WO2023109624A1 - 一种可长期植入多脑区记录电极阵列制作方法及使用方法 - Google Patents

一种可长期植入多脑区记录电极阵列制作方法及使用方法 Download PDF

Info

Publication number
WO2023109624A1
WO2023109624A1 PCT/CN2022/137418 CN2022137418W WO2023109624A1 WO 2023109624 A1 WO2023109624 A1 WO 2023109624A1 CN 2022137418 W CN2022137418 W CN 2022137418W WO 2023109624 A1 WO2023109624 A1 WO 2023109624A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode array
wire
hole
brain
Prior art date
Application number
PCT/CN2022/137418
Other languages
English (en)
French (fr)
Inventor
孟志强
李情
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023109624A1 publication Critical patent/WO2023109624A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/42Evaluating a particular growth phase or type of persons or animals for laboratory research
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053

Definitions

  • the invention relates to the technical field of electrode arrays, in particular to a method for manufacturing and using a recording electrode array that can be implanted in multiple brain regions for a long time.
  • the detection and acquisition of electrical signals of the brain is not only an indispensable method for brain science research, but also an important tool for the diagnosis of brain diseases.
  • the use of electrophysiological techniques to record electrical signals in multiple brain regions can help understand the function of related circuits between different brain regions and brain nuclei and detect abnormal lesions.
  • the detection and acquisition of neuroelectric signals in multiple brain regions is usually performed by implanting multiple electrodes or multiple groups of electrodes in parallel. When multiple electrodes are implanted in stages, the head space is limited, and it is difficult to fix multiple electrodes at the same time; If the electrodes are parallel, multiple brain regions that are far apart cannot be recorded at the same time.
  • All array electrodes are characterized by a plurality of regularly arranged microwires or microneedles fixed on the electrode base, and the electrode base is connected to the electrode joint directly or through wires.
  • the electrode base is connected to the electrode joint directly or through wires.
  • the former must use floating electrodes, that is, connect the electrodes and joints through wires, while the latter is more difficult to implant, and has high requirements for opening holes and implantation techniques.
  • a rigid electrode wire or electroacupuncture it is easy to bend or break when it touches the skull during implantation.
  • a flexible electrode wire or electroacupuncture it is also easy to touch the skull or dura mater and become bent, resulting in a decline in electrode recording performance .
  • the technical problem to be solved by the present invention is to overcome the above technical defects, provide a long-term implantable multi-brain region recording electrode array manufacturing method and using method, increase the protection of the electrode wire, and reduce the impact of the electrode on the skull during implantation.
  • the method of implanting in columns is adopted to increase the success rate of implantation.
  • the electrode array can cover the whole brain of the animal to realize the detection and collection of neurophysiological signals of the whole brain.
  • the technical solution provided by the present invention is: a method for manufacturing a multi-brain region recording electrode array that can be implanted for a long time, comprising the following steps:
  • Step 1 Before making the electrode array, it is necessary to determine the location and depth of several target brain regions according to the experimental requirements, design the opening position of the electrode base according to the location of the brain region, and design the length of each electrode sleeve and electrode wire according to the depth of the target brain region;
  • Step 2 Use a standard electrode base, which is printed from a pcb board, and each electrode hole is connected to an electrode adapter jack, and a maximum of 32 electrode wires can be connected;
  • Step 3 The electrode wire is nickel-chromium alloy or tungsten wire, and a single electrode wire passes through the tin-plated hole on the electrode base and is directly fixed on the tin-plated hole;
  • Step 4 Each electrode wire is protected by a carbon fiber tube as an electrode sleeve.
  • the carbon fiber tube is slightly shorter than the electrode wire, so that the tip of the electrode wire is exposed, and the other end of the carbon fiber tube is fixed in the tinned hole on the electrode base;
  • Step 5 Insert the pins of the electrode adapter into the corresponding jacks on the electrode base, and weld them.
  • the pins are externally connected to a digital-to-analog converter and a preamplifier electrophysiological signal acquisition device.
  • the standard electrode base in step 2 can be of 4X4, 5X5, 4X6 or 5X6 design.
  • the electrode adapter in step 2 adopts a standard Omnetics connector.
  • the electrode wire in step 3 is nickel-chromium alloy or tungsten wire with a wire diameter of 15um-100um.
  • the tip of the electrode wire is exposed by 0.5mm-1mm.
  • the carbon fiber tube in step 4 is fixed in the tin-plated hole on the electrode base by glue.
  • the electrode wire and the tin-plated hole are connected by welding.
  • a method for using a long-term implantable multi-brain region recording electrode array comprising the following steps:
  • Step 1 When the electrode array is implanted in the brain, the scalp is cut open through standard anesthesia and surgery, and the skull is exposed and cleaned;
  • Step 2 Drill a hole in the skull.
  • the skull hole corresponds to the electrode array.
  • the diameter of the skull hole should be slightly larger than the diameter of the carbon fiber tube. Remove the dura mater and clean up the bleeding for later use;
  • Step 3 When implanting the electrode array, it is necessary to use the electrode holder to hold the electrode array at an inclined angle. First, carefully insert the most distal row into the corresponding skull hole to ensure that the first row of electrodes are all inserted into the hole, and then slowly Tilt the electrode array so that the second row is also close to the skull opening, then the third row, the fourth row, etc.;
  • Step 4 After ensuring that all the electrodes correspond to the skull holes, slowly move the electrode array down, and slowly implant the electrode array into the brain according to the set brain region position;
  • Step 5 Pay attention to whether the electrode wire or carbon fiber tube is bent at any time during the implantation process. If there is a bend, it may be that the electrode has touched hard parts such as the skull and dura mater. The electrode may be bent, which will affect the signal of the electrode in the later stage collection.
  • the PCB board is customized and can cover the electrode array of the whole brain;
  • a single electrode wire is protected by a carbon fiber tube to ensure insulation and prevent large-scale bending of the electrode wire;
  • the length of the electrode wire can be adjusted according to the recorded target brain area, which can record both cortical electrical signals and deep brain nuclei signals;
  • the implantation method can be replaced by multiple small holes with a direct diameter of about 1 mm, which reduces trauma and facilitates animal recovery.
  • Fig. 1 is a schematic diagram of the structure of an electrode array that can be implanted in multiple brain regions for a long-term recording electrode array and using the method of the present invention.
  • Fig. 2 is a reference diagram of the use state of a method for manufacturing and using a recording electrode array that can be implanted in multiple brain regions for a long time according to the present invention.
  • Electrode adapter As shown in the figure: 1. Electrode adapter; 2. Electrode base; 3. Carbon fiber protection tube; 4. Electrode wire.
  • a method for making a long-term implantable multi-brain region recording electrode array comprising the following steps:
  • Step 1 Before making the electrode array, it is necessary to determine the location and depth of several target brain regions according to the experimental requirements, design the opening position of the electrode base according to the location of the brain region, and design the length of each electrode sleeve and electrode wire according to the depth of the target brain region;
  • Step 2 Use a standard electrode base, which is printed from a pcb board, and each electrode hole is connected to an electrode adapter jack, and a maximum of 32 electrode wires can be connected;
  • Step 3 The electrode wire is nickel-chromium alloy or tungsten wire, and a single electrode wire passes through the tin-plated hole on the electrode base and is directly fixed on the tin-plated hole;
  • Step 4 Each electrode wire is protected by a carbon fiber tube as an electrode sleeve.
  • the carbon fiber tube is slightly shorter than the electrode wire, so that the tip of the electrode wire is exposed, and the other end of the carbon fiber tube is fixed in the tinned hole on the electrode base;
  • Step 5 Insert the pins of the electrode adapter into the corresponding jacks on the electrode base, and weld them.
  • the pins are externally connected to a digital-to-analog converter and a preamplifier electrophysiological signal acquisition device.
  • the standard electrode base in step two can be 4X4, 5X5, 4X6 or 5X6 design.
  • the electrode adapter in step 2 uses a standard Omnetics connector.
  • the electrode wire in step 3 is nickel-chromium alloy or tungsten wire with a wire diameter of 15um-100um.
  • step 4 the tip of the electrode wire is exposed by 0.5mm-1mm.
  • the carbon fiber tube in step 4 is fixed in the tin-plated hole on the electrode base by glue.
  • step 3 the connection between the electrode wire and the tin-plated hole is soldering.
  • a method for using a long-term implantable multi-brain region recording electrode array comprising the following steps:
  • Step 1 When the electrode array is implanted in the brain, the scalp is cut open through standard anesthesia and surgery, and the skull is exposed and cleaned;
  • Step 2 Drill a hole in the skull.
  • the skull hole corresponds to the electrode array.
  • the diameter of the skull hole should be slightly larger than the diameter of the carbon fiber tube. Remove the dura mater and clean up the bleeding for later use;
  • Step 3 When implanting the electrode array, it is necessary to use the electrode holder to hold the electrode array at an inclined angle. First, carefully insert the most distal row into the corresponding skull hole to ensure that the first row of electrodes are all inserted into the hole, and then slowly Tilt the electrode array so that the second row is also close to the skull opening, then the third row, the fourth row, etc.;
  • Step 4 After ensuring that all the electrodes correspond to the skull holes, slowly move the electrode array down, and slowly implant the electrode array into the brain according to the set brain region position;
  • Step 5 Pay attention to whether the electrode wire or carbon fiber tube is bent at any time during the implantation process. If there is a bend, it may be that the electrode has touched hard parts such as the skull and dura mater. The electrode may be bent, which will affect the signal of the electrode in the later stage collection.
  • This electrode array has been used and proved to be feasible. Using this electrode array, the local field potential of the whole brain of an awake rat can be detected and collected, as shown in Figure 2.
  • the number of electrode arrays can vary; the material, thickness, length, etc. of the electrode wires can be replaced with wires of other sizes or materials.
  • the PCB board is customized, which can cover the electrode array of the whole brain
  • a single electrode wire is protected by a carbon fiber tube to ensure insulation and prevent large-scale bending of the electrode wire;
  • the length of the electrode wire can be adjusted according to the recorded target brain area, which can record both cortical electrical signals and deep brain nuclei signals;
  • the technical solution of the present invention can be replaced by multiple small holes with a direct diameter of about 1mm, which reduces trauma and facilitates animal rehabilitation;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种可长期植入多脑区记录电极阵列的制作方法,一:制作电极阵列前要根据实验需求确定好多个目标脑区位置及深度;二:每个电极孔连接一个电极转接头(1)插孔,电极转接头(1)采用标准Omnetics接头,最多可连接32根电极丝(4);三:电极丝(4)为镍铬合金或钨丝金属丝,直接焊接在镀锡孔上;四:每根电极丝(4)用一根碳纤维管(3)当做电极套管进行保护,使电极丝(4)尖端暴露0.5mm-1mm;五:电极转接头(1)排针插入电极基座(2)上的对应插孔,并焊接好。增加了对电极丝(4)的保护,降低了植入时电极碰到颅骨变弯曲的风险;采用分列植入的方式,增加植入的成功率;同时电极阵列约可覆盖动物全脑范围,实现全脑神经电生理信号的检测与采集。

Description

一种可长期植入多脑区记录电极阵列制作方法及使用方法 技术领域
本发明涉及电极阵列技术领域,具体是指一种可长期植入多脑区记录电极阵列制作方法及使用方法。
背景技术
对大脑的电信号进行检测和采集既是脑科学研究不可或缺的手段,也是脑疾病诊断的重要工具。利用电生理技术对多个脑区进行电信号的记录,可以帮助理解不同脑区及大脑核团之间的相关环路功能及检测异常病灶。目前对多个脑区进行神经电信号检测和采集通常是植入多个电极或多组电极并行,多个电极分次植入时,头部空间有限,多个电极同时固定较难;多组电极并行,则无法同时记录相距较远的多个脑区。所有阵列电极的特点是由规律排列的多根微丝或微针固定在电极基座上门,电极基座直接或通过导线与电极接头相连。通常阵列电极在植入时需要打开较大面积的颅骨,把整个阵列植入大脑;或在颅骨上钻与阵列对应的孔,将电极阵列插入对应的孔中。前者必须采用浮动电极,即通过导线连接电极和接头,后者植入的难度较大,对开孔要求和植入技术要求高。如果采用刚性较大的电极丝或电针,植入时碰到颅骨容易弯曲或折断,如采用教柔性的电极丝或电针,也容易碰到颅骨或硬脑膜变弯曲,导致电极记录性能下降。
目前对多个脑区的神经电生理信号进行检测和采集多数是多个电极或多组电极并行植入,由此带来了许多问题:多个电极分次植入时,头部空间有限,多支电极同时固定较难,会增加实验动物头部负担;多组电极并行,则无法同时记录相距较远的多个脑区;阵列电极植入时容易碰到颅骨变弯曲,影响电极性能;多脑区电极植入手术一般时间过长,动物死亡的风险较大。
技术问题
目前对多个脑区的神经电生理信号进行检测和采集多数是多个电极或多组电极并行植入,由此带来了许多问题:多个电极分次植入时,头部空间有限,多支电极同时固定较难,会增加实验动物头部负担;多组电极并行,则无法同时记录相距较远的多个脑区;阵列电极植入时容易碰到颅骨变弯曲,影响电极性能;多脑区电极植入手术一般时间过长,动物死亡的风险较大。
技术解决方案
本发明要解决的技术问题是克服以上技术缺陷,提供一种可长期植入多脑区记录电极阵列制作方法及使用方法,增加了对电极丝的保护,降低了植入时电极碰顶到颅骨变弯曲的风险,采用分列植入的方式,增加植入的成功率,同时该电极阵列约可覆盖动物全脑范围,实现全脑神经电生理信号的检测与采集。
为解决上述技术问题,本发明提供的技术方案为:一种可长期植入多脑区记录电极阵列的制作方法,包括以下步骤:
步骤一:制作电极阵列前要根据实验需求确定好多个目标脑区位置及深度,根据脑区位置设计电极基座开孔位置,根据目标脑区深度设计各个电极套管和电极丝长度;
步骤二:采用标准的电极基座,由pcb板打印而成,每个电极孔连接一个电极转接头插孔,最多可连接32根电极丝;
步骤三:电极丝为镍铬合金或钨丝金属丝,单根电极丝穿过电极基座上的镀锡孔,直接固定在镀锡孔上;
步骤四:每根电极丝用一根碳纤维管当做电极套管进行保护,碳纤维管略短于电极丝,使电极丝尖端暴露,碳纤维管的另一端固定在电极基座上的镀锡孔中;
步骤五:电极转接头排针插入电极基座上的对应插孔,并焊接好,排针外接数模转换器、前置放大器电生理信号采集装置。
优选的,步骤二中标准电极基座可以是4X4、5X5、4X6或5X6设计。
优选的,步骤二中的电极转接头采用标准Omnetics接头。
优选的,步骤三中的电极丝为镍铬合金或钨丝金属丝直径为15um-100um。
优选的,步骤四中电极丝尖端暴露0.5mm-1mm。
优选的,步骤四中的碳纤维管通过胶水固定在电极基座上的镀锡孔中。
优选的,步骤三中电极丝和镀锡孔之间为焊接连接。
一种可长期植入多脑区记录电极阵列的使用方法,包括以下步骤:
步骤一:在电极阵列植入大脑时,通过标准麻醉和手术将头皮切开,颅骨暴露并清理干净;
步骤二:在颅骨上钻孔,颅骨孔与电极阵列相对应,颅骨孔直径应略大于碳纤维管直径,除去硬脑膜,清理出血后备用;
步骤三:在植入电极阵列时,需要用电极夹持器倾斜角度夹持电极阵列,首先将最远端一排小心插入对应的颅骨孔中,确保第一排电极全部入孔之后,慢慢倾斜电极阵列,使第二排也接近颅骨开孔,然后是第三排、第四排等;
步骤四:在确保所有电极都对应颅骨孔之后,慢慢将电极阵列向下移动,根据设定的脑区位置,将电极阵列缓慢植入大脑;
步骤五:在植入过程中随时注意观察有无电极丝或碳纤维管发生弯曲,如发生弯曲可能是电极顶到了颅骨、硬脑膜等坚硬部位,电极可能发生了弯曲,将影响该电极后期的信号采集。
有益效果
本发明与现有技术相比的优点在于:(1)PCB板实行订制,可覆盖全脑的电极阵列;
(2)单根电极丝由碳纤维管保护,保证绝缘的同时,防止电极丝发生大尺度弯曲;
(3)可根据记录的目标脑区调节电极丝长度,既可记录皮层电信号也可以记录深部大脑核团信号;
(4)植入方式相比需要大面积去除颅骨的常规电极阵列,本发明技术方案可以用直接直径1mm左右的多个小孔代替,减少创伤、利于动物康复。
附图说明
图1是本发明一种可长期植入多脑区记录电极阵列制作方法及使用方法的电极阵列结构示意图。
图2是本发明一种可长期植入多脑区记录电极阵列制作方法及使用方法的使用状态参考图。
如图所示:1、电极转接头;2、电极基座;3、碳纤维保护管;4、电极丝。
本发明的实施方式
下面结合附图对本发明做进一步的详细说明。
一种可长期植入多脑区记录电极阵列的制作方法,包括以下步骤:
步骤一:制作电极阵列前要根据实验需求确定好多个目标脑区位置及深度,根据脑区位置设计电极基座开孔位置,根据目标脑区深度设计各个电极套管和电极丝长度;
步骤二:采用标准的电极基座,由pcb板打印而成,每个电极孔连接一个电极转接头插孔,最多可连接32根电极丝;
步骤三:电极丝为镍铬合金或钨丝金属丝,单根电极丝穿过电极基座上的镀锡孔,直接固定在镀锡孔上;
步骤四:每根电极丝用一根碳纤维管当做电极套管进行保护,碳纤维管略短于电极丝,使电极丝尖端暴露,碳纤维管的另一端固定在电极基座上的镀锡孔中;
步骤五:电极转接头排针插入电极基座上的对应插孔,并焊接好,排针外接数模转换器、前置放大器电生理信号采集装置。
步骤二中标准电极基座可以是4X4、5X5、4X6或5X6设计。
步骤二中的电极转接头采用标准Omnetics接头。
步骤三中的电极丝为镍铬合金或钨丝金属丝直径为15um-100um。
步骤四中电极丝尖端暴露0.5mm-1mm。
步骤四中的碳纤维管通过胶水固定在电极基座上的镀锡孔中。
步骤三中电极丝和镀锡孔之间为焊接连接。
一种可长期植入多脑区记录电极阵列的使用方法,包括以下步骤:
步骤一:在电极阵列植入大脑时,通过标准麻醉和手术将头皮切开,颅骨暴露并清理干净;
步骤二:在颅骨上钻孔,颅骨孔与电极阵列相对应,颅骨孔直径应略大于碳纤维管直径,除去硬脑膜,清理出血后备用;
步骤三:在植入电极阵列时,需要用电极夹持器倾斜角度夹持电极阵列,首先将最远端一排小心插入对应的颅骨孔中,确保第一排电极全部入孔之后,慢慢倾斜电极阵列,使第二排也接近颅骨开孔,然后是第三排、第四排等;
步骤四:在确保所有电极都对应颅骨孔之后,慢慢将电极阵列向下移动,根据设定的脑区位置,将电极阵列缓慢植入大脑;
步骤五:在植入过程中随时注意观察有无电极丝或碳纤维管发生弯曲,如发生弯曲可能是电极顶到了颅骨、硬脑膜等坚硬部位,电极可能发生了弯曲,将影响该电极后期的信号采集。
该电极阵列已经使用,并证明可行,利用该电极阵列,可检测和采集清醒大鼠全脑的局部场电位如附图2所示。
电极阵列的数量可以变化;电极丝的材料、粗细、长度等均可替换为其他尺寸或材料的金属丝。
本发明在具体实施时,多达32通道、可覆盖全脑的电极阵列;单根电极丝由碳纤维管保护,防止弯曲;可根据记录的目标脑区调节电极丝长度。
(1)PCB板实行订制,可覆盖全脑的电极阵列;
(2)单根电极丝由碳纤维管保护,保证绝缘的同时,防止电极丝发生大尺度弯曲;
(3)可根据记录的目标脑区调节电极丝长度,既可记录皮层电信号也可以记录深部大脑核团信号;
(4)植入方式相比需要大面积去除颅骨的常规电极阵列,本发明技术方案可以用直接直径1mm左右的多个小孔代替,减少创伤、利于动物康复;
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (9)

  1. 一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:包括以下步骤:
    步骤一:制作电极阵列前要根据实验需求确定好多个目标脑区位置及深度,根据脑区位置设计电极基座开孔位置,根据目标脑区深度设计各个电极套管和电极丝长度;
    步骤二:采用标准的电极基座,由pcb板打印而成,每个电极孔连接一个电极转接头插孔,最多可连接32根电极丝;
    步骤三:电极丝为镍铬合金或钨丝金属丝,单根电极丝穿过电极基座上的镀锡孔,直接固定在镀锡孔上;
    步骤四:每根电极丝用一根碳纤维管当做电极套管进行保护,碳纤维管略短于电极丝,使电极丝尖端暴露,碳纤维管的另一端固定在电极基座上的镀锡孔中;
    步骤五:电极转接头排针插入电极基座上的对应插孔,并焊接好,排针外接数模转换器、前置放大器电生理信号采集装置。
  2. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤二中标准电极基座可以是4X4、5X5、4X6或5X6设计。
  3. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤二中的电极转接头采用标准Omnetics接头。
  4. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤三中的电极丝为镍铬合金或钨丝金属丝直径为15 μm-100μm。
  5. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤四中电极丝尖端暴露0.5 mm-1 mm。
  6. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤四中的碳纤维管通过胶水固定在电极基座上的镀锡孔中。
  7. 根据权利要求1所述的一种可长期植入多脑区记录电极阵列的制作方法,其特征在于:步骤三中电极丝和镀锡孔之间为焊接连接。
  8. 根据权利要求1-7任一项制备方法制备获得的可长期植入多脑区记录电极阵列。
  9. 一种权利要求1-7任意一项所述的可长期植入多脑区记录电极阵列的植入方法,其特征在于:包括以下步骤:
    步骤一:在电极阵列植入大脑时,通过标准麻醉和手术将头皮切开,颅骨暴露并清理干净;
    步骤二:在颅骨上钻孔,颅骨孔与电极阵列相对应,颅骨孔直径应大于碳纤维管直径,除去硬脑膜,清理出血后备用;
    步骤三:在植入电极阵列时,需要用电极夹持器倾斜角度夹持电极阵列,首先将最远端一排插入对应的颅骨孔中,确保第一排电极全部入孔之后,慢慢倾斜电极阵列,使第二排也接近颅骨开孔,然后依次进行第三排、第四排直至全部电极入孔;
    步骤四:在确保所有电极都对应颅骨孔之后,将电极阵列向下移动,根据设定的脑区位置,将电极阵列缓慢植入大脑;
    步骤五:在植入过程中注意观察,确保电极丝或碳纤维管不发生弯曲。
PCT/CN2022/137418 2021-12-14 2022-12-08 一种可长期植入多脑区记录电极阵列制作方法及使用方法 WO2023109624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111524705.XA CN114190948A (zh) 2021-12-14 2021-12-14 一种可长期植入多脑区记录电极阵列制作方法及使用方法
CN202111524705.X 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109624A1 true WO2023109624A1 (zh) 2023-06-22

Family

ID=80653397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137418 WO2023109624A1 (zh) 2021-12-14 2022-12-08 一种可长期植入多脑区记录电极阵列制作方法及使用方法

Country Status (2)

Country Link
CN (1) CN114190948A (zh)
WO (1) WO2023109624A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114190948A (zh) * 2021-12-14 2022-03-18 深圳先进技术研究院 一种可长期植入多脑区记录电极阵列制作方法及使用方法
CN115956929B (zh) * 2023-01-09 2023-07-25 华中科技大学 一种合并记录、光刺激的多脑区电极阵列及其制备
CN116058853B (zh) * 2023-01-09 2023-08-25 华中科技大学 一种灵活电刺激并记录多脑区多深度阵列电极

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082875A1 (en) * 2002-10-24 2004-04-29 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
CN103690262A (zh) * 2013-11-29 2014-04-02 南京航空航天大学 鸟类慢性脑功能研究用电极转接装置及固定方法
US20160007874A1 (en) * 2014-07-11 2016-01-14 Wisconsin Alumni Research Foundation Transparent and flexible neural electrode arrays
CN105852855A (zh) * 2016-04-15 2016-08-17 郑州科斗创客科技有限公司 用于鼠类大脑初级视觉皮层脑电测量的植入式脑电极
CN207186616U (zh) * 2017-03-14 2018-04-06 天津市拱石科技有限公司 一种植入式脑电波采集的微丝电极阵列
CN110464330A (zh) * 2019-08-27 2019-11-19 中国科学院深圳先进技术研究院 一种多脑区记录电极、制作方法及植入方法
CN210130835U (zh) * 2019-02-27 2020-03-10 江苏易格生物科技有限公司 一种适用于多脑区记录的植入式电极阵列
CN113080981A (zh) * 2021-03-26 2021-07-09 燕山大学 一种动物机器人脑电极转接装置
CN114190948A (zh) * 2021-12-14 2022-03-18 深圳先进技术研究院 一种可长期植入多脑区记录电极阵列制作方法及使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8315686B2 (en) * 2008-01-30 2012-11-20 New York University Cortical electrode array and method for stimulating and recording brain activity
GB201608958D0 (en) * 2016-05-20 2016-07-06 Imp Innovations Ltd Implantable neural interface
CN110811611A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 头带式生物信号采集装置及其制备方法
CN111053554A (zh) * 2019-11-28 2020-04-24 开封市学国生物科技有限公司 一种超微柔性线性深部脑电极

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082875A1 (en) * 2002-10-24 2004-04-29 Brown University Research Foundation Microstructured arrays for cortex interaction and related methods of manufacture and use
CN103690262A (zh) * 2013-11-29 2014-04-02 南京航空航天大学 鸟类慢性脑功能研究用电极转接装置及固定方法
US20160007874A1 (en) * 2014-07-11 2016-01-14 Wisconsin Alumni Research Foundation Transparent and flexible neural electrode arrays
CN105852855A (zh) * 2016-04-15 2016-08-17 郑州科斗创客科技有限公司 用于鼠类大脑初级视觉皮层脑电测量的植入式脑电极
CN207186616U (zh) * 2017-03-14 2018-04-06 天津市拱石科技有限公司 一种植入式脑电波采集的微丝电极阵列
CN210130835U (zh) * 2019-02-27 2020-03-10 江苏易格生物科技有限公司 一种适用于多脑区记录的植入式电极阵列
CN110464330A (zh) * 2019-08-27 2019-11-19 中国科学院深圳先进技术研究院 一种多脑区记录电极、制作方法及植入方法
CN113080981A (zh) * 2021-03-26 2021-07-09 燕山大学 一种动物机器人脑电极转接装置
CN114190948A (zh) * 2021-12-14 2022-03-18 深圳先进技术研究院 一种可长期植入多脑区记录电极阵列制作方法及使用方法

Also Published As

Publication number Publication date
CN114190948A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023109624A1 (zh) 一种可长期植入多脑区记录电极阵列制作方法及使用方法
US10820941B2 (en) Apparatus and method for intra-cardiac mapping and ablation
US10765370B2 (en) Systems and methods for neurological traffic and/or receptor functional evaluation and/or modification
JP6494912B2 (ja) 1つ以上の遠位アセンブリ内に配設された異なる長さの多重スパインを備えたカテーテル
Williams et al. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex
US9119634B2 (en) Apparatus and method for intra-cardiac mapping and ablation
US6038484A (en) Cochlear electrode with modiolar-hugging system including a flexible positioner
US20180200524A1 (en) Endoscopic Sympathectomy Systems and Methods
US6119044A (en) Cochlear electrode array with positioning stylet
US10028783B2 (en) Apparatus and method for intra-cardiac mapping and ablation
KR101856267B1 (ko) Ecg-기반 카테터 팁 배치의 재확인
US9387319B2 (en) System for permanent electrode placement utilizing microelectrode recording methods
CN101616630B (zh) 电极阵列
DE60218806T2 (de) Kartierungskatheter
WO2014121664A1 (zh) 射频消融方法、系统及其射频消融设备
CN106646048A (zh) 一种微电极阵列的制备方法
EP1484011A2 (en) Catheter for mapping a pulmonary vein
CN106308922A (zh) 一种多极消融装置
Rennaker et al. An economical multi-channel cortical electrode array for extended periods of recording during behavior
US6496712B1 (en) Method and apparatus for electrophysiology catheter with enhanced sensing
US20080103571A1 (en) Medical lead delivery device
US9037211B1 (en) Bladder monitoring device
US11389232B2 (en) Apparatus and method for intra-cardiac mapping and ablation
CN218356352U (zh) 导管夹持结构、导管手柄及包含其的消融电极导管组件
CN212089531U (zh) 一种基于金属管的记录点阵列电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906372

Country of ref document: EP

Kind code of ref document: A1