WO2023108813A1 - 燃气轮机余热回收系统和具有其的油气开采系统 - Google Patents

燃气轮机余热回收系统和具有其的油气开采系统 Download PDF

Info

Publication number
WO2023108813A1
WO2023108813A1 PCT/CN2021/141832 CN2021141832W WO2023108813A1 WO 2023108813 A1 WO2023108813 A1 WO 2023108813A1 CN 2021141832 W CN2021141832 W CN 2021141832W WO 2023108813 A1 WO2023108813 A1 WO 2023108813A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste heat
steam
flue gas
gas
recovery system
Prior art date
Application number
PCT/CN2021/141832
Other languages
English (en)
French (fr)
Inventor
吴琼
张亭
邹江磊
刘志杰
查万春
张聪
周立宾
冯宁
田德坤
王文书
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023108813A1 publication Critical patent/WO2023108813A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants

Definitions

  • the present application relates to the technical field of petroleum exploitation, in particular to a gas turbine waste heat recovery system and an oil and gas exploitation system having the same.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a gas turbine waste heat recovery system, which can recycle the waste heat of the flue gas after the gas turbine unit generates electricity, thereby achieving energy saving and emission reduction, high energy utilization rate, improving economic benefits, and reducing fuel consumption costs. At the same time reduce the emission of nitrogen oxides.
  • the gas turbine waste heat recovery system includes: a flue gas waste heat boiler, which is used to collect the flue gas after the gas turbine unit generates electricity, and use the flue gas to produce superheated saturated steam; fracturing equipment, fracturing The equipment is connected to the steam output end of the flue gas waste heat boiler, and the fracturing equipment is used to inject steam into oil and gas production wells.
  • supersaturated steam is produced in the flue gas waste heat boiler by using the exhausted flue gas waste heat after the gas turbine unit generates electricity, and the supersaturated steam is pressurized and injected into the oil and gas production well through the fracturing equipment. After the heat of the supersaturated steam is absorbed by the oil and gas production well, the viscosity of the heavy oil decreases, and at the same time, the steam liquefies into water, and the resulting mixture is easy to exploit.
  • the gas turbine waste heat recovery system can recycle the waste heat of the flue gas after the gas turbine unit generates electricity, so as to achieve energy saving and emission reduction.
  • the energy utilization rate is high, which can improve economic benefits, reduce fuel consumption costs, and reduce nitrogen oxide emissions.
  • the gas turbine waste heat recovery system also includes: a wellhead blowout preventer, which is arranged at the wellhead of the oil and gas production well, and the wellhead blowout preventer is connected to the output end of the fracturing equipment, and the supersaturated steam passes through the fracturing After the equipment is pressurized, it enters the wellhead blowout preventer from the output end and injects it into the oil and gas production well.
  • the wellhead blowout preventer can close the wellhead when the oil and gas pressure in the oil and gas production well rises, preventing the risk of blowout caused by the increase in the oil and gas production downhole pressure.
  • the gas turbine waste heat recovery system further includes: a steam storage tank, the steam storage tank includes a first steam output port, the first steam output port is connected to the inlet port of the fracturing equipment, and the steam storage tank is used to collect and store smoke
  • the superheated saturated steam produced by the gas waste heat boiler is used for the next process.
  • the steam production rate of the flue gas waste heat boiler is not consistent with the steam consumption rate of the fracturing equipment.
  • the superheated saturated steam is collected and stored through the steam storage tank to provide continuous and stable steam for the next process.
  • the waste heat recovery system of the gas turbine further includes: a pressure regulating valve, which is arranged on the pipeline connecting the steam storage tank and the fracturing equipment.
  • the pressure regulating valve is used to adjust the pressure of the steam output through the first steam output port, so that the pressure of the steam matches the technical requirements of the fracturing equipment.
  • the steam storage tank also includes a second steam output port, and the second steam output port is connected to the turbogenerator, so that the steam can also be used to drive the turbogenerator to generate power, thereby realizing more uses of the steam, Improve energy utilization.
  • the flue gas waste heat boiler is provided with a liquid flow pipeline, and the flue gas heats the liquid entering the liquid flow pipeline to generate superheated saturated steam, and also includes a condenser, the inlet of the condenser and the waste steam outlet of the turbogenerator set Connected, the outlet of the condenser communicates with the liquid flow pipeline.
  • the flue gas heats the liquid entering the liquid flow pipeline to generate superheated saturated steam
  • the superheated saturated steam enters the turbogenerator unit through the second steam output port to do work and generate electricity.
  • the outlet of the condenser communicates with the liquid flow pipeline to replenish liquid to the liquid flow pipeline. In this way, the recycling of steam can be realized and the waste of resources can be reduced.
  • the gas turbine waste heat recovery system further includes: a three-way baffle valve, the first end of the three-way baffle valve communicates with the flue gas outlet end of the turbine, and the second end of the three-way baffle valve communicates with the flue gas outlet end of the turbine.
  • the flue gas waste heat boiler is connected, and the third end of the three-way baffle valve is connected with the exhaust chimney.
  • the flue gas generated by the turbine enters the flue gas waste heat boiler through the second end of the three-way baffle valve, and the unnecessary flue gas of the flue gas waste heat boiler can be discharged through the exhaust chimney, which makes the structure reasonable.
  • the amount of flue gas entering the flue gas waste heat boiler can be adjusted through the opening degree of the three-way baffle valve.
  • the flue gas waste heat boiler is provided with a liquid flow pipeline, and further includes: a first sensor and a controller, the first sensor is arranged on the liquid flow pipeline, and the controller is used to receive the first sensor The signal and control the opening of the three-way flapper valve according to the signal, so that the flue gas can be reasonably used to heat the liquid in the liquid flow pipeline, and the energy utilization rate can be improved.
  • the gas turbine waste heat recovery system further includes liquid supply equipment, which is connected to the liquid flow pipeline, and the liquid supply equipment provides supplementary liquid for the liquid flow pipeline, so as to maintain the normal operation of the liquid flow circuit in the gas turbine waste heat recovery system.
  • a second sensor is further provided on the pipeline connecting the steam storage tank and the fracturing equipment, and the second sensor is used for monitoring the steam flow in the pipeline.
  • An oil and gas recovery system includes: the above gas turbine waste heat recovery system.
  • the waste heat of the flue gas after the gas turbine unit generates power can be recycled and used for oil and gas extraction, thereby achieving energy saving and emission reduction, high energy utilization rate, improving economic benefits, and reducing fuel consumption costs while reducing nitrogen oxide emissions.
  • Fig. 1 is a schematic diagram of a gas turbine waste heat recovery system according to an embodiment of the present invention.
  • Gas turbine unit 10 air compressor 11, combustion chamber 12, turbine 13, flue gas outlet 132, generator 14, steam turbine generator unit 15,
  • Three-way flapper valve 80 first end 80a, second end 80b, third end 80c, exhaust chimney 81, first sensor 82, controller 83, second sensor 84,
  • a gas turbine waste heat recovery system 1 according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • a gas turbine waste heat recovery system 1 includes: a gas turbine unit 10 , a flue gas waste heat boiler 20 and fracturing equipment 30 .
  • the flue gas waste heat boiler 20 is used to collect the flue gas generated by the gas turbine unit 10, and use the flue gas to produce superheated saturated steam;
  • the fracturing equipment 30 is connected to the steam output end 21 of the flue gas waste heat boiler 20,
  • the device 30 is used to inject steam into the oil and gas production well 2 .
  • the air is compressed by the air compressor 11 and enters the combustion chamber 12 to burn with fuel, and the high-temperature gas formed by the combustion enters the turbine 13, and drives the turbine of the turbine 13 to do work to drive the generator 14 to generate electricity.
  • the generator 14 can provide stable power for equipment that needs power support.
  • the gas turbine unit 10 includes an air compressor 11, a combustion chamber 12, and a turbine 13.
  • the air compressor 11 and the turbine 13 are connected in series, and the turbine 13 generates flue gas;
  • the flue gas waste heat boiler 20 and the turbine 13 connection, the flue gas waste heat boiler 20 uses the flue gas to produce superheated saturated steam;
  • the flue gas waste heat boiler 20 is connected to the flue gas outlet port 132 of the turbine 13, and the waste heat of the flue gas discharged after the gas turbine unit 10 generates electricity is used in the waste heat of the flue gas
  • Supersaturated steam is produced in the boiler 20, and the supersaturated steam is pressurized and injected into the oil and gas production well 2 through the fracturing equipment 30. After the heat of the supersaturated steam is absorbed by the oil and gas production well 2, the viscosity of the heavy oil decreases and the steam liquefies into water, the resulting mixture is easy to exploit.
  • connection here may be a fixed connection, a detachable connection, or an integral connection; it may be a direct connection or an indirect connection through an intermediary, which is not limited in this application.
  • the fracturing equipment 30 includes a fracturing truck, a sand mixing truck, a balancing truck, an instrument truck, and a manifold truck, and the like.
  • the exhaust gas temperature of the gas turbine unit 10 is high (usually higher than 500°C), and because of the high power density of the gas turbine, equipment of the same size can produce more flue gas, which can generate more steam for oil extraction, so through Recycling and utilizing the flue gas generated by the gas turbine unit 10 can better improve energy efficiency and reduce fuel consumption costs.
  • the gas turbine waste heat recovery system 1 can recycle the waste heat of the flue gas after the gas turbine unit 10 generates power, thereby achieving energy saving and emission reduction, high energy utilization rate, and can improve economic benefits and reduce Fuel consumption costs while reducing NOx emissions.
  • the gas turbine waste heat recovery system 1 also includes: a wellhead blowout preventer 40, the wellhead blowout preventer 40 is arranged at the wellhead of the oil and gas production well 2, the wellhead blowout preventer 40 and the fracturing equipment The output end of 30 is connected, and the supersaturated steam is pressurized by the fracturing equipment 30, enters the wellhead blowout preventer 40 from the output end, and is injected into the oil and gas production well 2. Close the wellhead to prevent the risk of blowout caused by the pressure rise in the oil and gas production well 2.
  • the wellhead blowout preventer 40 can close the wellhead during operations such as oil testing, well workover, and well completion to prevent accidents.
  • the wellhead blowout preventer 40 includes but not limited to single ram blowout preventer, double ram blowout preventer, universal (annular) blowout preventer and rotary blowout preventer, etc., here in the gas turbine waste heat recovery system 1
  • the internal wellhead blowout preventer 40 does not refer to only one type, but also can be used in combination of the above three or four types to realize that the wellhead can be closed when the oil and gas pressure under the oil and gas production well 2 rises.
  • the gas turbine waste heat recovery system 1 further includes: a steam storage tank 50, the steam storage tank 50 includes a first steam output port 51, and the first steam output port 51 is connected to the fracturing equipment 30.
  • the inlet end is connected, and the steam storage tank 50 is used to collect and store the superheated saturated steam generated by the flue gas waste heat boiler 20 for use in the next process.
  • the steam production rate of the flue gas waste heat boiler 20 is not consistent with the steam consumption rate of the fracturing equipment 30.
  • the steam storage tank 50 collects and stores superheated saturated steam to continuously and stably provide steam for the next process.
  • the gas turbine waste heat recovery system 1 further includes: a pressure regulating valve 60 , and the pressure regulating valve 60 is arranged on the pipeline connecting the steam storage tank 50 and the fracturing equipment 30 .
  • the pressure regulating valve 60 is used to adjust the pressure of the steam output through the first steam output port 51 , so that the pressure of the steam matches the technical requirements of the fracturing equipment 30 .
  • the pressure regulating valve 60 includes but is not limited to a relief valve, a pressure reducing valve, a sequence valve, and a pressure switch.
  • the steam storage tank 50 also includes a second steam output port 52, and the second steam output port 52 is connected with the turbogenerator set 15, so that the steam can also be used to drive the turbogenerator set 15 Generate electricity by doing work, so as to achieve more uses of steam and improve energy utilization.
  • the power output end of the turbogenerator set 15 is electrically connected to the fracturing equipment 30, and the power generated by the turbogenerator set 15 provides power support for the fracturing equipment 30 through the power output end. Improve energy utilization and improve economic benefits.
  • the power output end of the turbogenerator set 15 can also be connected with other power-consuming equipment to provide power support for other power-consuming equipment.
  • a liquid flow pipeline 23 is provided in the flue gas waste heat boiler 20, and the flue gas heats the liquid entering the liquid flow pipeline 23 to generate superheated saturated steam, and also includes a condenser 70, the condenser 70
  • the inlet of the condenser 70 communicates with the waste steam port of the turbogenerator set 15, and the outlet of the condenser 70 communicates with the liquid flow pipeline 23.
  • the flue gas heats the liquid entering the liquid flow pipeline 23 to generate superheated saturated steam
  • the superheated saturated steam enters the turbogenerator unit 15 through the second steam output port 52 to perform work to generate electricity
  • the waste steam is discharged into the condenser 70 through the waste steam port
  • the outlet of the condenser 70 communicates with the liquid flow line 23 to replenish liquid to the liquid flow line 23 . In this way, the recycling of steam can be realized and the waste of resources can be reduced.
  • the gas turbine waste heat recovery system 1 also includes: a three-way baffle valve 80, the first end 80a of the three-way baffle valve 80 and the flue gas outlet end 132 of the turbine 13
  • the second end 80b of the three-way damper valve 80 communicates with the flue gas waste heat boiler 20
  • the third end 80c of the three-way damper valve 80 communicates with the exhaust chimney 81 .
  • the flue gas generated by the turbine 13 enters the flue gas waste heat boiler 20 through the second end 80b of the three-way damper valve 80, and the unnecessary flue gas of the flue gas waste heat boiler 20 can be discharged through the exhaust chimney 81, so that The structure is set up reasonably.
  • the amount of flue gas entering the flue gas waste heat boiler 20 can be adjusted by the opening degree of the three-way damper valve 80. It should be noted that the second end 80b of the three-way baffle valve 80 communicates with the flue gas waste heat boiler 20 through the flue gas insulation pipe to prevent heat loss of the flue gas.
  • the three-way flapper valve 80 includes but is not limited to a louver type flapper valve, an electric screw-screw flapper type flapper valve, and an electro-hydraulic flapper valve type.
  • the flue gas waste heat boiler 20 is provided with a liquid flow pipeline 23, and also includes: a first sensor 82 and a controller 83, and the first sensor 82 is located at On the liquid flow pipeline 23, the controller 83 is used to receive the signal of the first sensor 82 and control the opening degree of the three-way flapper valve 80 according to the signal, so that the liquid in the liquid flow pipeline 23 can be rationally used by the flue gas. Heating, improve energy efficiency.
  • the flue gas waste heat boiler 20 includes: a superheater, an evaporator, an economizer, a steam drum, a feed water pump, a preheater, a deaerator, and a desuperheater, among which the superheater, the evaporator, and the economizer
  • the coal burner is an important part in the flue gas waste heat boiler 20,
  • a flue gas waste heat boiler 20 is provided with a waste gas chimney 22, and the heat released by the temperature of the flue gas from high temperature to the exhaust gas temperature is used to heat the liquid so that it becomes steam, usually the liquid is
  • the liquid is
  • the flue gas waste heat boiler 20 After water and liquid enter the flue gas waste heat boiler 20, they first enter the economizer to absorb heat and heat up to a saturation temperature slightly lower than the pressure of the steam drum. The steam finally enters the superheater to produce supersaturated steam.
  • the gas turbine waste heat recovery system 1 further includes a liquid supply device 90, which communicates with the liquid flow pipeline 23, and the liquid supply equipment 90 provides supplementary liquid for the liquid flow pipeline 23 to maintain Normal operation of the liquid flow loop in the gas turbine waste heat recovery system 1.
  • a second sensor 84 is further provided on the pipeline connecting the steam storage tank 50 and the fracturing equipment 30 , and the second sensor 84 is used to monitor the steam flow in the pipeline.
  • the oil and gas recovery system includes: the above gas turbine waste heat recovery system 1 .
  • the waste heat of the flue gas after the gas turbine unit 10 generates power can be recycled and used for oil and gas extraction, so as to achieve energy saving and emission reduction, high energy utilization rate, and can improve economic benefits and reduce fuel costs. Consumption costs, while reducing nitrogen oxide emissions.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种燃气轮机余热回收系统(1)和具有其的油气开采系统,属于余热回收技术领域,所述燃气轮机余热回收系统(1)包括:烟气余热锅炉(20),烟气余热锅炉(20)用于收集燃气轮机组(10)发电后的烟气,并利用所述烟气生产过热饱和蒸汽;压裂设备(30),压裂设备(30)与烟气余热锅炉(20)的蒸汽输出端(21)连接用以将蒸汽加注至油气开采井(2)中。该燃气轮机余热回收系统(1),利用燃气轮机组(10)发电之后的排出的烟气余热生产过饱和蒸汽,将过饱和蒸汽注入到油气开采井(2)中,对烟气余热进行回收利用,从而达到节能减排,能源的利用率高,能够提升经济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。

Description

燃气轮机余热回收系统和具有其的油气开采系统 技术领域
本申请涉及石油开采技术领域,尤其涉及一种燃气轮机余热回收系统和具有其的油气开采系统。
背景技术
石油地质储量中有相当比例的稠油、超稠油,稠油流动阻力大,开采困难,注蒸汽石油开采已是提高稠油产量的安全、高效、清洁的有效方式。目前注蒸汽石油开采工艺所需要的蒸汽多由燃油锅炉产生,再通过管路将蒸汽注入到采油井下的油层。传统燃油锅炉产蒸汽需要消耗大量的高质量燃料,降低整体经济性,同时燃油锅炉排放大量的氮氧化物、硫化物和一氧化碳等有害气体,造成环境污染。
目前井场石油开采多采用传统柴油动力设备,一些井场利用柴油发动机排放尾气余热回收利用产生蒸汽,这种方式普遍存在排放烟气温度低(一般低于400℃)、烟气量少,能量消耗比较高,能源利用率低,设备噪音大,设备排放污染环境、经济效益差等缺点。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种燃气轮机余热回收系统,能够对燃气轮机组发电之后的烟气余热进行回收利用,从而达到节能减排,能源的利用率高,能够提升经济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。
根据本发明实施例的燃气轮机余热回收系统,包括:烟气余热锅炉,烟气余热锅炉用于收集燃气轮机组发电后的烟气,并利用所述烟气生产过热饱和蒸汽;压裂设备,压裂设备与烟气余热锅炉的蒸汽输出端连接,压裂设备用于将蒸汽加注至油气开采井中。
根据本发明实施例的燃气轮机余热回收系统,利用燃气轮机组发电之后的排出的烟气余热在烟气余热锅炉中生产过饱和蒸汽,将过饱和蒸汽通过压裂设备加压注入到油气开采井中,待过饱和蒸汽的热量被油气开采井吸收后,稠油的黏度下降,同时蒸汽液化成水,形成的混合物便于开采。燃气轮机余热回收系统能够对燃气轮机组发电之后的烟气余热进行回收利用,从而达到节能减排,能源的利用率高,能够提升经济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。
根据本发明实施例的燃气轮机余热回收系统,还包括:井口防喷器,井口防喷器设于油气开采井的井口,井口防喷器与压裂设备的输出端连接,过饱和蒸汽经由压裂设备加压后由输出端进入井口防喷器后注入油气开采井,井口防喷器能够在油气开采井下油气压力升高时关闭井口,防止油气开采井下压力升高产生井喷的危险。
根据本发明实施例的燃气轮机余热回收系统,还包括:蒸汽储罐,蒸汽储罐包括第一蒸汽输出口,第一蒸汽输出口与压裂设备的入口端连接,蒸汽储罐用于收集存储烟气余热锅炉产生的过热饱和蒸汽,以供下一工序使用蒸汽。烟气余热锅炉的产汽速度与压裂设备的用汽速率并不一致,通过蒸汽储罐收集存储过热饱和蒸汽,以为下一工序持续不断、稳定地提供蒸汽。
可选地,燃气轮机余热回收系统还包括:压力调节阀,压力调节阀设于蒸汽储罐和压裂设备连接的管路上。压力调节阀用于调整经由第一蒸汽输出口输出的蒸汽的压力,以使得蒸汽的压力匹配压裂设备的技术需求。
可选地,蒸汽储罐还包括第二蒸汽输出口,第二蒸汽输出口与汽轮发电机组相连,如此使得蒸汽还可以用于驱动汽轮发电机组做功发电,从而实现蒸汽的更多用途,提升能源利用率。
可选地,烟气余热锅炉中设有液流管路,烟气加热进入液流管路的液体以产生过热饱和蒸汽,还包括冷凝器,冷凝器的入口与汽轮发电机组的废汽口连通,冷凝器的出口与液流管路连通。烟气加热进入液流管路的液体从而产生过热饱和蒸汽,过热饱和蒸汽经由第二蒸汽输出口进入汽轮发电机组做功产生电力之后的废汽经由废汽口排出进入冷凝器中放热转化成液体后,经由冷凝器的出口与液流管路连通以向液流管路补充液体。如此能够实现蒸汽的循环利用,减少资源浪费。
根据本发明实施例的燃气轮机余热回收系统,还包括:三通挡板阀,三通挡板阀的第一端与透平轮机的烟气出口端连通,三通挡板阀的第二端与烟气余热锅炉连通,三通挡板阀的第三端与排气烟囱连通。透平轮机产生的烟气经由三通挡板阀的第二端进入烟气余热锅炉中,烟气余热锅炉不需要的多余的烟气可以经由排气烟囱排出,如此使得结构设置合理。通过三通挡板阀的开度可以调节进入烟气余热锅炉中的烟气的量。
根据本发明实施例的燃气轮机余热回收系统,烟气余热锅炉中设有液流管路,还包括:第一传感器和控制器,第一传感器设于液流管路上,控制器用于接收第一传感器的信号并根据信号控制三通挡板阀的开度,如此能够合理地利用烟气对液流管路中的液体进行加热,提升能源利用率。
可选地,燃气轮机余热回收系统还包括供液设备,供液设备与液流管路连通,供液设备为液流管路提供补充液体,以维持燃气轮机余热回收系统中液流回路的正常运转。
可选地,蒸汽储罐和压裂设备连接的管路上还设有第二传感器,第二传感器用于监测管路中的蒸汽流量。
根据本发明实施例的油气开采系统,包括:上述的燃气轮机余热回收系统。
根据本发明实施例的油气开采系统,能够对燃气轮机组发电之后的烟气余热进行回收利用,用于油气开采,从而达到节能减排,能源的利用率高,能够提升经济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的燃气轮机余热回收系统的示意图。
附图标记:
燃气轮机余热回收系统1,
燃气轮机组10,空压机11,燃烧室12,透平轮机13,烟气出口端132,发电机14,汽轮发电机组15,
烟气余热锅炉20,蒸汽输出端21,废汽烟囱22,液流管路23,
压裂设备30,井口防喷器40,
蒸汽储罐50,第一蒸汽输出口51,第二蒸汽输出口52,
压力调节阀60,冷凝器70,
三通挡板阀80,第一端80a,第二端80b,第三端80c,排气烟囱81,第一传感器82,控制器83,第二传感器84,
供液设备90,
油气开采井2。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面参考附图描述根据本发明实施例的燃气轮机余热回收系统1。
如图1所示,根据本发明实施例的燃气轮机余热回收系统1,包括:燃气轮机组10、烟气余热锅炉20以及压裂设备30。
具体地,烟气余热锅炉20用于收集燃气轮机组10发电后的烟气,并利用所述烟气生产过热饱和蒸汽;压裂设备30与烟气余热锅炉20的蒸汽输出端21连接,压裂设备30用于将蒸汽加注至油气开采井2中。其中,空气经过空压机11压缩后进入到燃烧室12中与燃料燃烧,燃烧形成的高温燃气进入透平轮机13,并推动透平轮机13的涡轮做功带动发电机14发电。发电机14可以为需要电力支撑的设备提供稳定的电力。
展开来说,燃气轮机组10包括空压机11、燃烧室12和透平轮机13,空压机11和透平轮机13串联,透平轮机13产生烟气;烟气余热锅炉20与透平轮机13连接,烟气余热锅炉20利用烟气以生产过热饱和蒸汽;烟气余热锅炉20与透平轮机13的烟气出口端132连接利用燃气轮机组10发电之后的排出的烟气余热在烟气余热锅炉20中生产过饱和蒸汽,将过饱和蒸汽通过压裂设备30加压注入到油气开采井2中,待过饱和蒸汽的热量被油气开采井2吸收后,稠油的黏度下降,同时蒸汽液化成水,形成的混合物便于开采。
需要说明的是,此处出现的“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,本申请不作限制。其中,压裂设备30包括压裂车、混砂车、平衡车、仪表车以及管汇车等等。
另外,燃气轮机组10排气烟气温度高(通常高于500℃),同时因燃气轮机功率密度大,同等尺寸的设备产生烟气量更多,能够产生更多的蒸汽用于石油开采,因此通过回收利用燃气轮机组10产生的烟气能够更好地提升能源利用率,降低燃料的消耗成本。
根据本发明实施例的燃气轮机余热回收系统1,燃气轮机余热回收系统1能够对燃气轮机组10发电之后的烟气余热进行回收利用,从而达到节能减排,能源的利用率高,能够提升经 济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。
如图1所示,根据本发明实施例的燃气轮机余热回收系统1,还包括:井口防喷器40,井口防喷器40设于油气开采井2的井口,井口防喷器40与压裂设备30的输出端连接,过饱和蒸汽经由压裂设备30加压后由输出端进入井口防喷器40后注入油气开采井2,井口防喷器40能够在油气开采井2下油气压力升高时关闭井口,防止油气开采井2下压力升高产生井喷的危险。此外,井口防喷器40在试油、修井、完井等作业中均能够关闭井口,防止发生事故。
需要说明的是,井口防喷器40包括但不限于单闸板防喷器、双闸板防喷器、万能(环形)防喷器以及旋转防喷器等,此处在燃气轮机余热回收系统1内设置井口防喷器40并不单指一种,也可以是上述的三种或者四种组合使用以实现能够能够在油气开采井2下油气压力升高时关闭井口即可。
如图1所示,根据本发明实施例的燃气轮机余热回收系统1,还包括:蒸汽储罐50,蒸汽储罐50包括第一蒸汽输出口51,第一蒸汽输出口51与压裂设备30的入口端连接,蒸汽储罐50用于收集存储烟气余热锅炉20产生的过热饱和蒸汽,以供下一工序使用蒸汽。烟气余热锅炉20的产汽速度与压裂设备30的用汽速率并不一致,通过蒸汽储罐50收集存储过热饱和蒸汽,以为下一工序持续不断、稳定地提供蒸汽。
如图1所示,可选地,燃气轮机余热回收系统1还包括:压力调节阀60,压力调节阀60设于蒸汽储罐50和压裂设备30连接的管路上。压力调节阀60用于调整经由第一蒸汽输出口51输出的蒸汽的压力,以使得蒸汽的压力匹配压裂设备30的技术需求。
需要说明的损失,压力调节阀60包括但不限于是溢流阀、减压阀、顺序阀以及压力继电器等。
如图1所示,可选地,蒸汽储罐50还包括第二蒸汽输出口52,第二蒸汽输出口52与汽轮发电机组15相连,如此使得蒸汽还可以用于驱动汽轮发电机组15做功发电,从而实现蒸汽的更多用途,提升能源利用率。
如图1所示,可选地,汽轮发电机组15的电力输出端与压裂设备30电性连接,汽轮发电机组15做功产生的电力通过电力输出端为压裂设备30提供电力支撑,提升能源利用率,提升经济效益。汽轮发电机组15的电力输出端也可与其他用电设备相连以为其他用电设备提供电力支持。
如图1所示,可选地,烟气余热锅炉20中设有液流管路23,烟气加热进入液流管路23的液体以产生过热饱和蒸汽,还包括冷凝器70,冷凝器70的入口与汽轮发电机组15的废汽口连通,冷凝器70的出口与液流管路23连通。烟气加热进入液流管路23的液体从而产生过热饱和蒸汽,过热饱和蒸汽经由第二蒸汽输出口52进入汽轮发电机组15做功产生电力之后的废汽经由废汽口排出进入冷凝器70中放热转化成液体后,经由冷凝器70的出口与液流管路23连通以向液流管路23补充液体。如此能够实现蒸汽的循环利用,减少资源浪费。
如图1所示,根据本发明实施例的燃气轮机余热回收系统1,还包括:三通挡板阀80,三通挡板阀80的第一端80a与透平轮机13的烟气出口端132连通,三通挡板阀80的第二端80b与烟气余热锅炉20连通,三通挡板阀80的第三端80c与排气烟囱81连通。透平轮机13产生的烟气经由三通挡板阀80的第二端80b进入烟气余热锅炉20中,烟气余热锅炉20不需要的多余的烟气可以经由排气烟囱81排出,如此使得结构设置合理。通过三通挡板阀80的开度可以调节 进入烟气余热锅炉20中的烟气的量。需要说明的是,三通挡板阀80的第二端80b与烟气余热锅炉20通过烟气绝热管道连通,防止烟气热量损失。
其中,三通挡板阀80包括但不限于百叶窗式挡板阀、电动丝杆插板式挡板阀以及电动液压插板阀式。
如图1所示,根据本发明实施例的燃气轮机余热回收系统1,烟气余热锅炉20中设有液流管路23,还包括:第一传感器82和控制器83,第一传感器82设于液流管路23上,控制器83用于接收第一传感器82的信号并根据信号控制三通挡板阀80的开度,如此能够合理地利用烟气对液流管路23中的液体进行加热,提升能源利用率。
其中,烟气余热锅炉20包括:过热器、蒸发器、省煤器、汽包、给水泵、预热器、除氧器以及减温器等,在这之中,过热器、蒸发器以及省煤器均为烟气余热锅炉20中的重要部件,
如图1所示,可选地,烟气余热锅炉20上设有废汽烟囱22,烟气温度从高温降到排烟温度所释放的热量用来加热液体使得其变为蒸汽,通常液体为水,液体进入烟气余热锅炉20后先进入省煤器内吸收热量升温到略低于汽包压力下的饱和温度以后与直接进入液流管路23的液体混合,进入蒸发器吸收热量产汽并最终进入过热器产生过饱和蒸汽。
如图1所示,可选地,燃气轮机余热回收系统1还包括供液设备90,供液设备90与液流管路23连通,供液设备90为液流管路23提供补充液体,以维持燃气轮机余热回收系统1中液流回路的正常运转。
如图1所示,可选地,蒸汽储罐50和压裂设备30连接的管路上还设有第二传感器84,第二传感器84用于监测管路中的蒸汽流量。
根据本发明实施例的油气开采系统,包括:上述的燃气轮机余热回收系统1。
根据本发明实施例的油气开采系统,能够对燃气轮机组10发电之后的烟气余热进行回收利用,用于油气开采,从而达到节能减排,能源的利用率高,能够提升经济效益,降低燃料的消耗成本,同时减少氮氧化物的排放。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料 或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (11)

  1. 一种燃气轮机余热回收系统,其特征在于,包括:
    烟气余热锅炉,所述烟气余热锅炉用于收集燃气轮机组发电后的烟气,并利用所述烟气生产过热饱和蒸汽;
    压裂设备,所述压裂设备与所述烟气余热锅炉的蒸汽输出端连接,所述压裂设备用于将所述蒸汽加注至油气开采井中。
  2. 根据权利要求1所述的燃气轮机余热回收系统,其特征在于,还包括:井口防喷器,所述井口防喷器设于所述油气开采井的井口,所述井口防喷器与所述压裂设备的输出端连接。
  3. 根据权利要求1所述的燃气轮机余热回收系统,其特征在于,还包括:
    蒸汽储罐,所述蒸汽储罐包括第一蒸汽输出口,所述第一蒸汽输出口与所述压裂设备的入口端连接,所述蒸汽储罐用于收集存储所述烟气余热锅炉产生的所述过热饱和蒸汽。
  4. 根据权利要求3所述的燃气轮机余热回收系统,其特征在于,还包括:
    压力调节阀,所述压力调节阀设于所述蒸汽储罐和所述压裂设备连接的管路上。
  5. 根据权利要求3所述的燃气轮机余热回收系统,其特征在于,所述蒸汽储罐还包括第二蒸汽输出口,所述第二蒸汽输出口与汽轮发电机组相连。
  6. 根据权利要求5所述的燃气轮机余热回收系统,其特征在于,所述烟气余热锅炉中设有液流管路,所述烟气加热进入所述液流管路的液体以产生所述过热饱和蒸汽,还包括冷凝器,所述冷凝器的入口与所述汽轮发电机组的废汽口连通,所述冷凝器的出口与所述液流管路连通。
  7. 根据权利要求1所述的燃气轮机余热回收系统,其特征在于,还包括:
    三通挡板阀,所述三通挡板阀的第一端与所述透平轮机的烟气出口端连通,所述三通挡板阀的第二端与所述烟气余热锅炉连通,所述三通挡板阀的第三端与排气烟囱连通。
  8. 根据权利要求1所述的燃气轮机余热回收系统,其特征在于,所述烟气余热锅炉中设有液流管路,还包括:
    第一传感器和控制器,所述第一传感器设于所述液流管路上,所述控制器用于接收所述第一传感器的信号并根据所述信号控制三通挡板阀的开度。
  9. 根据权利要求8所述的燃气轮机余热回收系统,其特征在于,还包括供液设备,所述供液设备与所述液流管路连通。
  10. 根据权利要求4所述的燃气轮机余热回收系统,其特征在于,所述蒸汽储罐和所述压裂设备连接的管路上还设有第二传感器,所述第二传感器用于监测所述管路中的蒸汽流量。
  11. 一种油气开采系统,其特征在于,包括:如权利要求1-11任一项所述的燃气轮机余热回收系统。
PCT/CN2021/141832 2021-12-16 2021-12-28 燃气轮机余热回收系统和具有其的油气开采系统 WO2023108813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111545148.X 2021-12-16
CN202111545148.XA CN114320601A (zh) 2021-12-16 2021-12-16 燃气轮机余热回收系统和具有其的油气开采系统

Publications (1)

Publication Number Publication Date
WO2023108813A1 true WO2023108813A1 (zh) 2023-06-22

Family

ID=81052730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141832 WO2023108813A1 (zh) 2021-12-16 2021-12-28 燃气轮机余热回收系统和具有其的油气开采系统

Country Status (2)

Country Link
CN (1) CN114320601A (zh)
WO (1) WO2023108813A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180750A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電方法及び発電装置
CN102767355A (zh) * 2012-08-03 2012-11-07 王维纲 稠油蒸汽吞吐注采一体化采油装置
CN105189942A (zh) * 2013-03-08 2015-12-23 埃克森美孚上游研究公司 处理排放物以提高油采收率
CN205503282U (zh) * 2016-04-15 2016-08-24 浙江大学 基于太阳能和余热回收的蒸汽回注式燃气轮机发电装置
CN106499375A (zh) * 2016-10-25 2017-03-15 中国海洋石油总公司 一种透平烟气余热循环利用系统
CN207634070U (zh) * 2017-12-21 2018-07-20 北京宝沃石油技术有限责任公司 一种烟气回收再利用的装置
CN112460832A (zh) * 2020-09-09 2021-03-09 国网综合能源服务集团有限公司 一种基于燃气综合能源站的溴化锂制冷机组和制冷机组的运行方法
CN215057763U (zh) * 2021-02-05 2021-12-07 上海势茂动力科技有限公司 一种燃气轮机撬装式油气生产系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007786A (en) * 1975-07-28 1977-02-15 Texaco Inc. Secondary recovery of oil by steam stimulation plus the production of electrical energy and mechanical power
CN113669039B (zh) * 2021-09-13 2022-05-13 中国石油大学(华东) 蒸汽辅助稠油热采系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180750A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電方法及び発電装置
CN102767355A (zh) * 2012-08-03 2012-11-07 王维纲 稠油蒸汽吞吐注采一体化采油装置
CN105189942A (zh) * 2013-03-08 2015-12-23 埃克森美孚上游研究公司 处理排放物以提高油采收率
CN205503282U (zh) * 2016-04-15 2016-08-24 浙江大学 基于太阳能和余热回收的蒸汽回注式燃气轮机发电装置
CN106499375A (zh) * 2016-10-25 2017-03-15 中国海洋石油总公司 一种透平烟气余热循环利用系统
CN207634070U (zh) * 2017-12-21 2018-07-20 北京宝沃石油技术有限责任公司 一种烟气回收再利用的装置
CN112460832A (zh) * 2020-09-09 2021-03-09 国网综合能源服务集团有限公司 一种基于燃气综合能源站的溴化锂制冷机组和制冷机组的运行方法
CN215057763U (zh) * 2021-02-05 2021-12-07 上海势茂动力科技有限公司 一种燃气轮机撬装式油气生产系统

Also Published As

Publication number Publication date
CN114320601A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN104141952B (zh) 一种极低浓度煤矿瓦斯燃烧装置及方法
CN104675521A (zh) 一种新型燃气-蒸汽联合循环冷热电联供系统
CN203420766U (zh) 一种压缩天然气发动机余热综合利用系统
CN103437870A (zh) 一种压缩天然气发动机余热综合利用系统及方法
CN203271799U (zh) 一种矿区分布式煤矿瓦斯近零排放多联产供能系统
WO2023108813A1 (zh) 燃气轮机余热回收系统和具有其的油气开采系统
CN102818250B (zh) 提高注汽锅炉蒸汽干度的方法及装置
CN111120980B (zh) 一种实现高效余热回收和低氮排放的热电联产系统及方法
CN201810401U (zh) 煤炭地下气化联合循环发电系统中的煤气热值调配装置
CN201386541Y (zh) 一种气体热载体清蜡洗井装置
CN208900080U (zh) 一种天然气井口压力能发电的节流系统
WO2023024546A1 (zh) 可燃冰高效燃烧系统
EP3734051A1 (en) Internal combustion engine waste heat recovery system
CN102305404A (zh) 补燃式超临界压力气液两相燃料发生器燃烧室补燃喷注器
CN216281371U (zh) 可燃冰高效燃烧器
CN216281370U (zh) 可燃冰高效燃烧装置
CN201666571U (zh) 注水式高压燃烧器
CN109162672A (zh) 一种天然气井口压力能发电的节流系统
WO2010009583A1 (zh) 乳化柴油微波加热装置
CN101737104B (zh) 燃气-蒸汽透平发动机
CN205372496U (zh) 一种高效余热回收综合利用系统
CN204829896U (zh) 带水冷壁的低热值燃气高温空气燃烧炉
WO2018153142A1 (zh) 内燃机尾气注入油气层的增产系统及增产方法
CN2152910Y (zh) 石油钻井柴油机组余热利用装置
CN209213887U (zh) 一种锅炉用激波吹灰系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967942

Country of ref document: EP

Kind code of ref document: A1