WO2023112111A1 - Catalyst packing method and catalyst packing apparatus - Google Patents

Catalyst packing method and catalyst packing apparatus Download PDF

Info

Publication number
WO2023112111A1
WO2023112111A1 PCT/JP2021/045934 JP2021045934W WO2023112111A1 WO 2023112111 A1 WO2023112111 A1 WO 2023112111A1 JP 2021045934 W JP2021045934 W JP 2021045934W WO 2023112111 A1 WO2023112111 A1 WO 2023112111A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
central portion
filling
peripheral portion
reaction tower
Prior art date
Application number
PCT/JP2021/045934
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 川上
桂清 許
Original Assignee
ソフタード工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフタード工業株式会社 filed Critical ソフタード工業株式会社
Priority to PCT/JP2021/045934 priority Critical patent/WO2023112111A1/en
Publication of WO2023112111A1 publication Critical patent/WO2023112111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds

Definitions

  • the present invention relates to a catalyst filling method and a catalyst filling apparatus for filling reaction towers such as petroleum refining equipment and chemical industry equipment with catalyst.
  • catalysts are used to promote chemical reactions in petroleum refining facilities and chemical industry facilities.
  • the catalyst is shaped, for example, in the form of granules, and packed inside a reaction tower through which the raw material fluid is circulated.
  • a catalyst filling method described in Patent Document 1 is known as a method for filling the inside of a reaction tower with a catalyst.
  • the catalyst is densely (highly packed) in the peripheral portion inside the reaction column, while the catalyst is coarsely (low) in the central portion inside the peripheral portion. Density), and the top of the packed catalyst is formed as an angle-of-repose recess that is recessed toward the center.
  • the flow resistance of the peripheral portion is relatively increased due to the difference in catalyst packing density between the peripheral portion and the central portion, and the path of the raw material passing through the central portion is shortened.
  • the magnitude of the flow path resistance in the peripheral portion and the central portion are made closer to each other, and the flow path resistance is made uniform.
  • the packing density of the catalyst in the central portion inside the reaction column is set to be high, while the packing density of the catalyst in the peripheral portion is set to be low. Since the flow resistance in the central part and the peripheral part depends on the packing density ratio and packing area ratio of the central part and the peripheral part, the resistance of the flow path in the entire inside of the reaction column is made uniform. is difficult.
  • An object of the present invention is to provide a catalyst filling method and a catalyst filling apparatus capable of uniforming the resistance to the raw material fluid flowing through the reactor.
  • the catalyst filling method of the present invention is a catalyst filling method of sprinkling a catalyst in a reaction tower using a rotary catalyst filling device, wherein the catalyst is supplied to a sprinkling device arranged in the reaction tower, and supplied Air pressure is applied to the catalyst, and the catalyst is stirred by rotation of the stirring blade of the spraying device to spread the catalyst and fill it in the reaction tower, at least in the central part of the peripheral part in the reaction tower. , the packing area of the catalyst in the central portion and the peripheral portion, and the resistance to the raw material fluid flowing through the central portion and the peripheral portion, The packing density of the catalyst in the central portion is low, and the packing density of the catalyst in the peripheral portion of the reactor is high.
  • the resistance in the central portion and the peripheral portion in the reaction column is set equal at the desired packing density increase rate.
  • the filling area in each of the central portion and the peripheral portion is determined so that the packing density in the central portion is low, the packing density in the peripheral portion is high, and the resistance forces in the central portion and the peripheral portion are equal. It is possible to easily uniform the resistance against the raw material fluid flowing in the reaction tower.
  • the resistance at the central portion and the resistance at the peripheral portion are set equal to each other, and the inner diameter of the reaction column and the packing density of the catalyst with respect to the central portion of the peripheral portion are increased.
  • the diameter of the central portion may be set in relation to the ratio. According to such a configuration, it is possible to easily set the diameter relationship between the low-density central portion and the high-density peripheral portion.
  • the packing density increase rate may be 10%, and the packing area ratio of the catalyst to the central portion of the peripheral portion may be 1.4 to 1.5. According to such a configuration, the resistance force in the central portion and the resistance force in the peripheral portion can be made equal to each other, and can be made close to each other.
  • the filling area ratio of the catalyst to the central portion of the peripheral portion may be 1.45. According to such a configuration, the resistance force in the central portion and the resistance force in the peripheral portion can be made equal to each other.
  • the catalyst is forcibly deposited on the peripheral portion by the sprinkling device, and the top portion of the filled catalyst has an angle-of-repose recess recessed toward the central portion. may be formed.
  • the central portion is filled with the catalyst that naturally falls along the angle of repose from the catalyst in the peripheral portion. can be made less dense.
  • the catalyst filling method of the present invention has a plurality of steps of checking the filling state of the catalyst,
  • the recess may be formed on the top of the catalyst in each of the plurality of steps. According to such a configuration, since the recessed portion is formed in the top portion of the catalyst for each of the plurality of steps, the packing density in the central portion can be made lower than the packing density in the peripheral portion.
  • the concave portion at the top of the filled catalyst may be filled. According to such a configuration, by arranging the catalyst also in the concave portion at the top, the space defined by the concave portion can be effectively used for the catalytic reaction.
  • the catalyst filling device of the present invention is a rotary catalyst filling device that uses the catalyst filling method of the present invention described above, and includes a spraying device arranged in the reaction tower, wherein the spraying device supplies air to the catalyst.
  • An air supply device that applies pressure, a stirring blade that rotates and stirs the catalyst to which the air pressure is applied, and a cup member in which the stirring blade is arranged and an outlet for discharging the catalyst is formed.
  • FIG. 4 Schematic diagram showing a catalyst filling device. Sectional drawing which shows a separation apparatus. Explanatory drawing which shows a catalyst filling procedure. 4 is a graph showing the relationship between the resistance force ratio to the raw material fluid and the filling area ratio of the catalyst. 4 is a graph showing the relationship between the flow velocity of the raw material fluid and the packing density of the catalyst;
  • a catalyst 2 is packed inside a reaction tower 1 shown in FIG.
  • a catalyst filling device 3 is introduced into the reaction tower 1 through an upper opening.
  • the catalyst filling device 3 has a vertically extending feeder 10 and a sprinkler 50 installed at its lower end, and is vertically installed by distributor trays 4 arranged inside and outside the reactor 1. .
  • the supply device 10 includes a hopper 11, a separation device 20, a flow pipe 30, and a valve 40 in order from top to bottom.
  • the hopper 11 is arranged outside the upper opening of the reaction tower 1, stores the mixture 2B in which the catalyst 2 and the catalyst powder 2A are mixed, and can supply the mixture 2B to the separation device 20 from the lower end thereof. be.
  • the catalyst powder 2A is dust that is smaller and lighter than the catalyst 2, and is excluded as an object to be filled in the reaction tower 1.
  • the separation device 20 has a triple structure of a catalyst tube 21, an inner tube 22 arranged inside the catalyst tube 21, and an outer tube 23 arranged outside the catalyst tube 21.
  • the inner tube 22 is arranged concentrically inside the catalyst tube 21 and has a space 21A between it and the catalyst tube 21 .
  • the outer tube 23 is arranged concentrically outside the catalyst tube 21, and a storage space 23A (see FIG. 2) is provided between the outer tube 23 and the catalyst tube 21.
  • the catalyst pipe 21 has its upper end connected to the catalyst outlet of the hopper 11 and its lower end connected to the valve 40 via the flow pipe 30 . Therefore, the catalyst 2 supplied from the hopper 11 to the valve 40 passes through the inside of the catalyst tube 21 .
  • a dust removal air supply pipe 24 is connected to the upper end of the inner pipe 22 .
  • the dust removing air supply pipe 24 introduces pressurized air from an external dust removing air supply source (not shown) to the upper end of the inner pipe 22 .
  • the dust-removing air supply pipe 24 includes a horizontal pipe portion partially exposed to the outside of the outer pipe 23 and a vertical pipe portion connected to the center of the horizontal pipe portion and disposed inside the catalyst pipe 21. , but not limited to this.
  • it may be configured by an L-shaped tube having a horizontal tube portion partially exposed to the outside of the outer tube 23 and a vertical tube portion disposed inside the catalyst tube 21 . Therefore, the catalyst 2 passing through the catalyst tube 21 is sent to the valve 40 in a clean state from which the catalyst powder 2A has been removed by the dust removal air.
  • the outer tube 23 is a tubular body that is airtight over its entire length.
  • a dust-removed air discharge pipe 25 is connected to the lower end of the outer pipe 23 , and an exhaust mechanism 26 for dust removal is connected to the dust-removed air discharge pipe 25 .
  • Examples of the configuration of the exhaust mechanism 26 include a blower and a cyclone.
  • the dust-removing air takes in the catalyst powder 2A adhering to the catalyst 2 or the catalyst powder 2A generated from the catalyst 2 when passing through the gaps of the catalyst 2 in the catalyst pipe 21, and is discharged together with the catalyst powder 2A into the dust-removing air discharge pipe. 25.
  • a suction device for sucking the catalyst powder 2A stored in the storage space 23A from the dust-removed air discharge pipe 25 and the exhaust mechanism 26 is configured. Therefore, the catalyst powder 2A taken in by the dust-removing air in the catalyst pipe 21 can be recovered by the exhaust mechanism 26 and can be discarded all at once. On the other hand, the conveyed air that has passed through the exhaust mechanism 26 is released into the atmosphere after being made into a clean state that does not contain the catalyst powder 2A.
  • the catalyst tube 21 has a cylindrical peripheral surface portion 21B covered with an outer tube 23. As shown in FIG.
  • the peripheral surface portion 21B has a large number of communication holes 211 and allows ventilation between the inner surface side and the outer surface side.
  • the communication hole 211 has a size or shape that does not allow the catalyst 2 to pass therethrough, but allows the catalyst powder 2A that is smaller than the catalyst 2 to pass therethrough.
  • the catalyst tube 21 is made of a mesh material and the grid spacing is the communicating hole 211. In the present embodiment, however, a plurality of holes formed by perforating the material of the catalyst tube 21 are provided. The hole may be used as the communication hole 211 .
  • the inner pipe 22 has a wall portion 22C having a cylindrical portion 22A covered with the catalyst pipe 21 and an end surface portion 22B (see FIG. 1) provided at the valve 40 side end of the cylindrical portion 22A.
  • the tubular portion 22A may have a plurality of fluid supply holes 221 and be ventilated between the inner surface side and the outer surface side.
  • the fluid supply holes 221 include at least a position corresponding to a position where the first fins 80 described later are provided, and a plurality of the fluid supply holes 221 are arranged at equal intervals along the circumferential direction of the inner tube 22 .
  • the fluid supply holes 221 may be formed only at positions corresponding to the positions where the first fins 80 are provided.
  • a vortex generating portion 8 for generating a vortex P of a mixture 2B of the catalyst powder 2A and the catalyst 2 is provided on the inner peripheral portion of the catalyst tube 21.
  • the vortex generator 8 has a first fin 80 whose base end is fixed to the peripheral surface portion 21B of the catalyst tube 21 and a second fin 81 whose base end is fixed to the inner tube 22 .
  • the tip of the first fin 80 faces the downstream side in the flow direction of the mixture 2B of the catalyst powder 2A and the catalyst 2.
  • the first fin 80 slopes down from the proximal end to the distal end.
  • the tip of the second fin 81 faces the upstream side in the flow direction of the mixed matter 2B. That is, the second fin 81 is inclined upward from the proximal end to the distal end.
  • the horizontal position of the proximal end of the second fin 81 is the same as the horizontal position of the distal end of the first fin 80 .
  • the first fin 80 is formed in an annular shape around the axis of the catalyst tube 21 .
  • the dimension between the tip of the first fin 80 and the peripheral surface portion 21B of the catalyst tube 21 is the same along the circumferential direction of the catalyst tube 21 .
  • the second fin 81 is formed in an annular shape around the axis of the inner tube 22 .
  • the dimension between the tip of the second fin 81 and the outer circumference of the inner tube 22 is the same along the circumferential direction of the inner tube 22 .
  • the first fins 80 are formed in multiple stages (three stages in FIG. 2) along the axial direction of the catalyst tube 21, and the second fins 81 are formed in multiple stages along the axial direction of the inner tube 22 (in FIG. 2). 3rd stage) is formed.
  • the mixture 2B which is a mixture of the catalyst 2 and the catalyst powder 2A sent from the upstream side, especially the catalyst powder 2A, passes through the first fin 80 and the second fin 81. A vortex P is generated immediately after this.
  • the valve 40 is a mechanism that switches between a state of allowing the catalyst 2 to pass from the separation device 20 to the spraying device 50 and a state of blocking this.
  • the valve 40 is opened and closed in response to a signal from the control device 5 (see FIG. 1).
  • the control device 5 may be arranged either inside or outside the reaction tower 1 .
  • the spraying device 50 is connected to the lower part of the supply device 10, and is a device that rotates and sprays the catalyst 2 supplied from the supply device 10 into the reaction tower 1 as a material to be sprayed.
  • the sprinkling device 50 has a casing 51 , a cup member 52 , a stirring blade 53 , a stirring blade driving section 54 and an air supply device 55 .
  • the casing 51 is a cylindrical member whose upper end is connected to the valve 40 and whose lower end fixes the cup member 52 .
  • the peripheral surface of the casing 51 is fixed to a manway of a distributor tray 4 provided inside the reaction tower 1 .
  • the cup member 52 accommodates the catalyst 2 sent from the valve 40 through the casing 51 .
  • the outer and inner circumferences of the cup member 52 are formed in a hemispherical shape, and the center of the bottom portion coincides with the axial center of the casing 51 . Further, the cup member 52 is formed with a plurality of discharge ports 52 ⁇ /b>B for discharging the catalyst 2 in a slit shape along the radial direction of the cup member 52 .
  • the width dimension of the discharge port 52B may gradually decrease upward from the center of the bottom of the cup member 52, or may conversely increase gradually.
  • the stirring blades 53 are made of synthetic resin and arranged inside the cup member 52 .
  • the stirring blade 53 is configured to have a plurality of stirring plate portions (blades) radially extending from a shaft portion connected to the stirring blade driving portion 54, and rotates around the shaft portion.
  • the catalyst 2 housed in the cup member 52 is stirred.
  • the stirring blade 53 may be configured to be integrally formed with the cup member 52 and rotate together with the cup member 52, or may be formed separately from the cup member 52 and It may be configured to rotate.
  • the stirring blade drive unit 54 is composed of an electric motor arranged inside the casing 51 and is supported so that its axis coincides with the axis of the casing 51 .
  • the electric motor operates based on a control signal from the controller 5 to rotate the stirring blades 53 .
  • a tachometer (not shown) is attached to the electric motor, and the tachometer detects the rotation speed of the electric motor and outputs a signal to the control device 5 .
  • the control device 5 receives an output signal from the tachometer and controls the electric motor so that the stirring blade 53 reaches a predetermined number of revolutions.
  • the air supply device 55 is composed of an air supply source (not shown) and an air supply pipe 551 connecting the air supply source to the casing 51 .
  • the air supply device 55 supplies air from an air supply source through an air supply pipe 551 to discharge the catalyst 2 stirred by the stirring blades 53 in the cup member 52 from the discharge port 52B.
  • the catalyst 2 is discharged from the discharge port 52B from below to the side of the cup member 52 .
  • the distance L over which the catalyst 2 flies in the radial direction of the reaction tower 1 can be set according to the rotation speed of the stirring blade 53, and this rotation speed is adjusted by the controller 5 that controls the electric motor. By appropriately setting the distance L over which the catalyst 2 flies in this way, it is possible to change the packing density from the central portion C to the peripheral portion T in the reaction column 1 .
  • [Catalyst filling method] A method of filling the inside of the reaction tower 1 with the catalyst 2 will be described below.
  • the distributor tray 4 is assembled in the reactor 1, and the catalyst filling device 3 is installed.
  • the mixed material 2B is stored in the hopper 11, and the mixed material 2B is sent from the hopper 11 to the separation device 20. As shown in FIG. In the separation device 20, the mixture 2B sent from the hopper 11 flows downward through the space 21A between the catalyst tube 21 and the inner tube 22. As shown in FIG.
  • the mixed matter 2B flowing through the portion near the inner tube 22 of the mixed matter 2B hits the second fins 81 and its flow is obstructed, and the mixed matter 2B flowing through the portion near the outer tube 23 is blocked by the first fins 80. , it flows along the upper surface (surface) of the first fin 80 from the base end side to the tip end.
  • a vortex P is generated immediately after the inclusion 2B separates from the tip of the first fin 80 .
  • the catalyst powder 2A smaller than the catalyst 2 among the inclusions 2B flows turbulently. Accompanied by the vortex flow P, the catalyst powder 2A enters the area Q formed between the lower portions of the first fins 80 and stays therein.
  • the dust-removed air passes through the fluid supply hole 221 located above the base end of the second fin 81, and the second fin 81 blocks the flow of the dust-removed air.
  • the material 2B is reversed and sent to the catalyst tube 21 side, and further, the catalyst powder 2A staying under the first fin 80 is pushed out toward the communication hole 211 by the swirl P, and the catalyst powder 2A is pushed out together with the dust removal air. is stored in the storage space 23A through the communication hole 211.
  • the catalyst powder 2A stored in the storage space 23A is sucked by the dust-removed air discharge pipe 25 and the exhaust mechanism 26. As shown in FIG.
  • the catalyst 2 sent from the separation device 20 is sent to the spray device 50 and sprayed inside the reaction tower 1 .
  • the catalyst 2 is sent inside the cup member 52 through the casing 51 of the sprinkling device 50 .
  • the catalyst 2 is housed inside the cup member 52 .
  • Air is supplied to the casing 51 by the air supply device 55 to apply air pressure to the catalyst 2 accommodated inside the cup member 52 .
  • the driving signal from the control device 5 is received by the agitating blade driving section 54 to operate and rotate the agitating blade 53 in the R direction to agitate the catalyst 2 and discharge it from the discharge port 52B of the cup member 52 .
  • the discharged catalyst 2 is gradually accumulated in the reactor 1 .
  • the number of rotations of the electric motor which is the stirring blade drive unit 54, is measured by a tachometer, and the measured value is sent to the control device 5.
  • the controller 5 sends a control signal to the electric motor to rotate the stirring blade 53 at a predetermined number of revolutions (rpm). If the rotational speed of the stirring blade 53 is increased, the catalyst 2 is thrown radially outward from the cup member 52 to a large extent, while if the rotational speed is reduced, the catalyst 2 is flung small radially outward from the cup member 52 . Further, when the catalyst falling distance is long, the catalyst 2 tends to land at a position farther radially outward from the cup member 52 than when it is short.
  • the control device 5 checks the filling status of the catalyst 2 through a sensor (not shown) or the like. As a result of this confirmation, if it can be determined that the catalyst 2 has been filled as prescribed, the catalyst 2 is continued to be filled. Confirmation of the filling state of the catalyst 2 is performed by dividing it into a plurality of steps, six steps S1 to S6 as shown in FIG. 3 in this embodiment. As a plan for the demonstration test, the height of the entire catalyst 2 filled was set to 7 m, and the filling state of the catalyst 2 was checked in steps S1 to S6 for each height of 1 m. The number of steps for checking the filling state can be appropriately changed by changing the filling height of the entire catalyst 2 and the frequency of checking the filling state.
  • the packing density of the catalyst 2 in the central portion C is made low, and the packing density of the catalyst 2 in the peripheral portion T is made high.
  • the control device 5 sets at least the resistance ⁇ P(C) at the central portion C and the resistance ⁇ P(T) at the peripheral portion T to be equal to each other, and the resistance ⁇ P(C) and the resistance ⁇ P(T) are equal to each other.
  • the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T the packing area of the catalyst 2 in each of the central portion C and the peripheral portion T is set, and based on this setting, the stirring blade 53 to control the rotation.
  • the catalyst 2 is a 1/16′′ catalyst, the packing density increase rate is 10%, and the packing area ratio of the catalyst 2 to the central portion C of the peripheral portion T is 1.45.
  • the relationship between the resistance force ratio (T/C) of the portion T to the central portion C and the filling area ratio (T/C) of the peripheral edge portion T to the central portion C is the relationship shown in the graph of Fig. 4.
  • the filling area ratio (T/C) is 1.0
  • the resistance force ratio (T/C) is 1.7
  • the resistance force ⁇ P (T) of the peripheral portion T becomes the resistance force ⁇ P (T) of the central portion C ( C) is about 170% higher than C.
  • the filling area ratio (T/C) is 1.45. 1.0, and the resistance .DELTA.P(T) and the resistance .DELTA.P(C) are set to be equal to each other.
  • the packing density increase rate is 10%
  • the packing density of the catalyst 2 in the central portion C is made low and the packing density of the catalyst 2 in the peripheral portion T is made high (so-called Radius Grading Loading (RGL)).
  • RNL Radius Grading Loading
  • Dense Loading Dense Loading
  • the packing (RGL) when the packing (RGL) is applied in which the packing density of the catalyst 2 in the central portion C is low and the packing density of the catalyst 2 in the peripheral portion T is high, heat of reaction is accumulated in the central portion C, and the catalyst is degraded. It is possible to suppress the formation of congealed hot spots and improve the catalytic performance. Furthermore, compared to the central portion C, the liquid hourly space velocity LHSV of the peripheral portion T becomes smaller, and as described later, by filling the catalyst 2 while forming a recess 2C having an angle of repose, the peripheral portion The size of the catalyst 2 at T is slightly smaller than the size of the catalyst 2 at the central portion C.
  • the catalyst reaction rate at the peripheral edge T will be higher than at the central area C, and the catalytic activity deterioration rate at the peripheral edge T will be faster than at the central area C side.
  • the volume of the catalyst 2 is larger in the peripheral portion T than in the central portion C, there are more active points, and the amount of decrease in activity due to accelerated activity deterioration of the catalyst 2 in the peripheral portion T is originally more on the peripheral portion T side. Complement each other. Then, it is considered that the peripheral portion T and the central portion C can reach the same catalyst life. From the above, it can be said that the RGL filling of the present embodiment is a filling method that can fully utilize all catalyst performances in the reaction column 1 in addition to suppressing hot spot generation as described above.
  • the filling area ratio depends on the packing density increase rate DR% of the peripheral portion T and the central portion C.
  • the catalyst 2 is 1/16′′ catalyst, but the catalyst 2 is not limited to this size. 45.
  • the packing density increase rate DR% is changed, the filling area ratio also changes. When it is 12%, the filling area ratio is 1.58.
  • control device 5 controls the diameter ⁇ (C) of the central portion C in the relationship between the inner diameter ⁇ (Rx) of the reaction column 1 and the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T.
  • the rotation of the stirring blade 53 is controlled based on this setting.
  • the inner diameter ⁇ (Rx) of the reaction column 1 is 4.2 m in this embodiment, but may be 3.5 m or 5.8 m.
  • the diameter ⁇ (C) of the central portion C is set based on Equation 1 below.
  • the catalyst 2 is forcibly deposited on the peripheral edge portion T inside the reaction tower 1 by the sprinkling device 50, and the top of the catalyst 2 in each of the plurality of steps S1 to S6 for checking the filling state of the catalyst 2 , an angle-of-repose recess 2C recessed toward the central portion C is formed, as shown in FIG.
  • the concave portion 2C is formed in a substantially conical shape with an angle of repose of about 35° to 40° with respect to the horizontal plane. Since this concave portion 2C is formed, the central portion C is filled with the catalyst 2 that naturally falls along the angle of repose from the peripheral edge portion T, so that the packing density of the central portion C can be more easily increased.
  • the recess 2C at the top of the filled catalyst 2 is filled by so-called sock loading of the catalyst 2 or filling with the rotation speed of the stirring blade 53 set to 50 rpm or less. As a result, the space defined by the concave portion 2C at the topmost portion is effectively utilized for the catalytic reaction.
  • the graph shown in FIG. 5 shows the relationship between the packing density (g/ml) of the catalyst 2 packed in the reaction tower 1 and the flow velocity (m/sec) of the raw material fluid flowing through the reaction tower 1.
  • the horizontal axis is the packing density (g/ml) of the catalyst 2 packed in the reaction tower 1
  • the vertical axis is the flow velocity (m/sec) of the raw material fluid flowing through the reaction tower 1.
  • the packing density (g/ml) of the catalyst 2 is low in the central portion C in the radial direction in the reaction column 1 and high in the peripheral portion T. In this embodiment, the central portion It gradually increases from C toward the peripheral edge T.
  • the flow velocity (m/sec) of the raw material fluid is indicated by an arrow in FIG.
  • the reactor 1 is operated from the initial stage of operation (SOR Start of Run) to the middle stage of operation (MOR Middle of Run). Over the latter period (EOR End of Run), drifting is unlikely to occur, the raw material fluid can be flowed over the entire interior of the reaction tower 1, reaction heat does not accumulate in the central portion C, catalyst caking can be suppressed, and catalyst Maximize performance.
  • the catalyst filling device 3 is removed from the reaction tower 1, and the raw material fluid is poured into the catalyst 2 packed inside the reaction tower 1 from the lower part of the reaction tower 1 (upstream).
  • the raw material fluid is placed at the position where the catalyst 2 is packed, for example, the reaction It flows into tower 1 whether it is on the central side or the peripheral side.
  • the raw material fluid may flow from the upper part of the reaction tower 1 (downstream), and in this case, the raw material fluid flows into the reaction tower 1 regardless of whether it is on the central side or the peripheral side.
  • the catalyst 2 is filled as described above.
  • the resistance ⁇ P(C) and the resistance ⁇ P(T) of T can be made equal, thereby allowing the raw material fluid to flow over the entire interior of the reaction tower 1, preventing the accumulation of reaction heat and suppressing caking of the catalyst. can.
  • the resistance ⁇ P(C) at the central portion C and the resistance ⁇ P(T) at the peripheral portion T are set to be equal to each other.
  • the filling area ratio of the catalyst 2 to C is set to 1.45, it is not limited to this, and the resistance ⁇ P (C) and the resistance ⁇ P (T) may be set close to each other.
  • a 1/16′′ catalyst is used, but catalysts 2 of other sizes may be used.
  • the area ratio is set in relation to the filling density increase rate DR% described above, and when the filling density increase rate DR% is set to a different value, the resistance ⁇ P(C) and the resistance ⁇ P(T) are similarly set. I wish I could.
  • the concave portion 2C having an angle of repose is formed in each of the plurality of steps S1 to S6 for confirming the filling state of the catalyst 2, but the concave portion 2C is formed only in the topmost portion of the catalyst 2 in the final step S6. may have been Further, when the central portion C and the peripheral portion T can be filled with the catalyst 2 at a desired packing density, it is not necessary to form the recesses 2C having the angle of repose.
  • the recess 2C at the top of the filled catalyst 2 is filled with the catalyst 2, but this filling may be omitted if the desired catalytic reaction can be obtained.
  • the discharge port 52B is formed in a slit shape along the radial direction from the center of the bottom of the cup member 52, but in the present invention, the discharge port 52B is formed between the center of the bottom of the cup member 52 and the opening edge.
  • the discharge port 52B may be composed of a plurality of holes, and these holes may be arranged side by side along the radial direction from the center of the bottom portion. Even if the discharge port 52B is formed in a slit shape, it does not need to be formed in a straight line as in the above-described embodiment, and is formed in a spiral shape from the center of the bottom of the cup member 52 toward the opening edge. It may be something to do.
  • the configuration may be such that the separation device 20 is omitted. Even if the separation device 20 is provided, it is not limited to the configuration of the above embodiment.
  • the second fin 81 may be omitted. It is not necessary to configure the 81 from a plurality of stages, and it may be configured from a single stage.
  • the present invention can be used for manufacturing in the fields of metals, chemistry, and foods, and for filling catalysts 2 into reaction towers 1 of petroleum refining facilities, chemical industry facilities, and the like.
  • the catalyst filling method of the present embodiment is a catalyst filling method in which the catalyst 2 is sprayed in the reaction tower 1 using a rotary catalyst filling device 3, and the spraying device arranged in the reaction tower 1
  • the catalyst 2 is supplied to the reactor 50, air pressure is applied to the supplied catalyst 2, and the catalyst 2 is stirred by the rotation of the stirring blade 53 of the spraying device 50 to spray the catalyst 2 into the reaction tower 1.
  • the packing density of the central portion C is Each of the central portion C and the peripheral portion T has a low density such that the filling density of the peripheral portion T is high and the resistance forces ⁇ P (C) and ⁇ P (T) of the central portion C and the peripheral portion T are equal. can be determined, and the resistance forces ⁇ P(C) and ⁇ P(T) against the raw material fluid flowing in the reactor 1 can be easily made uniform.
  • the resistance ⁇ P(C) at the central portion C and the resistance ⁇ P(T) at the peripheral portion T are set equal to each other, and the inner diameter of the reaction tower 1
  • the diameter ⁇ (C) of the central portion is set in relation to ⁇ (Rx) and the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T. Therefore, it is possible to easily set the diameter relationship between the low-density center portion C and the high-density peripheral portion T.
  • the filling density increase rate is set to 10%, and the filling area ratio of the catalyst 2 to the central portion C of the peripheral portion T is set to 1.4 to 1.5. Therefore, the resistance ⁇ P(C) at the central portion C and the resistance ⁇ P(T) at the peripheral portion T can be made equal to each other and can be made close to each other.
  • a filling area ratio of the catalyst to the central portion of the peripheral portion is set to 1.45. Therefore, the resistance ⁇ P(C) at the central portion C and the resistance ⁇ P(T) at the peripheral portion T can be made equal to each other.
  • the catalyst is forcibly deposited on the peripheral portion T by the sprinkling device 50, and an angle-of-repose recess 2C recessed toward the central portion C is formed on the top of the filled catalyst 2. be done. For this reason, the central portion C is filled with the catalyst 2 that naturally falls along the angle of repose from the catalyst 2 at the peripheral portion T. Density can be lower than density.
  • the rotary catalyst filling device 3 uses the catalyst filling method described above, and includes a sprinkling device 50 arranged in the reaction tower 1.
  • the sprinkling device 50 is An air supply device 55 for applying air pressure to the catalyst 2, a stirring blade 53 for rotating and stirring the catalyst 2 to which the air pressure is applied, and the stirring blade 53 are arranged inside and discharge the catalyst 2. and a cup member 52 formed with a discharge port 52B. Therefore, it is possible to exhibit the same effects as those of the catalyst filling method described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

A catalyst packing method in which a catalyst (2) is scattered in a reaction tower (1) by using a rotary catalyst packing apparatus (3), wherein the catalyst (2) is supplied to a scattering device (50) disposed in the reaction tower (1), an air pressure is applied to the supplied catalyst (2) and the catalyst (2) is stirred by rotation of a stirring blade (53) of the scattering device (50) to scatter and pack the catalyst (2) in the reaction tower (1), and the packing density of the catalyst (2) in the central portion (C) in the reaction tower (1) is set to a low density and the packing density of the catalyst (2) in the peripheral portion (T) in the reaction tower (1) is set to a high density at least in the relationship between the packing density increase rate of the catalyst (2) in the peripheral portion (T) with respect to the central portion (C), the packing area of the catalyst (2) in the central portion (C) and the peripheral portion (T), and the resistance to the raw material fluid flowing through the central portion (C) and the peripheral portion (T).

Description

触媒充填方法および触媒充填装置Catalyst filling method and catalyst filling apparatus
 本発明は、石油精製設備や化学工業設備等の反応塔に触媒を充填するための触媒充填方法および触媒充填装置に関する。 The present invention relates to a catalyst filling method and a catalyst filling apparatus for filling reaction towers such as petroleum refining equipment and chemical industry equipment with catalyst.
 石油精製設備や化学工業設備等では、化学反応を促進させるために、各種の触媒が利用されている。触媒は、例えば顆粒状に造形され、原料流体を流通させる反応塔の内部に充填される。触媒を反応塔の内部に充填する方法として特許文献1に記載の触媒充填方法が知られている。 Various catalysts are used to promote chemical reactions in petroleum refining facilities and chemical industry facilities. The catalyst is shaped, for example, in the form of granules, and packed inside a reaction tower through which the raw material fluid is circulated. A catalyst filling method described in Patent Document 1 is known as a method for filling the inside of a reaction tower with a catalyst.
 特許文献1に記載の触媒充填方法では、反応塔の内部における周縁部に対して触媒を密(高密度)に充填する一方、この周縁部よりも内側の中央部に対して触媒を粗(低密度)に充填し、充填した触媒の頂部を中央部に向かって窪んだ安息角状の凹部とする。 In the catalyst filling method described in Patent Document 1, the catalyst is densely (highly packed) in the peripheral portion inside the reaction column, while the catalyst is coarsely (low) in the central portion inside the peripheral portion. Density), and the top of the packed catalyst is formed as an angle-of-repose recess that is recessed toward the center.
 この触媒充填方法では、前述した周縁部と中央部との触媒充填密度の相違によって周縁部の流路抵抗を相対的に大きくし、原料が中央部を通過する道のりを短縮して当該中央部の流路抵抗を小さくすることで、周縁部と中央部とにおける流路抵抗の大きさを互いに近づけて流路抵抗の均一化を図っている。 In this catalyst filling method, the flow resistance of the peripheral portion is relatively increased due to the difference in catalyst packing density between the peripheral portion and the central portion, and the path of the raw material passing through the central portion is shortened. By reducing the flow path resistance, the magnitude of the flow path resistance in the peripheral portion and the central portion are made closer to each other, and the flow path resistance is made uniform.
特開平5-228356号公報JP-A-5-228356
 ところで、特許文献1の触媒充填方法では、反応塔の内部の中央部に対する触媒の充填密度を高密度とする一方、周縁部に対する触媒の充填密度を低密度にすることになっているが、実際には、中央部および周縁部の充填密度比や充填面積比の如何によって中央部および周縁部における流路抵抗は左右されるので、反応塔の内部の全面における流路の抵抗力を均一にすることが困難である。 By the way, in the catalyst packing method of Patent Document 1, the packing density of the catalyst in the central portion inside the reaction column is set to be high, while the packing density of the catalyst in the peripheral portion is set to be low. Since the flow resistance in the central part and the peripheral part depends on the packing density ratio and packing area ratio of the central part and the peripheral part, the resistance of the flow path in the entire inside of the reaction column is made uniform. is difficult.
 例えば、重油直接脱硫装置(RDS)において低液空間速度(約0.2/h)環境下で稼働する場合に、反応塔の内部の全面における流路の抵抗力が均一でないと、所謂ウォールエフェクト(原料流体が反応塔の内部の中央部よりも周縁部で集中的に流れる現象)の影響も受けつつ稼働時間が長くなるにつれて抵抗力が変化し、中央部の抵抗力が周縁部の抵抗力よりも大きくなって、触媒層での流量が再分配されるおそれがあり、このように再分配されると、中央部へ流れる原料流体の流量が減少していき、中央部に反応熱が蓄積して触媒の固結が生じ得る(所謂ホットスポットが生じ得る)。このように固結した触媒を抜き出す抜出作業は困難であるので工期延長となってしまい、膨大なコストがかかることとなる。 For example, when operating in a low liquid hourly space velocity (about 0.2 / h) environment in a heavy oil direct desulfurization unit (RDS), if the resistance of the flow path is not uniform on the entire surface inside the reaction tower, the so-called wall effect (a phenomenon in which the raw material fluid flows more intensively at the periphery than at the center of the reaction tower), the resistance changes as the operation time increases, and the resistance at the center becomes the resistance at the periphery. , and the flow rate in the catalyst layer may be redistributed. When redistributed in this way, the flow rate of the raw material fluid flowing to the center decreases, and the heat of reaction accumulates in the center. As a result, caking of the catalyst can occur (so-called hot spots can occur). Since it is difficult to extract the solidified catalyst, the work period is extended and the cost is enormous.
 本発明の目的は、反応塔内を流通する原料流体に対する抵抗力を均一にできる触媒充填方法および触媒充填装置を提供することにある。 An object of the present invention is to provide a catalyst filling method and a catalyst filling apparatus capable of uniforming the resistance to the raw material fluid flowing through the reactor.
 本発明の触媒充填方法は、回転式の触媒充填装置を用いて反応塔内に触媒を散布する触媒充填方法であって、前記反応塔内に配置された散布装置に前記触媒を供給し、供給した前記触媒にエア圧を加えると共に前記散布装置の撹拌翼の回転によって前記触媒を撹拌して前記触媒を散布して前記反応塔内に充填し、少なくとも、前記反応塔内の周縁部の中央部に対する前記触媒の充填密度増加率と、前記中央部および前記周縁部における前記触媒の充填面積と、前記中央部および前記周縁部を流通する原料流体に対する抵抗力との関係において、前記反応塔内の前記中央部における前記触媒の充填密度は低密度とし、前記反応塔内の前記周縁部における前記触媒の充填密度は高密度とする。
 本発明の触媒充填方法によれば、反応塔内の触媒の充填密度を前述したように設定するので、所望の充填密度増加率において反応塔内の中央部および周縁部における抵抗力を等しく設定することで、中央部の充填密度が低密度であって周縁部の充填密度が高密度に且つ中央部および周縁部の抵抗力が等しくなるように、中央部および周縁部のそれぞれにおける充填面積を定めることができ、反応塔内が流通する原料流体に対する抵抗力を容易に均一にできる。
The catalyst filling method of the present invention is a catalyst filling method of sprinkling a catalyst in a reaction tower using a rotary catalyst filling device, wherein the catalyst is supplied to a sprinkling device arranged in the reaction tower, and supplied Air pressure is applied to the catalyst, and the catalyst is stirred by rotation of the stirring blade of the spraying device to spread the catalyst and fill it in the reaction tower, at least in the central part of the peripheral part in the reaction tower. , the packing area of the catalyst in the central portion and the peripheral portion, and the resistance to the raw material fluid flowing through the central portion and the peripheral portion, The packing density of the catalyst in the central portion is low, and the packing density of the catalyst in the peripheral portion of the reactor is high.
According to the catalyst packing method of the present invention, since the packing density of the catalyst in the reaction column is set as described above, the resistance in the central portion and the peripheral portion in the reaction column is set equal at the desired packing density increase rate. Thus, the filling area in each of the central portion and the peripheral portion is determined so that the packing density in the central portion is low, the packing density in the peripheral portion is high, and the resistance forces in the central portion and the peripheral portion are equal. It is possible to easily uniform the resistance against the raw material fluid flowing in the reaction tower.
 本発明の触媒充填方法では、前記中央部における前記抵抗力および前記周縁部における前記抵抗力を互いに等しい設定とし、前記反応塔の内径と、前記周縁部の前記中央部に対する前記触媒の充填密度増加率との関係において、前記中央部の径を設定してもよい。
 このような構成によれば、低密度とする中央部と高密度とする周縁部との径関係を容易に設定できる。
In the catalyst filling method of the present invention, the resistance at the central portion and the resistance at the peripheral portion are set equal to each other, and the inner diameter of the reaction column and the packing density of the catalyst with respect to the central portion of the peripheral portion are increased. The diameter of the central portion may be set in relation to the ratio.
According to such a configuration, it is possible to easily set the diameter relationship between the low-density central portion and the high-density peripheral portion.
 本発明の触媒充填方法では、前記充填密度増加率10%とし、前記周縁部の前記中央部に対する前記触媒の充填面積比を1.4~1.5としてもよい。
 このような構成によれば、中央部における抵抗力および周縁部における前記抵抗力を互いに等しい値にでき、また、互いに近い値にできる。
In the catalyst filling method of the present invention, the packing density increase rate may be 10%, and the packing area ratio of the catalyst to the central portion of the peripheral portion may be 1.4 to 1.5.
According to such a configuration, the resistance force in the central portion and the resistance force in the peripheral portion can be made equal to each other, and can be made close to each other.
 本発明の触媒充填方法では、前記周縁部の前記中央部に対する前記触媒の充填面積比を1.45としてもよい。
 このような構成によれば、中央部における抵抗力および周縁部における前記抵抗力を互いに等しい値にできる。
In the catalyst filling method of the present invention, the filling area ratio of the catalyst to the central portion of the peripheral portion may be 1.45.
According to such a configuration, the resistance force in the central portion and the resistance force in the peripheral portion can be made equal to each other.
 本発明の触媒充填方法では、前記周縁部には、前記散布装置によって強制的に前記触媒が堆積され、充填した前記触媒の頂部には、前記中央部に向かって窪んだ安息角状の凹部が形成されていてもよい。
 このような構成によれば、中央部には周縁部の触媒から安息角に沿って自然落下する触媒が充填されることになるので、より容易に、中央部の充填密度を周縁部の充填密度よりも低密度にできる。
In the catalyst filling method of the present invention, the catalyst is forcibly deposited on the peripheral portion by the sprinkling device, and the top portion of the filled catalyst has an angle-of-repose recess recessed toward the central portion. may be formed.
According to such a configuration, the central portion is filled with the catalyst that naturally falls along the angle of repose from the catalyst in the peripheral portion. can be made less dense.
 本発明の触媒充填方法では、前記触媒の充填状況を確認する複数のステップを有し、
 前記複数のステップごとにおける前記触媒の頂部に前記凹部が形成されていてもよい。
 このような構成によれば、複数のステップごとにおける触媒の頂部に凹部が形成されているので、中央部の充填密度を周縁部の充填密度に対して、より確実に低密度にできる。
The catalyst filling method of the present invention has a plurality of steps of checking the filling state of the catalyst,
The recess may be formed on the top of the catalyst in each of the plurality of steps.
According to such a configuration, since the recessed portion is formed in the top portion of the catalyst for each of the plurality of steps, the packing density in the central portion can be made lower than the packing density in the peripheral portion.
 本発明の触媒充填方法では、充填した前記触媒の最頂部における凹部を穴埋めしてもよい。
 このような構成によれば、最頂部における凹部にも触媒を配置することで、凹部で規定されていた空間を触媒反応に有効活用できる。
In the method for filling the catalyst of the present invention, the concave portion at the top of the filled catalyst may be filled.
According to such a configuration, by arranging the catalyst also in the concave portion at the top, the space defined by the concave portion can be effectively used for the catalytic reaction.
 本発明の触媒充填装置は、前述した本発明の触媒充填方法を用いる回転式の触媒充填装置であって、前記反応塔内に配置される散布装置を備え、前記散布装置は、前記触媒にエア圧を加えるエア供給装置と、前記エア圧が加えられる前記触媒を回転して撹拌する撹拌翼と、前記撹拌翼が内部に配置され且つ前記触媒を排出する排出口が形成されたカップ部材とを備える。
 本発明の触媒充填装置によれば、前述した本発明の触媒充填方法の作用効果と同様の作用効果を発揮できる。
The catalyst filling device of the present invention is a rotary catalyst filling device that uses the catalyst filling method of the present invention described above, and includes a spraying device arranged in the reaction tower, wherein the spraying device supplies air to the catalyst. An air supply device that applies pressure, a stirring blade that rotates and stirs the catalyst to which the air pressure is applied, and a cup member in which the stirring blade is arranged and an outlet for discharging the catalyst is formed. Prepare.
According to the catalyst filling apparatus of the present invention, it is possible to exhibit the same effects as those of the catalyst filling method of the present invention described above.
触媒充填装置を示す概略図。Schematic diagram showing a catalyst filling device. 分離装置を示す断面図。Sectional drawing which shows a separation apparatus. 触媒充填手順を示す説明図。Explanatory drawing which shows a catalyst filling procedure. 原料流体に対する抵抗力比と触媒の充填面積比との関係を示すグラフ。4 is a graph showing the relationship between the resistance force ratio to the raw material fluid and the filling area ratio of the catalyst. 原料流体の流速と触媒の充填密度との関係を示すグラフ。4 is a graph showing the relationship between the flow velocity of the raw material fluid and the packing density of the catalyst;
[本実施形態の構成]
 以下、本発明の実施形態を図面に基づいて説明する。
 重油直接脱硫装置(RDS)において、図1に示す反応塔1の内部には触媒2が充填される。触媒2を反応塔1に充填する際には、反応塔1の上部開口から内部へ、触媒充填装置3が導入される。触媒充填装置3は、上下に延びる供給装置10と、その下端に設置された散布装置50とを有しており、反応塔1の内外に配置されたディストリビュータートレイ4によって垂直に設置されている。
[Configuration of this embodiment]
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings.
In a heavy oil direct desulfurization system (RDS), a catalyst 2 is packed inside a reaction tower 1 shown in FIG. When filling the reaction tower 1 with the catalyst 2 , a catalyst filling device 3 is introduced into the reaction tower 1 through an upper opening. The catalyst filling device 3 has a vertically extending feeder 10 and a sprinkler 50 installed at its lower end, and is vertically installed by distributor trays 4 arranged inside and outside the reactor 1. .
 供給装置10は、上から下へ順にホッパ11、分離装置20、流通管30、バルブ40を備えている。 The supply device 10 includes a hopper 11, a separation device 20, a flow pipe 30, and a valve 40 in order from top to bottom.
 ホッパ11は、反応塔1の上部開口の外側に配置されており、触媒2と触媒粉2Aとが混在する混在物2Bを貯留し、その下端から分離装置20へと混在物2Bを供給可能である。触媒粉2Aは、触媒2よりも小さく且つ軽量なダストであり、反応塔1に充填される対象としては除かれるものである。 The hopper 11 is arranged outside the upper opening of the reaction tower 1, stores the mixture 2B in which the catalyst 2 and the catalyst powder 2A are mixed, and can supply the mixture 2B to the separation device 20 from the lower end thereof. be. The catalyst powder 2A is dust that is smaller and lighter than the catalyst 2, and is excluded as an object to be filled in the reaction tower 1.
 分離装置20は、図1および図2に示すように、触媒管21と、触媒管21の内部に配置された内管22と、触媒管21の外部に配置された外管23とによって3重構造に構成されている。内管22は、触媒管21の内側に同芯で配置され、触媒管21との間に空間21Aが空けられている。外管23は、触媒管21の外側に同芯で配置され、触媒管21との間に収納スペース23A(図2参照)が空けられている。触媒管21は、上端をホッパ11の触媒出口に連結され、下端を、流通管30を介してバルブ40に連結されている。従って、ホッパ11からバルブ40へと供給される触媒2は、触媒管21の内側を通される。 As shown in FIGS. 1 and 2, the separation device 20 has a triple structure of a catalyst tube 21, an inner tube 22 arranged inside the catalyst tube 21, and an outer tube 23 arranged outside the catalyst tube 21. structured. The inner tube 22 is arranged concentrically inside the catalyst tube 21 and has a space 21A between it and the catalyst tube 21 . The outer tube 23 is arranged concentrically outside the catalyst tube 21, and a storage space 23A (see FIG. 2) is provided between the outer tube 23 and the catalyst tube 21. As shown in FIG. The catalyst pipe 21 has its upper end connected to the catalyst outlet of the hopper 11 and its lower end connected to the valve 40 via the flow pipe 30 . Therefore, the catalyst 2 supplied from the hopper 11 to the valve 40 passes through the inside of the catalyst tube 21 .
 内管22の上端には除塵エア供給管24が接続されている。除塵エア供給管24は、外部の除塵エア供給源(図示省略)からの加圧エアを、内管22の上端へと導入する。なお、図1においては、除塵エア供給管24は、一部が外管23の外部に露出した水平管部と、水平管部の中心に接続され触媒管21の内部に配置された鉛直管部とを有するT字管によって構成されているが、これに限らない。例えば、一部が外管23の外部に露出した水平管部と触媒管21の内部に配置された鉛直管部とを有するL字管によって構成されていてもよい。従って、触媒管21を通過する触媒2は、除塵エアにより触媒粉2Aを除去された清浄な状態で、バルブ40へと送り出される。 A dust removal air supply pipe 24 is connected to the upper end of the inner pipe 22 . The dust removing air supply pipe 24 introduces pressurized air from an external dust removing air supply source (not shown) to the upper end of the inner pipe 22 . 1, the dust-removing air supply pipe 24 includes a horizontal pipe portion partially exposed to the outside of the outer pipe 23 and a vertical pipe portion connected to the center of the horizontal pipe portion and disposed inside the catalyst pipe 21. , but not limited to this. For example, it may be configured by an L-shaped tube having a horizontal tube portion partially exposed to the outside of the outer tube 23 and a vertical tube portion disposed inside the catalyst tube 21 . Therefore, the catalyst 2 passing through the catalyst tube 21 is sent to the valve 40 in a clean state from which the catalyst powder 2A has been removed by the dust removal air.
 外管23は、全長にわたって気密性を有する管体である。外管23の下端には除塵エア排出管25が接続され、この除塵エア排出管25には除塵用の排気機構26が接続されている。排気機構26の構成として、例えば、ブロアやサイクロンを例示することができる。除塵エアは、触媒管21内の触媒2の隙間を通過する際に、触媒2に付着していた触媒粉2Aあるいは触媒2から生じた触媒粉2Aを取り込み、この触媒粉2Aと共に除塵エア排出管25へ送り出される。本実施形態では、除塵エア排出管25および排気機構26から収納スペース23Aに収納された触媒粉2Aを吸引する吸引装置が構成される。従って、触媒管21内で除塵エアが取り込んだ触媒粉2Aは、排気機構26で回収され、一括して廃棄することができる。一方、排気機構26を通過した搬送エアは、触媒粉2Aを含まない清浄な状態とされたうえで、大気に解放される。 The outer tube 23 is a tubular body that is airtight over its entire length. A dust-removed air discharge pipe 25 is connected to the lower end of the outer pipe 23 , and an exhaust mechanism 26 for dust removal is connected to the dust-removed air discharge pipe 25 . Examples of the configuration of the exhaust mechanism 26 include a blower and a cyclone. The dust-removing air takes in the catalyst powder 2A adhering to the catalyst 2 or the catalyst powder 2A generated from the catalyst 2 when passing through the gaps of the catalyst 2 in the catalyst pipe 21, and is discharged together with the catalyst powder 2A into the dust-removing air discharge pipe. 25. In this embodiment, a suction device for sucking the catalyst powder 2A stored in the storage space 23A from the dust-removed air discharge pipe 25 and the exhaust mechanism 26 is configured. Therefore, the catalyst powder 2A taken in by the dust-removing air in the catalyst pipe 21 can be recovered by the exhaust mechanism 26 and can be discarded all at once. On the other hand, the conveyed air that has passed through the exhaust mechanism 26 is released into the atmosphere after being made into a clean state that does not contain the catalyst powder 2A.
 図2において、触媒管21は、外管23で覆われた筒状の周面部21Bを有している。周面部21Bは、多数の連通孔211を有し、その内面側と外面側とで通気可能である。ただし、連通孔211は、触媒2を通過させない大きさ又は形状であるが、触媒2よりも小さい触媒粉2Aを通過させる。なお、図2においては、触媒管21をメッシュ材料で形成してその格子間隔を連通孔211としているが、本実施形態では、触媒管21の材料に孔明け加工をして形成された複数の孔を連通孔211としてもよい。 In FIG. 2, the catalyst tube 21 has a cylindrical peripheral surface portion 21B covered with an outer tube 23. As shown in FIG. The peripheral surface portion 21B has a large number of communication holes 211 and allows ventilation between the inner surface side and the outer surface side. However, the communication hole 211 has a size or shape that does not allow the catalyst 2 to pass therethrough, but allows the catalyst powder 2A that is smaller than the catalyst 2 to pass therethrough. In FIG. 2, the catalyst tube 21 is made of a mesh material and the grid spacing is the communicating hole 211. In the present embodiment, however, a plurality of holes formed by perforating the material of the catalyst tube 21 are provided. The hole may be used as the communication hole 211 .
 内管22は、触媒管21に覆われる筒状部22Aと、筒状部22Aのバルブ40側の端部に設けられた端面部22B(図1参照)とを有する壁部22Cを有している。筒状部22Aは、複数の流体供給孔221を有し、その内面側と外面側とで通気可能としてもよい。流体供給孔221は、後述する第一フィン80が設けられた位置と対応する位置を少なくとも含み、かつ、内管22の周方向に沿って複数が互いに等間隔に配置されている。なお、内管22に孔明け加工で流体供給孔221を形成する場合、流体供給孔221を第一フィン80が設けられた位置と対応する位置にのみ形成してもよい。 The inner pipe 22 has a wall portion 22C having a cylindrical portion 22A covered with the catalyst pipe 21 and an end surface portion 22B (see FIG. 1) provided at the valve 40 side end of the cylindrical portion 22A. there is The tubular portion 22A may have a plurality of fluid supply holes 221 and be ventilated between the inner surface side and the outer surface side. The fluid supply holes 221 include at least a position corresponding to a position where the first fins 80 described later are provided, and a plurality of the fluid supply holes 221 are arranged at equal intervals along the circumferential direction of the inner tube 22 . When forming the fluid supply holes 221 in the inner tube 22 by punching, the fluid supply holes 221 may be formed only at positions corresponding to the positions where the first fins 80 are provided.
 触媒管21の内周部には、触媒粉2Aと触媒2との混在物2Bの渦流Pを発生させる渦流発生部8が設けられている。渦流発生部8は、触媒管21の周面部21Bに基端が固定された第一フィン80と、内管22に基端が固定された第二フィン81とを有している。第一フィン80は、その先端が触媒粉2Aと触媒2との混在物2Bの流通方向のうち下流側に向いている。つまり、第一フィン80は、基端から先端にかけて下り傾斜している。第二フィン81は、その先端が混在物2Bの流通方向のうち上流側に向いている。つまり、第二フィン81は、基端から先端にかけて上り傾斜している。第二フィン81の基端の水平位置は、第一フィン80の先端の水平位置と同じである。 A vortex generating portion 8 for generating a vortex P of a mixture 2B of the catalyst powder 2A and the catalyst 2 is provided on the inner peripheral portion of the catalyst tube 21. The vortex generator 8 has a first fin 80 whose base end is fixed to the peripheral surface portion 21B of the catalyst tube 21 and a second fin 81 whose base end is fixed to the inner tube 22 . The tip of the first fin 80 faces the downstream side in the flow direction of the mixture 2B of the catalyst powder 2A and the catalyst 2. As shown in FIG. That is, the first fin 80 slopes down from the proximal end to the distal end. The tip of the second fin 81 faces the upstream side in the flow direction of the mixed matter 2B. That is, the second fin 81 is inclined upward from the proximal end to the distal end. The horizontal position of the proximal end of the second fin 81 is the same as the horizontal position of the distal end of the first fin 80 .
 第一フィン80の先端と第二フィン81の先端との間には、混在物2Bが流通するための隙間Sが形成されている。第一フィン80は、触媒管21の軸芯を中心として環状に形成されている。第一フィン80の先端と触媒管21の周面部21Bとの間の寸法は触媒管21の周方向に沿って同じである。第二フィン81は、内管22の軸芯を中心として環状に形成されている。第二フィン81の先端と内管22の外周との間の寸法は内管22の周方向に沿って同じである。第一フィン80は、触媒管21の軸方向に沿って複数段(図2では3段)形成されており、第二フィン81は、内管22の軸方向に沿って複数段(図2では3段)形成されている。 Between the tip of the first fin 80 and the tip of the second fin 81, a gap S is formed for the mixture 2B to flow. The first fin 80 is formed in an annular shape around the axis of the catalyst tube 21 . The dimension between the tip of the first fin 80 and the peripheral surface portion 21B of the catalyst tube 21 is the same along the circumferential direction of the catalyst tube 21 . The second fin 81 is formed in an annular shape around the axis of the inner tube 22 . The dimension between the tip of the second fin 81 and the outer circumference of the inner tube 22 is the same along the circumferential direction of the inner tube 22 . The first fins 80 are formed in multiple stages (three stages in FIG. 2) along the axial direction of the catalyst tube 21, and the second fins 81 are formed in multiple stages along the axial direction of the inner tube 22 (in FIG. 2). 3rd stage) is formed.
 以上の構成の渦流発生部8では、上流側から送られる触媒2および触媒粉2Aが混在されてなる混在物2B、特に、触媒粉2Aには、第一フィン80と第二フィン81とを通過した直後に渦流Pが発生する。 In the vortex generating section 8 configured as described above, the mixture 2B, which is a mixture of the catalyst 2 and the catalyst powder 2A sent from the upstream side, especially the catalyst powder 2A, passes through the first fin 80 and the second fin 81. A vortex P is generated immediately after this.
 バルブ40は、分離装置20から散布装置50へと触媒2を通過させる状態と、これを遮断する状態とを切り替える機構である。バルブ40は、制御装置5(図1参照)からの信号を受けて開閉操作される。なお、制御装置5は、反応塔1の内部、外部にいずれに配置されていてもよい。 The valve 40 is a mechanism that switches between a state of allowing the catalyst 2 to pass from the separation device 20 to the spraying device 50 and a state of blocking this. The valve 40 is opened and closed in response to a signal from the control device 5 (see FIG. 1). In addition, the control device 5 may be arranged either inside or outside the reaction tower 1 .
 散布装置50は、供給装置10の下部に接続されるものであって、供給装置10から供給される触媒2を被散布材として反応塔1内に回転散布する装置である。散布装置50は、ケーシング51、カップ部材52、撹拌翼53、撹拌翼駆動部54、エア供給装置55を有している。 The spraying device 50 is connected to the lower part of the supply device 10, and is a device that rotates and sprays the catalyst 2 supplied from the supply device 10 into the reaction tower 1 as a material to be sprayed. The sprinkling device 50 has a casing 51 , a cup member 52 , a stirring blade 53 , a stirring blade driving section 54 and an air supply device 55 .
 ケーシング51は、上端がバルブ40と接続され下端がカップ部材52を固定する筒状部材である。ケーシング51の周面は、反応塔1の内部に設けられたディストリビュータートレイ(Distributor Tray)4のマンウェイ(manway)に固定されている。カップ部材52は、バルブ40からケーシング51を通じて送られる触媒2を収納するものである。 The casing 51 is a cylindrical member whose upper end is connected to the valve 40 and whose lower end fixes the cup member 52 . The peripheral surface of the casing 51 is fixed to a manway of a distributor tray 4 provided inside the reaction tower 1 . The cup member 52 accommodates the catalyst 2 sent from the valve 40 through the casing 51 .
 カップ部材52は、その外周と内周が半球面状に形成されており、その底部中心がケーシング51の軸芯と一致している。また、カップ部材52には、触媒2を排出する複数の排出口52Bが当該カップ部材52の径方向に沿ってスリット状に形成されている。排出口52Bの幅寸法は、カップ部材52の底部中心側から上方に向かうに連れて漸減するものでもよく、逆に漸増するものでもよい。 The outer and inner circumferences of the cup member 52 are formed in a hemispherical shape, and the center of the bottom portion coincides with the axial center of the casing 51 . Further, the cup member 52 is formed with a plurality of discharge ports 52</b>B for discharging the catalyst 2 in a slit shape along the radial direction of the cup member 52 . The width dimension of the discharge port 52B may gradually decrease upward from the center of the bottom of the cup member 52, or may conversely increase gradually.
 撹拌翼53は、合成樹脂から形成されるものであって、カップ部材52の内部に配置されている。撹拌翼53は、撹拌翼駆動部54に連結された軸部から径方向に延出した複数枚の撹拌板部(羽根)を有して構成されており、軸部を中心に回転することでカップ部材52に収納された触媒2を撹拌する。ここで、撹拌翼53は、カップ部材52と一体に形成されて当該カップ部材52とともに回転する構成とされてもよく、また、カップ部材52と別体に形成されて当該カップ部材52の中で回転する構成とされてもよい。 The stirring blades 53 are made of synthetic resin and arranged inside the cup member 52 . The stirring blade 53 is configured to have a plurality of stirring plate portions (blades) radially extending from a shaft portion connected to the stirring blade driving portion 54, and rotates around the shaft portion. The catalyst 2 housed in the cup member 52 is stirred. Here, the stirring blade 53 may be configured to be integrally formed with the cup member 52 and rotate together with the cup member 52, or may be formed separately from the cup member 52 and It may be configured to rotate.
 撹拌翼駆動部54は、ケーシング51の内部に配置された電動モータによって構成されており、その軸芯がケーシング51の軸芯と一致するように支持されている。電動モータは制御装置5からの制御信号に基づいて動作して撹拌翼53を回転させる。
 電動モータには回転計(図示省略)が附設されており、回転計は電動モータの回転速度を検出し、制御装置5に信号を出力する。制御装置5は、回転計からの出力信号を受けて撹拌翼53を所定の回転数となるように電動モータを制御する。
The stirring blade drive unit 54 is composed of an electric motor arranged inside the casing 51 and is supported so that its axis coincides with the axis of the casing 51 . The electric motor operates based on a control signal from the controller 5 to rotate the stirring blades 53 .
A tachometer (not shown) is attached to the electric motor, and the tachometer detects the rotation speed of the electric motor and outputs a signal to the control device 5 . The control device 5 receives an output signal from the tachometer and controls the electric motor so that the stirring blade 53 reaches a predetermined number of revolutions.
 エア供給装置55は、エア供給源(図示省略)と、エア供給源をケーシング51に接続したエア供給管551とによって構成されている。エア供給装置55は、エア供給源からエア供給管551を通じてエアを供給することで、カップ部材52内で撹拌翼53によって撹拌される触媒2を排出口52Bから排出する。
 ここで、触媒2は、カップ部材52の下方から側方にかけて排出口52Bから排出される。反応塔1の径方向において触媒2が飛ぶ距離Lは、撹拌翼53の回転速度に応じて設定可能であり、この回転速度は電動モータを制御する制御装置5によって調節される。このように触媒2が飛ぶ距離Lを適宜設定することで、反応塔1内の中央部Cから周縁部Tにかけて充填密度を変化させる設定が可能である。
The air supply device 55 is composed of an air supply source (not shown) and an air supply pipe 551 connecting the air supply source to the casing 51 . The air supply device 55 supplies air from an air supply source through an air supply pipe 551 to discharge the catalyst 2 stirred by the stirring blades 53 in the cup member 52 from the discharge port 52B.
Here, the catalyst 2 is discharged from the discharge port 52B from below to the side of the cup member 52 . The distance L over which the catalyst 2 flies in the radial direction of the reaction tower 1 can be set according to the rotation speed of the stirring blade 53, and this rotation speed is adjusted by the controller 5 that controls the electric motor. By appropriately setting the distance L over which the catalyst 2 flies in this way, it is possible to change the packing density from the central portion C to the peripheral portion T in the reaction column 1 .
[触媒充填方法]
 以下、反応塔1の内部に対する触媒2の充填方法について説明する。
[準備工程]
 まず、反応塔1にディストリビュータートレイ4を組み立てて、触媒充填装置3を設置する。
[分離工程]
 次に、ホッパ11に混在物2Bを収納し、ホッパ11から混在物2Bを分離装置20に送る。分離装置20では、ホッパ11から送られる混在物2Bが触媒管21と内管22との間の空間21Aを下方に向かって流通する。すると、混在物2Bのうち、内管22に近い部分を流通する混在物2Bは、第二フィン81に当たって流れが阻害され、外管23に近い部分を流通する混在物2Bは、第一フィン80に当たり、基端側から先端にかけて第一フィン80の上面(表面)に沿って流れる。混在物2Bは、第一フィン80の先端から離れた直後に渦流Pが発生する。渦流Pにより、混在物2Bのうち触媒2よりも小さな触媒粉2Aが乱流する。渦流Pに伴って触媒粉2Aが第一フィン80の下方の間に形成された領域Qに入り込み滞留する。
[Catalyst filling method]
A method of filling the inside of the reaction tower 1 with the catalyst 2 will be described below.
[Preparation process]
First, the distributor tray 4 is assembled in the reactor 1, and the catalyst filling device 3 is installed.
[Separation process]
Next, the mixed material 2B is stored in the hopper 11, and the mixed material 2B is sent from the hopper 11 to the separation device 20. As shown in FIG. In the separation device 20, the mixture 2B sent from the hopper 11 flows downward through the space 21A between the catalyst tube 21 and the inner tube 22. As shown in FIG. Then, the mixed matter 2B flowing through the portion near the inner tube 22 of the mixed matter 2B hits the second fins 81 and its flow is obstructed, and the mixed matter 2B flowing through the portion near the outer tube 23 is blocked by the first fins 80. , it flows along the upper surface (surface) of the first fin 80 from the base end side to the tip end. A vortex P is generated immediately after the inclusion 2B separates from the tip of the first fin 80 . Due to the eddy current P, the catalyst powder 2A smaller than the catalyst 2 among the inclusions 2B flows turbulently. Accompanied by the vortex flow P, the catalyst powder 2A enters the area Q formed between the lower portions of the first fins 80 and stays therein.
 ここで、内管22の内部に除塵エアを送ると、除塵エアは、第二フィン81の基端より上方に位置する流体供給孔221を通って第二フィン81によって流れが阻害されている混在物2Bを逆流させて触媒管21側に送り、更に、渦流Pにより第一フィン80の下方で滞留している触媒粉2Aを連通孔211に向けて押し出すことになり、除塵エアと共に触媒粉2Aが連通孔211を通って収納スペース23Aに収納される。収納スペース23Aに収納された触媒粉2Aは、除塵エア排出管25および排気機構26により吸引される。
 収納スペース23Aが除塵エア排出管25および排気機構26により吸引されることで、触媒管21と内管22との間の空間21Aに負圧が生じ、空間21Aにある触媒粉2Aが強制的に連通孔211を通って収納スペース23Aに送られる。触媒粉2Aより大きな触媒2は、連通孔211を通らないので、下流側に送られる。
Here, when the dust-removed air is sent to the inside of the inner tube 22, the dust-removed air passes through the fluid supply hole 221 located above the base end of the second fin 81, and the second fin 81 blocks the flow of the dust-removed air. The material 2B is reversed and sent to the catalyst tube 21 side, and further, the catalyst powder 2A staying under the first fin 80 is pushed out toward the communication hole 211 by the swirl P, and the catalyst powder 2A is pushed out together with the dust removal air. is stored in the storage space 23A through the communication hole 211. The catalyst powder 2A stored in the storage space 23A is sucked by the dust-removed air discharge pipe 25 and the exhaust mechanism 26. As shown in FIG.
When the storage space 23A is sucked by the dust-removed air discharge pipe 25 and the exhaust mechanism 26, a negative pressure is generated in the space 21A between the catalyst pipe 21 and the inner pipe 22, and the catalyst powder 2A in the space 21A is forcibly removed. It is sent through the communication hole 211 to the storage space 23A. Since the catalyst 2 larger than the catalyst powder 2A does not pass through the communication hole 211, it is sent downstream.
[散布工程]
 分離装置20から送られる触媒2は、散布装置50に送られて反応塔1の内部に散布される。
 まず、制御装置5からの信号を受けてバルブ40が開放操作されると、触媒2は、散布装置50のケーシング51の内部を通ってカップ部材52の内部に送られる。触媒2はカップ部材52の内部に収納されることになる。
 そして、エア供給装置55によってケーシング51にエア供給し、カップ部材52の内部に収納された触媒2にエア圧を加える。これと共に、制御装置5からの駆動信号を撹拌翼駆動部54が受けて作動し撹拌翼53をR方向に回転して触媒2を撹拌し、カップ部材52の排出口52Bから排出する。排出された触媒2は反応塔1内に徐々に集積される。
[Spraying process]
The catalyst 2 sent from the separation device 20 is sent to the spray device 50 and sprayed inside the reaction tower 1 .
First, when a signal from the control device 5 is received and the valve 40 is opened, the catalyst 2 is sent inside the cup member 52 through the casing 51 of the sprinkling device 50 . The catalyst 2 is housed inside the cup member 52 .
Air is supplied to the casing 51 by the air supply device 55 to apply air pressure to the catalyst 2 accommodated inside the cup member 52 . At the same time, the driving signal from the control device 5 is received by the agitating blade driving section 54 to operate and rotate the agitating blade 53 in the R direction to agitate the catalyst 2 and discharge it from the discharge port 52B of the cup member 52 . The discharged catalyst 2 is gradually accumulated in the reactor 1 .
 撹拌翼駆動部54である電動モータの回転数は回転計によって測定され、その測定値は制御装置5に送られる。制御装置5では、撹拌翼53を所定の回転数(rpm)で回転させるように電動モータに制御信号を送る。撹拌翼53の回転数を高くすれば触媒2がカップ部材52から径方向外側に大きく飛ばされる一方、回転数を低くすれば触媒2がカップ部材52から径方向外側に小さく飛ばされる。また、触媒落下距離が長ければ、短い場合よりも触媒2がカップ部材52から径方向外側に離れた位置に着弾する傾向にある。 The number of rotations of the electric motor, which is the stirring blade drive unit 54, is measured by a tachometer, and the measured value is sent to the control device 5. The controller 5 sends a control signal to the electric motor to rotate the stirring blade 53 at a predetermined number of revolutions (rpm). If the rotational speed of the stirring blade 53 is increased, the catalyst 2 is thrown radially outward from the cup member 52 to a large extent, while if the rotational speed is reduced, the catalyst 2 is flung small radially outward from the cup member 52 . Further, when the catalyst falling distance is long, the catalyst 2 tends to land at a position farther radially outward from the cup member 52 than when it is short.
 本実施形態では、散布装置50によって散布されて反応塔1の内部に触媒2が所定量充填されると、制御装置5は図示しないセンサなどを通じて触媒2の充填状況を確認する。この確認の結果、所定通りに触媒2を充填できていると判断できれば、触媒2の充填を続けて行う。触媒2の充填状況の確認は、複数のステップ、本実施形態では図3に示すように6つのステップS1~S6に分けて行う。実証試験の計画として、触媒2の全体の充填高さを7mとし、高さ1mごとにステップS1~S6に分けて触媒2の充填状況を確認した。なお、触媒2の全体の充填高さや充填状況の確認頻度を変更すれば充填状況を確認するステップの回数を適宜変動する。 In the present embodiment, when a predetermined amount of the catalyst 2 is filled inside the reaction tower 1 by being sprayed by the spraying device 50, the control device 5 checks the filling status of the catalyst 2 through a sensor (not shown) or the like. As a result of this confirmation, if it can be determined that the catalyst 2 has been filled as prescribed, the catalyst 2 is continued to be filled. Confirmation of the filling state of the catalyst 2 is performed by dividing it into a plurality of steps, six steps S1 to S6 as shown in FIG. 3 in this embodiment. As a plan for the demonstration test, the height of the entire catalyst 2 filled was set to 7 m, and the filling state of the catalyst 2 was checked in steps S1 to S6 for each height of 1 m. The number of steps for checking the filling state can be appropriately changed by changing the filling height of the entire catalyst 2 and the frequency of checking the filling state.
 制御装置5による撹拌翼53の回転制御によって、中央部Cにおける触媒2の充填密度を低密度とし、周縁部Tにおける触媒2の充填密度を高密度とする。制御装置5は、少なくとも、中央部Cにおける抵抗力ΔP(C)および周縁部Tにおける抵抗力ΔP(T)を互いに等しい設定とし、前述した抵抗力ΔP(C)および抵抗力ΔP(T)と、周縁部Tの中央部Cに対する触媒2の充填密度増加率DR%との関係において、中央部Cおよび周縁部Tのそれぞれにおける触媒2の充填面積を設定し、この設定に基づいて撹拌翼53を回転制御する。本実施形態では、触媒2を1/16”触媒とし、充填密度増加率10%とし、周縁部Tの中央部Cに対する触媒2の充填面積比を1.45とする。この場合には、周縁部Tの中央部Cに対する抵抗力比(T/C)と、周縁部Tの中央部Cに対する充填面積比(T/C)との関係は、図4のグラフに示す関係となる。例えば、充填面積比(T/C)が1.0の場合には、抵抗力比(T/C)が1.7となり、周縁部Tの抵抗力ΔP(T)が中央部Cの抵抗力ΔP(C)に対して170%ほど高くなる。本実施形態では、前述したように充填面積比(T/C)は1.45であるので、これに応じて、抵抗力比(T/C)は1.0となり、抵抗力ΔP(T)と抵抗力ΔP(C)が互いに等しくなる設定となる。 By controlling the rotation of the stirring blades 53 by the control device 5, the packing density of the catalyst 2 in the central portion C is made low, and the packing density of the catalyst 2 in the peripheral portion T is made high. The control device 5 sets at least the resistance ΔP(C) at the central portion C and the resistance ΔP(T) at the peripheral portion T to be equal to each other, and the resistance ΔP(C) and the resistance ΔP(T) are equal to each other. , and the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T, the packing area of the catalyst 2 in each of the central portion C and the peripheral portion T is set, and based on this setting, the stirring blade 53 to control the rotation. In this embodiment, the catalyst 2 is a 1/16″ catalyst, the packing density increase rate is 10%, and the packing area ratio of the catalyst 2 to the central portion C of the peripheral portion T is 1.45. The relationship between the resistance force ratio (T/C) of the portion T to the central portion C and the filling area ratio (T/C) of the peripheral edge portion T to the central portion C is the relationship shown in the graph of Fig. 4. For example, When the filling area ratio (T/C) is 1.0, the resistance force ratio (T/C) is 1.7, and the resistance force ΔP (T) of the peripheral portion T becomes the resistance force ΔP (T) of the central portion C ( C) is about 170% higher than C. In this embodiment, as described above, the filling area ratio (T/C) is 1.45. 1.0, and the resistance .DELTA.P(T) and the resistance .DELTA.P(C) are set to be equal to each other.
 前述したように充填密度増加率10%として、中央部Cにおける触媒2の充填密度を低密度とし且つ周縁部Tにおける触媒2の充填密度を高密度とする充填(所謂Radius Grading Loading(RGL))を行うと、周縁部Tと中央部Cとで充填密度を均一にする充填(所謂Dense Loading)に比べ、反応塔1内の触媒層の抵抗力が小さくなり、装置運転コストが約22%低減可能である。例えば、50,000BPSD(Barrel Per Stream Day)規模の重油直接脱硫装置(RDS)で試算すると、年間約4,000万円以上の運転コスト(Feed pump、Recycle gas/Make up gas compressors)を節約できる。そうすると、年間約1,500トンCO排出量を削減でき、脱炭素社会の実現に貢献できる。 As described above, when the packing density increase rate is 10%, the packing density of the catalyst 2 in the central portion C is made low and the packing density of the catalyst 2 in the peripheral portion T is made high (so-called Radius Grading Loading (RGL)). , the resistance of the catalyst layer in the reaction column 1 is reduced compared to packing that makes the packing density uniform between the peripheral portion T and the central portion C (so-called Dense Loading), and the operating cost of the device is reduced by about 22%. It is possible. For example, when estimated with a 50,000 BPSD (Barrel Per Stream Day) scale heavy oil direct desulfurization unit (RDS), annual operating costs of about 40 million yen or more (Feed pump, Recycle gas / Make up gas compressors) can be saved. . This will reduce CO2 emissions by about 1,500 tons annually, contributing to the realization of a decarbonized society.
 また、中央部Cにおける触媒2の充填密度を低密度とし且つ周縁部Tにおける触媒2の充填密度を高密度とする充填(RGL)を適用すると、中央部Cに反応熱が蓄積して触媒が固結するホットスポットの生成が抑制でき、触媒性能を高めることができる。
 更に、中央部Cに比べ、周縁部Tの液空間速度LHSV(Liquid Hourly Space Velocity)が小さくなり、後述するように安息角状の凹部2Cを形成しつつ触媒2を充填することにより、周縁部Tにおける触媒2のサイズが中央部Cにおける触媒2のサイズよりも僅かに小さくなる。このことを考慮すると、周縁部Tでの触媒反応率が中央部Cよりも上昇し、周縁部Tでの触媒活性劣化速度が中央部C側より速くなると予測される。しかし、周縁部Tでは、触媒2のボリュームが中央部Cよりも多いので活性点も多く、周縁部Tにおける触媒2の加速活性劣化による活性減少分が、本来周縁部T側に多い活性点から補い合う。そうすると、周縁部Tおよび中央部Cにおいて、同じ触媒寿命に迎え得ると考えられる。以上より、本実施形態のRGL充填は、反応塔1において、前述したホットスポット生成抑制に加え、全ての触媒性能を十分に活用できる充填方法であるといえる。
In addition, when the packing (RGL) is applied in which the packing density of the catalyst 2 in the central portion C is low and the packing density of the catalyst 2 in the peripheral portion T is high, heat of reaction is accumulated in the central portion C, and the catalyst is degraded. It is possible to suppress the formation of congealed hot spots and improve the catalytic performance.
Furthermore, compared to the central portion C, the liquid hourly space velocity LHSV of the peripheral portion T becomes smaller, and as described later, by filling the catalyst 2 while forming a recess 2C having an angle of repose, the peripheral portion The size of the catalyst 2 at T is slightly smaller than the size of the catalyst 2 at the central portion C. Taking this into account, it is predicted that the catalyst reaction rate at the peripheral edge T will be higher than at the central area C, and the catalytic activity deterioration rate at the peripheral edge T will be faster than at the central area C side. However, since the volume of the catalyst 2 is larger in the peripheral portion T than in the central portion C, there are more active points, and the amount of decrease in activity due to accelerated activity deterioration of the catalyst 2 in the peripheral portion T is originally more on the peripheral portion T side. Complement each other. Then, it is considered that the peripheral portion T and the central portion C can reach the same catalyst life. From the above, it can be said that the RGL filling of the present embodiment is a filling method that can fully utilize all catalyst performances in the reaction column 1 in addition to suppressing hot spot generation as described above.
 なお、周縁部Tおよび中央部Cで同じ触媒を用いることで、充填面積比は周縁部Tと中央部Cとの充填密度増加率DR%に依存する。上記では触媒2を1/16”触媒としたが、このサイズの触媒2に限られず、他のサイズの触媒2を用いても充填密度増加率10%である場合には充填面積比は1.45となる。また、充填密度増加率DR%を変化すると充填面積比も変化する関係にあり、例えば、充填密度増加率8%とした場合には充填面積比1.35となり、充填密度増加率12%とした場合には充填面積比1.58となる。 By using the same catalyst in the peripheral portion T and the central portion C, the filling area ratio depends on the packing density increase rate DR% of the peripheral portion T and the central portion C. In the above, the catalyst 2 is 1/16″ catalyst, but the catalyst 2 is not limited to this size. 45. Further, when the packing density increase rate DR% is changed, the filling area ratio also changes. When it is 12%, the filling area ratio is 1.58.
 また、制御装置5は、反応塔1の内径φ(Rx)と、周縁部Tの中央部Cに対する触媒2の充填密度増加率DR%との関係において、中央部Cの径φ(C)を設定し、この設定に基づいて撹拌翼53の回転制御をする。反応塔1の内径φ(Rx)は、本実施形態では4.2mであるが、3.5mまた5.8mなどの各寸法であってもよい。中央部Cの径φ(C)は、具体的には下記の数式1に基づいて設定される。 In addition, the control device 5 controls the diameter φ(C) of the central portion C in the relationship between the inner diameter φ(Rx) of the reaction column 1 and the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T. The rotation of the stirring blade 53 is controlled based on this setting. The inner diameter φ(Rx) of the reaction column 1 is 4.2 m in this embodiment, but may be 3.5 m or 5.8 m. Specifically, the diameter φ(C) of the central portion C is set based on Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施形態では、反応塔1の内部の周縁部Tに散布装置50によって強制的に触媒2が堆積され、触媒2の充填状況を確認する複数のステップS1~S6ごとにおける触媒2の頂部には、図3に示すように、中央部Cに向かって窪んだ安息角状の凹部2Cが形成される。凹部2Cは水平面に対して35°~40°程度の安息角を有して略円錐状に形成される。この凹部2Cが形成されるため、中央部Cには周縁部Tの触媒2から安息角に沿って自然落下する触媒2が充填されることになるので、より容易に、中央部Cの充填密度を周縁部Tの充填密度よりも低密度にできる。また、本実施形態では、充填した触媒2の最頂部における凹部2Cを、触媒2の所謂ソック充填(ソックローディング Sock Loading)または撹拌翼53の回転数を50rpm以下とした充填によって穴埋めする。これにより、最頂部における凹部2Cに規定される空間を触媒反応に有効活用する。 In this embodiment, the catalyst 2 is forcibly deposited on the peripheral edge portion T inside the reaction tower 1 by the sprinkling device 50, and the top of the catalyst 2 in each of the plurality of steps S1 to S6 for checking the filling state of the catalyst 2 , an angle-of-repose recess 2C recessed toward the central portion C is formed, as shown in FIG. The concave portion 2C is formed in a substantially conical shape with an angle of repose of about 35° to 40° with respect to the horizontal plane. Since this concave portion 2C is formed, the central portion C is filled with the catalyst 2 that naturally falls along the angle of repose from the peripheral edge portion T, so that the packing density of the central portion C can be more easily increased. can be made lower than the packing density of the peripheral portion T. Further, in this embodiment, the recess 2C at the top of the filled catalyst 2 is filled by so-called sock loading of the catalyst 2 or filling with the rotation speed of the stirring blade 53 set to 50 rpm or less. As a result, the space defined by the concave portion 2C at the topmost portion is effectively utilized for the catalytic reaction.
 図5に示すグラフは、反応塔1内に充填される触媒2の充填密度(g/ml)と、反応塔1内を流れる原料流体の流速(m/sec)との関係を示している。横軸は反応塔1内に充填される触媒2の充填密度(g/ml)であり、縦軸は反応塔1内を流れる原料流体の流速(m/sec)である。横軸にある通り、触媒2の充填密度(g/ml)は、反応塔1内の径方向における中央部Cは低密度、周縁部Tは高密度なっており、本実施形態では当該中央部Cから周縁部Tに向かうに連れて漸増している。また、原料流体の流速(m/sec)は図5に矢印で示している。本実施形態では、抵抗力ΔP(C)および抵抗力ΔP(T)が等しくなっているため、反応塔1内に運転初期(SOR Start of Run)から運転中期(MOR Middle of Run)を経て運転後期(EOR End of Run)にわたって偏流が発生し難く、反応塔1の内部の全面に原料流体を流すことができ、反応熱が中央部Cに蓄積せず、触媒固結生成を抑制でき、触媒性能を最大限に活用し得る。 The graph shown in FIG. 5 shows the relationship between the packing density (g/ml) of the catalyst 2 packed in the reaction tower 1 and the flow velocity (m/sec) of the raw material fluid flowing through the reaction tower 1. The horizontal axis is the packing density (g/ml) of the catalyst 2 packed in the reaction tower 1, and the vertical axis is the flow velocity (m/sec) of the raw material fluid flowing through the reaction tower 1. As shown on the horizontal axis, the packing density (g/ml) of the catalyst 2 is low in the central portion C in the radial direction in the reaction column 1 and high in the peripheral portion T. In this embodiment, the central portion It gradually increases from C toward the peripheral edge T. Also, the flow velocity (m/sec) of the raw material fluid is indicated by an arrow in FIG. In this embodiment, since the resistance ΔP (C) and the resistance ΔP (T) are equal, the reactor 1 is operated from the initial stage of operation (SOR Start of Run) to the middle stage of operation (MOR Middle of Run). Over the latter period (EOR End of Run), drifting is unlikely to occur, the raw material fluid can be flowed over the entire interior of the reaction tower 1, reaction heat does not accumulate in the central portion C, catalyst caking can be suppressed, and catalyst Maximize performance.
 散布工程の終了後、触媒充填装置3を反応塔1から撤去し、反応塔1の内部に充填された触媒2に原料流体を反応塔1の下部から流し込む(アップストリーム)。この際、充填密度は、反応塔1の内部の中央側から周縁側に向かうに連れて徐々に密(高密度)になっているので、原料流体は、触媒2が充填された位置、例えば反応塔1の中央側や周縁側のいずれにかかわらず、流れ込む。
 なお、原料流体は反応塔1の上部から流し込んでもよく(ダウンストリーム)、この場合も同様に、原料流体は、反応塔1の中央側や周縁側のいずれにかかわらず、流れ込む。
After the spraying step is completed, the catalyst filling device 3 is removed from the reaction tower 1, and the raw material fluid is poured into the catalyst 2 packed inside the reaction tower 1 from the lower part of the reaction tower 1 (upstream). At this time, since the packing density gradually increases (high density) from the central side of the inside of the reactor 1 toward the peripheral side, the raw material fluid is placed at the position where the catalyst 2 is packed, for example, the reaction It flows into tower 1 whether it is on the central side or the peripheral side.
In addition, the raw material fluid may flow from the upper part of the reaction tower 1 (downstream), and in this case, the raw material fluid flows into the reaction tower 1 regardless of whether it is on the central side or the peripheral side.
 本実施形態に係る触媒充填方法では、前述したように触媒2を充填するので、中央部Cおよび周縁部Tにおける触媒2の充填密度比などを適切な比率にできて、中央部Cおよび周縁部Tの抵抗力ΔP(C)および抵抗力ΔP(T)を等しくでき、これにより、原料流体を反応塔1の内部の全面に流すことができ、反応熱が蓄積せず、触媒固結を抑制できる。 In the catalyst filling method according to the present embodiment, the catalyst 2 is filled as described above. The resistance ΔP(C) and the resistance ΔP(T) of T can be made equal, thereby allowing the raw material fluid to flow over the entire interior of the reaction tower 1, preventing the accumulation of reaction heat and suppressing caking of the catalyst. can.
[変形例]
 前記実施形態では、中央部Cにおける抵抗力ΔP(C)および周縁部Tにおける抵抗力ΔP(T)を互いに等しい設定とし、このため、充填密度増加率10%の場合、周縁部Tの中央部Cに対する触媒2の充填面積比を1.45としているが、これに限らず、偏流が発生しない範囲において、充填面積比を1.4~1.5として抵抗力ΔP(C)および抵抗力ΔP(T)を互いに近い設定としてもよい。
[Modification]
In the above embodiment, the resistance ΔP(C) at the central portion C and the resistance ΔP(T) at the peripheral portion T are set to be equal to each other. Although the filling area ratio of the catalyst 2 to C is set to 1.45, it is not limited to this, and the resistance ΔP (C) and the resistance ΔP (T) may be set close to each other.
 前記実施形態では、1/16”触媒を用いているが、他のサイズの触媒2を用いてもよい。この場合でも、抵抗力ΔP(C)および抵抗力ΔP(T)にできればよく、充填面積比は前述した充填密度増加率DR%との関係において設定される。また、充填密度増加率DR%を異なる値に設定する場合も同様に抵抗力ΔP(C)および抵抗力ΔP(T)にできればよい。 In the above embodiment, a 1/16″ catalyst is used, but catalysts 2 of other sizes may be used. The area ratio is set in relation to the filling density increase rate DR% described above, and when the filling density increase rate DR% is set to a different value, the resistance ΔP(C) and the resistance ΔP(T) are similarly set. I wish I could.
 前記実施形態では、触媒2の充填状況を確認する複数のステップS1~S6ごとに安息角状の凹部2Cを形成しているが、最終のステップS6における触媒2の最頂部のみに凹部2Cが形成されていてもよい。また、中央部Cおよび周縁部Tに対して所望の充填密度で触媒2を充填できる場合には、安息角状の凹部2Cを形成しなくてもよい。 In the above-described embodiment, the concave portion 2C having an angle of repose is formed in each of the plurality of steps S1 to S6 for confirming the filling state of the catalyst 2, but the concave portion 2C is formed only in the topmost portion of the catalyst 2 in the final step S6. may have been Further, when the central portion C and the peripheral portion T can be filled with the catalyst 2 at a desired packing density, it is not necessary to form the recesses 2C having the angle of repose.
 前記実施形態では、充填した触媒2の最頂部における凹部2Cを触媒2で穴埋めするが、所望の触媒反応が得られる場合には当該穴埋めをしなくてもよい。 In the above embodiment, the recess 2C at the top of the filled catalyst 2 is filled with the catalyst 2, but this filling may be omitted if the desired catalytic reaction can be obtained.
 前記実施形態では、排出口52Bを、カップ部材52の底部中心から径方向に沿ってスリット状に形成したが、本発明では、排出口52Bは、カップ部材52の底部中心と開口端縁との間に形成されていればよく、例えば、排出口52Bを複数の孔から構成し、これらの孔を底部中心から径方向に沿って並べて配置してもよい。排出口52Bをスリット状に形成する場合であっても、前記実施形態のように、直線状に形成することを要せず、カップ部材52の底部中心から開口端縁に向けて螺旋状に形成するものでもよい。 In the above-described embodiment, the discharge port 52B is formed in a slit shape along the radial direction from the center of the bottom of the cup member 52, but in the present invention, the discharge port 52B is formed between the center of the bottom of the cup member 52 and the opening edge. For example, the discharge port 52B may be composed of a plurality of holes, and these holes may be arranged side by side along the radial direction from the center of the bottom portion. Even if the discharge port 52B is formed in a slit shape, it does not need to be formed in a straight line as in the above-described embodiment, and is formed in a spiral shape from the center of the bottom of the cup member 52 toward the opening edge. It may be something to do.
 本発明では、分離装置20を省略した構成としてもよい。
 仮に、分離装置20を設ける場合であっても、前記実施形態の構成に限定されるものではなく、例えば、第二フィン81を省略してもよく、更には、第一フィン80と第二フィン81を複数段から構成することを要せず、1段から構成するものでもよい。
In the present invention, the configuration may be such that the separation device 20 is omitted.
Even if the separation device 20 is provided, it is not limited to the configuration of the above embodiment. For example, the second fin 81 may be omitted. It is not necessary to configure the 81 from a plurality of stages, and it may be configured from a single stage.
 本発明は、金属分野、化学分野、食品分野における製造、並びに、石油精製設備や化学工業設備等の反応塔1への触媒2の充填に利用できる。 The present invention can be used for manufacturing in the fields of metals, chemistry, and foods, and for filling catalysts 2 into reaction towers 1 of petroleum refining facilities, chemical industry facilities, and the like.
[本実施形態の効果]
(1)本実施形態の触媒充填方法は、回転式の触媒充填装置3を用いて反応塔1内に触媒2を散布する触媒充填方法であって、前記反応塔1内に配置された散布装置50に前記触媒2を供給し、供給した前記触媒2にエア圧を加えると共に前記散布装置50の撹拌翼53の回転によって前記触媒2を撹拌して前記触媒2を散布して前記反応塔1内に充填し、少なくとも、前記反応塔内の周縁部Tの中央部Cに対する前記触媒2の充填密度増加率DR%と、前記中央部Cおよび前記周縁部Tにおける前記触媒2の充填面積と、前記中央部Cおよび前記周縁部Tを流通する原料流体に対する抵抗力ΔP(C)、ΔP(T)との関係において、前記反応塔1内の前記中央部Cにおける前記触媒2の充填密度は低密度とし、前記反応塔1内の前記周縁部Tにおける前記触媒2の充填密度は高密度とする。このため、所望の充填密度増加率DR%において反応塔1内の中央部Cおよび周縁部Tにおける抵抗力ΔP(C)、ΔP(T)を等しく設定することで、中央部Cの充填密度が低密度であって周縁部Tの充填密度が高密度に且つ中央部Cおよび周縁部Tの抵抗力ΔP(C)、ΔP(T)が等しくなるように、中央部Cおよび周縁部Tのそれぞれにおける充填面積を定めることができ、反応塔1内が流通する原料流体に対する抵抗力ΔP(C)、ΔP(T)を容易に均一にできる。
[Effect of this embodiment]
(1) The catalyst filling method of the present embodiment is a catalyst filling method in which the catalyst 2 is sprayed in the reaction tower 1 using a rotary catalyst filling device 3, and the spraying device arranged in the reaction tower 1 The catalyst 2 is supplied to the reactor 50, air pressure is applied to the supplied catalyst 2, and the catalyst 2 is stirred by the rotation of the stirring blade 53 of the spraying device 50 to spray the catalyst 2 into the reaction tower 1. At least, the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T in the reaction column, the packing area of the catalyst 2 in the central portion C and the peripheral portion T, and the In the relationship between the resistance forces ΔP(C) and ΔP(T) against the raw material fluid flowing through the central portion C and the peripheral portion T, the packing density of the catalyst 2 in the central portion C in the reaction column 1 is low. , and the packing density of the catalyst 2 at the peripheral portion T in the reaction tower 1 is high. Therefore, by setting the resistance forces ΔP(C) and ΔP(T) at the central portion C and the peripheral portion T in the reaction column 1 to be equal at the desired packing density increase rate DR%, the packing density of the central portion C is Each of the central portion C and the peripheral portion T has a low density such that the filling density of the peripheral portion T is high and the resistance forces ΔP (C) and ΔP (T) of the central portion C and the peripheral portion T are equal. can be determined, and the resistance forces ΔP(C) and ΔP(T) against the raw material fluid flowing in the reactor 1 can be easily made uniform.
(2)本実施形態に係る触媒充填方法では、前記中央部Cにおける前記抵抗力ΔP(C)および前記周縁部Tにおける前記抵抗力ΔP(T)を互いに等しい設定とし、前記反応塔1の内径φ(Rx)と、前記周縁部Tの前記中央部Cに対する前記触媒2の充填密度増加率DR%との関係において、前記中央部の径φ(C)を設定する。このため、低密度とする中央部Cと高密度とする周縁部Tとの径関係を容易に設定できる。 (2) In the catalyst filling method according to the present embodiment, the resistance ΔP(C) at the central portion C and the resistance ΔP(T) at the peripheral portion T are set equal to each other, and the inner diameter of the reaction tower 1 The diameter φ(C) of the central portion is set in relation to φ(Rx) and the packing density increase rate DR% of the catalyst 2 with respect to the central portion C of the peripheral portion T. Therefore, it is possible to easily set the diameter relationship between the low-density center portion C and the high-density peripheral portion T. FIG.
(3)前記充填密度増加率10%とし、前記周縁部Tの前記中央部Cに対する前記触媒2の充填面積比を1.4~1.5とする。このため、中央部Cにおける抵抗力ΔP(C)および周縁部Tにおける前記抵抗力ΔP(T)を互いに等しい値にでき、また、互いに近い値にできる。 (3) The filling density increase rate is set to 10%, and the filling area ratio of the catalyst 2 to the central portion C of the peripheral portion T is set to 1.4 to 1.5. Therefore, the resistance ΔP(C) at the central portion C and the resistance ΔP(T) at the peripheral portion T can be made equal to each other and can be made close to each other.
(4)前記周縁部の前記中央部に対する前記触媒の充填面積比を1.45とする。このため、中央部Cにおける抵抗力ΔP(C)および周縁部Tにおける前記抵抗力ΔP(T)を互いに等しい値にできる。 (4) A filling area ratio of the catalyst to the central portion of the peripheral portion is set to 1.45. Therefore, the resistance ΔP(C) at the central portion C and the resistance ΔP(T) at the peripheral portion T can be made equal to each other.
(5)前記周縁部Tには、前記散布装置50によって強制的に触媒が堆積され、充填した前記触媒2の頂部には、前記中央部Cに向かって窪んだ安息角状の凹部2Cが形成される。このため、中央部Cには周縁部Tの触媒2から安息角に沿って自然落下する触媒2が充填されることになるので、より容易に、中央部Cの充填密度を周縁部Tの充填密度よりも低密度にできる。 (5) The catalyst is forcibly deposited on the peripheral portion T by the sprinkling device 50, and an angle-of-repose recess 2C recessed toward the central portion C is formed on the top of the filled catalyst 2. be done. For this reason, the central portion C is filled with the catalyst 2 that naturally falls along the angle of repose from the catalyst 2 at the peripheral portion T. Density can be lower than density.
(6)前記触媒2の充填状況を確認する複数のステップS1~S6を有し、前記複数のステップS1~S6ごとにおける前記触媒2の頂部に前記凹部2Cが形成される。このため、複数のステップS1~S6ごとにおける触媒2の頂部に凹部2Cが形成されているので、中央部Cの充填密度を周縁部Tの充填密度に対して、より確実に低密度にできる。 (6) It has a plurality of steps S1 to S6 for confirming the filling state of the catalyst 2, and the recess 2C is formed at the top of the catalyst 2 in each of the plurality of steps S1 to S6. Therefore, since the recesses 2C are formed at the top of the catalyst 2 in each of the plurality of steps S1 to S6, the packing density of the central portion C can be made lower than the packing density of the peripheral portion T more reliably.
(7)充填した前記触媒の最頂部における凹部2Cを穴埋めする。このため、最頂部における凹部2Cにも触媒2を配置することで、凹部2Cで規定されていた空間を触媒反応に有効活用できる。 (7) The recess 2C at the top of the filled catalyst is filled. Therefore, by arranging the catalyst 2 also in the concave portion 2C at the top, the space defined by the concave portion 2C can be effectively used for the catalytic reaction.
(8)本実施形態に係る回転式の触媒充填装置3は、前述した触媒充填方法を用いるものであって、前記反応塔1内に配置される散布装置50を備え、前記散布装置50は、前記触媒2にエア圧を加えるエア供給装置55と、前記エア圧が加えられる前記触媒2を回転して撹拌する撹拌翼53と、前記撹拌翼53が内部に配置され且つ前記触媒2を排出する排出口52Bが形成されたカップ部材52とを備える。このため、前述した触媒充填方法の作用効果と同様の作用効果を発揮できる。 (8) The rotary catalyst filling device 3 according to the present embodiment uses the catalyst filling method described above, and includes a sprinkling device 50 arranged in the reaction tower 1. The sprinkling device 50 is An air supply device 55 for applying air pressure to the catalyst 2, a stirring blade 53 for rotating and stirring the catalyst 2 to which the air pressure is applied, and the stirring blade 53 are arranged inside and discharge the catalyst 2. and a cup member 52 formed with a discharge port 52B. Therefore, it is possible to exhibit the same effects as those of the catalyst filling method described above.
 1…反応塔、11…ホッパ、2…触媒、20…分離装置、21…触媒管、211…連通孔、21A…空間、21B…周面部、22…内管、221…流体供給孔、22A…筒状部、22C…壁部、23…外管、23A…収納スペース、2A…触媒粉、2B…混在物、2C…凹部、3…触媒充填装置、50…散布装置、51…ケーシング、52…カップ部材、52B…排出口、53…撹拌翼、54…撹拌翼駆動部、8…渦流発生部、80…第一フィン、81…第二フィン、C…中央部、P…渦流、S1~S6…ステップ、T…周縁部。
 
DESCRIPTION OF SYMBOLS 1... Reaction tower, 11... Hopper, 2... Catalyst, 20... Separator, 21... Catalyst tube, 211... Communication hole, 21A... Space, 21B... Surrounding part, 22... Inner tube, 221... Fluid supply hole, 22A... Cylindrical part 22C Wall part 23 Outer tube 23A Storage space 2A Catalyst powder 2B Contaminants 2C Recess 3 Catalyst filling device 50 Sprinkling device 51 Casing 52 cup member, 52B... discharge port, 53... stirring blade, 54... stirring blade driving part, 8... vortex generating part, 80... first fin, 81... second fin, C... central part, P... vortex, S1 to S6 . . . step, T .

Claims (8)

  1.  回転式の触媒充填装置を用いて反応塔内に触媒を散布する触媒充填方法であって、
     前記反応塔内に配置された散布装置に前記触媒を供給し、供給した前記触媒にエア圧を加えると共に前記散布装置の撹拌翼の回転によって前記触媒を撹拌して前記触媒を散布して前記反応塔内に充填し、
     少なくとも、前記反応塔内の周縁部の中央部に対する前記触媒の充填密度増加率と、前記中央部および前記周縁部における前記触媒の充填面積と、前記中央部および前記周縁部を流通する原料流体に対する抵抗力との関係において、前記反応塔内の前記中央部における前記触媒の充填密度は低密度とし、前記反応塔内の前記周縁部における前記触媒の充填密度は高密度とする触媒充填方法。
    A catalyst filling method for dispersing a catalyst in a reaction tower using a rotary catalyst filling device,
    The catalyst is supplied to a sprinkling device arranged in the reaction tower, air pressure is applied to the supplied catalyst, and the catalyst is agitated by the rotation of the stirring blades of the sprinkling device to spray the catalyst and the reaction. filled in the tower,
    At least, the packing density increase rate of the catalyst with respect to the central portion of the peripheral portion in the reaction column, the packing area of the catalyst in the central portion and the peripheral portion, and the raw material fluid flowing through the central portion and the peripheral portion A catalyst packing method in which the packing density of the catalyst in the central portion of the reaction column is low and the packing density of the catalyst in the peripheral portion of the reaction column is high in relation to resistance.
  2.  前記中央部における前記抵抗力および前記周縁部における前記抵抗力を互いに等しい設定とし、
     前記反応塔の内径と、前記周縁部の前記中央部に対する前記触媒の充填密度増加率との関係において、前記中央部の径を設定する
     請求項1に記載の触媒充填方法。
    The resistance force at the central portion and the resistance force at the peripheral portion are set equal to each other,
    The catalyst filling method according to claim 1, wherein the diameter of the central portion is set in relation to the inner diameter of the reaction tower and the packing density increase rate of the catalyst with respect to the central portion of the peripheral portion.
  3.  前記充填密度増加率10%とし、
     前記周縁部の前記中央部に対する前記触媒の充填面積比を1.4~1.5とする
     請求項1または請求項2に記載の触媒充填方法。
    The filling density increase rate is 10%,
    3. The catalyst filling method according to claim 1, wherein a filling area ratio of the catalyst to the central portion of the peripheral portion is 1.4 to 1.5.
  4.  前記周縁部の前記中央部に対する前記触媒の充填面積比を1.45とする
     請求項3に記載の触媒充填方法。
    4. The catalyst filling method according to claim 3, wherein a filling area ratio of the catalyst to the central portion of the peripheral portion is set to 1.45.
  5.  前記周縁部には、前記散布装置によって強制的に前記触媒が堆積され、
     充填した前記触媒の頂部には、前記中央部に向かって窪んだ安息角状の凹部が形成される
     請求項1から請求項4のいずれか一項に記載の触媒充填方法。
    The catalyst is forcibly deposited on the periphery by the spraying device,
    The catalyst filling method according to any one of claims 1 to 4, wherein the top portion of the filled catalyst is formed with an angle-of-repose recess recessed toward the center portion.
  6.  前記触媒の充填状況を確認する複数のステップを有し、
     前記複数のステップごとにおける前記触媒の頂部に前記凹部が形成される
     請求項5に記載の触媒充填方法。
    Having a plurality of steps of checking the filling status of the catalyst,
    6. The catalyst filling method according to claim 5, wherein the recess is formed on the top of the catalyst in each of the plurality of steps.
  7.  充填した前記触媒の最頂部における凹部を穴埋めする
     請求項5または請求項6に記載の触媒充填方法。
    7. The method of filling the catalyst according to claim 5, wherein the recessed portion at the top of the filled catalyst is filled.
  8.  請求項1から請求項7のいずれか一項に記載の触媒充填方法を用いる回転式の触媒充填装置であって、
     前記反応塔内に配置される散布装置を備え、
     前記散布装置は、前記触媒にエア圧を加えるエア供給装置と、前記エア圧が加えられる前記触媒を回転して撹拌する撹拌翼と、前記撹拌翼が内部に配置され且つ前記触媒を排出する排出口が形成されたカップ部材とを備える触媒充填装置。
     
    A rotary catalyst filling device using the catalyst filling method according to any one of claims 1 to 7,
    A sparging device arranged in the reaction tower,
    The spraying device includes an air supply device that applies air pressure to the catalyst, a stirring blade that rotates and stirs the catalyst to which the air pressure is applied, and an exhaust that has the stirring blade disposed therein and discharges the catalyst. and a cup member having an outlet formed therein.
PCT/JP2021/045934 2021-12-14 2021-12-14 Catalyst packing method and catalyst packing apparatus WO2023112111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045934 WO2023112111A1 (en) 2021-12-14 2021-12-14 Catalyst packing method and catalyst packing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045934 WO2023112111A1 (en) 2021-12-14 2021-12-14 Catalyst packing method and catalyst packing apparatus

Publications (1)

Publication Number Publication Date
WO2023112111A1 true WO2023112111A1 (en) 2023-06-22

Family

ID=86774056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045934 WO2023112111A1 (en) 2021-12-14 2021-12-14 Catalyst packing method and catalyst packing apparatus

Country Status (1)

Country Link
WO (1) WO2023112111A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570641A (en) * 1978-11-24 1980-05-28 Asia Sekiyu Kk Powder distributor
JPH05228356A (en) * 1992-02-17 1993-09-07 Sofutaade Kogyo Kk Reaction column and method for packing catalyst into reaction column
JPH0760102A (en) * 1993-08-27 1995-03-07 Idemitsu Eng Co Ltd Method for packing catalyst and device therefor
JPH08282856A (en) * 1995-02-16 1996-10-29 Japan Energy Corp Particle spraying device
US5585075A (en) * 1994-04-28 1996-12-17 Softard Industries Co., Ltd. Catalyst loading structure and a loading method for a reactor
JPH0952630A (en) * 1995-06-08 1997-02-25 Japan Energy Corp Smoothing method for grain filling face in grain filling device
JP2016147228A (en) * 2015-02-12 2016-08-18 ソフタード工業株式会社 Catalyst loading device and method
EP3542894A1 (en) * 2018-03-22 2019-09-25 Air Products And Chemicals, Inc. Particle loading method and apparatus for a radial flow vessel
JP2020157217A (en) * 2019-03-26 2020-10-01 ソフタード工業株式会社 Scattering apparatus, and catalyst loading apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5570641A (en) * 1978-11-24 1980-05-28 Asia Sekiyu Kk Powder distributor
JPH05228356A (en) * 1992-02-17 1993-09-07 Sofutaade Kogyo Kk Reaction column and method for packing catalyst into reaction column
JPH0760102A (en) * 1993-08-27 1995-03-07 Idemitsu Eng Co Ltd Method for packing catalyst and device therefor
US5585075A (en) * 1994-04-28 1996-12-17 Softard Industries Co., Ltd. Catalyst loading structure and a loading method for a reactor
JPH08282856A (en) * 1995-02-16 1996-10-29 Japan Energy Corp Particle spraying device
JPH0952630A (en) * 1995-06-08 1997-02-25 Japan Energy Corp Smoothing method for grain filling face in grain filling device
JP2016147228A (en) * 2015-02-12 2016-08-18 ソフタード工業株式会社 Catalyst loading device and method
EP3542894A1 (en) * 2018-03-22 2019-09-25 Air Products And Chemicals, Inc. Particle loading method and apparatus for a radial flow vessel
JP2020157217A (en) * 2019-03-26 2020-10-01 ソフタード工業株式会社 Scattering apparatus, and catalyst loading apparatus

Similar Documents

Publication Publication Date Title
JP4274794B2 (en) Multiple bed downflow reactor
US6866075B2 (en) Method and apparatus for uniform particle loading of vessels
US4433707A (en) Method and apparatus for level loading of vessels using catalyst oriented packing
EP0596256A1 (en) Particle loader
EP2200748B1 (en) Centrifugal separator and a method for cleaning a gas
WO1999056882A1 (en) Method and apparatus for cleaning of a gas or a gas mixture
DK154634B (en) APPARATUS FOR FILLING PARTICULAR MATERIAL IN A SPACE, EX. A SILO
CN101918152A (en) Separator rotary feeder and the method for using it
WO2008007603A1 (en) Method of designing gas-solid separator
JP6383679B2 (en) Catalyst filling apparatus and catalyst filling method
CN110139707B (en) Dispersing device and defoaming device
KR20170094005A (en) Gas feed device in powder/granular material feeder
RU2294795C2 (en) Method of mixing of the bulk materials and the aerodynamic device for its realization
JP7246705B2 (en) Sprinkling device and catalyst filling device
US10076738B2 (en) Fluidizing device
EP3089801B1 (en) Compact flotation unit having multiple vanes disposed around a cylinder used for waste collection
US5585075A (en) Catalyst loading structure and a loading method for a reactor
KR101805375B1 (en) Particle charging device
WO2023112111A1 (en) Catalyst packing method and catalyst packing apparatus
CN113828101A (en) Runoff adsorption container with integrated loading device
AU772425B2 (en) Device for dispersing a divided solid material inside a receptacle
JP2020059009A (en) Spraying apparatus, and apparatus for filling catalyst
CN115582059A (en) Ore pulp shearing and mixing device and mineral separation and size mixing system with same
JP7025015B2 (en) Separation device and catalyst filling device
US4676770A (en) Pneumatic discharge apparatus for a stripping centrifuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567301

Country of ref document: JP