WO2023109893A1 - 耳机控制方法及相关系统、存储介质 - Google Patents

耳机控制方法及相关系统、存储介质 Download PDF

Info

Publication number
WO2023109893A1
WO2023109893A1 PCT/CN2022/139234 CN2022139234W WO2023109893A1 WO 2023109893 A1 WO2023109893 A1 WO 2023109893A1 CN 2022139234 W CN2022139234 W CN 2022139234W WO 2023109893 A1 WO2023109893 A1 WO 2023109893A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
signal
ratio
average value
audio signal
Prior art date
Application number
PCT/CN2022/139234
Other languages
English (en)
French (fr)
Inventor
吴文昊
白云鹏
许强
曾宇浩
丁炅
张献春
董明杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023109893A1 publication Critical patent/WO2023109893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to an earphone control method, a related system, and a storage medium.
  • Noise-cancelling earphones are equipped with a special noise-cancelling circuit in the earphones.
  • active noise canceling headphones and passive noise canceling headphones.
  • Active noise canceling earphones generate reverse sound waves equal to the external noise through the noise canceling system to neutralize the noise, thereby achieving the noise canceling effect.
  • Passive noise-cancelling headphones mainly block external noise by surrounding the ears to form a closed space, or using sound-proof materials such as silicone earplugs.
  • TWS True Wireless Stereo
  • the earphones Airpods Pro and Freebuds Pro that support the noise reduction function start and stop the noise reduction by pressing and holding the ear handle, and the left and right ears can be operated symmetrically;
  • the noise is activated and deactivated, and its left and right ears can be operated symmetrically.
  • the above-mentioned start-up and turn-off operations of earphone noise reduction require special devices, such as pressure sensors or capacitors to detect actions, and it is easy to cause misoperation between long press and short press, the interaction is not very user-friendly, and the learning cost for users high.
  • Another headphone product on the market such as Freebuds 3, OPPO Enco W51, etc.
  • This mode of operation also requires special devices, and the left and right operations are asymmetrical, which requires user memory.
  • the tapping method also causes a stethoscope effect, and the user experience is not good.
  • the application discloses an earphone control method, a related system, and a storage medium, which can realize the control of the noise reduction function of the earphone without adding additional hardware, and provide good user experience.
  • an embodiment of the present application provides a headset control method, including: detecting gesture information; determining a gesture performed by the user according to the gesture information, the gesture information is an environmental signal collected by the headset, and the gesture is included in At least one of ear covering with a cavity formed around the earphone and listening with an open reflective surface formed around the earphone; according to the gesture performed by the user, the mode of the earphone is adjusted to a target mode.
  • the above-mentioned detection of gesture information may be achieved by continuously acquiring environmental signals, or periodically acquiring environmental signals, or acquiring and analyzing environmental signals with a trigger mechanism.
  • the gesture information is obtained by detecting the change of the environmental signal, which can be understood as the environmental signal conforming to the preset standard.
  • the above determination of the gesture performed by the user according to the gesture information is implemented based on user interaction. In other words, when the user uses different gestures around the headset, the headset will enter different control modes.
  • the gesture performed by the user is determined based on the environmental signal collected by the earphone, and then the mode of the earphone is adjusted to the target mode based on the gesture.
  • the earphone can be controlled without adding additional new hardware, thereby improving the user experience.
  • the operation is simple and does not require too much learning for the user.
  • the operation of covering the ears is more natural and more friendly to the user.
  • the environmental signal includes at least one of the following: audio signal, bluetooth signal, light signal, ultrasonic signal.
  • the determining the gesture performed by the user according to the gesture information includes: performing Fourier transform on the audio signal to obtain the audio signal The frequency domain signal of the signal; calculate the ratio of the energy average value of the frequency domain signal in the first preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain; if the ratio is greater than the first preset threshold value, determine The user performs ear covering.
  • the gesture performed by the user is determined based on the comparison between energy information of a preset frequency band in an audio signal and a threshold value.
  • the ambient sound caused by the cavity formed by hands and ears will appear relatively concentrated energy in the characteristic frequency band. Therefore, based on this audio feature, it is detected that the user has made an operation to cover the ear, and then the earphone is controlled, which improves the user experience.
  • the ratio is smaller than a second preset threshold, it is determined that the user has performed listening, where the second preset threshold is smaller than the first preset threshold.
  • the determining the gesture performed by the user according to the gesture information includes: performing Fourier transform on the audio signal to obtain the audio signal A frequency domain signal of the signal; calculating a similarity value between the frequency energy distribution of the frequency domain signal and a preset frequency energy distribution; if the similarity value is greater than a second preset threshold, it is determined that the user has performed masking ear.
  • the gesture performed by the user is determined based on the similarity value between the frequency energy distribution of the frequency domain signal obtained from the audio signal around the earphone and the preset frequency energy distribution, and then the mode of the earphone is adjusted to the target mode.
  • the gesture determines the gesture performed by the user, including: respectively performing Fourier transform on the first audio signal and the second audio signal to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal.
  • the domain signal calculates the first ratio of the energy average value of the frequency domain signal of the second audio signal within the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, and the first audio signal
  • the second ratio of the energy average value of the frequency domain signal of the frequency domain signal in the second preset frequency domain range to the energy average value of the frequency domain signal of the whole frequency domain, and the frequency domain signal of the second audio signal is in the third preset frequency range.
  • the fourth ratio to the energy average value of the frequency domain signal in the full frequency domain, wherein the frequency point of the second preset frequency domain range is lower than the frequency point of the fourth preset frequency domain range, and the third The frequency point of the preset frequency domain range is higher than the frequency point of the fourth preset frequency domain range; when the first ratio is greater than the second ratio, if the third ratio is smaller than the fourth ratio, And/or, the ratio between the third ratio and the fourth ratio is greater than the ratio between the fifth ratio and the sixth ratio, wherein the fifth ratio is the frequency domain of the first audio signal
  • the sixth ratio is the frequency domain signal of the first audio signal in the The ratio of the energy average value within the fourth preset frequency
  • the gesture performed by the user is determined based on the frequency energy distribution of the frequency domain signal obtained from two audio signals around the earphone at different times, and then the mode of the earphone is adjusted to the target mode. It does not need to be judged by setting additional parameters, which avoids some misjudgments caused by unreasonable parameter settings, and improves the reliability of earphone control.
  • determining the gesture performed by the user according to the gesture information includes: sending the second audio signal to a computing unit, so that The calculation unit respectively performs Fourier transform on the second audio signal and the first audio signal to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal, wherein the The first audio signal and the second audio signal are collected by different earphones; receiving information sent by the computing unit, and determining that the user has performed ear covering according to the information, and the information indicates that the first ratio is greater than the second Two ratios, and the third ratio is smaller than the fourth ratio, and/or, the ratio between the third ratio and the fourth ratio is greater than the ratio between the fifth ratio and the sixth ratio, wherein the first A ratio is the ratio of the energy average value of the frequency domain signal of the second audio signal within the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, and the second ratio is the first The ratio of the energy average
  • the above computing unit may be a computing unit in another earphone, or other smart devices, such as a mobile phone, etc., which is not specifically limited in this solution.
  • the gesture performed by the user is determined by the frequency energy distribution of the frequency domain signal obtained based on the audio signals around the two earphones, and then the mode of the earphone is adjusted to the target mode. It does not need to be judged by setting additional parameters, which avoids some misjudgments caused by unreasonable parameter settings, and improves the reliability of earphone control.
  • the energy average value of the frequency domain signal of the first audio signal and the frequency domain signal of the second audio signal in the fifth preset frequency domain range is the same as the frequency domain of the whole frequency domain
  • the ratio of the energy average value of the signal is not higher than the third preset threshold, or the ratio of the energy average value in the sixth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than that in the seventh
  • the ratio of the energy average value within the preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is used to obtain the Bluetooth signal of the earphone, and obtain the time intensity distribution of the Bluetooth signal; if the Bluetooth signal in the first period
  • the strength of the signal is lower than the strength of the Bluetooth signal in the second period, and the strength of the Bluetooth signal in the first period is lower than the fourth preset threshold within the preset duration, and it is determined that the user has performed ear covering, wherein,
  • the second period of time is earlier than the first period of time.
  • the user gesture is further combined with the Bluetooth signal.
  • the ratio of the energy average value of the frequency domain signal of the second audio signal within the eighth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than the fourth A preset threshold, and the ratio of the energy average value in the ninth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is also higher than the fourth preset threshold value, and it is determined that the user has performed listening .
  • the energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the energy peak in the frequency energy distribution of the frequency domain signal can be combined to determine that the user has performed the gesture of covering the ears, which improves the accuracy and reliability of gesture determination.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the first frequency point of the first frequency band is The last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the seventh ratio of the energy average value of the first frequency band to the energy average value of the second frequency band is greater than a fifth preset threshold.
  • the energy distribution of three continuous frequency bands can be combined to determine that the user has performed the gesture of covering the ears, which improves the accuracy and reliability of gesture determination.
  • determining the gesture performed by the user according to the gesture information includes: obtaining the time intensity distribution of the Bluetooth signal according to the Bluetooth signal; if In the time intensity distribution, the strength of the Bluetooth signal in the first period is lower than the strength of the Bluetooth signal in the second period, and the strength of the Bluetooth signal in the first period is lower than the sixth preset threshold within the preset duration, It is determined that the user has performed ear covering, wherein the second period of time is earlier than the first period of time.
  • the gesture performed by the user is determined based on the Bluetooth signal around the earphone, and then the mode of the earphone is adjusted to the target mode.
  • the target mode is any one of the noise reduction on mode and the noise reduction transparent transmission off mode; or, when the earphone When the current mode is the noise reduction transparent transmission off mode, the target mode is the noise reduction on mode; or, when the current mode of the earphone is the noise reduction on mode, the target mode is the transparent transmission on mode; or, when the When the current mode of the earphone is the transparent transmission on mode, the target mode is the noise reduction transparent transmission off mode.
  • the target mode when the gesture performed by the user is ear covering, the target mode is the noise reduction on mode; when the gesture performed by the user is listening, the target mode is Transparent transmission open mode.
  • the method further includes: when the strength value of the Bluetooth signal of the earphone is lower than a seventh preset threshold, starting to detect gesture information.
  • the trigger mechanism By adopting the trigger mechanism, the power consumption of the earphone is saved, and the user experience is improved.
  • the method further includes: starting to detect gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user raises a hand.
  • the trigger mechanism By adopting the trigger mechanism, the power consumption of the earphone is saved, and the user experience is improved.
  • the embodiment of the present application provides an earphone control method, including: collecting the environmental signal around the earphone, and performing feature extraction on the environmental signal; according to the energy intensity of the preset frequency band in the extracted environmental signal feature to adjust the mode of the headset to the target mode.
  • the mode of the earphone is adjusted based on the feature extraction of the environmental signal around the earphone by performing feature extraction.
  • the environmental signal includes at least one of the following: an audio signal, an optical signal, and an ultrasonic signal.
  • the feature extraction of the environmental signal includes: performing Fourier transform on the audio signal to obtain the frequency domain of the audio signal signal; calculate the ratio of the energy average value of the frequency domain signal within the first preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain; the preset according to the extracted environmental signal characteristics
  • the energy intensity of the frequency band, and adjusting the mode of the earphone to the target mode includes: if the ratio is greater than a first preset threshold, the target mode is the first mode.
  • the target mode is the second mode, wherein the preset threshold A is smaller than the first preset threshold.
  • the feature extraction of the environmental signal includes: performing Fourier transform on the audio signal to obtain the frequency of the audio signal. Domain signal; calculate the similarity value between the frequency energy distribution of the frequency domain signal and the preset frequency energy distribution; according to the energy intensity of the preset frequency band in the extracted environmental signal characteristics, the earphone Adjusting the mode of the target mode to the target mode includes: if the similarity value is greater than a second preset threshold, the target mode is the first mode.
  • the The feature extraction of the signal includes: respectively performing Fourier transform on the first audio signal and the second audio signal to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal; calculating the first ratio of the energy average value of the frequency domain signal of the second audio signal within the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, and the frequency domain value of the first audio signal.
  • the fourth ratio of the energy average value in the range to the energy average value of the frequency domain signal in the full frequency domain, and the energy average value of the frequency domain signal of the second audio
  • the target mode is the second mode.
  • the energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band, and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the The difference between the eighth ratio of the energy average value of the second frequency band to the energy average value of the third frequency band is greater than a fourth preset threshold.
  • the first mode when the target mode is the first mode, the first mode is any one of the noise reduction on mode and the noise reduction transparent transmission off mode; or, when the current mode of the earphone is the noise reduction When the noise transparent transmission is off mode, the first mode is the noise reduction on mode; or, when the current mode of the earphone is the noise reduction on mode, the first mode is the transparent transmission on mode; or, when the earphone When the current mode is the transparent transmission on mode, the first mode is the noise reduction transparent transmission off mode.
  • the first target mode is the noise reduction on mode
  • the second mode is the transparent transmission on model
  • the method further includes: when the strength value of the Bluetooth signal of the earphone is lower than a fifth preset threshold, starting to detect gesture information.
  • the method further includes: starting to detect gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user raises a hand.
  • the present application provides an earphone control device, including: a detection module, configured to detect gesture information; a signal processing module, configured to determine the gesture performed by the user according to the gesture information, the gesture information being the The collected environmental signal, the gesture includes at least one of ear covering forming a cavity around the earphone, listening to form an open reflective surface around the earphone; a noise reduction control module, configured to A gesture performed to adjust the mode of the headset to the target mode.
  • the environmental signal includes at least one of the following: audio signal, bluetooth signal, light signal, ultrasonic signal.
  • the signal processing module is configured to: perform Fourier transform on the audio signal to obtain a frequency domain signal of the audio signal; calculate The ratio of the energy average value of the frequency domain signal within the first preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain; if the ratio is greater than the first preset threshold, it is determined that the user has performed ear covering .
  • the signal processing module is configured to: perform Fourier transform on the audio signal to obtain a frequency domain signal of the audio signal; calculate A similarity value between the frequency energy distribution of the frequency domain signal and a preset frequency energy distribution; if the similarity value is greater than a second preset threshold, it is determined that the user has performed ear covering.
  • the signal processing module when the environmental signal includes a first audio signal and a second audio signal, and the collection time of the first audio signal is earlier than the collection time of the second audio signal, the signal processing module, It is used to: respectively perform Fourier transform on the first audio signal and the second audio signal to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal; calculate the first audio signal The first ratio of the energy average value of the frequency domain signal of the two audio signals in the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, the frequency domain signal of the first audio signal in the The second ratio of the energy average value in the second preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain, and the energy of the frequency domain signal of the second audio signal in the third preset frequency domain range The third ratio of the average value to the energy average value of the frequency domain signal of the full frequency domain, and the energy average value of the frequency domain signal of the second audio signal within the fourth preset frequency domain range to the frequency domain
  • the device further includes a communication module, and when the environmental signal is a segment of a second audio signal, the communication module is configured to send the second audio signal to the computing unit, so that the The computing unit performs Fourier transform on the second audio signal and the first audio signal respectively to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal, wherein the first The audio signal and the second audio signal are collected by different earphones; the information sent by the computing unit is received, and the signal processing module is configured to determine that the user has performed ear covering according to the information, and the information indicates The first ratio is greater than the second ratio, and the third ratio is smaller than the fourth ratio, and/or, the ratio between the third ratio and the fourth ratio is greater than the ratio between the fifth ratio and the sixth ratio, Wherein, the first ratio is the ratio of the energy average value of the frequency domain signal of the second audio signal within the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, and the second The ratio is the
  • the energy average value of the frequency domain signal of the first audio signal and the frequency domain signal of the second audio signal within the fifth preset frequency domain range is equal to the energy average value of the frequency domain signal of the full frequency domain.
  • the ratio is not higher than the third preset threshold value, or the ratio of the energy average value in the sixth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than that in the seventh preset frequency domain range.
  • the ratio of the energy average value of the frequency domain signal of the full frequency domain to the energy average value of the frequency domain signal obtain the bluetooth signal of the earphone, and obtain the time intensity distribution of the bluetooth signal; if the intensity of the bluetooth signal in the first period is lower than the first
  • the strength of the bluetooth signal in two time periods, and the strength of the bluetooth signal in the first time period is lower than the fourth preset threshold within the preset time length, it is determined that the user has performed ear covering, wherein the second time period is earlier than the fourth preset threshold during the first period.
  • the ratio of the energy average value of the frequency domain signal of the second audio signal within the eighth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than the fourth preset A threshold is set, and the ratio of the energy average value in the ninth preset frequency domain range to the energy average value of the frequency domain signal in the whole frequency domain is also higher than the fourth preset threshold value, and it is determined that the user has performed listening.
  • the energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band, and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band.
  • frequency points the last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the difference between the eighth ratio of the energy average value of the second frequency band to the energy average value of the third frequency band is greater than a fifth preset threshold.
  • the signal processing module is configured to: obtain the time intensity distribution of the Bluetooth signal according to the Bluetooth signal; The strength of the bluetooth signal in a period is lower than the strength of the bluetooth signal in the second period, and the strength of the bluetooth signal in the first period is lower than the sixth preset threshold within the preset time length, and it is determined that the user has executed the mask ear, wherein the second time period is earlier than the first time period.
  • the target mode is any one of the noise reduction on mode and the noise reduction transparent transmission off mode; or, when the current mode of the earphone is the noise reduction transparent transmission When the mode is off, the target mode is the noise reduction on mode; or, when the current mode of the earphone is the noise reduction on mode, the target mode is the transparent transmission on mode; or, when the current mode of the earphone is the transparent transmission mode When the mode is on, the target mode is the noise reduction transparent transmission off mode.
  • the target mode is the noise reduction on mode; when the gesture performed by the user is listening, the target mode is to enable the transparent transmission model.
  • the device further includes a trigger module, configured to: start to detect gesture information when the strength value of the Bluetooth signal of the headset is lower than a seventh preset threshold.
  • a trigger module configured to: start to detect gesture information when the strength value of the Bluetooth signal of the headset is lower than a seventh preset threshold.
  • the device further includes a trigger module, configured to: start to detect gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user has raised his hand.
  • the present application provides an earphone control device, including: a signal acquisition module, used to collect environmental signals around the earphone; a signal processing module, used to extract features of the environmental signal; a noise reduction control module, used to The mode of the earphone is adjusted to a target mode based on the energy intensity of a preset frequency band in the extracted environmental signal characteristics.
  • the environmental signal includes at least one of the following: an audio signal, an optical signal, and an ultrasonic signal.
  • the signal processing module is configured to: perform Fourier transform on the audio signal to obtain a frequency domain signal of the audio signal; calculate the first The ratio of the energy average value of the frequency domain signal within a preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain; the noise reduction control module is configured to: if the ratio is greater than the first preset A threshold is set, and the target mode is the first mode.
  • the signal processing module is configured to: perform Fourier transform on the audio signal to obtain the frequency domain of the audio signal signal; calculate the similarity value between the frequency energy distribution of the frequency domain signal and the preset frequency energy distribution; the noise reduction control module is configured to: if the similarity value is greater than a second preset threshold, the The target mode is the first mode.
  • the signal A processing module configured to: respectively perform Fourier transform on the first audio signal and the second audio signal to obtain a frequency domain signal of the first audio signal and a frequency domain signal of the second audio signal; calculate The first ratio of the energy average value of the frequency domain signal of the second audio signal within the second preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain, and the frequency domain signal of the first audio signal.
  • the second ratio of the energy average value in the second preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain, and the frequency domain signal of the second audio signal is in the third preset frequency domain range
  • the target mode is the second mode.
  • an energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the first frequency point of the first frequency band is The last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the seventh ratio of the energy average value of the first frequency band to the energy average value of the second frequency band is greater than a fourth preset threshold.
  • the first mode when the target mode is the first mode, the first mode is any one of the noise reduction on mode and the noise reduction transparent transmission off mode; or, when the current mode of the earphone is the noise reduction When the noise transparent transmission is off mode, the first mode is the noise reduction on mode; or, when the current mode of the earphone is the noise reduction on mode, the first mode is the transparent transmission on mode; or, when the earphone When the current mode is the transparent transmission on mode, the first mode is the noise reduction transparent transmission off mode.
  • the first target mode is the noise reduction on mode
  • the second mode is the transparent transmission on model
  • the device further includes a trigger module, configured to: start to detect gesture information when the strength value of the Bluetooth signal of the earphone is lower than a fifth preset threshold.
  • a trigger module configured to: start to detect gesture information when the strength value of the Bluetooth signal of the earphone is lower than a fifth preset threshold.
  • the device further includes a trigger module, configured to: start detecting gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user has raised his hand.
  • a trigger module configured to: start detecting gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user has raised his hand.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on an electronic device, the electronic device executes any possible implementation manner and/or The method provided in any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a computer program product, which, when the computer program product is run on a computer, enables the computer to execute any possible implementation manner of the first aspect and/or any possible implementation mode of the second aspect.
  • the method provided by the embodiment is not limited to:
  • the device described in the third aspect, the device described in the fourth aspect, the computer storage medium described in the fifth aspect, or the computer program product described in the sixth aspect provided above are all used to execute the Any of the provided methods and any of the provided methods of the second aspect. Therefore, the beneficial effects that it can achieve can refer to the beneficial effects in the corresponding method, and will not be repeated here.
  • Fig. 1a is a schematic diagram of an ear-covering gesture provided by an embodiment of the present application
  • Fig. 1b is a schematic diagram of a listening gesture provided by an embodiment of the present application.
  • Fig. 1c is a schematic structural diagram of an earphone provided by an embodiment of the present application.
  • Fig. 1d is a schematic diagram of a device connected to an earphone provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for controlling an earphone provided in an embodiment of the present application
  • Fig. 3a is a schematic flowchart of the first earphone control method provided by the embodiment of the present application.
  • Fig. 3b is a schematic diagram of frequency energy distribution of a frequency domain signal provided by an embodiment of the present application.
  • Fig. 4a is a schematic flowchart of a second earphone control method provided by an embodiment of the present application.
  • Fig. 4b is a schematic diagram of frequency energy distribution of a frequency domain signal provided by an embodiment of the present application.
  • Fig. 4c is a schematic diagram of frequency energy distribution of another frequency domain signal provided by an embodiment of the present application.
  • Fig. 4d is a schematic diagram of frequency energy distribution of another frequency domain signal provided by an embodiment of the present application.
  • Fig. 5a is a schematic flowchart of a third earphone control method provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of the frequency energy distribution of the frequency domain signal before and after covering the ears provided by the embodiment of the present application;
  • Fig. 5c is another schematic diagram of the frequency energy distribution of the frequency domain signal before and after covering the ears provided by the embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a fourth earphone control method provided by an embodiment of the present application.
  • Fig. 7a is a schematic flowchart of a fifth headphone control method provided by the embodiment of the present application.
  • Fig. 7b is a schematic diagram of a time intensity curve of a Bluetooth signal provided by an embodiment of the present application.
  • Fig. 8a is a schematic flowchart of a sixth headphone control method provided by an embodiment of the present application.
  • Fig. 8b is a schematic diagram of energy in different frequency bands of an ear covering operation provided by an embodiment of the present application.
  • Fig. 8c is a schematic diagram of the energy in different frequency bands when the user's ears are covered and the ambient noise is loud according to the embodiment of the present application;
  • FIG. 9 is a schematic flowchart of a seventh headphone control method provided by an embodiment of the present application.
  • Fig. 10 is a schematic flow chart of another earphone control method provided by the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of an earphone control device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of another earphone control device provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of another headphone control device provided by an embodiment of the present application.
  • this solution proposes a method, device and storage medium for controlling earphones, which do not require additional new
  • the hardware can use acoustic and optical detection methods to identify the user's operation, so as to control the headset.
  • this solution involves ear-covering gestures and listening gestures. Covering ears is a natural way for people to express their resistance to external noise in the real world. Therefore, this solution uses technical means to detect this user action, and triggers the earphone drop according to the detected action. Noise control, so as to realize a natural and low-cost interaction mode on current headsets such as Bluetooth headsets.
  • Covering the ears in this solution can be understood as that the user wears the earphones, and then forms a fully enclosed cavity near the earphones with his hands.
  • the action of forming a fully enclosed cavity near the earphone by hand is defined as the ear covering operation.
  • the user's hand presents a certain convex (arched) shape, and a cavity appears between the ear and the hand.
  • Listening is an action that everyone makes when they can't hear clearly. Listening in this solution can be understood as the action of the user forming an open reflective surface around the earphone with his hands.
  • the action of forming an open reflective surface around the earphone with the hand is defined as the listening operation.
  • the user's palm is placed behind the ear, forming an open reflective surface.
  • the gesture operation performed by the user on the earphone can be detected, for example, the change of the audio signal can be detected to determine the action performed by the user, and then control the earphone.
  • the microphone in the headset detects the characteristics of the external sound signal, and according to the characteristics or changes of the characteristics of the external sound signal, it detects that the user's corresponding operation is to cover the ears, and according to the user's operation of covering the ears, the earphone's drop-down function is activated or deactivated.
  • Noise mode or further according to the state of the earphone at the previous moment, combined with the operation of covering the ears, determine whether the control to be triggered by the earphone is to start the noise reduction mode, close the noise reduction mode or the transparent transmission mode.
  • This solution can be applied to wired earphones, wireless earphones, etc.
  • headsets For example, headsets, true wireless stereo Bluetooth headsets, etc.
  • Earphones can be classified into headsets and earplugs according to their shape. Among them, headphones are a type of headphones that are worn on the head and not inserted into the ear canal, which are different from in-ear earplugs. Headphones can generally be divided into over-ear type and on-ear type. Over-ear headphones have larger earcups that enclose the entire ear, with the ear pads pressed against the skin outside the ear. The earmuffs of on-ear headphones are pressed against the ears.
  • Earplugs can be divided into in-ear headphones and semi-in-ear headphones.
  • the in-ear TWS earphones have rubber plugs that go deep into the ear canal, which can be plugged tighter when worn.
  • In-ear earphones are generally designed in a bean style, and the rubber plugs have different sizes according to the design of the human ear.
  • the semi-in-ear headphones have no rubber plugs and have a long handle, which is more like hanging in the ear hole when used.
  • the true wireless stereo Bluetooth headset has a smaller body, lower latency and good sound quality. It is gradually replacing the traditional wired headset and becoming a more convenient tool for music, drama and games in daily life.
  • the headset includes a detection module, a calculation module, a feedback module, a noise reduction control module, a signal processing module, a communication module, a microphone, a speaker, a Bluetooth module, a CPU, and the like.
  • the detection module is used to detect the user's input, and the detected object can include a microphone for sound input (such as the user's voice input, or environmental sound, etc.); the detection module can also include a touch sensor for receiving the user's touch input , For example, some earphones have the function of interacting by clicking, double-clicking, and sliding on the surface of the earphone.
  • the feedback module can provide feedback to the user wearing the headset through sound, vibration and other means.
  • the calculation module is used to complete the calculation work in the headset.
  • the noise reduction control module is used to control the switching of the noise reduction mode according to the detected information.
  • the signal processing module is used to process the received signal information, for example, it may be an audio signal, or a bluetooth signal or an optical signal.
  • the noise reduction processing of the noise reduction control module can be completed in the signal processing module and the like.
  • the communication module is used for exchanging control and audio data information when the headset is associated with other devices.
  • the microphone is used to receive external audio information.
  • the loudspeaker is used to transmit the sound processed by the signal processing module to the outside world.
  • the earphone may also have other various sensor modules.
  • the position and orientation of the headset can be detected by motion sensors such as accelerometers and gyroscopes
  • the removal of the headset from the headset box can be detected by optical sensors
  • the contact of fingers on the surface of the headset can be detected by touch sensors, capacitive sensors, voltage sensors, Impedance sensors, photosensitive sensors, proximity sensors, image sensors and other sensors are used for detection of various purposes.
  • the user's operation detected according to the change of the external audio signal can be implemented in the detection module or in the signal processing module.
  • the detection function can be integrated into other modules such as the signal processing module to complete.
  • this solution does not specifically limit this.
  • the embodiment of the present application also provides a schematic diagram of a device connected to an earphone.
  • the device may be, for example, a mobile phone, a tablet computer, a smart TV, and the like. It can be understood that these devices have input systems, feedback systems, detection systems, displays, calculation units, storage units, communication units, etc. common to general electronic devices.
  • the signal triggering and detection process of gesture information detection by the earphone control method provided in the present application is performed by the detection system of the device.
  • the sensor integrated on the device can be used for detection during the detection process.
  • the detection system and sensors on the device connected to the earphones have the same functions as the detection systems and sensors installed on the earphones, but they may be installed on the earphones due to commercial and cost reasons. on different subjects.
  • the headphone control method provided by the embodiment of the present application is introduced below. As shown in FIG. 2, it is an earphone control method provided in the embodiment of the present application, which includes steps 201-203, specifically as follows:
  • the headset can detect gesture information in real time.
  • the gesture information is an environmental signal collected by the earphone.
  • the detection module of the earphone collects environmental signals around the earphone in real time.
  • the headset periodically detects gesture information.
  • the earphone collects surrounding environmental signals at regular intervals.
  • the earphone can also detect gesture information when a preset trigger condition is met. For example, when a preset condition is met, the earphone starts to collect environmental signals.
  • the preset condition may be that when the Bluetooth module in the earphone detects that the Bluetooth RSSI value is lower than a preset threshold, the detection of gesture information is triggered.
  • the IMU module in the watch is used for detection.
  • other triggering methods are also possible. For example, if the proximity sensor is used to detect an object approaching the earphone, or the photosensitive sensor detects that the light intensity is lower than a certain threshold, the earphone will be triggered to collect the surrounding environmental signals in real time, such as turning on the microphone for audio acquisition, etc. , this scheme does not specifically limit it.
  • the power consumption of the earphone can be saved.
  • the gesture information is the environmental signal collected by the earphone, and the gesture includes ear covering forming a cavity around the earphone, forming an open reflection around the earphone at least one of face-to-face listening;
  • the aforementioned environmental signal may be one or more of audio signals, bluetooth signals, optical signals, ultrasonic signals, and other signals.
  • the above-mentioned audio signal may be detected by the detection module of the earphone, for example, it may be an audio signal collected by a microphone for a period of time. It may also be an audio signal collected after triggering in other ways, which is not specifically limited in this solution.
  • the above-mentioned bluetooth signal may be a bluetooth signal collected by a bluetooth module or the like.
  • the gestures performed by the user are determined based on the extracted features.
  • the purpose of feature extraction is to detect whether the above-mentioned collected audio signal/Bluetooth signal/optical signal/ultrasonic signal conforms to the signal characteristics of the user covering the ears, or whether it conforms to the signal characteristics of the user's listening, so as to be used for subsequent triggering. operate.
  • the calculation module of the headset determines the gesture performed by the user according to the gesture information, and then instructs the noise reduction control module to switch the mode of the headset.
  • Covering the ears in this solution can be understood as that the user forms a cavity near the earphone with his hand.
  • the cavity may be fully enclosed, as shown in the aforementioned Figure 1b.
  • Listening in this solution can be understood as the action of the user forming an open reflective surface around the earphone with his hand.
  • the action of forming an open reflective surface around the earphone with the hand is defined as the listening operation, as shown in the aforementioned Figure 1c.
  • the earphone when it is detected that the user performs a gesture of covering the ears, the earphone is triggered to enter the noise reduction on mode.
  • the target mode is the noise reduction transparent transmission off mode (normal mode).
  • a special noise reduction circuit or an audio processing module in the earphone is activated to perform noise reduction processing on the subsequent audio collected from the microphone.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission open mode.
  • the internal processing of the earphone triggered by the ear-covering gesture may also be changed in combination with the current state of the earphone.
  • the target mode is the noise reduction on mode
  • the target mode is the transparent transmission enabled mode
  • the target mode is the noise reduction transparent transmission off mode.
  • the current mode is already a noise reduction mode
  • the current mode is switched to a non-noise reduction mode.
  • levels of noise reduction may also be distinguished. If the current environment where the user is located is a scene with relatively low environmental noise such as a library, bookstore, or office, and if it is detected that the user has performed an ear covering operation, the mild noise reduction mode will be activated. If the current environment where the user is located is a moderately noisy environment such as a coffee shop or a subway, and it is detected that the user has performed an ear covering operation, the balanced noise reduction mode will be activated. If the current user's environment is a strong noise scene such as a restaurant or an airport, and it is detected that the user has performed an ear covering operation, the deep noise reduction mode will be activated.
  • mode control can also be performed in combination.
  • the scheme of classifying the levels based on the degree of noise reduction can be combined with the state of the current earphones, and the specific earphone operation triggered by the ear covering operation can be determined by using the ear covering action combined with the noise reduction level adopted by the current earphones.
  • the degree of noise reduction will increase step by step, specifically through the sound feedback of the feedback module in the earphone. Specifically, when it is detected that the user has just covered it, the earphone will make a beep; if it is continuously detected that the user does not let go, the noise reduction level will be increased, and there will be another beep, or the sound of the beep will change.
  • the degree of noise reduction will increase step by step, specifically through the sound feedback of the feedback module in the earphone. Specifically, when it is detected that the user has just covered it, the earphone will make a beep; if it is continuously detected that the user does not let go, the noise reduction level will be increased, and there will be another beep, or the sound of the beep will change.
  • the earphone mode corresponding to the ear covering operation may also be determined based on user presets, which is not specifically limited in this solution.
  • This embodiment triggers different earphone mode switching through user gesture operation, and can realize multi-mode and state switching based on one action.
  • the user has strong operability, more intelligence, and a friendly user interface.
  • the gesture performed by the user is determined based on the environmental signal collected by the earphone, and then the mode of the earphone is adjusted to the target mode.
  • the operation of covering the ears is more natural, more user-friendly, and the operation is simpler. It does not need to introduce too much learning for the user, and does not need to add new hardware to realize the control of the earphone, which improves the user experience. .
  • FIG. 3 a it is a schematic flowchart of the first earphone control method provided by the embodiment of the present application.
  • the method includes steps 301-305, specifically as follows:
  • gesture information where the gesture information is an audio signal collected by an earphone
  • audio signals around the earphone are collected through an external microphone of the earphone.
  • the audio signal may be an audio signal for a period of time, for example, the duration is 30s.
  • the specific length of time may be determined according to the calculation accuracy requirement and the processing capability requirement of the earphone, which is not specifically limited in this solution.
  • performing Fourier transform on the collected audio signal can transform the received time-domain audio signal into a frequency-domain signal.
  • the frequency energy distribution of the frequency domain signal may be shown in FIG. 3b, the horizontal axis represents time, the vertical axis represents frequency range, and the points in the figure represent the energy of the signal.
  • the frequency domain signals within the above-mentioned first preset frequency domain range may be relatively concentrated within a certain frequency range. For example, the ratio of the average energy value between f1 to f2 in the frequency domain in Fig. 3b and the average energy value of the entire frequency band.
  • the first preset threshold may be any value, which is not specifically limited in this solution.
  • the ratio is smaller than a second preset threshold, it is determined that the user has performed listening, wherein the second preset threshold is smaller than the first preset threshold.
  • the above ratio may also be greater than a third preset threshold and smaller than a second preset threshold, and it is determined that the user has performed listening, etc., wherein the second preset threshold is smaller than the first preset threshold.
  • This plan does not specifically limit this.
  • the earphone when it is detected that the user performs a gesture of covering the ears, the earphone is triggered to enter the noise reduction mode. Specifically, a special noise reduction circuit or an audio processing module in the earphone is activated to perform noise reduction processing on the subsequent audio collected from the microphone.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the internal processing of the earphone triggered by the ear-covering gesture can also be changed in combination with the current state of the earphone. For example, if the current mode is already a noise reduction mode, when an ear covering operation is detected, the current mode is switched to a non-noise reduction mode.
  • the user has performed ear covering based on the phenomenon that the energy of the ambient sound caused by the cavity formed by the hand and the ear is relatively concentrated in the characteristic frequency band.
  • the gesture performed by the user is determined based on the energy information of the frequency domain signal of the audio signal collected by the earphone, and then the mode of the earphone is adjusted to the target mode.
  • the operation of covering the ears is more natural, more user-friendly, and the operation is simpler. It does not require too much learning for the user, and does not require additional new hardware, so as to realize the control of the earphone and improve the user experience.
  • FIG. 4a it is a schematic flowchart of a second earphone control method provided by the embodiment of the present application.
  • the method includes steps 401-405, specifically as follows:
  • gesture information where the gesture information is an audio signal collected by an earphone
  • audio signals around the earphone are collected through an external microphone of the earphone.
  • the audio signal may be an audio signal for a period of time, for example, the duration is 30s.
  • the specific length of time may be determined according to the calculation accuracy requirement and the processing capability requirement of the earphone, which is not specifically limited in this solution.
  • performing Fourier transform on the collected audio signal can transform the received time-domain audio signal into a frequency-domain signal.
  • the frequency energy distribution of the above-mentioned frequency domain signal may be, for example, a frequency energy curve.
  • the horizontal axis represents the frequency
  • the vertical axis represents the energy at the frequency point.
  • Figure 4b shows the frequency energy curve when the noise source is biased to the other side of covering the ear
  • Figure 4c shows the frequency energy curve when the noise source is in the middle of the user's position
  • Figure 4d shows the frequency energy curve when the noise source is biased to cover the ear Frequency energy curve for one side of the ear.
  • the above preset frequency energy distribution may be the frequency energy distribution corresponding to the ear covering gesture obtained through learning.
  • the frequency energy curve of the detected audio signal can be compared with the pre-learned or set curve. Matching is performed, and when the similarity is greater than a certain threshold, it is judged that the user has done the operation of covering the ears.
  • the earphone is triggered to enter the noise reduction mode.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the internal processing of the earphone triggered by the ear-covering gesture can also be changed in combination with the current state of the earphone. For example, if the current mode is already a noise reduction mode, when an ear covering operation is detected, the current mode is switched to a non-noise reduction mode, etc.
  • the gesture performed by the user is determined by the similarity value between the frequency energy distribution of the frequency domain signal obtained based on the audio signal around the earphone and the preset frequency energy distribution, and then the mode of the earphone is adjusted to the target model.
  • the operation of covering the ears is more natural, more user-friendly, and the operation is simpler. It does not require too much learning for the user, and does not require additional new hardware, so as to realize the control of the earphone and improve the user experience.
  • FIG. 5a it is a schematic flowchart of a third earphone control method provided by the embodiment of the present application.
  • the method includes steps 501-505, specifically as follows:
  • gesture information is a first audio signal and a second audio signal collected by an earphone, and the collection time of the first audio signal is earlier than that of the second audio signal;
  • two segments of audio signals around the earphone are respectively collected at a certain time interval.
  • the above two audio signals may also be collected in two consecutive periods, which is not specifically limited in this solution.
  • the ratio between the third ratio and the fourth ratio is greater than The ratio between the fifth ratio and the sixth ratio, wherein the fifth ratio is the energy average value of the frequency domain signal of the first audio signal in the third preset frequency domain range and the energy average value of the whole frequency domain
  • the ratio of the energy average value of the frequency domain signal, the sixth ratio is the energy average value of the frequency domain signal of the first audio signal within the fourth preset frequency domain range and the frequency domain signal of the full frequency domain
  • the comparison of the low-frequency energy changes of the two audio signals before and after covering the ears, and the comparison of the high-frequency energy changes of the two audio signals before and after covering the ears as shown in Figure 5c.
  • the first audio corresponding to the time period 1 is the audio before the ears are covered
  • the second audio corresponding to the time period 2 is the audio after the ears are covered.
  • the earphone is triggered to enter the noise reduction mode.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the internal processing of the earphone triggered by the ear-covering gesture can also be changed in combination with the current state of the earphone. For example, if the current mode is already a noise reduction mode, when an ear covering operation is detected, the current mode is switched to a non-noise reduction mode.
  • the ratio of the energy average value of the frequency domain signal in the frequency domain is higher than the third preset threshold, and the ratio of the energy average value in the ninth preset frequency domain range to the energy average value of the frequency domain signal in the whole frequency domain is also high.
  • the mode of the earphone may be adjusted to the target mode based on the listening gesture performed by the user.
  • This embodiment is based on the relatively uniform energy distribution before covering the ears and the energy distribution after covering the ears. After covering the ears, the energy is relatively concentrated in a certain low-frequency area, and the energy in the high-frequency will suddenly drop. Based on this feature Identify user gestures.
  • the gesture performed by the user is determined by the frequency energy distribution of the frequency domain signal obtained based on two audio signals around the earphone with different times, and then the mode of the earphone is adjusted to the target mode.
  • the operation of covering the ears is more natural, more user-friendly, and the operation is simpler. It does not require too much learning for the user, and does not require additional new hardware, so as to realize the control of the earphone and improve the user experience.
  • this solution uses the difference between two audio segments at different times to judge the user's operation, and does not need to set additional parameters to judge, which avoids some misjudgments caused by unreasonable parameter settings, and improves the earphone control. reliability.
  • FIG. 6 it is a schematic flowchart of a fourth earphone control method provided by the embodiment of the present application.
  • the solution controls the earphones based on two segments of audio signals of the two earphones.
  • the method includes steps 601-604, specifically as follows:
  • Detect gesture information where the gesture information is a second audio signal collected by an earphone
  • the foregoing first audio signal and the second audio signal may be collected in the same time period, which is not specifically limited in this solution.
  • the above computing unit may be located in a device such as a mobile phone connected to the earphone, or it may be located in another earphone connected to the earphone.
  • the left earphone collects the first audio signal
  • the right earphone collects the second audio signal.
  • the calculation unit Receives information sent by the calculation unit, and determine according to the information that the user has performed ear covering, the information indicates that the first ratio is greater than the second ratio, and the third ratio is smaller than the fourth ratio, and/or, The ratio between the third ratio and the fourth ratio is greater than the ratio between the fifth ratio and the sixth ratio, wherein the first ratio is the frequency domain signal of the second audio signal in the second The ratio of the energy average value within the preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain, the second ratio is the frequency domain signal of the first audio signal in the second preset frequency domain The ratio of the energy average value in the range to the energy average value of the frequency domain signal in the full frequency domain, the third ratio is the energy average value of the frequency domain signal of the second audio signal in the third preset frequency domain range and the ratio of the energy average value of the frequency domain signal of the full frequency domain, the fourth ratio is the energy average value of the frequency domain signal of the second audio signal within the fourth preset frequency domain range to the frequency value of the full frequency domain
  • the frequency energy distribution it can also be determined which ear the user is covering, and then different noise reduction operations can be performed on the left and right earphones according to which ear is determined to be covered.
  • the earphone is triggered to enter the noise reduction mode.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the internal processing of the earphone triggered by the ear-covering gesture can also be changed in combination with the current state of the earphone. For example, if the current mode is already a noise reduction mode, when an ear covering operation is detected, the current mode is switched to a non-noise reduction mode.
  • the energy average value of the frequency domain signal of the first audio signal and the frequency domain signal of the second audio signal within the fifth preset frequency domain range is equal to the energy average value of the frequency domain signal of the full frequency domain
  • the ratio is not higher than the third preset threshold value, or the ratio of the energy average value in the sixth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than that in the seventh preset frequency domain range
  • the ratio of the energy average value of the frequency domain signal and the energy average value of the frequency domain signal in the full frequency domain obtain the bluetooth signal of the earphone, and obtain the time intensity distribution of the bluetooth signal;
  • the strength of the bluetooth signal in the first period is lower than the strength of the bluetooth signal in the second period, and the strength of the bluetooth signal in the first period is lower than the fourth preset threshold within the preset duration, determine that the user performs In order to cover ears, wherein, the second period of time is earlier than the first period of time.
  • an auxiliary determination can be made in combination with the Bluetooth signal.
  • photosensitive sensors, proximity sensors, etc. may also be used, which are not specifically limited in this solution.
  • the ratio of the energy average value of the frequency domain signal of the second audio signal in the eighth preset frequency domain range to the energy average value of the frequency domain signal of the full frequency domain is higher than the fourth preset threshold, and in The ratio of the energy average value in the ninth preset frequency domain range to the energy average value of the frequency domain signal in the whole frequency domain is also higher than the fourth preset threshold value, and it is determined that the user has performed listening.
  • the mode of the earphone may be adjusted to the target mode based on the listening gesture performed by the user.
  • the gesture performed by the user is determined by the frequency energy distribution of the frequency domain signal obtained based on the audio signals around the two earphones, and then the mode of the earphone is adjusted to the target mode.
  • the operation of covering the ears is more natural, more friendly to the user, and the operation is simpler. It does not require too much learning from the user, and does not require additional new hardware to recognize the user's operation, thereby realizing Controlling the headset improves the user experience.
  • this solution does not need to set additional parameters to judge, avoiding some misjudgments caused by unreasonable parameter settings, and improving the reliability of earphone control.
  • FIG. 7a it is a schematic flowchart of a fifth headphone control method provided by the embodiment of the present application.
  • the method includes steps 701-704, specifically as follows:
  • Detect gesture information where the gesture information is a Bluetooth signal collected by an earphone;
  • the Bluetooth signal can be for a period of time.
  • the data on the abscissa is time
  • the ordinate is the received signal strength indication (Received Signal Strength Indication, RSSI), where the received signal strength indicates the RSSI value, and the RSSI values are all negative
  • RSSI Received Signal Strength Indication
  • the earphone when it is detected that the user performs a gesture of covering the ears, the earphone is triggered to enter the noise reduction mode. Specifically, a special noise reduction circuit or an audio processing module in the earphone is activated to perform noise reduction processing on the subsequent audio collected from the microphone.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the internal processing of the earphone triggered by the ear-covering gesture can also be changed in combination with the current state of the earphone. For example, if the current mode is already a noise reduction mode, when an ear covering operation is detected, the current mode is switched to a non-noise reduction mode.
  • the gesture performed by the user is determined based on the Bluetooth signal around the earphone, and then the mode of the earphone is adjusted to the target mode.
  • the operation of covering the ears is more natural, more friendly to the user, and the operation is simpler. It does not require too much learning from the user, and does not require additional new hardware to recognize the user's operation, thereby realizing Controlling the headset improves the user experience.
  • the foregoing embodiment is described by taking an audio signal and a Bluetooth signal as examples. It can also use a photosensitive sensor, a camera, a proximity sensor (infrared, ultrasound, capacitance), etc. to detect whether there is light blocking, etc. to determine the user's gesture, etc., which is not specifically limited in this solution.
  • FIG. 8a is a schematic flowchart of a sixth headphone control method provided by an embodiment of the present application.
  • the method includes steps 801-804, specifically as follows:
  • Detect gesture information where the gesture information is an audio signal collected by an earphone;
  • the frequency domain of the frequency domain signal includes at least a first frequency band, a second frequency band, and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the The last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the second The difference between the energy average value of the frequency band and the eighth ratio of the energy average value of the third frequency band is greater than the fifth preset threshold, and it is determined that the user has performed ear covering
  • FIG. 8b it is a schematic diagram of energy in different frequency bands where the user performs ear covering operation.
  • FIG. 8c it is a schematic diagram of energy in different frequency bands when the user's ears are covered and the ambient noise is large. It is determined that it is a true ear covering based on the difference between the energy ratios of three consecutive frequency bands.
  • the earphone is triggered to enter the noise reduction mode.
  • the earphone When it is detected that the user is performing a gesture of listening, the earphone is triggered to enter the transparent transmission mode.
  • the gesture performed by the user is determined based on audio signals around the earphone, and then the mode of the earphone is adjusted to the target mode. Using this method, the detection accuracy rate in the scene with high noise and covered by foreign objects is further improved.
  • FIG. 9 is a schematic flowchart of a seventh headphone control method provided by the embodiment of the present application.
  • the method includes steps 901-908, specifically as follows:
  • Detect gesture information where the gesture information is an audio signal collected by an earphone;
  • the environmental signal collected by the earphone is an audio signal as an example for illustration.
  • the environment is a noisy environment
  • the environment may be determined whether the environment is a noisy environment by detecting the proportion of high-frequency energy of a fast Fourier transform (FFT).
  • FFT high-frequency energy ratio can be understood as, for example, the ratio of the energy in the 6000 Hz-12000 Hz frequency band to the energy in the total frequency band.
  • a certain threshold the environment is considered to be a noisy environment.
  • a specific decibel threshold can also be directly used as the basis for judgment, or when the total frequency energy value of the collected audio signal exceeds a certain range, it is considered a noisy scene.
  • If the first gesture is ear covering, confirm whether the energy frequency peak in the frequency domain signal of the audio signal appears within a preset frequency range;
  • the preset frequency range may be between 900 Hz and 1500 Hz. When the peak value is not within this range, it is considered that the operation of covering the user's ears has not been detected, and the detection ends.
  • the above-mentioned first frequency band, second frequency band and third frequency band are three consecutive frequency ranges.
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the last frequency point of the second frequency band is the first frequency point of the third frequency band.
  • step 908 If it is confirmed that the user has covered the ears, go to step 908 .
  • the environment is a quiet environment
  • the gesture performed by the user may be directly determined based on the gesture information based on the methods of the foregoing embodiments, and step 908 is performed.
  • the embodiment of the present application also provides an earphone control method, which includes steps 1001-1002, specifically as follows:
  • the above-mentioned environmental signal includes at least one of the following: an audio signal, an optical signal, and an ultrasonic signal.
  • the triggering condition of the above step 1001 may be that when the intensity value of the Bluetooth signal of the headset is lower than a preset threshold, the gesture detection information is triggered; or, when a preset signal is received, the gesture detection information is triggered, wherein , the preset signal indicates that the wearable device detects that the user raises his hand. It may also be other trigger conditions, which are not specifically limited in this solution.
  • the environmental signal around the earphone may also be collected in real time, or collected periodically, which is not specifically limited in this solution.
  • the above-mentioned collection of the environmental signal around the earphone, and performing feature extraction on the environmental signal may be:
  • the audio signal around the earphone is collected, and Fourier transform is performed on the audio signal to obtain the frequency domain signal of the audio signal.
  • step 1002 may include:
  • the target mode is the first mode.
  • the above-mentioned first mode may be a noise reduction on mode or a noise reduction transparent transmission off mode, and the like.
  • other modes may also be used, which is not specifically limited in this solution.
  • the target mode is the second mode, wherein the preset threshold A is smaller than the first preset threshold.
  • the second mode may be a transparent transmission enabled mode.
  • other modes may also be used, which is not specifically limited in this solution.
  • adjustment control can also be performed based on the current mode of the earphone.
  • the first mode is the noise reduction on mode; or, when the current mode of the earphone is the noise reduction on mode, the first mode is the transparent transmission mode.
  • step 1002 may include:
  • the target mode is the first mode.
  • the mode of the earphone is then controlled.
  • the performing on the environmental signal Feature extraction including:
  • the step 1002 includes:
  • the ratio between the third ratio and the fourth ratio is greater than the fifth The ratio between the ratio and the sixth ratio, wherein the fifth ratio is the energy average value of the frequency domain signal of the first audio signal in the third preset frequency domain range and the frequency domain of the entire frequency domain.
  • the ratio of the energy average value of the signal, the sixth ratio is the energy average value of the frequency domain signal of the first audio signal within the fourth preset frequency domain range and the energy average value of the frequency domain signal of the full frequency domain
  • the ratio of values, the target mode is the first mode.
  • the target mode is the second mode.
  • this solution further determines that if the energy peak value of the frequency domain signal is within a preset frequency range, then the target mode is the first mode.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band.
  • One frequency point, the last frequency point of the second frequency band is the first frequency point of the third frequency band, the energy average value of the first frequency band and the seventh frequency point of the energy average value of the second frequency band If the difference between the ratio and the eighth ratio between the average energy value of the second frequency band and the average energy value of the third frequency band is greater than a seventh preset threshold, the target mode is the first mode.
  • feature extraction is performed based on environmental signals around the earphone, and then the mode of the earphone is adjusted to a target mode according to the energy intensity of a preset frequency band in the extracted environmental signal features.
  • the operation of covering the ears is more natural, more friendly to the user, and the operation is simpler. It does not require too much learning from the user, and does not require additional new hardware to recognize the user's operation, thereby realizing Controlling the headset improves the user experience.
  • FIG. 11 it is a schematic diagram of an earphone control device provided by an embodiment of the present application. As shown in Figure 11, it includes a detection module 1101, a signal processing module 1102 and a noise reduction control module 1103, wherein:
  • the detection module 1101 is used to detect gesture information
  • the signal processing module 1102 is used to determine the gesture performed by the user according to the gesture information, the gesture information is the environmental signal collected by the earphone, the gesture includes covering the ear forming a cavity around the earphone, at least one of listening with an open reflective surface around the earphone;
  • the noise reduction control module 1103 is configured to adjust the mode of the earphone to the target mode according to the gesture performed by the user.
  • the environmental signal includes at least one of the following: audio signal, bluetooth signal, light signal, ultrasonic signal.
  • the signal processing module 1102 is configured to:
  • the ratio is greater than the first preset threshold, it is determined that the user has performed ear covering.
  • the signal processing module 1102 is also used for:
  • the ratio is smaller than a second preset threshold, it is determined that the user has performed listening, wherein the second preset threshold is smaller than the first preset threshold.
  • the signal processing module 1102 is configured to:
  • the similarity value is greater than the second preset threshold, it is determined that the user has performed ear covering.
  • the signal processing module 1102 is configured to:
  • the ratio between the third ratio and the fourth ratio is greater than the fifth The ratio between the ratio and the sixth ratio, wherein the fifth ratio is the energy average value of the frequency domain signal of the first audio signal in the third preset frequency domain range and the frequency domain of the entire frequency domain.
  • the ratio of the energy average value of the signal, the sixth ratio is the energy average value of the frequency domain signal of the first audio signal within the fourth preset frequency domain range and the energy average value of the frequency domain signal of the full frequency domain
  • the ratio of the values determines that the user has performed ear covering.
  • the signal processing module 1102 is configured to:
  • the information indicates that the first ratio is greater than the second ratio, and the third ratio is smaller than the fourth ratio, and/or, the The ratio between the third ratio and the fourth ratio is greater than the ratio between the fifth ratio and the sixth ratio, wherein the first ratio is the frequency domain signal of the second audio signal in the second preset The ratio of the energy average value in the frequency domain range to the energy average value of the frequency domain signal in the full frequency domain, the second ratio being the frequency domain signal of the first audio signal within the second preset frequency domain range The ratio of the energy average value of the frequency domain signal of the second audio signal to the energy average value of the frequency domain signal of the full frequency domain, the third ratio is the energy average value of the frequency domain signal of the second audio signal in the third preset frequency domain range and the full frequency domain The ratio of the energy average value of the frequency domain signal in the frequency domain, the fourth ratio is the energy average value of the frequency domain signal of the second audio signal within the fourth preset frequency domain range and
  • the detection module 1101 is also used for:
  • the energy average value of the frequency domain signal of the first audio signal and the frequency domain signal of the second audio signal within the fifth preset frequency domain range is equal to the energy average value of the frequency domain signal of the full frequency domain
  • the ratio is not higher than the fifth preset threshold, or the ratio of the energy average value in the sixth preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is higher than that in the seventh preset threshold.
  • the ratio of the energy average value within the preset frequency domain range to the energy average value of the frequency domain signal in the full frequency domain is obtained to obtain the bluetooth signal of the earphone and obtain the time intensity distribution of the bluetooth signal;
  • the signal processing module 1102 is also used for:
  • the strength of the bluetooth signal in the first period is lower than the strength of the bluetooth signal in the second period, and the strength of the bluetooth signal in the first period is lower than the ninth preset threshold within the preset time length, determine that the user performs In order to cover ears, wherein, the second period of time is earlier than the first period of time.
  • the signal processing module 1102 is also used for:
  • the frequency domain signal of the first audio signal and the frequency domain signal of the second audio signal there is at least one segment of the frequency domain signal of the audio signal in the eighth preset frequency domain, the energy average value and the whole frequency domain
  • the ratio of the average energy value of the frequency domain signal in the frequency domain is higher than the sixth preset threshold, and the ratio of the energy average value in the ninth preset frequency domain range to the energy average value of the frequency domain signal in the entire frequency domain is also higher than the preset threshold value.
  • the sixth preset threshold value is used to determine that the user has performed listening.
  • the energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the second The last frequency point of the frequency band is the first frequency point of the third frequency band
  • the energy average value of the second frequency band A difference between an eighth ratio of the energy average to the energy average of the third frequency band is greater than a seventh preset threshold.
  • the signal processing module 1102 is also used for:
  • the strength of the bluetooth signal in the first period of time in the time intensity distribution is lower than the strength of the bluetooth signal in the second period, and the strength of the bluetooth signal in the first period is lower than the sixth preset threshold within the preset duration , it is determined that the user has performed ear covering, wherein the second time period is earlier than the first time period.
  • the target mode is any one of the noise reduction on mode and the noise reduction transparent transmission off mode
  • the target mode is the noise reduction on mode
  • the target mode is the transparent transmission enabled mode
  • the target mode is the noise reduction transparent transmission off mode.
  • the target mode is a noise reduction on mode
  • the target mode is a transparent transmission open mode.
  • the device further includes a triggering module, configured to trigger the detection gesture information when the strength value of the Bluetooth signal of the earphone is lower than a tenth preset threshold.
  • the device further includes a triggering module, configured to trigger the detected gesture information when a preset signal is received, the preset signal indicating that the wearable device detects that the user has raised his hand.
  • FIG. 12 it is a schematic diagram of another earphone control device provided by the embodiment of the present application. As shown in Figure 12, it includes a signal acquisition module 1201, a signal processing module 1202 and a noise reduction control module 1203, wherein:
  • the noise reduction control module 1203 is configured to adjust the mode of the earphone to the target mode according to the energy intensity of the preset frequency band in the extracted environmental signal characteristics.
  • the environmental signal includes at least one of the following: an audio signal, an optical signal, and an ultrasonic signal.
  • the signal processing module 1202 is configured to:
  • the noise reduction control module 1203 is used for:
  • the target mode is the first mode.
  • the signal processing module 1202 is configured to:
  • the noise reduction control module 1203 is used for:
  • the target mode is the first mode.
  • the signal processing module 1202 is configured to:
  • the noise reduction control module 1203 is used for:
  • the ratio between the third ratio and the fourth ratio is greater than the fifth The ratio between the ratio and the sixth ratio, wherein the fifth ratio is the energy average value of the frequency domain signal of the first audio signal in the third preset frequency domain range and the frequency domain of the entire frequency domain.
  • the ratio of the energy average value of the signal, the sixth ratio is the energy average value of the frequency domain signal of the first audio signal within the fourth preset frequency domain range and the energy average value of the frequency domain signal of the full frequency domain
  • the ratio of values, the target mode is the first mode.
  • the target mode is the second mode.
  • the energy peak in the frequency energy distribution of the frequency domain signal is located within a preset frequency range.
  • the frequency domain of the audio signal includes at least a first frequency band, a second frequency band and a third frequency band
  • the last frequency point of the first frequency band is the first frequency point of the second frequency band
  • the first frequency point of the first frequency band is The last frequency point of the second frequency band is the first frequency point of the third frequency band
  • the seventh ratio of the energy average value of the first frequency band to the energy average value of the second frequency band is greater than a seventh preset threshold.
  • the first mode is any one of a noise reduction on mode and a noise reduction transparent transmission off mode;
  • the first mode is the noise reduction on mode
  • the first mode is the transparent transmission enabled mode
  • the first mode is the noise reduction transparent transmission off mode.
  • the first target mode is a noise reduction enabled mode
  • the second mode is a transparent transmission enabled mode.
  • the device also includes a trigger module for:
  • the gesture detection information is triggered.
  • the device also includes a trigger module for:
  • the detection gesture information is triggered when a preset signal is received, and the preset signal indicates that the wearable device detects that the user raises a hand.
  • the headphone control device is presented in the form of a module.
  • a “module” here may refer to an application-specific integrated circuit (ASIC), a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions .
  • ASIC application-specific integrated circuit
  • processor may execute one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions .
  • noise reduction control module 1103, signal acquisition module 1201, signal processing module 1202, and noise reduction control module 1203 can be implemented by the processor 1302 of the earphone control device shown in FIG. accomplish.
  • Fig. 13 is a schematic diagram of the hardware structure of the headphone control device provided by the embodiment of the present application.
  • the headphone control device 1300 shown in FIG. 13 includes a memory 1301 , a processor 1302 , a communication interface 1303 and a bus 1304 .
  • the memory 1301 , the processor 1302 , and the communication interface 1303 are connected to each other through a bus 1304 .
  • the memory 1301 may be a read-only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device or a random access memory (Random Access Memory, RAM).
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the memory 1301 may store a program, and when the program stored in the memory 1301 is executed by the processor 1302, the processor 1302 and the communication interface 1303 are used to execute each step of the headphone control method according to the embodiment of the present application.
  • the processor 1302 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), a graphics processing unit (graphics processing unit, GPU) or one or more
  • the integrated circuit is used to execute related programs to realize the functions required by the units in the headphone control device of the embodiment of the present application, or to execute the headphone control method of the method embodiment of the present application.
  • the processor 1302 may also be an integrated circuit chip with signal processing capabilities. During implementation, each step of the earphone control method of the present application may be completed by an integrated logic circuit of hardware in the processor 1302 or instructions in the form of software.
  • the above-mentioned processor 1302 can also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application-specific integrated circuit
  • FPGA Field Programmable Gate Array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 1301, and the processor 1302 reads the information in the memory 1301, and combines its hardware to complete the functions required by the units included in the headphone control device of the embodiment of the present application, or execute the headphone control of the method embodiment of the present application method.
  • the communication interface 1303 implements communication between the apparatus 1300 and other devices or communication networks by using a transceiver device such as but not limited to a transceiver. For example, data can be acquired through the communication interface 1303 .
  • the bus 1304 may include pathways for transferring information between various components of the device 1300 (eg, memory 1301 , processor 1302 , communication interface 1303 ).
  • the device 1300 shown in FIG. 13 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the device 1300 also includes other devices necessary for normal operation . Meanwhile, according to specific needs, those skilled in the art should understand that the apparatus 1300 may also include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the device 1300 may also only include the devices necessary to realize the embodiment of the present application, and does not necessarily include all the devices shown in FIG. 13 .
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a computer or a processor, the computer or the processor executes one of the above-mentioned methods or multiple steps.
  • the embodiment of the present application also provides a computer program product including instructions.
  • the computer program product is run on the computer or the processor, the computer or the processor is made to perform one or more steps in any one of the above methods.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the division of this unit is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored, or not implement.
  • the mutual coupling, or direct coupling, or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.)
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be read-only memory (read-only memory, ROM), or random access memory (random access memory, RAM), or magnetic medium, for example, floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, such as , a digital versatile disc (digital versatile disc, DVD), or a semiconductor medium, for example, a solid state disk (solid state disk, SSD) and the like.
  • read-only memory read-only memory
  • RAM random access memory
  • magnetic medium for example, floppy disk, hard disk, magnetic tape, magnetic disk, or optical medium, such as , a digital versatile disc (digital versatile disc, DVD), or a semiconductor medium, for example, a solid state disk (solid state disk, SSD) and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Abstract

本申请实施例提供一种耳机控制方法及相关系统、存储介质,该方法包括:检测手势信息;根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。通过基于耳机采集的环境信号来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,从而实现控制耳机,提高了用户体验。

Description

耳机控制方法及相关系统、存储介质
本申请要求于2021年12月16日提交中国专利局、申请号为202111545967.4、申请名称为“耳机控制方法及相关系统、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种耳机控制方法及相关系统、存储介质。
背景技术
随着智能手机的快速发展,人们越来越不满足有线耳机无法灵活、方便使用。伴随着科技创新,蓝牙再一次改变了用户的连接方式,各大品牌的相关产品也在拓宽自己的蓝牙耳机市场和影响。在耳机领域,普遍带有降噪功能。降噪耳机,是在耳机中设置了专门的降噪电路。目前降噪耳机有两种:主动降噪耳机和被动降噪耳机。主动降噪耳机通过降噪系统产生与外界噪音相等的反向声波,将噪音中和,从而实现降噪的效果。被动降噪耳机主要通过包围耳朵形成封闭空间,或者采用硅胶耳塞等隔音材料来阻挡外界噪声。
市面上现有的真无线立体声蓝牙耳机(True Wireless Stereo,TWS)降噪耳机的降噪切换操作不统一,学习成本高,且基于触控的操作效率低、有听诊器效应。
目前,支持降噪功能的耳机Airpods Pro、Freebuds Pro是采用按住耳柄的进行降噪启动和关闭,其左右耳可对称操作;以及Galaxy Buds Pro/Live采用的是长按耳机表面实现的降噪启动和关闭,其左右耳可对称操作。上述的耳机降噪启动和关闭操作,需要特殊的器件,比如均需要压力传感器或者电容来检测动作,而且长按和短按之间还容易产生误操作,交互对用户不是很友好,用户学习成本高。
市面上的另一种耳机产品例如Freebuds 3、OPPO Enco W51等是采用敲击两下左耳机的方式实现降噪的启动和关闭。这种操作方式,同样需要特殊的器件,并且左右操作不对称,需要用户记忆,敲击的方式还会引起听诊器效应,用户使用感受不佳。
发明内容
本申请公开了一种耳机控制方法及相关系统、存储介质,可以在不增加额外硬件的基础上,实现对耳机的降噪功能的控制,用户体验好。
第一方面,本申请实施例提供一种耳机控制方法,包括:检测手势信息;根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
上述检测手势信息的实现方式可以是持续的获取环境信号,或者周期性的获取环境信号,还可以是有触发机制的去获取环境信号并进行信号的分析。通过检测环境信号的变化情况以此获取到手势信息,可以理解为,该手势信息是符合预设标准的环境信号。上述根据所述手势信息确定用户所执行的手势,该实现基于用户交互实现。也就是说,用户在耳机周围采用不同手势时,耳机会进入不同的控制模式。
本申请实施例,通过基于耳机采集的环境信号来确定用户所执行的手势,进而基于该手 势将耳机的模式调整为目标模式。采用该手段,不需要额外增加新的硬件,即可实现控制耳机,提高了用户体验。且,操作简单,不需要引入用户过多的学习,同时捂耳朵操作比较自然,对用户而言更友好。
其中,所述环境信号包括以下至少一种:音频信号、蓝牙信号、光信号、超声波信号。
作为第一种实现方式,当所述环境信号为一段音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵。
该实施例基于一段音频信号中预设频段的能量信息与阈值的大小比较,来确定用户执行的手势。其中,由手和耳朵形成的腔体造成的环境音会出现在特征频段上的能量相对集中现象,因此基于此音频特征来检测出用户做出了捂耳朵的操作,进而实现控制耳机,提高了用户体验。
在第一种实现方式的基础上,若所述比值小于第二预设阈值,确定所述用户执行了聆听,其中,所述第二预设阈值小于所述第一预设阈值。
作为第二种实现方式,当所述环境信号为一段音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵。
该实施例,基于耳机周围的音频信号得到的频域信号的频率能量分布与预设的频率能量分布之间的相似度值来确定用户所执行的手势,进而将耳机的模式调整为目标模式。
作为第三种实现方式,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述根据所述手势信息确定用户所执行的手势,包括:对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了捂耳朵。
该实施例基于耳机周围的时间不同的两段音频信号得到的频域信号的频率能量分布来确定用户所执行的手势,进而将耳机的模式调整为目标模式。其不需要通过额外设置参数来判断,避免了由于参数设置的不合理而带来的一些误判,提高了耳机控制的可靠性。
作为第四种实现方式,当所述环境信号为一段第二音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:将所述第二音频信号发送至计算单元,以使所述计算单元对 所述第二音频信号和第一音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;接收所述计算单元发送的信息,并根据所述信息确定所述用户执行了捂耳朵,所述信息指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点。
上述计算单元可以是另一个耳机中的计算单元,也可以其他智能设备,如手机等,本方案对此不做具体限定。
上述通过基于两个耳机周围的音频信号得到的频域信号的频率能量分布来确定用户所执行的手势,进而将耳机的模式调整为目标模式。其不需要通过额外设置参数来判断,避免了由于参数设置的不合理而带来的一些误判,提高了耳机控制的可靠性。
在上述实现方式的基础上,若所述第一音频信号的频域信号和所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于第三预设阈值,或者在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第四预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
该实施例在基于音频信号不能确定捂耳朵手势时,进一步结合蓝牙信号来确定用户手势。
在上述实现方式的基础上,若所述第二音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第四预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第四预设阈值,确定所述用户执行了聆听。
其中,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
该实施例,在相对吵闹场景时,可结合频域信号的频率能量分布中的能量峰值来确定用户执行了捂耳朵的手势,提高了手势确定的准确度和可靠性。
进一步地,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第五预设阈值。
该实施例,在相对吵闹场景时,可结合三个连续频段的能量分布来确定用户执行了捂耳 朵的手势,提高了手势确定的准确度和可靠性。
作为第五种实现方式,当所述环境信号为一段蓝牙信号时,所述根据所述手势信息确定用户所执行的手势,包括:根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
本申请实施例,通过基于耳机周围的蓝牙信号来确定用户所执行的手势,进而将耳机的模式调整为目标模式。
作为一种可选的实现方式,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式、降噪透传关闭模式中的任一种;或者,当所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;或者,当所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
采用该手段,提高了耳机模式控制的多样性,提高了用户体验。
作为另一种可选的实现方式,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式;当所述用户所执行的手势为聆听时,所述目标模式为透传开启模式。
作为一种可选的实现方式,所述方法还包括:当所述耳机的蓝牙信号的强度值低于第七预设阈值时,开始检测手势信息。
采用该触发机制,节省了耳机的电量消耗,提高了用户体验。
作为另一种可选的实现方式,所述方法还包括:当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
采用该触发机制,节省了耳机的电量消耗,提高了用户体验。
第二方面,本申请实施例提供一种耳机控制方法,包括:采集耳机周围的环境信号,并对所述环境信号进行特征提取;根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
本申请实施例,通过对耳机周围的环境信号进行特征提取,基于提取到的环境信号特征来调整耳机的模式。采用该手段,在现有耳机的基础上,无需额外增加传感器等即可实现,且对于用户操作更加简单,不需要引入过多的学习,提高了用户体验。
其中,所述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
作为一种实现方式,当所述环境信号为一段音频信号时,所述对所述环境信号进行特征提取,包括:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算第一预设频域范围内的所述频域信号的能量平均值与全频域的频域信号的能量平均值的比值;所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式,包括:若所述比值大于第一预设阈值,所述目标模式为第一模式。
其中,若所述比值小于预设阈值A,所述目标模式为第二模式,其中,所述预设阈值A小于所述第一预设阈值。
作为另一种实现方式,当所述环境信号为一段音频信号时,所述对所述环境信号进行特征提取,包括:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式,包括:若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
作为又一种实现方式,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述对所述环境信号进行特征提取,包括:对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式,包括:在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
其中,若所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,所述目标模式为第二模式。
作为一种实现方式,其中,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
作为又一种实现方式,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第四预设阈值。
作为一种实现方式,当所述目标模式为第一模式时,所述第一模式为降噪开启模式、降噪透传关闭模式中的任一种;或者,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式。
作为另一种实现方式,当所述目标模式为第一模式时,所述第一目标模式为降噪开启模式;当所述目标模式为第二模式时,所述第二模式为透传开启模式。
作为一种实现方式,所述方法还包括:当所述耳机的蓝牙信号的强度值低于第五预设阈值时,开始检测手势信息。
作为另一种实现方式,所述方法还包括:当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
第三方面,本申请提供了一种耳机控制装置,包括:检测模块,用于检测手势信息;信号处理模块,用于根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射 面的聆听中的至少一种;降噪控制模块,用于根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
其中,所述环境信号包括以下至少一种:音频信号、蓝牙信号、光信号、超声波信号。
作为第一种实现方式,当所述环境信号为一段音频信号时,所述信号处理模块,用于:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵。
作为第二种实现方式,当所述环境信号为一段音频信号时,所述信号处理模块,用于:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵。
作为第三种实现方式,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块,用于:对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了捂耳朵。
作为第四种实现方式,所述装置还包括通信模块,当所述环境信号为一段第二音频信号时,所述通信模块用于将所述第二音频信号发送至计算单元,以使所述计算单元对所述第二音频信号和第一音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;接收所述计算单元发送的信息,所述信号处理模块,用于根据所述信息确定所述用户执行了捂耳朵,所述信息指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值 为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点。
其中,若所述第一音频信号的频域信号和所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于第三预设阈值,或者在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第四预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
作为又一种实现方式,若所述第二音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第四预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第四预设阈值,确定所述用户执行了聆听。
作为一种可选的实现方式,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
作为另一种可选的实现方式,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第五预设阈值。
作为一种可替代方案,当所述环境信号为一段蓝牙信号时,所述信号处理模块,用于:根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
其中,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式、降噪透传关闭模式中的任一种;或者,当所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;或者,当所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
作为一种可替代方案,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式;当所述用户所执行的手势为聆听时,所述目标模式为透传开启模式。
可选的,所述装置还包括触发模块,用于:当所述耳机的蓝牙信号的强度值低于第七预设阈值时,开始检测手势信息。
作为一种可替代方案,所述装置还包括触发模块,用于:当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
第四方面,本申请提供了一种耳机控制装置,包括:信号采集模块,用于采集耳机周围的环境信号;信号处理模块,用于对所述环境信号进行特征提取;降噪控制模块,用于根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
其中,所述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
作为一种实现方式,当所述环境信号为一段音频信号时,所述信号处理模块,用于:对 所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算第一预设频域范围内的所述频域信号的能量平均值与全频域的频域信号的能量平均值的比值;所述降噪控制模块,用于:若所述比值大于第一预设阈值,所述目标模式为第一模式。
作为另一种可选的实现方式,当所述环境信号为一段音频信号时,所述信号处理模块,用于:对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;所述降噪控制模块,用于:若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
作为又一种可选的实现方式,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块,用于:对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;所述降噪控制模块,用于:在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
其中,若所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,所述目标模式为第二模式。
可选的,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
进一步地,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第四预设阈值。
作为一种实现方式,当所述目标模式为第一模式时,所述第一模式为降噪开启模式、降噪透传关闭模式中的任一种;或者,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式。
作为另一种实现方式,当所述目标模式为第一模式时,所述第一目标模式为降噪开启模式;当所述目标模式为第二模式时,所述第二模式为透传开启模式。
可选的,所述装置还包括触发模块,用于:当所述耳机的蓝牙信号的强度值低于第五预设阈值时,开始检测手势信息。
可替代的,所述装置还包括触发模块,用于:当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
第五方面,本申请提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如第一方面任一种可能的实施方式和/或第二方面任一种可能的实施方式提供的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如第一方面任一种可能的实施方式和/或第二方面任一种可能的实施方式提供的方法。
可以理解地,上述提供的第三方面所述的装置、第四方面所述的装置、第五方面所述的计算机存储介质或者第六方面所述的计算机程序产品均用于执行第一方面中任一所提供的方法以及第二方面中任一所提供的方法。因此,其所能达到的有益效果可参考对应方法中的有益效果,此处不再赘述。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1a是本申请实施例提供的一种捂耳朵手势的示意图;
图1b是本申请实施例提供的一种聆听手势的示意图;
图1c是本申请实施例提供的一种耳机的结构示意图;
图1d是本申请实施例提供的一种与耳机连接的设备示意图;
图2是本申请实施例提供的一种耳机控制方法的流程示意图;
图3a是本申请实施例提供的第一种耳机控制方法的流程示意图;
图3b是本申请实施例提供的一种频域信号的频率能量分布示意图;
图4a是本申请实施例提供的第二种耳机控制方法的流程示意图;
图4b是本申请实施例提供的一种频域信号的频率能量分布示意图;
图4c是本申请实施例提供的另一种频域信号的频率能量分布示意图;
图4d是本申请实施例提供的又一种频域信号的频率能量分布示意图;
图5a是本申请实施例提供的第三种耳机控制方法的流程示意图;
图5b是本申请实施例提供的捂耳朵前后的频域信号的频率能量分布示意图;
图5c是本申请实施例提供的又一种捂耳朵前后的频域信号的频率能量分布示意图;
图6是本申请实施例提供的第四种耳机控制方法的流程示意图;
图7a是本申请实施例提供的第五种耳机控制方法的流程示意图;
图7b是本申请实施例提供的一种蓝牙信号的时间强度曲线示意图;
图8a是本申请实施例提供的第六种耳机控制方法的流程示意图;
图8b是本申请实施例提供的一种捂耳朵操作的不同频段能量示意图;
图8c是本申请实施例提供的一种用户耳朵遮住且环境噪音较大时的不同频段能量示意图;
图9是本申请实施例提供的第七种耳机控制方法的流程示意图;
图10是本申请实施例提供的又一种耳机控制方法的流程示意图;
图11是本申请实施例提供的一种耳机控制装置的结构示意图;
图12是本申请实施例提供的另一种耳机控制装置的结构示意图;
图13是本申请实施例提供的又一种耳机控制装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。本申请实施例的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
由于现有耳机的降噪等控制的交互对用户来说不是很友好,且需要增加额外的硬件等,本方案提出了一种控制耳机的方法、装置及存储介质,其不需要额外增加新的硬件,可采用声学、光学等检测的方法来识别用户的操作,从而实现控制耳机。
其中,本方案的实施例中涉及捂耳朵手势和聆听手势。捂耳朵是现实世界中大家比较自然的一种表达对外界噪声的抗拒的方式,因此本方案通过技术手段来实现对这一用户动作的检测,并根据检测到的这个动作,来触发耳机的降噪控制,从而实现当前耳机如蓝牙耳机上的一种自然的、低成本的交互方式。
本方案的捂耳朵,可以理解为,用户带着耳机,然后用手在耳机附近形成一个全封闭的腔体。本方案把用手在耳机附近形成全封闭的腔体的动作定义为捂耳朵操作。如图1a所示,用户的手呈现一定的凸起(拱起)形状,耳朵与手之间呈现为一个腔体。
聆听是大家在听不清时所做出的一种动作。本方案的聆听,可以理解为,用户用手在耳机周围形成开放反射面的动作。本方案把用手在耳机周围形成开放反射面的动作定义为聆听操作。如图1b所示,用户的手掌贴近耳朵后方,形成一个开放的反射面。
需要说明的是,本方案仅以此为例进行说明,其还可以是其他手势,本方案对此不做具体限定。
本方案通过检测用户对耳机进行的手势操作,例如可以是检测到音频信号的变化来确定用户执行的动作,进而对耳机进行控制。具体地,耳机中的麦克风检测外部声音信号的特征,并根据外部声音信号的特征或者特征的变化,来检测出用户的相应操作是捂耳朵,根据用户的捂耳朵操作,启动或关闭耳机的降噪模式;或者进一步根据耳机的前一时刻的状态,结合捂耳朵的操作,确定耳机要触发的控制是开始降噪模式、关闭降噪模式或者透传模式。上述仅以音频信号为例进行说明。其中,还可以是其他的模态检测信号,比如蓝牙信号,或者用光敏传感器、接近传感器等来检测用户的具体操作。当然,也可以用摄像头等来检测。本方案对此不做具体限定。
本方案可适用于有线耳机,无线耳机等。例如头戴式耳机、真无线立体声蓝牙耳机等。
耳机按外形分类可分为头戴式和耳塞。其中,头戴式耳机是戴在头上,并非插入耳道内,区别于入耳式耳塞的一类耳机。头戴式耳机一般可分为包耳式和压耳式。包耳式耳机的耳罩较大,将整个耳朵包在里面,耳垫压在耳朵外的皮肤上。压耳式耳机的耳罩是压在耳朵上的。
耳塞可分为入耳式耳机和半入耳式耳机。入耳的TWS耳机有深入耳道的胶塞,佩戴时可以塞的更紧。入耳式耳机一般为豆豆式设计,胶塞根据人耳设计有不同大小。半入耳式耳机则没有胶塞,带有一个长柄,使用时更像是挂在耳孔中。
其中,真无线立体声蓝牙耳机拥有更小巧的身材、更低的延迟和不错的音质,正在逐渐取代传统的有线耳机,成为日常生活中更加方便的音乐、追剧和游戏利器。
参照图1c所示,为本申请实施例提供的一种耳机的结构示意图。如图1c所示,该耳机包括检测模块、计算模块、反馈模块、降噪控制模块、信号处理模块、通信模块、麦克风、扬声器、蓝牙模组、CPU等。其中,检测模块用于检测用户的输入,检测的对象可以包括麦克风,用于声音输入(如用户的语音输入,或者环境音等);检测模块还可以包括触摸传感器, 用于接收用户的触摸输入,如有些耳机具有通过在耳机表面上点击、双击、滑动来进行交互的功能等。反馈模块可以通过声音、振动等方式为佩戴耳机的用户提供反馈。计算模块用于完成耳机内的计算工作。降噪控制模块用于根据检测的信息,控制降噪的模式切换。信号处理模块用于处理接收到的信号信息,例如可以是音频信号,也可以是蓝牙信号或者光信号等。其中,降噪控制模块的降噪处理可以在信号处理模块完成等。通信模块用于当耳机与其他设备建立关联的时候互通控制及音频数据信息。麦克风用于接收外部的音频信息。扬声器用于将信号处理模块处理后的声音传递给外界。
其中,耳机还可以具有其他多种传感器模块。例如,可以通过运动传感器如加速计、陀螺仪检测耳机的位姿,通过光学传感器检测到耳机从耳机盒子中取出,通过触摸传感器检测手指在耳机表面上的触点,通过电容传感器、电压传感器、阻抗传感器、光敏传感器、接近传感器、图像传感器等传感器来进行各种不同目的的检测。
本方案中根据外部音频信号的变化检测到的用户的操作,可以在检测模块实现,也可以在信号处理模块完成。该检测功能可以集成到信号处理模块等其他模块中完成。当然,本方案对此并不做具体限定。
如图1d所示,本申请实施例还提供一种与耳机连接的设备的示意图。该设备例如可以是手机、平板电脑、智能电视等。可以理解的是,这些设备具有一般电子设备通用的输入系统、反馈系统、检测系统、显示器、计算单元、存储单元和通信单元等。在一些实施例中,本申请提供的耳机控制方法对手势信息检测的信号触发和检测过程由该设备的检测系统执行。例如在检测过程中可利用该设备上集成的传感器进行检测。可以理解的是,与耳机连接的设备上的检测系统和传感器,与装置在耳机上的检测系统和传感器,其功能都是相同的,只是可能由于商业、成本上的一些原因考虑被装置在了不同的主体上。
下面对本申请实施例提供的耳机控制方法进行介绍。如图2所示,为本申请实施例提供的一种耳机控制方法,其包括步骤201-203,具体如下:
201、检测手势信息;
其中,耳机可以实时检测手势信息。该手势信息为耳机所采集的环境信号。具体地,耳机的检测模块实时采集耳机周围的环境信号。
或者,耳机周期性地检测手势信息。例如,耳机间隔一定时间采集周围的环境信号。
可替代的,耳机还可以在满足预设触发条件时检测手势信息。例如,当满足预设条件时,耳机开始采集环境信号。
其中,该预设条件可以是耳机中的蓝牙模块检测到蓝牙RSSI值低于预设阈值时,则触发检测手势信息。
或者,当检测到用户抬起手,如利用手表中的IMU模块来进行检测等。当然还可以是其他触发方式,例如,使用接近传感器检测到有物体接近耳机,或者光敏传感器检测到光照强度低于某一阈值,则触发耳机实时采集周围的环境信号,如打开麦克风进行音频采集等,本方案对此不做具体限定。
通过在满足预设条件时触发耳机检测手势信息,可以节省耳机的电能消耗。
202、根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
上述环境信号,例如,可以是音频信号、蓝牙信号、光信号、超声波信号等信号中的一种或多种。
上述音频信号,可以是耳机的检测模块检测到的,如可以是通过麦克风收集上来的一段时间的音频信号。其还可以是其他方式触发后采集到的音频信号,本方案对此不做具体限定。
上述蓝牙信号,可以是通过蓝牙模组等采集到蓝牙信号。
通过对采集到的环境信号进行特征提取,基于提取到的特征进而确定用户所执行的手势。
其中,特征提取的目的是为了检测上述采集到的音频信号/蓝牙信号/光信号/超声波信号等是否符合用户捂耳朵的信号特征,或者是否符合用户聆听的信号特征,以用于后续触发相应的操作。
例如,耳机的计算模块根据所述手势信息确定用户所执行的手势,进而指示降噪控制模块切换耳机的模式。
本方案的捂耳朵,可以理解为,用户用手在耳机附近形成一个腔体。该腔体可以是全封闭的,如前述图1b所示。
本方案的聆听,可以理解为,用户用手在耳机周围形成开放反射面的动作。本方案把用手在耳机周围形成开放反射面的动作定义为聆听操作,可参阅前述图1c所示。
203、根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪开启模式。或者,当用户所执行的手势为捂耳朵时,所述目标模式为降噪透传关闭模式(普通模式)。
具体地,启动耳机中的专门降噪电路或音频处理模块对从麦克风收集到的后续音频进行降噪处理。
当检测到用户执行的是聆听的手势时,触发耳机进入透传开启模式。
上述仅以一种实现方式为例进行说明,其还可以对应其他控制模式,本方案对此不做具体限定。
作为另一种可选的实现方式,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。
具体地,当所述用户所执行的手势为捂耳朵时,若所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;
或者,若所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;
或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式。
作为又一种可选的实现方式,还可以对降噪程度进行等级区分。若当前用户所处环境为图书馆、书店、办公室等环境噪声比较低的场景,若检测到用户执行了捂耳朵操作,则启动轻度降噪模式。若当前用户所处环境为咖啡厅、地铁等中度噪声环境场景时,检测到用户执行了捂耳朵操作,则启动均衡降噪模式。若当前用户所处环境为餐厅、机场等强噪声场景时,检测到用户执行了捂耳朵操作,则启动深度降噪模式等。
在上述实施例的基础上,还可以进行结合来进行模式控制。例如,基于降噪程度进行等级区分的方案可以和结合当前耳机所处的状态进行结合,用捂耳朵动作结合当前耳机所采用的降噪等级来确定捂耳朵操作具体会触发的耳机操作。
例如,当前耳机状态为轻度降噪时,捂一下开启中度降噪;当前耳机状态为中度降噪时,捂一下开启重度降噪等。
除了结合场景来对耳机的模式进行控制外,还可以根据捂耳朵时间长短改变降噪程度。例如,用户一直捂着,则降噪程度逐级递增,具体可通过耳机中的反馈模块的声音反馈。具体地,当检测到用户刚捂上,则耳机滴一声;持续检测到用户不松手,则提高降噪等级,再滴一声,或滴的声音有变化等。上述仅为一种示例,本方案对此不做具体限定。
可替代的,还可以基于用户预先设置,来确定捂耳朵操作对应的耳机模式等,本方案对此不做具体限定。
该实施例通过用户手势操作触发不同的耳机模式切换,能够基于一个动作实现多模式和状态切换,用户可操作性强,更加智能,用户交互界面友好。
本申请实施例,通过基于耳机采集的环境信号来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,即可实现控制耳机,提高了用户体验。
下面对本申请的具体实现进行详细介绍。
参照图3a所示,为本申请实施例提供的第一种耳机控制方法的流程示意图。该方法包括步骤301-305,具体如下:
301、检测手势信息,所述手势信息为耳机所采集的音频信号;
作为一种实现方式,通过耳机的外置麦克风收集耳机周围的音频信号。其中,该音频信号可以是一段时间的音频信号,例如时长30s等。
其中具体的时间长度,可以根据计算精确度要求以及耳机的处理能力的需求确定,本方案对此不做具体限定。
302、对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
具体地,对于采集到的音频信号进行傅里叶变换,可将接收到的时域音频信号变换为频域信号。其中,频域信号的频率能量分布可如图3b所示,横轴表示时间,纵轴表示频率范围,图中的点代表信号的能量。
303、计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
上述第一预设频域范围内的频域信号,可以是比较集中的某个频段范围内。例如,图3b中的频域f1到f2范围之间的能量平均值与全频段能量平均值的比值。
304、若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵;
该第一预设阈值可以是任意值,本方案对此不做具体限定。
通过实验发现,由手和耳朵形成的腔体造成的环境音会出现在特征频段上的能量相对集中现象,因此可以用此音频特征来检测出用户做出了捂耳朵的操作。
进一步地,若所述比值小于第二预设阈值,确定所述用户执行了聆听,其中,所述第二预设阈值小于所述第一预设阈值。
当然,上述比值还可以大于第三预设阈值,小于第二预设阈值,确定所述用户执行了聆听等,其中,所述第二预设阈值小于所述第一预设阈值。本方案对此不做具体限定。
305、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。具体地,启动耳机中的专门降噪电路或音频处理模块对从麦克风收集到的后续音频进行降噪处理。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
进一步地,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式。
该实施例基于由手和耳朵形成的腔体造成的环境音会出现在特征频段上的能量相对较为集中的现象,以此来确定用户执行了捂耳朵。
本申请实施例,通过基于耳机采集的音频信号的频域信号的能量信息,来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,从而实现控制耳机,提高了用户体验。
参照图4a所示,为本申请实施例提供的第二种耳机控制方法的流程示意图。该方法包括步骤401-405,具体如下:
401、检测手势信息,所述手势信息为耳机所采集的音频信号;
作为一种实现方式,通过耳机的外置麦克风收集耳机周围的音频信号。其中,该音频信号可以是一段时间的音频信号,例如时长30s等。
其中具体的时间长度,可以根据计算精确度要求以及耳机的处理能力的需求确定,本方案对此不做具体限定。
402、对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
具体地,对于采集到的音频信号进行傅里叶变换,可将接收到的时域音频信号变换为频域信号。具体可参阅前述实施例的介绍,在此不再赘述。
403、计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
上述频域信号的频率能量分布,例如可以是频率能量曲线。如图4b、图4c、图4d所示,其中横轴表示频率,纵轴表示该频点上的能量。其中,图4b所示为噪音源偏向捂耳朵的另一侧时的频率能量曲线;图4c所示为噪音源在用户所处位置中间时的频率能量曲线;图4d所示为噪音源偏向捂耳朵的一侧时的频率能量曲线。
上述预设的频率能量分布,可以是经过学习得到的捂耳朵手势对应的频率能量分布。
404、若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵;
经过多次实验发现用户捂耳朵时,不同方向的噪音源带来的频率能量曲线都会有一个较大的波峰出现,因此可以通过将检测到的音频信号的频率能量曲线与预先学习或者设置的曲线进行匹配,当相似度大于某各阈值时,则判断用户做了捂耳朵的操作。
405、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
进一步地,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式等。
本申请实施例,通过基于耳机周围的音频信号得到的频域信号的频率能量分布与预设的频率能量分布之间的相似度值来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,从而实现控制耳机,提高了用户体验。
上述实施例以一段音频信号为例进行介绍,下面对基于两段音频信号来实现耳机控制进行介绍。参照图5a所示,为本申请实施例提供的第三种耳机控制方法的流程示意图。该方法包括步骤501-505,具体如下:
501、检测手势信息,所述手势信息为耳机所采集的第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号;
例如,间隔一定时长分别采集耳机周围的两段音频信号。
上述两段音频信号还可以是两段连续时间采集到的,本方案对此不做具体限定。
502、对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
该傅里叶变换可参阅前述实施例的介绍,在此不再赘述。
503、计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
504、在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了捂耳朵;
如图5b所示的捂耳朵前后,两段音频信号的低频能量变化对比,以及如图5c所示的捂耳朵前后,两段音频信号的高频能量变化对比。其中时间段1对应的第一音频为捂耳朵之前的音频,时间段2对应的第二音频为捂耳朵之后的音频。通过将两段音频信号的频域信号的能量分布进行比较,若相对于采集时间在先的第一段音频信号,当采集时间在后的第二段音频信号的频率能量在低频范围内发生聚集(如图5b所示),且在高频范围的能量出现突降(如图5c所示),则判断用户做了捂耳朵的操作。
505、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
进一步地,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式。
上述以用户执行了捂耳朵为例进行介绍。
其中,若所述第一音频信号的频域信号和所述第二音频信号的频域信号中,存在至少一段音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,则确定所述用户执行了聆听。
也就是说,如果上述两段音频信号中存在音频信号在高频增强,且在低频也增强,则判 定用户执行了聆听。
相应地,可基于用户执行的聆听手势,将所述耳机的模式调整为目标模式。
该实施例基于捂耳朵之前能量分布相对均匀的能量分布与捂耳朵之后的能量分布比,捂耳朵之后的能量在低频某个区域较为集中,并且在高频的能量会突降,以此特征来确定用户手势。
本申请实施例,通过基于耳机周围的时间不同的两段音频信号得到的频域信号的频率能量分布来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,从而实现控制耳机,提高了用户体验。
另一方面,本方案利用不同时间的两段音频的差异来判断用户操作,不需要通过额外设置参数来判断,避免了由于参数设置的不合理而带来的一些误判,提高了耳机控制的可靠性。
参照图6所示,为本申请实施例提供的第四种耳机控制方法的流程示意图。其中,该方案基于两个耳机的两段音频信号来控制耳机。该方法包括步骤601-604,具体如下:
601、检测手势信息,所述手势信息为耳机所采集的第二音频信号;
602、将所述第二音频信号发送至计算单元,以使所述计算单元对第一音频信号和所述第二音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;
上述第一音频信号和第二音频信号可以是同一时间段内采集的,本方案对此不做具体限定。
上述计算单元,可以是位于与该耳机连接的手机等设备中,其还可以是位于与该耳机连接的另一只耳机中等。
可选的,采集上述第一音频信号的为左耳机,采集上述第二音频信号的为右耳机。
603、接收所述计算单元发送的信息,并根据所述信息确定所述用户执行了捂耳朵,所述信息指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
通过将得到的两段音频信号的频率能量分布进行比对,当相对于另一段音频信号,其中一段音频信号的频率能量在低频范围内发生聚集,且在高频范围发生突降时,则判断用户做了捂耳朵的操作。
进一步地,还可以基于该频率能量分布判断出用户捂住了哪只耳朵,进而可以根据确定捂的哪只耳朵,而在左右两个耳机上做出不同的降噪操作。
604、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
进一步地,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式。
其中,当所述第一音频信号的频域信号和所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于第三预设阈值,或者在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;
若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第四预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
也就是说,在基于音频信号并不能判断出用户执行了捂耳朵时,可结合蓝牙信号进行辅助判断。当然,还可以借助于光敏传感器、接近传感器等,本方案对此不做具体限定。
上述以用户执行了捂耳朵为例进行介绍。
其中,若所述第二音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第四预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第四预设阈值,确定所述用户执行了聆听。
相应地,可基于用户执行的聆听手势,将所述耳机的模式调整为目标模式。
本申请实施例,通过基于两个耳机周围的音频信号得到的频域信号的频率能量分布来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言,更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,即可识别用户的操作,从而实现控制耳机,提高了用户体验。
另一方面,本方案不需要通过额外设置参数来判断,避免了由于参数设置的不合理而带来的一些误判,提高了耳机控制的可靠性。
参照图7a所示,为本申请实施例提供的第五种耳机控制方法的流程示意图。该方法包括步骤701-704,具体如下:
701、检测手势信息,所述手势信息为耳机所采集的蓝牙信号;
该蓝牙信号可以是一段时间内的。
702、根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;
如图7b所示的时间强度曲线中,横坐标数据为时间,纵坐标为接收的信号强度指示(Received Signal Strength Indication,RSSI),其中,接收的信号强度指示RSSI值,该RSSI值均为负值,该值的降低代表信号减弱。其中,当用户用手捂住耳朵(蓝牙耳机)的时候,相比如蓝牙无线信号因为通信设备拉远的情况,捂耳朵导致的蓝牙信号变化减弱的会更加迅速,并且RSSI值降低的更低。虽然手机和耳机远离对方也会有RSSI的减弱,但是其减弱是缓慢减弱的,并且RSSI是随着距离进行波动,不会突降到某个门限值之下。
703、若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了 捂耳朵,其中,所述第二时段早于所述第一时段;
当蓝牙信号的RSSI强度突降低于某个阈值,并且持续了一定的时间,则确定所述用户执行了捂耳朵。
704、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。具体地,启动耳机中的专门降噪电路或音频处理模块对从麦克风收集到的后续音频进行降噪处理。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
进一步地,在确定了用户所执行的手势后,还可以结合当前耳机所处的状态,改变捂耳朵手势所触发的耳机内部处理。例如,如果当前模式已经是降噪模式,则检测到捂耳朵操作时,将当前模式切换为非降噪模式。
本申请实施例,通过基于耳机周围的蓝牙信号来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言,更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,即可识别用户的操作,从而实现控制耳机,提高了用户体验。
其中,上述实施例以音频信号、蓝牙信号为例进行说明。其还可以通过光敏传感器、摄像头、接近传感器(红外、超声、电容)等来检测是否有光遮挡等来确定用户的手势等,本方案对此不做具体限定。
其中,当帽子、衣服等将耳机盖住的情况下,或者,用户当前所处的环境噪音比较大时,基于前述实施例可能将部分噪音错误的识别为用户执行了捂耳朵或聆听的手势等。例如,当用户戴有盖住耳朵的帽子,并且处于噪声较大的场景下,如有车辆快速从用户旁边开过去,则会将车辆带来的噪声能量的变化识别为用户执行了捂耳朵的操作。为此,参照图8a所示,为本申请实施例提供的第六种耳机控制方法的流程示意图。该方法包括步骤801-804,具体如下:
801、检测手势信息,所述手势信息为耳机所采集的音频信号;
802、对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
803、若所述频域信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第五预设阈值,确定所述用户执行了捂耳朵;
其中,通过基于三段连续的频域信号的能量之间的比值来确定在高噪音且有外物遮盖场景下用户执行了捂耳朵。
如图8b所示,为用户做了捂耳朵操作的不同频段能量示意图。如图8c所示,为用户耳朵遮住且环境噪音较大时的不同频段能量示意图。通过基于三个连续频段的能量比值之间的差值,来确定是真正的捂耳朵。
上述以一种实现方式为例进行说明,其中还可以基于若所述频域信号的能量峰值位于预设的频率范围内,则确定所述用户执行了捂耳朵。本方案对此不做具体限定。
804、将所述耳机的模式调整为目标模式。
例如,当检测到用户执行的是捂耳朵的手势时,触发耳机进入降噪模式。
当检测到用户执行的是聆听的手势时,触发耳机进入透传模式。
本申请实施例,对于噪音较大等场景下,通过基于耳机周围的音频信号来确定用户所执行的手势,进而将耳机的模式调整为目标模式。采用该手段,进一步提高了在高噪音且有外物遮盖场景下的检测准确率。
在图8a所示实施例的基础上,参照图9所示,为本申请实施例提供的第七种耳机控制方法的流程示意图。该方法包括步骤901-908,具体如下:
901、检测手势信息,所述手势信息为耳机所采集的音频信号;
该实施例以耳机所采集的环境信号为音频信号为例进行说明。
902、根据所述手势信息确定用户所处的环境;
903、若所述环境为吵闹环境,根据所述手势信息确定所述用户所执行的第一手势,所述第一手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
其中,可通过检测快速傅里叶变换(fast Fourier transform,FFT)高频能量占比来确定所述环境是否是吵闹环境。该FFT高频能量占比可以理解为,例如6000Hz-12000Hz频段上的能量占总频段内的能量的比值。当高于某个阈值,则认为该环境是吵闹环境。当然也可以直接用某特定的分贝阈值作为判定的依据,或者当收集到的音频信号的总频率能量值超过某个范围则认为是吵闹场景。
进一步地,还可以通过如增加额外的传感器等来确定是否是吵闹环境等,本步骤不做进一步限定,只要能识别出用户所处的环境即可。
904、若所述第一手势为捂耳朵,确认所述音频信号的频域信号中能量频率峰值是否出现在预设的频率范围之内;
该预设的频率范围可以是900Hz~1500Hz之间。当峰值不处于这个范围之内,则认为没有检测到用户捂耳朵的操作,结束检测。
905、若满足,确认所述音频信号的频域信号中第一频段的能量平均值与第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与第三频段的能量平均值的第八比值之间的差值是否大于第七预设阈值;
其中,上述第一频段、第二频段和第三频段为三段连续的频段范围。具体地,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点。
906、若所述差值大于第七预设阈值,则确认所述用户执行了捂耳朵;
若确认所述用户执行了捂耳朵,则执行步骤908。
907、若所述环境为安静环境,根据所述手势信息确定所述用户所执行的手势,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
当所处环境为安静环境时,则可基于前述实施例的方法,直接基于手势信息确定所述用户所执行的手势,并执行步骤908。
908、将所述耳机的模式调整为目标模式。
也就是说,本申请实施例中,在吵闹场景下初步判断用户执行了捂耳朵,则进一步基于步骤904、步骤905来进行确认,以便最终确认用户所执行的手势。
采用该手段,通过区分吵闹场景和安静场景,然后基于不同的场景进行不同的控制,提升了吵闹场景下的检测手势的准确率。
在上述交互实施例的基础上,如图10所示,本申请实施例还提供一种耳机控制方法,其包括步骤1001-1002,具体如下:
1001、采集耳机周围的环境信号,并对所述环境信号进行特征提取;
其中,上述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
上述步骤1001的触发条件可以是当所述耳机的蓝牙信号的强度值低于预设阈值时,触发所述检测手势信息;或者,当接收到预设信号时,触发所述检测手势信息,其中,所述预设信号指示穿戴设备检测到用户抬起手。其还可以是其他触发条件,本方案对此不做具体限定。
其中,还可以是实时采集耳机周围的环境信号,或者周期性的采集等,本方案对此不做具体限定。
上述触发条件可参阅前述图2所示实施例的介绍,在此不再赘述。
当环境信号为音频信号时,上述采集耳机周围的环境信号,并对所述环境信号进行特征提取,可以是:
采集耳机周围的音频信号,并对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号。
针对上述傅里叶变换可参阅前述实施例的介绍,在此不再赘述。
1002、根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
作为一种实现方式,步骤1002可包括:
计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
若所述比值大于第一预设阈值,所述目标模式为第一模式。
也就是说,通过将上述频域信号中第一预设频域范围内的频域信号的能量与全频段的能量进行比较,进而基于该比较结果来调节耳机的模式。
其中,上述第一模式可以是降噪开启模式或者降噪透传关闭模式等。当然,还可以是其他模式,本方案对此不做具体限定。
进一步地,若所述比值小于预设阈值A,所述目标模式为第二模式,其中,所述预设阈值A小于所述第一预设阈值。
该第二模式可以是透传开启模式。当然,还可以是其他模式,本方案对此不做具体限定。
针对该实现方式的介绍,可参阅前述图3a实施例,在此不再赘述。
进一步地,还可以基于耳机当前模式来进行调节控制。例如,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式等。其还可以是其他控制策略,本方案对此不做具体限定。
作为另一种实现方式,步骤1002可包括:
计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
通过将该频域信号的频率能量曲线与预设频率能量曲线进行比较,进而对耳机的模式进行控制。
针对该实现方式的介绍,可参阅前述图4a所示实施例,在此不再赘述。
作为又一种实现方式,当环境信号包括第一音频信号和第二音频信号,所述第一音频信 号的采集时间早于所述第二音频信号的采集时间,所述对所述环境信号进行特征提取,包括:
对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
所述步骤1002包括:
在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
其中,若所述第一音频信号的频域信号和所述第二音频信号的频域信号中,存在至少一段音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第六预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第六预设阈值,所述目标模式为第二模式。
针对该实现方式的介绍,可参阅前述图5a所示实施例,在此不再赘述。
其中,当帽子、衣服等将耳机盖住的情况下,或者,用户当前所处的环境噪音比较大时,基于前述实施例可能将部分噪音错误的识别为是用户执行了捂耳朵或聆听的手势等。例如,当用户戴有盖住耳朵的帽子,并且处于噪声较大的场景下,如有车辆快速从用户旁边开过去,则会将车辆带来的噪声能量的变化识别为用户执行了捂耳朵的操作。基于此,本方案在上述实施例的基础上,进一步判断若所述频域信号的能量峰值位于预设的频率范围内,则所述目标模式为第一模式。
进一步地,在上述实施例的基础上,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第七预设阈值,则所述目标模式为第一模式。
针对该实施例的介绍可查阅图8a所示实施例的介绍,在此不再赘述。
本申请实施例,通过基于耳机周围的环境信号进行特征提取,进而根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。采用该手段,其中捂耳朵操作比较自然,对用户而言,更友好,操作更加简单,不需要引入用户过多的学习,且不需要额外增加新的硬件,即可识别用户的操作,从而实现控制耳机,提高了用户体验。
参照图11所示,为本申请实施例提供的一种耳机控制装置示意图。如图11所示,其包括检测模块1101、信号处理模块1102以及降噪控制模块1103,其中:
所述检测模块1101用于检测手势信息;
所述信号处理模块1102用于根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
所述降噪控制模块1103用于根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
其中,所述环境信号包括以下至少一种:音频信号、蓝牙信号、光信号、超声波信号。
当所述环境信号为一段音频信号时,所述信号处理模块1102用于:
对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵。
所述信号处理模块1102还用于:
若所述比值小于第二预设阈值,确定所述用户执行了聆听,其中,所述第二预设阈值小于所述第一预设阈值。
当所述环境信号为一段音频信号时,所述信号处理模块1102用于:
对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵。
当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块1102用于:
对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了捂耳朵。
当所述环境信号为一段第二音频信号时,所述信号处理模块1102用于:
将所述第二音频信号发送至计算单元,以使所述计算单元对所述第二音频信号和第一音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;
接收所述计算单元发送的信息,并根据所述信息确定所述用户执行了捂耳朵,所述信息 指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点。
其中,所述检测模块1101还用于:
若所述第一音频信号的频域信号和所述第二音频信号的频域信号在所述第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于所述第五预设阈值,或者在所述第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在所述第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;
所述信号处理模块1102还用于:
若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第九预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
所述信号处理模块1102还用于:
若所述第一音频信号的频域信号和所述第二音频信号的频域信号中,存在至少一段音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第六预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第六预设阈值,确定所述用户执行了聆听。
其中,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
其中,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第七预设阈值。
当所述环境信号为一段蓝牙信号时,所述信号处理模块1102还用于:
根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;
若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式、降噪透传关闭模式中的任一种;
或者,当所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;
或者,当所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;
或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
可替代的,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式;
当所述用户所执行的手势为聆听时,所述目标模式为透传开启模式。
其中,所述装置还包括触发模块,用于:当所述耳机的蓝牙信号的强度值低于第十预设阈值时,触发所述检测手势信息。
所述装置还包括触发模块,用于:当接收到预设信号时,触发所述检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
针对上述各模块的介绍,可参阅前述实施例,在此不再赘述。
参照图12所示,为本申请实施例提供的另一种耳机控制装置示意图。如图12所示,其包括信号采集模块1201、信号处理模块1202以及降噪控制模块1203,其中:
信号采集模块1201,用于采集耳机周围的环境信号;
信号处理模块1202,用于对所述环境信号进行特征提取;
降噪控制模块1203,用于根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
其中,所述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
当所述环境信号为一段音频信号时,所述信号处理模块1202用于:
对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
计算第一预设频域范围内的所述频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
所述降噪控制模块1203用于:
若所述比值大于第一预设阈值,所述目标模式为第一模式。
当所述环境信号为一段音频信号时,所述信号处理模块1202,用于:
对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
所述降噪控制模块1203,用于:
若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块1202,用于:
对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
所述降噪控制模块1203,用于:
在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述 第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
其中,若所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,所述目标模式为第二模式。
其中,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
进一步地,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第七预设阈值。
当所述目标模式为第一模式时,所述第一模式为降噪开启模式、降噪透传关闭模式中的任一种;
或者,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;
或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;
或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式。
可替代的,当所述目标模式为第一模式时,所述第一目标模式为降噪开启模式;
当所述目标模式为第二模式时,所述第二模式为透传开启模式。
所述装置还包括触发模块,用于:
当所述耳机的蓝牙信号的强度值低于第十预设阈值时,触发所述检测手势信息。
所述装置还包括触发模块,用于:
当接收到预设信号时,触发所述检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
针对上述各模块的介绍,可参阅前述实施例,在此不再赘述。
在本实施例中,该耳机控制装置是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
此外,以上检测模块1101、信号处理模块1102以及降噪控制模块1103,信号采集模块1201、信号处理模块1202、以及降噪控制模块1203,可通过图13所示的耳机控制装置的处理器1302来实现。
图13是本申请实施例提供的耳机控制装置的硬件结构示意图。图13所示的耳机控制装置1300(该装置1300具体可以是一种计算机设备)包括存储器1301、处理器1302、通信接口1303以及总线1304。其中,存储器1301、处理器1302、通信接口1303通过总线1304实现彼此之间的通信连接。
存储器1301可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。
存储器1301可以存储程序,当存储器1301中存储的程序被处理器1302执行时,处理器1302和通信接口1303用于执行本申请实施例的耳机控制方法的各个步骤。
处理器1302可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的耳机控制装置中的单元所需执行的功能,或者执行本申请方法实施例的耳机控制方法。
处理器1302还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的耳机控制方法的各个步骤可以通过处理器1302中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1302还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1301,处理器1302读取存储器1301中的信息,结合其硬件完成本申请实施例的耳机控制装置中包括的单元所需执行的功能,或者执行本申请方法实施例的耳机控制方法。
通信接口1303使用例如但不限于收发器一类的收发装置,来实现装置1300与其他设备或通信网络之间的通信。例如,可以通过通信接口1303获取数据。
总线1304可包括在装置1300各个部件(例如,存储器1301、处理器1302、通信接口1303)之间传送信息的通路。
应注意,尽管图13所示的装置1300仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,装置1300还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,装置1300还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,装置1300也可仅仅包括实现本申请实施例所必须的器件,而不必包括图13中所示的全部器件。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个方法中的一个或多个步骤。
本申请实施例还提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机或处理器上运行时,使得计算机或处理器执行上述任一个方法中的一个或多个步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应步骤过程的具体描述,在此不再赘述。
应理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单 个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所显示或讨论的相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是只读存储器(read-only memory,ROM),或随机存取存储器(random access memory,RAM),或磁性介质,例如,软盘、硬盘、磁带、磁碟、或光介质,例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质,例如,固态硬盘(solid state disk,SSD)等。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (57)

  1. 一种耳机控制方法,其特征在于,包括:
    检测手势信息;
    根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
    根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
  2. 根据权利要求1所述的方法,其特征在于,所述环境信号包括以下至少一种:音频信号、蓝牙信号、光信号、超声波信号。
  3. 根据权利要求2所述的方法,其特征在于,当所述环境信号为一段音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
    若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵。
  4. 根据权利要求2所述的方法,其特征在于,当所述环境信号为一段音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
    若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵。
  5. 根据权利要求2所述的方法,其特征在于,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述根据所述手势信息确定用户所执行的手势,包括:
    对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
    计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
    在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了 捂耳朵。
  6. 根据权利要求2所述的方法,其特征在于,当所述环境信号为一段第二音频信号时,所述根据所述手势信息确定用户所执行的手势,包括:
    将所述第二音频信号发送至计算单元,以使所述计算单元对所述第二音频信号和第一音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;
    接收所述计算单元发送的信息,并根据所述信息确定所述用户执行了捂耳朵,所述信息指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点。
  7. 根据权利要求6所述的方法,其特征在于,若所述第一音频信号的频域信号和所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于第三预设阈值,或者在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;
    若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第四预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,若所述第二音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第四预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第四预设阈值,确定所述用户执行了聆听。
  9. 根据权利要求3至8任一项所述的方法,其特征在于,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
  10. 根据权利要求3至9任一项所述的方法,其特征在于,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平 均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第五预设阈值。
  11. 根据权利要求2所述的方法,其特征在于,当所述环境信号为一段蓝牙信号时,所述根据所述手势信息确定用户所执行的手势,包括:
    根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;
    若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式、降噪透传关闭模式中的任一种;
    或者,当所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;
    或者,当所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;
    或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
  13. 根据权利要求1至11任一项所述的方法,其特征在于,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式;
    当所述用户所执行的手势为聆听时,所述目标模式为透传开启模式。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,所述方法还包括:
    当所述耳机的蓝牙信号的强度值低于第七预设阈值时,开始检测手势信息。
  15. 根据权利要求1至13任一项所述的方法,其特征在于,所述方法还包括:
    当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
  16. 一种耳机控制方法,其特征在于,包括:
    采集耳机周围的环境信号,并对所述环境信号进行特征提取;
    根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
  17. 根据权利要求16所述的方法,其特征在于,所述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
  18. 根据权利要求17所述的方法,其特征在于,当所述环境信号为一段音频信号时,所述对所述环境信号进行特征提取,包括:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算第一预设频域范围内的所述频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
    所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为 目标模式,包括:
    若所述比值大于第一预设阈值,所述目标模式为第一模式。
  19. 根据权利要求17所述的方法,其特征在于,当所述环境信号为一段音频信号时,所述对所述环境信号进行特征提取,包括:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
    所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式,包括:
    若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
  20. 根据权利要求17所述的方法,其特征在于,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述对所述环境信号进行特征提取,包括:
    对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
    计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
    所述根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式,包括:
    在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
  21. 根据权利要求20所述的方法,其特征在于,若所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,所述目标模式为第二模式。
  22. 根据权利要求18至21任一项所述的方法,其特征在于,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
  23. 根据权利要求18至22任一项所述的方法,其特征在于,所述音频信号的频域至少 包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第四预设阈值。
  24. 根据权利要求16至23任一项所述的方法,其特征在于,当所述目标模式为第一模式时,所述第一模式为降噪开启模式、降噪透传关闭模式中的任一种;
    或者,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;
    或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;
    或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式。
  25. 根据权利要求16至23任一项所述的方法,其特征在于,当所述目标模式为第一模式时,所述第一目标模式为降噪开启模式;
    当所述目标模式为第二模式时,所述第二模式为透传开启模式。
  26. 根据权利要求16至25任一项所述的方法,其特征在于,所述方法还包括:
    当所述耳机的蓝牙信号的强度值低于第五预设阈值时,开始检测手势信息。
  27. 根据权利要求16至25任一项所述的方法,其特征在于,所述方法还包括:
    当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
  28. 一种耳机控制装置,其特征在于,包括:
    检测模块,用于检测手势信息;
    信号处理模块,用于根据所述手势信息确定用户所执行的手势,所述手势信息为耳机所采集的环境信号,所述手势包括在所述耳机周围形成腔体的捂耳朵、在所述耳机周围形成开放反射面的聆听中的至少一种;
    降噪控制模块,用于根据所述用户所执行的手势,将所述耳机的模式调整为目标模式。
  29. 根据权利要求28所述的装置,其特征在于,所述环境信号包括以下至少一种:音频信号、蓝牙信号、光信号、超声波信号。
  30. 根据权利要求29所述的装置,其特征在于,当所述环境信号为一段音频信号时,所述信号处理模块,用于:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算第一预设频域范围内的频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
    若所述比值大于第一预设阈值,确定所述用户执行了捂耳朵。
  31. 根据权利要求29所述的装置,其特征在于,当所述环境信号为一段音频信号时,所述信号处理模块,用于:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
    若所述相似度值大于第二预设阈值,确定所述用户执行了捂耳朵。
  32. 根据权利要求29所述的装置,其特征在于,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块,用于:
    对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
    计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
    在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,确定所述用户执行了捂耳朵。
  33. 根据权利要求29所述的装置,其特征在于,所述装置还包括通信模块,当所述环境信号为一段第二音频信号时,
    所述通信模块用于将所述第二音频信号发送至计算单元,以使所述计算单元对所述第二音频信号和第一音频信号分别进行傅里叶变换,得到所述第一音频信号的频域信号和所述第二音频信号的频域信号,其中,所述第一音频信号和所述第二音频信号为不同的耳机采集的;
    接收所述计算单元发送的信息,所述信号处理模块,用于根据所述信息确定所述用户执行了捂耳朵,所述信息指示第一比值大于第二比值,且第三比值小于第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第一比值为所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第二比值为所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第三比值为所述第二音频信号的频域信号在第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第四比值为所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点。
  34. 根据权利要求33所述的装置,其特征在于,若所述第一音频信号的频域信号和所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值不高于第三预设阈值,或者在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,高于在第七预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,获取所述耳机的蓝牙信号,并得到所述蓝牙信号的时间强度分布;
    若第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第四预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
  35. 根据权利要求32至34任一项所述的装置,其特征在于,若所述第二音频信号的频域信号在第八预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第四预设阈值,且在第九预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第四预设阈值,确定所述用户执行了聆听。
  36. 根据权利要求30至35任一项所述的装置,其特征在于,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
  37. 根据权利要求30至36任一项所述的装置,其特征在于,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第五预设阈值。
  38. 根据权利要求29所述的装置,其特征在于,当所述环境信号为一段蓝牙信号时,所述信号处理模块,用于:
    根据所述蓝牙信号得到所述蓝牙信号的时间强度分布;
    若所述时间强度分布中第一时段的蓝牙信号的强度低于第二时段的蓝牙信号的强度,且所述第一时段的蓝牙信号的强度在预设时长内均低于第六预设阈值,确定所述用户执行了捂耳朵,其中,所述第二时段早于所述第一时段。
  39. 根据权利要求28至38任一项所述的装置,其特征在于,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式、降噪透传关闭模式中的任一种;
    或者,当所述耳机当前模式为降噪透传关闭模式时,所述目标模式为降噪开启模式;
    或者,当所述耳机当前模式为降噪开启模式时,所述目标模式为透传开启模式;
    或者,当所述耳机当前模式为透传开启模式时,所述目标模式为降噪透传关闭模式。
  40. 根据权利要求28至38任一项所述的装置,其特征在于,当所述用户所执行的手势为捂耳朵时,所述目标模式为降噪开启模式;
    当所述用户所执行的手势为聆听时,所述目标模式为透传开启模式。
  41. 根据权利要求28至40任一项所述的装置,其特征在于,所述装置还包括触发模块,用于:
    当所述耳机的蓝牙信号的强度值低于第七预设阈值时,开始检测手势信息。
  42. 根据权利要求28至40任一项所述的装置,其特征在于,所述装置还包括触发模块,用于:
    当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
  43. 一种耳机控制装置,其特征在于,包括:
    信号采集模块,用于采集耳机周围的环境信号;
    信号处理模块,用于对所述环境信号进行特征提取;
    降噪控制模块,用于根据所述提取到的环境信号特征中预设频段的能量强度,将所述耳机的模式调整为目标模式。
  44. 根据权利要求43所述的装置,其特征在于,所述环境信号包括以下至少一种:音频信号、光信号、超声波信号。
  45. 根据权利要求44所述的装置,其特征在于,当所述环境信号为一段音频信号时,所述信号处理模块,用于:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算第一预设频域范围内的所述频域信号的能量平均值与全频域的频域信号的能量平均值的比值;
    所述降噪控制模块,用于:
    若所述比值大于第一预设阈值,所述目标模式为第一模式。
  46. 根据权利要求44所述的装置,其特征在于,当所述环境信号为一段音频信号时,所述信号处理模块,用于:
    对所述音频信号进行傅里叶变换,以得到所述音频信号的频域信号;
    计算所述频域信号的频率能量分布与预设的频率能量分布之间的相似度值;
    所述降噪控制模块,用于:
    若所述相似度值大于第二预设阈值,所述目标模式为第一模式。
  47. 根据权利要求44所述的装置,其特征在于,当所述环境信号包括第一音频信号和第二音频信号,所述第一音频信号的采集时间早于所述第二音频信号的采集时间,所述信号处理模块,用于:
    对所述第一音频信号和第二音频信号分别进行傅里叶变换,以得到所述第一音频信号的频域信号和所述第二音频信号的频域信号;
    计算所述第二音频信号的频域信号在第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第一比值、所述第一音频信号的频域信号在所述第二预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第二比值、所述第二音频信号的频域信号在 第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第三比值、以及所述第二音频信号的频域信号在第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的第四比值,其中,所述第二预设频域范围的频点低于所述第四预设频域范围的频点,所述第三预设频域范围的频点高于所述第四预设频域范围的频点;
    所述降噪控制模块,用于:
    在所述第一比值大于所述第二比值时,若所述第三比值小于所述第四比值,和/或,所述第三比值与所述第四比值之间的比值,大于第五比值与第六比值之间的比值,其中,所述第五比值为所述第一音频信号的频域信号在所述第三预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述第六比值为所述第一音频信号的频域信号在所述第四预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值,所述目标模式为第一模式。
  48. 根据权利要求47所述的装置,其特征在于,若所述第二音频信号的频域信号在第五预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值高于第三预设阈值,且在第六预设频域范围内的能量平均值与全频域的频域信号的能量平均值的比值也高于所述第三预设阈值,所述目标模式为第二模式。
  49. 根据权利要求45至48任一项所述的装置,其特征在于,所述频域信号的频率能量分布中的能量峰值位于预设的频率范围内。
  50. 根据权利要求45至49任一项所述的装置,其特征在于,所述音频信号的频域至少包括第一频段、第二频段和第三频段,所述第一频段的最后一个频点为所述第二频段的第一个频点,所述第二频段的最后一个频点为所述第三频段的第一个频点,所述第一频段的能量平均值与所述第二频段的能量平均值的第七比值,与所述第二频段的能量平均值与所述第三频段的能量平均值的第八比值之间的差值大于第四预设阈值。
  51. 根据权利要求43至50任一项所述的装置,其特征在于,当所述目标模式为第一模式时,所述第一模式为降噪开启模式、降噪透传关闭模式中的任一种;
    或者,当所述耳机当前模式为降噪透传关闭模式时,所述第一模式为降噪开启模式;
    或者,当所述耳机当前模式为降噪开启模式时,所述第一模式为透传开启模式;
    或者,当所述耳机当前模式为透传开启模式时,所述第一模式为降噪透传关闭模式。
  52. 根据权利要求43至50任一项所述的装置,其特征在于,当所述目标模式为第一模式时,所述第一目标模式为降噪开启模式;
    当所述目标模式为第二模式时,所述第二模式为透传开启模式。
  53. 根据权利要求43至52任一项所述的装置,其特征在于,所述装置还包括触发模块,用于:
    当所述耳机的蓝牙信号的强度值低于第五预设阈值时,开始检测手势信息。
  54. 根据权利要求43至52任一项所述的装置,其特征在于,所述装置还包括触发模块, 用于:
    当接收到预设信号时,开始检测手势信息,所述预设信号指示穿戴设备检测到用户抬起手。
  55. 一种耳机控制装置,其特征在于,包括处理器和存储器;其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,以执行如权利要求1至15任意一项所述的方法,和/或如权利要求16至27任意一项所述的方法。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1至15任意一项所述的方法,和/或如权利要求16至27任意一项所述的方法。
  57. 一种计算机程序产品,其特征在于,当计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至15任意一项所述的方法,和/或如权利要求16至27任意一项所述的方法。
PCT/CN2022/139234 2021-12-16 2022-12-15 耳机控制方法及相关系统、存储介质 WO2023109893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111545967.4 2021-12-16
CN202111545967.4A CN116266893A (zh) 2021-12-16 2021-12-16 耳机控制方法及相关系统、存储介质

Publications (1)

Publication Number Publication Date
WO2023109893A1 true WO2023109893A1 (zh) 2023-06-22

Family

ID=86743327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139234 WO2023109893A1 (zh) 2021-12-16 2022-12-15 耳机控制方法及相关系统、存储介质

Country Status (2)

Country Link
CN (1) CN116266893A (zh)
WO (1) WO2023109893A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625203A (zh) * 2011-01-28 2012-08-01 索尼公司 信号处理装置、信号处理方法和程序
CN112804612A (zh) * 2021-03-25 2021-05-14 潍坊歌尔电子有限公司 耳机控制方法、装置、耳机以及计算机可读存储介质
CN113196797A (zh) * 2018-12-17 2021-07-30 高通股份有限公司 用于可听设备的控制的声学手势检测

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625203A (zh) * 2011-01-28 2012-08-01 索尼公司 信号处理装置、信号处理方法和程序
CN113196797A (zh) * 2018-12-17 2021-07-30 高通股份有限公司 用于可听设备的控制的声学手势检测
CN112804612A (zh) * 2021-03-25 2021-05-14 潍坊歌尔电子有限公司 耳机控制方法、装置、耳机以及计算机可读存储介质

Also Published As

Publication number Publication date
CN116266893A (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
WO2021114953A1 (zh) 语音信号的采集方法、装置、电子设备以及存储介质
US8199956B2 (en) Acoustic in-ear detection for earpiece
CN108763901B (zh) 耳纹信息获取方法和装置、终端、耳机及可读存储介质
CN106686494A (zh) 一种可穿戴设备的语音输入控制方法及可穿戴设备
EP3451692B1 (en) Headphones system
CN109196877A (zh) 个人声音设备的头上/头外检测
WO2006075275A1 (en) Audio entertainment system, method, computer program product
EP2695396A2 (en) A system and apparatus for controlling a user interface with a bone conduction transducer
WO2020015301A1 (zh) 一种降噪耳机
CN103974158B (zh) 音频输出装置
WO2018000764A1 (zh) 一种声道自动匹配的方法、装置以及耳机
CN111432303A (zh) 单耳耳机、智能电子设备、方法和计算机可读介质
CN110430500B (zh) 耳机的降噪方法和耳机
WO2020019857A1 (zh) 麦克风堵孔检测方法及相关产品
WO2022233308A1 (zh) 佩戴检测方法、可穿戴设备及存储介质
TWI692253B (zh) 耳機組控制方法和耳機組
CN108683790B (zh) 语音处理方法及相关产品
US11134354B1 (en) Wear detection
EP4175316A1 (en) Headphone call method and headphones
CN117319870B (zh) 一种耳机佩戴状态检测方法、装置、耳机和存储介质
WO2023109893A1 (zh) 耳机控制方法及相关系统、存储介质
CN114466278B (zh) 一种耳机模式对应的参数确定方法、耳机、终端和系统
WO2022143268A1 (zh) 位置识别方法和耳机设备
CN110806850B (zh) 一种耳机及其自动音量调节控制模块与方法及存储介质
WO2020019822A1 (zh) 麦克风堵孔检测方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022906638

Country of ref document: EP

Effective date: 20240521