クサビ形状の調整部材(所謂、ライナ)とともに第2取付部58の溝に挿入され、螺合部材64Aを螺合する量に応じてシャンク63Cを挟持する力を変更される。従って、シャンク63Cは、螺合部材64Aを螺合することによって、クランパ64とともに溝に嵌め込まれ半径方向における位置を固定される。シャンク63Cは、半径方向に長い略円四角柱の部材であり、基端部をクランパ64によって保持されている。シャンク63Cの先端部の刃先63Aには、チップ63Bが着脱可能に取り付けられる。チップ63Bは、ボルトやネジなどの螺合部材65によって刃先63Aに固定されている。従って、切削工具60,63は、刃先60A,63Aに対してチップ60B,63Bが着脱可能な所謂スローアウェイバイトである。ユーザは、交換が必要となった寿命チップについて切削工具60の螺合部材62や切削工具63の螺合部材65を緩めてチップ60B,63Bを交換する。 Also, the cutting tool 63 is attached to the second attachment portion 58 . A groove formed along the radial direction of the turret 43 is formed in the second mounting portion 58 . The cutting tool 63 has a cutting edge 63A, a tip 63B and a shank 63C. The shank 63C is attached to the second attachment portion 58 by a clamper 64. As shown in FIG. The clamper 64 is inserted into the groove of the second mounting portion 58 together with the base end portion of the shank 63C, and is screwed with the screwing member 64A. The clamper 64 is inserted into the groove of the second mounting portion 58 together with, for example, a wedge-shaped adjusting member (so-called liner), and the force for clamping the shank 63C is changed according to the amount of screwing of the screwing member 64A. . Therefore, the shank 63C is fitted into the groove together with the clamper 64 and fixed in position in the radial direction by screwing the screw member 64A. The shank 63</b>C is a radially elongated, substantially circular prism-shaped member, and its base end is held by a clamper 64 . A tip 63B is detachably attached to the cutting edge 63A at the tip of the shank 63C. The tip 63B is fixed to the cutting edge 63A by a threaded member 65 such as a bolt or screw. Therefore, the cutting tools 60, 63 are so-called indexable tools in which the tips 60B, 63B can be attached to and detached from the cutting edges 60A, 63A. The user replaces the chips 60B and 63B by loosening the threaded member 62 of the cutting tool 60 and the threaded member 65 of the cutting tool 63 for the life chips that need to be replaced.
(切削工具交換処理)
 次に、制御部17による切削工具交換処理の制御内容について説明する。図5は、制御部17が実行する切削工具交換処理のフローチャートを示している。例えば、制御部17は、操作盤16に対する所定の操作入力を受け付けると、ワークに応じたNCプログラム等を制御データ18Aから読み出して実行し、主軸装置11に保持されたワークに対する切削加工や穴開け加工を、タレット装置13に取り付けた工具によって実行する。制御部17は、1つのワークに対する加工が終了するごとに図5に示す処理を開始する。制御部17は、例えば、タレット43に取り付けられた切削工具60,63(図4参照)の各々についてラダー回路を設定し、各ラダー回路において後述する使用回数のカウントアップや判断を実行する。尚、制御部17は、ラダー回路を用いずに、他のプログラムをCPUで実行して使用回数のカウントアップ等を実行しても良い。また、図5に示す処理を開始する条件は、1つのワークの加工が終了する条件に限らず、所定の個数のワークの加工が終了する条件や、ユーザからの実行指示を受け付ける条件でも良い。
(Cutting tool replacement process)
Next, the control contents of the cutting tool exchange process by the control unit 17 will be described. FIG. 5 shows a flowchart of cutting tool replacement processing executed by the control unit 17 . For example, when receiving a predetermined operation input to the operation panel 16, the control unit 17 reads out an NC program or the like corresponding to the work from the control data 18A and executes it, and performs cutting or drilling on the work held by the spindle device 11. Machining is performed by a tool attached to the turret device 13 . The control unit 17 starts the processing shown in FIG. 5 each time machining of one workpiece is completed. The control unit 17, for example, sets a ladder circuit for each of the cutting tools 60 and 63 (see FIG. 4) attached to the turret 43, and counts up the number of times of use and judges in each ladder circuit, which will be described later. It should be noted that the control unit 17 may execute another program on the CPU to count up the number of uses without using the ladder circuit. Further, the condition for starting the processing shown in FIG. 5 is not limited to the condition that machining of one workpiece is completed, but may be the condition that machining of a predetermined number of workpieces is completed, or the condition that an execution instruction is received from the user.
 まず、制御部17は、図5に示す処理を開始すると、ステップ(以下、単にSと記載する)11において、上記した1つのワークに対する加工で使用した切削工具60,63について使用回数をカウントアップする。制御部17は、例えば、タレット43に取り付けられた切削工具60,63の各々の使用回数を、ラダー回路を用いて個別に管理する。例えば、制御部17は、切削工具60,63の各々の使用回数の初期値としてゼロを設定する。制御部17は、1つのワークに対する加工中において1回でも使用した切削工具60,63について、その使用回数をそれぞれ1つカウントアップする。従って、本実施例の制御部17は、ワークの加工において使用したチップ60B,63Bを取り付けられた切削工具60,63について、ワークの加工が終了するごとに使用回数を1つカウントアップする。そして、後述するように、制御部17は、累積の使用回数が所定の閾値回数以上になると、閾値回数以上になった切削工具60,63に取り付けられたチップ60B,63Bが寿命チップであると判断し、寿命チップの交換をユーザに指示する。また、制御部17は、後述するチップ60B,63Bの交換が行われた場合、累積の使用回数をゼロにリセットする(S29)。 First, when the control unit 17 starts the processing shown in FIG. 5, in step (hereinafter simply referred to as S) 11, the number of times of use of the cutting tools 60 and 63 used in machining one workpiece is counted up. do. For example, the control unit 17 individually manages the number of uses of each of the cutting tools 60 and 63 attached to the turret 43 using a ladder circuit. For example, the control unit 17 sets zero as the initial value of the number of uses of each of the cutting tools 60 and 63 . The control unit 17 counts up by one each of the cutting tools 60 and 63 that have been used even once during machining of one workpiece. Therefore, the control unit 17 of this embodiment counts up the number of times of use of the cutting tools 60 and 63 to which the tips 60B and 63B used in machining the workpiece are attached each time the machining of the workpiece is completed. Then, as will be described later, when the cumulative number of times of use reaches or exceeds a predetermined threshold number of times, the control unit 17 determines that the chips 60B and 63B attached to the cutting tools 60 and 63 that have exceeded the threshold number of times are life chips. Then, the user is instructed to replace the end-of-life chip. In addition, when chips 60B and 63B, which will be described later, are replaced, the control unit 17 resets the accumulated number of times of use to zero (S29).
 尚、寿命チップの判断方法は、上記した方法に限らない。例えば、制御部17は、1つのワークに対する加工においてタレット43を回転させて切削工具60,63を切替え、同じ切削工具60,63を複数回使用した場合、その切削工具60,63の使用回数を使用した回数だけカウントアップしても良い。また、寿命チップを判断する方法として時間を用いても良い。制御部17は、任意の切削工具60,63を取り付けた後、加工に使用した累積時間を使用時間として計測し、使用時間が所定の閾値時間以上となった場合に、閾値時間以上になった切削工具60,63のチップ60B,63Bを寿命チップと判断しても良い。また、制御部17は、チップ60B,63Bごとにラダー回路を設定し、チップ60B,63Bの使用回数をカウントアップしても良い。 It should be noted that the method of determining the life chip is not limited to the above method. For example, the control unit 17 rotates the turret 43 to switch the cutting tools 60 and 63 in machining one workpiece, and when the same cutting tools 60 and 63 are used multiple times, the number of times the cutting tools 60 and 63 are used is It may be counted up by the number of times it is used. Also, time may be used as a method for judging the life chip. After the arbitrary cutting tools 60 and 63 are attached, the control unit 17 measures the cumulative time used for machining as the usage time, and when the usage time reaches a predetermined threshold time or longer, the threshold time or longer is reached. The chips 60B and 63B of the cutting tools 60 and 63 may be judged as life chips. Also, the control unit 17 may set a ladder circuit for each of the chips 60B and 63B and count up the number of times the chips 60B and 63B are used.
 次に、制御部17は、S13において、加工に使用した切削工具60,63(以下、使用切削工具という場合がある)の中から任意の使用切削工具を選択する。例えば、10個の工具取付部49には、1~10の番号が設定されている。図4に示すように、タレット43の主軸装置11側の面の中央には、工具取付部49の番号が表記されている。工具取付部49の番号は、反時計回りに1~10の番号が付与されている。制御部17は、S13において、例えば、使用切削工具のうち、工具取付部49の番号がより小さいものから順番に1つ選択する。 Next, in S13, the control unit 17 selects an arbitrary cutting tool to be used from among the cutting tools 60 and 63 used for processing (hereinafter sometimes referred to as cutting tools to be used). For example, numbers 1 to 10 are assigned to the ten tool mounting portions 49 . As shown in FIG. 4, the number of the tool mounting portion 49 is written in the center of the surface of the turret 43 on the spindle device 11 side. The tool mounting portions 49 are numbered 1 to 10 counterclockwise. In S13, the control unit 17 selects, for example, one of the cutting tools to be used in order from the one with the smaller number of the tool attachment portion 49 .
 制御部17は、S13において使用切削工具を選択すると、選択した使用切削工具の使用回数が閾値回数以上であるか否かを判断する(S15)。閾値回数としては、チップ60B,63Bの形状・使用目的・機能や切削工具60,63の形状等に応じた異なる値を設定しても良く、全ての切削工具60,63で共通の値を用いても良い。制御部17は、使用回数が閾値回数未満であると判断した場合(S15:NO)、使用切削工具の中に未選択の使用切削工具、即ち、S15の閾値回数の判断を実行していない他の使用切削工具が存在しないか判断する(S31)。制御部17は、未選択の使用切削工具がないと判断した場合(S31:YES)。図5に示す処理を終了する。制御部17は、例えば、次のワークの加工を開始し、そのワークの加工が終了すると、加工に使用した使用切削工具を対象に図5に示す処理を再度実行する。 When the cutting tool to be used is selected in S13, the control unit 17 determines whether the number of times of use of the selected cutting tool to be used is equal to or greater than the threshold number of times (S15). As the threshold number of times, different values may be set according to the shapes, purposes and functions of the tips 60B and 63B and the shapes of the cutting tools 60 and 63. A common value is used for all the cutting tools 60 and 63. can be When the control unit 17 determines that the number of times of use is less than the threshold number of times (S15: NO), there are cutting tools that have not been selected among the cutting tools in use, that is, judgment of the threshold number of times in S15 is not executed. (S31). When the control unit 17 determines that there is no unselected cutting tool to be used (S31: YES). The processing shown in FIG. 5 ends. For example, the control unit 17 starts machining the next work, and when the machining of the work is completed, the processing shown in FIG. 5 is executed again for the used cutting tool used for the machining.
 一方、制御部17は、未選択の使用切削工具があった場合(S31:NO)、未選択の使用切削工具の中から任意の使用切削工具を選択する(S13)。また、制御部17は、S15において選択した使用切削工具の使用回数が閾値回数以上であると判断した場合(S15:YES)、即ち、選択した使用切削工具の刃先60A,63Aに保持されたチップ60B,63Bを、使用回数が閾値回数以上となった寿命チップであると判断した場合、S17~S19を実行して寿命チップを工具交換位置に配置する。 On the other hand, if there is an unselected cutting tool to be used (S31: NO), the control unit 17 selects an arbitrary cutting tool to be used from the unselected cutting tools to be used (S13). In addition, when the control unit 17 determines that the number of times of use of the cutting tool selected in S15 is equal to or greater than the threshold number of times (S15: YES), that is, the chips held by the cutting edges 60A and 63A of the selected cutting tool When it is determined that 60B and 63B are life chips whose number of times of use is equal to or greater than the threshold number of times, S17 to S19 are executed to place the life chips at the tool change position.
 従って、本実施例の制御部17は、1つのワークに対する加工が完了した後、ワークの加工に使用したチップ60B,63Bが取り付けられた切削工具60,63について累積の使用回数が閾値回数以上であるか否かを判断し(S15)、累積の使用回数が閾値回数以上である切削工具60,63に取り付けられたチップ60B,63Bを寿命チップであると判断する。これにより、閾値回数を用いて寿命チップを効率良く判断できる。寿命チップの判断処理における制御部17の処理負荷を軽減できる。 Therefore, the control unit 17 of the present embodiment determines that the accumulated number of times of use of the cutting tools 60, 63 to which the chips 60B, 63B used for machining the work are attached after the machining of one work is completed is equal to or greater than the threshold number of times. It is judged whether or not there is (S15), and the chips 60B and 63B attached to the cutting tools 60 and 63 whose accumulated number of times of use is equal to or greater than the threshold number of times are judged to be life chips. As a result, the life chip can be efficiently determined using the threshold number of times. It is possible to reduce the processing load of the control unit 17 in the life chip determination processing.
 ここで、図4に示すように、例えば、タレット43に取り付けられたシャンク60C,63C、刃先60A,63Aの各々は、加工する形状などに応じて構造が異なっており、Z軸方向やタレット43の半径方向において異なる長さを有する。そして、チップ60B,63Bの各々は、タレット43に対してZ軸方向やX軸方向において相対的に異なる保持位置に保持される。このため、仮に、チップ60B,63Bの交換の際に、Z軸方向及びX軸方向の特定の位置にタレット43をスライド移動させ、チップ60B,63Bの各々を同じ回転位置に割り出した場合、チップ60B,63Bの各々は、異なる位置に配置される。従って、寿命チップを工具交換位置に配置するNCプログラムとして同じNCプログラムを用いた場合、寿命チップがばらばらの位置に配置される。 Here, as shown in FIG. 4, for example, the shanks 60C, 63C and cutting edges 60A, 63A attached to the turret 43 have different structures depending on the shape to be machined. have different lengths in the radial direction of Each of the chips 60B and 63B is held at different holding positions relative to the turret 43 in the Z-axis direction and the X-axis direction. For this reason, if the turret 43 is slid to a specific position in the Z-axis direction and the X-axis direction when exchanging the tips 60B and 63B and each of the tips 60B and 63B is indexed to the same rotational position, the tip Each of 60B and 63B is arranged at a different position. Therefore, when the same NC program is used as the NC program for arranging the life chips at the tool change position, the life chips are arranged at different positions.
 そこで、本実施例の制御データ18Aには、上記したように、タレット43におけるチップ60B,63Bの相対的な保持位置に対応した複数の種類のNCプログラムが記憶されている。より具体的には、制御データ18Aには、例えば、タレット43の回転軸と平行な方向(本実施例ではZ軸方向)におけるタレット43から保持位置までの長さが長い切削工具60,63の工具交換位置と、Z軸方向におけるタレット43から保持位置までの長さが短い切削工具60,63の工具交換位置とが同一となるようにNCプログラムが設定されている。例えば、工具取付部49の番号と、その番号の工具取付部49に取り付けられた切削工具60,63の交換に用いるNCプログラムを予め対応付けて制御データ18Aに設定する。各NCプログラムは、図4に示す任意の切削工具60,63(保持位置)のZ軸方向における長さLが長くなればなるほど、工具交換位置のZ軸方向における位置を主軸装置11から離間する方向へ調整されている。そして、各NCプログラムは、刃先60A,63Aに取り付けられたチップ60B,63Bの工具交換位置のZ軸方向における位置が同一位置となるように調整されている。その結果、制御部17は、相対的に異なる保持位置に対応するNCプログラムを実行することで、工具交換位置のZ軸方向における位置を同一位置に調整する。 Therefore, the control data 18A of this embodiment stores a plurality of types of NC programs corresponding to the relative holding positions of the chips 60B and 63B on the turret 43, as described above. More specifically, the control data 18A includes, for example, cutting tools 60 and 63 having a long length from the turret 43 to the holding position in the direction parallel to the rotation axis of the turret 43 (the Z-axis direction in this embodiment). The NC program is set so that the tool change position and the tool change position of the cutting tools 60, 63 having a short length from the turret 43 to the holding position in the Z-axis direction are the same. For example, the number of the tool mounting portion 49 and the NC program used for exchanging the cutting tools 60 and 63 mounted on the tool mounting portion 49 of that number are associated in advance and set in the control data 18A. Each NC program separates the tool change position in the Z-axis direction from the spindle device 11 as the length L in the Z-axis direction of the arbitrary cutting tools 60, 63 (holding positions) shown in FIG. direction is adjusted. Each NC program is adjusted so that the tool change positions of the tips 60B and 63B attached to the cutting edges 60A and 63A are the same in the Z-axis direction. As a result, the control unit 17 executes NC programs corresponding to relatively different holding positions, thereby adjusting the positions of the tool change positions in the Z-axis direction to the same position.
 図6は、工具交換位置のZ軸方向における位置を調整する状態を模式的に示しており、一例として切削工具60に取り付けられたチップ60Bの工具交換位置を調整する状態を示している。以下の説明では、一例として、チップ60Bを工具交換位置に配置する場合について説明する。図1及び図2に示すように、制御部17は、寿命チップとなったチップ60B,63Bの各々を同一の工具交換位置Pに配置する。制御部17は、この工具交換位置PのZ軸方向における位置が同一位置となるように調整する。 FIG. 6 schematically shows the state of adjusting the position of the tool change position in the Z-axis direction, and shows the state of adjusting the tool change position of the tip 60B attached to the cutting tool 60 as an example. In the following description, as an example, the case where the tip 60B is arranged at the tool change position will be described. As shown in FIGS. 1 and 2, the control unit 17 arranges the chips 60B and 63B that have reached the end of life at the same tool change position P. As shown in FIG. The control unit 17 adjusts the tool change position P so that the position in the Z-axis direction is the same.
 図6には、比較例として切削工具81,82が図示されている。切削工具81は、シャンク81Cと、シャンク81Cの先端の刃先81Aに取り付けられたチップ81Bを有している。切削工具82は、シャンク82Cと、シャンク82Cの先端の刃先82Aに保持されたチップ82Bを有している。尚、切削工具60,81,82は、Z軸方向において異なる長さであるが、Z軸方向においてホルダ61に対して同一位置に取り付けられている。例えば、シャンク60C,81C,82Cの基端(図6の右端)は、ホルダ61の基端(図6の右端)と一致している。このため、例えば、タレット43からチップ60B,81B,82Bの保持位置85,85A,85Bまでの長さ(距離)のZ軸方向の基準位置を、図6に示すように、シャンク60C,81C,82C(ホルダ61)のZ軸方向の基端(図6の右端)とする。Z軸方向における切削工具81のシャンク81Cの長さは、切削工具60のシャンク60Cの長さに比べて短い。切削工具81の刃先81Aに保持されたチップ81Bの保持位置85AのZ軸方向に沿った長さL1は、切削工具60の刃先60Aに保持されたチップ60Bの保持位置85の長さLに比べて短くなっている。一方、Z軸方向における切削工具82のシャンク82Cの長さは、切削工具60のシャンク60Cの長さに比べて長い。切削工具82の刃先82Aに保持されたチップ82Bの保持位置85BのZ軸方向に沿った長さL2は、長さLに比べて長くなっている。長さL,L1,L2は、例えば、保持位置85,85A,85Bをチップ60B,81B,82Bの中心とした場合、Z軸方向におけるシャンク60C,81C,82C(ホルダ61)の右端(主軸装置11から遠い側の端)からチップ60B,81B,82Bの中心までの距離である。尚、長さL,L1,L2の定義は、上記した定義に限らず、例えば、ホルダ61における主軸装置11に近い側の端(図6の左端)からチップ60B,81B,82Bの中心までの距離を、タレット43から保持位置85,85A,85Bの長さとしても良い。また、長さL,L1,L2の定義は、ホルダ61に対するシャンク60C,81C,82Cの保持位置に応じて適宜、補正・変更しても良い。 Fig. 6 shows cutting tools 81 and 82 as comparative examples. The cutting tool 81 has a shank 81C and a tip 81B attached to a cutting edge 81A at the tip of the shank 81C. The cutting tool 82 has a shank 82C and a tip 82B held by a cutting edge 82A at the tip of the shank 82C. Although the cutting tools 60, 81 and 82 have different lengths in the Z-axis direction, they are attached to the holder 61 at the same position in the Z-axis direction. For example, the base ends of the shanks 60C, 81C, and 82C (the right end in FIG. 6) match the base end of the holder 61 (the right end in FIG. 6). For this reason, for example, the reference position in the Z-axis direction of the length (distance) from the turret 43 to the holding positions 85, 85A, and 85B of the tips 60B, 81B, and 82B is set to the shanks 60C, 81C, 82C (holder 61) in the Z-axis direction (right end in FIG. 6). The length of the shank 81C of the cutting tool 81 in the Z-axis direction is shorter than the length of the shank 60C of the cutting tool 60. The length L1 along the Z-axis direction of the holding position 85A of the tip 81B held by the cutting edge 81A of the cutting tool 81 is compared to the length L of the holding position 85 of the tip 60B held by the cutting edge 60A of the cutting tool 60. is shorter. On the other hand, the length of the shank 82C of the cutting tool 82 in the Z-axis direction is longer than the length of the shank 60C of the cutting tool 60. The length L2 along the Z-axis direction of the holding position 85B of the tip 82B held by the cutting edge 82A of the cutting tool 82 is longer than the length L. As shown in FIG. The lengths L, L1, and L2 are, for example, when the holding positions 85, 85A, and 85B are the centers of the tips 60B, 81B, and 82B, and the right ends (spindle device 11) to the centers of chips 60B, 81B, and 82B. The definitions of the lengths L, L1, and L2 are not limited to those defined above. The distance may be the length of the holding positions 85, 85A, 85B from the turret 43. Also, the definitions of the lengths L, L1, and L2 may be appropriately corrected/changed according to the holding positions of the shanks 60C, 81C, and 82C with respect to the holder 61. FIG.
 例えば、シャンク60CのZ軸方向に沿った長さが長くなればなるほど、その刃先60Aに保持されたチップ60Bの保持位置85は、Z軸方向においてタレット43からより離れた位置となる(長さLが長くなる)。切削工具81の保持位置85Aは、保持位置85に比べてタレット43により近い位置になり、チップ82Bの保持位置85Bは、保持位置85に比べてタレット43から離れた位置となる。制御データ18Aは、この相対的に異なる保持位置85,85A,85Bに配置されるチップ60B,81B,82Bを、Z軸方向において同一の工具交換位置Pに配置できるようにNCプログラムが調整されている。 For example, the longer the length of the shank 60C along the Z-axis direction, the further the holding position 85 of the chip 60B held by the cutting edge 60A becomes from the turret 43 in the Z-axis direction (length lengthens L). The holding position 85A of the cutting tool 81 is closer to the turret 43 than the holding position 85, and the holding position 85B of the tip 82B is farther from the turret 43 than the holding position 85 is. In the control data 18A, the NC program is adjusted so that the tips 60B, 81B, and 82B arranged at these relatively different holding positions 85, 85A, and 85B can be arranged at the same tool change position P in the Z-axis direction. there is
 図5のS17において、制御部17は、S13で選択した使用切削工具に対応するNCプログラムであって、使用切削工具のチップ60B,63Bを工具交換位置Pに配置するNCプログラムの呼び出しを実行する。制御部17は、例えば、S15で使用回数を判断したラダー回路によって制御データ18AからNCプログラムの読み出しを実行し、CPUによってNCプログラムの実行を開始する。制御部17は、S17でNCプログラムの実行を開始すると、S13で選択した使用切削工具に応じたスライド位置にタレット43を移動させる(S18)。 In S17 of FIG. 5, the control unit 17 calls an NC program corresponding to the cutting tool to be used selected in S13, which arranges the tips 60B and 63B of the cutting tool to be used at the tool change position P. . For example, the control unit 17 reads the NC program from the control data 18A using the ladder circuit that determined the number of times of use in S15, and starts executing the NC program using the CPU. After starting the execution of the NC program in S17, the control unit 17 moves the turret 43 to the slide position corresponding to the cutting tool to be used selected in S13 (S18).
 図6に示すように、制御部17は、より短い長さL1の保持位置85A(切削工具81)に対しては、Z軸駆動装置73を制御し、Z軸方向においてタレット43を主軸装置11に近づける方向(図6の左方向)へ移動させ、保持位置85,85AのZ軸方向における位置を一致させる。その結果、切削工具60,81の工具交換位置PのZ軸方向における位置が一致する。また、制御部17は、より長い長さL2の保持位置85B(切削工具82)に対しては、Z軸方向においてタレット43を主軸装置11から離間させる方向(図6の右方向)へ移動させ、保持位置85,85BのZ軸方向における位置を一致させる。その結果、切削工具60,82の工具交換位置PのZ軸方向における位置を一致させる。 As shown in FIG. 6, the control unit 17 controls the Z-axis driving device 73 to move the turret 43 to the spindle device 11 in the Z-axis direction for the holding position 85A (cutting tool 81) with the shorter length L1. (leftward in FIG. 6) to align the holding positions 85 and 85A in the Z-axis direction. As a result, the tool change positions P of the cutting tools 60 and 81 match in the Z-axis direction. Further, the control unit 17 moves the turret 43 away from the spindle device 11 in the Z-axis direction (to the right in FIG. 6) for the holding position 85B (cutting tool 82) having a longer length L2. , and the holding positions 85 and 85B in the Z-axis direction. As a result, the tool change positions P of the cutting tools 60 and 82 are aligned in the Z-axis direction.
 従って、本実施例の制御部17は、タレット43の回転軸であるZ軸方向に沿ったタレット43から保持位置85までの長さLが長い切削工具82の工具交換位置Pと、長さLが短い切削工具81の工具交換位置Pとが近づくように、Z軸方向における工具交換位置Pを調整する。さらに、制御部17は、工具交換位置PのZ軸方向における位置が同一位置となるように工具交換位置Pを調整する。これにより、Z軸方向に沿った長さL,L1,L2が異なるシャンク60C,81C,82Cの先端部の刃先60A,81A,82Aに保持されたチップ60B,81B,82B、即ち、Z軸方向において相対的に異なる保持位置85,85A,85Bに保持されたチップ60B,81B,82Bを、Z軸方向において同一の工具交換位置Pに配置できる。寿命チップの交換の度にZ軸方向で同一の位置に交換対象のチップ60B,81B,82Bを配置できる。ユーザは、螺合部材62の取り外し作業を毎回同じ工具交換位置Pで実施できるため、効率良く交換ができる。 Therefore, the control unit 17 of the present embodiment controls the tool change position P of the cutting tool 82 having a long length L from the turret 43 to the holding position 85 along the Z-axis direction, which is the rotation axis of the turret 43, and the length L The tool change position P in the Z-axis direction is adjusted so that the tool change position P of the cutting tool 81 with a short length approaches. Furthermore, the control unit 17 adjusts the tool change position P so that the positions of the tool change positions P in the Z-axis direction are the same. As a result, the tips 60B, 81B, and 82B held by the cutting edges 60A, 81A, and 82A at the tips of the shanks 60C, 81C, and 82C having different lengths L, L1, and L2 along the Z-axis direction, that is, the Z-axis direction The tips 60B, 81B, and 82B held at relatively different holding positions 85, 85A, and 85B can be arranged at the same tool changing position P in the Z-axis direction. The tips 60B, 81B, and 82B to be replaced can be arranged at the same position in the Z-axis direction every time the life tip is replaced. Since the user can remove the threaded member 62 at the same tool changing position P every time, the tool can be replaced efficiently.
 また、制御部17は、工具交換位置PのZ軸方向における位置を調整し、調整する際に長さLが長い切削工具82を、長さLが短い切削工具81に比べてZ軸方向と平行な方向に沿って主軸装置11から離間する方向へ移動させる。これによれば、長さLがより長い切削工具82を主軸装置11から離間する方向(図6の右方向)へ移動させて工具交換位置Pを調整できる。チップ60B,81B,82Bと主軸装置11の干渉を避けながら工具交換位置Pを調整できる。 In addition, the control unit 17 adjusts the position of the tool change position P in the Z-axis direction, and adjusts the cutting tool 82 having a long length L in the Z-axis direction as compared with the cutting tool 81 having a short length L. It is moved in a parallel direction away from the spindle device 11 . According to this, the tool change position P can be adjusted by moving the cutting tool 82 having a longer length L in the direction away from the spindle device 11 (rightward direction in FIG. 6). The tool change position P can be adjusted while avoiding interference between the tips 60B, 81B, 82B and the spindle device 11.
 また、図6に示す例ではチップ60Bについて説明したが、チップ63Bについても同様にZ軸方向の調整を行なうことができる。例えば、図4の長さLで示すように、タレット43の基端(Z軸方向における主軸装置11から遠い方の端部)からチップ63Bの中心までの距離を、タレット43からチップ63Bの保持位置までの長さLと定義し、制御部17が長さLに応じて工具交換位置Pを一致させる調整を実行しても良い。また、制御部17は、S17において、Z軸方向だけでなく、X軸方向における位置調整も実行する。制御部17は、Z軸方向と同様に、X軸方向においても、X軸方向に沿ったタレット43から保持位置85,85A,85Bまでの長さに応じた位置調整を実行する。例えば、制御部17は、X軸駆動装置71を制御して、X軸方向における長さ(図6に示す長さLx)が長い切削工具60,63の工具交換位置Pと、X軸方向における長さLxが短い切削工具60,63の工具交換位置Pとが近づくように、X軸方向における工具交換位置Pを調整する。これにより、Z軸方向だけでなく、X軸方向においても工具交換位置Pを一致させ、ユーザの作業負担を軽減できる。尚、タレット43から保持位置85,85A,85BまでのX軸方向の長さLxは、例えば、第1取付部57の平面(タレット43の外周面)からX軸方向に沿ったチップ60Bの中心までの距離と定義できる。即ち、長さLxは、タレット43の回転軸に直交するX軸方向に沿ったタレット43から保持位置85,85A,85Bまでの距離である。このため、X軸方向やZ軸方向に沿ったシャンク60C,63Cの長さが仮に同一であっても、タレット43から保持位置85,85A,85BまでのX軸方向やZ軸方向に沿った距離が異なれば長さLや長さLxが異なってくる。また、制御部17は、X軸方向又はZ軸方向の一方の位置調整のみを実行しても良い。例えば、制御部17は、工具交換位置PのZ軸方向における位置だけを一致させても良い。また、制御部17は、チップ60B又はチップ63Bの一方の位置調整のみを実行しても良い。例えば、制御部17は、チップ60Bの工具交換位置Pだけを一致させても良い。 Also, although the tip 60B has been described in the example shown in FIG. 6, the tip 63B can be similarly adjusted in the Z-axis direction. For example, as shown by the length L in FIG. 4, the distance from the base end of the turret 43 (the far end from the spindle device 11 in the Z-axis direction) to the center of the tip 63B is the distance from the turret 43 to the tip 63B holding position. The length L to the position may be defined, and the control unit 17 may perform adjustment to match the tool change position P according to the length L. Further, in S17, the control unit 17 performs position adjustment not only in the Z-axis direction but also in the X-axis direction. The control unit 17 performs position adjustment according to the length from the turret 43 to the holding positions 85, 85A, and 85B along the X-axis direction also in the X-axis direction in the same manner as in the Z-axis direction. For example, the control unit 17 controls the X-axis driving device 71 so that the tool change position P of the cutting tools 60 and 63 having a long length in the X-axis direction (length Lx shown in FIG. 6) and The tool change position P in the X-axis direction is adjusted so that the tool change positions P of the cutting tools 60 and 63 having the short length Lx are closer to each other. As a result, the tool change position P can be matched not only in the Z-axis direction but also in the X-axis direction, thereby reducing the work burden on the user. The length Lx in the X-axis direction from the turret 43 to the holding positions 85, 85A, and 85B is, for example, can be defined as the distance to That is, the length Lx is the distance from the turret 43 to the holding positions 85, 85A, 85B along the X-axis direction orthogonal to the rotation axis of the turret 43. Therefore, even if the lengths of the shanks 60C and 63C along the X-axis direction and the Z-axis direction are the same, the distance from the turret 43 to the holding positions 85, 85A, and 85B along the X-axis direction and the Z-axis direction is large. If the distance is different, the length L and the length Lx will be different. Also, the control unit 17 may perform only one position adjustment in the X-axis direction or the Z-axis direction. For example, the control unit 17 may match only the positions of the tool change positions P in the Z-axis direction. Also, the control unit 17 may perform position adjustment of only one of the tip 60B and the tip 63B. For example, the control unit 17 may match only the tool change position P of the tip 60B.
 制御部17は、図5のS18を実行した後、S13で選択した使用切削工具を工具交換位置Pに割り出す(S19)。制御部17は、タレット用サーボモータ47を制御し、図1に示す工具交換位置Pに使用切削工具のチップ60B,63Bを配置する。これにより、交換が必要な寿命チップを、チップ60B,63Bの保持位置85に係わらず、同一の工具交換位置Pに配置することができる。 After executing S18 in FIG. 5, the control unit 17 determines the cutting tool to be used selected in S13 to the tool change position P (S19). The control unit 17 controls the turret servomotor 47 to place the chips 60B and 63B of the cutting tool to be used at the tool change position P shown in FIG. As a result, the end-of-life inserts requiring replacement can be arranged at the same tool replacement position P regardless of the holding positions 85 of the inserts 60B and 63B.
 制御部17は、S19を実行するとNCプログラムの実行を終了し、タレット装置13等を停止させ、寿命チップを工具交換位置Pに配置したことをユーザに報知する(S20)。制御部17は、例えば、操作盤16や装置カバー15に取り付けられた警告ランプ、警告灯を発光させて工具交換位置Pに寿命チップを配置したことを報知する(S20)。また、制御部17は、ブザーを鳴らす、あるいは交換を促す文字をタッチパネル19Aに表示させるなどの方法で報知を実行しても良い。 After executing S19, the control unit 17 ends the execution of the NC program, stops the turret device 13, etc., and notifies the user that the life chip has been placed at the tool change position P (S20). The control unit 17, for example, emits a warning lamp or a warning lamp attached to the operation panel 16 or the device cover 15 to notify that the life chip has been placed at the tool change position P (S20). Further, the control unit 17 may perform notification by a method such as sounding a buzzer or displaying characters prompting replacement on the touch panel 19A.
 制御部17は、S20を実行すると、寿命チップの交換が完了したか否かを判断する(S27)。制御部17は、タッチパネル19Aの操作入力に基づいて、寿命チップの交換が完了したか否かを判断する。ユーザは、S20の報知を確認すると、スライド扉15Aを開けて工具交換位置Pに配置された寿命チップを刃先60A,63Aから取り外して交換する。ユーザは、交換した後、タッチパネル19Aを操作して交換が終了した旨の操作指示を実行する。制御部17は、この操作指示を受け付けるまでの間、S27で否定判断し(S27:NO)、S27の判断処理を繰り返し実行する。制御部17は、交換を示す操作指示を受け付けると(S27:YES)、S13で選択した使用切削工具の使用回数をゼロにリセットする(S29)。 After executing S20, the control unit 17 determines whether or not the replacement of the life chip has been completed (S27). The control unit 17 determines whether or not the replacement of the life chip has been completed based on the operation input on the touch panel 19A. When the user confirms the notification of S20, the user opens the slide door 15A and removes the end-of-life chips arranged at the tool change position P from the cutting edges 60A and 63A and replaces them. After the replacement, the user operates the touch panel 19A to execute an operation instruction indicating that the replacement is completed. The control unit 17 makes a negative determination in S27 (S27: NO) and repeats the determination process of S27 until the operation instruction is accepted. When the control unit 17 receives an operation instruction indicating replacement (S27: YES), it resets the number of times of use of the used cutting tool selected in S13 to zero (S29).
 制御部17は、S29を実行すると、S31を実行し、未選択の使用切削工具が存在していた場合(S31:NO)、S13を再度実行する。仮に、他の寿命チップが存在していた場合、制御部17は、S17~S19を実行し、他の寿命チップが取り付けられた切削工具60,63に応じたNCプログラムを実行して、同一の工具交換位置Pにその寿命チップを配置する。 After executing S29, the control unit 17 executes S31, and if there is an unselected cutting tool to be used (S31: NO), executes S13 again. If there is another life chip, the control unit 17 executes S17 to S19, executes the NC program corresponding to the cutting tools 60, 63 to which the other life chip is attached, and Place the life chip at the tool change position P.
 従って、制御部17は、第1寿命チップと第1寿命チップとは異なる第2寿命チップの交換が必要であると判断した場合、第1寿命チップを工具交換位置Pに割り出した後、第1寿命チップの交換が完了した旨の操作入力をタッチパネル19Aで受け付ける。制御部17は、操作入力を受け付けると、第2寿命チップのタレット43から保持位置85までの長さに応じてタレット43をZ軸方向及びX軸方向に移動させ、タレット装置13を制御して第2寿命チップを工具交換位置Pに割り出す。これにより、1回の加工動作において複数の寿命チップが発生した場合、チップ60B,63Bの交換毎に同一の工具交換位置Pに寿命チップを配置できる。複数のチップ60B,63Bの交換におけるユーザの作業負荷を極めて軽減できる。 Therefore, when the control unit 17 determines that it is necessary to replace the first life insert and the second life insert, which is different from the first life insert, after indexing the first life insert to the tool replacement position P, the first life insert The touch panel 19A accepts an operation input to the effect that the replacement of the end-of-life chip has been completed. When the operation input is received, the control unit 17 moves the turret 43 in the Z-axis direction and the X-axis direction according to the length from the turret 43 of the second life chip to the holding position 85, and controls the turret device 13. The second life insert is indexed to the tool change position P. As a result, when a plurality of life chips occur in one machining operation, the life chips can be arranged at the same tool change position P each time the chips 60B and 63B are replaced. The user's workload in exchanging a plurality of chips 60B and 63B can be greatly reduced.
 尚、制御部17は、複数の寿命チップがある場合、1つ目の寿命チップのみの位置調整を実行しても良い。例えば、制御部17は、第1寿命チップを工具交換位置Pに配置した後、交換が完了した旨の操作入力を受け付けた場合、タレット43のZ軸方向やX軸方向の位置を変更せず、タレット43を回転させて第2寿命チップの割り出しを実行しても良い。あるいは、制御部17は、第1寿命チップを工具交換位置Pに配置した後、操作部19に対するユーザの操作入力に応じて第2寿命チップをユーザが望む工具交換位置Pに配置しても良い。 It should be noted that, if there are a plurality of life chips, the control unit 17 may perform position adjustment only for the first life chip. For example, after arranging the first longevity chip at the tool change position P, the control unit 17 does not change the position of the turret 43 in the Z-axis direction or the X-axis direction when receiving an operation input indicating that the change has been completed. , the turret 43 may be rotated to index the second life chips. Alternatively, after arranging the first longevity chip at the tool change position P, the control unit 17 may arrange the second longevity chip at the tool change position P desired by the user according to the user's operation input to the operation unit 19 . .
 また、図3に示すように、操作盤16の制御部17は、判断部17Aと、位置調整部17Bを有している。判断部17A等は、例えば、制御部17のCPUにおいて制御データ18A(NCプログラムやラダー回路など)を実行することで実現される処理モジュールである。尚、判断部17A等を、ソフトウェアで構成せずに、ハードウェアで構成しても良く、ソフトウェアとハードウェアを組み合わせて構成しても良い。 Further, as shown in FIG. 3, the control section 17 of the operation panel 16 has a determination section 17A and a position adjustment section 17B. The determination unit 17A and the like are processing modules realized by executing control data 18A (NC program, ladder circuit, etc.) in the CPU of the control unit 17, for example. Note that the determination unit 17A and the like may be configured by hardware instead of software, or may be configured by combining software and hardware.
 判断部17Aは、タレット装置13に保持された切削工具60,63に取り付けられたチップ60B,63Bのうち、交換が必要なチップ60B,63Bである寿命チップが存在するか否かを判断する機能部である。位置調整部17Bは、判断部17Aにより寿命チップが存在すると判断した場合に、X軸駆動装置71やZ軸駆動装置73を制御して寿命チップを工具交換位置Pに配置し、且つ、タレット43における寿命チップの保持位置85,85A,85Bに応じて工具交換位置Pを調整する機能部である。 The judging section 17A has a function of judging whether or not there are chips 60B and 63B that require replacement among the chips 60B and 63B attached to the cutting tools 60 and 63 held in the turret device 13 and whether or not there is a life chip. Department. When the determination unit 17A determines that there is a life chip, the position adjustment unit 17B controls the X-axis driving device 71 and the Z-axis driving device 73 to place the life chip at the tool change position P, and the turret 43 It is a functional unit that adjusts the tool change position P according to the holding positions 85, 85A, and 85B of the life chips in the .
 因みに、主軸装置11は、ワーク保持装置の一例である。タレット装置13のタレット用サーボモータ47は、回転装置の一例である。操作部19は、受付装置の一例である。X軸駆動装置71、Z軸駆動装置73は、スライド装置の一例である。Z軸方向は、第1方向の一例である。X軸方向は、第2方向の一例である。 By the way, the spindle device 11 is an example of a work holding device. The turret servomotor 47 of the turret device 13 is an example of a rotating device. The operation unit 19 is an example of a reception device. The X-axis driving device 71 and the Z-axis driving device 73 are examples of slide devices. The Z-axis direction is an example of a first direction. The X-axis direction is an example of a second direction.
 以上、上記した第1実施例によれば以下の効果を奏する。
 本実施例の一態様では、制御部17は、タレット43に保持された切削工具60,63に取り付けられたチップ60B,63Bのうち、交換が必要なチップ60B,63Bである寿命チップが存在するか否かを判断する(S15)。制御部17は、寿命チップが存在すると判断した場合(S15:YES)、X軸駆動装置71及びZ軸駆動装置73を制御してタレット43における寿命チップの保持位置85,85A,85Bに応じて工具交換位置Pを調整する(S18)。これにより、異なる保持位置85,85A,85Bに取り付けたチップ60B,63Bによってワークに対する所望の加工(中ぐり加工など)が実行できるとともに、保持位置85,85A,85Bに応じて工具交換位置Pを調整できる。工具交換位置Pを調整することでチップ60B,63Bの交換作業の効率を向上できる。
As described above, according to the above-described first embodiment, the following effects are obtained.
In one aspect of the present embodiment, the control unit 17 determines that, of the chips 60B and 63B attached to the cutting tools 60 and 63 held by the turret 43, the chips 60B and 63B that require replacement exist. (S15). If the control unit 17 determines that there is a life chip (S15: YES), it controls the X-axis driving device 71 and the Z-axis driving device 73 to control the holding positions 85, 85A, and 85B of the life chip on the turret 43. The tool change position P is adjusted (S18). As a result, desired machining (boring, etc.) can be performed on the workpiece by the tips 60B, 63B attached to the different holding positions 85, 85A, 85B, and the tool change position P can be changed according to the holding positions 85, 85A, 85B. Adjustable. By adjusting the tool changing position P, the efficiency of the changing work of the tips 60B and 63B can be improved.
(第2実施例)
 上記した第1実施例では、制御部17は、本開示の切削工具として、チップ60B,63Bが刃先60A,63Aに対して着脱可能な所謂スローアウェイバイトである切削工具60,63を対象として工具交換位置Pの調整を実行したが、これに限らない。本開示の制御部17は、刃先とシャンクが一体的に設けられた一体型切削工具を対象として工具交換位置Pの調整を実行しても良い。
(Second embodiment)
In the first embodiment described above, the control unit 17 targets the cutting tools 60 and 63, which are so-called throwaway tools whose tips 60B and 63B can be attached to and removed from the cutting edges 60A and 63A, as the cutting tools of the present disclosure. Although the replacement position P has been adjusted, the present invention is not limited to this. The control unit 17 of the present disclosure may perform adjustment of the tool change position P for an integrated cutting tool in which a cutting edge and a shank are integrally provided.
 図7は、第2実施例の切削工具の取り付け状態を示している。以下の説明では、上記した第1実施例と同様の構成については同一符号を付し、その説明を適宜省略する。図7に示すように、タレット43には、切削工具60,63の他に、一体型切削工具86,87が取り付けられている。一体型切削工具86は、例えば、シャンクと刃先が一体の同一素材から形成される所謂むくバイト(完成バイト)である。一体型切削工具86は、刃先を研削して形成したチップ88がシャンクに対して一体的に設けられる。一体型切削工具86は、ホルダ61によってタレット43の第1取付部57に取り付けられている。 FIG. 7 shows the mounting state of the cutting tool of the second embodiment. In the following description, the same reference numerals are assigned to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate. As shown in FIG. 7, the turret 43 is fitted with integral cutting tools 86 and 87 in addition to the cutting tools 60 and 63 . The integrated cutting tool 86 is, for example, a so-called solid bit (finished bit) in which the shank and cutting edge are integrally formed from the same material. The integrated cutting tool 86 has a tip 88 formed by grinding a cutting edge and is provided integrally with the shank. The integrated cutting tool 86 is attached to the first attachment portion 57 of the turret 43 by the holder 61 .
 一体型切削工具87は、例えば、鋼材性のシャンクの先端の刃先に、超硬合金などのより堅い材質からなるチップ89をろう付けした所謂ろう付けバイト(付け刃バイト)である。一体型切削工具87は、クランパ64によってタレット43の第2取付部58に取り付けられている。このような一体型切削工具86,87では、切削工具60,63と同様に、一定の使用回数だけ使用すると研磨や交換が必要となる。例えば、一体型切削工具86,87は、タレット43から取り外され、グラインダや工具研削盤によってチップ88,89を研磨された後、再度タレット43に取り付けられる。あるいは、一体型切削工具86,87は、同一種類の一体型切削工具86,87と交換される。 The integrated cutting tool 87 is, for example, a so-called brazing bit (attached blade bit) in which a tip 89 made of a harder material such as cemented carbide is brazed to the tip of a shank made of steel. Integrated cutting tool 87 is attached to second attachment portion 58 of turret 43 by clamper 64 . Similar to the cutting tools 60 and 63, such integrated cutting tools 86 and 87 require polishing or replacement after being used a certain number of times. For example, the integrated cutting tools 86, 87 may be removed from the turret 43, and reattached to the turret 43 after the tips 88, 89 are ground by a grinder or tool grinder. Alternatively, the integrated cutting tools 86,87 are replaced with integrated cutting tools 86,87 of the same type.
 一体型切削工具86,87は、切削工具60,63とは異なり、使用回数が閾値回数以上となると、シャンクを含めた切削工具全体を工具取付部49(第1及び第2取付部57,58)から取り外す必要がある。制御部17は、使用回数が閾値回数以上となった一体型切削工具86,87(以下、寿命工具という)が発生した場合、例えば、その寿命工具のホルダ61やクランパ64の位置がZ軸方向において工具交換位置PとなるようにZ軸駆動装置73を制御する。これにより、ユーザは、同じ工具交換位置Pで一体型切削工具86,87をタレット43(ホルダ61やクランパ64)から取り外すことができ、効率良く交換作業を実行できる。 Unlike the cutting tools 60 and 63, the integrated cutting tools 86 and 87 are configured such that when the number of times of use reaches the threshold number of times or more, the entire cutting tool including the shank is removed from the tool attachment portion 49 (first and second attachment portions 57 and 58). ) must be removed. When there is an integrated cutting tool 86 or 87 (hereinafter referred to as a life tool) that has been used more than a threshold number of times, the control unit 17 adjusts the position of the holder 61 or clamper 64 of the tool in the Z-axis direction. The Z-axis driving device 73 is controlled so that the tool change position P is reached at . Thereby, the user can remove the integrated cutting tools 86 and 87 from the turret 43 (the holder 61 and the clamper 64) at the same tool exchange position P, and can efficiently perform the exchange work.
 交換作業において一体型切削工具86,87をタレット43から取り外す又は取り付けるため、一体型切削工具86,87の重量が増加すると、取り外し等が困難となり作業負担が増加する。例えば、一体型切削工具86であれば、Z軸方向の長さが長くなるほど重量が増加し、ホルダ61から抜き取って取り外す作業や挿入して取り付ける作業負担が増加する。また、一体型切削工具87であれば、タレット43の半径方向の長さが長くなればなるほど重量が増加し、クランパ64を緩めて一体型切削工具87を交換する作業負担が増加する。そこで、制御部17は、一体型切削工具86,87の工具交換位置Pを、切削工具60,63よりもX軸方向においてスライド扉15Aに近づける。また、制御部17は、より重たい一体型切削工具86,87の工具交換位置PをX軸方向においてスライド扉15Aに近づける。 Since the integrated cutting tools 86 and 87 are removed from or attached to the turret 43 during the replacement work, if the integrated cutting tools 86 and 87 increase in weight, removal becomes difficult and the work load increases. For example, in the case of the integrated cutting tool 86, the longer the length in the Z-axis direction, the more the weight increases, and the work load for extracting and removing from the holder 61 and inserting and attaching increases. Further, if the integrated cutting tool 87 is used, the weight increases as the radial length of the turret 43 increases, and the work load of loosening the clamper 64 and replacing the integrated cutting tool 87 increases. Therefore, the control unit 17 brings the tool change position P of the integrated cutting tools 86 and 87 closer to the slide door 15A than the cutting tools 60 and 63 in the X-axis direction. In addition, the control unit 17 brings the tool change position P of the heavier integrated cutting tools 86 and 87 closer to the slide door 15A in the X-axis direction.
 従って、上記したように、工作機械10の装置カバー15は、主軸装置11で保持したワークを加工する加工室を覆い、加工室を開閉するスライド扉15A(本開示の扉の一例)を備えている。タレット43は、X軸駆動装置71によりX軸方向(本開示の第2方向の一例)へ移動させられることでスライド扉15Aとの間の距離が変動する。複数の工具取付部49の少なくとも1つは、一体型切削工具86,87が取り付け可能である。制御部17は、タレット43に保持された一体型切削工具86,87の交換が必要か否かを第1実施例と同様に判断する(図5参照)。制御部17は、一体型切削工具86,87の何れかの交換が必要であると判断した場合に、X軸駆動装置71及びZ軸駆動装置73を制御して交換が必要な一体型切削工具86,87を工具交換位置Pに配置する。また、制御部17は、X軸駆動装置71を制御してタレット43をX軸方向へ移動させ、一体型切削工具86,87の重さが重くなるに従って、工具交換位置Pをスライド扉15Aに近づける調整を実行する。これにより、切削工具自体をタレット43から取り外す一体型切削工具86,87についての交換作業の負担を軽減できる。 Therefore, as described above, the device cover 15 of the machine tool 10 covers the processing chamber for processing the workpiece held by the spindle device 11, and includes the slide door 15A (an example of the door of the present disclosure) for opening and closing the processing chamber. there is The turret 43 is moved in the X-axis direction (an example of the second direction of the present disclosure) by the X-axis driving device 71 to change the distance between the turret 43 and the slide door 15A. At least one of the plurality of tool mounts 49 is mountable with an integrated cutting tool 86,87. The control unit 17 determines whether or not the integrated cutting tools 86, 87 held by the turret 43 need to be replaced in the same manner as in the first embodiment (see FIG. 5). When it is determined that one of the integrated cutting tools 86 and 87 needs to be replaced, the control unit 17 controls the X-axis driving device 71 and the Z-axis driving device 73 to select the integrated cutting tool that needs to be replaced. 86 and 87 are placed at the tool change position P. Further, the control unit 17 controls the X-axis drive device 71 to move the turret 43 in the X-axis direction, and moves the tool change position P to the slide door 15A as the integrated cutting tools 86 and 87 become heavier. Perform a closer adjustment. As a result, the burden of replacing the integrated cutting tools 86 and 87 for removing the cutting tools themselves from the turret 43 can be reduced.
 例えば、第1実施例の切削工具60,63と同様に、一体型切削工具86,87の重量に応じて工具交換位置Pをスライド扉15Aに近づけるNCプログラムを制御データ18Aに設定しても良い。そして、制御部17は、交換が必要となった一体型切削工具86,87に応じたNCプログラムを実行することで、一体型切削工具86,87の重さに応じて工具交換位置Pをスライド扉15Aに近づけることができる。 For example, similarly to the cutting tools 60, 63 of the first embodiment, an NC program may be set in the control data 18A to bring the tool change position P closer to the slide door 15A according to the weight of the integrated cutting tools 86, 87. . Then, the control unit 17 executes the NC program corresponding to the integrated cutting tools 86, 87 that need to be replaced, thereby sliding the tool replacement position P according to the weight of the integrated cutting tools 86, 87. It can be brought closer to the door 15A.
 また、制御部17は、図7に示すように、チップ60B,63Bだけを交換する切削工具60,63と、切削工具自体を取り外す一体型切削工具86,87とが混在する場合に、切削工具60,63の工具交換位置Pに比べて一体型切削工具86,87の工具交換位置Pをスライド扉15Aに近づける調整を実行しても良い。これにより、作業負担の大きい一体型切削工具86,87については、よりスライド扉15Aに近い位置に工具交換位置Pを設定することで、作業負荷を軽減できる。また、比較的作業負荷が小さい切削工具60,63については、相対的にスライド扉15Aから遠い位置に工具交換位置Pを設定することで、寿命チップを工具交換位置Pに配置するまでの時間を短縮できる。 Further, as shown in FIG. 7, the control unit 17 controls the cutting tool when cutting tools 60 and 63 for replacing only the tips 60B and 63B and integrated cutting tools 86 and 87 for removing the cutting tool itself are mixed. Adjustment may be made to bring the tool change position P of the integrated cutting tools 86, 87 closer to the slide door 15A than the tool change position P of 60, 63. As a result, for the integrated cutting tools 86 and 87, which have a large work load, the work load can be reduced by setting the tool change position P at a position closer to the slide door 15A. For the cutting tools 60 and 63 with a relatively small work load, by setting the tool change position P at a position relatively far from the slide door 15A, it takes time to arrange the life chip at the tool change position P. can be shortened.
(第3実施例)
 また、本開示の工作機械としては、上記実施例のスラントベッド型の横型旋盤に限らず、例えば、正面主軸型の旋盤、対向2軸型の旋盤、マシニングセンタなど、様々な構成を採用できる。図8は、第3実施例の工作機械91を示している。以下の説明では、上記した第1実施例と同様の内容についてはその説明を適宜省略する。工作機械91は、主軸装置92とタレット装置93の組み合わせを2組備えている。2つの主軸装置92の各々は、装置の前後方向と平行な方向に沿った回転軸を中心にワーク(図示略)を回転させる。また、2つのタレット装置93の各々は、装置の前後方向と平行な方向に沿った回転軸を中心にタレット94を回転させる。従って、工作機械91は、所謂、正面平行2軸型の旋盤である。
(Third embodiment)
Further, the machine tool of the present disclosure is not limited to the slant bed type horizontal lathe of the above embodiment, and various configurations such as a front spindle lathe, an opposed two-spindle lathe, and a machining center can be employed. FIG. 8 shows a machine tool 91 of the third embodiment. In the following description, the description of the contents similar to those of the first embodiment will be omitted as appropriate. The machine tool 91 has two sets of combinations of a spindle device 92 and a turret device 93 . Each of the two spindle devices 92 rotates a work (not shown) around a rotation axis parallel to the longitudinal direction of the device. Also, each of the two turret devices 93 rotates the turret 94 around a rotation axis along a direction parallel to the longitudinal direction of the device. Therefore, the machine tool 91 is a so-called front parallel twin-axis lathe.
 2つのタレット装置93の各々は、ベッド99の上に設けられたスライド装置101によって前後方向及び左右方向の各々にスライド移動可能となっている。このため、タレット装置93は、主軸装置92に保持されたワークに対して前後方向及び左右方向の位置を変更可能となっている。タレット94には、チップ97を取り付けられた切削工具98が保持される。尚、図面が煩雑となるのを避けるため、図8は、タレット94の複数の工具取付部の一部のみに切削工具98を装着した状態を示している。 Each of the two turret devices 93 is slidable in the front-rear direction and the left-right direction by a slide device 101 provided on the bed 99 . Therefore, the turret device 93 can change its position in the front-back direction and the left-right direction with respect to the workpiece held by the spindle device 92 . The turret 94 holds a cutting tool 98 with a tip 97 attached. In order to avoid complicating the drawing, FIG. 8 shows a state in which the cutting tools 98 are attached only to some of the plurality of tool attachment portions of the turret 94 .
 このようなタレット装置93において、タレット94に保持された切削工具98の前後方向(タレット94の回転軸と平行な方向)や左右方向(タレット94の半径方向)におけるチップ97の保持位置が異なる場合、寿命チップの調整を実行しても良い。具体的には、工作機械91は、前後方向(本開示の第1方向の一例)に沿ったタレット94からチップ97の保持位置までの長さが長い切削工具98の寿命チップを工具交換位置に配置する場合、主軸装置92から離間する方向である前方側へタレット94を移動させる。工作機械91は、前後方向の保持位置までの長さが長い切削工具98のチップ97の工具交換位置と、前後方向の保持位置までの長さが短い切削工具98の工具交換位置が一致するように制御する。これにより、保持位置までの長さがバラバラであっても、工具交換位置を同一の場所にして、チップ97の交換作業の負荷を軽減できる。尚、第3実施例の工作機械91においても、第2実施例と同様に、一体型切削工具86,87を取り付けた場合には、一体型切削工具86,87の工具交換位置Pを、切削工具98の工具交換位置Pに比べて装置の扉側(例えば、主軸装置92から離間する前方側)にしても良い。また、より重い一体型切削工具86,87の工具交換位置Pを、ユーザが交換のために開閉する扉に近づけても良い。 In such a turret device 93, when the cutting tool 98 held by the turret 94 is held at different positions in the front-rear direction (direction parallel to the rotation axis of the turret 94) or the left-right direction (radial direction of the turret 94) , may perform life chip adjustments. Specifically, the machine tool 91 moves the cutting tool 98 having a long length from the turret 94 to the holding position of the tip 97 along the front-rear direction (an example of the first direction of the present disclosure) at the tool change position. When disposing, the turret 94 is moved forward in a direction away from the spindle device 92 . The machine tool 91 is arranged so that the tool change position of the tip 97 of the cutting tool 98 having a long length to the holding position in the front-back direction and the tool changing position of the cutting tool 98 having a short length to the holding position in the front-back direction are aligned. to control. As a result, even if the lengths to the holding position are different, the tool changing position can be set at the same place, and the load of the tip 97 changing work can be reduced. Also in the machine tool 91 of the third embodiment, similarly to the second embodiment, when the integrated cutting tools 86 and 87 are attached, the tool exchange position P of the integrated cutting tools 86 and 87 is changed to the cutting position. Compared to the tool change position P of the tool 98, it may be on the door side of the device (for example, on the front side away from the spindle device 92). Also, the tool change position P of the heavier integrated cutting tools 86, 87 may be closer to the door that the user opens and closes for replacement.
(第4実施例)
 また、主軸装置11の主軸は、タレット43の回転軸と平行でなくとも良い。図9は、第4実施例の工作機械111を示している。工作機械111は、主軸装置11がワーク115を回転させる主軸117と、タレット43の回転軸119とが垂直な関係となっている。このような工作機械111において、タレット43に保持された切削工具60に取り付けられたチップ60BのX軸方向(タレット43の回転軸119と平行な方向)やZ軸方向(主軸117と平行な方向)における保持位置85が異なる場合、工具交換位置Pの調整を実行しても良い。具体的には、工作機械111は、X軸方向(本開示の第1方向の一例)に沿った長さLが長い切削工具60の先端の刃先60Aに取り付けられた寿命チップを工具交換位置Pに配置する場合、主軸装置11から離間する方向である図9の上方(回転軸119と平行な方向における離間方向)へタレット43を移動させる。工作機械111は、X軸方向の長さLが長い切削工具60の先端の刃先60Aに取り付けられたチップ60Bの工具交換位置Pと、X軸方向の長さLが短い切削工具60の先端の刃先60Aに取り付けられたチップ60Bの工具交換位置Pが一致するように制御する。これにより、主軸117と回転軸119が平行でない工作機械111においても、保持位置85が異なるチップ60Bの工具交換位置Pを同一の場所にして、チップ60Bの交換作業の負荷を軽減できる。尚、図9における工作機械111において、X軸方向と同様にZ軸方向の調整を実行しても良い。即ち、Z軸方向におけるタレット43から保持位置85までの長さLzに応じてZ軸方向における工具交換位置Pを調整しても良い。長さLzは、例えば、Z軸方向に沿った第1取付部57の平面(タレット43の外周面)からチップ60Bの中心までの距離である。
(Fourth embodiment)
Also, the main shaft of the main shaft device 11 does not have to be parallel to the rotation axis of the turret 43 . FIG. 9 shows a machine tool 111 of the fourth embodiment. In the machine tool 111, a main shaft 117 for rotating a workpiece 115 by the main shaft device 11 and a rotation shaft 119 of the turret 43 are perpendicular to each other. In such a machine tool 111, the tip 60B attached to the cutting tool 60 held by the turret 43 is rotated in the X-axis direction (parallel to the rotating shaft 119 of the turret 43) and Z-axis direction (parallel to the main shaft 117). ), the tool change position P may be adjusted. Specifically, the machine tool 111 moves the life chip attached to the cutting edge 60A at the tip of the cutting tool 60 having a long length L along the X-axis direction (an example of the first direction of the present disclosure) to the tool change position P. 9, which is the direction away from the spindle device 11 (separation direction in the direction parallel to the rotating shaft 119). The machine tool 111 has a tool change position P of a tip 60B attached to a cutting edge 60A at the tip of a cutting tool 60 with a long length L in the X-axis direction, and a tip of the cutting tool 60 with a short length L in the X-axis direction. The tool change position P of the tip 60B attached to the cutting edge 60A is controlled to match. As a result, even in the machine tool 111 in which the main shaft 117 and the rotary shaft 119 are not parallel, the tool change position P of the tips 60B having different holding positions 85 can be set to the same place, and the load of the tip 60B replacement work can be reduced. Incidentally, in the machine tool 111 shown in FIG. 9, adjustment in the Z-axis direction may be performed in the same manner as in the X-axis direction. That is, the tool change position P in the Z-axis direction may be adjusted according to the length Lz from the turret 43 to the holding position 85 in the Z-axis direction. The length Lz is, for example, the distance from the plane of the first mounting portion 57 (the outer peripheral surface of the turret 43) along the Z-axis direction to the center of the chip 60B.
 また、図9に示す第4実施例では、主軸117と回転軸119が垂直な関係であったが、これに限らない。例えば、回転軸119に沿った方向が、主軸117に対して所定角度(図9における時計回り方向へ45度だけ回転した角度など)をなす方向でも良い。この場合にも工作機械111は、例えば、タレット43の回転軸119と平行な方向にタレット43を移動させ、長さLの異なる切削工具60に取り付けられたチップ60Bの工具交換位置Pを調整しても良い。また、第4実施例の工作機械111においても、第2実施例と同様に、一体型切削工具86,87を取り付けた場合には、一体型切削工具86,87の工具交換位置Pを、切削工具60の工具交換位置Pに比べて装置の扉側(例えば、主軸117と平行な方向において主軸装置11から離間する側)にしても良い。また、より重い一体型切削工具86,87の工具交換位置Pを、ユーザが交換のために開閉する扉に近づけても良い。 Also, in the fourth embodiment shown in FIG. 9, the main shaft 117 and the rotating shaft 119 are perpendicular to each other, but the present invention is not limited to this. For example, the direction along the rotating shaft 119 may form a predetermined angle with respect to the main shaft 117 (such as an angle rotated clockwise by 45 degrees in FIG. 9). Also in this case, the machine tool 111 moves the turret 43 in a direction parallel to the rotation axis 119 of the turret 43, and adjusts the tool change position P of the tip 60B attached to the cutting tool 60 having a different length L. can be Also in the machine tool 111 of the fourth embodiment, similarly to the second embodiment, when the integrated cutting tools 86 and 87 are attached, the tool change position P of the integrated cutting tools 86 and 87 is changed to the cutting The tool 60 may be located on the door side of the device (for example, on the side away from the main shaft device 11 in the direction parallel to the main shaft 117) compared to the tool change position P of the tool 60. Also, the tool change position P of the heavier integrated cutting tools 86, 87 may be closer to the door that the user opens and closes for replacement.
 尚、本開示は上記の各実施例に限定されるものではなく、本開示の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施例では、制御部17は、工具交換位置PのZ軸方向やX軸方向における位置が同一位置となるように調整したが、同一位置としなくとも良い。例えば、制御部17は、Z軸方向に沿った長さLが長い切削工具82(図6参照)の工具交換位置Pと、長さLが短い切削工具81の工具交換位置Pを一定の範囲内に近づけても良い。
 また、上記実施例では、図6に示すように、制御部17は、長さLがより長い切削工具82を主軸装置11から離間する方向へ移動させ、短い切削工具81を主軸装置11に近づける方向へ移動させ工具交換位置Pを一致させたが、移動方向はこれに限らない。例えば、長さLが最も長い長さL2の保持位置85Bを基準として、他の切削工具60,81を保持位置85Bに近づける方向、即ち、Z軸方向において主軸装置11に近づく方向へ移動させて工具交換位置Pを一致等させても良い。
It goes without saying that the present disclosure is not limited to the above embodiments, and that various improvements and modifications are possible without departing from the scope of the present disclosure.
For example, in the above embodiment, the control unit 17 adjusts the tool change position P so that the positions in the Z-axis direction and the X-axis direction are the same, but the positions need not be the same. For example, the control unit 17 sets the tool change position P of the cutting tool 82 (see FIG. 6) having a long length L along the Z-axis direction and the tool change position P of the cutting tool 81 having a short length L within a certain range. You can bring it closer to the inside.
In the above embodiment, as shown in FIG. 6, the control unit 17 moves the cutting tool 82 having the longer length L away from the main spindle device 11 and brings the shorter cutting tool 81 closer to the main spindle device 11. Although the tool exchange position P was made to match by moving in the direction, the moving direction is not limited to this. For example, with the holding position 85B having the longest length L2 as a reference, the other cutting tools 60 and 81 are moved in a direction approaching the holding position 85B, that is, in a direction approaching the spindle device 11 in the Z-axis direction. The tool change position P may be matched.
 また、図6に示すフローチャートの処理の順番や、各ステップの処理の内容は一例である。例えば、制御部17は、S18においてZ軸方向やX軸方向の調整を実行した後、S19においてタレット43を回転させて寿命チップを割り出したが、この順番に限らない。制御部17は、先にタレット43の回転を実行し、その後にZ軸方向等の位置を調整して寿命チップを工具交換位置Pに配置しても良い。即ち、制御部17は、S19の後にS18を実行しても良い。 Also, the order of processing in the flow chart shown in FIG. 6 and the content of processing in each step are examples. For example, the control unit 17 performs adjustment in the Z-axis direction and the X-axis direction in S18, and then rotates the turret 43 in S19 to determine the life chip, but the order is not limited to this. The control unit 17 may first rotate the turret 43 and then adjust the position in the Z-axis direction or the like to place the life chip at the tool change position P. FIG. That is, the control unit 17 may execute S18 after S19.
 10,91,111 工作機械、11 主軸装置(ワーク保持装置)、15 装置カバー、15A スライド扉(扉)、17 制御部(判断部、位置調整部)、17A 判断部、17B 位置調整部、19 操作部(受付装置)、43 タレット、47 タレット用サーボモータ(回転装置)、49 工具取付部、60,63,81,82,98 切削工具、60C,63C,81C,82C シャンク、60B,63B,81B,82B,88,89 チップ(寿命チップ)、71 X軸駆動装置(スライド装置)、73 Z軸駆動装置(スライド装置)、85,85A,85B 保持位置、86,87 一体型切削工具、115 ワーク、L,L1,L2 長さ、P 工具交換位置。 10, 91, 111 machine tool, 11 spindle device (work holding device), 15 device cover, 15A slide door (door), 17 control section (judgment section, position adjustment section), 17A judgment section, 17B position adjustment section, 19 Operation unit (receiving device), 43 turret, 47 turret servo motor (rotating device), 49 tool mounting unit, 60, 63, 81, 82, 98 cutting tool, 60C, 63C, 81C, 82C shank, 60B, 63B, 81B, 82B, 88, 89 tip (lifetime tip), 71 X-axis drive device (slide device), 73 Z-axis drive device (slide device), 85, 85A, 85B Holding position, 86, 87 Integrated cutting tool, 115 Work, L, L1, L2 Length, P Tool change position.

Claims (9)

  1.  ワークを保持して主軸を中心に回転するワーク保持装置と、
     チップが着脱可能な切削工具を取り付けられ、前記チップにより前記ワークに対する加工を実行するタレットと、
     前記主軸と平行な第1方向と、前記第1方向に垂直な第2方向に前記タレットをスライド移動させるスライド装置と、
     前記タレットを回転させる回転装置と、
     制御部と、
     を備え、
     前記タレットには、
     回転方向において所定の回転角度ごとに工具取付部が設けられ、
     複数の前記工具取付部の各々には、
     前記切削工具が取り付け可能であり、
     前記制御部は、
     前記タレットに保持された前記切削工具に取り付けられた前記チップのうち、交換が必要な前記チップである寿命チップが存在するか否かを判断する判断部と、
     前記判断部により前記寿命チップが存在すると判断した場合に、前記スライド装置を制御して前記寿命チップを工具交換位置に配置し、且つ、前記タレットにおける前記寿命チップの保持位置に応じて前記工具交換位置を調整する位置調整部と、
     を有する、工作機械。
    a workpiece holding device that holds a workpiece and rotates about the spindle;
    a turret to which a cutting tool with a detachable tip is attached and which performs machining on the workpiece with the tip;
    a slide device that slides the turret in a first direction parallel to the main axis and in a second direction perpendicular to the first direction;
    a rotating device for rotating the turret;
    a control unit;
    with
    The turret has
    A tool mounting portion is provided at each predetermined rotation angle in the rotation direction,
    Each of the plurality of tool mounting portions includes:
    the cutting tool is attachable,
    The control unit
    a judgment unit for judging whether or not there is an end-of-life tip, which is the tip that needs to be replaced, among the tips attached to the cutting tool held by the turret;
    When the determination unit determines that the life chip exists, the slide device is controlled to place the life chip at a tool change position, and the tool is changed according to the holding position of the life chip in the turret. a position adjustment unit that adjusts the position;
    A machine tool having
  2.  前記回転装置は、
     回転軸を中心に前記タレットを回転させ、
     前記位置調整部は、
     前記回転軸と平行な方向における前記タレットから前記保持位置までの長さが長い前記切削工具の前記工具交換位置と、前記回転軸と平行な方向における前記タレットから前記保持位置までの長さが短い前記切削工具の前記工具交換位置とが近づくように、前記回転軸と平行な方向における前記工具交換位置を調整する、請求項1に記載の工作機械。
    The rotating device is
    rotating the turret about an axis of rotation;
    The position adjustment unit
    The tool change position of the cutting tool has a long length from the turret to the holding position in a direction parallel to the rotation axis, and a short length from the turret to the holding position in a direction parallel to the rotation axis. 2. The machine tool according to claim 1, wherein said tool change position in a direction parallel to said rotation axis is adjusted so as to come close to said tool change position of said cutting tool.
  3.  前記回転装置は、
     前記第1方向と平行な回転軸を中心に前記タレットを回転させ、
     複数の前記工具取付部の各々には、
     前記第1方向に沿った長さが異なる前記切削工具がそれぞれ取り付けられ、
     前記位置調整部は、
     前記工具交換位置の前記第1方向における位置を調整し、前記工具交換位置を調整する際に前記第1方向に沿った前記タレットから前記保持位置までの長さが長い前記切削工具を、前記第1方向に沿った前記タレットから前記保持位置までの長さが短い前記切削工具に比べて前記第1方向と平行な方向に沿って前記ワーク保持装置から離間する方向へ移動させる、請求項1又は請求項2に記載の工作機械。
    The rotating device is
    rotating the turret about a rotation axis parallel to the first direction;
    Each of the plurality of tool mounting portions includes:
    The cutting tools having different lengths along the first direction are attached respectively,
    The position adjustment unit
    The position of the tool changing position in the first direction is adjusted, and the cutting tool having a long length from the turret along the first direction to the holding position is adjusted when adjusting the tool changing position. 2. The cutting tool is moved in a direction parallel to the first direction away from the workpiece holding device, compared to the cutting tool having a short length from the turret to the holding position along one direction. A machine tool according to claim 2.
  4.  前記位置調整部は、
     複数の前記切削工具の各々に保持された前記寿命チップについて、前記工具交換位置の前記第1方向における位置が同一位置となるように前記工具交換位置を調整する、請求項3に記載の工作機械。
    The position adjustment unit
    4. The machine tool according to claim 3, wherein the tool change position is adjusted such that the tool change positions of the life inserts held by each of the plurality of cutting tools are the same in the first direction. .
  5.  操作入力を受け付ける受付装置を、さらに備え、
     前記位置調整部は、
     前記スライド装置を制御して前記工具交換位置の前記第1方向における位置を調整した後、前記回転装置を制御して前記寿命チップを前記工具交換位置に割り出し、複数の前記チップのうち第1寿命チップと前記第1寿命チップとは異なる第2寿命チップの交換が必要であると前記判断部により判断された場合、前記第1寿命チップを前記工具交換位置に割り出した後、前記第1寿命チップの交換が完了した旨の操作入力を前記受付装置で受け付けると、前記スライド装置を制御して前記第2寿命チップの前記タレットから前記保持位置までの長さに応じて前記タレットを前記第1方向に移動させ、前記回転装置を制御して前記第2寿命チップを前記工具交換位置に割り出す、請求項2から請求項4の何れか1項に記載の工作機械。
    further comprising a reception device that receives operation input,
    The position adjustment unit
    After controlling the slide device to adjust the position of the tool change position in the first direction, the rotating device is controlled to index the life tip to the tool change position, and the plurality of tips have a first life span. When it is determined by the determination unit that the tip and the second life tip different from the first life tip need to be replaced, the first life tip is indexed to the tool replacement position, and then the first life tip is replaced. When the reception device receives an operation input to the effect that the replacement of the tip has been completed, the slide device is controlled to move the turret in the first direction according to the length of the second life chip from the turret to the holding position. 5. The machine tool according to any one of claims 2 to 4, wherein said rotating device is controlled to index said second life insert to said tool change position.
  6.  前記回転装置は、
     回転軸を中心に前記タレットを回転させ、
     前記位置調整部は、
     前記回転軸に直交する方向における前記タレットから前記保持位置までの長さが長い前記切削工具の前記工具交換位置と、前記回転軸に直交する方向における前記タレットから前記保持位置までの長さが短い前記切削工具の前記工具交換位置とが近づくように、前記回転軸に直交する方向における前記工具交換位置を調整する、請求項1に記載の工作機械。
    The rotating device is
    rotating the turret about an axis of rotation;
    The position adjustment unit
    The tool change position of the cutting tool has a long length from the turret to the holding position in the direction perpendicular to the rotation axis, and the cutting tool has a short length from the turret to the holding position in the direction perpendicular to the rotation axis. 2. The machine tool according to claim 1, wherein said tool changing position in a direction perpendicular to said rotation axis is adjusted so as to come close to said tool changing position of said cutting tool.
  7.  前記判断部は、
     1つの前記ワークに対する加工が完了した後、前記ワークの加工に使用した前記チップを取り付けられた前記切削工具について累積の使用回数が所定の閾値回数以上であるか否かを判断し、累積の使用回数が前記閾値回数以上である前記切削工具に取り付けられた前記チップを前記寿命チップであると判断する、請求項1から請求項6の何れか1項に記載の工作機械。
    The determination unit
    After the machining of one workpiece is completed, it is determined whether or not the cumulative number of times of use of the cutting tool attached with the tip used for machining the workpiece is equal to or greater than a predetermined threshold number of times, and the cumulative use is determined. 7. The machine tool according to any one of claims 1 to 6, wherein the chip attached to the cutting tool whose number of times is equal to or greater than the threshold number of times is determined to be the life chip.
  8.  装置カバーを、さらに備え、
     前記装置カバーは、
     前記ワーク保持装置で保持した前記ワークを加工する加工室を覆い、前記加工室を開閉する扉を備え、
     前記タレットは、
     前記スライド装置により移動させられることで前記扉との間の距離が変動し、
     複数の前記工具取付部の少なくとも1つは、
     前記切削工具に対して前記チップが一体的に設けられた一体型切削工具が取り付け可能であり、
     前記判断部は、
     前記タレットに保持された前記一体型切削工具の交換が必要か否かを判断し、
     前記位置調整部は、
     前記判断部により前記一体型切削工具の交換が必要であると判断した場合に、前記スライド装置を制御して交換が必要な前記一体型切削工具を前記工具交換位置に配置し、且つ、前記スライド装置を制御して前記タレットを移動させ、前記一体型切削工具の重さが重くなるに従って、前記工具交換位置を前記扉に近づける調整を実行する、請求項1から請求項7の何れか1項に記載の工作機械。
    further comprising a device cover,
    The device cover includes:
    A door that covers a processing chamber for processing the work held by the work holding device and opens and closes the processing chamber,
    The turret is
    The distance between the door fluctuates by being moved by the slide device,
    At least one of the plurality of tool mounting portions,
    An integrated cutting tool in which the tip is provided integrally with the cutting tool can be attached,
    The determination unit
    determining whether replacement of the integrated cutting tool held by the turret is required;
    The position adjustment unit
    When the determination unit determines that the integrated cutting tool needs to be replaced, the slide device is controlled to arrange the integrated cutting tool to be replaced at the tool replacement position, and 8. A device according to any one of claims 1 to 7, wherein a device is controlled to move the turret to adjust the tool change position closer to the door as the weight of the integrated cutting tool increases. The machine tool described in .
  9.  前記位置調整部は、
     前記寿命チップの前記工具交換位置に比べて前記一体型切削工具の前記工具交換位置を前記扉に近づける調整を実行する、請求項8に記載の工作機械。
    The position adjustment unit
    9. The machine tool of claim 8, wherein adjustment is performed to bring the tool change position of the integrated cutting tool closer to the door than the tool change position of the life insert.
PCT/JP2021/046000 2021-12-14 2021-12-14 Machine tool WO2023112134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046000 WO2023112134A1 (en) 2021-12-14 2021-12-14 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046000 WO2023112134A1 (en) 2021-12-14 2021-12-14 Machine tool

Publications (1)

Publication Number Publication Date
WO2023112134A1 true WO2023112134A1 (en) 2023-06-22

Family

ID=86774124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046000 WO2023112134A1 (en) 2021-12-14 2021-12-14 Machine tool

Country Status (1)

Country Link
WO (1) WO2023112134A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126046A (en) * 1982-01-20 1983-07-27 Yamazaki Mazak Corp Control method for positioning of tool changing position in numerical control lathe
JPH04300139A (en) * 1991-03-26 1992-10-23 Murata Mach Ltd Work processing machine
JP2009006455A (en) * 2007-06-29 2009-01-15 Komatsu Ntc Ltd Machine tool
WO2019069426A1 (en) * 2017-10-05 2019-04-11 株式会社Fuji Machining device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126046A (en) * 1982-01-20 1983-07-27 Yamazaki Mazak Corp Control method for positioning of tool changing position in numerical control lathe
JPH04300139A (en) * 1991-03-26 1992-10-23 Murata Mach Ltd Work processing machine
JP2009006455A (en) * 2007-06-29 2009-01-15 Komatsu Ntc Ltd Machine tool
WO2019069426A1 (en) * 2017-10-05 2019-04-11 株式会社Fuji Machining device

Similar Documents

Publication Publication Date Title
KR101288727B1 (en) Deburring blade, device for mounting of deburring blades and bevel gear cutting machine for chamfering and/or deburring a bevel gear
EP0375783B1 (en) Machine tool
US6796012B2 (en) Milling machine for carrying out milling and turning operations on rod material
JP6059947B2 (en) Combined processing machine and processing method
JPH03178735A (en) Three phase crankshaft machining
CN113508006B (en) Automatic tool changer, control method thereof, and machine tool including the same
EP1256405B2 (en) Lathe with two-opposed spindles
EP1153682B1 (en) Machine tool
US20200180036A1 (en) Lathe with tool unit mounted thereto
EP0528052A1 (en) Machine tool
WO2023112134A1 (en) Machine tool
JPWO2016013307A1 (en) Machine tool, tool unit, and machining method
JP2009142915A (en) Machine tool and machining method using the same
KR20200135943A (en) machine tool
CN212918413U (en) Improved multifunctional numerically controlled lathe
JP5433344B2 (en) Composite tool, machine tool and machining method
JPH0592301A (en) Machine tool
JP2023045438A (en) Machine tool
JP2002052428A (en) Tool correcting or regenerating machining method of machining center and machining center
CN216780980U (en) Rough and fine integrated drilling mechanism
JP2003145372A (en) Machine tool
KR102571179B1 (en) Machine tool
JP3579444B2 (en) Comb blade type automatic lathe
JPH05131301A (en) Bar material machining lathe
CN115213687A (en) Composite processing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567324

Country of ref document: JP