WO2023109263A1 - 缩减模块间走线的方法、信号传输方法及装置、图像传感器 - Google Patents

缩减模块间走线的方法、信号传输方法及装置、图像传感器 Download PDF

Info

Publication number
WO2023109263A1
WO2023109263A1 PCT/CN2022/123968 CN2022123968W WO2023109263A1 WO 2023109263 A1 WO2023109263 A1 WO 2023109263A1 CN 2022123968 W CN2022123968 W CN 2022123968W WO 2023109263 A1 WO2023109263 A1 WO 2023109263A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal line
time
module
line
Prior art date
Application number
PCT/CN2022/123968
Other languages
English (en)
French (fr)
Inventor
陈孟儒
吉倩倩
周新
Original Assignee
格科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格科微电子(上海)有限公司 filed Critical 格科微电子(上海)有限公司
Publication of WO2023109263A1 publication Critical patent/WO2023109263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present invention relates to the technical field of signal transmission, in particular to a method for reducing wiring between modules, a signal transmission method and device, and an image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Field Effect Transistor
  • CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Field Effect Transistor
  • image sensor is a typical solid-state imaging sensor, which can integrate the image acquisition unit and signal processing unit on the same chip, which is suitable for mass production and can be obtained It has been widely used, such as small and miniature cameras for security, mobile phones, computer network video conferencing systems, wireless handheld video conferencing systems, barcode scanners, fax machines, toys, some car camera systems and other fields.
  • CMOS image sensors are usually composed of pixel unit arrays, row drivers, column drivers, timing control logic, AD converters, data bus output interfaces, control interfaces, etc. These parts are usually integrated on the same chip.
  • other digital signal processing circuits can also be integrated on the CMOS image sensor chip, such as automatic exposure control, non-uniformity compensation, white balance processing, black level control, gamma correction, etc.
  • DSP devices with programming functions are integrated with CMOS devices to form a single-chip digital camera and image processing system.
  • there will be a large number of signal wires between modules in the CMOS image sensor especially on the image sensor with a non-stacked structure, the number of metal layers is small, the distance between modules is long, and the distance between lines is long. The signal wires between modules need to be spent A large chip area makes the CMOS sensor larger and takes up more equipment space.
  • embodiments of the present invention provide a method for reducing wiring between modules, which can effectively reduce the number of wiring between modules, thereby reducing chip size and improving the miniaturization of equipment.
  • the embodiment of the present invention also provides a signal transmission method and device to improve the transmission capability of the signal line.
  • Another aspect of the embodiments of the present invention also provides an image sensor, which can effectively reduce the volume of the image sensor.
  • An embodiment of the present invention provides a method for reducing wiring between modules, the method comprising:
  • the first signal line is used to transmit a first signal
  • the second signal line is used to transmit a second signal
  • the transmission of the first signal and the second signal on the first signal line is controlled according to the time-sharing control logic.
  • the first signal line is any one of the following: a signal line for transmitting control waveforms, and a signal line for transmitting operating parameters.
  • the second signal line is any one or more of: a signal line for transmitting control waveforms, and a signal line for transmitting operating parameters.
  • the time-division control logic includes: controlling the first signal line to transmit the first signal and the second signal in time-division through a time-division selection signal and a latch signal.
  • the method further includes: reducing the number of the latch signals by encoding if multiple latch signals are required.
  • An embodiment of the present invention also provides a signal transmission method, the method comprising:
  • Time-division transmission of the first signal and the second signal on the first signal line is controlled by time-division control logic.
  • the first signal and the second signal include any one or more of the following: a working parameter signal and a control waveform signal.
  • controlling the time-division transmission of the first signal and the second signal on the first signal line through the time-division control logic includes: controlling the first signal through a time-division selection signal and a latch signal The first signal and the second signal are time-divisionally transmitted online.
  • the method further includes: when multiple latch signals are required, generating different latch signals by encoding.
  • An embodiment of the present invention also provides a signal transmission device, which includes: a first signal sending module, a first signal receiving module connected to the second signal sending module through a signal line, a second signal sending module, and A second signal receiving module connected to the second signal sending module through the signal line, and a control module;
  • the first signal sending module is configured to output a first signal
  • the second signal sending module is configured to output a second signal
  • the control module is used to control the signal line to transmit the first signal to the first signal receiving module and transmit the second signal to the second signal receiving module by time-sharing control logic. module.
  • the first signal and the second signal are any one of the following signals: a working parameter signal and a control waveform signal.
  • the second signal and the first signal are signals of the same type, or signals of different types.
  • the signal transmission device further includes: a port selection module; the control module outputs a time-division selection signal to the first signal transmission module and the second signal transmission module respectively, and sends a time-sharing selection signal to the port selection module Outputting a control signal to control the port selection module to turn on the first signal receiving module and the second signal receiving module in time division.
  • the second signal is a working parameter signal
  • the port selection module includes: a memory connected to the second signal receiving module for storing the second signal.
  • the signal transmission device further includes: an encoding module, configured to encode the control signal for output Latch signals used to control the operation of each memory.
  • an embodiment of the present invention also provides an image sensor, including the aforementioned signal transmission device.
  • the method for reducing wiring between modules provided by the embodiment of the present invention can effectively reduce the number of signal lines by multiplexing signals that need to be transmitted by different signal lines to one signal line for transmission in a time-division multiplexing manner, especially For the layout design with few metal layers, long distance between modules and long distance between lines, it can effectively reduce the chip volume and improve the miniaturization of equipment.
  • the signal transmission method, device, and sensor provided by the embodiments of the present invention multiplex different signals onto the same signal line, and control the time-sharing transmission of the different signals on the signal line through time-sharing control logic, which can Effectively improve the transmission capacity of the signal line and reduce the number of signal lines.
  • FIG. 1 is a flowchart of a method for reducing wiring between modules according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a signal transmission method according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a signal transmission device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a reduction A method for wiring between modules, a signal transmission method and a device, so as to reduce the number of signal lines and improve the transmission capacity of the signal lines.
  • the above-mentioned signal routing can be roughly divided into two types: one is a waveform signal that changes in real time to play a control role, and the other is a signal used to transmit stable circuit operating parameters.
  • any of these two types of signal lines can be used to transmit another type of signal, that is, two different types of signals can be multiplexed into the same wire.
  • Time-sharing transmission is performed on the signal lines respectively.
  • two different signals of the same type can also be multiplexed on any one of the signal lines for time-division transmission, so as to reduce the total number of transmission signal lines.
  • the multiplexing method may be two or more signals for multiplexing transmission, which may be comprehensively considered according to needs and the complexity of the multiplexing logic, which is not limited in this embodiment of the present invention.
  • FIG. 1 it is a flowchart of a method for reducing wiring between modules according to an embodiment of the present invention, including the following steps:
  • Step 101 determine a first signal line and a second signal line that can be multiplexed.
  • the first signal line is used to transmit the first signal
  • the second signal line is used to transmit the second signal
  • the first signal line may be, but not limited to, any of the following: a signal line for transmitting control waveforms, a signal line for transmitting operating parameters; correspondingly, the first signal line
  • the two signal lines can also be, but are not limited to, any one or more types: a signal line for controlling functions, and a signal line for transmitting working parameters.
  • two or more signal lines for transmitting the same type or different types of signals can be multiplexed according to needs, for example, one signal line for transmitting control waveforms and two signal lines for transmitting different operating parameters Multiplexing; or multiplexing of two signal lines transmitting different control waveforms; or multiplexing of three signal lines transmitting different operating parameters.
  • Step 102 determine the time-sharing control logic.
  • the time-sharing control logic refers to the time-sharing control logic for different signals multiplexed on the same signal line.
  • Step 103 connect the two ends of the second signal line to the two ends of the first signal line respectively, and delete the second signal line.
  • connecting the two ends of the two signal lines respectively is equivalent to combining the two signal lines into one signal line.
  • the routing of any one of the signal lines can be deleted. That is to say, the above-mentioned first signal line and second signal line do not limit a specific signal, but are only used to distinguish different signal lines.
  • the routing of one of the signal wires can be reserved, and the routing of other signal wires can be deleted.
  • Step 104 control the transmission of the first signal and the second signal on the first signal line according to the time-sharing control logic.
  • the time-sharing control logic needs to ensure that the first signal and the second signal can be time-divisionally transmitted to the required signal receiving end, and the transmission of the two signals does not affect each other.
  • the first signal line can be controlled to time-divisionally transmit all multiplexed signals, such as the above-mentioned first signal and second signal, through the time-division selection signal and the latch signal.
  • the time-sharing method to multiplex the real-time changing control waveform signal line as an example, that is, when the working parameter signal is multiplexed to the signal line for transmitting the control waveform for transmission, you can choose to output the working parameter signal within a certain period of time, according to the lock
  • the stored signal is latched by the storage unit to provide the corresponding module with the working parameter signal, and the waveform signal is still transmitted at other times.
  • one signal line can transmit one working parameter or multiple working parameters in time-sharing, only need to connect multiple memories and cooperate with corresponding latch signals.
  • time-division selection signal generally needs to be provided independently, and the latch signal can be additionally provided independently, that is, it can be transmitted independently, and of course it can also be time-division multiplexed with other signals for transmission.
  • This embodiment of the present invention does not Do limited.
  • the time-division selection signal and the latch signal can control multiple channels for time-division multiplex transmission of working parameters.
  • encoding such as address encoding
  • the method for reducing wiring between modules provided by the embodiment of the present invention can effectively reduce the number of signal lines by multiplexing signals that need to be transmitted by different signal lines to one signal line for transmission in a time-division multiplexing manner, especially For the layout design with few metal layers, long distance between modules and long distance between lines, it can effectively reduce the chip volume and improve the miniaturization of equipment.
  • an embodiment of the present invention also provides a signal transmission method, as shown in FIG. 2 , which is a flowchart of the signal transmission method, including the following steps:
  • Step 201 multiplexing the second signal onto the first signal line for transmitting the first signal.
  • the types of the first signal and the second signal may be the same or different, and the signal type may be but not limited to any of the following: a real-time change of the waveform signal used for control, used for transmission stability Signals of circuit operating parameters, etc.
  • Step 202 control the time-division transmission of the first signal and the second signal on the first signal line through time-division control logic.
  • the time-division control logic is used to control the time-division transmission of the first signal and the second signal on the first signal line without interfering with each other.
  • the time-division transmission of the first signal and the second signal on the first signal line may be controlled by a time-division selection signal and a latch signal.
  • latch signals when multiple latch signals are required, different latch signals can also be generated by encoding.
  • an embodiment of the present invention also provides a signal transmission device, as shown in FIG. 3 , which is a schematic structural diagram of the device.
  • the signal transmission device includes the following modules: a first signal sending module 311 , a second signal sending module 321 , a first signal receiving module 312 , a second signal receiving module 322 , and a control module 300 .
  • the first signal sending module 311 is connected to the first signal receiving module 312 through the signal line 301
  • the second signal sending module 321 is also connected to the second signal receiving module 322 through the signal line 301 .
  • the first signal sending module 311 is used for outputting the first signal, correspondingly, the first signal receiving module 312 is used for receiving the first signal; similarly, the second signal sending module 321 is used for outputting the second signal, correspondingly, the second signal
  • the receiving module 322 is used for receiving the second signal.
  • both the first signal and the second signal are transmitted through the signal line 301, and the control module 300 transmits the first signal to the first signal receiving module 312 in time-division through the time-sharing control logic control signal line 301, and the The second signal is transmitted to the second signal receiving module 322 .
  • the second signal may be a signal of the same type as the first signal, or a signal of a different type, which is not limited in this embodiment of the present invention.
  • the signal transmission device may further include: port selection module (not shown).
  • control module 300 outputs time-sharing selection signals to the first signal sending module 311 and the second signal sending module 321 respectively, and outputs control signals to the port selection module to control the port selection
  • the modules connect the first signal receiving module 312 and the second signal receiving module 322 in time division.
  • the port selection module can latch the second signal through a memory connected to the second signal receiving module 322, When the port selection module turns on the second signal receiving module 322 , it transmits the working parameters latched in the memory to the second signal receiving module 322 .
  • multiple working parameter signals can be multiplexed and transmitted on one signal line at the same time.
  • multiple memories are required, that is, each working parameter needs a corresponding memory for latching .
  • the control signals can be encoded by a corresponding encoding module (not shown), for example, address encoding is used to output latch signals for controlling the operation of each memory.
  • the memory may be a latch, a D flip-flop, or other circuit units with a storage function, which is not limited in this embodiment of the present invention.
  • the signal transmission method and device provided by the embodiments of the present invention multiplex different signals onto the same signal line, and control the time-sharing transmission of the different signals on the signal line through time-sharing control logic, which can effectively improve the signal line Transmission capacity, reduce the number of signal lines.
  • an embodiment of the present invention also provides an image sensor, including the above-mentioned signal transmission device.
  • an embodiment of the present invention further provides a chip, including the above-mentioned signal transmission device.
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs, The software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits
  • the embodiment of the present invention also discloses a storage medium, the storage medium is a computer-readable storage medium on which a computer program is stored, and when the computer program is running, the steps of the method shown in Figure 1 or Figure 2 can be executed .
  • the storage medium may include ROM, RAM, magnetic or optical disks, and the like.
  • the storage medium may also include a non-volatile memory (non-volatile) or a non-transitory (non-transitory) memory, and the like.
  • Multiple appearing in the embodiments of the present application means two or more.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods and devices may be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units may be stored in a computer-readable storage medium.
  • the above-mentioned software functional units are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute some steps of the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Facsimile Heads (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一种缩减模块间走线的方法、信号传输方法及装置、图像传感器,缩减模块间走线的方法包括:确定可复用的第一信号线及第二信号线,所述第一信号线用于传输第一信号,所述第二信号线用于传输第二信号;确定分时控制逻辑;将所述第二信号线的两端分别接到所述第一信号线的两端,删除所述第二信号线;按照所述分时控制逻辑控制所述第一信号线上传输所述第一信号和所述第二信号。利用本发明,可以有效缩减模块间的走线数量,进而减小芯片体积,提高设备的小型化程度。

Description

缩减模块间走线的方法、信号传输方法及装置、图像传感器
本申请要求2021年12月13日提交中国专利局、申请号为202111518521.2、发明名称为“缩减模块间走线的方法、信号传输方法及装置、图像传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及信号传输技术领域,具体涉及一种缩减模块间走线的方法,还涉及一种信号传输方法及装置、还涉及一种图像传感器。
背景技术
图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物场效应管)图像传感器是一种典型的固体成像传感器,可将图像采集单元和信号处理单元集成到同一块芯片上,适合大规模批量生产,并得到了广泛应用,比如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、某些车用摄像系统等领域。
CMOS图像传感器通常由像素单元阵列、行驱动器、列驱动器、时序控制逻辑、AD转换器、数据总线输出接口、控制接口等几部分组成,这几部分通常都被集成在同一块芯片上。另外,在CMOS图像传感器芯片上还可以集成其他数字信号处理电路,如自动曝光量控制、非均匀补偿、白平衡处理、黑电平控制、伽玛校正等,为了进行快速计算甚至可以将具有可编程功能的DSP器件与CMOS器件集成在一起,从而组成单片数字相机及图像处理系统。相应地,CMOS图像传感器中模块间会有大量信号走线,特别是在非堆叠结构的图像传感器上,金属层数少,模块间距离远,线间距离长,模块间的信号走 线需要耗费大量芯片面积,使得CMOS传感器体积较大,占用更多设备空间。
发明内容
本发明实施例一方面提供一种缩减模块间走线的方法,可以有效缩减模块间的走线数量,进而减小芯片体积,提高设备的小型化程度。
本发明实施例另一方面还提供一种信号传输方法及装置,提升信号线的传输能力。
本发明实施例另一方面还提供一种图像传感器,可以有效减小图像传感器体积。
为此,本发明实施例提供如下技术方案:
本发明实施例提供一种缩减模块间走线的方法,所述方法包括:
确定可复用的第一信号线及第二信号线,所述第一信号线用于传输第一信号,所述第二信号线用于传输第二信号;
确定分时控制逻辑;
将所述第二信号线的两端分别接到所述第一信号线的两端,删除所述第二信号线;
按照所述分时控制逻辑控制所述第一信号线上传输所述第一信号和所述第二信号。
可选地,所述第一信号线为以下任意一种:用于传输控制波形的信号线,用于传输工作参数的信号线。
可选地,所述第二信号线有一个或多个;所述第二信号线为以任意一种或多种:用于传输控制波形的信号线,用于传输工作参数的信号线。
可选地,所述分时控制逻辑包括:通过分时选择信号、锁存信号控制所述第一信号线分时传输所述第一信号和所述第二信号。
可选地,所述方法还包括:在需要多个锁存信号的情况下,通过编码方式缩减所述锁存信号的数量。
本发明实施例还提供一种信号传输方法,所述方法包括:
将第二信号复用到用于传输第一信号的第一信号线上;
通过分时控制逻辑控制所述第一信号线上分时传输所述第一信号和所述第二信号。
可选地,所述第一信号和所述第二信号包括以下任意一种或多种:工作参数信号、控制波形信号。
可选地,所述通过分时控制逻辑控制所述第一信号线上分时传输所述第一信号和所述第二信号包括:通过分时选择信号、锁存信号控制所述第一信号线上分时传输所述第一信号和所述第二信号。
可选地,所述方法还包括:在需要多个锁存信号的情况下,通过编码方式生成不同的锁存信号。
本发明实施例还提供一种信号传输装置,所述装置包括:第一信号发送模块、以及通过信号线与所述第二信号发送模块相连的第一信号接收模块,第二信号发送模块、以及通过所述信号线与所述第二信号发送模块相连的第二信号接收模块,控制模块;
所述第一信号发送模块,用于输出第一信号;
所述第二信号发送模块,用于输出第二信号;
所述控制模块,用于通过分时控制逻辑控制所述信号线上分时将所述第一信号传输给所述第一信号接收模块、将所述第二信号传输给所述第二信号接收模块。
可选地,所述第一信号和所述第二信号为以下任意一种信号:工作参数信号、控制波形信号。
可选地,所述第二信号与所述第一信号为同一类型信号、或者不 同类型信号。
可选地,所述信号传输装置还包括:端口选择模块;所述控制模块分别向所述第一信号发送模块和所述第二信号发送模块输出分时选择信号,并向所述端口选择模块输出控制信号,以控制所述端口选择模块分时接通所述第一信号接收模块和所述第二信号接收模块。
可选地,所述第二信号为工作参数信号;所述端口选择模块包括:与所述第二信号接收模块连接的存储器,用于存储所述第二信号。
可选地,所述第二信号发送模块和所述第二信号接收模块有多个;所述信号传输装置还包括:编码模块,所述编码模块用于对所述控制信号进行编码,输出用于控制各存储器工作的锁存信号。本发明实施例还提供一种图像传感器,包括前面所述的信号传输装置。
本发明实施例提供的缩减模块间走线的方法,通过需要由不同信号线传输的信号通过分时复用方式复用到一条信号线上进行传输,从而可以有效减少信号线的数量,尤其是对于金属层数少、模块间距离远、线间距离长的布局设计,可以有效减小芯片体积,提高设备的小型化程度。
相应地,本发明实施例提供的信号传输方法及装置、传感器,将不同的信号复用到同一信号线上,通过分时控制逻辑控制所述信号线上分时传输所述不同的信号,可以有效地提升信号线的传输能力,减少信号线数量。
附图说明
图1是本发明实施例缩减模块间走线的方法的流程图;
图2是本发明实施例信号传输方法的流程图;
图3是本发明实施例信号传输装置的结构示意图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
针对现有的一些芯片(比如CMOS图像传感器)内部模块间需要大量信号走线,而这些信号走线会耗费大量芯片面积,使得CMOS传感器体积较大这一问题,本发明实施例提供一种缩减模块间走线的方法、信号传输方法及装置,以减少信号线的数量,提升信号线的传输能力。
一般而言,上述信号走线大致分为两种:一种是实时变化起控制作用的波形信号,另一种是用于传输稳定的电路工作参数的信号。对于传输不同类型信号的信号走线,可以利用这两种类型的信号线中的任意一种,来传输另一种类型的信号,也就是说,将两种不同类型的信号复用到同一条信号线上分别进行分时传输。当然,也可以将同类型的两种不同信号复用到其中任一条信号线上进行分时传输,以减少传输信号线的总量。需要说明的是,复用的方式可以是两个或两个以上的信号进行复用传输,具体可以根据需要及复用逻辑的复杂度来综合考虑,对此本发明实施例不做限定。
如图1所示,是本发明实施例缩减模块间走线的方法的流程图,包括以下步骤:
步骤101,确定可复用的第一信号线及第二信号线。
其中,第一信号线用于传输第一信号,第二信号线用于传输第二信号。
需要说明的是,在具体应用中,所述第一信号线可以是但不限于以下任意一种:用于传输控制波形的信号线,用于传输工作参数的信号线;相应地,所述第二信号线同样可以是但不限于以任意一种或多种:用于控制作用的信号线,用于传输工作参数的信号线。
另外,可以根据需要,可以将两条或两条以上用于传输相同类型或不同类型信号的信号线进行复用,比如,一条传输控制波形的信号 线与两条传输不同工作参数的信号线进行复用;或者两条传输不同控制波形的信号线进行复用;或者三条传输不同工作参数的信号线进行复用。
步骤102,确定分时控制逻辑。
所述分时控制逻辑是指针对复用到同一条信号线上的不同信号的分时控制逻辑。
步骤103,将第二信号线的两端分别接到第一信号线的两端,删除第二信号线。
需要说明的是,将两条信号线两端分别连接,相当于将两条信号线并成了一条信号线。相应地,在布线时,可以删除其中任一条信号线的走线。也就是说,上述第一信号线和第二信号线并非限定具体的哪一条信号,只是用于区分不同的信号线。而且,如果复用的信号线多于两条,在将其相应线端连接后,可以只保留其中一条信号线的走线,将其他信号线的走线删除。
步骤104,按照分时控制逻辑控制第一信号线上传输第一信号和第二信号。
比如,将第一信号和第二信号复用到第一信号线或第二信号线上进行传输,则分时控制逻辑需要保证第一信号和第二信号能够分时传输到所需的信号接收端,而且两个信号的传输相互不受影响。当然,如果需要两个以上的不同信号复用传输,同样需要保证这些信号之间互不影响。为此,可以通过分时选择信号、锁存信号控制第一信号线分时传输复用的所有信号,比如上述第一信号和第二信号。
以通过分时方式复用实时变化的控制波形信号线来为例,即将工作参数信号复用到传输控制波形的信号线上传输时,可以选择在某段时间内,输出工作参数信号,根据锁存信号通过存储单元锁存下该工作参数信号供相应模块所需,其他时间依然传输所述波形信号。另外,一根信号线可分时传输一个工作参数或者多个工作参数,只需要挂多 个存储器和配合相应的锁存信号即可。
需要说明的是,所述分时选择信号一般需要独立提供,所述锁存信号可额外独立提供,即独立传输,当然也可以是与其他信号分时复用传输,对此本发明实施例不做限定。
在另一种非限制性应用中,分时选择信号和锁存信号可以控制多条分时复用传输工作参数的通道,在复用传输的信号较多、锁存信号较多的情况下,还可以通过编码方式(比如地址编码)缩减锁存信号的数量。
本发明实施例提供的缩减模块间走线的方法,通过需要由不同信号线传输的信号通过分时复用方式复用到一条信号线上进行传输,从而可以有效减少信号线的数量,尤其是对于金属层数少、模块间距离远、线间距离长的布局设计,可以有效减小芯片体积,提高设备的小型化程度。
相应地,本发明实施例还提供一种信号传输方法,如图2所示,是该信号传输方法的流程图,包括以下步骤:
步骤201,将第二信号复用到用于传输第一信号的第一信号线上。
需要说明的是,所述第一信号和所述第二信号的类型可以相同,也可以不同,信号类型可以是但不限于以下任意一种:实时变化起控制作用的波形信号、用于传输稳定的电路工作参数的信号等。
步骤202,通过分时控制逻辑控制所述第一信号线上分时传输所述第一信号和所述第二信号。
所述分时控制逻辑用于控制第一信号和第二信号在第一信号线上分时传输,并且相互不会产生干扰。具体地,可以通过分时选择信号、锁存信号控制第一信号线上分时传输第一信号和第二信号。
进一步地,在需要多个锁存信号的情况下,还可以通过编码方式生成不同的锁存信号。
需要说明的是,在实际应用中,可以将两个以上的不同信号复用到一条信号线上传输,可以有效地提升信号线的传输能力,最大限度地减少不同模块间的走线,减少信号线的数量,进而减小芯片体积,提高设备的小型化程度。
相应地,本发明实施例还提供一种信号传输装置,如图3所示,是该装置的一种结构示意图。
该信号传输装置包括以下各模块:第一信号发送模块311、第二信号发送模块321、第一信号接收模块312、第二信号接收模块322、以及控制模块300。其中,第一信号发送模块311与第一信号接收模块312通过信号线301相连,第二信号发送模块321与第二信号接收模块322也通过信号线301相连。
第一信号发送模块311用于输出第一信号,相应地,第一信号接收模块312用于接收第一信号;同样,第二信号发送模块321用于输出第二信号,相应地,第二信号接收模块322用于接收第二信号。
在该实施例中,第一信号和第二信号均通过信号线301进行传输,控制模块300通过分时控制逻辑控制信号线301上分时将第一信号传输给第一信号接收模块312,将第二信号传输给第二信号接收模块322。
需要说明的是,第二信号可以是与所述第一信号为同一类型信号、或者是不同类型信号,对此本发明实施例不做限定。
为了使所述信号线上能够分时传输第一信号和第二信号,并且使两者不会产生相互干扰,在一种非限制性实施例中,所述信号传输装置还可包括:端口选择模块(未图示)。
相应地,在该实施例中,控制模块300分别向第一信号发送模块311和第二信号发送模块321输出分时选择信号、并向所述端口选择模块输出控制信号,以控制所述端口选择模块分时接通第一信号接收模块312和第二信号接收模块322。
在复用的信号中有工作参数信号的情况下,比如第二信号为工作参数信号,相应地,所述端口选择模块可以通过与第二信号接收模块322连接的存储器来锁存第二信号,在所述端口选择模块接通第二信号接收模块322的情况下,将存储器中锁存的工作参数传输给第二信号接收模块322。
需要说明的是,在具体应用中,可以在一条信号线上同时复用传输多个工作参数信号,在这种情况下,需要多个存储器,即每个工作参数需要一个对应的存储器进行锁存。为了避免锁存信号过多,可以通过相应的编码模块(未图示)对所述控制信号进行编码,比如采用地址编码,输出用于控制各存储器工作的锁存信号。
需要说明的是,所述存储器可以是锁存器、D触发器、或者是其他具有存储功能的电路单元,对此本发明实施例不做限定。
本发明实施例提供的信号传输方法及装置,将不同的信号复用到同一信号线上,通过分时控制逻辑控制所述信号线上分时传输所述不同的信号,可以有效地提升信号线的传输能力,减少信号线数量。
相应地,本发明实施例还提供一种图像传感器,包括上述信号传输装置。
相应地,本发明实施例还提供一种芯片,包括上述信号传输装置。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同 一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还公开了一种存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,所述计算机程序运行时可以执行图1或图2中所示的方法的步骤。所述存储介质可以包括ROM、RAM、磁盘或光盘等。所述存储介质还可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/“,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅 仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (16)

  1. 一种缩减模块间走线的方法,其特征在于,所述方法包括:
    确定可复用的第一信号线及第二信号线,所述第一信号线用于传输第一信号,所述第二信号线用于传输第二信号;
    确定分时控制逻辑;
    将所述第二信号线的两端分别接到所述第一信号线的两端,删除所述第二信号线;
    按照所述分时控制逻辑控制所述第一信号线上传输所述第一信号和所述第二信号。
  2. 根据权利要求1所述的缩减模块间走线的方法,其特征在于,所述第一信号线为以下任意一种:用于传输控制波形的信号线,用于传输工作参数的信号线。
  3. 根据权利要求2所述的缩减模块间走线的方法,其特征在于,所述第二信号线有一个或多个;
    所述第二信号线为以任意一种或多种:用于传输控制波形的信号线,用于传输工作参数的信号线。
  4. 根据权利要求1所述的缩减模块间走线的方法,其特征在于,所述分时控制逻辑包括:
    通过分时选择信号、锁存信号控制所述第一信号线分时传输所述第一信号和所述第二信号。
  5. 根据权利要求4所述的缩减模块间走线的方法,其特征在于,所述方法还包括:
    在需要多个锁存信号的情况下,通过编码方式缩减所述锁存信号的数量。
  6. 一种信号传输方法,其特征在于,所述方法包括:
    将第二信号复用到用于传输第一信号的第一信号线上;
    通过分时控制逻辑控制所述第一信号线上分时传输所述第一信号和所述第二信号。
  7. 根据权利要求6所述的信号传输方法,其特征在于,所述第一信号和所述第二信号包括以下任意一种或多种:工作参数信号、控制波形信号。
  8. 根据权利要求6或7所述的信号传输方法,其特征在于,所述通过分时控制逻辑控制所述第一信号线上分时传输所述第一信号和所述第二信号包括:
    通过分时选择信号、锁存信号控制所述第一信号线上分时传输所述第一信号和所述第二信号。
  9. 根据权利要求8所述的信号传输方法,其特征在于,所述方法还包括:
    在需要多个锁存信号的情况下,通过编码方式生成不同的锁存信号。
  10. 一种信号传输装置,其特征在于,所述装置包括:第一信号发送模块、以及通过信号线与所述第一信号发送模块相连的第一信号接收模块,第二信号发送模块、以及通过所述信号线与所述第二信号发送模块相连的第二信号接收模块,控制模块;
    所述第一信号发送模块,用于输出第一信号;
    所述第二信号发送模块,用于输出第二信号;
    所述控制模块,用于通过分时控制逻辑控制所述信号线上分时将所述第一信号传输给所述第一信号接收模块、将所述第二信号传输给所述第二信号接收模块。
  11. 根据权利要求10所述的信号传输装置,其特征在于,所述第一信号和所述第二信号为以下任意一种信号:工作参数信号、控制波形信号。
  12. 根据权利要求10所述的信号传输装置,其特征在于,所述第二信号与所述第一信号为同一类型信号、或者不同类型信号。
  13. 根据权利要求10至12任一项所述的信号传输装置,其特征在于,所述信号传输装置还包括:端口选择模块;
    所述控制模块分别向所述第一信号发送模块和所述第二信号发送模块输出分时选择信号,并向所述端口选择模块输出控制信号,以控制所述端口选择模块分时接通所述第一信号接收模块和所述第二信号接收模块。
  14. 根据权利要求13所述的信号传输装置,其特征在于,所述第二信号为工作参数信号;所述端口选择模块包括:与所述第二信号接收模块连接的存储器,用于存储所述第二信号。
  15. 根据权利要求14所述的信号传输装置,其特征在于,所述第二信号发送模块和所述第二信号接收模块有多个;
    所述信号传输装置还包括:编码模块,所述编码模块用于对所述控制信号进行编码,输出用于控制各存储器工作的锁存信号。
  16. 一种图像传感器,其特征在于,包括如权利要求10至15任一项所述的信号传输装置。
PCT/CN2022/123968 2021-12-13 2022-10-09 缩减模块间走线的方法、信号传输方法及装置、图像传感器 WO2023109263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111518521.2 2021-12-13
CN202111518521.2A CN116264646A (zh) 2021-12-13 2021-12-13 缩减模块间走线的方法、信号传输方法及装置、图像传感器

Publications (1)

Publication Number Publication Date
WO2023109263A1 true WO2023109263A1 (zh) 2023-06-22

Family

ID=86721799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123968 WO2023109263A1 (zh) 2021-12-13 2022-10-09 缩减模块间走线的方法、信号传输方法及装置、图像传感器

Country Status (2)

Country Link
CN (1) CN116264646A (zh)
WO (1) WO2023109263A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684938A (en) * 1983-02-25 1987-08-04 Texas Instruments Incorporated System for displaying data on a video screen in graphical mode
JPS63237697A (ja) * 1987-03-26 1988-10-04 Tokyo Electric Power Co Inc:The 情報通信システム
JPH04138569A (ja) * 1990-09-29 1992-05-13 Toshiba Corp 単位遅延多重化論理要素及びこの論理要素を用いた論理シミュレータ
JPH06324994A (ja) * 1993-05-14 1994-11-25 Kiyoshi Kase 並列型ディジタル信号処理装置
CN111292665A (zh) * 2020-03-27 2020-06-16 京东方科技集团股份有限公司 像素电路及其控制方法、和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684938A (en) * 1983-02-25 1987-08-04 Texas Instruments Incorporated System for displaying data on a video screen in graphical mode
JPS63237697A (ja) * 1987-03-26 1988-10-04 Tokyo Electric Power Co Inc:The 情報通信システム
JPH04138569A (ja) * 1990-09-29 1992-05-13 Toshiba Corp 単位遅延多重化論理要素及びこの論理要素を用いた論理シミュレータ
JPH06324994A (ja) * 1993-05-14 1994-11-25 Kiyoshi Kase 並列型ディジタル信号処理装置
CN111292665A (zh) * 2020-03-27 2020-06-16 京东方科技集团股份有限公司 像素电路及其控制方法、和显示装置

Also Published As

Publication number Publication date
CN116264646A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
TWI545388B (zh) 產生全景圖像的系統和方法
CN102402413A (zh) 和影像传感器通讯的电子系统、控制器及控制方法
US20110149116A1 (en) Imaging device and method for sharing memory among chips
US10015502B2 (en) Image processor, image processing system including image processor, system-on-chip including image processing system, and method of operating image processing system
EP3780534B1 (en) Intelligent interactive all-in-one machine and corresponding method
CN106708763A (zh) 可戴式显示设备与智能主机的数据传输系统
CN102006420A (zh) 可使用外接同步的多种数据输出格式摄像机的设计方法
CN107220208A (zh) 一种图像处理系统及方法
WO2023125657A1 (zh) 图像处理方法、装置和电子设备
KR20210046654A (ko) 화상 처리 장치 및 화상 처리 시스템
KR101316179B1 (ko) 듀얼 카메라
US20180191940A1 (en) Image capturing device and control method thereof
WO2023109263A1 (zh) 缩减模块间走线的方法、信号传输方法及装置、图像传感器
WO2024051674A1 (zh) 图像处理电路和电子设备
CN113132552B (zh) 视频流处理方法及装置
US7496114B2 (en) IP image transmission apparatus
US20130169758A1 (en) Three-dimensional image generating device
CN203632764U (zh) Camera link数据转换器
CN110418079A (zh) 影像讯号转换装置
US9218050B2 (en) Method and device for transmitting/receiving image data at high speed
CN104717531A (zh) 影像日志存储系统及其记录方法
US8325224B2 (en) Head separation camera apparatus
CN1175838A (zh) 从通信接口装置所接收分组数据提取控制信息的方法、系统
CN205680092U (zh) 双口ram共享接口电路
US20230171373A1 (en) Multi-data transmission channel fusion apparatus and electronic device