WO2023108915A1 - 轮毂电机及电动车 - Google Patents

轮毂电机及电动车 Download PDF

Info

Publication number
WO2023108915A1
WO2023108915A1 PCT/CN2022/079093 CN2022079093W WO2023108915A1 WO 2023108915 A1 WO2023108915 A1 WO 2023108915A1 CN 2022079093 W CN2022079093 W CN 2022079093W WO 2023108915 A1 WO2023108915 A1 WO 2023108915A1
Authority
WO
WIPO (PCT)
Prior art keywords
retaining ring
assembly
motor according
central shaft
wheel motor
Prior art date
Application number
PCT/CN2022/079093
Other languages
English (en)
French (fr)
Inventor
左亚军
刘俊峰
刘海量
王洪晓
Original Assignee
广东威灵电机制造有限公司
威灵(芜湖)电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123200743.8U external-priority patent/CN216672717U/zh
Priority claimed from CN202111547618.6A external-priority patent/CN114221469A/zh
Application filed by 广东威灵电机制造有限公司, 威灵(芜湖)电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2023108915A1 publication Critical patent/WO2023108915A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present disclosure relates to the technical field of motors, in particular to a hub motor and an electric vehicle.
  • the in-wheel motor is a direct drive motor.
  • the windings are all made of copper conductors, and the permanent magnets are all rare earth permanent magnet materials.
  • the cost of raw materials for copper and rare earth permanent magnets is high, especially Rare earth permanent magnets are rare metals, and the cost of raw materials is even more expensive. Therefore, the use of copper windings and rare earth permanent magnets in hub motors will result in high costs and waste rare metal resources.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. For this reason, the present disclosure proposes an in-wheel motor, the stator assembly has a large winding slot fullness ratio, which effectively improves power density and efficiency.
  • the present disclosure also proposes an electric vehicle having the above in-wheel motor.
  • the hub motor includes a central shaft, a housing assembly connected to the central shaft, a stator assembly, a rotor assembly, and a gear assembly, and the housing assembly and the rotor assembly are both supported by bearings
  • the stator assembly includes a stator core and a winding
  • the stator core has a certain thickness and forms a closed yoke
  • the outer periphery of the yoke is provided with a plurality of teeth
  • the winding is wound Located on the teeth, the windings use aluminum wires
  • the rotor assembly has a permanent magnet, and the material of the permanent magnet is ferrite; the rotor assembly is connected to the housing assembly through the gear assembly .
  • the in-wheel motor has at least the following beneficial effects: the rotor assembly of the in-wheel motor drives the housing assembly to rotate through the gear assembly, and the housing assembly is integrated with the wheel of the electric vehicle to realize the driving of the electric vehicle.
  • the stator core includes a yoke and multiple teeth on the outer periphery of the yoke.
  • the winding uses aluminum wires instead of copper conductors.
  • the permanent magnets of the rotor assembly use ferrite materials instead of expensive rare earth permanent magnet materials, which helps to reduce the hub The manufacturing cost of the motor.
  • the teeth are configured as straight teeth.
  • the tooth part is a toothless shoe structure
  • the stator core is connected with a limit frame
  • the limit frame is used to limit the radial direction of the winding relative to the tooth part. Location.
  • the limiting frame includes a mounting portion and a limiting portion, the mounting portion is connected to the stator assembly, the limiting portion corresponds to the tooth portion one by one, and the The limiting part includes two fork rods, the distance between the two fork rods is adapted to the width of the tooth part, and the fork rods abut against the outer ends of the windings.
  • the housing assembly has a main housing, the rotor assembly is provided with a first stop ring facing the main housing, and the main housing is provided with a ring facing the rotor.
  • a grease sealing chamber is formed between the rotor assembly and the main housing, and the gear assembly is located in the grease sealing chamber.
  • the first retaining rings and the second retaining rings are at least partially staggered along the axial direction of the central shaft.
  • the staggered length of the first retaining ring and the second retaining ring is L, which satisfies L ⁇ 0.1 mm.
  • the first retaining ring is flush with the second retaining ring along the axial direction of the central shaft.
  • the second retaining ring is located between the first retaining ring and the central shaft along the radial direction of the central shaft.
  • the diameter of the inner wall of the first retaining ring is D1
  • the diameter of the outer wall of the second retaining ring is D2, satisfying 1mm ⁇ D1-D2 ⁇ 4mm.
  • the first retaining ring is located between the second retaining ring and the central shaft along the radial direction of the central shaft.
  • the end surface of the first retaining ring facing the main housing is provided with a receiving groove, and part of the second retaining ring is located in the receiving groove.
  • the rotor assembly includes a rotor overmolding part, and the rotor overmolding part is provided with a plurality of cooling fan blades uniformly distributed in the circumferential direction, and the cooling fan blades face the stator assembly.
  • the rotor overmolding part is provided with a plurality of flow guide holes uniformly distributed in the circumferential direction, and the flow guide holes are located between two adjacent cooling fan blades.
  • the first retaining ring is disposed on the rotor overmolding part, and the plurality of guide holes are arranged outside the first retaining ring.
  • the positions of the windings correspond to the guide holes.
  • the aluminum wire has a non-circular cross section.
  • the cross section of the aluminum wire is square.
  • the electric vehicle according to the embodiment of the second aspect of the present disclosure includes the in-wheel motor described in the embodiment of the first aspect.
  • FIG. 1 is a cross-sectional view of an in-wheel motor according to some embodiments of the present disclosure
  • Fig. 2 is a schematic structural view of a stator assembly in some embodiments of the present disclosure
  • Fig. 3 is a schematic structural diagram of a stator core and a winding in some embodiments of the present disclosure
  • Fig. 4 is a schematic structural diagram of a spacer in some embodiments of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a stator core in some embodiments of the present disclosure.
  • Fig. 6 is an exploded schematic diagram of an in-wheel motor in some embodiments of the present disclosure.
  • Fig. 7 is the partially enlarged view of place A in Fig. 1;
  • Fig. 8 is a partial view 1 of cooperation between the first retaining ring and the second retaining ring in other embodiments of the present disclosure
  • Fig. 9 is a second partial view of the cooperation between the first retaining ring and the second retaining ring in other embodiments of the present disclosure.
  • Fig. 10 is a first structural schematic diagram of a rotor assembly in some embodiments of the present disclosure.
  • Fig. 11 is a second structural schematic diagram of the rotor assembly in some embodiments of the present disclosure.
  • Figure 12 is an exploded schematic view of a rotor assembly in some embodiments of the present disclosure.
  • Housing assembly 200 grease sealing cavity 201, main housing 210, second retaining ring 211, auxiliary housing 220, rim 230;
  • Stator assembly 300 Winding 310, stator core 320, tooth portion 321, yoke portion 322, limit frame 330, fork rod 331;
  • Rotor assembly 400 rotor overmolded part 410, rotor overmolded part 410, first retaining ring 411, accommodating groove 4111, heat dissipation blade 412, inner sleeve 413, diversion hole 414, bearing seat 420, yoke 430, permanent magnet 440;
  • Gear assembly 500 sun gear 510 , planetary gear 520 , planet carrier 530 , and outer ring gear 540 .
  • orientation descriptions such as the orientation or positional relationship indicated by up, down, front, back, left, right, etc., are based on the orientation or positional relationship shown in the drawings, and only In order to facilitate the description of the present disclosure and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and thus should not be construed as limiting the present disclosure.
  • in-wheel motors As power components.
  • the outer rotor and rim of the in-wheel motors are integrated into one structure, while in-wheel motors are designed to integrate the power system, transmission system and braking system into one, and some in-wheel motors have gear reduction.
  • the high-speed rotation of the gear is easy to throw off the grease, resulting in insufficient grease on the surface of the gear.
  • the gear reducer has a high risk of gear wear and failure due to poor lubrication. As a result, the reliability of the hub motor with the gear reducer is poor, which affects the driving stability of the electric vehicle.
  • the embodiment of the first aspect of the present disclosure proposes an in-wheel motor applied to an electric vehicle.
  • the in-wheel motor includes a central shaft 100 , a housing assembly 200 connected to the central shaft 100 , a stator assembly 300 , The rotor assembly 400 and the gear assembly 500, the center shaft 100 is connected to the frame of the electric vehicle and serves as an installation basis
  • the housing assembly 200 includes a main housing 210, a sub housing 220 and a rim 230, the main housing 210 and the sub housing 220 Separated at both ends of the rim 230, the main housing 210 and the auxiliary housing 220 are fixedly connected to the two ends of the rim 230 by screws, three bearings 110 are installed on the central shaft 100, the main housing 210, the auxiliary housing 220 and the rotor
  • Each assembly 400 is connected to a bearing 110 and can rotate relative to the central shaft 100 .
  • the stator assembly 300 includes a winding 310, a stator core 320 and a limit frame 330.
  • the stator core 320 is generally cut from a silicon steel sheet, and the cut silicon steel sheet is processed into a coiled
  • the material cutting method in advance. If the tooth part 321 of the stator core 320 is provided with tooth shoes, when cutting the stator core, it must The toothed shoe is used to design the material cutting method, but no matter how optimized it is, in the case of the toothed shoe, the material utilization rate of the silicon steel sheet can only reach 70% at most, and it is difficult to further improve it.
  • the stator core 320 in the embodiment of the present disclosure adopts the tooth portion 321 without a tooth shoe, which optimizes the material cutting method, thereby improving the material utilization rate of the silicon steel sheet.
  • the tooth portion 321 is set in a straight tooth shape, the winding 310 does not need to be wound on the tooth portion 321, and the winding can be completed externally with a tooling, the operation space is large, and the full rate of the winding slot can be effectively improved.
  • the winding 310 adopts an aluminum wire with a non-circular cross-section, such as an aluminum wire with a square cross-section, and the tooth portion 321 adopts a straight-toothed structure.
  • the aluminum wires are closely attached to the outer wall of the tooth part 321, so that the arrangement of the aluminum wires is more compact, thus improving the full rate of the winding slot of the stator assembly 300, while the volume of the stator assembly 300 remains unchanged, the lifting
  • the power density and efficiency of the in-wheel motor are improved, and the in-wheel motor is used in electric vehicles, which helps to improve the battery life of electric vehicles.
  • the winding 310 uses aluminum wires instead of copper conductors, which helps to reduce the manufacturing cost of the hub motor.
  • the limiting frame 330 includes a mounting portion and a limiting portion, the mounting portion is used for fixedly connecting the stator assembly 300 , the limiting portion is used to limit the winding 310 in the radial direction, the limiting portion has the same number as the winding 310 , and the position In one-to-one correspondence, the winding 310 is limited by the limiting part instead of the tooth shoe.
  • the installation part and the stator assembly 300 may be fixedly connected or detachably connected.
  • the fixed connection can be fixed by welding or riveting; the detachable connection can be connected by screw or buckle structure and so on.
  • the stator core 320 includes a yoke 322 and a plurality of teeth 321 without tooth shoes, the stator core 320 has a certain thickness and forms a closed yoke 322, and the plurality of teeth 321 are evenly distributed along the circumference of the yoke 322 , the tooth portion 321 adopts straight teeth, which is convenient for loading into the winding 310 , and the tooth portion 321 without a tooth shoe means that the sidewall of the tooth portion 321 has no outwardly extending structure to define the winding 310 . Therefore, as shown in FIG.
  • each limit portion of the limit frame 330 has two fork rods 331 arranged in parallel, and the distance between the two fork rods 331 is adapted to the width of the tooth portion 321, so that the two fork rods 331
  • the space between the fork rods 331 can accommodate the tooth portion 321, the fork rod 331 abuts against the outer end surface of the winding 310, and two force application points act on the winding 310 to reliably limit the winding 200 and fix it in the radial direction winding 310 .
  • a connecting rod (not shown in the figure) can also be arranged between the two fork rods 331, and the connecting rod is vertically arranged with the fork rods 331. After assembly, the connecting rod also abuts against the outer end surface of the winding 310 to help Winding 310 is defined for further reliability.
  • the gear assembly 500 includes a sun gear 510, three planetary gears 520, a planetary carrier 530 and an outer ring gear 540, the sun gear 510 is fixedly connected to the rotor assembly 400, the planetary carrier 530 is fixedly connected to the center shaft 100, and the three A planetary gear 520 is rotatably connected to the planet carrier 530, and the outer ring gear 540 is fixedly connected to the main housing 210.
  • the planetary gear 520 meshes with the sun gear 510 and the outer ring gear 540 at the same time.
  • the rotor assembly 400 drives the sun gear 510 to rotate, and the sun gear 510 drives three planetary wheels 520 to rotate, and the three planetary wheels 520 then drive the outer ring gear 540 and the main housing 210 to rotate.
  • the main housing 210 drives the rim 230 to rotate.
  • the rim 230 belongs to the wheel of the electric vehicle, so the hub motor bracket drives the wheel Rotate to realize the driving of the electric vehicle.
  • the planetary gear 520 is a double gear, and the planetary gear 520 realizes two-stage transmission deceleration, which reduces the speed of the rim 230 and increases the output torque of the hub motor, which is beneficial to the speed-up of the electric vehicle.
  • the gear assembly 500 is located between the rotor assembly 400 and the main casing 210, so the rotor assembly 400 and the main casing 210 cooperate to form a sealing grease cavity 201, the gear assembly 500 is arranged in the sealing grease cavity 201, and the sealing
  • the grease chamber 201 accommodates the gear assembly 500 to prevent the gear assembly 500 from being exposed; Adequate lubrication reduces wear.
  • a first retaining ring 411 is provided on the rotor assembly 400
  • a second retaining ring 211 is provided on the main housing 210
  • the first retaining ring 411 faces the main housing 210
  • the second retaining ring 211 faces the rotor assembly 400
  • the first retaining ring 411 and the second retaining ring 211 form the side wall of the grease sealing chamber 201 to prevent grease leakage.
  • the first retaining ring 411 and the second retaining ring 211 are arranged in a staggered manner, which can Block the grease that is flung away, promote the grease to stay in the grease chamber 201, and ensure that the gear assembly 500 has sufficient lubrication.
  • the first retaining ring 411 and the second retaining ring 211 are close to each other There is no contact, and the independent rotation of the rotor assembly 400 and the main casing 210 is not affected.
  • the stator assembly of the hub motor pushes the rotor assembly 400 to rotate through electromagnetic force
  • the rotor assembly 400 drives the housing assembly 200 to rotate through the gear assembly 500
  • the housing assembly 200 drives the wheel of the electric vehicle to rotate through the rim 230 to realize electric car driving.
  • the gear assembly 500 is located in the grease chamber 201 between the rotor assembly 400 and the main housing 210.
  • Grease is stored in the grease chamber 201, and the grease is coated on the surface of the gear assembly 500 to provide lubrication.
  • the first part of the rotor assembly 400 The retaining ring 411 and the second retaining ring 211 of the main housing 210 are staggered in the axial direction to form a blocking structure, which can prevent the grease from being thrown out of the grease chamber 201, so that the grease stays in the grease chamber 201 to lubricate the gear assembly 500, improve the lubrication effect, avoid reliability problems such as wear and failure of the gear assembly 500 due to insufficient lubrication, improve the operation reliability of the hub motor, and improve the reliability of the electric vehicle.
  • the first retaining ring 411 and the second retaining ring 211 are arranged in a staggered manner, and the staggered length dimension is defined as L, and L is the first retaining ring 411
  • the overlapping length of the second retaining ring 211 is set to L ⁇ 0.1mm.
  • the staggered length dimension L is set at 0.1mm or above to form an effective The blockage prevents grease from leaking from the gap between the first retaining ring 411 and the second retaining ring 211 .
  • the first retaining ring 411 and the second retaining ring 211 may not be staggered, and the two are flush, that is, the end surface of the first retaining ring 411 and the second retaining ring
  • the end faces of the ring 211 are located on the same plane, which can also block the grease that is thrown away, and encourage the grease to stay in the grease chamber 201 to ensure that the gear assembly 500 has sufficient lubrication.
  • the first retaining ring 411 is located outside the second retaining ring 211 , and the second retaining ring 211 is closer to the central shaft 100 .
  • the first retaining ring 411 After the grease is thrown away, it first contacts the second retaining ring 211, and then contacts the first retaining ring 411, and the first retaining ring 411 and the second retaining ring 211 are staggered, which can limit the grease that is thrown away, so that the lubrication Grease stays in the grease sealing chamber 201.
  • the diameter of the inner wall of the first retaining ring 411 is defined as D1
  • the diameter of the outer wall of the second retaining ring 211 is defined as D2.
  • D1 and D2 satisfy (D1-D2)/2 ⁇ 0.5mm, in order to ensure that the first retaining ring 411 and the second retaining ring 211 will not rotate
  • D1 and D2 satisfy (D1-D2)/2 ⁇ 2.0mm in order to provide an effective barrier, which is beneficial to reduce the leakage of lubricating grease from the grease chamber 201.
  • it is set to 1mm ⁇ D1-D2 ⁇ 4mm, the gap between the first retaining ring 411 and the second retaining ring 211 can not only prevent the grease from leaking, but also prevent interference friction.
  • the second retaining ring 211 may also be located outside the first retaining ring 411 , and the first retaining ring 411 is closer to the central shaft 100 .
  • the first retaining ring 411 After the grease is thrown away, it first contacts the first retaining ring 411, and then contacts the second retaining ring 211, and the first retaining ring 411 and the second retaining ring 211 are staggered, which can limit the grease that is thrown off, so that the lubrication Grease stays in the sealing cavity 201.
  • the first retaining ring 411 has two side plates, and a receiving groove 4111 is formed between the two side plates.
  • the receiving groove 4111 is located on the end surface of the first retaining ring 411 facing the main housing 210, because The first retaining ring 411 and the second retaining ring 211 are arranged in a staggered manner, part of the second retaining ring 211 protrudes into the receiving groove 4111, and the first retaining ring 411 and the second retaining ring 211 cooperate to form a double barrier, which can more effectively block Grease flung off.
  • the second retaining ring 211 partially protrudes into the receiving groove 4111, and a continuously curved gap is formed between the first retaining ring 411 and the second retaining ring 211, which is similar to a labyrinth seal structure and helps reduce the chance of grease leakage .
  • the main component of the rotor assembly 400 is the rotor overmolding part 410, the rotor overmolding part 410 integrally wraps the yoke 430 and the permanent magnet 440 during the injection molding process, and the bearing seat 420 It is also an integrally formed structure with the rotor overmolding part 410.
  • the bearing seat 420 is located at the center of the rotor overmolding part 410.
  • the inner wall of the bearing seat 420 is shaped like a bearing chamber to match the bearing 110.
  • the outer wall of the bearing seat 420 has A plurality of bosses distributed in the circumferential direction, after injection molding, the bosses are embedded in the rotor overmolding part 410, which improves the structural strength and facilitates the transmission of torque.
  • the rotor overmolding part 410 is an injection molded part
  • the first retaining ring 411 is arranged on the rotor overmolding part 410, which is convenient for manufacturing and lowers the cost.
  • the rotor assembly 400 adopts an integrated structure, and the rotor plastic package 410 is used to wrap the yoke 430 and the permanent magnet 440 to achieve fixation, to prevent the permanent magnet 440 from falling off, to improve the reliability of the rotor assembly 400, and to improve the service life of the in-wheel motor.
  • the permanent magnet 440 is made of ferrite material, which has low cost and does not need to use expensive rare-earth permanent magnet material, which reduces the manufacturing cost of the in-wheel motor.
  • the rotor overmolding part 410 is provided with a plurality of heat dissipation fan blades 412, and the plurality of heat dissipation fan blades 412 are evenly distributed along the circumferential direction of the rotor overmolding part 410, and the rotor overmolding part 410 is provided with inner
  • the sleeve 413 and the bearing seat 420 are connected to the inner wall of the inner sleeve 413, and the cooling blades 412 radially extend from the outer wall of the inner sleeve 413.
  • the cooling blades 412 face the stator assembly 300 and dissipate heat
  • the height of the outer edge of the vane 412 is low to avoid the winding 310 of the stator assembly 300 .
  • a plurality of heat dissipation fan blades 412 are used to drive the airflow to take away the heat generated by the winding 310 to help cool down and prevent over-temperature shutdown.
  • the rotor overmolding part 410 is also provided with a plurality of guide holes 414, and the plurality of guide holes 414 are evenly distributed along the circumference of the rotor overmolding part 410, and each guide hole 414 Arranged between the extension lines of two adjacent cooling fan blades 412 , for example, the flow guide holes 414 may correspond to the cooling fan blades 412 one-to-one, or the number of flow guiding holes 414 may be half of the cooling fan blades 412 .
  • the rotor assembly 400 rotates at a high speed, and uses the heat dissipation blades 412 and the guide holes 414 to form an air circulation loop inside the hub motor, which improves the air convection capacity inside the hub motor, fully takes away the heat generated by the winding 310, and improves the performance of the hub motor. Excellent heat dissipation performance, reducing the temperature rise of the hub motor, so as to ensure the stability of the output efficiency of the hub motor and meet the load operation requirements of the hub motor.
  • the heat dissipation blades 412 also function as reinforcing ribs, which enhance the overall structural strength and rigidity of the rotor assembly 400 and improve reliability.
  • the first retaining ring 411 is integrally formed on the rotor overmolding part 410 , and a plurality of guide holes 414 are arranged on the outside of the first retaining ring 411 , the airflow flowing through the guide holes 414 It will not enter the grease sealing cavity 201, so as to prevent the air flow from affecting the grease.
  • the air guide hole 414 is located on the outer edge of the rotor overmolding part 410 , so that the airflow can quickly flow to contact the main casing 210 , which is beneficial for heat dissipation.
  • the distance between the winding 310 and the central axis 100 is basically equal to the distance between the guide hole 414 and the central axis 100, and the positions of the two correspond to each other, so that the heat dissipated by the winding 310 is passed through the conduction
  • the air flow in the flow holes 414 is quickly taken away, which helps to improve the cooling effect of the winding 310 .
  • the electric vehicle includes the in-wheel motor according to the embodiment of the first aspect.
  • the in-wheel motor includes a central shaft 100 and a housing assembly 200 connected to the central shaft 100 , a stator assembly 300 , a stator assembly 300 and a gear assembly 500 , the stator assembly 300 includes a winding 310, a stator core 320, and a limit frame 330.
  • the stator core 320 adopts a straight-toothed tooth portion 321, and the winding 310 does not need to be wound on the tooth portion 321, and the winding can be completed externally using tooling , large operating space, can effectively improve the slot full rate.
  • the winding 310 adopts an aluminum wire with a non-circular cross-section, such as an aluminum wire with a square cross-section.
  • the aluminum wire of the winding 310 matches the shape of the tooth portion 321, and the aluminum wire is closely attached to the outer wall of the tooth portion 321, and the arrangement of the aluminum wire is more precise.
  • the full rate of the winding slots of the stator assembly 300 is improved.
  • the power density and efficiency of the in-wheel motor are improved.
  • the in-wheel motor is applied to electric vehicles and helps to improve the electric vehicle battery life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种轮毂电机及电动车,该轮毂电机包括中轴(100)以及连接于中轴的壳体组件(200)、定子组件(300)、转子组件(400)以及齿轮组件(500),壳体组件(200)和转子组件(400)均通过轴承(110)支撑在所述中轴(100)上,定子组件(300)包括定子铁芯(320)及绕组(310),定子铁芯(320)具有封闭的轭部(322),轭部(322)的外周设置有多个齿部(321),绕组(310)绕设于齿部(321),绕组(310)采用铝导线;转子组件(400)具有永磁体(440),永磁体(440)的材料为铁氧体;转子组件(400)与壳体组件(200)通过齿轮组件(500)传动连接。

Description

轮毂电机及电动车 技术领域
本申请要求于2021年12月16日提交的申请号为202111547618.6、名称为“轮毂电机及电动车”,以及于2021年12月16日提交的申请号为202123200743.8、名称为“轮毂电机及电动车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电机技术领域,特别涉及一种轮毂电机及电动车。
背景技术
相关技术中,轮毂电机为直驱电机,为了输出较大的扭矩和保证电机效率,绕组均采用铜材导体,永磁体均为稀土永磁材料,铜材和稀土永磁的原材料成本高,尤其是稀土永磁为稀有金属,原材料成本更是昂贵,因此轮毂电机采用铜材绕组和稀土材料永磁体会造成成本过高,且浪费稀有金属资源。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种轮毂电机,定子组件具有较大绕线槽满率,有效提升功率密度和效率。
本公开还提出具有上述轮毂电机的电动车。
根据本公开第一方面实施例的轮毂电机,包括中轴以及连接于所述中轴的壳体组件、定子组件、转子组件以及齿轮组件,所述壳体组件和所述转子组件均通过轴承支撑在所述中轴上,所述定子组件包括定子铁芯及绕组,所述定子铁芯具有一定厚度且形成封闭的轭部,所述轭部的外周设置有多个齿部,所述绕组绕设于所述齿部,所述绕组采用铝导线;所述转子组件具有永磁体,所述永磁体的材料为铁氧体;所述转子组件与所述壳体组件通过所述齿轮组件传动连接。
根据本公开第一方面实施例的轮毂电机,至少具有如下有益效果:轮毂电机的转子组件通过齿轮组件驱动壳体组件旋转,壳体组件与电动车的车轮为一体结构,实现电动车的行驶。定子铁芯包括轭部以及轭部外周的多个齿部,绕组采用铝导线,代替铜材导体,转子组件的永磁体采用铁氧体材料,代替昂贵的稀土永磁材料,有助于降低轮毂电机的制造成本。
根据本公开第一方面的一些实施例,所述齿部设置为直齿。
根据本公开第一方面的一些实施例,所述齿部为无齿靴结构,所述定子铁芯连接有限位架,所述限位架用于限制所述绕组相对所述齿部的径向位置。
根据本公开第一方面的一些实施例,所述限位架包括安装部和限位部,所述安装部与 所述定子组件连接,所述限位部与所述齿部一一对应,所述限位部包括两根叉杆,两根所述叉杆之间的间距与所述齿部的宽度相适配,所述叉杆与所述绕组的外端抵接。
根据本公开第一方面的一些实施例,所述壳体组件具有主壳体,所述转子组件设置有朝向所述主壳体的第一挡圈,所述主壳体设置有朝向所述转子组件的第二挡圈,所述转子组件和所述主壳体之间形成封脂腔,所述齿轮组件位于所述封脂腔内。
根据本公开第一方面的一些实施例,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈至少部分交错。
根据本公开第一方面的一些实施例,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈交错的长度尺寸为L,满足L≥0.1mm。
根据本公开第一方面的一些实施例,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈齐平。
根据本公开第一方面的一些实施例,沿所述中轴的径向,所述第二挡圈位于所述第一挡圈与所述中轴之间。
根据本公开第一方面的一些实施例,所述第一挡圈的内壁直径为D1,所述第二挡圈的外壁直径为D2,满足1mm≤D1-D2≤4mm。
根据本公开第一方面的一些实施例,沿所述中轴的径向,所述第一挡圈位于所述第二挡圈与所述中轴之间。
根据本公开第一方面的一些实施例,所述第一挡圈朝向所述主壳体的端面设置有容纳槽,部分所述第二挡圈位于所述容纳槽中。
根据本公开第一方面的一些实施例,所述转子组件包括转子包塑件,所述转子包塑件设置有多个周向均布的散热风叶,所述散热风叶朝向所述定子组件。
根据本公开第一方面的一些实施例,所述转子包塑件设置有多个周向均布的导流孔,所述导流孔位于两个相邻的所述散热风叶之间。
根据本公开第一方面的一些实施例,所述第一挡圈设置于所述转子包塑件,多个所述导流孔布置在所述第一挡圈的外侧。
根据本公开第一方面的一些实施例,沿所述中轴的径向,所述绕组与所述导流孔的位置对应。
根据本公开第一方面的一些实施例,所述铝导线的截面为非圆形。
根据本公开第一方面的一些实施例,所述铝导线的截面为方形。
根据本公开第二方面实施例的电动车,包含第一方面实施例所述的轮毂电机。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的附加方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一些实施例的轮毂电机的剖视图;
图2为本公开一些实施例中定子组件的结构示意图;
图3为本公开一些实施例中定子铁芯与绕组的结构示意图;
图4为本公开一些实施例中限位架的结构示意图;
图5为本公开一些实施例中定子铁芯的结构示意图;
图6为本公开一些实施例中的轮毂电机的分解示意图;
图7为图1中A处的局部放大视图;
图8为本公开另一些实施例中第一挡圈和第二挡圈配合的局部视图一;
图9为本公开另一些实施例中第一挡圈和第二挡圈配合的局部视图二;
图10为本公开一些实施例中转子组件的结构示意图一;
图11为本公开一些实施例中转子组件的结构示意图二;以及
图12为本公开一些实施例中转子组件的分解示意图。
附图标号如下:
中轴100、轴承110;
壳体组件200、封脂腔201、主壳体210、第二挡圈211、副壳体220、轮辋230;
定子组件300、绕组310、定子铁芯320、齿部321、轭部322、限位架330、叉杆331;
转子组件400、转子包塑件410,转子包塑件410、第一挡圈411、容纳槽4111、散热风叶412、内套筒413、导流孔414、轴承座420、磁轭430、永磁体440;
齿轮组件500、太阳轮510、行星轮520、行星架530、外齿圈540。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。
相关技术中,电动车采用轮毂电机作为动力部件,轮毂电机的外转子和轮辋为一体结构,而轮毂电机在设计上追求动力系统、传动系统及刹车系统集成为一体,部分轮毂电机 带有齿轮减速器,齿轮高速旋转容易将润滑脂甩离,导致齿轮表面的润滑脂不足,此类轮毂电机未能大批量使用的原因之一,就是齿轮减速器因润滑不良造成齿轮磨损、失效的风险大,从而导致带有齿轮减速器的轮毂电机可靠性差,影响电动车的行驶稳定性。
如图1至图6所示,本公开第一方面的实施例提出一种应用于电动车的轮毂电机,轮毂电机包括中轴100以及连接于中轴100的壳体组件200、定子组件300、转子组件400以及齿轮组件500,中轴100连接于电动车的车架并且作为安装基础,壳体组件200包括主壳体210、副壳体220以及轮辋230,主壳体210和副壳体220分置在轮辋230的两端,主壳体210和副壳体220通过螺丝固定连接在轮辋230的两端,中轴100上安装有三个轴承110,主壳体210、副壳体220以及转子组件400各连接于一个轴承110,均能相对中轴100转动。
参照图2至图5,定子组件300包括绕组310、定子铁芯320以及限位架330,定子铁芯320一般采用硅钢片裁切而成,将裁切出的硅钢片加工成卷绕式的定子铁芯320,为了提高硅钢片的利用率,在裁切时需要提前设计拼料裁切方式,如果定子铁芯320的齿部321设置有齿靴,在切割定子铁芯时,必须要根据齿靴去设计拼料裁切方式,但是无论如何优化,在有齿靴的情况下,硅钢片的材料利用率最多也只能达70%,很难进一步提升。本公开实施例的定子铁芯320采用无齿靴的齿部321,优化拼料裁切方式,进而提高硅钢片的材料利用率。
可以理解的是,齿部321设置为直齿状,绕组310无须在齿部321上绕线,可以在外部利用工装完成绕线,操作空间大,能够有效提高绕线槽满率。此外,绕组310采用非圆形截面的铝导线,比如正方形截面的铝导线,而齿部321采用直齿形结构,比如齿部321的截面同样为正方形,绕组310的铝导线匹配齿部321的形状,铝导线紧密贴合在齿部321的外壁,使得铝导线的排布更为紧密,因而提高了定子组件300的绕线槽满率,在定子组件300的体积不变的情况下,提升了轮毂电机的功率密度和效率,轮毂电机应用于电动车,有助于提升电动车的续航能力。此外,绕组310采用铝导线代替铜材导体,有助于降低轮毂电机的制造成本。
需要说明的是,限位架330包括安装部和限位部,安装部用于固定连接定子组件300,限位部用于在径向上限定绕组310,限位部与绕组310的数量一致,位置一一对应,利用限位部限定绕组310,代替齿靴。安装部与定子组件300可以是固定连接,也可以是可拆卸的连接。包括其中,固定连接可以采用焊接或者铆接的方式固定;可拆卸的连接可以采用螺钉或者卡扣结构进行连接等等。
参照图5,定子铁芯320包括轭部322和多个无齿靴的齿部321,定子铁芯320具有一定厚度并且形成封闭的轭部322,多个齿部321沿轭部322的周向均布,齿部321采用直齿,便于装入绕组310,无齿靴的齿部321意味着齿部321的侧壁没有向外延伸的结构以限定绕组310。因此,如图4所示,限位架330的每个限位部具有两根平行设置的叉杆331,两根叉杆331之间的间距与齿部321的宽度相适配,使得两根叉杆331之间的空间能够容纳齿部321,叉杆331与绕组310的外端面抵接,有两个施力点作用在绕组310上, 以对绕组200进行可靠的限位,在径向上固定绕组310。
可以理解的是,两根叉杆331之间还可以设置连接杆(图中未示出),连接杆与叉杆331垂直设置,组装后,连接杆同样抵接于绕组310的外端面,帮助限定绕组310,进一步可靠性。
参照图1和图6,齿轮组件500包括太阳轮510、三个行星轮520、行星架530以及外齿圈540,太阳轮510固定连接于转子组件400,行星架530固定连接中轴100,三个行星轮520转动连接在行星架530上,外齿圈540固定连接于主壳体210,行星轮520同时啮合于太阳轮510、外齿圈540,转子组件400带动太阳轮510旋转,太阳轮510驱动三个行星轮520旋转,三个行星轮520再驱动外齿圈540与主壳体210旋转,主壳体210带动轮辋230旋转,轮辋230属于电动车的车轮,因此轮毂电机支架驱动车轮转动,实现电动车的行驶。此外,行星轮520为双联齿轮,通过行星轮520实现了两级的传动减速,降低了轮辋230的转速,同时提升轮毂电机的输出扭矩,有利于电动车提速。
可以理解的是,齿轮组件500位于转子组件400和主壳体210之间,因此在转子组件400和主壳体210配合组成一个封脂腔201,齿轮组件500设在封脂腔201内,封脂腔201一方面是容纳齿轮组件500,防止齿轮组件500外露,另一方面是容置润滑脂,使得太阳轮510、三个行星轮520以及外齿圈540的表面能够涂覆润滑脂,提供充足的润滑,减少磨损。
可以理解的是,考虑到在太阳轮510和三个行星轮520高速旋转中,由于离心力的作用会将润滑脂甩离,进而导致太阳轮510和三个行星轮520出现润滑不足的问题,因此在转子组件400上设置第一挡圈411,主壳体210上设置第二挡圈211,第一挡圈411朝向主壳体210,第二挡圈211朝向转子组件400,第一挡圈411和第二挡圈211组成封脂腔201的侧壁,起到防止润滑脂外漏的作用,在中轴100的轴向上,第一挡圈411和第二挡圈211为交错布置,能够阻挡被甩离的润滑脂,促使润滑脂留在封脂腔201内,保证齿轮组件500具有充足的润滑,在中轴100的径向上,第一挡圈411和第二挡圈211相互靠近而不接触,不影响转子组件400和主壳体210各自的独立转动。轮毂电机运行时,轮毂电机的定子组件通过电磁力作用推动转子组件400旋转,转子组件400通过齿轮组件500驱动壳体组件200旋转,壳体组件200通过轮辋230带动电动车的车轮转动,实现电动车的行驶。齿轮组件500位于转子组件400与主壳体210之间的封脂腔201内,封脂腔201内储存润滑脂,润滑脂涂覆在齿轮组件500的表面以提供润滑,转子组件400的第一挡圈411与主壳体210的第二挡圈211在轴向上交错,形成阻挡结构,能够防止润滑脂被甩出封脂腔201,使得润滑脂留在封脂腔201内以润滑齿轮组件500,提升润滑效果,避免齿轮组件500因润滑不足而发生磨损、失效等可靠性问题,提高轮毂电机的运行可靠性,提高电动车的使用可靠性。
参照图7,可以理解的是,在中轴100的轴向上,第一挡圈411和第二挡圈211为交错布置,而且交错的长度尺寸定义为L,L即为第一挡圈411和第二挡圈211重叠的长度,设定L≥0.1mm,考虑到第一挡圈411与第二挡圈211是不接触的,交错的长度尺寸L设定 在0.1mm或以上,形成有效的阻挡,防止润滑脂从第一挡圈411与第二挡圈211之间的缝隙漏走。
可以理解的是,在中轴100的轴向上,第一挡圈411和第二挡圈211也可以不交错,两者为齐平布置,也即第一挡圈411的端面和第二挡圈211的端面位于同一平面,也能够阻挡被甩离的润滑脂,促使润滑脂留在封脂腔201内,保证齿轮组件500具有充足的润滑。
参照图7,可以理解的是,在中轴100的径向上,第一挡圈411位于第二挡圈211的外侧,第二挡圈211更加靠近中轴100。润滑脂被甩离后,先接触第二挡圈211,再接触第一挡圈411,而且第一挡圈411与第二挡圈211是交错的,能够限制被甩离的润滑脂,使得润滑脂留在封脂腔201内。
参照图1,可以理解的是,第一挡圈411的内壁直径定义为D1,第二挡圈211的外壁直径定义为D2,考虑到轮毂电机运行时,转子组件400和主壳体210均是高速旋转的,而且转子组件400和主壳体210转速不同,因而D1和D2满足(D1-D2)/2≥0.5mm,才能保证第一挡圈411与第二挡圈211在旋转时不会发生摩擦碰撞,此外D1和D2满足(D1-D2)/2≤2.0mm,才能提供有效的阻挡,有利于减少润滑脂从封脂腔201中漏走,经过推算设定为1mm≤D1-D2≤4mm,第一挡圈411与第二挡圈211之间的缝隙既能防止润滑脂漏走,又不会产生干涉摩擦。
参照图8,可以理解的是,在中轴100的径向上,也可以是第二挡圈211位于第一挡圈411的外侧,第一挡圈411更加靠近中轴100。润滑脂被甩离后,先接触第一挡圈411,再接触第二挡圈211,而且第一挡圈411与第二挡圈211是交错的,能够限制被甩离的润滑脂,使得润滑脂留在封脂腔201中。
参照图8,可以理解的是,第一挡圈411具有两个边板,在两个边板之间形成容纳槽4111,容纳槽4111位于第一挡圈411朝向主壳体210的端面,由于第一挡圈411和第二挡圈211为交错布置,部分第二挡圈211伸进容纳槽4111中,第一挡圈411和第二挡圈211配合组成双层阻挡,能够更加有效的阻挡被甩离的润滑脂。此外,第二挡圈211部分伸进容纳槽4111中,第一挡圈411和第二挡圈211之间形成连续弯曲的缝隙,类似于迷宫密封结构,有助于减少润滑脂漏走的几率。
参照图10至图12,可以理解的是,转子组件400的主要构件是转子包塑件410,转子包塑件410通过注塑成型的过程中一体包裹磁轭430及永磁体440,而且轴承座420与转子包塑件410也是一体成型的结构,轴承座420位于转子包塑件410的中心,轴承座420的内壁形象轴承室以配合轴承110,为了提高连结的稳固性,轴承座420的外壁具有多个周向分布的凸台,在注塑成型后,凸台嵌入转子包塑件410内,提高结构强度,而且有利于传递扭矩,考虑到转子包塑件410是注塑件,将第一挡圈411设置在转子包塑件410上,便于制造,降低成本。转子组件400采用一体化的结构,利用转子包塑件410包裹磁轭430及永磁体440实现固定,避免永磁体440脱落,提升转子组件400的可靠性,有利于提高轮毂电机的使用寿命。
可以理解的是,永磁体440采用铁氧体材料制造,成本低,无需使用昂贵的稀土永磁 材料,降低轮毂电机的制造成本。
参照图1和图6,可以理解的是,转子包塑件410设置有多个散热风叶412,多个散热风叶412沿转子包塑件410的周向均布,转子包塑件410设置有内套筒413,轴承座420连接在内套筒413的内壁,散热风叶412从内套筒413的外壁径向延伸,在轮毂电机的内部,散热风叶412是朝向定子组件300的,而且散热风叶412的外边缘高度较低,以避让定子组件300的绕组310。当转子组件400高速旋转,利用多个散热风叶412驱动气流流动,从而带走绕组310产生的热量,帮助降温,防止出现超温停机的问题。
参照图6至图8,可以理解的是,转子包塑件410上还设置有多个导流孔414,多个导流孔414沿转子包塑件410的周向均布,每个导流孔414布置在两个相邻的散热风叶412的延长线之间,比如可以是导流孔414与散热风叶412一一对应,也可以是导流孔414的数量为散热风叶412的一半。如图1所示,转子组件400高速旋转时,利用多个散热风叶412驱动气流流动,导流孔414作为气流流动的通道,连通了转子包塑件410的两侧,气流流动至壳体组件200的内腔,壳体组件200的主壳体210和副壳体220为金属件,比如铝合金制件,具有较大的结构强度和优良的传热性能,气流接触主壳体210和副壳体220,并且通过主壳体210和副壳体220将热量散发到外部空间。
转子组件400高速旋转,利用散热风叶412和导流孔414在轮毂电机的内部形成气流循环回路,提升了轮毂电机内部的空气对流能力,充分将绕组310产生的热量带走,提升了轮毂电机的散热性能,降低轮毂电机的温升,从而保证轮毂电机的输出效率稳定,满足轮毂电机的带负载运行需求。此外,散热风叶412还具备加强筋的作用,提升了转子组件400整体的结构强度和刚度,提高可靠性。
参照图11,可以理解的是,第一挡圈411一体成型在转子包塑件410上,而且多个导流孔414布置在第一挡圈411的外侧,从导流孔414中流过的气流不会进入封脂腔201,避免气流影响润滑脂。而且,导流孔414位于转子包塑件410的外边缘,气流能够快速流动至接触主壳体210,有利于散热。
参照图1,可以理解的是,在中轴100的径向上,绕组310与中轴100距离基本等于导流孔414与中轴100距离,两者位置对应,使得绕组310散发的热量被经过导流孔414的气流快速带走,有助于提升绕组310的散热效果。
本公开第二方面实施例的电动车,包含第一方面实施例的轮毂电机,轮毂电机包括中轴100以及连接于中轴100的壳体组件200、定子组件300、定子组件300以及齿轮组件500,定子组件300包括绕组310、定子铁芯320以及限位架330,定子铁芯320采用直齿形的齿部321,绕组310无须在齿部321上绕线,可以在外部利用工装完成绕线,操作空间大,能够有效提高槽满率。此外,绕组310采用非圆形截面的铝导线,比如正方形截面的铝导线,绕组310的铝导线匹配齿部321的形状,铝导线紧密贴合在齿部321的外壁,铝导线的排布更为紧密,因而提高了定子组件300的绕线槽满率,在定子组件300的体积不变的情况下,提升轮毂电机的功率密度和效率,轮毂电机应用于电动车,有助于提升电动车的续航能力。
上面结合附图对本公开实施例作了详细说明,但是本公开不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本公开宗旨的前提下,作出各种变化。

Claims (19)

  1. 轮毂电机,包括:
    中轴;
    壳体组件,通过轴承支撑在所述中轴上;
    定子组件,固定连接于所述中轴,所述定子组件包括定子铁芯及绕组,所述定子铁芯具有封闭的轭部,所述轭部的外周设置有多个齿部,所述绕组绕设于所述齿部,所述绕组采用铝导线;
    转子组件,通过轴承支撑在所述中轴上,所述转子组件具有永磁体,所述永磁体的材料为铁氧体;以及
    齿轮组件,连接于所述中轴;
    其中,所述转子组件与所述壳体组件通过所述齿轮组件传动连接。
  2. 根据权利要求1所述的轮毂电机,其中,所述齿部设置为直齿。
  3. 根据权利要求2所述的轮毂电机,其中,所述齿部为无齿靴结构,所述定子铁芯连接有限位架,所述限位架用于限制所述绕组相对所述齿部的径向位置。
  4. 根据权利要求3所述的轮毂电机,其中,所述限位架包括安装部和限位部,所述安装部与所述定子组件连接,所述限位部与所述齿部一一对应,所述限位部包括两根叉杆,两根所述叉杆之间的间距与所述齿部的宽度相适配,所述叉杆与所述绕组的外端抵接。
  5. 根据权利要求1所述的轮毂电机,其中,所述壳体组件具有主壳体,所述转子组件设置有朝向所述主壳体的第一挡圈,所述主壳体设置有朝向所述转子组件的第二挡圈,所述转子组件和所述主壳体之间形成封脂腔,所述齿轮组件位于所述封脂腔内。
  6. 根据权利要求5所述的轮毂电机,其中,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈至少部分交错。
  7. 根据权利要求6所述的轮毂电机,其中,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈交错的长度尺寸为L,满足L≥0.1mm。
  8. 根据权利要求5所述的轮毂电机,其中,沿所述中轴的轴向,所述第一挡圈和所述第二挡圈齐平。
  9. 根据权利要求6或7所述的轮毂电机,其中,沿所述中轴的径向,所述第二挡圈位于所述第一挡圈与所述中轴之间。
  10. 根据权利要求9所述的轮毂电机,其中,所述第一挡圈的内壁直径为D1,所述第二挡圈的外壁直径为D2,满足1mm≤D1-D2≤4mm。
  11. 根据权利要求6或7所述的轮毂电机,其中,沿所述中轴的径向,所述第一挡圈位于所述第二挡圈与所述中轴之间。
  12. 根据权利要求6或7所述的轮毂电机,其中,所述第一挡圈朝向所述主壳体的端面设置有容纳槽,部分所述第二挡圈位于所述容纳槽中。
  13. 根据权利要求5所述的轮毂电机,其中,所述转子组件包括转子包塑件,所述转 子包塑件设置有多个周向均布的散热风叶,所述散热风叶朝向所述定子组件。
  14. 根据权利要求13所述的轮毂电机,其中,所述转子包塑件设置有多个周向均布的导流孔,所述导流孔位于两个相邻的所述散热风叶之间。
  15. 根据权利要求14所述的轮毂电机,其中,所述第一挡圈设置于所述转子包塑件,多个所述导流孔布置在所述第一挡圈的外侧。
  16. 根据权利要求14所述的轮毂电机,其中,沿所述中轴的径向,所述绕组与所述导流孔的位置对应。
  17. 根据权利要求1所述的轮毂电机,其中,所述铝导线的截面为非圆形。
  18. 根据权利要求1所述的轮毂电机,其中,所述铝导线的截面为方形。
  19. 电动车,包含如权利要求1至18中任一项所述的轮毂电机。
PCT/CN2022/079093 2021-12-16 2022-03-03 轮毂电机及电动车 WO2023108915A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202123200743.8U CN216672717U (zh) 2021-12-16 2021-12-16 轮毂电机及电动车
CN202111547618.6 2021-12-16
CN202123200743.8 2021-12-16
CN202111547618.6A CN114221469A (zh) 2021-12-16 2021-12-16 轮毂电机及电动车

Publications (1)

Publication Number Publication Date
WO2023108915A1 true WO2023108915A1 (zh) 2023-06-22

Family

ID=86775143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079093 WO2023108915A1 (zh) 2021-12-16 2022-03-03 轮毂电机及电动车

Country Status (1)

Country Link
WO (1) WO2023108915A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995840A (zh) * 2023-09-25 2023-11-03 厚华(天津)动力科技有限公司 一种工程塑料转子轮毂电机
CN117134545A (zh) * 2023-10-27 2023-11-28 厚华(天津)动力科技有限公司 一种高效散热轮毂电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202634173U (zh) * 2012-06-08 2012-12-26 苏州八方电机科技有限公司 罗拉刹电机装置
CN202634178U (zh) * 2012-06-08 2012-12-26 苏州八方电机科技有限公司 罗拉刹电机
JP2013032101A (ja) * 2011-08-02 2013-02-14 Nsk Ltd インホイールモータ
CN106787322A (zh) * 2017-01-04 2017-05-31 温岭市九洲电机制造有限公司 一种电动车轮毂电机
CN211127453U (zh) * 2020-01-21 2020-07-28 倪隆裕 一种双边驱动变档轮毂
CN113507190A (zh) * 2021-08-10 2021-10-15 珠海运控电机有限公司 一种电滚筒永磁同步电动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032101A (ja) * 2011-08-02 2013-02-14 Nsk Ltd インホイールモータ
CN202634173U (zh) * 2012-06-08 2012-12-26 苏州八方电机科技有限公司 罗拉刹电机装置
CN202634178U (zh) * 2012-06-08 2012-12-26 苏州八方电机科技有限公司 罗拉刹电机
CN106787322A (zh) * 2017-01-04 2017-05-31 温岭市九洲电机制造有限公司 一种电动车轮毂电机
CN211127453U (zh) * 2020-01-21 2020-07-28 倪隆裕 一种双边驱动变档轮毂
CN113507190A (zh) * 2021-08-10 2021-10-15 珠海运控电机有限公司 一种电滚筒永磁同步电动机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995840A (zh) * 2023-09-25 2023-11-03 厚华(天津)动力科技有限公司 一种工程塑料转子轮毂电机
CN116995840B (zh) * 2023-09-25 2023-12-22 厚华(天津)动力科技有限公司 一种工程塑料转子轮毂电机
CN117134545A (zh) * 2023-10-27 2023-11-28 厚华(天津)动力科技有限公司 一种高效散热轮毂电机
CN117134545B (zh) * 2023-10-27 2024-01-12 厚华(天津)动力科技有限公司 一种高效散热轮毂电机

Similar Documents

Publication Publication Date Title
WO2023108915A1 (zh) 轮毂电机及电动车
US4074156A (en) Air cooling means for dynamoelectric machine
CN215009877U (zh) 一种高效散热的永磁电机驱动装置
CN101712433A (zh) 一种具有自散热功能的曳引机
EP1736347B1 (en) Electric hub motor
CN112701827B (zh) 一种永磁外转子潜水电泵
CN220510917U (zh) 一种有散热风扇的有齿轮毂电机的转子
CN216699659U (zh) 轮毂电机及电动车
CN216672717U (zh) 轮毂电机及电动车
JP4100170B2 (ja) 回転電機の冷却構造
CN211701642U (zh) 一种三相交流变频电动机装置
CA1161486A (en) Air cooled machine and cooling fan
CN114221469A (zh) 轮毂电机及电动车
WO2023108918A1 (zh) 定子组件、轮毂电机及电动车
CN114221467A (zh) 轮毂电机及电动车
CN115347705A (zh) 高效率低压隔爆三相异步电动机
CN115483796A (zh) 一种新能源汽车电机
CN211183621U (zh) 一种电机外壳的降噪散热结构
CN113541382A (zh) 一种永磁电机及轨道机车
CN108973696B (zh) 一种并行排列构造的液电复合缓速器
CN114243958A (zh) 定子组件、轮毂电机及电动车
JP2017192176A (ja) 回転電機
CN201587784U (zh) 一种具有自散热功能的曳引机
WO2023108920A1 (zh) 轮毂电机及电动自行车
CN220510918U (zh) 一种风冷散热的国标电动车有齿轮毂电机铸造套件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905686

Country of ref document: EP

Kind code of ref document: A1