WO2023108390A1 - 牙嵌式离合器 - Google Patents

牙嵌式离合器 Download PDF

Info

Publication number
WO2023108390A1
WO2023108390A1 PCT/CN2021/137725 CN2021137725W WO2023108390A1 WO 2023108390 A1 WO2023108390 A1 WO 2023108390A1 CN 2021137725 W CN2021137725 W CN 2021137725W WO 2023108390 A1 WO2023108390 A1 WO 2023108390A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
elastic
outer hub
inner hub
key
Prior art date
Application number
PCT/CN2021/137725
Other languages
English (en)
French (fr)
Inventor
肖荣亭
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/137725 priority Critical patent/WO2023108390A1/zh
Publication of WO2023108390A1 publication Critical patent/WO2023108390A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs

Definitions

  • the invention relates to the technical field of vehicles.
  • the invention relates to a dog clutch for a drive train of a motor vehicle.
  • Clutches are an important component in a vehicle's drive train. Through clutches, torque transmission paths in the drive train can be connected or disconnected. In the prior art, there are various types of clutches such as friction clutches and dog clutches. Among them, the jaw clutch has a simple structure, a small number of parts, and a low cost.
  • the input and output are directly connected via a toothed sleeve.
  • the dog clutch is usually arranged between the output shaft of the motor and the gear.
  • this jaw clutch has some disadvantages.
  • the teeth of the jaw clutch are easy to be damaged during the engagement stage; in the process of shifting, in order to connect the output shaft with the gear against torsion, the motor will adjust the speed to match the gear; The speed difference of the gear.
  • jaw clutches require higher shifting forces to ensure smooth shifting.
  • the technical problem to be solved by the present invention is to provide an improved jaw clutch.
  • the jaw clutch includes a first rotating part, a second rotating part and a gear sleeve, and the gear sleeve can move axially to connect or separate the first rotating part and the second rotating part in a torque-resistant manner.
  • the first rotating part includes a torque limiter
  • the second rotating part includes a second inner hub, a second outer hub and an elastic buffer mechanism
  • the second outer hub is arranged radially outside the second inner hub, and the second outer hub
  • the second inner hub and the second inner hub can rotate relative to each other within a predetermined range and can be connected in a torque-proof manner, and the elastic buffer mechanism can abut against between the second outer hub and the second inner hub along the rotation direction.
  • the two rotating parts of the jaw clutch can be connected with opposite torque transmitting ends to transmit torque therebetween. Torque overload can be prevented by a torque limiter arranged in the first rotating part. Since the second inner hub and the second outer hub that can rotate relative to each other are provided in the second rotating part, the rotational speed difference between the two torque transmission ends can be compensated during the engagement process of the clutch through the relative rotation of the two, so that Reduces the required shift force and reduces impact on the dog teeth.
  • one of the second inner hub and the second outer hub may have splines and the other may have corresponding keyways, the splines being inserted radially into the keyways and able to move along Turn direction to move.
  • the key teeth and the key groove not only allow the second inner hub and the second outer hub to rotate relative to each other within a predetermined range, but also can abut against each other to transmit torque when reaching a limit position within a predetermined range, thereby realizing a torsion-proof connection.
  • the elastic buffer mechanism may include a first elastic member that abuts between the second outer hub and the second inner hub along the rotation direction, and the first elastic member and the key teeth and key grooves are circumferentially aligned with each other. Stagger distribution.
  • the second outer hub and the second inner hub can buffer the torque impact by compressing the first elastic member during relative rotation.
  • the second inner hub and the second outer hub may have a neutral position within a predetermined range so that the first elastic member does not elastically deform, when the second outer hub rotates relative to the second inner hub to deviate from the neutral position , the first elastic member is compressed between the second outer hub and the second inner hub along the rotation direction.
  • the second outer hub and the second inner hub realize relative rotation by compressing the first elastic member.
  • the first elastic member makes the second outer hub and the second inner hub be in a neutral position.
  • the elastic buffer mechanism may further include a second elastic member installed in the keyway and/or on the key teeth, when the second outer hub rotates to the limit within a predetermined range relative to the second inner hub When in the position, the key tooth abuts against the circumferential side wall of the key groove through the second elastic member, so that the torque can be transmitted between the second outer hub and the second inner hub.
  • the second elastic member can buffer the transient impact force when the key groove contacts the key teeth.
  • the second elastic member may include two separate sub-elastic members, and the two sub-elastic members are respectively mounted on two circumferentially opposite side walls of the key groove and/or the key tooth.
  • the sub-elastic parts can be reeds or rubber pads, for example, and can be respectively installed in the installation grooves on the corresponding side walls.
  • the second elastic member may also include two elastic contact portions connected together by a connecting portion, and the two elastic contact portions are respectively arranged at two circumferentially opposite side walls of the key groove and/or the key tooth. Both the two separate sub-elastic parts and the integrated elastic contact part can provide buffering functions in opposite rotation directions.
  • the dog clutch may include a plurality of first elastic members arranged at intervals in the circumferential direction and/or a plurality of key grooves on which the second elastic members are installed at intervals in the circumferential direction.
  • the first elastic members and the key grooves can be evenly distributed along the circumferential direction respectively.
  • the plurality of first elastic members and the plurality of key slots installed with the second elastic members may be arranged alternately along the circumferential direction, so as to transmit torque smoothly.
  • the first rotating part may further include a first outer hub and a first inner hub, the first outer hub is arranged radially outside the first inner hub, and the torque limiter may be a friction plate set , the friction plate group is arranged radially between the first outer hub and the first inner hub so that the torque not exceeding the preset limit can be transmitted by friction force, the gear sleeve can be arranged radially outside the first outer hub and can The first outer hub is rotationally connected or disconnected from the second outer hub.
  • the friction plate pack has a high torque transmission capacity.
  • the first inner hub and the second inner hub may be respectively connected with the two torque transmission ends to transmit torque.
  • Figure 1 shows a schematic diagram of a dog clutch according to an exemplary embodiment of the present invention
  • Fig. 2a and Fig. 2b respectively show the schematic view of the second rotating part of the dog clutch according to the exemplary embodiment of the present invention
  • FIGS 3a to 3c respectively show schematic diagrams of second elastic members according to different embodiments of the present invention.
  • FIG. 4 shows a torque variation graph of a dog clutch according to an exemplary embodiment of the present invention.
  • a dog clutch for a drive train of a motor vehicle is provided.
  • Such jaw clutches may be arranged in the transmission of a motor vehicle in order to connect or disconnect torque transmission paths in the drive train.
  • FIG. 1 shows an exemplary embodiment of a dog clutch according to the invention.
  • the jaw clutch includes a gear sleeve 5 and two rotating parts that can be connected by the gear sleeve 5 in a torsion-proof manner.
  • the two turning parts may be referred to as a first turning part (left side in FIG. 1 ) and a second turning part (right side in FIG. 1 ).
  • the two rotating parts are each connected in a rotationally fixed manner to different torque transmission ends in the drive train.
  • the first rotating part may for example be rotationally connected to a motor output shaft (not shown) in the drive train, while the second rotating part may be rotationally connected eg to a gear G in the transmission.
  • the gear sleeve 5 is arranged coaxially on the radially outer side of the two rotating parts.
  • the gear sleeve 5 can move axially relative to the two rotating parts, so that the dog clutch can be switched between an engaged state and a disengaged state.
  • the gear sleeve 5 In the engaged state, the gear sleeve 5 is simultaneously connected in a rotationally fixed manner to both rotating parts so that torque can be transmitted between them.
  • the gear sleeve 5 is disengaged from at least one of the two rotating parts, thereby disconnecting the torque transmission path therebetween.
  • the tooth sleeve 5 is placed on the first rotating part and separated from the second rotating part, and the dog clutch is in a disengaged state at this time.
  • the dog clutch may further include an actuator 1 arranged radially outside the gear sleeve 5 .
  • the actuator 1 can be, for example, an electromagnetic coil, and an armature 6 is correspondingly installed on the radially outer side of the tooth sleeve 5 .
  • the electromagnetic coil can generate electromagnetic force to drive the armature 6 when energized, so as to realize the movement of the tooth sleeve 5 .
  • the first rotating part may include a first outer hub 2 , a first inner hub 3 and a torque limiter 4 .
  • the first outer hub 2 is arranged coaxially on the radially outer side of the first inner hub 3 .
  • the torque limiter 4 is arranged radially between the first outer hub 2 and the first inner hub 3 .
  • the torque limiter 4 can transmit a predetermined limited torque between the first outer hub 2 and the first inner hub 3.
  • the gear sleeve 5 can be arranged coaxially on the radially outer side of the first outer hub 2 and is connected to the first outer hub 2 in a rotationally fixed manner in an axially movable manner.
  • the gear sleeve 5 can be connected to the first outer hub 2 in a rotationally fixed manner, for example via splines.
  • the first inner hub 3 can, for example, be connected in a rotationally fixed manner to an output shaft of an electric motor as a torque transmission point.
  • the torque limiter 4 can comprise, for example, a modular disk pack.
  • the friction plate set may include a plurality of first friction plates and second friction plates arranged alternately in the axial direction.
  • the first friction plate can be connected to the first outer hub 2 in a rotationally fixed manner
  • the second friction plate can be connected to the first inner hub 3 in a rotationally fixed manner.
  • These friction plates are pressed against each other in the axial direction under the action of the spring, so that torque can be transmitted through friction.
  • the torque limiter 4 can also be other types of torque limiters.
  • the second rotating portion is arranged axially adjacent to the first rotating portion.
  • the two rotating parts cannot be connected directly, but only indirectly via the toothed sleeve 5 in a rotationally fixed manner.
  • the second rotating part includes a second inner hub 7 , a second outer hub 8 and an elastic buffer mechanism.
  • the second outer hub 8 is arranged coaxially on the radially outer side of the second inner hub 7 .
  • the second outer hub 8 and the second inner hub 7 are relatively rotatable within a predetermined range. When rotated to the limit position of the predetermined range, the second outer hub 8 and the second inner hub 7 can engage against each other to transmit torque.
  • the elastic buffer mechanism can abut against the second outer hub 8 and the second inner hub 7 along the rotation direction to buffer the impact force.
  • one of the second outer hub 8 and the second inner hub 7 may be formed with one or more splines, while the other may be formed with corresponding one or more splines.
  • Each key tooth is radially inserted into a corresponding key groove.
  • the circumferential length of the key groove is greater than the circumferential length of the corresponding tooth, so that the key tooth can move in the key groove in the direction of rotation.
  • the key grooves define the movement range of the key teeth, thereby defining a predetermined range of relative rotation of the second outer hub 8 and the second inner hub 7 .
  • the second rotating part When the second rotating part includes a plurality of key slots and corresponding plurality of key teeth, these key slots and key teeth are arranged at intervals in the circumferential direction.
  • key grooves are formed on the radially inner side of the second outer hub 8
  • spline teeth are formed on the radially outer side of the second inner hub 7 .
  • the key grooves may also be formed on the radially outer side of the second inner hub 7
  • the key teeth may be formed on the radially inner side of the second outer hub 8 accordingly.
  • the axes of rotation of the second inner hub 7 and the second outer hub 8 are aligned with the axes of rotation of the first outer hub 2 and the first inner hub 3 .
  • the outer diameter of the second outer hub 8 is substantially equal to the outer diameter of the first outer hub 2 , so that the gear sleeve 5 can move axially on the radially outer side of the first outer hub 2 and the second outer hub 8 .
  • the jaw clutch is in a disengaged state when the gear sleeve 5 slides to one side to disengage from one of the first outer hub 2 and the second outer hub 8 .
  • the gear sleeve 5 can preferably be located on the side of the first rotating part in the separated state, that is to say placed on the The radial outer side of the first outer hub 2 .
  • the dog clutch is in an engaged state.
  • the second outer hub 8 is located radially inside the gear sleeve 5 in the engaged state.
  • the second inner hub 7 is connected in a rotationally fixed manner to the other torque transmission end.
  • the torque transmission end connected to the second inner hub 7 is schematically shown as a gear G, which may be, for example, a transmission gear in a transmission.
  • the elastic buffer mechanism includes one or more first elastic members 9 .
  • Each first elastic member 9 abuts between the second outer hub 8 and the second inner hub 7 along the rotation direction.
  • Each first elastic member 9 may be arranged in a corresponding window formed between the second outer hub 8 and the second inner hub 7 .
  • the first elastic member 9 may be a coil spring.
  • the first elastic member 9 and the keyway and the key teeth are staggered and distributed along the circumferential direction.
  • the jaw clutch includes a plurality of first elastic members 9 , these first elastic members 9 are arranged at intervals along the circumferential direction, especially may be evenly distributed along the circumferential direction.
  • the dog clutch includes two first elastic members 9, and the two first elastic members 9 are preferably diametrically opposed to each other.
  • the neutral position can preferably be set at the circumferential midpoint of the keyway, so that the range in which the key teeth can move from the neutral position to both sides is the same; of course, alternatively, at the neutral position, the key teeth may not be located at the circumferential midpoint of the keyway , and located at other positions deviated from the circumferential midpoint of the keyway, thereby constituting the setting of different rotational angle ranges in the two rotational directions in the circumferential direction.
  • the second outer hub 8 can easily reach the same position as the first rotating part through the compressed first elastic member 9. A state where the rotating parts (first outer hub 2) are synchronized. This reduces the force required and the impact on the internal splines of the tooth sleeve 5 and the external teeth of the second outer hub 8 during engagement, thereby reducing the risk of damaging the components.
  • the elastic buffer mechanism may further include one or more second elastic members 10 .
  • Each second elastic member 10 is installed in a corresponding keyway or on a key tooth.
  • Figure 2b when the second outer hub 8 rotates to a limit position within a predetermined range relative to the second inner hub 7, the side walls of the key teeth and the keyway will abut against each other along the rotation direction via the second elastic member 10. Together.
  • the relative length relationship of the keyway and the key teeth in the circumferential direction defines a predetermined range of relative rotation between the second inner hub 7 and the second outer hub 8 .
  • the second elastic member 10 Since the keyway and the key teeth are not in direct contact, but indirectly through the second elastic member 10, the second elastic member 10 will be squeezed when the two are in contact, and the second elastic member 10 will undergo elastic deformation to absorb the impact at the moment of contact. force. Thereafter, the torque can be transmitted between the keyway and the tooth through the second elastic member 10 .
  • the second elastic member 10 can be installed in the corresponding keyway or on the corresponding key tooth. In order to ensure that the second elastic member 10 can play a buffering role in different rotation directions, it is preferable that the key tooth can abut against the corresponding key groove through the second elastic member 10 when rotating from the neutral position to either side. As described below, the second elastic member 10 can have many different presentation forms and installation methods.
  • Fig. 3a shows an enlarged schematic view of the second elastic member 10 at the area B shown in Fig. 2a.
  • the second elastic member 10 may include two separated sub-elastic members 10-1.
  • each sub-elastic member 10-1 is an arched reed.
  • the two reeds are respectively installed on two opposite side walls of the same keyway along the circumferential direction, and are arched towards the circumferential direction.
  • the two reeds can also be respectively mounted on two circumferentially opposite side walls of the same tooth, and arched oppositely along the circumferential direction.
  • Fig. 3b shows a schematic diagram of the second elastic member 10 of another exemplary embodiment.
  • the second elastic member 10 may also include two separate sub-elastic members 10-2.
  • the sub-elastic part 10-2 in Fig. 3b is a rubber pad.
  • the two rubber pads are respectively installed on the two opposite side walls of the same keyway along the circumferential direction, and protrude oppositely along the circumferential direction.
  • the two rubber pads may also be installed respectively on two circumferentially opposite side walls of the same tooth, and protrude oppositely along the circumferential direction.
  • the sub-elastic part 10-1 or 10-2 can be installed in the installation groove on the side wall of the keyway or the key tooth.
  • This installation groove can constrain and clamp the sub-elastic part 10-1 or 10-2 on both radial sides, not only can position the sub-elastic part 10-1 or 10-2, but also can prevent the sub-elastic part 10-1 or 10 from -2 Deforms excessively when squeezed.
  • Fig. 3c shows a schematic diagram of the second elastic member 10 of still another exemplary embodiment.
  • the second elastic member 10 may be formed as an integral part including two elastic contact portions 10-3.
  • the two elastic contact portions 10-3 are respectively positioned at two circumferentially opposite side walls of a keyway or at two circumferentially opposite side walls of the same key tooth, and are connected through a circumferentially extending connecting portion connected together.
  • the connecting portion extends along the outer peripheral surface of the corresponding key groove or tooth, so as not to affect the relative rotation of the second outer hub 8 and the second inner hub 7 .
  • the second elastic member 10 can be a metal sheet, and the two elastic contact parts 10-3 can be formed as arched parts on the metal sheet (similar to the spring in FIG. 3a).
  • the second elastic member 10 can be positioned in the keyway or on the key teeth by virtue of its own shape, so no installation slots need to be formed.
  • the second elastic member 10 can also be formed in other suitable configurations, and can also be installed in other ways.
  • the second rotating part may include a plurality of sets of key grooves and teeth arranged at intervals in the circumferential direction. Among these key slots and key teeth, there may be one or more sets of key slots and key teeth installed with corresponding second elastic members 10 . However, optionally, it is not necessary to arrange the second elastic member 10 between all the key grooves and the teeth. As shown in Figure 2a, the second rotating part includes six sets of key grooves and key teeth, wherein the second elastic member 10 is arranged between the two sets of key teeth and the key teeth, and the second elastic member 10 is not arranged between the other four sets of key grooves and the key teeth. piece 10.
  • each keyway and keytooth should be properly designed so that the keyway and keytooth installed with the second elastic member 10 compress the second elastic member 10 to the extreme position and pass through the second elastic member 10 along the circumferential direction.
  • the keyway and the key tooth without the second elastic member 10 also directly abut against each other along the circumferential direction, so as to ensure stable torque transmission.
  • the key grooves and teeth on which the second elastic member 10 is installed may be distributed alternately with the first elastic member 9 along the circumferential direction.
  • the key grooves and teeth installed with the second elastic member 10 can be evenly distributed along the circumferential direction with the first elastic member 9 .
  • FIG. 4 shows a torque variation curve of a dog clutch according to an exemplary embodiment of the present invention.
  • the second outer hub 8 is in a neutral position relative to the second inner hub 7, the relative rotation angle between the two is zero (abscissa), and the transmitted torque is zero (ordinate).
  • the neutral position to rotate a certain angle in a certain direction
  • the torque can only be transmitted through the first elastic member 9, and the magnitude of the transmitted torque increases with the relative rotation angle.
  • linear increase O to A point
  • the second elastic member 10 starts to be squeezed, and the transmitted torque accelerates and increases.
  • the second elastic member 10 reaches the maximum deformation at point B, and the relative rotation between the second outer hub 8 and the second inner hub 7 reaches the limit position.
  • the parts 10 abut against each other, the relative rotation angle does not increase, and a very large torque can be stably transmitted.
  • the over-torque and overload protection is realized by the torque limiter, and at the same time, the transient impact during engagement is alleviated by the elastic buffer mechanism, thereby protecting the transmission components.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种牙嵌式离合器,包括第一转动部分、第二转动部分和齿套(5),齿套(5)能够沿轴向移动来将第一转动部分与第二转动部分抗扭连接或分离。其中,第一转动部分包括扭矩限制器(4),并且第二转动部分包括第二内毂(7)、第二外毂(8)和弹性缓冲机构,第二外毂(8)布置在第二内毂(7)的径向外侧,第二外毂(8)和第二内毂(7)能够在预定范围内相对转动并且能够抗扭接合,弹性缓冲机构能够沿转动方向抵接在第二外毂(8)和第二内毂(7)之间。

Description

牙嵌式离合器 技术领域
本发明涉及车辆技术领域。具体地,本发明涉及一种用于机动车辆的传动系的牙嵌式离合器。
背景技术
离合器是车辆传动系中的重要部件。通过离合器,可以连通或断开传动系中的扭矩传递路径。在现有技术中,存在摩擦式离合器和牙嵌式离合器等多种类型的离合器。其中,牙嵌式离合器的结构简单,部件数量较少,成本较低。
在当前的牙嵌式离合器中,输入端和输出端通过齿套直接连接。对于采用P1+P3布局的混动专用变速器,牙嵌式离合器通常设置在电机的输出轴与齿轮之间。但是,这种牙嵌式离合器存在一些缺点。首先,牙嵌式离合器的齿在接合阶段易于损坏;在换挡过程中,为了将输出轴与齿轮抗扭连接,电机将调整转速以配合齿轮;但由于电机的控制精度问题,无法完全消除与齿轮的转速差。再者,牙嵌式离合器需要较高的换挡力以确保换挡平稳。另外,相较于使用湿式摩擦片组的摩擦式离合器,牙嵌式离合器不能防止过载或冲击扭矩,因此存在冲击系统的风险;仿真结果表明,使用牙嵌式合器的混动专用变速器受到冲击的风险较高。过载或冲击扭矩过大,可能造成变速器损坏。
发明内容
因此,本发明需要解决的技术问题是,提供一种改进的牙嵌式离合器。
上述技术问题通过根据本发明的一种牙嵌式离合器而得到解决。该牙嵌式离合器包括第一转动部分、第二转动部分和齿套,齿套能够沿轴向移动来将第一转动部分与第二转动部分抗扭连接或分离。其中,第一转动部 分包括扭矩限制器,并且第二转动部分包括第二内毂、第二外毂和弹性缓冲机构,第二外毂布置在第二内毂的径向外侧,第二外毂和第二内毂能够在预定范围内相对转动并且能够抗扭接合,弹性缓冲机构能够沿转动方向抵接在第二外毂与第二内毂之间。该牙嵌式离合器的两个转动部分可以与相对的两个扭矩传递端连接,从而在二者之间传递扭矩。通过设置在第一转动部分中的扭矩限制器可以防止扭矩过载。由于在第二转动部分中设置有能够相对转动的第二内毂和第二外毂,因此可以通过二者的相对转动在离合器的接合过程中补偿两个扭矩传递端之间的转速差,从而减小所需的换挡力并且降低对接合齿的冲击。
根据本发明的一个优选实施例,第二内毂和第二外毂中的一者可以具有键齿并且另一者可以具有相应的键槽,键齿沿径向插入键槽中并且能够在键槽中沿转动方向移动。键齿与键槽既允许第二内毂和第二外毂在预定范围内进行相对转动,又能够在达到预定范围内的极限位置时相互抵接来传递扭矩,从而实现抗扭连接。
根据本发明的另一优选实施例,弹性缓冲机构可以包括沿转动方向抵接在第二外毂与第二内毂之间的第一弹性件,第一弹性件与键齿及键槽沿周向错开分布。第二外毂和第二内毂在相对转动时可以通过压缩第一弹性件来缓冲扭矩冲击。优选地,第二内毂和第二外毂可以在预定范围内具有使得第一弹性件不发生弹性变形的中性位置,当第二外毂相对于第二内毂转动而偏离中性位置时,第一弹性件沿转动方向压缩在第二外毂与第二内毂之间。在齿套的接合过程中,第二外毂和第二内毂通过压缩第一弹性件来实现相对转动。当第一转动部分与第二转动部分分离并且第二外毂与第二内毂之间无扭矩传递时,第一弹性件使得第二外毂和第二内毂处于中性位置。
根据本发明的另一优选实施例,弹性缓冲机构还可以包括安装在键槽中和/或键齿上的第二弹性件,当第二外毂相对于第二内毂转动到预定范围内的极限位置时,键齿经由第二弹性件抵接键槽的周向侧壁,从而能够在第二外毂与第二内毂之间传递扭矩。第二弹性件可以缓冲键槽与键齿接触时的瞬态冲击力。
根据本发明的另一优选实施例,第二弹性件可以包括两个分离的子弹性件,两个子弹性件分别安装在键槽和/或键齿的沿周向相对的两个侧壁上。子弹性件例如可以为簧片或橡胶垫,并且可以分别安装在相应的侧壁上的安装槽中。替代地,第二弹性件也可以包括通过连接部连接在一起的两个弹性接触部,两个弹性接触部分别布置在键槽和/或键齿的沿周向相对的两个侧壁处。两个分离的子弹性件和一体的弹性接触部都可以在相对的转动方向上提供缓冲功能。
根据本发明的另一优选实施例,该牙嵌式离合器可以包括沿周向间隔布置的多个第一弹性件和/或沿周向间隔布置的多个安装有第二弹性件的键槽。优选地,这些第一弹性件和键槽可以分别沿周向均匀地分布。优选地,多个第一弹性件与多个安装有第二弹性件的键槽可以沿周向交替布置,从而平稳地传递扭矩。
根据本发明的另一优选实施例,第一转动部分还可以包括第一外毂和第一内毂,第一外毂布置在第一内毂的径向外侧,扭矩限制器可以为摩擦片组,摩擦片组在径向上布置在第一外毂与第一内毂之间从而能够通过摩擦力来传递不超过预设限制的扭矩,齿套可以布置在第一外毂的径向外侧并且能够将第一外毂与第二外毂抗扭连接或分离。摩擦片组具有较高的扭矩传递能力。第一内毂和第二内毂可以分别与两个扭矩传递端连接以传递扭矩。
附图说明
以下结合附图进一步描述本发明。图中以相同的附图标记来代表功能相同的元件。其中:
图1示出根据本发明的示例性实施例的牙嵌式离合器的示意图;
图2a和图2b分别示出根据本发明的示例性实施例的牙嵌式离合器的第二转动部分的示意图;
图3a至图3c分别示出根据本发明的不同实施例的第二弹性件的示意图;和
图4示出根据本发明的示例性实施例的牙嵌式离合器的扭矩变化曲线 图。
具体实施方式
以下将结合附图描述根据本发明的牙嵌式离合器的具体实施方式。下面的详细描述和附图用于示例性地说明本发明的原理,本发明不限于所描述的优选实施例,本发明的保护范围由权利要求书限定。
根据本发明的实施例,提供了一种用于机动车辆的传动系的牙嵌式离合器。这种牙嵌式离合器可以布置在机动车辆的变速器中,以便连通或断开传动系中的扭矩传递路径。
图1示出了根据本发明的牙嵌式离合器的一个示例性实施例。如图1所示,该牙嵌式离合器包括齿套5和可以由齿套5抗扭连接的两个转动部分。两个转动部分可以称为第一转动部分(图1中左侧)和第二转动部分(图1中右侧)。两个转动部分分别与传动系中的不同扭矩传递端抗扭连接。第一转动部分例如可以与传动系中的电机输出轴(未示出)抗扭连接,而第二转动部分例如可以与变速器中的齿轮G抗扭连接。
齿套5同轴地布置在两个转动部分的径向外侧。齿套5能够相对于两个转动部分沿轴向移动,使得牙嵌式离合器能够在接合状态与分离状态之间切换。在接合状态下,齿套5同时与两个转动部分抗扭连接,从而能够在二者之间传递扭矩。在分离状态下,齿套5与两个转动部分中的至少一者分离,从而断开二者之间的扭矩传递路径。例如,在图1所示的状态下,齿套5安置在第一转动部分上并且与第二转动部分分离,此时牙嵌式离合器处于分离状态。
为了驱动齿套5沿轴向移动,牙嵌式离合器还可以包括布置在齿套5的径向外侧的致动器1。致动器1例如可以是电磁线圈,在齿套5的径向外侧相应地安装有电枢6。电磁线圈能够在通电时产生电磁力来驱动电枢6,从而实现齿套5的移动。
如图1所示,第一转动部分可以包括第一外毂2、第一内毂3和扭矩限制器4。第一外毂2同轴地布置在第一内毂3的径向外侧。扭矩限制器4在径向上布置在第一外毂2与第一内毂3之间。扭矩限制器4可以在第一外 毂2与第一内毂3之间传递预定的有限的扭矩。齿套5可以同轴地布置在第一外毂2的径向外侧,并且以可轴向移动的方式与第一外毂2抗扭连接。齿套5例如可以通过花键与第一外毂2抗扭连接。第一内毂3例如可以与作为扭矩传递端的电机输出轴抗扭连接。
扭矩限制器4例如可以包括模块化的摩擦片组。摩擦片组可以包括沿轴向交替布置的多个第一摩擦片和第二摩擦片。其中,第一摩擦片可以与第一外毂2抗扭连接,而第二摩擦片可以第一内毂3抗扭连接。这些摩擦片在弹簧的作用下沿轴向相互压紧在一起,从而能够通过摩擦力来传递扭矩。替代地,扭矩限制器4也可以为其他类型的扭矩限制器。
第二转动部分与第一转动部分沿轴向相邻布置。两个转动部分不能直接连接,而是只能通过齿套5间接地抗扭连接。如图1所示,第二转动部分包括第二内毂7、第二外毂8和弹性缓冲机构。第二外毂8同轴地布置在第二内毂7的径向外侧。第二外毂8和第二内毂7能够在预定范围内相对转动。在转动到预定范围的极限位置时,第二外毂8和第二内毂7能够相互抵靠地接合来传递扭矩。在第二外毂8和第二内毂7相对转动时,弹性缓冲机构能够沿转动方向抵接在第二外毂8与第二内毂7之间以缓冲冲击力。
具体而言,如图2a和图2b所示,第二外毂8和第二内毂7中的一者可以形成有一个或多个键齿,而另一者可以形成有相应的一个或多个键槽,每个键齿沿径向插入相应的一个键槽中。键槽的周向长度大于相应的键齿的周向长度,使得键齿能够在键槽中沿转动方向移动。键槽限定了键齿的移动范围,从而限定了第二外毂8和第二内毂7相对转动的预定范围。当第二转动部分包括多个键槽和相应的多个键齿时,这些键槽和键齿沿周向间隔布置。在本实施例中,键槽形成在第二外毂8的径向内侧,而键齿形成在第二内毂7的径向外侧。在其他实施例中,键槽也可以形成在第二内毂7的径向外侧,而键齿可以相应地形成在第二外毂8的径向内侧。
如图1所示,第二内毂7和第二外毂8的转动轴线与第一外毂2和第一内毂3的转动轴线对齐。在本实施例中,第二外毂8的外径与第一外毂2的外径基本相等,使得齿套5能够在第一外毂2和第二外毂8的径向外侧 沿轴向滑动。当齿套5滑动到一侧而与第一外毂2和第二外毂8中的一者分离时,牙嵌式离合器处于分离状态。如图1所示,由于第一转动部分的第一外毂2具有较大的轴向尺寸,因此在分离状态下,齿套5可以优选地位于第一转动部分一侧,也就是说安置在第一外毂2的径向外侧。当齿套5滑动到与第一外毂2和第二外毂8两者同时接合的位置时,牙嵌式离合器处于接合状态。在本实施例中,第二外毂8在接合状态下位于齿套5的径向内侧。
第二内毂7与另一扭矩传递端抗扭连接。在该实施例中,与第二内毂7抗扭连接的扭矩传递端示意性的示出为齿轮G,齿轮G例如可以是变速器中的传动齿轮。
弹性缓冲机构包括一个或多个第一弹性件9。每个第一弹性件9沿转动方向抵接在第二外毂8与第二内毂7之间。每个第一弹性件9可以布置在形成在第二外毂8与第二内毂7之间的相应窗口中。第一弹性件9可以是螺旋弹簧。第一弹性件9与键槽及键齿沿周向错开分布。当牙嵌式离合器包括多个第一弹性件9时,这些第一弹性件9沿周向间隔布置,特别是可以沿周向均匀地间隔分布。例如,在本实施例中,牙嵌式离合器包括两个第一弹性件9,这两个第一弹性件9优选地沿直径方向相对。
如图2a所示,当第二外毂8相对于第二内毂7转动到预定范围内的某一中间位置(即除两端的极限位置以外的位置)时,第一弹性件9处于不发生弹性变形的状态,第二外毂8和第二内毂7的这一相对位置称为中性位置。在中性位置处,键齿不能沿转动方向抵接相应的键槽。当第二外毂8相对于第二内毂7朝向任一侧转动而偏离中性位置时,第一弹性件9都会沿转动方向压缩在第二外毂8与第二内毂7之间,从而发生弹性变形。中性位置优选地可以设置在键槽的周向中点处,使得键齿能够从中性位置向两侧运动的范围相同;当然替代地,在中性位置时,键齿也可以不位于键槽的周向中点处,而位于偏离键槽的周向中点的其他位置处,由此构成了对于周向两个转动方向上不同的转角范围的设置。
在齿套5从分离状态向接合状态转换期间,如果第一转动部分与第二转动部分之间存在转速差,第二外毂8能够通过压缩的第一弹性件9而较 为容易地达到与第一转动部分(第一外毂2)同步的状态。这可以减少在接合过程中所需的力和对齿套5的内花键和第二外毂8的外齿造成的冲击,从而降低损坏部件的风险。
如图2a所示,弹性缓冲机构还可以包括一个或多个第二弹性件10。每个第二弹性件10安装在相应的一个键槽中或键齿上。如图2b所示,当第二外毂8相对于第二内毂7转动到预定范围的极限位置时,键齿和键槽的侧壁将会经由第二弹性件10沿转动方向相互抵接在一起。换句话说,键槽与键齿在周向上的相对长度关系限定了第二内毂7和第二外毂8相对转动的预定范围。由于键槽与键齿并非直接接触,而是经由第二弹性件10间接接触,因此在二者接触时会挤压第二弹性件10,第二弹性件10将发生弹性变形来吸收接触瞬间的冲击力。此后,键槽与键齿之间可以经由第二弹性件10来传递扭矩。
第二弹性件10可以安装在相应的键槽中,也可以安装在相应的键齿上。为了确保第二弹性件10可以在不同的转动方向上都可以起到缓冲作用,优选地使得键齿在从中性位置向任一侧转动时都能够经由第二弹性件10抵接相应的键槽。如下所述,第二弹性件10可以具有多种不同的呈现形式和安装方式。
图3a示出了图2a所示的区域B处的第二弹性件10的放大示意图。如图3a所示,第二弹性件10可以包括两个分离的子弹性件10-1。具体而言,每个子弹性件10-1为一个拱形的簧片。两个簧片分别安装在同一个键槽的沿周向相对的两个侧壁上,并且沿周向相向地拱起。或者,两个簧片也可以分别安装在同一个键齿的沿周向相对的两个侧壁上,并且沿周向相背地拱起。
图3b示出了另一个示例性实施例的第二弹性件10的示意图。如图3b所示,第二弹性件10同样可以包括两个分离的子弹性件10-2。不同于图3a,图3b的子弹性件10-2为橡胶垫。类似于图3a,两个橡胶垫也分别安装在同一个键槽的沿周向相对的两个侧壁上,并且沿周向相向地凸起。或者,两个橡胶垫也可以分别安装在同一个键齿的沿周向相对的两个侧壁上,并且沿周向相背地凸起。
在图3a和图3b所示的实施例中,子弹性件10-1或10-2都可以安装在位于键槽或键齿的侧壁上的安装槽中。这种安装槽可以在径向两侧约束和夹紧子弹性件10-1或10-2,不仅可以定位子弹性件10-1或10-2,而且可以防止子弹性件10-1或10-2在受到挤压时过度变形。
图3c示出了又一个示例性实施例的第二弹性件10的示意图。如图3c所示,第二弹性件10可以形成为包括两个弹性接触部10-3的一体式部件。两个弹性接触部10-3分别定位在一个键槽的沿周向相对的两个侧壁处或同一个键齿的沿周向相对的两个侧壁处,并且通过沿周向延伸的连接部连接在一起。连接部贴合相应的键槽或键齿的外周表面延伸,从而不影响第二外毂8和第二内毂7的相对转动。这种第二弹性件10可以为一个金属片,两个弹性接触部10-3可以形成为金属片上的拱起部分(类似于图3a的簧片)。这种第二弹性件10可以借助于自身的形状而定位在键槽中或键齿上,因此不需要形成安装槽。
此外,第二弹性件10也可以形成为其他适合的构造,并且也可以采用其他方式来安装。
第二转动部分可以包括沿周向间隔布置的多组键槽和键齿。在这些键槽和键齿中,可以存在一组或多组键槽和键齿安装有相应的第二弹性件10。但是,可选地,并不一定需要在所有的键槽与键齿之间都布置第二弹性件10。如图2a所示,第二转动部分包括六组键槽和键齿,其中两组键齿与键齿之间布置了第二弹性件10,另外四组键槽与键齿之间未布置第二弹性件10。在这种情况下,应当适当设计各个键槽和键齿的尺寸,使得安装有第二弹性件10的键槽和键齿将第二弹性件10压缩至极限位置而经由第二弹性件10沿周向相互抵接时,未安装第二弹性件10的键槽和键齿也直接沿周向相互抵接,从而确保稳定的扭矩传递。
优选地,安装有第二弹性件10的键槽和键齿可以与第一弹性件9沿周向交替分布。特别是在中性位置,安装有第二弹性件10的键槽和键齿可以与第一弹性件9沿周向均匀分布。
图4示出了根据本发明的示例性实施例的牙嵌式离合器的扭矩变化曲线。在O点处,第二外毂8相对于第二内毂7处于中性位置,二者的相对 转动角度为零(横坐标),传递的扭矩为零(纵坐标)。当从中性位置开始向某一方向转动一定角度时,起初键槽与键齿未经由第二弹性件10发生接触,只能经由第一弹性件9来传递扭矩,传递的扭矩大小随着相对转动角度基本线性增加(O至A点)。在A点处,第二弹性件10开始受到挤压,传递的扭矩加速增大。第二弹性件10在B点处达到最大变形量,第二外毂8与第二内毂7之间的相对转动到达极限位置,每个键槽与对应的键齿都经由或者不经由第二弹性件10而相互抵靠,相对转动角度不再增大,可以稳定地传递非常大的扭矩。
在根据本发明的牙嵌式离合器中,通过扭矩限制器实现过扭矩过载保护,同时还通过弹性缓冲机构减轻了接合时的瞬态冲击,从而保护了传动部件。
虽然在上述说明中示例性地描述了可能的实施例,但是应当理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。
附图标记表
1   致动器
2   第一外毂
3   第一内毂
4   扭矩限制器
5   齿套
6   电枢
7   第二内毂
8   第二外毂
9   第一弹性件
10    第二弹性件
10-1  子弹性件
10-2  子弹性件
10-3  弹性接触部
G     齿轮
A-A   剖面
B     放大区域

Claims (10)

  1. 一种牙嵌式离合器,包括第一转动部分、第二转动部分和齿套(5),所述齿套(5)能够沿轴向移动来将所述第一转动部分与所述第二转动部分抗扭连接或分离,
    其特征在于,
    所述第一转动部分包括扭矩限制器(4),并且
    所述第二转动部分包括第二内毂(7)、第二外毂(8)和弹性缓冲机构,所述第二外毂(8)布置在所述第二内毂(7)的径向外侧,所述第二外毂(8)和所述第二内毂(7)能够在预定范围内相对转动并且能够抗扭接合,所述弹性缓冲机构能够沿转动方向抵接在所述第二外毂(8)与所述第二内毂(7)之间。
  2. 根据权利要求1所述的牙嵌式离合器,其特征在于,所述第二内毂(7)和所述第二外毂(8)中的一者具有键齿并且另一者具有相应的键槽,所述键齿沿径向插入所述键槽中并且能够在所述键槽中沿转动方向移动。
  3. 根据权利要求2所述的牙嵌式离合器,其特征在于,所述弹性缓冲机构包括沿转动方向抵接在所述第二外毂(8)与所述第二内毂(7)之间的第一弹性件(9),所述第一弹性件(9)与所述键齿及所述键槽沿周向错开分布。
  4. 根据权利要求3所述的牙嵌式离合器,其特征在于,所述第二内毂(7)和所述第二外毂(8)在所述预定范围内具有使得所述第一弹性件(9)不发生弹性变形的中性位置,当所述第二外毂(8)相对于所述第二内毂(7)转动而偏离所述中性位置时,所述第一弹性件(9)沿转动方向压缩在所述第二外毂(8)与所述第二内毂(7)之间。
  5. 根据权利要求4所述的牙嵌式离合器,其特征在于,所述弹性缓冲机构还包括安装在所述键槽中和/或所述键齿上的第二弹性件(10),当所述第二外毂(8)相对于所述第二内毂(7)转动到所述预定范围内的极限位置时,所述键齿经由所述第二弹性件(10)抵接所述键槽的周向侧壁,从而能够在所述第二外毂(8)与所述第二内毂(7)之间传递扭矩。
  6. 根据权利要求5所述的牙嵌式离合器,其特征在于,所述第二弹性件(10)包括两个分离的子弹性件(10-1、10-2),两个所述子弹性件(10-1、10-2)分别安装在所述键槽和/或所述键齿的沿周向相对的两个侧壁上。
  7. 根据权利要求5所述的牙嵌式离合器,其特征在于,所述第二弹性件(10)包括通过连接部连接在一起的两个弹性接触部(10-3),两个所述弹性接触部(10-3)分别布置在所述键槽和/或所述键齿的沿周向相对的两个侧壁处。
  8. 根据权利要求5所述的牙嵌式离合器,其特征在于,所述牙嵌式离合器包括沿周向间隔布置的多个所述第一弹性件(9)和/或沿周向间隔布置的多个安装有所述第二弹性件(10)的所述键槽。
  9. 根据权利要求8所述的牙嵌式离合器,其特征在于,多个所述第一弹性件(9)与多个安装有所述第二弹性件(10)的所述键槽沿周向交替布置。
  10. 根据权利要求1至9中任一项所述的牙嵌式离合器,其特征在于,所述第一转动部分还包括第一外毂(2)和第一内毂(3),所述第一外毂(2)布置在所述第一内毂(3)的径向外侧,所述扭矩限制器(4)为摩擦片组,所述摩擦片组在径向上布置在所述第一外毂(2)与所述第一内毂(3)之间从而能够通过摩擦力来传递不超过预设限制的扭矩,所述齿套(5)布置在所述第一外毂(2)的径向外侧并且能够将所述第一外毂(2)与所述第二外毂(8)抗扭连接或分离。
PCT/CN2021/137725 2021-12-14 2021-12-14 牙嵌式离合器 WO2023108390A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137725 WO2023108390A1 (zh) 2021-12-14 2021-12-14 牙嵌式离合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137725 WO2023108390A1 (zh) 2021-12-14 2021-12-14 牙嵌式离合器

Publications (1)

Publication Number Publication Date
WO2023108390A1 true WO2023108390A1 (zh) 2023-06-22

Family

ID=86774966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137725 WO2023108390A1 (zh) 2021-12-14 2021-12-14 牙嵌式离合器

Country Status (1)

Country Link
WO (1) WO2023108390A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168076A (ja) * 2008-01-11 2009-07-30 Shimadzu Corp トルク制限機構
JP2016056877A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 トランスミッションのシンクロ装置
CN112879461A (zh) * 2021-01-08 2021-06-01 舍弗勒技术股份两合公司 离合器盘、离合器及混合动力系统
CN112879460A (zh) * 2021-01-08 2021-06-01 舍弗勒技术股份两合公司 离合器及驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168076A (ja) * 2008-01-11 2009-07-30 Shimadzu Corp トルク制限機構
JP2016056877A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 トランスミッションのシンクロ装置
CN112879461A (zh) * 2021-01-08 2021-06-01 舍弗勒技术股份两合公司 离合器盘、离合器及混合动力系统
CN112879460A (zh) * 2021-01-08 2021-06-01 舍弗勒技术股份两合公司 离合器及驱动系统

Similar Documents

Publication Publication Date Title
US7694792B2 (en) Twin clutch device
US11378139B2 (en) Clutch unit with torsional vibration damper as clutch support, and hybrid module comprising clutch unit
US4566570A (en) Overload clutch
CN108350952B (zh) 动力传动系统快速断开装置
US10883550B2 (en) Shifting device for a motor vehicle and motor vehicle transmission
US7413067B2 (en) Dog clutch
JPH025932B2 (zh)
US20110024256A1 (en) Multiplate clutch
EP3184840B1 (en) Dual ramp actuator controlling a two clutch system
WO2019049231A1 (ja) クラッチ及び車両の動力伝達構造
EP2032867A2 (en) Multi-rate torsional coupling
WO2019044951A1 (ja) 動力伝達装置
WO2023108390A1 (zh) 牙嵌式离合器
CN112879460A (zh) 离合器及驱动系统
JPH0396734A (ja) 二重質量フライホイール
WO2000028239A1 (en) Multi-speed automotive transmission using paired helical gearing
US10988022B2 (en) Electro-mechanical on demand (EMOD) transfer case—dual drive gear and shift fork consolidation
EP3636946B1 (en) Clutch and vehicle provided with same
CN112879461A (zh) 离合器盘、离合器及混合动力系统
CN113544398A (zh) 膜片弹簧离合器
GB2180625A (en) Gear coupling
KR20060073623A (ko) 마찰 클러치
JP2006038091A (ja) アクチュエータ
US11692599B1 (en) Dual direction, selectable one-way clutch
RU2229042C2 (ru) Предохранительная фрикционная муфта предельного момента вращения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967530

Country of ref document: EP

Kind code of ref document: A1