WO2023109223A1 - 一种低成本预硬化塑料模具钢的冶炼连铸方法 - Google Patents

一种低成本预硬化塑料模具钢的冶炼连铸方法 Download PDF

Info

Publication number
WO2023109223A1
WO2023109223A1 PCT/CN2022/119338 CN2022119338W WO2023109223A1 WO 2023109223 A1 WO2023109223 A1 WO 2023109223A1 CN 2022119338 W CN2022119338 W CN 2022119338W WO 2023109223 A1 WO2023109223 A1 WO 2023109223A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
smelting
molten steel
continuous casting
low
Prior art date
Application number
PCT/CN2022/119338
Other languages
English (en)
French (fr)
Inventor
鲍德志
聂文金
成家辉
王志福
冯红伟
Original Assignee
江苏沙钢集团有限公司
张家港宏昌钢板有限公司
江苏省沙钢钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏沙钢集团有限公司, 张家港宏昌钢板有限公司, 江苏省沙钢钢铁研究院有限公司 filed Critical 江苏沙钢集团有限公司
Publication of WO2023109223A1 publication Critical patent/WO2023109223A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the invention relates to the field of smelting, in particular to a smelting and continuous casting method for low-cost pre-hardened plastic mold steel.
  • Pre-hardened plastic mold steel has been heat-treated before processing and use. Under the condition of hardness of 30-40HRC, it can be directly processed and delivered for use, such as turning, drilling, milling, finishing, etc., avoiding the influence of heat treatment deformation and ensuring mold manufacturing
  • the precision; this type of steel must have high hardness, wear resistance and impact toughness, as well as uniform structure, and reduce processing accuracy defects caused by inclusions, segregation, and loose shrinkage cavities. Therefore, the composition design needs to adopt high-alloy components such as high manganese, high chromium, and high molybdenum, and develop clean steel smelting and continuous pouring and rolling manufacturing technologies for defect-free billets to improve the hit rate of billets and reduce manufacturing costs.
  • the present invention provides a smelting method that can increase the yield of pre-hardened plastic mold steel to more than 97.0%.
  • the specific scheme is as follows:
  • a method for smelting and continuous casting of low-cost pre-hardened plastic mold steel comprises the following specific steps:
  • Step 1 converter molten steel smelting
  • Step 2 using a ladle refining furnace to refine the molten steel
  • Step 3 using the molten steel vacuum circulation degassing method to degas the molten steel
  • Step 4 performing continuous pouring of the molten steel to obtain a slab
  • the tundish uses alkaline covering agent and high-carbon steel mold slag, the tonnage of the tundish is not less than 20 tons, the superheat is controlled at 20 ⁇ 7°C, and the continuous pouring is timely under dynamic light pressure.
  • the length of the continuous pouring head billet is not more than 6500mm; the superheat of molten steel pouring is controlled at 20 ⁇ 7°C during continuous pouring production, the casting speed of the billet is 0.65 ⁇ 0.05m/min, and the method of quick-change submerged nozzle is adopted, and the molten steel is continuously poured Replace the submerged nozzle at the 10th to 12th furnace.
  • the superheat of molten steel is controlled at 24 ⁇ 3°C.
  • the continuous pouring time of molten steel is synchronized with the service life of the tundish and is ⁇ 840 minutes.
  • the total number of pouring furnaces is within 12 to 17 furnaces. within range.
  • ferromolybdenum is added into the converter along with the steel scrap in an amount of 1.0Kg/t; the end point of the converter is controlled to be 0.12wt% ⁇ C ⁇ 0.06wt%, and the tapping temperature is ⁇ 1620°C.
  • the alloy composition of the ladle is adjusted in the LF ladle refining furnace, and the Cr content is adjusted.
  • the amount of high-carbon ferrochromium alloy is 30.0Kg/t; in the step 3, the net circulation time of the molten steel whose vacuum degree is controlled below 1mbar is 10-15min, and the hydrogen content is below 2ppm.
  • step 3 after the degassing process is completed, it is necessary to feed the silk and softly stir for impurity removal treatment, feed the calcium wire 100-190 meters, and the feeding speed is 4-6 m/s; after feeding the calcium wire, do not Less than 8 minutes soft mix time.
  • the section thickness of the slab is 300-370 mm.
  • the total number of pouring furnaces in step 4 is 17 furnaces.
  • the present invention has the following advantages:
  • the replacement nozzle operation is adopted to replace the existing single submerged nozzle production process so that the number of furnaces that can be cast continuously can exceed the limit of 12 furnaces in the prior art. Due to the increase in the number of continuous pouring furnaces, the remaining steel in the tundish The production cost per ton of steel is reduced, and the production cost per ton of steel is reduced, and because more than 17 furnaces need to be replaced with new tundishes, the cost increases. Therefore, the present invention converts continuous pouring The number of furnaces controlled at 12 to 17 furnaces has the greatest cost performance.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the composition of pre-hardened plastic mold steel is: C ⁇ 0.50%, Si ⁇ 0.30%, Mn ⁇ 1.50%, Cr ⁇ 2.0%, Ni ⁇ 0.50%, Cu ⁇ 0.50%, Mo ⁇ 0.50%, P ⁇ 0.020%, S ⁇ 0.005%, Al ⁇ 0.035%, Ca ⁇ 0.0002%, and the rest are iron and unavoidable impurity elements.
  • the smelting and continuous pouring method of pre-hardened plastic mold steel is as follows.
  • Step 1 converter molten steel smelting
  • Step 2 using a ladle refining furnace to refine the molten steel
  • Step 3 using the molten steel vacuum circulation degassing method to degas the molten steel
  • Step 4 performing continuous pouring on the molten steel to obtain a slab.
  • Step 1 Add 15% scrap steel, 85% blast furnace hot metal, and ferromolybdenum into the converter along with the scrap steel at a rate of 1.0Kg/t. Pure oxygen blowing is used. During the process, lime and lightly burned dolomite are added to form slag, and the basicity of the slag is controlled at 4.0. MgO% is controlled at 0.06-0.12%, and the temperature of molten steel composition at the end point is controlled as follows:
  • alloy and slag are added according to "silicon-manganese (10.0Kg/t), medium-carbon ferromanganese (6.5Kg/t), aluminum (1.0Kg/t), lime (3.0Kg/t)". All alloys and slag are added 1 minute before the end of tapping, and the molten steel smelting scheme of the present invention controls the basicity of the slag and the temperature of the tapping molten steel.
  • Step 2 after the converter is tapped, the ladle enters the LF process to continue alloying and adjust the Cr content.
  • the temperature of the molten steel is controlled at 1580°C. Since the temperature of the tundish of the first furnace of continuous pouring is low and absorbs more heat, the temperature of the molten steel of the first furnace of continuous pouring needs to be increased by 10°C as a tundish To supplement heat absorption, carbonized rice husk is added to the steel ladle for heat preservation.
  • Step 3 after completing the LF treatment, the ladle enters the RH process for vacuum degassing treatment.
  • 1Molten steel is under a low vacuum of less than 1mbar, the net cycle time is 10min, and the hydrogen content is less than 2ppm;
  • feed wire and soft stirring After the vacuum treatment, feed wire and soft stirring, feed calcium wire 100, and feed speed 4 m/s; after feeding calcium wire, ensure that the soft stirring time is not less than 8 minutes to promote the floating of inclusions in molten steel.
  • Step 4 the continuous pouring of molten steel adopts ladle long nozzle and argon seal, tundish covering agent, and submerged nozzle for full protection pouring.
  • Submerged nozzle mechanism, tundish upper nozzle, argon seal, argon gas flow no more than 3L/min.
  • the superheating degree of the tundish is 20 ⁇ 7°C
  • the casting speed of the slab is 0.60m/min
  • the section thickness of the slab is 300mm
  • the production specification of the slab is 320mm ⁇ 2265mm ⁇ L.
  • Tundish liquid level control the tonnage of continuous pouring is greater than 20t, the tonnage of the tundish is not less than 3t during normal pouring, and the tonnage of the tundish is not less than 28t during continuous pouring.
  • the immersion depth of the submerged nozzle 12mm, and the fluctuation range of the crystallizer liquid level is controlled within ⁇ 2mm.
  • Table 2 shows the present invention has a significant cost reduction compared with the original number of furnaces when the number of continuous pouring furnaces is 12 to 17. If the number of furnaces exceeds 17, the cost will increase due to the need to replace a new tundish.
  • Table 3 shows the chemical composition data in the pouring furnace in each pouring batch. It can be seen that the products of the above scheme have reached the content standard of pre-hardened plastic mold steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明涉及冶炼领域,公开了一种低成本预硬化塑料模具钢的冶炼连铸方法,包括步骤1,转炉钢水冶炼;步骤2,钢包精炼;步骤3,脱气处理;步骤4,连铸获得铸坯,本发明在步骤4中的浇注总炉数在12~17炉钢的范围内,本由于连浇炉数的提高,中间包余钢量、切头尾废钢损失、各项耐材吨钢消耗等均有下降,吨钢生产成本降低,并且本发明的步骤4中快换水口延长连浇炉数及头坯(异常坯)长度控制,可将异常坯料影响成品率4.6%降低至2.9%。

Description

一种低成本预硬化塑料模具钢的冶炼连铸方法 技术领域
本发明涉及冶炼领域,具体的是一种低成本预硬化塑料模具钢的冶炼连铸方法。
背景技术
预硬化塑料模具钢是加工使用之前已进行了热处理,在硬度为30-40HRC条件下可直接进行成型车削、钻孔、铣削、精锉等加工交付使用,规避了热处理变形影响,保证了模具制造的精度;该类钢种须具备较高的硬度、耐磨性及抗冲击韧性,以及组织均匀性,减少夹杂、偏析、疏松缩孔等导致的加工精度缺陷。因此,成分设计需要采用高锰、高铬、高钼等高合金成分,并开发出洁净钢冶炼及无缺陷坯材连续浇筑轧制制造技术,提高坯材命中率,降低制造成本。
然而,采用连续浇筑生产的铸坯,连续浇筑时头坯扇形段无轻压下内部疏松、偏析无法改善,以及连续浇筑结束前因钢水静压力降低铸坯内部易产生缩孔,使得轧后钢板探伤合格率低;同时,由于结晶器液面波动大卷渣,坯料表面易产生裂纹、夹渣等缺陷,遗传至钢板导致判次。上述原因导致的异常坯料影响成品率4.6%,导致塑料模具钢制造成本高。
发明内容
针对上述缺陷,本发明提供了一种可将预硬化塑料模具钢生产的成品率提高到97.0%以上的冶炼方法,具体方案如下:
一种低成本预硬化塑料模具钢的冶炼连铸方法包括以下具体步骤:
步骤1,转炉钢水冶炼;
步骤2,利用钢包精炼炉对所述钢水进行精炼;
步骤3,采用钢液真空循环脱气法对所述钢水进行脱气处理;
步骤4,对所述钢水进行连续浇筑获得铸坯,
所述步骤4中,连续浇筑生产时中间包使用碱性覆盖剂,使用高碳钢保护渣,中间包吨位不低于20吨,过热度控制在20±7℃,连续浇筑动态轻压下及时响应,连续浇筑头坯长度不大于6500mm;连续浇筑生产时钢水浇注过热度控制在20±7℃,铸坯拉速为0.65±0.05m/min,采用快换浸入式水口的方式,钢水连 续浇注到10~12炉时更换浸入式水口,更换期间的钢水过热度控制在24±3℃,钢水连续浇注的时间与中间包使用寿命同步并≥840分钟,浇注总炉数在12~17炉的范围内。
进一步,所述步骤1中,钼铁随废钢加入转炉内,加入量为1.0Kg/t;转炉终点控制0.12wt%≥C≥0.06wt%,出钢温度≥1620℃。
进一步,所述钢包精炼炉内在精炼结束前5分钟不加入任何原辅材料。
进一步,所述步骤2中,钢包在LF钢包精炼炉中进行合金成分调整,调整Cr含量,加入的合金材料为高碳铬铁合金,高碳铬铁合金的用量为30.0Kg/t;采用铝粒对钢液、渣面进行扩散脱氧,造渣并控制炉渣的CaO/SiO2=5.0±0.5,CaO/Al2O3=1.8±0.2。
进一步,所述步骤2中,高碳铬铁合金的用量为30.0Kg/t,所述步骤3中,真空度控制在1mbar以下的钢水净循环时间在10~15min,氢含量2ppm以下。
进一步,所述步骤3中,在脱气处理结束后需喂丝及软搅拌做除杂处理,喂入钙线100~190米,喂入速度4~6米/秒;喂钙线后,不小于8分钟软搅拌时间。
进一步,步骤4中,铸坯断面厚度300-370mm。
进一步,步骤4中的浇注总炉数为17炉。
与现有技术相比较,本发明的优点如下:
1、本发明中采用更换水口操作代替现有的单支浸入式水口生产工艺使可连续浇筑的炉数可超过原有技术12炉的限制,由于连浇炉数的提高,中间包的余钢量、切头尾的废钢损失、各项耐材的吨钢消耗等均有下降,吨钢生产成本降低,又因为超过17炉需要更换新的中间包造成了成本提高,因此本发明把连续浇筑的炉数控制在12~17炉具有最大的性价比。
2、通过快换水口延长连浇炉数及头坯(异常坯)长度控制,可将异常坯料影响成品率4.6%降低至2.9%。
3、采用窄区间低过热度控制保证铸坯内部组织及成分均匀,在连续浇筑坯厚度320mm前提下,可保证厚度165mm轧材内部质量满足GB/T2970的Ⅰ级要求,厚度210mm轧材内部质量满足GB/T2970的Ⅱ级要求,实现低压缩比条件下成品钢板内部质量最优控制。
4、采用硅锰、Al复合脱氧,低Al含量控制及微量Ca处理工艺,RH真空脱气及软搅拌、高碱度精炼渣及碱性连续浇筑覆盖剂/保护渣等技术去除夹杂物,保证了生产的塑料模具钢铸坯质量稳定。
具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例
预硬化塑料模具钢的成分按质量百分含量为:C≤0.50%,Si≤0.30%,Mn≤1.50%,Cr≤2.0%,Ni≤0.50%,Cu≤0.50%,Mo≤0.50%,P≤0.020%,S≤0.005%,Al≤0.035%,Ca≤0.0002%,其余为铁及不可避免的杂质元素。依据合金成分设计,预硬化塑料模具钢的冶炼连续浇筑方法如下。
步骤1,转炉钢水冶炼;
步骤2,利用钢包精炼炉对所述钢水进行精炼;
步骤3,采用钢液真空循环脱气法对所述钢水进行脱气处理;
步骤4,对所述钢水进行连续浇筑获得铸坯。
步骤1,在转炉中加入15%的废钢,85%的高炉铁水,钼铁随废钢加入转炉内,加入量为1.0Kg/t,采用纯氧吹炼。过程中加入石灰、轻烧白云石造渣,炉渣碱 度控制在4.0。MgO%控制在0.06~0.12%,终点钢水成分温度控制如下:
表格1转炉终点成分控制量以及出钢温度表格
Figure PCTCN2022119338-appb-000001
转炉出钢30吨时按“硅锰(10.0Kg/t),中碳锰铁(6.5Kg/t),铝(1.0Kg/t),石灰(3.0Kg/t)”加入合金及渣料。出钢结束前1分钟所有合金及渣料加完,本发明的钢水冶炼方案控制炉渣碱度以及出炉的出钢水温度。
步骤2,转炉出钢完毕后的钢包进入LF工序,继续进行合金化并调整Cr含量。
①钢包就位后接通并开启底吹氩气,加入高碳铬铁合金30.0Kg/t,钢水成分须搅拌均匀。
②使用石墨电极通电升温,通电期间加入石灰、萤石调整炉渣,造渣并控制炉渣的CaO/SiO2=5.0,CaO/Al2O3=1.8,并采用电石对钢液渣面进行扩散脱氧,渣中TFe≤1.0%。
③为保证成分均匀,精炼结束前5分钟不加入任何原辅材料。
④钢包吊离LF工位前,钢水温度控制在1580℃,因开始连续浇筑第1炉中间包温度低,吸热较多,因此连续浇筑的第1炉钢水温度需要再增加10℃作为中间包吸热的补充,钢包内加入碳化稻壳保温。
步骤3,完成LF处理后钢包进入RH工序进行真空脱气处理。
①钢水在小于1mbar的低真空度下,净循环时间在10min,氢含量2ppm以下;
②真空处理结束后喂丝及软搅拌,喂入钙线100,喂入速度4米/秒;喂钙线后,保证不小于8分钟软搅拌时间,促进钢水中夹杂物上浮。
步骤4,钢水连续浇筑采用大包长水口及氩封、中间包覆盖剂、浸入式水口进行全保护浇注。浸入式水口机构、中间包上水口,氩封氩气流量不超过3L/min。中间包过热度20±7℃,铸坯拉速为0.60m/min,铸坯断面厚度300mm,,铸坯生产规格320mm×2265mm×L。
①中间包钢液液位控制:连续浇筑吨位大于20t,正常浇注时中间包吨位不小于3t,连浇换大包时中间包吨位不小于28t。
②使用高碳碱性结晶器保护渣,保护渣液渣层厚度控制范围9mm。
③浸入式水口浸入深度:12mm,结晶器液面波动范围控制在±2mm内。
④使用低碳碱性覆盖剂加碳化稻壳双层保温结构。
⑤连浇炉数控制:当连浇至第10~12炉时,进行快换浸入式水口操作,此时把浇注过热度提高并精确控制在24±3℃,以减少水口面板凝结冷钢影响氩封效果。本技术方案可将钢水连续浇注的时间与中间包使用寿命同步并≥840分钟,浇注炉数由12炉提高至17炉/中间包。
⑥铸坯头尾异常坯的控制:根据铸坯连续浇筑机的轻压下位置,连续浇筑拉速变化情况以及连续浇筑中间包吨位变化情况,将连续浇筑头坯长度切割为6500mm。
表2降低成本对比列表(wt%)
Figure PCTCN2022119338-appb-000002
表格3产品化学成分表单(wt%)
炉号 C Si Mn P S Cr Al Ca Mo
批次1 0.39 0.24 1.25 0.014 0.004 1.58 0.022 0.0012 0.16
批次2 0.39 0.25 1.28 0.016 0.004 1.61 0.021 0.0007 0.17
批次3 0.40 0.25 1.31 0.017 0.003 1.65 0.022 0.0008 0.17
批次4 0.38 0.26 1.29 0.017 0.003 1.60 0.018 0.0008 0.18
批次5 0.38 0.24 1.26 0.014 0.003 1.58 0.021 0.0009 0.17
批次6 0.38 0.26 1.30 0.017 0.003 1.58 0.019 0.0011 0.16
通过表格2的对比可看出,本发明在连续浇筑炉数12~17率具有相较于原有炉数具有明显的成本降低,如果超出是17炉因需要更换新的中间包造成成本提升。表格3为各浇筑批次中浇筑炉中的化学成分数据,可知上述方案的产品达到了预硬化塑料模具钢含量标准。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

  1. 一种低成本预硬化塑料模具钢的冶炼连铸方法包括以下具体步骤:
    步骤1,转炉钢水冶炼;
    步骤2,利用钢包精炼炉对所述钢水进行精炼;
    步骤3,采用钢液真空循环脱气法对所述钢水进行脱气处理;
    步骤4,对所述钢水进行连续浇筑获得铸坯,
    其特征在于,
    所述步骤4中,连续浇筑生产时中间包使用碱性覆盖剂,使用高碳钢保护渣,中间包吨位不低于20吨,过热度控制在20±7℃,连续浇筑动态轻压下及时响应,连续浇筑头坯长度不大于6500mm;连续浇筑生产时钢水浇注过热度控制在20±7℃,铸坯拉速为0.65±0.05m/min,采用快换浸入式水口的方式,钢水连续浇注到10~12炉时更换浸入式水口,更换期间的钢水过热度控制在24±3℃,钢水连续浇注的时间与中间包使用寿命同步并≥840分钟,浇注总炉数在12~17炉的范围内。
  2. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,所述步骤1中,钼铁随废钢加入转炉内,加入量为1.0Kg/t;转炉终点控制0.12wt%≥C≥0.06wt%,出钢温度≥1620℃。
  3. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,所述钢包精炼炉内在精炼结束前不加入原辅材料。
  4. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,所述步骤2中,钢包在LF钢包精炼炉中进行合金成分调整,调整Cr含量,加入的合金材料为高碳铬铁合金,高碳铬铁合金的用量为30.0Kg/t;采用铝粒对钢液、渣面进行扩散脱氧,造渣并控制炉渣的CaO/SiO2=5.0±0.5,CaO/Al2O3=1.8±0.2。
  5. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,所述步骤3中,真空度控制在1mbar以下的钢水净循环时间在10~15min,氢含量2ppm以下。
  6. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,所述步骤3中,在脱气处理结束后需喂丝及软搅拌做除杂处理,喂入钙线100~190米,喂入速度4~6米/秒;喂钙线后,不小于8分钟软搅拌时间。
  7. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,步骤4中,铸坯断面厚度300-370mm。
  8. 根据权利要求1所述的低成本预硬化塑料模具钢的冶炼连铸方法,其特征在于,步骤4中的浇注总炉数为17炉。
PCT/CN2022/119338 2021-12-15 2022-09-16 一种低成本预硬化塑料模具钢的冶炼连铸方法 WO2023109223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111538407.6A CN114438395A (zh) 2021-12-15 2021-12-15 一种低成本预硬化塑料模具钢的冶炼连铸方法
CN202111538407.6 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109223A1 true WO2023109223A1 (zh) 2023-06-22

Family

ID=81363098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119338 WO2023109223A1 (zh) 2021-12-15 2022-09-16 一种低成本预硬化塑料模具钢的冶炼连铸方法

Country Status (2)

Country Link
CN (1) CN114438395A (zh)
WO (1) WO2023109223A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438395A (zh) * 2021-12-15 2022-05-06 江苏沙钢集团有限公司 一种低成本预硬化塑料模具钢的冶炼连铸方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451349A (zh) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 一种防止超低碳铝脱氧钢水浇铸过程水口堵塞的控制方法
CN104046921A (zh) * 2014-04-28 2014-09-17 如皋市宏茂重型锻压有限公司 超大截面贝氏体预硬化塑胶模具钢及其制备方法
CN109898019A (zh) * 2019-02-26 2019-06-18 唐山志威科技有限公司 大截面、高硬度zw872模具钢的制备工艺
CN114438395A (zh) * 2021-12-15 2022-05-06 江苏沙钢集团有限公司 一种低成本预硬化塑料模具钢的冶炼连铸方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243760A1 (en) * 2005-04-27 2006-11-02 Mcintosh James L Submerged entry nozzle
US7806164B2 (en) * 2007-04-26 2010-10-05 Nucor Corporation Method and system for tracking and positioning continuous cast slabs
CN110343940A (zh) * 2018-11-28 2019-10-18 张家港宏昌钢板有限公司 高耐蚀耐候钢的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451349A (zh) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 一种防止超低碳铝脱氧钢水浇铸过程水口堵塞的控制方法
CN104046921A (zh) * 2014-04-28 2014-09-17 如皋市宏茂重型锻压有限公司 超大截面贝氏体预硬化塑胶模具钢及其制备方法
CN109898019A (zh) * 2019-02-26 2019-06-18 唐山志威科技有限公司 大截面、高硬度zw872模具钢的制备工艺
CN114438395A (zh) * 2021-12-15 2022-05-06 江苏沙钢集团有限公司 一种低成本预硬化塑料模具钢的冶炼连铸方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI GUOHONG, GUO CHUXIONG: "Technique in Replacing Sized Nozzle of Tundish Without Cutting-Off Applied", ENGINEERING AND TECHNOLOGICAL RESEARCH, vol. 162, no. 2, 30 April 2006 (2006-04-30), pages 29 - 31, XP093070789, ISSN: 2096-2789, DOI: 10.19537/j.cnki.2096-2789.2006.02.011 *

Also Published As

Publication number Publication date
CN114438395A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN104988434B (zh) 一种含硫塑料模具钢厚板的生产工艺
CN111455125B (zh) 提高高铝钢连浇炉次的生产方法
CN102816979A (zh) 一种低碳硫系易切削钢连铸坯的生产方法
CN112080700B (zh) 一种高硫低铝易切削钢连铸板坯及其生产方法
CN110408834B (zh) 提高钢锭成材低Si临氢Cr-Mo钢探伤合格率的方法
CN105537549B (zh) ‑100℃低温无缝钢管钢连铸圆坯的生产方法
CN109777918A (zh) 一种细化高碳铬轴承钢夹杂物颗粒的炉外精炼生产方法
CN114875198B (zh) 一种采用稀土氧化物降低u75v精炼渣中氧化铝活度的方法
CN108296463B (zh) 控制连铸中间包过热度的方法
CN106834612A (zh) 一种超低硅包晶钢的生产方法
WO2023109223A1 (zh) 一种低成本预硬化塑料模具钢的冶炼连铸方法
CN112795834B (zh) 一种中碳中硅高铝双相钢连铸坯的生产方法
CN112442631A (zh) 一种含钛超低碳钢冷轧钢质缺陷的控制方法
CN111363972A (zh) 耐候钢q355nhd的生产方法
CN113817968B (zh) 一种中碳高铝钢的方坯连铸生产方法
CN115338383B (zh) 一种中碳MnB钢大方坯内部角部裂纹的控制方法
CN105568178A (zh) 汽车变速器渗碳淬火齿轴用热轧棒材制造新工艺
CN101775458B (zh) 控制转炉大修补后第一炉钢液中外来夹杂物的方法
CN111349740A (zh) 可以降低h08a钢种连铸坯内部气泡的控制方法
CN114836593A (zh) 一种低碳含铝冷镦钢冶炼工艺
CN114054692A (zh) 一种超高拉速hpb300钢生产控制方法
CN113046632A (zh) 一种低铝低钛大型86CrMoV7工作辊钢及生产方法
CN112795835A (zh) 有效提升开坯成材Cr-Mo钢生产效率的方法
CN113718081A (zh) 一种提高含硫齿轮钢连拉炉数的方法
CN114959183B (zh) 一种基于铝脱氧Cr5支承辊钢的精炼渣系及其应用工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905976

Country of ref document: EP

Kind code of ref document: A1