WO2023112090A1 - Optical power supply converter - Google Patents

Optical power supply converter Download PDF

Info

Publication number
WO2023112090A1
WO2023112090A1 PCT/JP2021/045847 JP2021045847W WO2023112090A1 WO 2023112090 A1 WO2023112090 A1 WO 2023112090A1 JP 2021045847 W JP2021045847 W JP 2021045847W WO 2023112090 A1 WO2023112090 A1 WO 2023112090A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
light receiving
receiving elements
optical waveguide
Prior art date
Application number
PCT/JP2021/045847
Other languages
French (fr)
Japanese (ja)
Inventor
臼井健
卓郎 山中
尚友 磯村
悦司 大村
Original Assignee
株式会社京都セミコンダクター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都セミコンダクター filed Critical 株式会社京都セミコンダクター
Priority to PCT/JP2021/045847 priority Critical patent/WO2023112090A1/en
Priority to JP2022506930A priority patent/JP7101437B1/en
Publication of WO2023112090A1 publication Critical patent/WO2023112090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device

Definitions

  • the present invention relates to an optical power supply converter that converts light input via an optical fiber cable into electric power by photoelectric conversion and outputs the electric power.
  • an optical power supply converter is used to send light to the vicinity of the electronic equipment via an optical fiber cable, photoelectrically convert the light, and supply electric power.
  • a typical single-mode optical fiber cable used for optical input to an optical power supply converter has a small diameter of about 10 ⁇ m for the core through which light propagates. Therefore, for a large optical input exceeding, for example, 1 W, the core may be damaged by the fiber fuse phenomenon, and there is a limit to the amount of optical input. For this reason, an optical feeding converter is known that can increase the light input and the output by inputting light through a plurality of optical fiber cables, for example, as in Patent Document 1.
  • the optical power converter is required to be miniaturized so that it can be accommodated in the device that is the output destination.
  • an optical fiber cable has a clad that surrounds the core and a sheath that surrounds the clad, and the sheath is covered with a protective material to prevent breakage, so it has a certain thickness. Therefore, when connecting a plurality of optical fiber cables, a plurality of light-receiving elements must be spaced apart so that the plurality of optical fiber cables can be arranged. It's not easy. Further, if a voltage/current conversion device is required in order to obtain an output voltage/current corresponding to the output destination, miniaturization becomes even more difficult.
  • An object of the present invention is to provide a compact optical power supply converter that can be easily configured to suppress a decrease in the photoelectric conversion efficiency of a light-receiving element due to the incidence of strong light and to output voltage and current that match the output destination. is to provide
  • An optical power supply converter is an optical power supply converter having a plurality of light receiving elements for converting light incident through an optical fiber cable into electric power, and has a demultiplexing function for light incident from the optical fiber cable.
  • a plurality of light receiving elements are disposed so as to correspond to a plurality of outlets of the optical waveguide element; the plurality of light receiving elements each have an anode electrode and a cathode electrode;
  • the plurality of light receiving elements are connected in series, in parallel, or in series-parallel by a plurality of conductive members respectively connected to the anode electrode and the cathode electrode of the light receiving element.
  • the optical power supply converter demultiplexes the light incident via the optical fiber cable by the optical waveguide element and makes the light incident on the plurality of light receiving elements. Decrease can be suppressed.
  • this optical power supply converter since a plurality of light receiving elements are connected in series, parallel or series-parallel by a plurality of conductive members, it can be easily formed so as to output a voltage and a current suitable for the output destination. can be done.
  • the optical feeding converter can be miniaturized.
  • an optical feeding converter according to the first aspect of the invention, further comprising a semiconductor substrate in which the optical waveguide element and the plurality of light receiving elements are integrally formed on the principal surface side.
  • an optical power feeding converter according to the second aspect of the invention, wherein the optical waveguide element and the plurality of light receiving elements each have a core layer on a clad layer, and the plurality of light receiving elements each include the core layer. It is characterized in that it has a light absorption layer and a semiconductor layer, respectively. According to the above configuration, the plurality of light receiving elements corresponding to the plurality of exits of the optical waveguide element can be easily arranged without positional deviation, and the input light can be made incident on the light receiving elements. .
  • an optical power feeding converter comprising a pair of semiconductor substrates in which the optical waveguide element and the plurality of light receiving elements are integrally formed on main surface sides thereof, The main surface sides of the pair of semiconductor substrates are coupled to face each other so that the light inlets of the optical waveguide elements overlap each other and the plurality of light receiving elements overlap each other.
  • optical power supply converter of the present invention it is possible to suppress the deterioration of the photoelectric conversion efficiency of the light receiving element due to the incidence of strong light, and to easily configure the voltage and current to be output in accordance with the output destination.
  • FIG. 1 is a plan view of an optical feeding converter according to an embodiment of the present invention
  • FIG. FIG. 2 is a sectional view taken along line II-II of FIG. 1
  • 2 is a cross-sectional view taken along line III-III of FIG. 1
  • FIG. FIG. 2 is a cross-sectional view taken along line IV-IV of FIG. 1
  • It is a figure which shows the example of parallel connection of several light receiving element.
  • FIG. 3 is a view equivalent to FIG. 2 showing an etching mask forming process for forming a photodiode
  • FIG. 3 is a view equivalent to FIG.
  • FIG. 2 showing an etching mask forming process for forming an optical waveguide
  • FIG. 3 is a view corresponding to FIG. 2 showing an etching mask forming process for light receiving element isolation
  • FIG. 2 is a plan view of an optical feeding converter provided with an MMI optical waveguide device
  • FIG. 3 is a view equivalent to FIG. 2 showing a modified example of a light receiving element
  • FIG. 4 is a view equivalent to FIG. 3 showing a modification of a light receiving element
  • FIG. 3 is an explanatory diagram of superimposing two optical feeding converters
  • FIG. 11 is a perspective view of optical power converters formed in a superimposed manner
  • the optical power converter 1 includes an optical waveguide element 5 having one inlet 3 and a plurality of (for example, four) outlets 4a to 4d on the main surface 2a side of the semiconductor substrate 2, It has a plurality of light-receiving elements 6a-6d arranged to correspond to the plurality of outlets 4a-4d of the optical waveguide element 5.
  • the semiconductor substrate 2 is, for example, a semi-insulating InP substrate of a III-V group semiconductor.
  • the optical waveguide element 5 has a light splitting function, splits the light incident from the entrance 3 equally into two on the way, and equally splits the split light into two.
  • An optical waveguide is formed to branch symmetrically in two steps.
  • This optical waveguide element 5 has a core layer 8 formed on a cladding layer 7 formed on a main surface 2a of a semiconductor substrate 2.
  • the core layer 8 is branched from an inlet 3 in two stages to form a plurality of outlets 4a to 4d. It is an optical waveguide that continues to
  • the cladding layer 7 is, for example, an n-InP layer of an n-type semiconductor.
  • the core layer 8 is, for example, an InGaAsP layer.
  • the cladding layer 7 and air in contact with the core layer 8 have a lower refractive index than the core layer 8 . Therefore, the light incident on the core layer 8 (optical waveguide) from the inlet 3 travels while being totally reflected at the interface with the cladding layer 7 or air.
  • the clad layer 7 has a thickness of 2 ⁇ m, for example.
  • the core layer 8, which is an optical waveguide, has a thickness of, for example, 3 ⁇ m and a width of, for example, 3 ⁇ m in a cross section perpendicular to the traveling direction of light.
  • Light receiving elements 6a to 6d are arranged so as to correspond to the exits 4a to 4d.
  • the light receiving elements 6a to 6d have a light absorption layer 9 and a p-type semiconductor layer 10 (semiconductor layer) on a core layer 8 on a clad layer 7 of an n-type semiconductor.
  • Light-receiving elements 6a to 6d which are PIN-type photodiodes, are formed by the structure in which the light absorption layer 9 and the core layer 8 are sandwiched between the p-type semiconductor layer 10 and the clad layer 7 of the n-type semiconductor.
  • the light absorption layer 9 is, for example, an InGaAs layer, and has a thickness and width of 3 ⁇ m, for example, and a length of 15 ⁇ m, for example, along the traveling direction of light.
  • the p-type semiconductor layer 10 is, for example, a p-InP layer, and has a thickness of, for example, 1 ⁇ m, and a width and length equivalent to those of the light absorption layer 9 .
  • light is input from the output end of a single-mode optical fiber cable OC to the entrance 3 of the optical waveguide element 5 as indicated by an arrow L1.
  • This light travels through the core layer 8 while being totally reflected at the interface with the air or the clad layer 7, reaches, for example, the exit 4a of the optical waveguide element 5 as indicated by arrow L2, and enters the light receiving element 6a. Since the optical waveguide element 5 equally divides the light, the light reaches the other outlets 4b-4d and enters the corresponding light-receiving elements 6b-6d.
  • the light receiving elements 6a to 6d emit evanescent light that penetrates into the light absorption layer 9 due to the wave nature of the light traveling through the core layer 8 by the wavelength of the light. current).
  • the input light is infrared light with a wavelength of about 1.3 ⁇ m, for example, and is continuously input at a constant intensity and converted into constant DC power by the light receiving elements 6a to 6d.
  • An anode electrode 11 (for example, a metal film containing titanium, platinum and gold) is formed on the p-type semiconductor layer 10 and connected to the p-type semiconductor layer 10 .
  • a cathode electrode 12 (for example, a metal film containing gold, germanium, nickel and titanium) connected to the n-type semiconductor layer is formed on the clad layer 7 which is an n-type semiconductor layer.
  • the clad layer 7 extends from the optical waveguide element 5 to the plurality of light receiving elements 6a to 6d. 7 has been removed.
  • a portion 14 is formed.
  • the anode terminal portion 13 and the cathode terminal portion 14 are metal films containing, for example, titanium, platinum, and gold.
  • a plurality of light receiving elements 6a to 6d are connected in series by a plurality of conductive members 15 such as gold wires.
  • the anode electrode 11 of the light receiving element 6a at one end of the plurality of light receiving elements 6a to 6d connected in series is connected to the anode terminal portion 13 by the conductive member 16, and the cathode electrode 12 of the light receiving element 6d at the other end is conductive. It is connected to the cathode terminal portion 14 by a member 17 .
  • the anode terminal portion 13 and the cathode terminal portion 14 can be interchanged depending on the connection mode of the conductive members 15, 16, and 17.
  • a plurality of light receiving elements 6a to 6d are connected by a plurality of conductive members 15, they can be connected not only in series as shown in FIG. 1, but also in parallel as shown in FIG. It is also possible to connect in series and parallel by combining series connection and parallel connection. Therefore, the plurality of light receiving elements 6a to 6d can be connected so that the optical power supply converter 1 supplies power with voltage and current corresponding to the connection destination.
  • a method for forming the optical power supply converter 1 will be described.
  • a cladding layer 7 n-type semiconductor layer
  • a core layer 8 and a light absorption layer 9 are formed on the main surface 2a side of a wafer-shaped semiconductor substrate 2 by a known film formation method such as an epitaxial growth method.
  • a p-type semiconductor layer 10 is formed, and an etching mask 21 for forming a photodiode is formed by, for example, a known photolithography method (etching mask forming step for forming a photodiode).
  • the p-type semiconductor layer 10 and the light absorption layer 9 are etched by a known etching method such as the RIE method (reactive ion etching method), and the etching mask 21 is removed.
  • an etching mask 22 for forming an optical waveguide is formed by a known photolithography method (etching mask forming step for forming an optical waveguide). Then, the core layer 8 is etched by a known etching method such as RIE to form the optical waveguide element 5, and the etching mask 22 is removed.
  • an etching mask 23 for light-receiving element isolation is formed by a known photolithography method (etching mask forming process for light-receiving element isolation). Then, the cladding layer 7 is etched by a known etching method such as RIE to expose the main surface 2a of the semiconductor substrate 2, and the etching mask 23 is removed. At this time, the cladding layer 7 between the plurality of light receiving elements 6a to 6d is removed (see FIGS. 1 and 3).
  • metal films for forming the anode electrode 11, the cathode electrode 12, the anode terminal portion 13, and the cathode terminal portion 14 are selectively deposited on predetermined regions by, for example, a vapor deposition method, and separated into individual pieces by cleaving or cutting. 1 to form an optical power supply converter 1 having a rectangular shape in a plan view, and are connected by conductive members 15, 16, and 17 (for example, see FIG. 1).
  • An antireflection film such as a silicon nitride film is preferably formed at the entrance 3 of the optical waveguide element 5 .
  • the optical power supply converter 1 includes a fixing mechanism for fixing the output end of the optical fiber cable OC at a position corresponding to the entrance 3 of the optical waveguide element 5, an anode terminal portion 13, a cathode terminal portion 14, and a fixing mechanism. It is housed in a case with an output terminal for supplying power to the outside.
  • the optical waveguide element 5 may be an MMI (Multi-Mode Interference) type waveguide element.
  • MMI Multi-Mode Interference
  • the light absorption layer 29 InGaAs layer
  • an optical waveguide element 25 having non-doped InP layers as clad layers 27a and 27b sandwiching a core layer 28 is formed.
  • PIN photodiodes in which a light absorption layer 29 (InGaAs layer) is sandwiched between an n-type semiconductor layer 30 (n-InP layer) and a p-type semiconductor layer 31 (p-InP layer) are used as light receiving elements 26a to 26d. ing. Since light directly enters the light absorption layer 29 from the core layer 28, an improvement in photoelectric conversion efficiency can be expected.
  • the optical feeding converter 1 in FIG. 1 is assumed to be a first optical feeding converter 1a.
  • a second optical feed converter 1b is connected to the optical feed converter 1 by a plurality of conductive members 15, 16, and 17 so that the connections of the plurality of light receiving elements 6a to 6d are in a mirror image relationship with the first optical feed converter 1a. and so that the inlets 3 of the optical waveguide elements 5 of the first and second optical feed converters 1a and 1b overlap each other and the corresponding light receiving elements 6a to 6d of the first and second optical feed converters 1a and 1b overlap each other.
  • the major surface 2a sides of both semiconductor substrates 2 are joined in a facing manner.
  • the optical power supply converter 41 By coupling the pair of semiconductor substrates 2 in this manner, it is possible to form the optical power supply converter 41 in which the number of light receiving elements corresponding to one optical fiber cable OC is increased while suppressing an increase in size. . Moreover, since the first and second optical power supply converters 1a and 1b can be separately manufactured by the conductive members 15, 16 and 17, the optical power supply converter 41 can be easily formed.
  • the anode terminal portions 13 and the cathode terminal portions 14 are connected and bonded to each other by, for example, a conductive paste 42, and the clad layers 7 are bonded to each other by an adhesive 43, for example.
  • the anode electrode 11 of the light receiving element 6a of the first optical feeding converter 1a and the corresponding anode electrode 11 of the light receiving element 6d of the second optical feeding converter 1b are connected by a conductive paste. be done. The same applies to other anode electrodes.
  • the lead frames may be sandwiched between them to form external output terminals. Since the first and second optical power converters 1a and 1b are connected in parallel, the optical power converter 41 can increase the output current while maintaining the output voltage.
  • An optical power supply converter 41 may be formed in which a pair of semiconductor substrates 2 are coupled via a spacer member.
  • the optical power supply converter 1 demultiplexes the light incident via the optical fiber cable OC by the optical waveguide element 5 and makes the light incident on the plurality of light receiving elements 6a to 6d. A decrease in conversion efficiency can be suppressed. Since a plurality of light-receiving elements 6a to 6d are connected in series, parallel or series-parallel by a plurality of conductive members 15, 16 and 17, the optical power supply converter can output a voltage and a current suitable for the output destination. 1 can be easily formed. In addition, since light is demultiplexed by the optical waveguide element 5, the number of connections of the optical fiber cables OC can be reduced. Since no device is required, the size of the optical power supply converter 1 can be reduced.
  • the optical waveguide element 5 and the plurality of light receiving elements 6a to 6d are aligned with the corresponding outlets 4a to 4d of the optical waveguide element 5 and integrally formed on the semiconductor substrate 2.
  • the input light can be incident on the light receiving elements 6a to 6d without positional deviation of the light receiving elements 6a to 6d.
  • the optical waveguide element 5 and the plurality of light receiving elements 6a to 6d each have a core layer 8 on the cladding layer 7, and the plurality of light receiving elements 6a to 6d have a light absorption layer 9 and a semiconductor layer on the core layer 8. It has a p-type semiconductor layer 10 . Therefore, the plurality of light receiving elements 6a to 6d corresponding to the plurality of outlets 4a to 4d of the optical waveguide element 5 can be easily arranged without positional deviation, and the input light can be detected by the light receiving elements 6a to 6d. can be made incident on
  • An optical feed converter 41 combining a pair of optical feed converters 1 includes a pair of semiconductors so that the light inlets 3 of the optical waveguide element 5 overlap each other and the plurality of light receiving elements 6a to 6d overlap each other.
  • the main surfaces 2a sides of the substrates 2 are joined to face each other. Therefore, it is possible to increase the number of light receiving elements 6a to 6d corresponding to one optical fiber cable OC while suppressing an increase in the size of the optical power supply converter 41 and maintaining a small size.
  • the number of exits of the optical waveguide element 5 is not limited to four, and may have, for example, two or eight or more exits.
  • An optical power supply converter can also be formed by integrally forming an optical waveguide device having, for example, a cladding layer made of SiO2 and a core layer made of Si, and a light receiving device on a Si substrate, which is a Group IV semiconductor. .
  • those skilled in the art can implement various modifications to the above embodiment without departing from the scope of the present invention, and the present invention includes such modifications.
  • optical feed converter 1a first optical feed converter 1b: second optical feed converter 2: semiconductor substrate 2a: main surface 3: inlets 4a to 4d: outlet 5: optical waveguide elements 6a to 6d: light receiving element 7: clad layer 8: core layer 9: light absorption layer 10: p-type semiconductor layer (semiconductor layer) 11: Anode electrode 12: Cathode electrode 13: Anode terminal portion 14: Cathode terminal portion 15, 16, 17: Conductive members 21, 22, 23: Etching mask 25: Optical waveguide element 26: Light receiving element 27a, 27b: Clad layer 28: core layer 29: light absorption layer 30: n-type semiconductor layer 31: p-type semiconductor layer 41: optical power supply converter OC: optical fiber cable

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

[Problem] To provide a compact optical power supply converter which enables suppression of reduction in photoelectric conversion efficiency of a light reception element due to entry of strong light, and which can be easily configured such that voltage and current are outputted according to an output destination. [Solution] An optical power supply converter (1) is provided with a plurality of light reception elements (6a-6d) for converting light, which enters through an optical fiber cable (OC), to electric power; and an optical waveguide element (5) equipped with a function for spectrally separating light which enters through the optical fiber cable (OC). The light reception elements (6a-6d) arranged so as to correspond to a plurality of outlets (4a-4d) of the optical waveguide element each have an anode electrode (10) and a cathode electrode (11). The plurality of light reception elements (6a-6d) are formed by being connected in series and in parallel, or in series-parallel, by a plurality of electroconductive members (15, 16, 17) connected to the anode electrodes (10) and the cathode electrodes (11) of the plurality of light reception elements (6a-6d).

Description

光給電コンバータoptical power converter
 本発明は、光ファイバケーブルを介して入力した光を光電変換によって電力に変換して出力する光給電コンバータに関する。 The present invention relates to an optical power supply converter that converts light input via an optical fiber cable into electric power by photoelectric conversion and outputs the electric power.
 給電設備がない遠隔地、給電による微弱な電磁界がノイズとなる環境、防爆を必要とする環境、電気的相互影響がある超高電圧設備内等、特殊な環境では電源ケーブルを介して電子機器類を作動させる電力を供給できない場合がある。そのため、電子機器類の傍まで光ファイバケーブルを介して光を送り、この光を光電変換して電力を供給する光給電コンバータが利用されている。 In special environments, such as remote locations without power supply facilities, environments where weak electromagnetic fields from power supply become noise, environments requiring explosion protection, and ultra-high voltage facilities with electrical mutual influence, electronic devices can be connected via power cables. may not be able to supply power to operate Therefore, an optical power supply converter is used to send light to the vicinity of the electronic equipment via an optical fiber cable, photoelectrically convert the light, and supply electric power.
 光給電コンバータへの光入力に使用される一般的なシングルモード光ファイバケーブルは、光が伝搬するコアの直径が10μm程度と小さい。そのため、例えば1Wを超える大きい光入力に対して、ファイバヒューズ現象によってコアが損傷する場合があり、光入力を大きさには限界がある。そのため、例えば特許文献1のように、複数の光ファイバケーブルを介して光を入力することにより、光入力を大きくして出力を大きくすることができる光給電コンバータが知られている。 A typical single-mode optical fiber cable used for optical input to an optical power supply converter has a small diameter of about 10 μm for the core through which light propagates. Therefore, for a large optical input exceeding, for example, 1 W, the core may be damaged by the fiber fuse phenomenon, and there is a limit to the amount of optical input. For this reason, an optical feeding converter is known that can increase the light input and the output by inputting light through a plurality of optical fiber cables, for example, as in Patent Document 1.
 一方、光給電コンバータに要求される出力電圧、出力電流は、出力先の電子機器類によって異なる場合が多い。そのため、例えば特許文献2のように、光給電コンバータの出力電圧を高くするために、アレイ状に分割された受光素子を直列に接続した光給電コンバータが知られている。 On the other hand, the output voltage and output current required for optical power supply converters often differ depending on the electronic devices to which they are output. For this reason, an optical power supply converter is known in which light receiving elements divided in an array are connected in series in order to increase the output voltage of the optical power supply converter, as disclosed in Patent Document 2, for example.
特許第6795870号公報Japanese Patent No. 6795870 米国特許出願公開第2011/0108081号明細書U.S. Patent Application Publication No. 2011/0108081
 しかし、光入力が大きくなると、光電変換する受光素子は、例えば発熱の影響によって光電変換効率が制限されてしまい、光給電コンバータの出力を大きくできない場合がある。そのため、特許文献1のような複数の光ファイバケーブルに対応するように、特許文献2のように複数の受光素子を装備した光給電コンバータを形成することが考えられる。しかし、複数の光ファイバケーブルを敷設し、これら複数の光ファイバケーブルの出力端を夫々対応する受光素子に合わせて固定する必要があるので容易ではない。 However, when the light input increases, the photoelectric conversion efficiency of the light-receiving element that performs photoelectric conversion is limited due to, for example, heat generation, and the output of the optical power supply converter may not be increased. Therefore, it is conceivable to form an optical feeding converter equipped with a plurality of light-receiving elements as in Patent Document 2 so as to correspond to a plurality of optical fiber cables as in Patent Document 1. However, it is not easy because it is necessary to lay a plurality of optical fiber cables and fix the output ends of the plurality of optical fiber cables to the respective corresponding light receiving elements.
 また、光給電コンバータは、出力先となる機器内に収容できるように小型化することが要求されている。しかし、光ファイバケーブルは、コアの周囲を覆うクラッドとクラッドの周囲を覆うシースを有し、さらに破損し難くするためにシースの周囲を保護材で覆うので、ある程度の太さがある。そのため、複数の光ファイバケーブルを接続する場合には、複数の光ファイバケーブルを並べることができるように複数の受光素子を離隔させて配置することになるので、光給電コンバータを小型化することは容易ではない。そして、出力先に応じた出力電圧、出力電流にするために、電圧、電流の変換装置が必要な場合には一層小型化が困難になる。 In addition, the optical power converter is required to be miniaturized so that it can be accommodated in the device that is the output destination. However, an optical fiber cable has a clad that surrounds the core and a sheath that surrounds the clad, and the sheath is covered with a protective material to prevent breakage, so it has a certain thickness. Therefore, when connecting a plurality of optical fiber cables, a plurality of light-receiving elements must be spaced apart so that the plurality of optical fiber cables can be arranged. It's not easy. Further, if a voltage/current conversion device is required in order to obtain an output voltage/current corresponding to the output destination, miniaturization becomes even more difficult.
 本発明の目的は、強い光の入射による受光素子の光電変換効率の低下を抑制すると共に、出力先に合わせた電圧、電流で出力されるように容易に構成することができる小型の光給電コンバータを提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a compact optical power supply converter that can be easily configured to suppress a decrease in the photoelectric conversion efficiency of a light-receiving element due to the incidence of strong light and to output voltage and current that match the output destination. is to provide
 請求項1の発明の光給電コンバータは、光ファイバケーブルを介して入射する光を電力に変換する複数の受光素子を有する光給電コンバータにおいて、前記光ファイバケーブルから入射する光の分波機能を備えた光導波路素子を有し、前記光導波路素子の複数の出口に対応するように前記複数の受光素子が配設され、前記複数の受光素子が、アノード電極及びカソード電極を夫々有し、前記複数の受光素子の前記アノード電極及び前記カソード電極に夫々接続された複数の導電性部材によって、前記複数の受光素子が直列、並列又は直並列に接続されて形成されたことを特徴としている。 An optical power supply converter according to the first aspect of the invention is an optical power supply converter having a plurality of light receiving elements for converting light incident through an optical fiber cable into electric power, and has a demultiplexing function for light incident from the optical fiber cable. a plurality of light receiving elements are disposed so as to correspond to a plurality of outlets of the optical waveguide element; the plurality of light receiving elements each have an anode electrode and a cathode electrode; The plurality of light receiving elements are connected in series, in parallel, or in series-parallel by a plurality of conductive members respectively connected to the anode electrode and the cathode electrode of the light receiving element.
 上記構成によれば、光給電コンバータは、光ファイバケーブルを介して入射する光を光導波路素子によって分波して複数の受光素子に入射させるので、強い光の入射による受光素子の光電変換効率の低下を抑制することができる。そして、この光給電コンバータは、複数の導電性部材によって複数の受光素子が直列、並列又は直並列に接続されるので、出力先に合わせた電圧、電流が出力されるように容易に形成することができる。また、光導波路素子によって光を分波するので光ファイバケーブルの接続数を少なくすることができ、複数の受光素子を複数の導電性部材で接続するので電圧、電流の変換装置が不要であるため、光給電コンバータを小型化することができる。 According to the above configuration, the optical power supply converter demultiplexes the light incident via the optical fiber cable by the optical waveguide element and makes the light incident on the plurality of light receiving elements. Decrease can be suppressed. In this optical power supply converter, since a plurality of light receiving elements are connected in series, parallel or series-parallel by a plurality of conductive members, it can be easily formed so as to output a voltage and a current suitable for the output destination. can be done. In addition, since light is demultiplexed by the optical waveguide element, the number of optical fiber cable connections can be reduced, and since a plurality of light-receiving elements are connected with a plurality of conductive members, a voltage/current conversion device is not required. , the optical feeding converter can be miniaturized.
 請求項2の発明の光給電コンバータは、請求項1の発明において、前記光導波路素子と前記複数の受光素子とが主面側に一体的に形成された半導体基板を有することを特徴としている。
 上記構成によれば、半導体基板に光導波路素子と複数の受光素子が、対応する光導波路素子の出口に位置合わせされ一体的に形成されているので、光導波路素子と受光素子の位置ずれが発生せず、入力された光を受光素子に入射させることができる。
According to a second aspect of the invention, there is provided an optical feeding converter according to the first aspect of the invention, further comprising a semiconductor substrate in which the optical waveguide element and the plurality of light receiving elements are integrally formed on the principal surface side.
According to the above configuration, since the optical waveguide element and the plurality of light receiving elements are aligned with the exits of the corresponding optical waveguide elements and integrally formed on the semiconductor substrate, misalignment occurs between the optical waveguide element and the light receiving element. The input light can be made incident on the light-receiving element.
 請求項3の発明の光給電コンバータは、請求項2の発明において、前記光導波路素子と前記複数の受光素子は、クラッド層上にコア層を有し、前記複数の受光素子は、前記コア層の上に光吸収層と半導体層を夫々有することを特徴としている。
 上記構成によれば、光導波路素子の複数の出口に対応する複数の受光素子を位置ずれが発生しないように容易に配設することができ、入力された光を受光素子に入射させることができる。
According to a third aspect of the invention, there is provided an optical power feeding converter according to the second aspect of the invention, wherein the optical waveguide element and the plurality of light receiving elements each have a core layer on a clad layer, and the plurality of light receiving elements each include the core layer. It is characterized in that it has a light absorption layer and a semiconductor layer, respectively.
According to the above configuration, the plurality of light receiving elements corresponding to the plurality of exits of the optical waveguide element can be easily arranged without positional deviation, and the input light can be made incident on the light receiving elements. .
 請求項4の発明の光給電コンバータは、請求項1の発明において、前記光導波路素子と前記複数の受光素子とが夫々主面側に一体的に形成された1対の半導体基板を有し、前記光導波路素子の光の入口同士が重なるように且つ前記複数の受光素子同士が重なるように、前記1対の半導体基板の前記主面側同士を対向状に結合させたことを特徴としている。
 上記構成によれば、光給電コンバータのサイズの増加を抑制しながら1本の光ファイバケーブルに対応する受光素子の数を増加させることができる。
According to a fourth aspect of the invention, there is provided an optical power feeding converter according to the first aspect of the invention, comprising a pair of semiconductor substrates in which the optical waveguide element and the plurality of light receiving elements are integrally formed on main surface sides thereof, The main surface sides of the pair of semiconductor substrates are coupled to face each other so that the light inlets of the optical waveguide elements overlap each other and the plurality of light receiving elements overlap each other.
According to the above configuration, it is possible to increase the number of light receiving elements corresponding to one optical fiber cable while suppressing an increase in the size of the optical power supply converter.
 本発明の光給電コンバータによれば、強い光の入射による受光素子の光電変換効率の低下を抑制すると共に、出力先に合わせた電圧、電流で出力されるように容易に構成することができる。 According to the optical power supply converter of the present invention, it is possible to suppress the deterioration of the photoelectric conversion efficiency of the light receiving element due to the incidence of strong light, and to easily configure the voltage and current to be output in accordance with the output destination.
本発明の実施例に係る光給電コンバータの平面図である。1 is a plan view of an optical feeding converter according to an embodiment of the present invention; FIG. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 1; 図1のIII-III線断面図である。2 is a cross-sectional view taken along line III-III of FIG. 1; FIG. 図1のIV-IV線断面図である。FIG. 2 is a cross-sectional view taken along line IV-IV of FIG. 1; 複数の受光素子の並列接続の例を示す図である。It is a figure which shows the example of parallel connection of several light receiving element. 複数の受光素子の直並列接続の例を示す図である。。It is a figure which shows the example of the serial-parallel connection of several light receiving element. . フォトダイオード形成用のエッチングマスク形成工程を示す図2相当図である。FIG. 3 is a view equivalent to FIG. 2 showing an etching mask forming process for forming a photodiode; 光導波路形成用のエッチングマスク形成工程を示す図2相当図である。FIG. 3 is a view equivalent to FIG. 2 showing an etching mask forming process for forming an optical waveguide; 受光素子分離用のエッチングマスク形成工程を示す図2相当図である。FIG. 3 is a view corresponding to FIG. 2 showing an etching mask forming process for light receiving element isolation; MMI型光導波路素子を備えた光給電コンバータの平面図である。FIG. 2 is a plan view of an optical feeding converter provided with an MMI optical waveguide device; 受光素子の変更例を示す図2相当図である。FIG. 3 is a view equivalent to FIG. 2 showing a modified example of a light receiving element; 受光素子の変更例を示す図3相当図である。FIG. 4 is a view equivalent to FIG. 3 showing a modification of a light receiving element; 2つの光給電コンバータを重ね合わせる説明図である。FIG. 3 is an explanatory diagram of superimposing two optical feeding converters; 重ね合わせて形成された光給電コンバータの斜視図である。FIG. 11 is a perspective view of optical power converters formed in a superimposed manner;
 以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, the mode for carrying out the present invention will be described based on examples.
 図1~図4に示すように、光給電コンバータ1は、半導体基板2の主面2a側に、1つの入口3と複数(例えば4つ)の出口4a~4dを有する光導波路素子5と、光導波路素子5の複数の出口4a~4dに対応するように配設された複数の受光素子6a~6dを有する。半導体基板2は、例えばIII-V属半導体の半絶縁性のInP基板である。 As shown in FIGS. 1 to 4, the optical power converter 1 includes an optical waveguide element 5 having one inlet 3 and a plurality of (for example, four) outlets 4a to 4d on the main surface 2a side of the semiconductor substrate 2, It has a plurality of light-receiving elements 6a-6d arranged to correspond to the plurality of outlets 4a-4d of the optical waveguide element 5. FIG. The semiconductor substrate 2 is, for example, a semi-insulating InP substrate of a III-V group semiconductor.
 光導波路素子5は光の分波機能を有し、入口3から入射する光を途中で2つに均等に分波し、この分けられた光を夫々2つに均等に分波するように、光導波路が2段階で対称に分岐するように形成されている。この光導波路素子5は、半導体基板2の主面2aに形成されたクラッド層7上にコア層8が形成され、このコア層8が入口3から2段階で分岐されて複数の出口4a~4dに連なる光導波路になっている。クラッド層7は、例えばn型半導体のn-InP層である。コア層8は、例えばInGaAsP層である。 The optical waveguide element 5 has a light splitting function, splits the light incident from the entrance 3 equally into two on the way, and equally splits the split light into two. An optical waveguide is formed to branch symmetrically in two steps. This optical waveguide element 5 has a core layer 8 formed on a cladding layer 7 formed on a main surface 2a of a semiconductor substrate 2. The core layer 8 is branched from an inlet 3 in two stages to form a plurality of outlets 4a to 4d. It is an optical waveguide that continues to The cladding layer 7 is, for example, an n-InP layer of an n-type semiconductor. The core layer 8 is, for example, an InGaAsP layer.
 コア層8に接するクラッド層7及び空気は、コア層8よりも屈折率が小さい。そのため、入口3からコア層8(光導波路)に入射させた光はクラッド層7又は空気との界面で全反射しながら進行する。クラッド層7の厚さは、例えば2μmである。光導波路であるコア層8は、光の進行方向と直交する断面において、厚さが例えば3μm、幅が例えば3μmである。 The cladding layer 7 and air in contact with the core layer 8 have a lower refractive index than the core layer 8 . Therefore, the light incident on the core layer 8 (optical waveguide) from the inlet 3 travels while being totally reflected at the interface with the cladding layer 7 or air. The clad layer 7 has a thickness of 2 μm, for example. The core layer 8, which is an optical waveguide, has a thickness of, for example, 3 μm and a width of, for example, 3 μm in a cross section perpendicular to the traveling direction of light.
 出口4a~4dに対応するように、受光素子6a~6dが配設されている。受光素子6a~6dは、n型半導体のクラッド層7上のコア層8の上に、光吸収層9とp型半導体層10(半導体層)を有する。このp型半導体層10と、n型半導体のクラッド層7とで光吸収層9とコア層8を挟む構造によって、PIN型フォトダイオードである受光素子6a~6dが形成されている。光吸収層9は例えばInGaAs層であり、その厚さと幅が夫々例えば3μm、光の進行方向に沿う長さが例えば15μmである。p型半導体層10は例えばp-InP層であり、その厚さが例えば1μm、幅と長さが光吸収層9と同等である。 Light receiving elements 6a to 6d are arranged so as to correspond to the exits 4a to 4d. The light receiving elements 6a to 6d have a light absorption layer 9 and a p-type semiconductor layer 10 (semiconductor layer) on a core layer 8 on a clad layer 7 of an n-type semiconductor. Light-receiving elements 6a to 6d, which are PIN-type photodiodes, are formed by the structure in which the light absorption layer 9 and the core layer 8 are sandwiched between the p-type semiconductor layer 10 and the clad layer 7 of the n-type semiconductor. The light absorption layer 9 is, for example, an InGaAs layer, and has a thickness and width of 3 μm, for example, and a length of 15 μm, for example, along the traveling direction of light. The p-type semiconductor layer 10 is, for example, a p-InP layer, and has a thickness of, for example, 1 μm, and a width and length equivalent to those of the light absorption layer 9 .
 例えばシングルモードの光ファイバケーブルOCの出射端から光導波路素子5の入口3に矢印L1で示すように光が入力される。この光は、空気又はクラッド層7との界面で全反射しながらコア層8を進行して、矢印L2で示すように光導波路素子5の例えば出口4aに到達し、受光素子6aに入射する。光導波路素子5は光を均等に分けるので、他の出口4b~4dにも光が到達し、対応する受光素子6b~6dに入射する。 For example, light is input from the output end of a single-mode optical fiber cable OC to the entrance 3 of the optical waveguide element 5 as indicated by an arrow L1. This light travels through the core layer 8 while being totally reflected at the interface with the air or the clad layer 7, reaches, for example, the exit 4a of the optical waveguide element 5 as indicated by arrow L2, and enters the light receiving element 6a. Since the optical waveguide element 5 equally divides the light, the light reaches the other outlets 4b-4d and enters the corresponding light-receiving elements 6b-6d.
 受光素子6a~6dは、コア層8と光吸収層9との界面において、コア層8を進行する光が波動性によって光吸収層9内に光の波長程度侵入するエバネッセント光を、電力(光電流)に変換する。尚、入力される光は、波長が例えば1.3μm程度の赤外光であり、一定の強さで連続的に入力され、受光素子6a~6dで一定の直流電力に変換される。 At the interface between the core layer 8 and the light absorption layer 9, the light receiving elements 6a to 6d emit evanescent light that penetrates into the light absorption layer 9 due to the wave nature of the light traveling through the core layer 8 by the wavelength of the light. current). The input light is infrared light with a wavelength of about 1.3 μm, for example, and is continuously input at a constant intensity and converted into constant DC power by the light receiving elements 6a to 6d.
 p型半導体層10上には、このp型半導体層10に接続するアノード電極11(例えばチタン、白金、金を含む金属膜)が形成されている。n型半導体層であるクラッド層7には、このn型半導体層に接続するカソード電極12(例えば金、ゲルマニウム、ニッケル、チタンを含む金属膜)が形成されている。 An anode electrode 11 (for example, a metal film containing titanium, platinum and gold) is formed on the p-type semiconductor layer 10 and connected to the p-type semiconductor layer 10 . A cathode electrode 12 (for example, a metal film containing gold, germanium, nickel and titanium) connected to the n-type semiconductor layer is formed on the clad layer 7 which is an n-type semiconductor layer.
 クラッド層7は、光導波路素子5から複数の受光素子6a~6dまでつながっているが、複数の受光素子6a~6dを電気的に分離するために、これら受光素子6a~6dの間でクラッド層7が除去されている。半導体基板2の主面2aには、光給電コンバータ1からの出力端子として、受光素子6aのアノード電極11に接続されたアノード端子部13と、受光素子6dのカソード電極12に接続されたカソード端子部14が形成されている。アノード端子部13及びカソード端子部14は、例えばチタン、白金、金を含む金属膜である。 The clad layer 7 extends from the optical waveguide element 5 to the plurality of light receiving elements 6a to 6d. 7 has been removed. On the main surface 2a of the semiconductor substrate 2, as output terminals from the optical power supply converter 1, an anode terminal portion 13 connected to the anode electrode 11 of the light receiving element 6a and a cathode terminal connected to the cathode electrode 12 of the light receiving element 6d are provided. A portion 14 is formed. The anode terminal portion 13 and the cathode terminal portion 14 are metal films containing, for example, titanium, platinum, and gold.
 複数の受光素子6a~6dは、例えば金ワイヤのような複数の導電性部材15によって直列に接続されている。そして、直列接続された複数の受光素子6a~6dの一端の受光素子6aのアノード電極11が導電性部材16によってアノード端子部13に接続され、他端の受光素子6dのカソード電極12が導電性部材17によってカソード端子部14に接続されている。尚、導電性部材15,16,17の接続態様によって、アノード端子部13とカソード端子部14を入れ替えることができる。 A plurality of light receiving elements 6a to 6d are connected in series by a plurality of conductive members 15 such as gold wires. The anode electrode 11 of the light receiving element 6a at one end of the plurality of light receiving elements 6a to 6d connected in series is connected to the anode terminal portion 13 by the conductive member 16, and the cathode electrode 12 of the light receiving element 6d at the other end is conductive. It is connected to the cathode terminal portion 14 by a member 17 . The anode terminal portion 13 and the cathode terminal portion 14 can be interchanged depending on the connection mode of the conductive members 15, 16, and 17. FIG.
 複数の受光素子6a~6dが複数の導電性部材15によって接続されるので、図1のように直列に接続するだけでなく、図5のように並列に接続することもでき、図6のように直列接続と並列接続を組み合わせて直並列に接続することもできる。従って、光給電コンバータ1が接続先に応じた電圧、電流で電力を供給するように、複数の受光素子6a~6dを接続することができる。 Since a plurality of light receiving elements 6a to 6d are connected by a plurality of conductive members 15, they can be connected not only in series as shown in FIG. 1, but also in parallel as shown in FIG. It is also possible to connect in series and parallel by combining series connection and parallel connection. Therefore, the plurality of light receiving elements 6a to 6d can be connected so that the optical power supply converter 1 supplies power with voltage and current corresponding to the connection destination.
 次に、光給電コンバータ1の形成方法について説明する。
 図7のように、ウェハ状の半導体基板2の主面2a側に、例えばエピタキシャル成長法のような公知の成膜方法によって、クラッド層7(n型半導体層)、コア層8、光吸収層9、p型半導体層10を形成し、例えば公知のフォトリソグラフィ法によってフォトダイオード形成用のエッチングマスク21を形成する(フォトダイオード形成用のエッチングマスク形成工程)。そして、例えばRIE法(反応性イオンエッチング法)のような公知のエッチング方法によって、p型半導体層10と光吸収層9をエッチングし、エッチングマスク21を除去する。
Next, a method for forming the optical power supply converter 1 will be described.
As shown in FIG. 7, a cladding layer 7 (n-type semiconductor layer), a core layer 8, and a light absorption layer 9 are formed on the main surface 2a side of a wafer-shaped semiconductor substrate 2 by a known film formation method such as an epitaxial growth method. , a p-type semiconductor layer 10 is formed, and an etching mask 21 for forming a photodiode is formed by, for example, a known photolithography method (etching mask forming step for forming a photodiode). Then, the p-type semiconductor layer 10 and the light absorption layer 9 are etched by a known etching method such as the RIE method (reactive ion etching method), and the etching mask 21 is removed.
 次に図8のように、公知のフォトリソグラフィ法によって光導波路形成用のエッチングマスク22を形成する(光導波路形成用のエッチングマスク形成工程)。そして例えばRIE法のような公知のエッチング方法によって、コア層8をエッチングして光導波路素子5を形成し、エッチングマスク22を除去する。 Next, as shown in FIG. 8, an etching mask 22 for forming an optical waveguide is formed by a known photolithography method (etching mask forming step for forming an optical waveguide). Then, the core layer 8 is etched by a known etching method such as RIE to form the optical waveguide element 5, and the etching mask 22 is removed.
 次に図9のように、受光素子分離用のエッチングマスク23を公知のフォトリソグラフィ法によって形成する(受光素子分離用のエッチングマスク形成工程)。そして、例えばRIE法のような公知のエッチング方法によって、クラッド層7をエッチングして半導体基板2の主面2aを露出させ、エッチングマスク23を除去する。このとき、複数の受光素子6a~6dの間のクラッド層7が除去される(図1、図3参照)。 Next, as shown in FIG. 9, an etching mask 23 for light-receiving element isolation is formed by a known photolithography method (etching mask forming process for light-receiving element isolation). Then, the cladding layer 7 is etched by a known etching method such as RIE to expose the main surface 2a of the semiconductor substrate 2, and the etching mask 23 is removed. At this time, the cladding layer 7 between the plurality of light receiving elements 6a to 6d is removed (see FIGS. 1 and 3).
 最後に、例えば蒸着法によって、アノード電極11、カソード電極12、アノード端子部13、カソード端子部14を形成するための金属膜を夫々所定の領域に選択的に堆積し、劈開又は切断により個片化して平面視矩形の光給電コンバータ1を形成し、導電性部材15,16,17による接続を施す(例えば図1参照)。光導波路素子5の入口3には、例えばシリコン窒化膜のような反射防止膜が形成されることが好ましい。尚、図示を省略するが、この光給電コンバータ1は、光導波路素子5の入口3に対応する位置に光ファイバケーブルOCの出射端を固定する固定機構と、アノード端子部13、カソード端子部14から外部に電力を供給するための出力端子を備えたケースに収容される。 Finally, metal films for forming the anode electrode 11, the cathode electrode 12, the anode terminal portion 13, and the cathode terminal portion 14 are selectively deposited on predetermined regions by, for example, a vapor deposition method, and separated into individual pieces by cleaving or cutting. 1 to form an optical power supply converter 1 having a rectangular shape in a plan view, and are connected by conductive members 15, 16, and 17 (for example, see FIG. 1). An antireflection film such as a silicon nitride film is preferably formed at the entrance 3 of the optical waveguide element 5 . Although illustration is omitted, the optical power supply converter 1 includes a fixing mechanism for fixing the output end of the optical fiber cable OC at a position corresponding to the entrance 3 of the optical waveguide element 5, an anode terminal portion 13, a cathode terminal portion 14, and a fixing mechanism. It is housed in a case with an output terminal for supplying power to the outside.
 図10に示すように、光導波路素子5はMMI(Multi-Mode Interference)型導波路素子であってもよい。また、例えば図11、図12に示すように、光導波路素子25の出口24a~24dにおいて、矢印L2で示すコア層28(InGaAsP層)の光の進行方向端部に光吸収層29(InGaAs層)が接続された受光素子26a~26dが形成されてもよい。ここでは、コア層28を上下に挟むクラッド層27a,27bとしてノンドープのInP層を有する光導波路素子25が形成されている。また、n型半導体層30(n-InP層)とp型半導体層31(p-InP層)とで光吸収層29(InGaAs層)を挟んだPIN型フォトダイオードが受光素子26a~26dになっている。光がコア層28から光吸収層29に直接入射するので、光電変換効率の向上が期待できる。 As shown in FIG. 10, the optical waveguide element 5 may be an MMI (Multi-Mode Interference) type waveguide element. For example, as shown in FIGS. 11 and 12, at the exits 24a to 24d of the optical waveguide element 25, the light absorption layer 29 (InGaAs layer ) may be formed. Here, an optical waveguide element 25 having non-doped InP layers as clad layers 27a and 27b sandwiching a core layer 28 is formed. PIN photodiodes in which a light absorption layer 29 (InGaAs layer) is sandwiched between an n-type semiconductor layer 30 (n-InP layer) and a p-type semiconductor layer 31 (p-InP layer) are used as light receiving elements 26a to 26d. ing. Since light directly enters the light absorption layer 29 from the core layer 28, an improvement in photoelectric conversion efficiency can be expected.
 図13、図14に示すように、例えば図1の光給電コンバータ1を第1光給電コンバータ1aとする。そして、複数の受光素子6a~6dの接続が、第1光給電コンバータ1aと鏡像関係になるように複数の導電性部材15,16,17により接続した光給電コンバータ1を第2光給電コンバータ1bとする。これら第1、第2光給電コンバータ1a,1bの光導波路素子5の入口3同士が重なるように且つ第1、第2光給電コンバータ1a,1bの対応する受光素子6a~6dが重なるように、双方の半導体基板2の主面2a側を対向状に結合させる。 As shown in FIGS. 13 and 14, for example, the optical feeding converter 1 in FIG. 1 is assumed to be a first optical feeding converter 1a. A second optical feed converter 1b is connected to the optical feed converter 1 by a plurality of conductive members 15, 16, and 17 so that the connections of the plurality of light receiving elements 6a to 6d are in a mirror image relationship with the first optical feed converter 1a. and so that the inlets 3 of the optical waveguide elements 5 of the first and second optical feed converters 1a and 1b overlap each other and the corresponding light receiving elements 6a to 6d of the first and second optical feed converters 1a and 1b overlap each other. The major surface 2a sides of both semiconductor substrates 2 are joined in a facing manner.
 このように1対の半導体基板2を結合することにより、サイズの増加を抑制しながら1本の光ファイバケーブルOCに対応する受光素子の数を増加させた光給電コンバータ41を形成することができる。また、導電性部材15,16,17によって第1、第2光給電コンバータ1a,1bを作り分けることができるので、光給電コンバータ41を容易に形成することができる。 By coupling the pair of semiconductor substrates 2 in this manner, it is possible to form the optical power supply converter 41 in which the number of light receiving elements corresponding to one optical fiber cable OC is increased while suppressing an increase in size. . Moreover, since the first and second optical power supply converters 1a and 1b can be separately manufactured by the conductive members 15, 16 and 17, the optical power supply converter 41 can be easily formed.
 アノード端子部13同士とカソード端子部14同士は、例えば導電性ペースト42によって夫々接続、結合され、クラッド層7同士が例えば接着剤43によって結合される。また、図示を省略するが、例えば第1光給電コンバータ1aの受光素子6aのアノード電極11と、これに対応する第2光給電コンバータ1bの受光素子6dのアノード電極11とが導電性ペーストによって接続される。他のアノード電極同士も同様である。アノード端子部13同士及びカソード端子部14同士の結合時に、夫々リードフレームを挟むようにして外部出力端子としてもよい。光給電コンバータ41は、第1、第2光給電コンバータ1a,1bが並列に接続されることになるので、出力電圧が維持されたまま出力電流を増加させることができる。 The anode terminal portions 13 and the cathode terminal portions 14 are connected and bonded to each other by, for example, a conductive paste 42, and the clad layers 7 are bonded to each other by an adhesive 43, for example. Also, although illustration is omitted, for example, the anode electrode 11 of the light receiving element 6a of the first optical feeding converter 1a and the corresponding anode electrode 11 of the light receiving element 6d of the second optical feeding converter 1b are connected by a conductive paste. be done. The same applies to other anode electrodes. When the anode terminal portions 13 and the cathode terminal portions 14 are connected to each other, the lead frames may be sandwiched between them to form external output terminals. Since the first and second optical power converters 1a and 1b are connected in parallel, the optical power converter 41 can increase the output current while maintaining the output voltage.
 複数の受光素子6a~6dは光導波路素子5よりも主面2aから突出しているので、第1、第2光給電コンバータ1a,1bの光導波路素子5同士は入口3以外では離隔している。1対の半導体基板2がスペーサ部材を介して結合された光給電コンバータ41が形成されてもよい。 Since the plurality of light receiving elements 6a to 6d protrude from the main surface 2a more than the optical waveguide element 5, the optical waveguide elements 5 of the first and second optical feed converters 1a and 1b are separated except for the entrance 3. An optical power supply converter 41 may be formed in which a pair of semiconductor substrates 2 are coupled via a spacer member.
 上記光給電コンバータ1,41の作用、効果について説明する。
 光給電コンバータ1は、光ファイバケーブルOCを介して入射する光を光導波路素子5によって分波して複数の受光素子6a~6dに入射させるので、強い光の入射による受光素子6a~6dの光電変換効率の低下を抑制することができる。そして、複数の導電性部材15、16,17によって複数の受光素子6a~6dが直列、並列又は直並列に接続されるので、出力先に合わせた電圧、電流が出力されるように光給電コンバータ1を容易に形成することができる。また、光導波路素子5によって光を分波するので光ファイバケーブルOCの接続数を少なくすることができ、複数の受光素子6a~6dを複数の導電性部材15で接続するので電圧、電流の変換装置が不要であるため、光給電コンバータ1を小型化することができる。
The actions and effects of the optical power supply converters 1 and 41 will be described.
The optical power supply converter 1 demultiplexes the light incident via the optical fiber cable OC by the optical waveguide element 5 and makes the light incident on the plurality of light receiving elements 6a to 6d. A decrease in conversion efficiency can be suppressed. Since a plurality of light-receiving elements 6a to 6d are connected in series, parallel or series-parallel by a plurality of conductive members 15, 16 and 17, the optical power supply converter can output a voltage and a current suitable for the output destination. 1 can be easily formed. In addition, since light is demultiplexed by the optical waveguide element 5, the number of connections of the optical fiber cables OC can be reduced. Since no device is required, the size of the optical power supply converter 1 can be reduced.
 その上、半導体基板2に光導波路素子5と複数の受光素子6a~6dが、対応する光導波路素子5の出口4a~4dに位置合わせされ一体的に形成されているので、光導波路素子5と受光素子6a~6dの位置ずれが発生せず、入力された光を受光素子6a~6dに入射させることができる。 Moreover, the optical waveguide element 5 and the plurality of light receiving elements 6a to 6d are aligned with the corresponding outlets 4a to 4d of the optical waveguide element 5 and integrally formed on the semiconductor substrate 2. The input light can be incident on the light receiving elements 6a to 6d without positional deviation of the light receiving elements 6a to 6d.
 光導波路素子5と複数の受光素子6a~6dは、クラッド層7上にコア層8を夫々有し、複数の受光素子6a~6dは、コア層8の上に光吸収層9と半導体層としてp型半導体層10を有する。従って、光導波路素子5の複数の出口4a~4dに対応する複数の受光素子6a~6dを位置ずれが発生しないように容易に配設することができ、入力された光を受光素子6a~6dに入射させることができる。 The optical waveguide element 5 and the plurality of light receiving elements 6a to 6d each have a core layer 8 on the cladding layer 7, and the plurality of light receiving elements 6a to 6d have a light absorption layer 9 and a semiconductor layer on the core layer 8. It has a p-type semiconductor layer 10 . Therefore, the plurality of light receiving elements 6a to 6d corresponding to the plurality of outlets 4a to 4d of the optical waveguide element 5 can be easily arranged without positional deviation, and the input light can be detected by the light receiving elements 6a to 6d. can be made incident on
 また、1対の光給電コンバータ1を組み合わせた光給電コンバータ41は、光導波路素子5の光の入口3同士が重なるように且つ複数の受光素子6a~6d同士が重なるように、1対の半導体基板2の主面2a側同士を対向状に結合させている。従って、光給電コンバータ41のサイズの増加を抑制して小型に維持しながら、1本の光ファイバケーブルOCに対応する受光素子6a~6dの数を増加させることができる。 An optical feed converter 41 combining a pair of optical feed converters 1 includes a pair of semiconductors so that the light inlets 3 of the optical waveguide element 5 overlap each other and the plurality of light receiving elements 6a to 6d overlap each other. The main surfaces 2a sides of the substrates 2 are joined to face each other. Therefore, it is possible to increase the number of light receiving elements 6a to 6d corresponding to one optical fiber cable OC while suppressing an increase in the size of the optical power supply converter 41 and maintaining a small size.
 光導波路素子5は、出口の数が4つに限定されるものではなく、例えば2つ又は8つ以上の出口を有していてもよい。IV族半導体であるSi基板上に、例えばクラッド層がSiO2層であり、コア層がSi層である光導波路素子と、受光素子とを一体的に形成して光給電コンバータを形成することもできる。その他、当業者であれば、本発明の趣旨を逸脱することなく、上記実施形態に種々の変更を付加した形態で実施可能であり、本発明はその種の変更形態も包含するものである。 The number of exits of the optical waveguide element 5 is not limited to four, and may have, for example, two or eight or more exits. An optical power supply converter can also be formed by integrally forming an optical waveguide device having, for example, a cladding layer made of SiO2 and a core layer made of Si, and a light receiving device on a Si substrate, which is a Group IV semiconductor. . In addition, those skilled in the art can implement various modifications to the above embodiment without departing from the scope of the present invention, and the present invention includes such modifications.
1  :光給電コンバータ
1a :第1光給電コンバータ
1b :第2光給電コンバータ
2  :半導体基板
2a :主面
3  :入口
4a~4d:出口
5  :光導波路素子
6a~6d:受光素子
7  :クラッド層
8  :コア層
9  :光吸収層
10 :p型半導体層(半導体層)
11 :アノード電極
12 :カソード電極
13 :アノード端子部
14 :カソード端子部
15,16,17:導電性部材
21,22,23:エッチングマスク
25 :光導波路素子
26 :受光素子
27a,27b:クラッド層
28 :コア層
29 :光吸収層
30 :n型半導体層
31 :p型半導体層
41 :光給電コンバータ
OC :光ファイバケーブル
Reference Signs List 1: optical feed converter 1a: first optical feed converter 1b: second optical feed converter 2: semiconductor substrate 2a: main surface 3: inlets 4a to 4d: outlet 5: optical waveguide elements 6a to 6d: light receiving element 7: clad layer 8: core layer 9: light absorption layer 10: p-type semiconductor layer (semiconductor layer)
11: Anode electrode 12: Cathode electrode 13: Anode terminal portion 14: Cathode terminal portion 15, 16, 17: Conductive members 21, 22, 23: Etching mask 25: Optical waveguide element 26: Light receiving element 27a, 27b: Clad layer 28: core layer 29: light absorption layer 30: n-type semiconductor layer 31: p-type semiconductor layer 41: optical power supply converter OC: optical fiber cable

Claims (4)

  1.  光ファイバケーブルを介して入射する光を電力に変換する複数の受光素子を有する光給電コンバータにおいて、
     前記光ファイバケーブルから入射する光の分波機能を備えた光導波路素子を有し、
     前記光導波路素子の複数の出口に対応するように前記複数の受光素子が配設され、
     前記複数の受光素子が、アノード電極及びカソード電極を夫々有し、
     前記複数の受光素子の前記アノード電極及び前記カソード電極に夫々接続された複数の導電性部材によって、前記複数の受光素子が直列、並列又は直並列に接続されて形成されたことを特徴とする光給電コンバータ。
    In an optical power supply converter having a plurality of light receiving elements that convert light incident through an optical fiber cable into electric power,
    Having an optical waveguide element having a demultiplexing function of light incident from the optical fiber cable,
    The plurality of light receiving elements are arranged so as to correspond to the plurality of exits of the optical waveguide element,
    The plurality of light receiving elements each have an anode electrode and a cathode electrode,
    Light characterized in that the plurality of light receiving elements are connected in series, in parallel, or in series-parallel by a plurality of conductive members respectively connected to the anode electrodes and the cathode electrodes of the plurality of light receiving elements. power supply converter.
  2.  前記光導波路素子と前記複数の受光素子とが主面側に一体的に形成された半導体基板を有することを特徴とする請求項1に記載の光給電コンバータ。 The optical feeding converter according to claim 1, further comprising a semiconductor substrate in which the optical waveguide element and the plurality of light receiving elements are integrally formed on the principal surface side.
  3.  前記光導波路素子と前記複数の受光素子は、クラッド層上にコア層を有し、
     前記複数の受光素子は、前記コア層の上に光吸収層と半導体層を夫々有することを特徴とする請求項2に記載の光給電コンバータ。
    The optical waveguide element and the plurality of light receiving elements each have a core layer on a clad layer,
    3. An optical feeding converter according to claim 2, wherein said plurality of light receiving elements each have a light absorption layer and a semiconductor layer on said core layer.
  4.  前記光導波路素子と前記複数の受光素子とが夫々主面側に一体的に形成された1対の半導体基板を有し、
     前記光導波路素子の光の入口同士が重なるように且つ前記複数の受光素子同士が重なるように、前記1対の半導体基板の前記主面側同士を対向状に結合させたことを特徴とする請求項2に記載の光給電コンバータ。
    a pair of semiconductor substrates in which the optical waveguide element and the plurality of light receiving elements are integrally formed on main surface sides, respectively;
    The main surface sides of the pair of semiconductor substrates are coupled to face each other such that the light inlets of the optical waveguide element overlap each other and the plurality of light receiving elements overlap each other. Item 3. The optical power supply converter according to item 2.
PCT/JP2021/045847 2021-12-13 2021-12-13 Optical power supply converter WO2023112090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045847 WO2023112090A1 (en) 2021-12-13 2021-12-13 Optical power supply converter
JP2022506930A JP7101437B1 (en) 2021-12-13 2021-12-13 Optical power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045847 WO2023112090A1 (en) 2021-12-13 2021-12-13 Optical power supply converter

Publications (1)

Publication Number Publication Date
WO2023112090A1 true WO2023112090A1 (en) 2023-06-22

Family

ID=82446207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045847 WO2023112090A1 (en) 2021-12-13 2021-12-13 Optical power supply converter

Country Status (2)

Country Link
JP (1) JP7101437B1 (en)
WO (1) WO2023112090A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268196A (en) * 1993-03-15 1994-09-22 Toshiba Corp Optical integrated device
US5673284A (en) * 1994-05-25 1997-09-30 Texas Instruments Incorporated Integrated laser and coupled waveguide
JP3365329B2 (en) * 1999-01-22 2003-01-08 日本電気株式会社 Light-to-voltage conversion type semiconductor light receiving device, optical signal processing device, and optical integrated device
JP2010114235A (en) * 2008-11-06 2010-05-20 Nec Corp Photoelectric transducer, optical power supply, and method for manufacturing photoelectric transducer
WO2016194349A1 (en) * 2015-05-29 2016-12-08 日本電信電話株式会社 Coherent optical mixer circuit
WO2021014882A1 (en) * 2019-07-22 2021-01-28 京セラ株式会社 Optical power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268191A (en) * 1992-03-19 1993-10-15 Yamatake Honeywell Co Ltd Optical feeder
JP4091001B2 (en) * 2004-01-06 2008-05-28 関西電力株式会社 Optical power supply system
JP7060638B2 (en) * 2020-03-16 2022-04-26 京セラ株式会社 Power receiving device of optical power supply system and optical power supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268196A (en) * 1993-03-15 1994-09-22 Toshiba Corp Optical integrated device
US5673284A (en) * 1994-05-25 1997-09-30 Texas Instruments Incorporated Integrated laser and coupled waveguide
JP3365329B2 (en) * 1999-01-22 2003-01-08 日本電気株式会社 Light-to-voltage conversion type semiconductor light receiving device, optical signal processing device, and optical integrated device
JP2010114235A (en) * 2008-11-06 2010-05-20 Nec Corp Photoelectric transducer, optical power supply, and method for manufacturing photoelectric transducer
WO2016194349A1 (en) * 2015-05-29 2016-12-08 日本電信電話株式会社 Coherent optical mixer circuit
WO2021014882A1 (en) * 2019-07-22 2021-01-28 京セラ株式会社 Optical power supply system

Also Published As

Publication number Publication date
JPWO2023112090A1 (en) 2023-06-22
JP7101437B1 (en) 2022-07-15

Similar Documents

Publication Publication Date Title
USRE48379E1 (en) Electronic-integration compatible photonic integrated circuit and method for fabricating electronic-integration compatible photonic integrated circuit
US8494315B2 (en) Photonic integrated circuit having a waveguide-grating coupler
US9735296B2 (en) Semiconductor light receiving device
JP6793786B1 (en) Manufacturing method of semiconductor light receiving element, photoelectric fusion module and avalanche photodiode
US10831080B2 (en) Modulator assembly
EP2677356B1 (en) Integrated optoelectronic module
JP6318468B2 (en) Waveguide type semiconductor light-receiving device and manufacturing method thereof
US10151877B2 (en) Optical circuit module, optical transceiver using the same, and semiconductor photonic device
US20170195064A1 (en) Photonic integrated circuit using chip integration
JP2014165292A (en) Light-emitting element, manufacturing method of the same and optical transmitter/receiver
KR20150012525A (en) optical devices and manufacturing method of the same
JP4762834B2 (en) Optical integrated circuit
CN117501159A (en) Integrated optoelectronic device with optical interconnect structure for improved BEOL device integration
WO2023112090A1 (en) Optical power supply converter
JP5515278B2 (en) Optical power feeder
TW202024698A (en) Photodetector with sequential asymmetric-width waveguides
JP6726248B2 (en) Semiconductor light receiving element and photoelectric fusion module
US9103976B2 (en) Method for manufacturing waveguide-type semiconductor device
JP4515654B2 (en) Module for optical communication
JP2003163363A (en) Semiconductor photodetector
US20200400884A1 (en) Integrated laser transceiver
KR20210015746A (en) Light receiving element unit
JPWO2023112090A5 (en)
JPH0923022A (en) Photoelectric converter
KR101216732B1 (en) Optical power monitoring module using the thin flexible pcb, and the manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022506930

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968012

Country of ref document: EP

Kind code of ref document: A1