WO2023108891A1 - 一种同步并网的风-光-储混合发电系统及其工作方法 - Google Patents

一种同步并网的风-光-储混合发电系统及其工作方法 Download PDF

Info

Publication number
WO2023108891A1
WO2023108891A1 PCT/CN2022/077499 CN2022077499W WO2023108891A1 WO 2023108891 A1 WO2023108891 A1 WO 2023108891A1 CN 2022077499 W CN2022077499 W CN 2022077499W WO 2023108891 A1 WO2023108891 A1 WO 2023108891A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
grid
wind
generation device
Prior art date
Application number
PCT/CN2022/077499
Other languages
English (en)
French (fr)
Inventor
曹永吉
张恒旭
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2023108891A1 publication Critical patent/WO2023108891A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the disclosure belongs to the technical field of new energy power generation, and in particular relates to a synchronous grid-connected wind-solar-storage hybrid power generation system and a working method thereof.
  • Wind power and photovoltaics have inherent volatility, and the output of power generation is affected by the wind speed on the primary side and the intensity of solar radiation.
  • most wind power and photovoltaics operate in the maximum power tracking mode, without active power backup, and the mechanical energy stored in internal rotating devices is insufficient, making it difficult to effectively participate in the active power response of the grid.
  • Wind power and photovoltaics mostly use power electronic devices to connect to the grid, do not participate in inertia response and primary frequency modulation, and have weak immunity to disturbances.
  • coordinating the two to build a wind-solar hybrid power generation system can stabilize output fluctuations to a certain extent.
  • Configuring energy storage in the wind-solar hybrid power generation system to form a wind-solar-storage hybrid power generation system can further suppress output fluctuations and enhance the active power reserve inside the system.
  • the active power response of synchronous units can be simulated through the power electronic grid-connected devices of the wind-solar-storage hybrid power generation system.
  • the internal moment of inertia of the wind-solar-storage hybrid power generation system mainly depends on the storage of wind turbines and asynchronous generators, which are relatively small, and the problem of weak immunity of power electronic grid-connected devices is prominent.
  • the wind-solar-storage hybrid The power generation system is prone to chain disconnection, which not only cannot provide effective active power support for the grid, but will aggravate the severity of the accident.
  • this disclosure proposes a synchronous grid-connected wind-solar-storage hybrid power generation system and its working method.
  • the energy storage device is used to further suppress output. fluctuations; through the configuration of energy storage devices and rotating devices to increase the internal active power reserve of the power generation system, and enhance its ability to provide active power support for the large power grid after a disturbance accident; the use of synchronous grid-connected methods can better participate in inertia response and One-time frequency modulation control, and strong anti-interference, reduce the occurrence of chain off-grid, and realize the synchronous grid connection of wind-solar-storage hybrid power generation system.
  • the first solution of the present disclosure provides a synchronous grid-connected wind-solar-storage hybrid power generation system, which adopts the following technical solution:
  • a synchronous grid-connected wind-solar-storage hybrid power generation system including:
  • a wind power generation module including a wind power generation device and a first power electronic converter and a second power electronic converter electrically connected to the wind power generation device;
  • a photovoltaic power generation module including a photovoltaic power generation device and a third power electronic converter and a fourth power electronic converter electrically connected to the photovoltaic power generation device;
  • An energy storage module including an electrically connected energy storage device and a fifth power electronic converter, the energy storage device is also electrically connected to the second power electronic converter and the fourth power electronic converter;
  • a grid-connected module one end of which is electrically connected to the first power electronic converter, the third power electronic converter, and the fifth power electronic converter, and the other end is connected to the power grid;
  • a monitoring module electrically connected to the wind power generation module, the photovoltaic power generation module, the energy storage module and the grid-connected module, for setting the wind power generation module, the photovoltaic power generation module and the energy storage
  • the control parameters of the module adjust the working status of the energy storage unit by judging the logical relationship between the grid-connected power generation power, the power generation power of the wind power generation device, and the power generation power of the photovoltaic power generation device, and realize the synchronization and synchronization of the wind-solar-storage hybrid power generation system. net.
  • the wind power generation device includes a wind turbine, a gearbox and an asynchronous generator connected in sequence.
  • the grid-connected module includes an electrically connected DC motor and a synchronous generating device
  • the synchronous generating device includes an electrically connected synchronous generator and an excitation unit
  • the monitoring device includes a monitoring module, a display module, and a control module respectively connected to the monitoring module and the display module.
  • control module is respectively connected with the wind power generation device, the first power electronic converter, the second power electronic converter, the photovoltaic power generation device, and the third power electronic converter , the fourth power electronic converter and the fifth power electronic converter are electrically connected;
  • monitoring module is respectively connected to the wind power generation device, the first power electronic converter, and the second power electronic converter The electronic converter, the photovoltaic power generation device, the third power electronic converter, the fourth power electronic converter, the fifth power electronic converter, the energy storage unit, the direct current The electric motor, the synchronous generator and the field unit are electrically connected.
  • the second solution of the present disclosure provides a working method of a synchronous grid-connected wind-solar-storage hybrid power generation system, which adopts a synchronous grid-connected wind-solar- Storage hybrid power generation system adopts the following technical solutions:
  • a working method of a synchronous grid-connected wind-solar-storage hybrid power generation system comprising the following steps:
  • the first charging starting power of the energy storage device and the second charging starting power of the energy storage device are obtained;
  • the power generated by the wind power generation device, the power generated by the photovoltaic power generation device, and the grid-connected power designated by the dispatch center are obtained, and the operating power of the energy storage device is calculated based on the three obtained powers.
  • control parameters of the wind-solar-storage hybrid power generation system include the energy transfer coefficient c w from the wind power generation device to the synchronous power generation device, the energy transfer coefficient c s from the photovoltaic power generation device to the synchronous power generation device, The energy transfer coefficient c b from the energy storage device to the synchronous power generation device, the energy conversion efficiency c t from the synchronous power generation device to the grid, the energy transfer coefficient c c from the wind power generation device to the energy storage device, and the energy transfer coefficient c c from the photovoltaic power generation device to the energy storage device The energy transfer coefficient ca of the device.
  • the first charging start-up power of the energy storage device is determined by the power generated by the wind power generator, the energy transfer efficiency from the wind power generator to the synchronous generator, and the energy conversion efficiency from the synchronous generator to the grid ;
  • the second charging start-up power of the energy storage device passes through the generated power of the wind power generator, the energy transfer efficiency from the wind power generator to the synchronous generator, the energy conversion efficiency from the synchronous generator to the grid, and the generated power of the photovoltaic generator and are determined by the energy transfer efficiency from the photovoltaic power generation device to the synchronous power generation device.
  • the wind power generation device passes through the second power electronic converter and the photovoltaic power generation device passes through the fourth power electronic The device is charging, and the energy storage device is in the charging state. Affected by the grid power, the photovoltaic power generation device does not provide electric energy for the DC motor, and the DC motor only receives the electric energy provided by the wind power generation device through the first power electronic converter;
  • the photovoltaic power generation device charges the energy storage device through the fourth power electronic converter, and the energy storage device is charging Affected by the grid power, the wind power generation device does not provide electric energy for the energy storage device, and the DC motor simultaneously receives the power provided by the wind power generation device through the first power electronic converter and the photovoltaic power generation device through the third power electronic converter. electric energy;
  • the energy storage device When the grid grid power is greater than the second charging start-up power of the energy storage device, affected by the grid grid power, the energy storage device is in the discharge state, and the DC motor receives the wind power generation device through the first power electronic converter and the photovoltaic power generation device at the same time.
  • this disclosure can realize the synchronous grid connection of the wind-solar-storage hybrid power generation system.
  • the energy storage device can be used to further suppress output fluctuations; It can increase the internal active power reserve of the power generation system by configuring energy storage devices and rotating devices, and enhance its ability to provide active power support for the large power grid after a disturbance accident; the use of synchronous grid-connected methods can better participate in inertia response and primary Frequency modulation control, and strong anti-interference, reduce the occurrence of chain off-grid.
  • FIG. 1 is a schematic structural diagram of a synchronous grid-connected wind-solar-storage hybrid power generation system in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of the energy conversion process of the synchronous grid-connected wind-solar-storage hybrid power generation method in Embodiment 2 of the present disclosure
  • Fig. 3 is a flow chart of the process of adjusting the operating power of the energy storage device in Embodiment 2 of the present disclosure
  • Fig. 4 is a flow chart of the process of judging the received power of the synchronous power generation device in Embodiment 2 of the present disclosure
  • Fig. 5 is a flow chart of a synchronous grid-connected wind-solar-storage hybrid power generation method in Embodiment 2 of the present disclosure.
  • Embodiment 1 of the present disclosure provides a synchronous grid-connected wind-solar-storage hybrid power generation system.
  • a synchronous grid-connected wind-solar-storage hybrid power generation system includes a wind power generation device, a photovoltaic power generation device, a first power electronic converter, a second power electronic converter, a third power electronic A converter, a fourth power electronic converter, a fifth power electronic converter, an energy storage device, a synchronous power generation device and a monitoring device.
  • the wind power generation device includes a wind turbine, a gearbox and an asynchronous generator
  • the photovoltaic power generation device includes a photovoltaic panel
  • the synchronous power generation device includes a DC motor, a synchronous generator and an excitation module
  • the monitoring device includes Monitoring module, control module and display module.
  • the wind power generation device is connected to the first power electronic converter and the second power electronic converter; the wind turbine, gearbox and asynchronous generator are connected in sequence; the photovoltaic power generation device is connected to the third power electronic converter
  • the converter is connected with the fourth power electronic converter; the first power electronic converter is connected with the synchronous power generation device; the second power electronic converter is connected with the energy storage device; the third power electronic The converter is connected to the synchronous power generation device; the fourth power electronic converter is connected to the energy storage device; both ends of the energy storage device are respectively connected to the second power electronic converter and the fourth power electronic converter It is connected with the fifth power electronic converter; the fifth power electronic converter is connected with the synchronous power generation device; both ends of the synchronous power generation device are respectively connected with the first power electronic converter and the second power electronic converter
  • the device, the fifth power electronic converter and the grid are connected; the monitoring device is connected with the wind power generation device, the photovoltaic power generation device, the first power electronic converter, the second power electronic converter, and the third power electronic converter , the fourth power electronic
  • the wind power generation device can convert wind energy into AC power; the gearbox can adjust the speed of the asynchronous generator; the photovoltaic power generation device can convert solar energy into DC power; the first power electronic converter The AC power generated by the wind power generation device can be converted into the DC power required by the synchronous power generation device; the second power electronic converter can convert the AC power generated by the wind power generation device into the DC power required by the energy storage device; The third power electronic converter can convert the DC power generated by the photovoltaic power generation device into the DC power required by the synchronous power generation device; the fourth power electronic converter can convert the AC power generated by the photovoltaic power generation device into energy storage The DC energy required by the device; the energy storage device can convert the DC energy transmitted by the second power electronic converter and the fourth power electronic converter into chemical energy for storage, and can convert the internally stored chemical energy into DC power; the fifth power electronic converter can convert the DC power released by the energy storage device into the DC power required by the synchronous power generation device; the synchronous power generation device can convert the first power electronic converter, the third
  • Embodiment 2 of the present disclosure provides a working method of a synchronous grid-connected wind-solar-storage hybrid power generation system.
  • a working method of a synchronous grid-connected wind-solar-storage hybrid power generation system comprising the following steps:
  • the first charging starting power of the energy storage device and the second charging starting power of the energy storage device are obtained;
  • the wind turbine converts wind energy into mechanical energy and transmits it to an asynchronous generator; the asynchronous generator converts mechanical energy into AC electrical energy; the photovoltaic panel converts solar energy into DC electrical energy; the first A power electronic converter converts the AC power generated by the asynchronous generator into the DC power required by the DC motor; the second power electronic converter converts the AC power generated by the asynchronous generator into the DC power required by the energy storage device energy; the third power electronic converter converts the DC power generated by the photovoltaic panel into the DC power required by the DC motor; the fourth power electronic converter converts the DC power generated by the photovoltaic panel into energy storage The DC electric energy required by the device; the energy storage device converts the DC electric energy transmitted by the second power electronic converter and the fourth power electronic converter into chemical energy storage; the energy storage device converts chemical energy into DC electric energy ; The fifth power electronic converter converts the DC electric energy released by the energy storage device into the DC electric energy required by the DC motor; the DC motor converts the DC electric energy into mechanical energy; the
  • the power relationship between the wind power generation device, the photovoltaic power generation device, the energy storage device and the grid is,
  • PG is the grid power
  • P W is the power generated by the wind power generation device
  • PS is the power generated by the photovoltaic power generation device
  • P B is the operating power of the energy storage device
  • Energy transfer coefficient c s is the energy transfer coefficient from the photovoltaic power generation device to the synchronous power generation device
  • c b is the energy transfer coefficient from the energy storage device to the synchronous power generation device
  • c t is the energy conversion efficiency from the synchronous power generation device to the grid.
  • the energy storage device adjusts its operating power P B based on the power generation P W of the wind power generation device, the power generation PS of the photovoltaic power generation device and the specified grid-connected power PG .
  • c c is the energy transfer efficiency coefficient from the wind power generation device to the energy storage device
  • c a is the energy transfer coefficient from the photovoltaic power generation device to the energy storage device.
  • the wind power generation device and the photovoltaic power generation device charge the energy storage device at the same time, and the energy storage device Operates in charging mode, storing electrical energy delivered by the second power electronic converter and the fourth power electronic converter
  • the photovoltaic power generation device charges the energy storage device, the energy storage device operates in the charging mode, and stores the electric energy transmitted by the fourth power electronic converter
  • the energy storage device When the grid grid power is greater than the second charging start-up power of the energy storage device, that is, P G >P W ⁇ c w ⁇ c t +P S ⁇ c s ⁇ c t , the energy storage device operates in the discharge mode, and the fifth electric power Electronic inverters release electrical energy
  • the synchronous power generation device when P G ⁇ P W ⁇ c w ⁇ c t , the synchronous power generation device is powered by the wind power generation device and only receives the electric energy transmitted by the first power electronic converter; when P W ⁇ c w ⁇ When c t ⁇ P G ⁇ P W ⁇ c w ⁇ c t +P S ⁇ c s ⁇ c t , the synchronous power generation device is jointly powered by the wind power generation device and the photovoltaic power generation device, and receives power from the first power electronic converter and the second Electric energy transmitted by three power electronic converters; when P G > P W c w c t + P S c s c t , the synchronous power generation device is jointly powered by wind power generation device, photovoltaic power generation device and energy storage device , receiving electrical energy transmitted by the first power electronic converter, the third power electronic converter and the fifth power electronic converter.
  • the user sets the relevant operating parameters of the present invention through the monitoring device; the wind power generation device converts wind energy into AC power, and the photovoltaic power generation system converts solar energy into DC power; when P G ⁇ P W c w c t , the wind power generation device supplies power to the synchronous power generation device through the first power electronic converter, supplies power to the energy storage device through the second power electronic converter, and the photovoltaic power generation device supplies power to the energy storage device through the fourth power electronic converter;
  • the power generation device supplies power to the synchronous power generation device through the third power electronic converter, and supplies power to the energy storage device through the fourth power electronic converter; when P G >P W c w c t +

Abstract

本公开属于新能源发电技术领域,提供了一种同步并网的风-光-储混合发电系统及其工作方法,包括风力发电装置以及分别与风力发电装置电连接的第一电力电子换流器和第二电力电子换流器;光伏发电模块,包括光伏发电装置以及分别与光伏发电装置电连接的第三电力电子换流器和第四电力电子换流器;储能模块,包括电连接的储能装置和第五电力电子换流器,储能装置还分别与第二电力电子换流器和第四电力电子换流器电连接;并网模块,其一端与第一电力电子换流器、第三电力电子换流器和第五电力电子换流器电连接,另一端连接电网;监控模块,分别与风力发电模块、光伏发电模块、储能模块和并网模块电连接。

Description

一种同步并网的风-光-储混合发电系统及其工作方法 技术领域
本公开属于新能源发电技术领域,具体涉及一种同步并网的风-光-储混合发电系统及其工作方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
能源转型推动以风电、光伏为代表的可再生能源接入电网,并替代传统的火电机组,导致电网有功功率控制难度增加,频率稳定控制面临较大的挑战。首先,风电、光伏具有内在的波动性,发电出力受一次侧风速和太阳辐射强度的影响。其次,风电、光伏大多运行于最大功率追踪模式,不具有有功功率备用,且内部旋转器件储存机械能不足,难以有效地参与电网有功功率响应。风电、光伏大多采用电力电子器件并网,不参与惯量响应和一次调频,且具有弱抗扰性,扰动事故后易发生大规模连锁脱网,频率稳定控制面临严峻的挑战。在这样的大背景下,改进风力发电系统和光伏发电系统的性能,提升其电网友好性,成为了新能源发电领域亟待解决的问题。
目前,利用风电和光伏发电出力的互补性,将二者协同配置,构建风-光混合发电系统,能够在一定程度上平抑出力波动。在风-光混 合发电系统中配置储能,形成风-光-储混合发电系统能够进一步抑制出力波动,并增强系统内部的有功功率储备。利用合理的控制策略,能够通过风-光-储混合发电系统的电力电子并网器件来模拟同步机组的有功功率响应。但是,风-光-储混合发电系统内部转动惯量主要依靠风力机和异步发电机存储,相对较小,且电力电子并网器件弱抗扰性问题突出,扰动事故后,风-光-储混合发电系统易发生连锁脱网,不仅不能为电网提供有效地有功功率支撑,反而会加重事故的严重程度。
发明内容
为了解决上述问题,本公开提出了一种同步并网的风-光-储混合发电系统及其工作方法,在利用风电和光伏发电互补性平抑出力波动的基础上,利用储能装置进一步抑制出力波动;通过配置储能装置和旋转器件增加发电系统内部有功功率储备,增强其在扰动事故后为大电网提供有功功率支撑的能力;采用同步化的并网方式,能够较好地参与惯量响应和一次调频控制,且抗扰性强,减少连锁脱网的发生,实现风-光-储混合发电系统的同步化并网。
根据一些实施例,本公开的第一方案提供了一种同步并网的风-光-储混合发电系统,采用如下技术方案:
一种同步并网的风-光-储混合发电系统,包括:
风力发电模块,包括风力发电装置以及分别与所述风力发电装置电连接的第一电力电子换流器和第二电力电子换流器;
光伏发电模块,包括光伏发电装置以及分别与所述光伏发电装置电连接的第三电力电子换流器和第四电力电子换流器;
储能模块,包括电连接的储能装置和第五电力电子换流器,所述储能装置还分别与所述第二电力电子换流器和所述第四电力电子换流器电连接;
并网模块,其一端与所述第一电力电子换流器、所述第三电力电子换流器和所述第五电力电子换流器电连接,另一端连接电网;
监控模块,分别与所述风力发电模块、所述光伏发电模块、所述储能模块和所述并网模块电连接,用于设置所述风力发电模块、所述光伏发电模块和所述储能模块的控制参数,通过判断发电上网功率、风力发电装置的发电功率和光伏发电装置的发电功率之间的逻辑关系,调整储能单元的工作状态,进行风-光-储混合发电系统的同步并网。
作为进一步的技术限定,所述风力发电装置包括依次连接的风力机、变速箱和异步发电机。
作为进一步的技术限定,所述并网模块包括电连接的直流电动机和同步发电装置,所述同步发电装置包括电连接的同步发电机和励磁单元。
进一步的,所述监控装置包括监测模块、显示模块,以及分别与所述监测模块和所述显示模块相连接的控制模块。
进一步的,所述控制模块分别与所述风力发电装置、所述第一电 力电子换流器、所述第二电力电子换流器、所述光伏发电装置、所述第三电力电子换流器、所述第四电力电子换流器和所述第五电力电子换流器电连接;所述监测模块分别与所述风力发电装置、所述第一电力电子换流器、所述第二电力电子换流器、所述光伏发电装置、所述第三电力电子换流器、所述第四电力电子换流器、所述第五电力电子换流器、所述储能单元、所述直流电动机、所述同步发电机和所述励磁单元电连接。
根据一些实施例,本公开的第二方案提供了一种同步并网的风-光-储混合发电系统的工作方法,采用了第一方案中所提供的一种同步并网的风-光-储混合发电系统,采用如下的技术方案:
一种同步并网的风-光-储混合发电系统的工作方法,包括以下步骤:
获取风力发电装置的发电功率、光伏发电装置的发电功率和电网上网功率;
结合风-光-储混合发电系统的控制参数,得到储能装置的第一充电启动功率和储能装置的第二充电启动功率;
分别判断电网上网功率与所述储能装置的第一充电启动功率和储能装置的第二充电启动功率之间的大小关系,得到储能装置所处的工作状态,进行光-储混合发电系统的同步并网。
作为进一步的技术限定,获取风力发电装置的发电功率、光伏发电装置的发电功率,及调度中心指定的电网上网功率,通过所获取的 三个功率计算储能装置的运行功率。
作为进一步的技术限定,所述风-光-储混合发电系统的控制参数包括由风力发电装置到同步发电装置的能量传递系数c w、由光伏发电装置到同步发电装置的能量传递系数c s、由储能装置到同步发电装置的能量传递系数c b、由同步发电装置到电网的能量转换效率c t、由风力发电装置到储能装置的能量传递系数c c和由光伏发电装置到储能装置的能量传递系数c a
作为进一步的技术限定,所述储能装置的第一充电启动功率通过风力发电装置的发电功率、由风力发电装置到同步发电装置的能量传递效率和由同步发电装置到电网的能量转换效率所决定;所述储能装置的第二充电启动功率通过风力发电装置的发电功率、由风力发电装置到同步发电装置的能量传递效率、由同步发电装置到电网的能量转换效率、光伏发电装置的发电功率和由光伏发电装置到同步发电装置的能量传递效率所决定。
作为进一步的技术限定,当电网上网功率不大于储能装置的第一充电启动功率时,风力发电装置经第二电力电子换流器以及光伏发电装置经第四电力电子换流器同时向储能装置充电,储能装置处于充电状态,受电网上网功率的影响,光伏发电装置不为直流电动机提供电能,直流电动机只接收风力发电装置经第一电力电子换流器所提供的电能;
当电网上网功率处于储能装置的第一充电启动功率和储能装置 的第二充电启动功率之间时,光伏发电装置经第四电力电子换流器向储能装置充电,储能装置处于充电状态,受电网上网功率的影响,风力发电装置不为储能装置提供电能,直流电动机同时接收风力发电装置经第一电力电子换流器以及光伏发电装置经第三电力电子换流器所提供的电能;
当电网上网功率大于储能装置的第二充电启动功率时,受电网上网功率的影响,储能装置处于放电状态,直流电动机同时接收风力发电装置经第一电力电子换流器、光伏发电装置经第三电力电子换流器以及储能装置经第五电力电子换流器所提供的电能。
与现有技术相比,本公开的有益效果为:
1.本公开作为新能源发电系统,能够实现风-光-储混合发电系统的同步化并网,在利用风电和光伏发电互补性平抑出力波动的基础上,利用储能装置进一步抑制出力波动;能够通过配置储能装置和旋转器件增加发电系统内部有功功率储备,增强其在扰动事故后为大电网提供有功功率支撑的能力;采用同步化的并网方式,能够较好地参与惯量响应和一次调频控制,且抗扰性强,减少连锁脱网的发生。
2.本公开安装简单,方便应用于对现有新能源发电系统的升级改造,适于大量推广;本公开中所提供的等效惯量和有功功率备用可以在一定程度上替代电网中火电机组的惯量和备用,减少火电机组开机数量,具有一定的经济效益。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步 理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是本公开实施例一中的同步并网的风-光-储混合发电系统的结构示意图;
图2是本公开实施例二中的同步并网的风-光-储混合发电方法的能量转换过程示意图;
图3是本公开实施例二中的储能装置运行功率调整过程的流程图;
图4是本公开实施例二中的同步发电装置接收功率判断过程的流程图;
图5是本公开实施例二中的同步并网的风-光-储混合发电方法的流程图。
具体实施方式
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
实施例一
本公开实施例一提供了一种同步并网的风-光-储混合发电系统。
如图1所示的一种同步并网的风-光-储混合发电系统,包括风力发电装置、光伏发电装置、第一电力电子换流器、第二电力电子换流器、第三电力电子换流器、第四电力电子换流器、第五电力电子换流器、储能装置、同步发电装置和监控装置。
具体的,所述风力发电装置包括风力机、变速箱和异步发电机;所述光伏发电装置包括光伏电池板;所述同步发电装置包括直流电动机、同步发电机和励磁模块;所述监控装置包括监测模块、控制模块和显示模块。
所述风力发电装置与第一电力电子换流器和第二电力电子换流器相连接;所述风力机、变速箱和异步发电机依次连接;所述光伏发电装置与第三电力电子换流器和第四电力电子换流器相连接;所述第一电力电子换流器与同步发电装置相连接;所述第二电力电子换流器与储能装置相连接;所述第三电力电子换流器与同步发电装置相连接;所述第四电力电子换流器与储能装置相连接;所述储能装置两端分别与第二电力电子换流器、第四电力电子换流器和第五电力电子换流器相连接;所述第五电力电子换流器与同步发电装置相连接;所述同步发电装置两端分别与第一电力电子换流器、第二电力电子换流器、第 五电力电子换流器和电网相连接;所述监控装置与风力发电装置、光伏发电装置、第一电力电子换流器、第二电力电子换流器、第三电力电子换流器、第四电力电子换流器、第五电力电子换流器、储能装置和同步发电装置相连接。
在本实施例中,风力发电装置能够将风能转换为交流电能;所述变速箱能够调节异步发电机转速;所述光伏发电装置能够将太阳能转换为直流电能;所述第一电力电子换流器能够将风力发电装置产生的交流电能转换为同步发电装置所需的直流电能;所述第二电力电子换流器能够将风力发电装置产生的交流电能转换为储能装置所需的直流电能;所述第三电力电子换流器能够将光伏发电装置产生的直流电能转换为同步发电装置所需的直流电能;所述第四电力电子换流器能够将光伏发电装置产生的交流电能转换为储能装置所需的直流电能;所述储能装置能够将第二电力电子换流器和第四电力电子换流器传输的直流电能转换为化学能进行存储,而且能够将内部存储的化学能转换为直流电能;所述第五电力电子换流器能够将储能装置释放的直流电能转换为同步发电装置所需的直流电能;所述同步发电装置能够将第一电力电子换流器、第三电力电子换流器和第五电力电子换流器传输的直流电能转换为交流电能,并传输给电网;所述励磁模块能够调节同步发电机的并网电压;所述监控装置能够监测并显示相关参数,而且能够进行相应控制。
实施例二
本公开实施例二提供了一种同步并网的风-光-储混合发电系统的工作方法。
一种同步并网的风-光-储混合发电系统的工作方法,包括以下步骤:
获取风力发电装置的发电功率、光伏发电装置的发电功率和电网上网功率;
结合风-光-储混合发电系统的控制参数,得到储能装置的第一充电启动功率和储能装置的第二充电启动功率;
分别判断电网上网功率与所述储能装置的第一充电启动功率和储能装置的第二充电启动功率之间的大小关系,得到储能装置所处的工作状态,进行光-储混合发电系统的同步并网。
如图2所示,所述风力机将风能转换为机械能,并传输给异步发电机;所述异步发电机将机械能转换为交流电能;所述光伏电池板将太阳能转换为直流电能;所述第一电力电子换流器将异步发电机产生的交流电能转换为直流电动机所需的直流电能;所述第二电力电子换流器将异步发电机产生的交流电能转换为储能装置所需的直流电能;所述第三电力电子换流器将光伏电池板产生的直流电能转换为直流电动机所需的直流电能;所述第四电力电子换流器将光伏电池板产生的直流电能转换为储能装置所需的直流电能;所述储能装置将第二电力电子换流器和第四电力电子换流器传输的直流电能转换为化学能存储;所述储能装置将化学能转换为直流电能;所述第五电力电子换 流器将储能装置释放的直流电能转换为直流电动机所需的直流电能;所述直流电动机将直流电能转换为机械能;所述同步发电机将机械能转换为交流电能。
所述风力发电装置、光伏发电装置、储能装置与电网间的功率关系为,
P G=(P W·c w+P S·c s+P B·c b)·c t
其中,P G为上网功率;P W为风力发电装置的发电功率;P S为光伏发电装置的发电功率;P B为储能装置的运行功率;c w为由风力发电装置到同步发电装置的能量传递系数;c s为由光伏发电装置到同步发电装置的能量传递系数;c b为由储能装置到同步发电装置的能量传递系数;c t为由同步发电装置到电网的能量转换效率。
如图3所示,所述储能装置基于风力发电装置的发电功率P W、光伏发电装置的发电功率P S和指定的发电上网功率P G来调整其运行功率P B
Figure PCTCN2022077499-appb-000001
其中,c c为由风力发电装置到储能装置的能量传递效系数,c a为由光伏发电装置到储能装置的能量传递系数。
进一步的,当电网上网功率不大于储能装置的第一充电启动功率时,即P G≤P W·c w·c t,风力发电装置和光伏发电装置同时为储能装置充 电,储能装置运行于充电模式,储存由第二电力电子换流器和第四电力电子换流器传输的电能
Figure PCTCN2022077499-appb-000002
当电网上网功率处于储能装置的第一充电启动功率和储能装置的第二充电启动功率之间时,即P W·c w·c t<P G≤P W·c w·c t+P S·c s·c t,光伏发电装置为储能装置充电,储能装置运行于充电模式,储存由第四电力电子换流器传输的电能
Figure PCTCN2022077499-appb-000003
当电网上网功率大于储能装置的第二充电启动功率时,即P G>P W·c w·c t+P S·c s·c t,储能装置运行于放电模式,经第五电力电子换流器释放电能
Figure PCTCN2022077499-appb-000004
如图4所示,当P G≤P W·c w·c t时,同步发电装置由风力发电装置供电,只接收由第一电力电子换流器传输的电能;当P W·c w·c t<P G≤P W·c w·c t+P S·c s·c t时,同步发电装置由风力发电装置和光伏发电装置共同供电,接收由第一电力电子换流器和第三电力电子换流器传输的电能;当P G>P W·c w·c t+P S·c s·c t时,同步发电装置由风力发电装置、光伏发电装置和储能装置共同供电,接收由第一电力电子换流器、第三电力电子换流器和第五电力电子换流器传输的电能。
如图5所示,用户通过监控装置设置本发明的相关运行参数;风力发电装置将风能转换为交流电能,光伏发电系统将太阳能转换为直流电能;当P G≤P W·c w·c t时,风力发电装置经第一电力电子换流器向同步发电装置供电,经第二电力电子换流器向储能装置供电,光伏发电装置经第四电力电子换流器向储能装置供电;当 P W·c w·c t<P G≤P W·c w·c t+P S·c s·c t时,风力发电装置经第一电力电子换流器向同步发电装置供电,光伏发电装置经第三电力电子换流器向同步发电装置供电,经第四电力电子换流器向储能装置供电;当P G>P W·c w·c t+P S·c s·c t时,风力发电装置经第一电力电子换流器向同步发电装置供电,光伏发电装置经第三电力电子换流器向同步发电装置供电,储能装置经第四电力电子换流器向同步发电装置供电;同步发电装置产生交流电能,并传输到电网。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种同步并网的风-光-储混合发电系统,其特征在于,包括:
    风力发电模块,包括风力发电装置以及分别与所述风力发电装置电连接的第一电力电子换流器和第二电力电子换流器;
    光伏发电模块,包括光伏发电装置以及分别与所述光伏发电装置电连接的第三电力电子换流器和第四电力电子换流器;
    储能模块,包括电连接的储能装置和第五电力电子换流器,所述储能装置还分别与所述第二电力电子换流器和所述第四电力电子换流器电连接;
    并网模块,其一端与所述第一电力电子换流器、所述第三电力电子换流器和所述第五电力电子换流器电连接,另一端连接电网;
    监控模块,分别与所述风力发电模块、所述光伏发电模块、所述储能模块和所述并网模块电连接,用于设置所述风力发电模块、所述光伏发电模块和所述储能模块的控制参数,通过判断发电上网功率、风力发电装置的发电功率和光伏发电装置的发电功率之间的逻辑关系,调整储能单元的工作状态,进行风-光-储混合发电系统的同步并网。
  2. 如权利要求1中所述的一种同步并网的风-光-储混合发电系统,其特征在于,所述风力发电装置包括依次连接的风力机、变速箱和异步发电机。
  3. 如权利要求1中所述的一种同步并网的风-光-储混合发电系统,其特征在于,所述并网模块包括电连接的直流电动机和同步发电 装置,所述同步发电装置包括电连接的同步发电机和励磁单元。
  4. 如权利要求3中所述的一种同步并网的风-光-储混合发电系统,其特征在于,所述监控装置包括监测模块、显示模块,以及分别与所述监测模块和所述显示模块相连接的控制模块。
  5. 如权利要求4中所述的一种同步并网的风-光-储混合发电系统,其特征在于,所述控制模块分别与所述风力发电装置、所述第一电力电子换流器、所述第二电力电子换流器、所述光伏发电装置、所述第三电力电子换流器、所述第四电力电子换流器和所述第五电力电子换流器电连接;所述监测模块分别与所述风力发电装置、所述第一电力电子换流器、所述第二电力电子换流器、所述光伏发电装置、所述第三电力电子换流器、所述第四电力电子换流器、所述第五电力电子换流器、所述储能单元、所述直流电动机、所述同步发电机和所述励磁单元电连接。
  6. 一种同步并网的风-光-储混合发电系统的工作方法,采用了权利要求1-5中任一项所述的一种同步并网的风-光-储混合发电系统,其特征在于,包括以下步骤:
    获取风力发电装置的发电功率、光伏发电装置的发电功率和电网上网功率;
    结合风-光-储混合发电系统的控制参数,得到储能装置的第一充电启动功率和储能装置的第二充电启动功率;
    分别判断电网上网功率与所述储能装置的第一充电启动功率和 储能装置的第二充电启动功率之间的大小关系,得到储能装置所处的工作状态,进行光-储混合发电系统的同步并网。
  7. 如权利要求6中所述的一种同步并网的风-光-储混合发电系统的工作方法,其特征在于,获取风力发电装置的发电功率、光伏发电装置的发电功率,及调度中心指定的电网上网功率,通过所获取的三个功率计算储能装置的运行功率。
  8. 如权利要求6中所述的一种同步并网的风-光-储混合发电系统的工作方法,其特征在于,所述风-光-储混合发电系统的控制参数包括由风力发电装置到同步发电装置的能量传递系数c w、由光伏发电装置到同步发电装置的能量传递系数c s、由储能装置到同步发电装置的能量传递系数c b、由同步发电装置到电网的能量转换效率c t、由风力发电装置到储能装置的能量传递系数c c和由光伏发电装置到储能装置的能量传递系数c a
  9. 如权利要求6中所述的一种同步并网的风-光-储混合发电系统的工作方法,其特征在于,所述储能装置的第一充电启动功率通过风力发电装置的发电功率、由风力发电装置到同步发电装置的能量传递效率和由同步发电装置到电网的能量转换效率所决定;所述储能装置的第二充电启动功率通过风力发电装置的发电功率、由风力发电装置到同步发电装置的能量传递效率、由同步发电装置到电网的能量转换效率、光伏发电装置的发电功率和由光伏发电装置到同步发电装置的能量传递效率所决定。
  10. 如权利要求6中所述的一种同步并网的风-光-储混合发电系统的工作方法,其特征在于,
    当电网上网功率不大于储能装置的第一充电启动功率时,风力发电装置经第二电力电子换流器以及光伏发电装置经第四电力电子换流器同时向储能装置充电,储能装置处于充电状态,受电网上网功率的影响,光伏发电装置不为直流电动机提供电能,直流电动机只接收风力发电装置经第一电力电子换流器所提供的电能;
    当电网上网功率处于储能装置的第一充电启动功率和储能装置的第二充电启动功率之间时,光伏发电装置经第四电力电子换流器向储能装置充电,储能装置处于充电状态,受电网上网功率的影响,风力发电装置不为储能装置提供电能,直流电动机同时接收风力发电装置经第一电力电子换流器以及光伏发电装置经第三电力电子换流器所提供的电能;
    当电网上网功率大于储能装置的第二充电启动功率时,受电网上网功率的影响,储能装置处于放电状态,直流电动机同时接收风力发电装置经第一电力电子换流器、光伏发电装置经第三电力电子换流器以及储能装置经第五电力电子换流器所提供的电能。
PCT/CN2022/077499 2021-12-15 2022-02-23 一种同步并网的风-光-储混合发电系统及其工作方法 WO2023108891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111534492.9A CN114204601B (zh) 2021-12-15 2021-12-15 一种同步并网的风-光-储混合发电系统及其工作方法
CN202111534492.9 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023108891A1 true WO2023108891A1 (zh) 2023-06-22

Family

ID=80654054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077499 WO2023108891A1 (zh) 2021-12-15 2022-02-23 一种同步并网的风-光-储混合发电系统及其工作方法

Country Status (2)

Country Link
CN (1) CN114204601B (zh)
WO (1) WO2023108891A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116937695A (zh) * 2023-09-18 2023-10-24 国网浙江宁波市鄞州区供电有限公司 一种光伏电源的数据分析方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510089A (zh) * 2011-11-25 2012-06-20 北京金风科创风电设备有限公司 风光储微网系统
CN104701891A (zh) * 2015-04-01 2015-06-10 成都鼎智汇科技有限公司 一种可自动实现频率控制的微电网系统的监控装置
WO2017056114A1 (en) * 2015-10-01 2017-04-06 Regen Powertech Private Limited Wind-solar hybrid power generation system and method
CN113690946A (zh) * 2021-10-26 2021-11-23 国网(天津)综合能源服务有限公司 一种基于同步电机动态响应采样的光伏并网系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437571B (zh) * 2011-11-09 2014-08-06 南方电网科学研究院有限责任公司 一种风光储的模拟系统
CN105356514A (zh) * 2015-10-22 2016-02-24 成都鼎智汇科技有限公司 一种可自动实现电压平衡的风光一体发电系统的监控方法
CN209250260U (zh) * 2019-01-30 2019-08-13 国网山东省电力公司经济技术研究院 一种基于柔性直流互联的大规模风光电源并网系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510089A (zh) * 2011-11-25 2012-06-20 北京金风科创风电设备有限公司 风光储微网系统
CN104701891A (zh) * 2015-04-01 2015-06-10 成都鼎智汇科技有限公司 一种可自动实现频率控制的微电网系统的监控装置
WO2017056114A1 (en) * 2015-10-01 2017-04-06 Regen Powertech Private Limited Wind-solar hybrid power generation system and method
CN113690946A (zh) * 2021-10-26 2021-11-23 国网(天津)综合能源服务有限公司 一种基于同步电机动态响应采样的光伏并网系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116937695A (zh) * 2023-09-18 2023-10-24 国网浙江宁波市鄞州区供电有限公司 一种光伏电源的数据分析方法、装置、设备及存储介质
CN116937695B (zh) * 2023-09-18 2024-02-13 国网浙江宁波市鄞州区供电有限公司 一种光伏电源的数据分析方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114204601B (zh) 2023-06-02
CN114204601A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN107947221B (zh) 一种电力电子变压器直流故障穿越方法
CN109698495B (zh) 一种基于超级电容的直流微电网系统
WO2021008235A1 (zh) 直流耦合离网制氢系统及其控制柜供电装置和控制方法
CN103001247B (zh) 一种离网型微电网黑启动方法
CN103023067B (zh) 基于公共直流母线的直驱风力发电系统
CN101436778A (zh) 一种微型电网组网方法
WO2023029335A1 (zh) 一种光储充系统的参数配置方法及终端
EP2566004A1 (en) Photovoltaic powered system with adaptive power control and method of operating the same
CN105337306A (zh) 一种光储一体化发电系统
CN206388228U (zh) 一种多能互联交直流混合微电网系统
WO2013026235A1 (zh) 供电系统及其控制装置
CN102624288A (zh) 交流太阳能模块及电能调度方法
WO2023108891A1 (zh) 一种同步并网的风-光-储混合发电系统及其工作方法
WO2011063620A1 (zh) 一种能源供应方法及装置
CN102882233A (zh) 中压分布式mppt大功率光伏并网电站
CN112952909A (zh) 一种光伏储能系统的能量调度系统及方法
CN202168016U (zh) 离网型风光互补发电系统
CN110365040B (zh) 一种水光蓄系统控制方法
CN202817795U (zh) 多级升压大功率光伏并网电站
WO2023108890A1 (zh) 一种物理同步的光-储混合发电系统及其工作方法
Xu et al. Energy management and control strategy for DC micro-grid in data center
CN109301861A (zh) 一种光伏与光热系统协调发电的黑启动系统及其恢复方法
CN209881421U (zh) 油井区域多源微电网供电装置系统
CN109599898B (zh) 提高分布式电源消纳的控制方法及装置
CN112615396A (zh) 一种屋顶光储型风电场黑启动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905663

Country of ref document: EP

Kind code of ref document: A1