WO2023109853A1 - 双目内窥镜及其双目内窥镜成像系统 - Google Patents

双目内窥镜及其双目内窥镜成像系统 Download PDF

Info

Publication number
WO2023109853A1
WO2023109853A1 PCT/CN2022/138942 CN2022138942W WO2023109853A1 WO 2023109853 A1 WO2023109853 A1 WO 2023109853A1 CN 2022138942 W CN2022138942 W CN 2022138942W WO 2023109853 A1 WO2023109853 A1 WO 2023109853A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
filter
module
imaging system
Prior art date
Application number
PCT/CN2022/138942
Other languages
English (en)
French (fr)
Inventor
赵源
王令武
雷前兵
Original Assignee
微创优通医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111525232.5A external-priority patent/CN116262030A/zh
Priority claimed from CN202123132981.XU external-priority patent/CN216984857U/zh
Application filed by 微创优通医疗科技(上海)有限公司 filed Critical 微创优通医疗科技(上海)有限公司
Publication of WO2023109853A1 publication Critical patent/WO2023109853A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements

Definitions

  • the present application relates to the technical field of medical devices, in particular to a binocular endoscope and a binocular endoscope imaging system thereof.
  • Traditional endoscopes usually include a white light imaging mode and a special light imaging mode.
  • the white light imaging mode can form a color image of the detected object, thereby showing the true color of the detected object; the special light imaging mode is detected by light pairs of specific spectral bands The object is illuminated to form a grayscale image of the detected object, thereby revealing the lesion area.
  • the combination of white light imaging mode and special light imaging mode can be used for disease diagnosis and treatment of human tissues.
  • the image quality of white light imaging mode is low, which affects the accuracy of diagnosis.
  • a binocular endoscope and a binocular endoscope imaging system thereof are provided.
  • a binocular endoscope imaging system including a light source module, two imaging modules and two camera modules, the light source module is used to illuminate the object to be detected, and the light source module includes a light output wavelength of about The first light source between 400nm-700nm, the imaging module is used to guide the light reflected by the detected object to the camera module, and the imaging module and the camera module form a binocular imaging;
  • the camera module includes a light-splitting element, a first photosensitive element, and a second photosensitive element.
  • the light-splitting element is arranged on the light-incident side of the first photosensitive element and the second photosensitive element, and is used to divide part of the wavelength by about The light of 400nm-700nm is reflected to the first photosensitive element, and the rest of the light with a wavelength of about 400nm-700nm is transmitted to the second photosensitive element.
  • the light splitting element has a transmittance of about 20%-50% and a reflectance of about 50%-80% for light with a wavelength of about 400nm-700nm.
  • the light source module further includes a second light source and a dichroic mirror, the first light source and the second light source have different output wavelengths, and the dichroic mirror is arranged between the first light source and the second light source.
  • the dichroic mirror can reflect the light emitted by the first light source and transmit the light emitted by the second light source.
  • the light emitting direction of the first light source and the second light source form a first included angle
  • the light emitting direction of the first light source and the dichroic mirror form a second included angle
  • the The first included angle is twice the second included angle
  • the binocular endoscope imaging system also includes a filter module, the filter module is arranged on the light output side of the light source module, and the filter module includes at least two A filter channel, the filter channel is in one-to-one correspondence with the light rays of different light output wavelengths emitted by the light source module, and each filter channel can pass through a corresponding kind of light and block the rest of the light.
  • the filter module includes a conversion part, and the conversion part is provided with a first filter channel and a second filter channel, and the first filter channel and the first light source emit corresponding to the light emitted by the second light source, the second filter channel corresponds to the light emitted by the second light source; when different light sources emit light, the first filter channel and the second filter channel are The moving position is switched to the light output path of the light source module.
  • the conversion member is a rotating wheel structure capable of rotating along an axis, and the first filter channel and the second filter channel are arranged on the conversion member along a circumferential direction.
  • the filter module includes at least one first filter and at least one second filter, and the first filter and the second filter are arranged along the conversion member. The circumferential intervals are arranged, the first filter forms the first filter channel, and the second filter forms the second filter channel.
  • the conversion member is provided with a plurality of installation grooves at intervals along the circumference, and the first filter and the second filter are embedded in the installation grooves in a one-to-one correspondence.
  • the sizes of the first filter and the second filter gradually increase.
  • the binocular endoscope imaging system further includes a condenser lens and a light guide, the condenser lens is arranged on the side of the filter module away from the light source module, and the condenser lens can direct the light Converging into the light guide, the light guide can guide the light to the object to be detected.
  • the second photosensitive element is also corresponding to receive the output light of the second light source transmitted by the light splitting element.
  • the output wavelength of the second light source is about 750nm-810nm;
  • the light splitting element can transmit light with a wavelength of about 810nm-910nm.
  • the binocular endoscope imaging system also includes a third filter, the third filter is arranged at the light entrance of the camera module, and the third filter The sheet can transmit the fluorescent light and the light emitted by the first light source, and can block the light emitted by the second light source.
  • the imaging module includes an objective lens assembly, an image transmission element, an eyepiece assembly, and an adapter assembly, and the light reflected by the detected object passes through the objective lens assembly, the image transmission element, and the eyepiece in sequence.
  • the components and the adapter components enter the camera module.
  • the imaging module includes two reflective elements, and the reflective elements are used to deflect the optical path, so that the optical paths of the two imaging modules are far away from each other.
  • a binocular endoscope includes the binocular endoscope imaging system described in any one of the above embodiments.
  • Fig. 1 is a schematic structural diagram of a binocular endoscope imaging system in some embodiments
  • Fig. 2 is a schematic structural diagram of a camera module in some embodiments
  • FIG. 3 is a schematic structural diagram of a light source module and a filter module in some embodiments
  • Fig. 4 is a schematic structural diagram of a filter module in some embodiments.
  • Fig. 5 is a schematic flow chart of some steps of the imaging method in some embodiments.
  • FIG. 6 is a schematic flowchart of another part of the steps of the imaging method in some embodiments.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • FIG. 1 is a schematic diagram of a binocular endoscope imaging system 10 in some embodiments
  • FIG. 2 is a schematic diagram of a camera module 160 of the binocular endoscope imaging system 10 in some embodiments.
  • the binocular endoscope imaging system 10 includes a light source module 110 , an imaging module 150 and a camera module 160 .
  • the light source module 110 can emit light to illuminate a detected object (not shown in the figure), for example, illuminate human tissue, so as to obtain images of human tissue.
  • the imaging module 150 is used to transmit the light reflected by the detected object to the camera module 160.
  • the camera module 160 can receive the light transmitted by the imaging module 150 and obtain images of the detected object for diagnosis and treatment.
  • the light source module 110 emits white light to illuminate the detected object.
  • the camera module 160 includes a light-splitting element 1610, a first photosensitive element 1620, and a second photosensitive element 1630.
  • the light-splitting element 1610 is used to reflect the detected object.
  • the light is divided into two parts and guided to the first photosensitive element 1620 and the second photosensitive element 1630 respectively.
  • the first photosensitive element 1620 can receive the light reflected by the detected object and obtain a color image of the detected object
  • the second photosensitive element 1630 can receive the light reflected by the detected object and obtain a grayscale image of the detected object.
  • the superposition of the color image acquired by the first photosensitive element 1620 and the grayscale image acquired by the second photosensitive element 1630 can acquire a high-quality image of the detected object.
  • the above-mentioned binocular endoscope imaging system 10 when the object to be detected is illuminated by white light, guides the white light reflected by the object to be detected through the spectroscopic element 1610 to the first photosensitive element 1620 and the second photosensitive element 1630 respectively, thereby obtaining the color of the object to be detected.
  • images and grayscale images are examples of the color image.
  • the color image can retain the color information and brightness information of the detected object
  • the grayscale image can retain the brightness information of the detected object, and then a high-quality detected object image can be obtained by superimposing the color image and the grayscale image.
  • the image of the detected object obtained in this way retains the brightness information of the detected object and has wider dynamic range information because the superimposed grayscale image makes the The image resolution is higher, the noise is lower, the tolerance to weak light is stronger, and the image quality has been greatly improved. Therefore, the above-mentioned binocular endoscope imaging system 10 obtains high-quality images through the cooperation of two photosensitive elements, and the obtained white light image will not be limited by the performance of a single photosensitive element, which is conducive to improving the accuracy of binocular endoscopic diagnosis. .
  • white light can be understood as mixed light in the visible light band, for example, it can be mixed light with a wavelength between 400nm and 700nm.
  • the first light source 1110 may be a combination of one or more light sources such as laser, light emitting diode (LED), xenon lamp and the like.
  • the choice of photosensitive elements is not limited, as long as the first photosensitive element 1620 and the second photosensitive element 1630 can receive the white light reflected by the detected object and form a color image and a grayscale image respectively.
  • both the first photosensitive element 1620 and the second photosensitive element 1630 may be Complementary Metal Oxide Semiconductor (CMOS).
  • CMOS Complementary Metal Oxide Semiconductor
  • the first photosensitive element 1620 is a color CMOS
  • the second photosensitive element 1630 is a black and white CMOS.
  • the configuration of the light splitting element 1610 is not limited, as long as the light reflected by the detected object and entering the camera module 160 through the imaging module 150 can be guided to the first photosensitive element 1620 and the second photosensitive element 1630 respectively.
  • the light splitting surface of the light splitting element 1610 is inclined to the light incident direction of the camera module 160 .
  • 20%-50% of the light passes through the light splitting element 1610 to reach the second photosensitive element 1630 , and the remaining light is reflected by the light splitting element 1610 and reaches the first photosensitive element 1620 .
  • Such an arrangement can not only form a grayscale image on the second photosensitive element 1630 , but also ensure that the color image formed on the first photosensitive element 1620 has sufficient brightness, which is beneficial to further improve the quality of the image.
  • the ratio of transmission and reflection of the light splitting element 1610 to white light may be about 70:30, 60:40 or 50:50.
  • the second photosensitive element 1630 is opposite to the light entrance of the camera module 160 , and the photosensitive surface of the first photosensitive element 1620 is perpendicular to the photosensitive surface of the second photosensitive element 1630 .
  • the light splitting element 1610 may be a half mirror, and the surface of the light splitting element 1610 forms a light splitting surface.
  • the beam-splitting element 1610 may also be a beam-splitting prism composed of two triangular prisms, and the interface of the two triangular prisms forms a beam-splitting surface.
  • the binocular endoscope imaging system 10 adopts binocular vision imaging, then the binocular endoscope imaging system 10 includes two imaging modules 150 and two camera modules 160, the imaging module 150 is in one-to-one correspondence with the camera module 160 to form two light paths. Binocular vision imaging is realized through two optical paths, and the image of the detected object can be formed by superimposing the images obtained by the two camera modules 160, which has a wider field of view and higher imaging quality, and is more in line with the habit of human eyes to obtain images. Forming a naked-eye 3D visual effect is beneficial to improving the diagnostic efficiency and accuracy of the binocular endoscopic imaging system 10 .
  • the imaging module 150 includes an objective lens assembly 1510, an image transmission element 1520, an eyepiece assembly 1530, and an adapter assembly 1540.
  • the component 1540 then enters the camera module 160 .
  • the objective lens assembly 1510, the eyepiece assembly 1530 and the adapter assembly 1540 can all include an optical system made up of a plurality of lenses with optical power, and the objective lens assembly 1510 is located at a position close to the object to be detected on the optical path, and is used to collect reflected light from the object to be detected. light.
  • the eyepiece assembly 1530 is located on the optical path close to the camera module 160 for converging light into the camera module 160 .
  • the adapter assembly 1540 can adapt the light emitted by the imaging module 150 to the camera module 160, so that the light can better reach the camera module 160 for imaging, and also enable the imaging module 150 and the camera module 160 to achieve detachable connection .
  • the image transmission element 1520 can be a light guide element such as an optical fiber, and the image transmission element 1520 is used to guide the light received by the objective lens assembly 1510 to the eyepiece assembly 1530 .
  • each imaging module 150 further includes two reflective elements 1550 , and the two reflective elements 1550 are located between the image transmission element 1520 and the eyepiece assembly 1530 .
  • the reflective element 1550 may be a mirror, and the reflective element 1550 is used to deflect the optical path so that the optical paths of the two imaging modules 150 are far away from each other.
  • the optical path can be deflected twice, each deflection is 90°, so that the optical paths of the two imaging modules 150 are separated from each other at the reflective element 1550 .
  • the installation space of the reflection element 1550 on the image side optical path elements can be increased, and the problem of insufficient installation space caused by the installation of the image side optical path elements being affected by the two optical paths can be avoided.
  • the light source module 110 can not only emit white light to illuminate the detected object, but also emit light of a special wavelength band, such as emitting infrared light to illuminate the detected object, and the light source module 110 can realize the separate detection of white light or infrared light. sold out.
  • FIG. 3 is a schematic diagram of the light source module 110 and the filter module 120 in some embodiments.
  • the light source module 110 includes a first light source 1110 , a second light source 1120 and a control element 1130 , the first light source 1110 is used to emit white light, and the second light source 1120 is used to emit infrared light.
  • the control element 1130 can be a switch element, and the control element 1130 is electrically connected to the first light source 1110 and the second light source 1120, and the control element 1130 can control the first light source 1110 or the second light source 1120 to emit light, so that the light source module 110 realizes different light illumination Modes, such as implementing a white light illumination mode or an infrared light illumination mode.
  • the first light source 1110 in the light source module 110 emits light alone to form the first light emitting mode of the light source module 110
  • the second light source 1120 emits light alone to form the second light emitting mode of the light source module 110.
  • the light source module 110 has different output wavelengths in the first light emitting mode and the second light emitting mode.
  • the light output directions of the first light source 1110 and the second light source 1120 are perpendicular to each other, so that the light emitted by the first light source 1110 and the second light source 1120 can exit the light source module 110 in the same direction, so as to facilitate the inspection of the detected object.
  • the light source module 110 further includes a dichroic mirror 1140 .
  • the dichroic mirror 1140 is disposed on the light emitting paths of the first light source 1110 and the second light source 1120 , and is inclined to the light emitting directions of the first light source 1110 and the second light source 1120 .
  • a first included angle is formed between the light emitting direction of the first light source 1110 and the second light source 1120
  • a second included angle is formed between the light emitting direction of the first light source 1110 and the dichroic mirror 1140
  • the first included angle is Twice the second included angle.
  • the dichroic mirror 1140 forms an included angle of 45° with the light emitting directions of the first light source 1110 and the second light source 1120 .
  • the dichroic mirror 1140 can reflect the light emitted by the first light source 1110 and transmit the light emitted by the second light source 1120 .
  • the light emitting surface of the second light source 1120 is opposite to the light emitting port of the light source module 110, the light emitted by the second light source 1120 passes through the dichroic mirror 1140 and then exits the light source module 110, while the light emitted by the first light source 1110 After the light is reflected by the dichroic mirror 1140 , the light path is deflected by 90° and exits the light source module 110 .
  • the dotted lines with arrows shown in FIG. 3 are schematic diagrams of some light rays. It should be noted that if the light emitted by the second light source 1120 is laser light with good directivity, the propagation direction of the laser light can be regarded as the light output direction of the second light source 1120; if the light emitted by the first light source 1110 has a certain diffusion angle instead of For a linear light beam, the propagation direction of the central light emitted by the first light source 1110 , or the direction in which the light emitting surface of the first light source 1110 points directly in front of the first light source 1110 can be regarded as the light emitting direction of the first light source 1110 .
  • the first light source 1110 and the second light source 1120 may be turned off continuously, causing the two light sources to emit light at the same time.
  • the control element 1130 controls the first light source 1110 to emit light at a high frequency
  • the time interval between adjacent light pulses is extremely short; correspondingly, when the control element 1130 controls the second light source 1120 to emit light at a high frequency, the adjacent pulses
  • the time interval between the light pulses is extremely short, so it is easy for the light pulses emitted by the two light sources to exist at the same time, which will affect the purity of the light corresponding to the corresponding lighting mode.
  • the white light illumination mode Taking the white light illumination mode as an example, if the light pulses emitted by two light sources exist at the same time, then the white light illumination mode will be mixed with infrared light illumination, causing the image received by the second photosensitive element 1630 to include fluorescent components, which will affect the performance of the white light illumination mode. lighting effects.
  • FIG. 4 is a schematic diagram of the filter module 120 in some embodiments.
  • the binocular endoscope imaging system 10 further includes a filter module 120, and the filter module 120 includes a conversion element 1210, at least one first A filter 1220 and at least one second filter 1230 .
  • the first filter 1220 can pass through the light emitted by the first light source 1110 and block the light emitted by the second light source 1120
  • the second filter 1230 can pass through the light emitted by the second light source 1120 and block the light emitted by the first light source 1110.
  • the conversion element 1210 is used to place the first filter 1220 or the second filter 1230 on the light output path of the light source module 110 . It can be understood that when the conversion element 1210 places the first optical filter 1220 on the light output path of the light source module 110, if the light emitted by the second light source 1120 is continuously turned off due to high-frequency modulation, the light emitted by the second light source 1120 The light will be blocked by the first filter 1220 and cannot exit the light source module 110 , only the light emitted by the first light source 1110 can exit the light source module 110 , realizing the white light illumination mode. Similarly, when the conversion element 1210 places the second filter 1230 on the light output path of the light source module 110, only the light emitted by the second light source 1120 can exit the light source module 110, realizing the infrared light illumination mode.
  • the type of optical filter is not limited to absorbing optical filter or reflective optical filter. Light in this band is absorbed or reflected.
  • the first optical filter 1220 is adjacent to the second optical filter 1230 along both sides of the circumferential direction of the conversion member 1210, or the first optical filter 1220 is adjacent to the second optical filter 1230 along the circumferential sides of the conversion member 1210.
  • first optical filters 1220 Adjacent to the first optical filter 1220 and the second optical filter 1230, or a plurality of first optical filters 1220 are arranged adjacent to the circumferential direction of the conversion member 1210, and the first optical filter 1220 and the second optical filter at the end
  • the sheets 1230 are arranged adjacently, which can be understood as the first filter 1220 and the second filter 1230 are arranged alternately along the circumferential direction of the conversion piece 1210, as long as the conversion piece 1210 can rotate the first filter 1220 or the second filter 1230
  • the filter 1230 can be placed on the light output path of the light source module 110 . It can be understood that the two lines on the first optical filter 1220 shown in FIG. 4 are only virtual lines introduced to facilitate the distinction between the first optical filter 1220 and the second optical filter 1230 , and do not actually exist.
  • the conversion member 1210 is a rotating wheel structure capable of rotating along an axis, the axis of the conversion member 1210 is parallel to the light output direction of the light source module 110, and the filter module 120 includes a plurality of first filters 1220 and a plurality of A second filter 1230, the first filter 1220 and the second filter 1230 are arranged alternately along the circumference of the conversion part 1210, and the first filter 1220 and the second filter 1230 are on the conversion part 1210
  • the position in the radial direction corresponds to the position of the light output path of the light source module 110 .
  • the first filter 1220 or the second filter 1230 can be placed on the light output path of the light source module 110 .
  • the conversion member 1210 can also be a pendulum structure, and the first filter 1220 or the second filter 1230 is placed on the light output path of the light source module 110 through the pendulum movement.
  • the setting of the conversion member 1210 is not limited to the above two methods, the conversion member 1210 can also perform linear reciprocating motion and other motion methods, as long as the first filter 1220 or the second filter 1230 can be placed on the light output of the light source module 110 on the path.
  • the first filter 1220 and the second filter 1230 respectively form two filter channels of the filter module 120, and each filter channel is connected to each filter channel of the light source module 110.
  • Each light emitting mode corresponds to each light emitting channel, and each filter channel can pass the light of the corresponding light emitting mode and block the rest of the light.
  • the first filter 1220 forms a first filter channel
  • the second filter 1230 forms a second filter channel.
  • the first filter 1220 or the second filter 1230 is placed on the light output path of the light source module 110 by rotating the conversion member 1210 , so as to switch the filter channel of the filter module 120 .
  • the first filter channel and the second filter channel respectively correspond to different moving positions of the conversion member 1210 in the circumferential direction, and the circumferential movement of the conversion member 1210 can switch the filter channels of the filter module 120 .
  • the installation method of the first optical filter 1220 and the second optical filter 1230 on the conversion part 1210 is not limited, as long as the first optical filter 1220 or the second optical filter 1230 can filter the light emitted by the light source module 110.
  • the conversion member 1210 is provided with a plurality of installation grooves (not shown) at intervals along the circumference, and each first filter 1220 or second filter 1230 is embedded in a corresponding installation groove. . In this way, the installation of the filter on the conversion member 1210 is stable, and it is not easy to deviate, which can improve the filter effect of the filter module 120 on the light source module 110 .
  • the sizes of the first filter 1220 and the second filter 1230 gradually increase in the direction from the center of the conversion element 1210 to the edge.
  • both the first optical filter 1220 and the second optical filter 1230 are approximately trapezoidal with an upper base close to the center of the conversion element 1210 and a lower base close to the edge of the conversion element 1210 .
  • Such setting can make full use of the space of the conversion element 1210 and increase the area of the single first filter 1220 and the second filter 1230, so that the light emitted by the light source module 110 can be fully absorbed by the first filter 1220 or the second filter.
  • the second filter 1230 filters to improve the utilization rate of light.
  • the filter module 120 can also include a stepping motor 1240, the output shaft of the stepping motor 1240 is connected to the center of the conversion part 1210, and the stepping motor 1240 can drive the conversion part 1210 to rotate around the output shaft, thereby driving
  • the first filter 1220 and the second filter 1230 are alternately located on the light output path of the light source module 110 .
  • the control The component 1130 can also control the first light source 1110 and the second light source 1120 to emit light simultaneously.
  • the first light source 1110 adopts a constant light mode
  • the control element 1130 controls the switch of the second light source 1120 .
  • the first light source 1110 is turned on, the control element 1130 controls the second light source 1120 to be turned off, and the conversion member 1210 is rotated so that one of the first filters 1220 is located on the light output path of the light source module 110, so that the second The light emitted by a light source 1110 can exit the light source module 110 .
  • the first light source 1110 is kept turned on, the control element 1130 controls the second light source 1120 to be turned on, and the conversion part 1210 places one of the second filters 1230 on the light output path of the light source module 110, so that the second The light emitted by the second light source 1120 can exit the light source module 110 , while the light emitted by the first light source 1110 is blocked by the second filter 1230 , realizing the infrared light illumination mode.
  • the light source module 110 implements the infrared light illumination mode
  • the light emitted by the second light source 1120 illuminates the detected object, which can excite the detected object to generate fluorescence
  • the fluorescent light reaches the camera module 160 through the imaging module 150 .
  • the light-splitting element 1610 can excite the fluorescence generated by the detected object through infrared light, and then the fluorescence enters the camera module 160 and is received by the second photosensitive element 1630 through the light-splitting element 1610, so that the second photosensitive element 1630 can Acquire a fluorescent image of the detected object.
  • the filter module 120 By setting the filter module 120, the white light illumination mode can be completely distinguished from the infrared light illumination mode, and the fluorescence image will not be interfered by white light components when acquiring the fluorescence image, so that the fluorescence image can be optimized separately.
  • the effect of optimizing the fluorescent image alone is better, which in turn makes the image quality of the detected object formed by the superimposition of the white light image and the fluorescent image higher, which is conducive to improving the accuracy of diagnosis Rate.
  • the first photosensitive element 1620 corresponds to the first light emitting mode of the light source module 110, such as white light illumination mode
  • the second photosensitive element 1630 corresponds to the second light emitting mode of the light source module 110, such as infrared light lighting mode.
  • the binocular endoscope imaging system 10 also includes a condenser lens 130 and a light guide 140.
  • the condenser lens 130 can be a convex lens with positive power, and the light guide 140 can include light guide elements such as optical fibers. .
  • the condenser lens 130 is arranged on the side of the filter module 120 facing away from the light source module 110.
  • the condenser lens 130 can couple the light emitted by the light source module 110 and pass through the filter module 120 into the light guide 140, so as to improve the utilization rate of the light.
  • the light guide 140 can guide the light converged by the condenser lens 130 to the object to be detected, so as to illuminate the object to be detected.
  • the light emitted by the second light source 1120 may be light with a wavelength between about 750nm-810nm, for example, the second light source 1120 may be a 785nm laser light source.
  • the first filter 1220 can transmit visible light with a wavelength of about 400nm-700nm and block infrared light with a wavelength of 785nm.
  • the first filter 1220 can be a short-wave pass filter.
  • the second filter 1230 can transmit infrared light with a wavelength of 785nm and block visible light with a wavelength of about 400nm-700nm.
  • the second filter 1230 can be a long-wave pass filter.
  • the light emitted by the second light source 1120 illuminates the object to be detected, and can excite the object to be detected to generate fluorescence with a wavelength of about 810nm-900nm.
  • the light splitting element 1610 can reflect part of the light with a wavelength of about 400nm-700nm, and transmit the rest of the light with a wavelength of about 400nm-700nm.
  • the light splitting element 1610 can pass through the light with a wavelength of about 810nm-910nm.
  • the wavelengths of light emitted by the first light source 1110 and the second light source 1120 are not limited to the above-mentioned range, and when the wavelengths of light emitted by the first light source 1110 and the second light source 1120 change, the first filter 1220 and the second light source 1120 The transmittance spectrum of the filter 1230 should also be adjusted accordingly.
  • the camera module 160 further includes a third optical filter 1640, and the third optical filter 1640 is arranged at the light entrance of the camera module 160, for example, at the light splitter.
  • the component 1610 faces the light entrance side of the camera module 160 and is used for filtering the light entering the camera module 160 .
  • the third filter 1640 can transmit the fluorescent light and the light emitted by the first light source 1110 , and block the light emitted by the second light source 1120 .
  • the third filter 1640 can transmit fluorescence with a wavelength of about 810nm-900nm and visible light with a wavelength of about 400nm-650nm, and block light with a wavelength of about 700nm-800nm, so that white light and fluorescence can enter the camera module 160 and prevent the infrared light emitted by the second light source 1120 from entering the camera module 160, so as to prevent the infrared light from interfering with the normal imaging of white light and fluorescence.
  • the third optical filter 1640, the first photosensitive element 1620, and the second photosensitive element 1630 can be attached to the surface of the light splitting element 1610 by optical glue, so that the light splitting element 1610, the first photosensitive element 1620, the second photosensitive element 1630
  • the second photosensitive element 1630 and the third filter 1640 are integrally formed, and the bonding process is simple, and the volume of the camera module 160 can be reduced, which is beneficial to the assembly of the camera module 160 in the binocular endoscope imaging system 10 .
  • the present application also provides a binocular endoscope (not shown), including a housing and a binocular endoscope imaging system 10 as described in any of the above embodiments, and the binocular endoscope imaging system 10 is arranged on inside the shell.
  • a binocular endoscope imaging system 10 in the binocular endoscope can obtain high-quality images of the detected object through the superposition of color images and grayscale images, which is conducive to improving the accuracy of diagnosis.
  • Figure 5 is a schematic diagram of some steps of the imaging method in some embodiments, the imaging method can use the binocular endoscope imaging system 10 described in any of the above embodiments to obtain high-quality images of the detected object .
  • the imaging method comprises the steps of:
  • Step S110 providing white light to illuminate the detected object.
  • the conversion member 1210 is rotated so that the first filter 1220 is located on the light output path of the light source module 110 , and the first light source 1110 is controlled to emit white light through the control element 1130 .
  • Step S120 acquiring a color image of the detected object through the first photosensitive element 1620 .
  • Step S130 acquiring a grayscale image of the detected object through the second photosensitive element 1630 .
  • Step S140 superimposing the color image and the grayscale image to form a first image, the first image is a high-quality image of the detected object under the white light illumination mode.
  • step S140 includes:
  • Extract the brightness information of the gray-scale image for example, process the gray-scale image to improve contrast and sharpen, and obtain the brightness information of the high-resolution image.
  • the color difference information of the color image is extracted, for example, the color difference channel is extracted and the color difference channel is enhanced to obtain the color difference information of the color image.
  • the brightness information of the grayscale image and the color difference information of the color image are superimposed to form a first image.
  • the resolution and dynamic range of the first image thus obtained are increased, the information expressed in the image is richer, and the details are more prominent, which is conducive to improving the image quality of the detected object, thereby improving the accuracy of diagnosis .
  • FIG. 6 is a schematic diagram of another part of the imaging method in some embodiments.
  • the imaging method also includes the steps of:
  • Step S150 providing infrared light to illuminate the detected object.
  • the conversion member 1210 is rotated so that the second filter 1230 is located on the light output path of the light source module 110 , and the second light source 1120 is controlled to emit infrared light through the control element 1130 .
  • Step S160 acquiring a fluorescent image of the detected object through the second photosensitive element 1630 .
  • Step S170 optimize the image acquired by the second photosensitive element 1630 to form a second image, for example, use a histogram equalization algorithm to increase the image contrast of the grayscale image to form a second image. Since the filter module 120 is provided, the fluorescent image acquired by the second photosensitive element 1630 in step S160 does not include white light components, so the fluorescent image can be optimized separately in step S170, and the optimization effect will not be disturbed by white light components, and can Improve the image quality of the second image.
  • Step S180 superimposing the first image and the second image.
  • the optimized second image is summed with the G channel of the synthesized first image, so as to obtain a high-resolution image of the detected object.
  • the first light source 1110 and the second light source 1120 separately illuminate the detected object, so that the fluorescent image and the white light image of the detected object can be individually optimized, and the image quality of the fluorescent image and the white light image can be improved.
  • optimizing the grayscale image separately has a better optimization effect than optimizing the fluorescence image with white light components, so that the image quality of the fluorescence image, that is, the second image, can be improved.
  • the grayscale image and the color image of white light can be respectively obtained through the first photosensitive element 1620 and the second photosensitive element 1630, and then the grayscale image and the color image are superimposed, so that the synthesized first image is no longer Limited to a single color photosensitive element, it is beneficial to improve the image quality of the white light image, that is, the first image.
  • the separately optimized first image and the second image are superimposed to form an image of the detected object with better image quality.
  • steps S110-step S140 and steps S150-S180 can be performed alternately, so as to continuously synthesize white light images and fluorescence images to obtain high-quality images of the detected object in real time for diagnosis and treatment.
  • step S110-step S140 is performed in one frame of the picture to obtain the white light image of the detected object, that is, the first image, and the next frame of the picture is carried out to step S150-step S180 to obtain the fluorescence image of the detected object, that is, the second image, And superimposed to form the detected object image.
  • step S110-step S140 and step S150-S180 are performed alternately.
  • fluorescence images may be acquired first, followed by white light images.
  • the grayscale image and the color image can be acquired simultaneously, or the color image can be acquired first, and then the grayscale image can be acquired.

Abstract

一种双目内窥镜及其双目内窥镜成像系统。双目内窥镜成像系统(10)包括光源模组(110)、两个成像模组(150)以及两个摄像模组(160),光源模组(110)用于对被检测对象照明,且光源模组(110)包括出光波长在400nm‑700nm之间的第一光源(1110),成像模组(150)用于将被检测对象反射的光线导至摄像模组(160),成像模组(150)与摄像模组(160)一一对应形成双目成像。摄像模组(160)包括分光元件(1610)、第一感光元件(1620)和第二感光元件(1630),分光元件(1610)设于第一感光元件(1620)和第二感光元件(1630)的入光侧,并用于将部分波长在400nm‑700nm的光线反射至所述第一感光元件(1620),将剩余部分波长在400nm‑700nm的光线透射至第二感光元件(1630)。

Description

双目内窥镜及其双目内窥镜成像系统
相关申请
本申请要求2021年12月14日申请的,申请号为2021115252325,名称为“双目内窥镜及其双目内窥镜成像系统”的中国专利申请,以及2021年12月14日申请的,申请号为202123132981X,名称为“双目内窥镜及其双目内窥镜成像系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及医疗器械技术领域,特别是涉及一种双目内窥镜及其双目内窥镜成像系统。
背景技术
传统的内窥镜通常包括白光成像模式和特殊光成像模式,白光成像模式能够形成被检测对象的彩色图像,从而显现被检测对象的真实颜色;特殊光成像模式通过特定光谱波段的光线对被检测对象进行照明,能够形成被检测对象的灰度图像,从而显现病灶区域。白光成像模式与特殊光成像模式的结合能够用于对人体组织进行疾病诊断和治疗。然而,传统的内窥镜在实际应用,白光成像模式的图像质量低,影响了诊断的准确率。
发明内容
根据本申请的各种实施例,提供一种双目内窥镜及其双目内窥镜成像系统。
一种双目内窥镜成像系统,包括光源模组、两个成像模组以及两个摄像模组,所述光源模组用于对被检测对象照明,且所述光源模组包括出光波长约在400nm-700nm之间的第一光源,所述成像模组用于将被检测对象反射的光线导至所述摄像模组,所述成像模组与所述摄像模组一一对应形成双目成像;
所述摄像模组包括分光元件、第一感光元件和第二感光元件,所述分光元件设于所述第一感光元件和所述第二感光元件的入光侧,并用于将部分波长约在400nm-700nm的光线反射至所述第一感光元件,将剩余部分波长约在400nm-700nm的光线透射至所述第二感光元件。
在其中一个实施例中,所述分光元件对波长约在400nm-700nm的光线的透过率约为20%-50%,反射率约为50%-80%。
在其中一个实施例中,所述光源模组还包括第二光源和双色镜,所述第一光源和所述第二光源具有不同的出光波长,所述双色镜设于所述第一光源和所述第二光源的出光侧上,所述双色镜能够反射所述第一光源发射的光线并透过所述第二光源发射的光线。
在其中一个实施例中,所述第一光源与所述第二光源的出光方向形成第一夹角,所述第一光源的出光方向与所述双色镜之间形成第二夹角;所述第一夹角为所述第二夹角的两倍。
在其中一个实施例中,所述双目内窥镜成像系统还包括滤光模组,所述滤光模组设于所述光源模组的出光侧,所述滤光模组包括至少两个滤光通道,所述滤光通道与所述光源模组发射的不同出光波长的光线一一对应,每个所述滤光通道能够透过对应的一种光线并阻挡其余光线。
在其中一个实施例中,所述滤光模组包括转换件,所述转换件上设置有第一滤光通道和第二滤光通道,所述第一滤光通道与所述第一光源发射的光线对应,所述第二滤光通道与所述第二光源发射的光线对应;当不同光源出光时,所述第一滤光通道和所述第二滤光通道根据所述转换件的不同运动位置被切换到所述光源模组的出光路径上。
在其中一个实施例中,所述转换件为能够沿轴转动的转轮结构,所述第一滤光通道和所述第二滤光通道在所述转换件上沿周向设置。
在其中一个实施例中,所述滤光模组包括至少一个第一滤光片和至少一个第二滤光片,所述第一滤光片和所述第二滤光片沿所述转换件的周向间隔设置,所述第一滤光片形成所述第一滤光通道,所述第二滤光片形成所述第二滤光通道。
在其中一个实施例中,所述转换件沿周向间隔开设有多个安装槽,所述第一滤光片和所述第二滤光片一一对应地嵌设于所述安装槽内。
在其中一个实施例中,在所述转换件的中心指向边缘的方向上,所述第一滤光片和所述第二滤光片的尺寸均逐渐增大。
在其中一个实施例中,所述双目内窥镜成像系统还包括聚光镜和导光束,所述聚光镜设于所述滤光模组背离所述光源模组的一侧,所述聚光镜能够将光线会聚到所述导光束中,所述导光束能够将光线传导至被检测对象。
在其中一个实施例中,所述第二感光元件还对应接收所述分光元件透射的所述第二光源的出光。
在其中一个实施例中,
所述第二光源的出光波长约在750nm-810nm之间;
所述分光元件能够透过波长约在810nm-910nm的光线。
在其中一个实施例中,所述双目内窥镜成像系统还包括第三滤光片,所述第三滤光片设于所述摄像模组的入光口处,所述第三滤光片能够透过荧光以及所述第一光源发射的光线,且能够阻挡所述第二光源发射的光线。
在其中一个实施例中,所述成像模组包括物镜组件、传像元件、目镜组件以及适配器组件,所述被检测对象反射的光线依次经所述物镜组件、所述传像元件、所述目镜组件以及所述适配器组件后进入所述摄像模组。
在其中一个实施例中,所述成像模组包括两个反射元件,所述反射元件用于偏转光路,以使得两个所述成像模组的光路相互远离。
一种双目内窥镜,包括如上述任一实施例所述的双目内窥镜成像系统。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其他特征、目的和有点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一些实施例中双目内窥镜成像系统的结构示意图;
图2为一些实施例中摄像模组的结构示意图;
图3为一些实施例中光源模组与滤光模组的结构示意图;
图4为一些实施例中滤光模组的结构示意图;
图5为一些实施例中成像方法部分步骤的流程示意图;
图6为一些实施例中成像方法另一部分步骤的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可 以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1和图2,图1为一些实施例中双目内窥镜成像系统10的示意图,图2为一些实施例中双目内窥镜成像系统10的摄像模组160的示意图。在一些实施例中,双目内窥镜成像系统10包括光源模组110、成像模组150以及摄像模组160。光源模组110能够发射光线对被检测对象(图未示出)进行照明,例如对人体组织进行照明,便于获取人体组织的图像。成像模组150用于将被检测对象反射的光线传导至摄像模组160,摄像模组160能够接收成像模组150传导的光线并获取被检测对象的图像,以便进行诊断和治疗。
在一些实施例中,光源模组110发射白光对被检测对象照明,摄像模组160包括分光元件1610、第一感光元件1620及第二感光元件1630,分光元件1610用于将被检测对象反射的光线分为两部分分别导向第一感光元件1620与第二感光元件1630。其中,第一感光元件1620能够接收经被检测对象反射的光线并获取被检测对象的彩色图像,第二感光元件1630能够接收经被检测对象反射的光线并获取被检测对象的灰度图像。第一感光元件1620获取的彩色图像以及第二感光元件1630获取的灰度图像叠加可获取高质量的被检测对象图像。
上述双目内窥镜成像系统10,在白光照明被检测对象时,通过分光元件1610将被检测对象反射的白光分别导向第一感光元件1620与第二感光元件1630,从而获得被检测对象的彩色图像和灰度图像。其中,彩色图像能够保留被检测对象的色彩信息和亮度信息,灰度图像能够保留被检测对象的亮度信息,进而通过叠加彩色图像与灰度图像能够获得高质量的被检测对象图像。由此获得的被检测对象图像,相对于用单个感光元件获取被检测对象的彩色图像而言,由于叠加的灰度图像保留有被检测对象的亮度信息,并具备更宽的动态范围信息,使得图像分辨率更高,噪声更低,对弱光的容忍性更强,图像质量得到大幅度提升。因此,上述双目内窥镜成像系统10,通过两个感光元件配合获得高质量图像,获得的白光图像不会受限于单个感光元件的性能,有利于提升双目内窥镜诊断的准确率。
需要说明的是,在本申请中,白光可以理解为可见光波段的混合光,例如可以为波长在400nm-700nm之间的混合光。第一光源1110可以为激光、发光二极管(LED)、氙灯等其中一种或多种光源的组合。感光元件的选择不限,只要第一感光元件1620与第二感光元件1630能够接收被检测对象反射的白光并分别形成彩色图像与灰度图像即可。在一些实施例中,第一感光元件1620和第二感光元件1630均可以为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)。例如第一感光元件1620为彩色CMOS,第二感光元件1630为黑白CMOS。
分光元件1610的设置也不限,只要能够将经被检测对象反射并经成像模组150射入摄像模组160的光线分别导向第一感光元件1620与第二感光元件1630即可。在一些实施例中,分光元件1610的分光面倾斜于摄像模组160的入光方向。成像模组150传导至摄像模组160的光线中,20%-50%的光线透过分光元件1610到达第二感光元件1630,剩余的光线被分光元件1610反射后到达第一感光元件1620。如此设置,既能够在第二感光元件1630上形成灰度图像,也能够保证在第一感光元件1620上形成的彩色图像具有足够的亮度,从而有利于进一步提升图像的质量。在一些实施例中,分光元件1610对白光的透射与反射比例可以约为70:30、60:40或50:50等。
可以理解的是,在一些实施例中,第二感光元件1630与摄像模组160的入光口相对,第一感光元件 1620的感光面垂直于第二感光元件1630的感光面。在一些实施例中,分光元件1610可以为半透半反镜,则分光元件1610的表面形成分光面。分光元件1610也可以由两个三棱镜构成的分光棱镜,两个三棱镜的交界面形成分光面。
进一步地,在一些实施例中,双目内窥镜成像系统10采用双目视觉成像,则双目内窥镜成像系统10包括两个成像模组150以及两个摄像模组160,成像模组150与摄像模组160一一对应以形成两条光路。通过两条光路实现双目视觉成像,被检测对象图像可由两个摄像模组160获得的图像叠加形成,拥有更广的视野范围以及更高的成像质量,也更符合人眼获取图像的习惯,形成裸眼3D的视觉效果,有利于提升双目内窥镜成像系统10的诊断效率和准确率。
在一些实施例中,成像模组150包括物镜组件1510、传像元件1520、目镜组件1530以及适配器组件1540,被检测对象反射的光线依次经物镜组件1510、传像元件1520、目镜组件1530以及适配器组件1540后进入摄像模组160中。其中,物镜组件1510、目镜组件1530以及适配器组件1540均可以包括由多个具有光焦度的透镜组成的光学系统,物镜组件1510位于光路靠近被检测对象的位置,用于收集被检测对象反射的光线。目镜组件1530位于光路靠近摄像模组160的位置,用于将光线会聚到摄像模组160中。适配器组件1540能够使得成像模组150发射的光线与摄像模组160相适应,从而使得光线更好地到达摄像模组160成像,同时也使得成像模组150与摄像模组160能够实现可拆卸连接。传像元件1520可以为光纤等导光元件,传像元件1520用于将物镜组件1510接收的光线导向目镜组件1530。
在一些实施例中,每个成像模组150还包括两个反射元件1550,两个反射元件1550位于传像元件1520与目镜组件1530之间。反射元件1550可以为反光镜,反射元件1550用于偏转光路,以使得两个成像模组150的光路相互远离。例如,在一个成像模组150中,两个反射元件1550相互平行,且在光路中靠近传像元件1520的反射元件1550与传像元件1520出射光方向成45°夹角,两个反射元件1550相配合能够将光路偏转两次,每次偏折90°,从而使得两个成像模组150的光路在反射元件1550处相互远离。由此,能够增大反射元件1550像侧光路元件的设置空间,避免像侧光路元件的设置受两条光路的影响导致设置空间不足的问题。
在一些实施例中,光源模组110不仅能够发射白光对被检测对象照明,还能够发射特殊波段光线,例如发射红外光对被检测对象照明,且光源模组110能够实现白光或红外光的单独出光。参考图1和图3所示,图3为一些实施例中光源模组110与滤光模组120的示意图。在一些实施例中,光源模组110包括第一光源1110、第二光源1120与控制元件1130,第一光源1110用于发射白光,第二光源1120用于发射红外光。控制元件1130可以为开关元件,控制元件1130电性连接第一光源1110与第二光源1120,控制元件1130能够控制第一光源1110或第二光源1120出光,使得光源模组110实现不同光线的照明模式,例如实现白光照明模式或红外光照明模式。可以理解的是,在本实施例中,光源模组110中第一光源1110单独出光形成光源模组110的第一发光模式,第二光源1120单独出光形成光源模组110的第二出光模式,光源模组110在第一发光模式与第二发光模式下具有不同的出光波长。
在一些实施例中,第一光源1110与第二光源1120的出光方向相互垂直,为使得第一光源1110与第二光源1120发射的光线能够沿同一方向射出光源模组110,便于对被检测对象照明,光源模组110还包括双色镜1140。双色镜1140设置于第一光源1110和第二光源1120的出光路径上,并倾斜于第一光源1110和第二光源1120的出光方向。在一些实施例中,第一光源1110与第二光源1120的出光方向之间形成第一夹角,第一光源1110的出光方向与双色镜1140之间形成第二夹角,第一夹角为第二夹角的两倍。例如,双色镜1140与第一光源1110及第二光源1120的出光方向均成45°夹角。双色镜1140能够反射第一光源1110发射的光线并透过第二光源1120发射的光线。可以理解的是,此时第二光源1120的出光面与光源模组110的出光口相对,第二光源1120发射的光线透过双色镜1140后射出光源模组110,而第一光源1110发射的光线经双色镜1140反射后,光路偏折90°射出光源模组110。
可以理解的是,图3所示的带箭头的虚线即为部分光线的示意图。需要说明的是,若第二光源1120发射的光线为指向性良好的激光,则激光的传播方向可视为第二光源1120的出光方向,若第一光源1110发射的光线具有一定扩散角度而非线性光束,则第一光源1110发射的中心光线的传播方向,或第一光源1110出光面指向第一光源1110正前方的方向可视为第一光源1110的出光方向。
值得一提的是,第一光源1110与第二光源1120在控制元件1130的高频调制下,可能会出现第一光 源1110与第二光源1120关不断而导致两种光源同时出光的情况。例如,当控制元件1130控制第一光源1110高频率出光的时候,相邻的光脉冲之间的时间间隔极短,相应地,当控制元件1130控制第二光源1120高频率出光的时候,相邻的光脉冲之间的时间间隔极短,这样就容易出现两种光源所发射的光脉冲同时存在,会影响相应照明模式对应的光线的纯净。以白光照明模式为例,如果出现两种光源所发射的光脉冲同时存在,那么白光照明模式中会混入红外光照明,导致第二感光元件1630接收的图像还包括荧光成分,影响白光照明模式的照明效果。
参考图1和图4所示,图4为一些实施例中滤光模组120的示意图。为防止两种光源发射的光线同时射出光源模组110,在一些实施例中,双目内窥镜成像系统10还包括滤光模组120,滤光模组120包括转换件1210、至少一个第一滤光片1220以及至少一个第二滤光片1230。第一滤光片1220能够透过第一光源1110发射的光线并阻挡第二光源1120发射的光线,第二滤光片1230能够透过第二光源1120发射的光线并阻挡第一光源1110发射的光线,转换件1210用于将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上。可以理解的是,当转换件1210将第一滤光片1220置于光源模组110的出光路径上时,若第二光源1120发射的光线因高频调制而关不断,第二光源1120发射的光线会被第一滤光片1220阻挡而无法射出光源模组110,仅第一光源1110发射的光线能够射出光源模组110,实现白光照明模式。同理,当转换件1210将第二滤光片1230置于光源模组110的出光路径上时,仅第二光源1120发射的光线能够射出光源模组110,实现红外光照明模式。
需要说明的是,在本申请中,滤光片的类型不限于吸收型滤光片或反射型滤光片,换言之,描述滤光片能够阻挡某一波段的光线,可以理解为滤光片将该波段的光线吸收或反射。另外,在本申请中,第一滤光片1220沿转换件1210的周向两侧均与第二滤光片1230相邻,或者第一滤光片1220沿转换件1210的周向两侧分别与第一滤光片1220和第二滤光片1230相邻,或者多个第一滤光片1220沿转换件1210的周向相邻设置,且位于末尾的第一滤光片1220与第二滤光片1230相邻设置,均可以理解为第一滤光片1220与第二滤光片1230沿转换件1210的周向交替设置,只要转换件1210转动时能够将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上即可。可以理解的是,图4所示的第一滤光片1220上的两条线条仅为便于区分第一滤光片1220和第二滤光片1230而引入的虚拟线条,并非实际存在。
在一些实施例中,转换件1210为能够沿轴转动的转轮结构,转换件1210的轴线平行于光源模组110的出光方向,滤光模组120包括多个第一滤光片1220和多个第二滤光片1230,第一滤光片1220和第二滤光片1230沿转换件1210的周向交替设置,且第一滤光片1220与第二滤光片1230在转换件1210的径向上的位置与光源模组110的出光路径位置相对应。由此,通过转动转换件1210,即可将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上。当然,在另一些实施例中,转换件1210还可以为摆锤结构,通过钟摆运动将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上。转换件1210的设置不限于以上两种方式,转换件1210还可以进行直线往返运动等其他运动方式,只要能够将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上即可。
可以理解的是,在本实施例中,第一滤光片1220与第二滤光片1230分别形成滤光模组120的两个滤光通道,每个滤光通道与光源模组110的每种发光模式相对应,且每个滤光通道能够通过对应的发光模式的光线并阻挡其余光线。例如,第一滤光片1220形成第一滤光通道,第二滤光片1230形成第二滤光通道。通过转动转换件1210将第一滤光片1220或第二滤光片1230置于光源模组110的出光路径上,从而转换滤光模组120的滤光通道。换言之,第一滤光通道和第二滤光通道分别与转换件1210周向上的不同运动位置相对应,转换件1210周向上的运动能够转换滤光模组120的滤光通道。
第一滤光片1220与第二滤光片1230在转换件1210上的安装方式不限,只要第一滤光片1220或第二滤光片1230能够对光源模组110发射的光线进行过滤即可。在一些实施例中,转换件1210沿周向间隔开设有多个安装槽(图未标出),每个第一滤光片1220或第二滤光片1230嵌设于对应的一个安装槽内。如此,滤光片在转换件1210上的安装稳固,不易发生偏离,能够提升滤光模组120对光源模组110的滤光效果。
在一些实施例中,在转换件1210的中心指向边缘的方向上,第一滤光片1220与第二滤光片1230的尺寸均逐渐增大。例如,在图4所示的实施例中,第一滤光片1220与第二滤光片1230均大致呈上底靠近转换件1210中心而下底靠近转换件1210边缘的梯形。如此设置,能够充分利用转换件1210的空间,提 升单个第一滤光片1220与第二滤光片1230的面积,从而使得光源模组110发射的光线能够充分被第一滤光片1220或第二滤光片1230过滤,提升光线的利用率。
在一些实施例中,滤光模组120还可包括步进电机1240,步进电机1240的输出轴连接转换件1210的中心位置,步进电机1240能够驱使转换件1210绕输出轴转动,从而带动第一滤光片1220与第二滤光片1230轮流位于光源模组110的出光路径上。
需要说明的是,当设置有滤光模组120时,即便第一光源1110与第二光源1120同时出光,也能够实现白光或红外光单种光源的照明模式,因而在一些实施例中,控制元件1130也可控制第一光源1110与第二光源1120同时出光。例如,第一光源1110采用常亮模式,而控制元件1130控制第二光源1120的开关。则当需要实现白光照明模式时,第一光源1110开启,控制元件1130控制第二光源1120关闭,转换件1210转动使得其中一个第一滤光片1220位于光源模组110的出光路径上,以便第一光源1110发射的光线能够射出光源模组110。当需要实现红外光照明模式时,第一光源1110保持开启,控制元件1130控制第二光源1120开启,转换件1210将其中一个第二滤光片1230位于光源模组110的出光路径上,以便第二光源1120发射的光线能够射出光源模组110,而第一光源1110发射的光线被第二滤光片1230阻挡,实现红外光照明模式。
值得一提的是,当光源模组110实现红外光照明模式时,第二光源1120发射的光线对被检测对象照明,能够激发被检测对象产生荧光,荧光经成像模组150到达摄像模组160。在一些实施例中,分光元件1610能够透过红外光激发被检测对象产生的荧光,则荧光进入摄像模组160后透过分光元件1610被第二感光元件1630接收,使得第二感光元件1630能够获取被检测对象的荧光图像。通过将红外光照明模式下第二感光元件1630获取的荧光图像,与白光照明模式下叠加形成的高质量白光图像叠加,有利于进一步提升被检测对象图像的质量,使得病灶区域的图像足够清晰,与正常组织的分界足够明显,有利于进一步提升诊断准确率。可以理解的是,通过设置滤光模组120,能够将白光照明模式与红外光照明模式完全区分开,在获取荧光图像时不会受到白光成分的干扰,从而能够对荧光图像进行单独优化。相对于传统的荧光图像中包括白光成分的照明模式而言,对荧光图像单独优化的效果更佳,进而使得白光图像与荧光图像叠加形成的被检测对象图像质量更高,有利于提升诊断的准确率。
可以理解的是,在本实施例中,第一感光元件1620对应光源模组110的第一发光模式,例如白光照明模式,第二感光元件1630对应光源模组110的第二发光模式,例如红外光照明模式。
请再参见图1,在一些实施例中,双目内窥镜成像系统10还包括聚光镜130和导光束140,聚光镜130可以为具有正光焦度的凸透镜,导光束140可以包括光纤等导光元件。聚光镜130设置于滤光模组120背离光源模组110的一侧,聚光镜130能够将光源模组110发射并透过滤光模组120的光线耦合会聚到导光束140中,提升光线的利用率。导光束140能够将聚光镜130会聚的光线传导至被检测对象上,以对被检测对象进行照明。
在一些实施例中,第二光源1120的发射光可以为波长约在750nm-810nm之间的光线,例如,第二光源1120可以为785nm的激光光源。则第一滤光片1220能够透过波长约在400nm-700nm的可见光并阻挡波长在785nm的红外光,例如第一滤光片1220可以为短波通滤光片。第二滤光片1230能够透过波长在785nm的红外光并阻挡约在400nm-700nm的可见光,例如第二滤光片1230可以为长波通滤光片。第二光源1120发射的光线对被检测对象照明,能够激发被检测对象产生波长约在810nm-900nm的荧光。分光元件1610能够反射部分波长约在400nm-700nm的光线,透过剩余部分波长约在400nm-700nm的光线,所述分光元件1610能够透过波长约在810nm-910nm的光线。可以理解的是,第一光源1110与第二光源1120的发射光波长不限于上述范围,且当第一光源1110与第二光源1120发射光的波长改变时,第一滤光片1220与第二滤光片1230的透光率谱线也应当相应调整。
请再参见图1和图2,在一些实施例中,摄像模组160还包括第三滤光片1640,第三滤光片1640设置于摄像模组160的入光口处,例如设置于分光元件1610朝向摄像模组160的入光口一侧,用于对进入摄像模组160的光线进行过滤。在一些实施例中,第三滤光片1640能够透过荧光以及第一光源1110发射的光线,阻挡第二光源1120发射的光线。例如,第三滤光片1640能够透过波长约在810nm-900nm的荧光以及波长约在400nm-650nm的可见光,阻挡波长约在700nm-800nm的光线,从而使得白光与荧光能够进入摄像模组160中成像,并阻挡第二光源1120发射的红外光进入摄像模组160中,避免红外光干扰白光和 荧光的正常成像。
在一些实施例中,第三滤光片1640、第一感光元件1620以及第二感光元件1630可以通过光学胶贴合于分光元件1610的表面,从而使得分光元件1610、第一感光元件1620、第二感光元件1630以及第三滤光片1640形成以整体,贴合工艺简单,且能够减小摄像模组160的体积,有利于摄像模组160在双目内窥镜成像系统10中的组装。
本申请还提供一种双目内窥镜(图未示出),包括壳体以及如上述任一实施例所述的双目内窥镜成像系统10,双目内窥镜成像系统10设置于壳体内。在双目内窥镜中采用上述双目内窥镜成像系统10,通过彩色图像与灰度图像的叠加能够获取被检测对象高质量的图像,有利于提升诊断准确率。
请参见图1和图5,图5为一些实施例中成像方法部分步骤的示意图,成像方法能够采用上述任一实施例所述的双目内窥镜成像系统10获取被检测对象的高质量图像。在一些实施例中,成像方法包括如下步骤:
步骤S110,提供白光照明被检测对象。例如,转动转换件1210以使得第一滤光片1220位于光源模组110的出光路径上,通过控制元件1130控制第一光源1110发射白光。
步骤S120,通过第一感光元件1620获取被检测对象的彩色图像。
步骤S130,通过第二感光元件1630获取被检测对象的灰度图像。
步骤S140,叠加彩色图像与灰度图像以形成第一图像,第一图像即为白光照明模式下被检测对象的高质量图像。
进一步地,在一些实施例中,步骤S140包括:
提取灰度图像的亮度信息,例如,对灰度图像进行提高对比度和锐化等处理,得到高分辨率图像的亮度信息。
提取彩色图像的色差信息,例如,对彩色图像进行提取色差通道和增强色差通道的处理,以得到彩色图像的色差信息。
叠加灰度图像的亮度信息与彩色图像的色差信息,以形成第一图像。由此获得的第一图像相对单独的彩色图像而言,分辨率和动态范围增大,图像表达的信息更丰富,细节更突出,有利于提升被检测对象的图像质量,从而提升诊断的准确率。
一并参考图1、图5和图6,图6为一些实施例中成像方法另一部分步骤的示意图。在一些实施例中,成像方法还包括如下步骤:
步骤S150、提供红外光照明被检测对象。例如,转动转换件1210以使得第二滤光片1230位于光源模组110的出光路径上,通过控制元件1130控制第二光源1120发射红外光。
步骤S160、通过第二感光元件1630获取被检测对象的荧光图像。
步骤S170、优化第二感光元件1630获取的图像以形成第二图像,例如,利用直方图均衡化算法提高灰度图像的图像对比度,以形成第二图像。由于设置有滤光模组120,步骤S160中第二感光元件1630获取的荧光图像不包括白光成分,因而在步骤S170中能够对荧光图像进行单独优化,优化效果不会受到白光成分的干扰,能够提升第二图像的图像质量。
步骤S180、叠加第一图像与第二图像。例如,将优化后的第二图像与合成后的第一图像的G通道求和,从而获得高分辨率的被检测对象图像。
上述成像方法,第一光源1110与第二光源1120单独对被检测对象进行照明,从而能够对被检测对象的荧光图像及白光图像进行单独优化处理,能够提升荧光图像和白光图像的图像质量。其中,对灰度图像进行单独优化,相较于对存在白光成分的荧光图像进行优化而言,优化效果更佳,从而能够提升荧光图像即第二图像的图像质量。而对白光图像进行单独优化,能够通过第一感光元件1620与第二感光元件1630分别获得白光的灰度图像与彩色图像,进而将灰度图像与彩色图像叠加,使得合成的第一图像不再受限于单个彩色感光元件,有利于提升白光图像即第一图像的图像质量。由此,经单独优化后的第一图像与第二图像叠加形成图像质量更佳的被检测对象图像,应用于实际诊断检测和治疗时,能够使得病灶区域的图像足够清晰,信息显示的足够丰富,且与正常组织的分界足够明显,从而有利于提升诊断准确率。
可以理解的是,上述成像方法,步骤S110-步骤S140以及步骤S150-S180两部分能够交替进行,从而不断合成白光图像与荧光图像而实时获得高质量的被检测对象图像,进行诊断治疗。例如,其中一帧画面 进行步骤S110-步骤S140,获得被检测对象的白光图像,即第一图像,下一帧画面进行步骤S150-步骤S180,获得被检测对象的荧光图像,即第二图像,并叠加形成被检测对象图像。而后再交替进行步骤S110-步骤S140以及步骤S150-S180。
需要说明的是,上述成像方法各步骤的顺序不限,只要能够分别对荧光图像和白光图像进行单独优化,最终叠加得到高分辨率的被检测对象图像即可。例如,在一些实施例中,可先获取荧光图像,再获取白光图像。又如,在一些实施例中,在白光照明模式下,可同步获取灰度图像和彩色图像,或先获取彩色图像,再获取灰度图像。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种双目内窥镜成像系统,其特征在于,包括光源模组、两个成像模组以及两个摄像模组,所述光源模组用于对被检测对象照明,且所述光源模组包括出光波长约在400nm-700nm之间的第一光源,所述成像模组用于将被检测对象反射的光线导至所述摄像模组,所述成像模组与所述摄像模组一一对应形成双目成像;
    所述摄像模组包括分光元件、第一感光元件和第二感光元件,所述分光元件设于所述第一感光元件和所述第二感光元件的入光侧,并用于将部分波长约在400nm-700nm的光线反射至所述第一感光元件,将剩余部分波长约在400nm-700nm的光线透射至所述第二感光元件。
  2. 根据权利要求1所述的双目内窥镜成像系统,其特征在于,所述分光元件对波长约在400nm-700nm的光线的透过率约为20%-50%,反射率约为50%-80%。
  3. 根据权利要求1所述的双目内窥镜成像系统,其特征在于,所述光源模组还包括第二光源和双色镜,所述第一光源和所述第二光源具有不同的出光波长,所述双色镜设于所述第一光源和所述第二光源的出光侧上,所述双色镜能够反射所述第一光源发射的光线并透过所述第二光源发射的光线。
  4. 根据权利要求3所述的双目内窥镜成像系统,其特征在于,所述第一光源与所述第二光源的出光方向形成第一夹角,所述第一光源的出光方向与所述双色镜之间形成第二夹角;所述第一夹角为所述第二夹角的两倍。
  5. 根据权利要求3所述的双目内窥镜成像系统,其特征在于,所述双目内窥镜成像系统还包括滤光模组,所述滤光模组设于所述光源模组的出光侧,所述滤光模组包括至少两个滤光通道,所述滤光通道与所述光源模组发射的不同出光波长的光线一一对应,每个所述滤光通道能够透过对应的一种光线并阻挡其余光线。
  6. 根据权利要求5所述的双目内窥镜成像系统,其特征在于,所述滤光模组包括转换件,所述转换件上设置有第一滤光通道和第二滤光通道,所述第一滤光通道与所述第一光源发射的光线相对应,所述第二滤光通道与所述第二光源发射的光线相对应;当不同光源出光时,所述第一滤光通道和所述第二滤光通道根据所述转换件的不同运动位置被切换到所述光源模组的出光路径上。
  7. 根据权利要求6所述的双目内窥镜成像系统,其特征在于,所述转换件为转轮结构,所述第一滤光通道和所述第二滤光通道在所述转换件上沿周向设置。
  8. 根据权利要求7所述的双目内窥镜成像系统,其特征在于,所述滤光模组包括至少一个第一滤光片和至少一个第二滤光片,所述第一滤光片和所述第二滤光片沿所述转换件的周向间隔设置,所述第一滤光片形成所述第一滤光通道,所述第二滤光片形成所述第二滤光通道。
  9. 根据权利要求8所述的双目内窥镜成像系统,其特征在于,所述转换件沿周向间隔开设有多个安装槽,所述第一滤光片和所述第二滤光片一一对应地嵌设于所述安装槽内。
  10. 根据权利要求8所述的双目内窥镜成像系统,其特征在于,在所述转换件的中心指向边缘的方向上,所述第一滤光片和所述第二滤光片的尺寸均逐渐增大。
  11. 根据权利要求5所述的双目内窥镜成像系统,其特征在于,所述双目内窥镜成像系统还包括聚光镜和导光束,所述聚光镜设于所述滤光模组背离所述光源模组的一侧,所述聚光镜能够将光线会聚到所述导光束中,所述导光束能够将光线传导至被检测对象。
  12. 根据权利要求3所述的双目内窥镜成像系统,其特征在于,所述第二感光元件还对应接收所述分光元件透射的所述第二光源的出光。
  13. 根据权利要求12所述的双目内窥镜成像系统,其特征在于,
    所述第二光源的出光波长约在750nm-810nm之间;
    所述分光元件能够透过波长约在810nm-910nm的光线。
  14. 根据权利要求3所述的双目内窥镜成像系统,其特征在于,所述双目内窥镜成像系统还包括第三滤光片,所述第三滤光片设于所述摄像模组的入光口处,所述第三滤光片能够透过荧光以及所述第一光源发射的光线,且能够阻挡所述第二光源发射的光线。
  15. 根据权利要求1所述的双目内窥镜成像系统,其特征在于,所述成像模组包括物镜组件、传像元 件、目镜组件以及适配器组件,所述被检测对象反射的光线依次经所述物镜组件、所述传像元件、所述目镜组件以及所述适配器组件后进入所述摄像模组。
  16. 根据权利要求1所述的双目内窥镜成像系统,其特征在于,所述成像模组包括两个反射元件,所述反射元件用于偏转光路,以使得两个所述成像模组的光路相互远离。
  17. 一种双目内窥镜,其特征在于,包括如权利要求1-16任一项所述的双目内窥镜成像系统。
PCT/CN2022/138942 2021-12-14 2022-12-14 双目内窥镜及其双目内窥镜成像系统 WO2023109853A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111525232.5 2021-12-14
CN202111525232.5A CN116262030A (zh) 2021-12-14 2021-12-14 双目内窥镜及其双目内窥镜成像系统
CN202123132981.XU CN216984857U (zh) 2021-12-14 2021-12-14 双目内窥镜及其双目内窥镜成像系统
CN202123132981.X 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109853A1 true WO2023109853A1 (zh) 2023-06-22

Family

ID=86774829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138942 WO2023109853A1 (zh) 2021-12-14 2022-12-14 双目内窥镜及其双目内窥镜成像系统

Country Status (1)

Country Link
WO (1) WO2023109853A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110295062A1 (en) * 2008-12-11 2011-12-01 Fundacio Clinic Per A La Recerca Biomedica Fcrb Equipment for infrared vision of anatomical structures and signal processing methods thereof
US20130041226A1 (en) * 2011-08-12 2013-02-14 Ian McDowall Image capture unit in a surgical instrument
CN103654700A (zh) * 2013-12-31 2014-03-26 中国人民武装警察部队总医院 荧光内窥成像系统及成像方法
US20170082847A1 (en) * 2014-05-27 2017-03-23 Carl Zeiss Meditec Ag Surgical microscope having a data unit and method for overlaying images
US20180348495A1 (en) * 2017-05-11 2018-12-06 Carl Zeiss Meditec Ag Microscopy system
CN212326346U (zh) * 2020-07-21 2021-01-12 深圳市博盛医疗科技有限公司 一种内窥镜成像系统
US20220021807A1 (en) * 2020-07-16 2022-01-20 avateramedical GmBH Stereo-endoscope
CN216984857U (zh) * 2021-12-14 2022-07-19 微创优通医疗科技(上海)有限公司 双目内窥镜及其双目内窥镜成像系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110295062A1 (en) * 2008-12-11 2011-12-01 Fundacio Clinic Per A La Recerca Biomedica Fcrb Equipment for infrared vision of anatomical structures and signal processing methods thereof
US20130041226A1 (en) * 2011-08-12 2013-02-14 Ian McDowall Image capture unit in a surgical instrument
CN103654700A (zh) * 2013-12-31 2014-03-26 中国人民武装警察部队总医院 荧光内窥成像系统及成像方法
US20170082847A1 (en) * 2014-05-27 2017-03-23 Carl Zeiss Meditec Ag Surgical microscope having a data unit and method for overlaying images
US20180348495A1 (en) * 2017-05-11 2018-12-06 Carl Zeiss Meditec Ag Microscopy system
US20220021807A1 (en) * 2020-07-16 2022-01-20 avateramedical GmBH Stereo-endoscope
CN212326346U (zh) * 2020-07-21 2021-01-12 深圳市博盛医疗科技有限公司 一种内窥镜成像系统
CN216984857U (zh) * 2021-12-14 2022-07-19 微创优通医疗科技(上海)有限公司 双目内窥镜及其双目内窥镜成像系统

Similar Documents

Publication Publication Date Title
US7448995B2 (en) Scanning endoscope
CN216984857U (zh) 双目内窥镜及其双目内窥镜成像系统
JP5231625B2 (ja) Nir画像およびフルカラー画像を獲得するための画像化システムおよびその作動方法
US9271635B2 (en) Fluorescence endoscope apparatus
US10722105B2 (en) Medical imaging device, medical image acquisition system, and endoscope apparatus
WO2005031433A1 (en) Apparatus and methods relating to color imaging endoscope systems
US10716463B2 (en) Endoscope and endoscope system
US20190387964A1 (en) Endoscope apparatus
US20240074660A1 (en) Eye-imaging apparatus and method employing sequential flashing of illumination light in synchronization with the operation of an image sensor
WO2023109853A1 (zh) 双目内窥镜及其双目内窥镜成像系统
US20080281207A1 (en) Image acquisition through filtering in multiple endoscope systems
US20240004182A1 (en) Beam Splitting Device for a Distal End Section of an Endoscope, Objective System and Endoscope
CN216984858U (zh) 照明模组、内窥镜成像系统及内窥镜
JP7028574B2 (ja) 内視鏡及びカメラヘッド
JP2001255467A (ja) 手術用顕微鏡
JP3191932B2 (ja) 計測用内視鏡装置
CN109549614B (zh) 内窥镜系统
WO2023109850A1 (zh) 照明模组、内窥镜成像系统、内窥镜及其成像方法
US11700996B2 (en) Fluorescence imaging scope with reduced chromatic aberration and method of its use
CN116262030A (zh) 双目内窥镜及其双目内窥镜成像系统
JP6865719B2 (ja) 医療用光学顕微鏡
JP2019030743A (ja) 内視鏡用光源装置、内視鏡システム、及び位置調整方法
JP7041226B2 (ja) 医療用光学顕微鏡
JP6168436B1 (ja) 内視鏡及び内視鏡システム
JP6865718B2 (ja) 内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906598

Country of ref document: EP

Kind code of ref document: A1