WO2023106660A1 - Carbon dioxide liquefaction system - Google Patents

Carbon dioxide liquefaction system Download PDF

Info

Publication number
WO2023106660A1
WO2023106660A1 PCT/KR2022/017720 KR2022017720W WO2023106660A1 WO 2023106660 A1 WO2023106660 A1 WO 2023106660A1 KR 2022017720 W KR2022017720 W KR 2022017720W WO 2023106660 A1 WO2023106660 A1 WO 2023106660A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
heat exchanger
temperature heat
heat exchange
flue gas
Prior art date
Application number
PCT/KR2022/017720
Other languages
French (fr)
Korean (ko)
Inventor
양영명
김창수
구병수
김현준
손성재
Original Assignee
주식회사 동화엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동화엔텍 filed Critical 주식회사 동화엔텍
Publication of WO2023106660A1 publication Critical patent/WO2023106660A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0258Construction and layout of liquefaction equipments, e.g. valves, machines vertical layout of the equipments within in the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream

Definitions

  • the present invention relates to a carbon dioxide liquefaction system, and more particularly, to a carbon dioxide liquefaction system for separating, liquefying, and storing carbon dioxide from flue gas generated in a combustion device using LNG as fuel.
  • renewable energy such as wind power, solar power, solar heat, bioenergy, tidal power, and geothermal heat
  • various technologies have been developed as pollution-free energy that can replace fossil fuels and nuclear power.
  • LNG Liquefied Natural Gas
  • IMO International Maritime Organization
  • IMO International Maritime Organization
  • % reduction GSG Zero Emission
  • LNG is also evaluated as an eco-friendly fuel compared to other fossil fuels, but carbon dioxide is still generated during combustion, and ships that use it as fuel emit combustion gases containing a large amount of carbon dioxide during navigation.
  • EEDI Energy Efficiency Design Index
  • the present invention is to propose a method of effectively separating and liquefying carbon dioxide from combustion gas generated in a combustion device using LNG as fuel on a ship or on land.
  • a carbon dioxide liquefaction line for receiving flue gas generated from a combustion device using LNG as fuel to separate and liquefy carbon dioxide
  • a heat exchanger provided in the carbon dioxide liquefaction line and including a low-temperature heat exchange unit and a high-temperature heat exchange unit;
  • a fuel supply line for supplying LNG to the combustion device Including: a fuel supply line for supplying LNG to the combustion device,
  • LNG in the fuel supply line passes through the low-temperature heat exchanger of the heat exchanger and then passes through the high-temperature heat exchanger again to be vaporized while being used as a refrigerant and supplied to the combustion device;
  • Flue gas of the carbon dioxide liquefaction line is cooled through the high-temperature heat exchanger of the heat exchanger and then further cooled and liquefied in the low-temperature heat exchanger.
  • a dummy plate may be inserted into the heat exchanger to separate the low-temperature heat exchange part and the high-temperature heat exchange part.
  • the dummy plate may include a plate body; and a plurality of fluid passages formed on a surface of the plate body, wherein the fluid passages are filled with air to reduce a heat transfer rate between the low-temperature heat exchange part and the high-temperature heat exchange part.
  • the carbon dioxide liquefaction line includes a dewatering unit for receiving flue gas cooled through a high-temperature heat exchange unit of the heat exchanger and removing moisture; a compression unit that receives flue gas that has passed through the dehydration unit, compresses it, and transfers it to a high-temperature heat exchange unit of the heat exchanger; a membrane separator receiving flue gas that has passed through the compression unit and the high-temperature heat exchange unit, separating and removing nitrogen from the flue gas, and supplying the nitrogen to the low-temperature heat exchange unit; and a decompression unit for receiving the flue gas cooled in the low-temperature heat exchange unit and reducing the pressure.
  • a dewatering unit for receiving flue gas cooled through a high-temperature heat exchange unit of the heat exchanger and removing moisture
  • a compression unit that receives flue gas that has passed through the dehydration unit, compresses it, and transfers it to a high-temperature heat exchange unit of the heat exchanger
  • carbon dioxide liquefied through the pressure reducing unit is transferred to a storage tank, and carbon dioxide evaporation gas generated in the storage tank may be discharged from the storage tank through a re-liquefaction line.
  • a blower provided in the re-liquefaction line to boost the carbon dioxide boil-off gas further includes, and the carbon dioxide boil-off gas pressurized by the blower passes through the low-temperature heat exchanger of the heat exchanger to the membrane of the carbon dioxide liquefaction line. It may be supplied to the rear end of the separation unit.
  • the low-temperature heat exchange unit of the heat exchanger Preferably, in the low-temperature heat exchange unit of the heat exchanger, three flows of LNG in the fuel supply line, flue gas in the carbon dioxide liquefaction line passing through the membrane separator, and carbon dioxide evaporation gas in the re-liquefaction line are heat-exchanged, and in the high-temperature heat exchange unit Three flows of flue gas from the carbon dioxide liquefaction line transported from the combustion device, LNG from the fuel supply line passing through the low-temperature heat exchange unit, and flue gas from the carbon dioxide liquefaction line passing through the dehydration unit and compression unit may be heat exchanged.
  • a refrigerant heat exchanger provided at a front end of the membrane separator in the carbon dioxide liquefaction line and additionally cooling the flue gas to be supplied to the membrane separator by a nitrogen refrigerant after cooling in the high-temperature heat exchange unit;
  • the nitrogen refrigerant that has passed through the refrigerant heat exchanger may be reused as a refrigerant in the high-temperature heat exchanger of the heat exchanger.
  • a refrigerant supply line for supplying nitrogen refrigerant to the refrigerant heat exchanger; a temperature sensor for sensing flue gas temperature in front of the membrane separator in the carbon dioxide liquefaction line; and a control valve provided in the refrigerant supply line, wherein the temperature sensor controls the control valve according to flue gas temperature to adjust the flow rate of the nitrogen refrigerant to be supplied to the refrigerant heat exchanger.
  • LNG of the fuel supply line Preferably, in the low-temperature heat exchange unit of the heat exchanger, LNG of the fuel supply line, flue gas of the carbon dioxide liquefaction line passing through the refrigerant heat exchanger and the membrane separator, and carbon dioxide boil-off gas of the re-liquefaction line are heat exchanged .
  • nitrogen refrigerant in the refrigerant supply line passing through the refrigerant heat exchanger, flue gas in the carbon dioxide liquefaction line transferred from the combustion device, LNG in the fuel supply line passing through the low-temperature heat exchange unit, and passing through the dehydration unit and compression unit The four streams of flue gas in the carbon dioxide liquefaction line can be heat exchanged.
  • carbon dioxide emissions can be reduced by separating carbon dioxide from flue gas generated from combustion devices such as engines, combustors, fuel cells, and hydrogen extractors using LNG as fuel, liquefying and storing it.
  • a dummy plate is provided inside the heat exchanger to separate the low-temperature heat exchange part and the high-temperature heat exchange part of the heat exchanger, and each area has a constant temperature Heat exchange efficiency can be increased by enabling heat exchange between fluids within the range.
  • FIG. 1 schematically shows a carbon dioxide liquefaction system according to a first embodiment of the present invention.
  • FIG. 2 schematically shows a carbon dioxide liquefaction system according to a second embodiment of the present invention.
  • FIG. 3 schematically shows a cross-sectional view of a heat exchanger in the system according to the second embodiment shown in FIG. 2 .
  • FIG. 1 schematically shows a carbon dioxide liquefaction system according to a first embodiment of the present invention
  • FIG. 2 schematically shows a carbon dioxide liquefaction system according to a second embodiment of the present invention
  • FIG. 3 shows a heat exchanger in the system according to the second embodiment.
  • a cross-sectional view is schematically shown.
  • the systems of this embodiment are supplied with flue gas generated from a combustion device using LNG as fuel, and a carbon dioxide liquefaction line (CCL) for separating and liquefying carbon dioxide, and carbon dioxide
  • a carbon dioxide liquefaction line for separating and liquefying carbon dioxide, and carbon dioxide
  • It is provided in the liquefaction line and includes heat exchangers (100A, 100B) including a low-temperature heat exchange unit and a high-temperature heat exchange unit, and a fuel supply line (GL) for supplying LNG to the combustion device, but the LNG in the fuel supply line is used for low-temperature heat exchange in the heat exchanger After passing through the unit (100l), it is used as a refrigerant through the high-temperature heat exchange unit (100ha, 100hb) and is vaporized and supplied to the combustion device, and the flue gas of the carbon dioxide liquefaction line (CCL) is the high-temperature heat exchange unit (100ha, 100hb) of the heat exchanger After being cooled through
  • a combustion device to which the systems of this embodiment are applied may be, for example, an engine that receives LNG as fuel, a fuel cell, a hydrogen extractor, a combustor, and the like. It is a system that supplies flue gas generated by burning LNG fuel in such a combustion device to a carbon dioxide liquefaction line, separates and liquefies the carbon dioxide contained in the flue gas, and processes the flue gas.
  • a dummy plate is inserted and installed inside the heat exchangers (100A, 100B), so that the heat exchanger is divided into a low-temperature heat exchange part (100l) and a high-temperature heat exchange part ( 100ha, 100hb) to increase heat exchange efficiency.
  • the dummy plate DP includes a plate body P and a plurality of fluid passages F formed on the surface of the plate body, and the fluid passages are filled with air. Plates through which other working fluids flow in the heat exchanger have a similar structure in which fluid passages are formed (LY1 to LY8).
  • LNG and carbon dioxide mainly composed of methane and carbon dioxide are introduced into the heat exchanger, and in the system of the second embodiment described later, nitrogen (l) is additionally introduced and heat is exchanged while passing through the heat exchanger.
  • Each working fluid in the heat exchanger flows The thermal conductivity of SUS304/316, SS400, etc.
  • FIG. 3 schematically shows a cross-sectional view of a heat exchanger in which a dummy plate DP having a fluid flow path filled with air is inserted and installed and each working fluid flows along the plates LY1 to LY8.
  • the dehydration unit 200 receives the flue gas cooled through the high-temperature heat exchange unit of the heat exchanger and removes moisture, compresses the flue gas supplied through the dehydration unit, and transfers it to the high-temperature heat exchange unit of the heat exchanger.
  • the compression unit 300 receives the flue gas that has passed through the compression unit and the high-temperature heat exchange unit, separates and removes nitrogen from the membrane, and supplies the membrane separator 400 to the low-temperature heat exchange unit.
  • a pressure reducing unit 500 may be provided.
  • the high-temperature flue gas generated in the combustion device is supplied to the high-temperature heat exchanger (100ha, 100hb) of the heat exchanger along the carbon dioxide liquefaction line, cooled partially, and then transferred to the dehydration unit 200.
  • the dehydration unit 200 moisture in the flue gas is separated and removed, and transferred to the compression unit.
  • the compression unit 300 compresses the flue gas and supplies it to the high-temperature heat exchanger 100ha and 100hb of the heat exchanger to cool the flue gas.
  • the flue gas cooled through the heat exchanger passes through the membrane separator 400 to separate and remove nitrogen contained in the flue gas, and is cooled through the low-temperature heat exchanger 100l of the heat exchanger.
  • the flue gas that is, carbon dioxide cooled through the low-temperature heat exchanger is reduced through the pressure reducing unit 500 and further cooled, and the liquefied carbon dioxide is sub-cooled and transferred to the storage tank (T) and stored
  • the pressure reducing part may be, for example, a J-T valve.
  • the flue gas generated in the combustion device is supplied to the high-temperature heat exchange part of the heat exchanger at 0.5 barg, 150 ° C, cooled by heat exchange, and then transferred to the low-temperature heat exchange part of the heat exchanger at 10 barg, 200 ° C through the dehydration part and the compression part, It is cooled to -20°C and supplied to the membrane separator.
  • the membrane separation unit may be a hollow fiber membrane type membrane, and it is preferable to keep the inlet temperature of the membrane low at -20 to -30°C in order to increase the selectivity of carbon dioxide in the flue gas.
  • Carbon dioxide passing through the membrane separator is introduced into the low-temperature heat exchanger of the heat exchanger at -20 ° C and cooled, and may be stored in a storage tank in a supercooled state of -50 to -70 ° C at 7 barg through the heat exchanger and the pressure reducing unit.
  • carbon dioxide evaporation gas generated from liquefied carbon dioxide stored in the storage tank T may be discharged from the storage tank through the re-liquefaction line RL, re-liquefied, and then returned to the storage tank.
  • a blower 600 for boosting the carbon dioxide boil-off gas is provided in the re-liquefaction line RL, and the carbon dioxide boil-off gas discharged from the storage tank T is boosted in the blower 600, and then the re-liquefaction line RL Accordingly, it is supplied to the rear end of the membrane separation unit 400 of the carbon dioxide liquefaction line (CCL) through the low-temperature heat exchange unit 100l of the heat exchanger.
  • Carbon dioxide evaporation gas flowing through the reliquefaction line may flow into the middle portion of the low-temperature heat exchange unit of the heat exchanger, as shown in FIGS. 1 and 2 .
  • the re-liquefaction line near the point where the temperature of the carbon dioxide flowing through the low-temperature heat exchanger of the heat exchanger through the membrane separator along the carbon dioxide liquefaction line is cooled to around -40°C
  • the cooling heat of the CO2 boil-off gas can be used for carbon dioxide liquefaction.
  • the carbon dioxide evaporation gas joined to the rear end of the membrane separation unit of the carbon dioxide liquefaction line is combined with the flue gas that has passed through the membrane separation unit in the low-temperature heat exchange unit (100 l ), and then re-liquefied through the pressure reducing unit 500, and then stored again in the storage tank T in a supercooled state.
  • the main cold heat energy source of the low-temperature heat exchanger of the heat exchanger uses the cold heat of LNG to be supplied to the combustion device
  • the main cold heat source of the high-temperature heat exchanger uses the cold heat of LNG that has passed through the low-temperature heat exchanger. do.
  • the flue gas to be supplied to the membrane separator after being cooled in the high-temperature heat exchanger 100hb provided in the front end of the membrane separator 400 in the carbon dioxide liquefaction line (CCL) is nitrogen
  • a refrigerant heat exchanger 150 for additional cooling by a refrigerant is additionally provided.
  • a refrigerant supply line NL for supplying nitrogen refrigerant to the refrigerant heat exchanger 150 is provided, and a control valve TCV is provided in the refrigerant supply line.
  • a temperature sensing unit (TC) is provided to detect the temperature of the flue gas in front of the membrane separation unit 400, and the temperature sensing unit controls the control valve according to the flue gas temperature and supplies it to the refrigerant heat exchanger The flow rate of the nitrogen refrigerant to be used can be adjusted.
  • Nitrogen refrigerant and liquid nitrogen from the refrigerant supply line (NL) are supplied to the refrigerant heat exchanger at 8 barg and -175 ° C.
  • the flue gas to be supplied to the membrane separator is additionally cooled and returned to the membrane separator at around -20 ° C.
  • the nitrogen refrigerant passing through the refrigerant heat exchanger 150 along the refrigerant supply line NL is supplied to the high-temperature heat exchange unit 100hb of the heat exchanger and may be reused as a refrigerant in the high-temperature heat exchange unit.
  • the high-temperature heat exchanger 100hb of the heat exchanger has nitrogen refrigerant (FIG. 3 LY1), flue gas (LY2) of the carbon dioxide liquefaction line (CCL) transferred from the combustion device, LNG (LY3) of the fuel supply line (GL) passing through the low-temperature heat exchange unit (100l), dehydration unit 200 and compression unit
  • flue gas (LY4) of the carbon dioxide liquefaction line (CCL) passing through (300) are heat exchanged, and in the low-temperature heat exchange unit (100l), LNG (LY6) of the fuel supply line (GL), refrigerant heat exchanger 150 and Three streams of flue gas (LY7) of the carbon dioxide liquefaction line (CCL) and carbon dioxide boil-off gas (LY8) of the re-liquefaction line (RL) passing through the membrane separator 400 undergo heat exchange.
  • a dummy plate DP is installed between the high-temperature heat exchange unit and the low-temperatur
  • the carbon dioxide is separated from the flue gas generated in the combustion device and then liquefied to effectively treat the carbon dioxide, and a dummy plate is provided inside the heat exchanger to convert the heat exchanger into a low-temperature heat exchange unit and a high-temperature heat exchange unit.
  • Heat exchange efficiency can be increased by separating and allowing heat exchange between fluids within a certain temperature range for each region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A carbon dioxide liquefaction system is disclosed. The carbon dioxide liquefaction system of the present invention comprises: a carbon dioxide liquefaction line for receiving flue gas generated from a combustion device using LNG as fuel and separating and liquefying carbon dioxide; a heat exchanger provided in the carbon dioxide liquefaction line and including a low-temperature heat exchange unit and a high-temperature heat exchange unit; and a fuel supply line for supplying LNG to the combustion device, wherein LNG from the fuel supply line passes through the low-temperature heat exchange unit of the heat exchanger and then passes through the high-temperature heat exchange unit again to be vaporized while being used as a refrigerant and be supplied to the combustion device, and flue gas from the carbon dioxide liquefaction line is cooled through the high-temperature heat exchange unit of the heat exchanger and then further cooled in the low-temperature heat exchange unit and is liquefied.

Description

이산화탄소 액화 시스템carbon dioxide liquefaction system
본 발명은 이산화탄소 액화 시스템에 관한 것으로, 더욱 상세하게는 LNG를 연료로 사용하는 연소장치에서 발생하는 플루가스(flue gas)로부터 이산화탄소를 분리하고 액화하여 저장하는 이산화탄소 액화 시스템에 관한 것이다. The present invention relates to a carbon dioxide liquefaction system, and more particularly, to a carbon dioxide liquefaction system for separating, liquefying, and storing carbon dioxide from flue gas generated in a combustion device using LNG as fuel.
지구온난화 현상의 심화에 따라 전세계적으로 온실가스 배출을 감축하려는 노력이 이루어지고 있다. BACKGROUND ART With the intensification of global warming, efforts are being made to reduce greenhouse gas emissions worldwide.
선진국들의 온실가스 감축 의무를 담았던 1997년 교토의정서가 2020년 만료됨에 따라, 2015년 12월 프랑스 파리에서 열린 제21차 유엔기후변화협약에서 채택되고 2016년 11월 발효된 파리기후변화협약(Paris Climate Change Accord)에 의해 협정에 참여한 195개의 당사국들은 온실가스 감축을 목표로 다양한 노력을 기울이고 있다. As the 1997 Kyoto Protocol, which included the obligations of developed countries to reduce greenhouse gases, expires in 2020, the Paris Climate Change Convention, which was adopted at the 21st United Nations Framework Convention on Climate Change held in Paris, France in December 2015 and entered into force in November 2016, Change Accord), 195 parties to the agreement are making various efforts to reduce greenhouse gas emissions.
이러한 세계적인 추세와 함께 화석연료와 원자력을 대체할 수 있는 무공해에너지로서 풍력, 태양광, 태양열, 바이오에너지, 조력, 지열 등과 같은 재생가능에너지(또는 재생에너지)에 대한 관심이 높아지고 다양한 기술 개발이 이루어지고 있다. Along with this global trend, interest in renewable energy (or renewable energy) such as wind power, solar power, solar heat, bioenergy, tidal power, and geothermal heat has increased and various technologies have been developed as pollution-free energy that can replace fossil fuels and nuclear power. are losing
또한 천연가스(natural gas)는, 메탄(methane)을 주성분으로 하며 연소 시 환경오염 물질의 배출이 거의 없는 친환경 연료로서, 재생 에너지에 대한 보완 에너지로 주목받고 있다. 액화천연가스(LNG; Liquefied Natural Gas)는 천연가스를 상압 하에서 약 -163℃로 냉각시켜 액화시킴으로써 얻어지는 것으로, 가스 상태일 때보다 부피가 약 1/600로 줄어들기 때문에, 해상을 통한 원거리 운반에 매우 적합하다.In addition, natural gas (natural gas), methane (methane) (methane) as a main component and as an environmentally friendly fuel that emits little environmental pollutants during combustion, attracts attention as a supplementary energy to renewable energy. Liquefied Natural Gas (LNG) is obtained by liquefying natural gas by cooling it to about -163°C under atmospheric pressure, and since its volume is reduced to about 1/600 of that in gaseous state, it is suitable for long-distance transportation through sea. very suitable
선박의 항로, 교통규칙, 항만시설 등을 국제적으로 통일하기 위해 설치된 유엔 전문기구인 IMO(International Maritime Organization, 국제해사기구) 역시 온실가스에 대해 08년과 대비하여 2050년 50% 저감, 2100년 100% 저감(GHG Zero Emission)을 목표로 제시하고, 그에 따라 각 국가 및 지역의 규제가 강화될 것으로 예상된다. IMO (International Maritime Organization), a UN specialized organization established to internationally unify ship routes, traffic rules, port facilities, etc., also reduced greenhouse gas emissions by 50% in 2050 compared to 2008 and 100% in 2100. % reduction (GHG Zero Emission) is presented as a goal, and regulations in each country and region are expected to be strengthened accordingly.
LNG 역시 다른 화석 연료에 비해 친환경 연료로 평가받지만 연소 시 여전히 이산화탄소가 발생하며, 이를 연료로 사용하는 선박에서는 운항 중 이산화탄소를 다량 포함한 연소가스를 배출하게 된다. LNG is also evaluated as an eco-friendly fuel compared to other fossil fuels, but carbon dioxide is still generated during combustion, and ships that use it as fuel emit combustion gases containing a large amount of carbon dioxide during navigation.
IMO가 신조 선박에 적용하는 강제성 있는 이산화탄소 저감 규정인 EEDI(Energy Efficiency Design Index, 에너지효율설계지수)에 따르면 10,000 DWT 이상인 LNGC의 경우 향후 Phase 5 이상의 기준이 적용되면 현재의 LNG를 연료로 사용하는 LNGC로는 이산화탄소 배출 규정 달성이 어려울 수 있는 등 규제 강화에 대비할 필요가 있어, 이산화탄소 배출이 없는 친환경 연료 기술 개발, 연소가스 중의 이산화탄소를 포집하여 메탄이나 메탄올 등으로 전환하거나 액화하는 기술 등 다양한 기술들이 연구되고 있다. According to EEDI (Energy Efficiency Design Index), which is a compulsory carbon dioxide reduction regulation applied by IMO to new ships, in the case of LNGC with a capacity of 10,000 DWT or more, if the standard of Phase 5 or higher is applied in the future, LNGC using current LNG as fuel It is necessary to prepare for the strengthening of regulations, such as it can be difficult to achieve carbon dioxide emission regulations in furnaces, so various technologies are being researched, such as developing eco-friendly fuel technology that does not emit carbon dioxide, and technology that captures carbon dioxide in combustion gas and converts it to methane or methanol or liquefies it. there is.
본 발명은 이와 같이 선박 또는 육상에서 LNG를 연료로 사용하는 연소장치에서 발생한 연소가스로부터 이산화탄소를 효과적으로 분리하여 액화 처리할 수 있는 방안을 제안하고자 한다. The present invention is to propose a method of effectively separating and liquefying carbon dioxide from combustion gas generated in a combustion device using LNG as fuel on a ship or on land.
상술한 과제를 해결하기 위한 본 발명의 일 측면에 따르면, LNG를 연료로 사용하는 연소장치에서 발생하는 플루가스(flue gas)를 공급받아 이산화탄소를 분리하여 액화하는 이산화탄소액화라인; According to one aspect of the present invention for solving the above problems, a carbon dioxide liquefaction line for receiving flue gas generated from a combustion device using LNG as fuel to separate and liquefy carbon dioxide;
상기 이산화탄소액화라인에 마련되며 저온 열교환부와 고온 열교환부를 포함하는 열교환기; 및a heat exchanger provided in the carbon dioxide liquefaction line and including a low-temperature heat exchange unit and a high-temperature heat exchange unit; and
상기 연소장치로 LNG를 공급하는 연료공급라인:을 포함하되,Including: a fuel supply line for supplying LNG to the combustion device,
상기 연료공급라인의 LNG는 상기 열교환기의 저온 열교환부를 통과한 후 다시 고온 열교환부를 거쳐 냉매로 사용되면서 기화되어 상기 연소장치로 공급되고, LNG in the fuel supply line passes through the low-temperature heat exchanger of the heat exchanger and then passes through the high-temperature heat exchanger again to be vaporized while being used as a refrigerant and supplied to the combustion device;
상기 이산화탄소액화라인의 플루가스는 상기 열교환기의 고온 열교환부를 거쳐 냉각된 후 상기 저온 열교환부에서 추가 냉각되어 액화되는 것을 특징으로 하는 이산화탄소 액화 시스템이 제공된다. Flue gas of the carbon dioxide liquefaction line is cooled through the high-temperature heat exchanger of the heat exchanger and then further cooled and liquefied in the low-temperature heat exchanger.
바람직하게는, 상기 열교환기의 내부에는 더미 플레이트(dummy plate)가 삽입되어 상기 저온 열교환부와 고온 열교환부가 분리될 수 있다. Preferably, a dummy plate may be inserted into the heat exchanger to separate the low-temperature heat exchange part and the high-temperature heat exchange part.
바람직하게는, 상기 더미 플레이트는, 플레이트 바디; 및 상기 플레이트 바디의 표면에 형성되는 복수의 유체 유로:를 포함하며, 상기 유체 유로에는 공기가 채워져 상기 저온 열교환부와 고온 열교환부 간의 열전달률을 감소시킬 수 있다. Preferably, the dummy plate may include a plate body; and a plurality of fluid passages formed on a surface of the plate body, wherein the fluid passages are filled with air to reduce a heat transfer rate between the low-temperature heat exchange part and the high-temperature heat exchange part.
바람직하게는 상기 이산화탄소액화라인에는, 상기 열교환기의 고온 열교환부를 거쳐 냉각된 플루가스를 공급받아 수분을 제거하는 탈수부; 상기 탈수부를 거친 플루가스를 공급받아 압축하여 상기 열교환기의 고온 열교환부로 이송하는 압축부; 상기 압축부 및 상기 고온 열교환부를 거친 플루가스를 공급받아 질소를 막 분리하여 제거하고 상기 저온 열교환부로 공급하는 막분리부; 및 상기 저온 열교환부에서 냉각된 플루가스를 공급받아 감압하는 감압부:가 마련될 수 있다. Preferably, the carbon dioxide liquefaction line includes a dewatering unit for receiving flue gas cooled through a high-temperature heat exchange unit of the heat exchanger and removing moisture; a compression unit that receives flue gas that has passed through the dehydration unit, compresses it, and transfers it to a high-temperature heat exchange unit of the heat exchanger; a membrane separator receiving flue gas that has passed through the compression unit and the high-temperature heat exchange unit, separating and removing nitrogen from the flue gas, and supplying the nitrogen to the low-temperature heat exchange unit; and a decompression unit for receiving the flue gas cooled in the low-temperature heat exchange unit and reducing the pressure.
바람직하게는, 상기 감압부를 거쳐 액화된 이산화탄소는 저장탱크로 이송되고, 상기 저장탱크에서 발생하는 이산화탄소 증발가스는 재액화라인을 통해 상기 저장탱크로부터 배출될 수 있다. Preferably, carbon dioxide liquefied through the pressure reducing unit is transferred to a storage tank, and carbon dioxide evaporation gas generated in the storage tank may be discharged from the storage tank through a re-liquefaction line.
바람직하게는, 상기 재액화라인에 마련되어 상기 이산화탄소 증발가스를 승압하는 블로어(blower):를 더 포함하고, 상기 블로어에서 승압된 이산화탄소 증발가스는 상기 열교환기의 저온 열교환부를 거쳐 상기 이산화탄소액화라인의 막분리부 후단으로 공급될 수 있다. Preferably, a blower provided in the re-liquefaction line to boost the carbon dioxide boil-off gas further includes, and the carbon dioxide boil-off gas pressurized by the blower passes through the low-temperature heat exchanger of the heat exchanger to the membrane of the carbon dioxide liquefaction line. It may be supplied to the rear end of the separation unit.
바람직하게는, 열교환기의 저온 열교환부에서는 상기 연료공급라인의 LNG, 상기 막분리부를 거친 이산화탄소액화라인의 플루가스, 상기 재액화라인의 이산화탄소 증발가스의 세 흐름이 열교환되고, 상기 고온 열교환부에서는 상기 연소장치에서 이송된 이산화탄소액화라인의 플루가스, 상기 저온 열교환부를 거친 연료공급라인의 LNG, 탈수부 및 압축부를 거친 이산화탄소액화라인의 플루가스의 세 흐름이 열교환될 수 있다. Preferably, in the low-temperature heat exchange unit of the heat exchanger, three flows of LNG in the fuel supply line, flue gas in the carbon dioxide liquefaction line passing through the membrane separator, and carbon dioxide evaporation gas in the re-liquefaction line are heat-exchanged, and in the high-temperature heat exchange unit Three flows of flue gas from the carbon dioxide liquefaction line transported from the combustion device, LNG from the fuel supply line passing through the low-temperature heat exchange unit, and flue gas from the carbon dioxide liquefaction line passing through the dehydration unit and compression unit may be heat exchanged.
바람직하게는, 상기 이산화탄소액화라인에서 상기 막분리부의 전단에 마련되어 상기 고온 열교환부에서 냉각된 후 상기 막분리부로 공급될 플루가스를 질소 냉매에 의해 추가 냉각하는 냉매 열교환기:를 더 포함하고, 상기 냉매 열교환기를 통과한 질소 냉매는 상기 열교환기의 고온 열교환부의 냉매로 재사용될 수 있다. Preferably, a refrigerant heat exchanger provided at a front end of the membrane separator in the carbon dioxide liquefaction line and additionally cooling the flue gas to be supplied to the membrane separator by a nitrogen refrigerant after cooling in the high-temperature heat exchange unit; The nitrogen refrigerant that has passed through the refrigerant heat exchanger may be reused as a refrigerant in the high-temperature heat exchanger of the heat exchanger.
바람직하게는, 상기 냉매 열교환기로 질소 냉매를 공급하는 냉매공급라인; 상기 이산화탄소액화라인에서 상기 막분리부 전단의 플루가스 온도를 감지하는 온도감지부; 및 상기 냉매공급라인에 마련되는 컨트롤밸브:를 더 포함하며, 상기 온도감지부에서는 플루가스 온도에 따라 상기 컨트롤밸브를 제어하여 상기 냉매 열교환기로 공급될 질소 냉매의 유량을 조절할 수 있다.Preferably, a refrigerant supply line for supplying nitrogen refrigerant to the refrigerant heat exchanger; a temperature sensor for sensing flue gas temperature in front of the membrane separator in the carbon dioxide liquefaction line; and a control valve provided in the refrigerant supply line, wherein the temperature sensor controls the control valve according to flue gas temperature to adjust the flow rate of the nitrogen refrigerant to be supplied to the refrigerant heat exchanger.
바람직하게는, 상기 열교환기의 상기 저온 열교환부에서는 상기 연료공급라인의 LNG, 상기 냉매 열교환기 및 막분리부를 거친 이산화탄소액화라인의 플루가스, 상기 재액화라인의 이산화탄소 증발가스의 세 흐름이 열교환되고, 상기 고온 열교환부에서는 상기 냉매 열교환기를 통과한 냉매공급라인의 질소 냉매, 상기 연소장치에서 이송된 이산화탄소액화라인의 플루가스, 상기 저온 열교환부를 거친 연료공급라인의 LNG, 상기 탈수부 및 압축부를 거친 이산화탄소액화라인의 플루가스의 네 흐름이 열교환될 수 있다. Preferably, in the low-temperature heat exchange unit of the heat exchanger, LNG of the fuel supply line, flue gas of the carbon dioxide liquefaction line passing through the refrigerant heat exchanger and the membrane separator, and carbon dioxide boil-off gas of the re-liquefaction line are heat exchanged , In the high-temperature heat exchange unit, nitrogen refrigerant in the refrigerant supply line passing through the refrigerant heat exchanger, flue gas in the carbon dioxide liquefaction line transferred from the combustion device, LNG in the fuel supply line passing through the low-temperature heat exchange unit, and passing through the dehydration unit and compression unit The four streams of flue gas in the carbon dioxide liquefaction line can be heat exchanged.
본 발명에서는 LNG를 연료로 사용하는 엔진, 연소기, 연료전지, 수소추출기 등 연소장치에서 발생하는 플루가스로부터 이산화탄소를 분리하여 액화시켜 저장함으로써, 이산화탄소 배출량을 감축할 수 있다. In the present invention, carbon dioxide emissions can be reduced by separating carbon dioxide from flue gas generated from combustion devices such as engines, combustors, fuel cells, and hydrogen extractors using LNG as fuel, liquefying and storing it.
특히, 연소장치 연료로 공급될 LNG 냉열을 이용하여 플루가스를 냉각하고 이산화탄소를 액화시키면서, 열교환기의 내부에 더미 플레이트를 구비하여 열교환기의 저온 열교환부와 고온 열교환부로 분리하고 각 영역별로 일정한 온도범위 내의 유체 간에 열교환이 이루어지도록 함으로써 열교환 효율을 높일 수 있다. In particular, while flue gas is cooled and carbon dioxide is liquefied using LNG cold heat to be supplied as fuel for the combustion device, a dummy plate is provided inside the heat exchanger to separate the low-temperature heat exchange part and the high-temperature heat exchange part of the heat exchanger, and each area has a constant temperature Heat exchange efficiency can be increased by enabling heat exchange between fluids within the range.
도 1은 본 발명의 제1 실시예에 따른 이산화탄소 액화 시스템을 개략적으로 도시한다. 1 schematically shows a carbon dioxide liquefaction system according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 이산화탄소 액화 시스템을 개략적으로 도시한다. 2 schematically shows a carbon dioxide liquefaction system according to a second embodiment of the present invention.
도 3은 도 2에 도시된 제2 실시예 시스템에서 열교환기의 단면 모습을 개략적으로 도시한 것이다. FIG. 3 schematically shows a cross-sectional view of a heat exchanger in the system according to the second embodiment shown in FIG. 2 .
본 발명의 동작상 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부도면 및 첨부도면에 기재된 내용을 참조하여야 한다.In order to fully understand the operational advantages of the present invention and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 구성 및 작용을 상세히 설명하면 다음과 같다. 여기서 각 도면의 구성요소들에 대해 참조 부호를 부가함에 있어 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.Hereinafter, the configuration and operation of a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same components are marked with the same numerals as much as possible, even if they are displayed on different drawings.
도 1에는 본 발명의 제1 실시예에 따른 이산화탄소 액화 시스템을, 도 2에는 본 발명의 제2 실시예에 따른 이산화탄소 액화 시스템을 각각 개략적으로 도시하였고, 도 3은 제2 실시예 시스템에서 열교환기의 단면 모습을 개략적으로 도시한 것이다.1 schematically shows a carbon dioxide liquefaction system according to a first embodiment of the present invention, and FIG. 2 schematically shows a carbon dioxide liquefaction system according to a second embodiment of the present invention, and FIG. 3 shows a heat exchanger in the system according to the second embodiment. A cross-sectional view is schematically shown.
도 1 및 도 2에 도시된 바와 같이 본 실시예 시스템들은 LNG를 연료로 사용하는 연소장치에서 발생하는 플루가스(flue gas)를 공급받아 이산화탄소를 분리하여 액화하는 이산화탄소액화라인(CCL)과, 이산화탄소액화라인에 마련되며 저온 열교환부와 고온 열교환부를 포함하는 열교환기(100A, 100B), 연소장치로 LNG를 공급하는 연료공급라인(GL)을 포함하되, 연료공급라인의 LNG는 열교환기의 저온 열교환부(100l)를 통과한 후 다시 고온 열교환부(100ha, 100hb)를 거쳐 냉매로 사용되면서 기화되어 연소장치로 공급되고, 이산화탄소액화라인(CCL)의 플루가스는 열교환기의 고온 열교환부(100ha, 100hb)를 거쳐 냉각된 후 저온 열교환부(100l)에서 추가 냉각되어 액화된다.As shown in FIGS. 1 and 2, the systems of this embodiment are supplied with flue gas generated from a combustion device using LNG as fuel, and a carbon dioxide liquefaction line (CCL) for separating and liquefying carbon dioxide, and carbon dioxide It is provided in the liquefaction line and includes heat exchangers (100A, 100B) including a low-temperature heat exchange unit and a high-temperature heat exchange unit, and a fuel supply line (GL) for supplying LNG to the combustion device, but the LNG in the fuel supply line is used for low-temperature heat exchange in the heat exchanger After passing through the unit (100l), it is used as a refrigerant through the high-temperature heat exchange unit (100ha, 100hb) and is vaporized and supplied to the combustion device, and the flue gas of the carbon dioxide liquefaction line (CCL) is the high-temperature heat exchange unit (100ha, 100hb) of the heat exchanger After being cooled through 100 hb), it is further cooled in the low-temperature heat exchanger (100 l) and liquefied.
본 실시예 시스템들이 적용되는 연소장치는 예를 들어 LNG를 연료로 공급받는 엔진, 연료전지, 수소추출기, 연소기 등의 장치일 수 있다. 이러한 연소장치에서 LNG 연료 연소로 발생하는 플루가스를 이산화탄소액화라인으로 공급하여, 플루가스에 포함된 이산화탄소를 분리·액화하여 처리하는 시스템이다. A combustion device to which the systems of this embodiment are applied may be, for example, an engine that receives LNG as fuel, a fuel cell, a hydrogen extractor, a combustor, and the like. It is a system that supplies flue gas generated by burning LNG fuel in such a combustion device to a carbon dioxide liquefaction line, separates and liquefies the carbon dioxide contained in the flue gas, and processes the flue gas.
본 실시예 시스템들에서는 열교환기에서 이산화탄소를 액화시키기 위한 냉열원으로 연소장치의 연료로 공급될 LNG 냉열을 이용함으로써, 이산화탄소 액화를 위한 냉열에너지를 확보하는 동시에 연료로 공급될 LNG를 기화시킴으로써, 에너지효율을 높이고 LNG 기화를 위해 필요한 열에너지 사용을 줄일 수 있다. In the systems of this embodiment, by using LNG cold heat to be supplied as fuel of the combustion device as a cold heat source for liquefying carbon dioxide in the heat exchanger, by securing cold energy for liquefying carbon dioxide and at the same time vaporizing LNG to be supplied as fuel, It can increase efficiency and reduce the use of thermal energy required for LNG vaporization.
특히, 본 실시예 시스템들에서는 열교환기(100A, 100B)의 내부에 더미 플레이트(dummy plate)(DP)를 삽입 설치하여, 열교환기를 열교환 온도 영역에 따라 저온 열교환부(100l)와 고온 열교환부(100ha, 100hb)로 분리하여 열교환 효율을 높일 수 있도록 한다.In particular, in the systems of this embodiment, a dummy plate (DP) is inserted and installed inside the heat exchangers (100A, 100B), so that the heat exchanger is divided into a low-temperature heat exchange part (100l) and a high-temperature heat exchange part ( 100ha, 100hb) to increase heat exchange efficiency.
더미 플레이트(DP)는 도 3에 도시된 단면모습에서 볼 수 있듯이, 플레이트 바디(P), 플레이트 바디의 표면에 형성되는 복수의 유체 유로(F)를 포함하며, 유체 유로에는 공기가 채워진다. 열교환기 내의 다른 작동유체들의 흐르는 플레이트들도 이와 유사하게 유체 유로가 형성되는 구조이다(LY1 내지 LY8). 본 실시예들에서 열교환기에는 메탄을 주성분으로 하는 LNG와 이산화탄소, 후술하는 제2 실시예 시스템에서는 추가로 질소(l)가 유입되어 열교환기를 통과하면서 열교환하게 되는데, 열교환기의 각 작동유체들이 흐르는 플레이트 바디(P)의 소재로 적용되는 SUS304/316, SS400 등의 열전도율은 12.7 W/m·K, 52W/m·K에 이르고, 작동유체 중 열전도율이 가장 낮은 이산화탄소의 열전도도 0.014인데 비해, 공기의 열전도율은 0.002로 매우 낮아 공기가 채워진 유체 유로(F)를 포함하는 더미 플레이트(DP)에 의해 저온 열교환부와 고온 열교환부 간의 열전달률을 감소시키고, 열교환기 각 플레이트 사이의 열전달로 인한 냉열 손실을 막을 수 있다. 도 3에는 공기가 채워진 유체 유로가 마련된 더미 플레이트(DP)가 삽입 설치되고 플레이트들(LY1 내지 LY8)을 따라 각 작동 유체가 흐르는 열교환기의 단면 모습을 개략적으로 도시하였다. As can be seen in the cross-sectional view shown in FIG. 3, the dummy plate DP includes a plate body P and a plurality of fluid passages F formed on the surface of the plate body, and the fluid passages are filled with air. Plates through which other working fluids flow in the heat exchanger have a similar structure in which fluid passages are formed (LY1 to LY8). In the present embodiments, LNG and carbon dioxide mainly composed of methane and carbon dioxide are introduced into the heat exchanger, and in the system of the second embodiment described later, nitrogen (l) is additionally introduced and heat is exchanged while passing through the heat exchanger. Each working fluid in the heat exchanger flows The thermal conductivity of SUS304/316, SS400, etc. applied as the material of the plate body (P) reaches 12.7 W/m K, 52 W/m K, and the thermal conductivity of carbon dioxide, which has the lowest thermal conductivity among working fluids, is 0.014, whereas air The thermal conductivity of is very low at 0.002, so the heat transfer rate between the low-temperature heat exchange part and the high-temperature heat exchange part is reduced by the dummy plate (DP) including the air-filled fluid passage (F), and cold heat loss due to heat transfer between the plates of the heat exchanger. can prevent FIG. 3 schematically shows a cross-sectional view of a heat exchanger in which a dummy plate DP having a fluid flow path filled with air is inserted and installed and each working fluid flows along the plates LY1 to LY8.
이산화탄소액화라인(CCL)에는, 열교환기의 고온 열교환부를 거쳐 냉각된 플루가스를 공급받아 수분을 제거하는 탈수부(200), 탈수부를 거친 플루가스를 공급받아 압축하여 열교환기의 고온 열교환부로 이송하는 압축부(300), 압축부 및 고온 열교환부를 거친 플루가스를 공급받아 질소를 막 분리하여 제거하고 저온 열교환부로 공급하는 막분리부(400), 저온 열교환부에서 냉각된 플루가스를 공급받아 감압하는 감압부(500)가 마련될 수 있다. In the carbon dioxide liquefaction line (CCL), the dehydration unit 200 receives the flue gas cooled through the high-temperature heat exchange unit of the heat exchanger and removes moisture, compresses the flue gas supplied through the dehydration unit, and transfers it to the high-temperature heat exchange unit of the heat exchanger. The compression unit 300 receives the flue gas that has passed through the compression unit and the high-temperature heat exchange unit, separates and removes nitrogen from the membrane, and supplies the membrane separator 400 to the low-temperature heat exchange unit. A pressure reducing unit 500 may be provided.
연소장치에서 발생한 고온의 플루가스는 이산화탄소액화라인을 따라 열교환기 고온 열교환부(100ha, 100hb)로 공급되어 일부 냉각된 후 탈수부(200)로 이송된다. 탈수부(200)에서는 플루가스 중의 수분을 분리하여 제거하고 압축부로 이송한다. 압축부(300)에서는 플루가스를 압축하여 다시 열교환기 고온 열교환부(100ha, 100hb)로 공급하여 플루가스를 냉각시킨다. 열교환기를 거쳐 냉각된 플루가스는 막분리부(400)를 거치면서 플루가스에 포함된 질소가 분리·제거되고, 열교환기 저온 열교환부(100l)를 거쳐 냉각된다. 막 분리로 질소 제거 후 저온 열교환부를 거쳐 냉각된 플루가스, 즉 이산화탄소는 감압부(500)를 거쳐 감압되면서 추가 냉각되고, 액화된 이산화탄소는 과냉 상태(sub-cooling)로 저장탱크(T)에 이송되어 저장된다. 감압부는 예를 들어 J-T 밸브일 수 있다. The high-temperature flue gas generated in the combustion device is supplied to the high-temperature heat exchanger (100ha, 100hb) of the heat exchanger along the carbon dioxide liquefaction line, cooled partially, and then transferred to the dehydration unit 200. In the dehydration unit 200, moisture in the flue gas is separated and removed, and transferred to the compression unit. The compression unit 300 compresses the flue gas and supplies it to the high-temperature heat exchanger 100ha and 100hb of the heat exchanger to cool the flue gas. The flue gas cooled through the heat exchanger passes through the membrane separator 400 to separate and remove nitrogen contained in the flue gas, and is cooled through the low-temperature heat exchanger 100l of the heat exchanger. After removing nitrogen by membrane separation, the flue gas, that is, carbon dioxide cooled through the low-temperature heat exchanger is reduced through the pressure reducing unit 500 and further cooled, and the liquefied carbon dioxide is sub-cooled and transferred to the storage tank (T) and stored The pressure reducing part may be, for example, a J-T valve.
예를 들어, 연소장치에서 발생한 플루가스는 0.5barg, 150℃로 열교환기 고온 열교환부에 공급되어 열교환으로 냉각된 후 탈수부 및 압축부를 거쳐 10barg, 200℃로 열교환기 저온 열교환부에 이송되고, -20℃로 냉각되어 막분리부로 공급된다. 막분리부는 중공사막방식 멤브레인일 수 있는데, 플루가스 중 이산화탄소 선택도(selectivity)를 높이기 위해 멤브레인 입구온도를 -20 내지 -30℃로 낮게 유지하는 것이 바람직하다. 막분리부를 거친 이산화탄소는 -20℃로 열교환기 저온 열교환부로 유입되어 냉각되고, 열교환기와 감압부를 거쳐 7barg, -50 내지 -70℃의 과냉 상태로 저장탱크에 저장될 수 있다. For example, the flue gas generated in the combustion device is supplied to the high-temperature heat exchange part of the heat exchanger at 0.5 barg, 150 ° C, cooled by heat exchange, and then transferred to the low-temperature heat exchange part of the heat exchanger at 10 barg, 200 ° C through the dehydration part and the compression part, It is cooled to -20℃ and supplied to the membrane separator. The membrane separation unit may be a hollow fiber membrane type membrane, and it is preferable to keep the inlet temperature of the membrane low at -20 to -30°C in order to increase the selectivity of carbon dioxide in the flue gas. Carbon dioxide passing through the membrane separator is introduced into the low-temperature heat exchanger of the heat exchanger at -20 ° C and cooled, and may be stored in a storage tank in a supercooled state of -50 to -70 ° C at 7 barg through the heat exchanger and the pressure reducing unit.
한편, 저장탱크(T)에 저장된 액화 이산화탄소로부터 발생하는 이산화탄소 증발가스는 재액화라인(RL)을 통해 저장탱크로부터 배출되어, 재액화된 후 저장탱크로 회수될 수 있다. Meanwhile, carbon dioxide evaporation gas generated from liquefied carbon dioxide stored in the storage tank T may be discharged from the storage tank through the re-liquefaction line RL, re-liquefied, and then returned to the storage tank.
재액화라인(RL)에는 이산화탄소 증발가스를 승압하는 블로어(blower)(600)가 마련되어, 저장탱크(T)에서 배출된 이산화탄소 증발가스는 블로어(600)에서 승압된 후 재액화라인(RL)을 따라 열교환기의 저온 열교환부(100l)를 거쳐 이산화탄소액화라인(CCL)의 막분리부(400) 후단으로 공급된다. 재액화라인을 흐르는 이산화탄소 증발가스는 특히 도 1 및 도 2에 도시된 바와 같이 열교환기 저온 열교환부의 중간 부분으로 유입될 수 있다. 블로어를 거쳐 승압된 이산화탄소 증발가스의 온도가 -40℃ 내외인 경우, 이산화탄소액화라인을 따라 막분리부를 거쳐 열교환기 저온 열교환부를 흐르는 이산화탄소의 온도가 -40℃ 내외로 냉각된 지점 인근에서 재액화라인의 이산화탄소 증발가스를 유입시켜 이산화탄소액화라인과 역방향으로 열교환기를 통과시킴으로써 이산화탄소 증발가스 냉열을 이산화탄소 액화에 활용할 수 있다. A blower 600 for boosting the carbon dioxide boil-off gas is provided in the re-liquefaction line RL, and the carbon dioxide boil-off gas discharged from the storage tank T is boosted in the blower 600, and then the re-liquefaction line RL Accordingly, it is supplied to the rear end of the membrane separation unit 400 of the carbon dioxide liquefaction line (CCL) through the low-temperature heat exchange unit 100l of the heat exchanger. Carbon dioxide evaporation gas flowing through the reliquefaction line may flow into the middle portion of the low-temperature heat exchange unit of the heat exchanger, as shown in FIGS. 1 and 2 . When the temperature of the carbon dioxide evaporation gas elevated through the blower is around -40℃, the re-liquefaction line near the point where the temperature of the carbon dioxide flowing through the low-temperature heat exchanger of the heat exchanger through the membrane separator along the carbon dioxide liquefaction line is cooled to around -40℃ By introducing the CO2 boil-off gas and passing it through the heat exchanger in the opposite direction to the CO2 liquefaction line, the cooling heat of the CO2 boil-off gas can be used for carbon dioxide liquefaction.
재액화라인(RL)을 통해 열교환기(100A, 100B)를 통과한 후 이산화탄소액화라인의 막분리부 후단으로 합류된 이산화탄소 증발가스는, 막분리부를 거친 플루가스와 함께 열교환기 저온 열교환부(100l)를 통과하면서 냉각되고 감압부(500)를 거쳐 재액화된 후 과냉 상태로 저장탱크(T)에 재저장된다. After passing through the heat exchangers (100A, 100B) through the re-liquefaction line (RL), the carbon dioxide evaporation gas joined to the rear end of the membrane separation unit of the carbon dioxide liquefaction line is combined with the flue gas that has passed through the membrane separation unit in the low-temperature heat exchange unit (100 l ), and then re-liquefied through the pressure reducing unit 500, and then stored again in the storage tank T in a supercooled state.
그에 따라 제1 실시예 시스템에서는 열교환기(100A)의 저온 열교환부(100l)에서는 연료공급라인(GL)의 LNG, 막분리부(400)를 거친 이산화탄소액화라인(CCL)의 플루가스, 재액화라인(RL)의 이산화탄소 증발가스의 세 흐름이 열교환되고, 고온 열교환부(100ha)에는 연소장치에서 이송된 이산화탄소액화라인(CCL)의 플루가스, 저온 열교환부(100l)를 거친 연료공급라인(GL)의 LNG, 탈수부(200) 및 압축부(300)를 거친 이산화탄소액화라인(CCL)의 플루가스의 세 흐름이 열교환된다. Accordingly, in the system of the first embodiment, in the low-temperature heat exchanger 100l of the heat exchanger 100A, LNG of the fuel supply line GL, flue gas of the carbon dioxide liquefaction line (CCL) passing through the membrane separator 400, and re-liquefaction The three streams of carbon dioxide boil-off gas in the line RL are heat-exchanged, and the flue gas of the carbon dioxide liquefaction line (CCL) transferred from the combustion device in the high-temperature heat exchange unit (100ha), the fuel supply line (GL) passing through the low-temperature heat exchange unit (100l) ) of LNG, the three flows of flue gas of the carbon dioxide liquefaction line (CCL) passing through the dehydration unit 200 and the compression unit 300 are heat exchanged.
이와 같이 본 실시예들의 시스템에서 열교환기의 저온 열교환부의 주 냉열에너지원으로는 연소장치로 공급될 LNG의 냉열을 이용하고, 고온 열교환부의 주 냉열원은 저온 열교환부를 통과한 LNG의 냉열을 이용하게 된다. As such, in the system of the present embodiments, the main cold heat energy source of the low-temperature heat exchanger of the heat exchanger uses the cold heat of LNG to be supplied to the combustion device, and the main cold heat source of the high-temperature heat exchanger uses the cold heat of LNG that has passed through the low-temperature heat exchanger. do.
그런데 연료전지, 천연가스 개질 수소 추출기, 순산소연소기(oxy-fuel combustor) 등과 같은 연소장치에서처럼 연소장치 연료로 공급될 LNG 유량이 플루가스 냉각 및 이산화탄소 액화·과냉을 위해 필요한 냉열보다 적은 경우, 또는 선박 엔진, 산업용 엔진, 화력발전소, 보일러 등과 같은 연소장치에서처럼 연료로 공급될 LNG 냉열에 비해 연소장치에서 발생하여 회수·액화해야할 이산화탄소 양이 많은 경우, 추가적인 냉열이 필요하다. 제2 실시예 시스템에서는 LNG 냉열을 보충하여 추가로 열교환기의 냉열을 확보할 수 있도록 고안된 것이다. However, as in combustion devices such as fuel cells, natural gas reforming hydrogen extractors, and oxy-fuel combustors, when the flow rate of LNG to be supplied as fuel for the combustion device is less than the cooling heat required for flue gas cooling and carbon dioxide liquefaction/subcooling, or As in combustion devices such as ship engines, industrial engines, thermal power plants, and boilers, additional cooling heat is required when the amount of carbon dioxide generated in the combustion device to be recovered and liquefied is greater than the LNG cold heat to be supplied as fuel. In the system of the second embodiment, it is designed to secure additional cold heat of the heat exchanger by supplementing LNG cold heat.
도 2에 도시된 바와 같이 제2 실시예 시스템에서는, 이산화탄소액화라인(CCL)에서 막분리부(400)의 전단에 마련되어 고온 열교환부(100hb)에서 냉각된 후 막분리부로 공급될 플루가스를 질소 냉매에 의해 추가 냉각하는 냉매 열교환기(150)가 추가로 마련된다. As shown in FIG. 2, in the system of the second embodiment, the flue gas to be supplied to the membrane separator after being cooled in the high-temperature heat exchanger 100hb provided in the front end of the membrane separator 400 in the carbon dioxide liquefaction line (CCL) is nitrogen A refrigerant heat exchanger 150 for additional cooling by a refrigerant is additionally provided.
냉매 열교환기(150)로 질소 냉매를 공급하는 냉매공급라인(NL)이 마련되고, 냉매공급라인에는 컨트롤밸브(TCV)가 마련된다. 또한, 이산화탄소액화라인(CCL)에서 막분리부(400) 전단의 플루가스 온도를 감지하는 온도감지부(TC)가 마련되어, 온도감지부에서는 플루가스 온도에 따라 컨트롤밸브를 제어하여 냉매 열교환기로 공급될 질소 냉매의 유량을 조절할 수 있다. 냉매공급라인(NL)의 질소 냉매, 액체 질소는 8barg, -175℃로 냉매 열교환기로 공급되어 고온 열교환부에서 냉각된 후 막분리부로 공급될 플루가스를 추가 냉각하여 -20℃ 내외로 막분리부로 도입시킴으로써 막분리부에서의 이산화탄소 선택도를 높일 수 있다. 냉매공급라인(NL)을 따라 냉매 열교환기(150)를 통과한 질소 냉매는 열교환기의 고온 열교환부(100hb)로 공급되어 고온 열교환부의 냉매로 재사용될 수 있다. A refrigerant supply line NL for supplying nitrogen refrigerant to the refrigerant heat exchanger 150 is provided, and a control valve TCV is provided in the refrigerant supply line. In addition, in the carbon dioxide liquefaction line (CCL), a temperature sensing unit (TC) is provided to detect the temperature of the flue gas in front of the membrane separation unit 400, and the temperature sensing unit controls the control valve according to the flue gas temperature and supplies it to the refrigerant heat exchanger The flow rate of the nitrogen refrigerant to be used can be adjusted. Nitrogen refrigerant and liquid nitrogen from the refrigerant supply line (NL) are supplied to the refrigerant heat exchanger at 8 barg and -175 ° C. After being cooled in the high-temperature heat exchange section, the flue gas to be supplied to the membrane separator is additionally cooled and returned to the membrane separator at around -20 ° C. By introducing it, it is possible to increase the selectivity of carbon dioxide in the membrane separation unit. The nitrogen refrigerant passing through the refrigerant heat exchanger 150 along the refrigerant supply line NL is supplied to the high-temperature heat exchange unit 100hb of the heat exchanger and may be reused as a refrigerant in the high-temperature heat exchange unit.
그에 따라 본 제2 실시예 시스템에서는 도 2 및 도 3에 도시된 바와 같이 열교환기의 고온 열교환부(100hb)에는 냉매 열교환기(150)를 통과한 냉매공급라인(NL)의 질소 냉매(도 3의 LY1), 연소장치에서 이송된 이산화탄소액화라인(CCL)의 플루가스(LY2), 저온 열교환부(100l)를 거친 연료공급라인(GL)의 LNG(LY3), 탈수부(200) 및 압축부(300)를 거친 이산화탄소액화라인(CCL)의 플루가스(LY4)의 네 흐름이 열교환되고, 저온 열교환부(100l)에서는 연료공급라인(GL)의 LNG(LY6), 냉매 열교환기(150) 및 막분리부(400)를 거친 이산화탄소액화라인(CCL)의 플루가스(LY7), 재액화라인(RL)의 이산화탄소 증발가스(LY8)의 세 흐름이 열교환된다. 고온 열교환부와 저온 연교환부 사이에는 더미 플레이트(DP)가 설치된다(LY5). Accordingly, in the system of the second embodiment, as shown in FIGS. 2 and 3, the high-temperature heat exchanger 100hb of the heat exchanger has nitrogen refrigerant (FIG. 3 LY1), flue gas (LY2) of the carbon dioxide liquefaction line (CCL) transferred from the combustion device, LNG (LY3) of the fuel supply line (GL) passing through the low-temperature heat exchange unit (100l), dehydration unit 200 and compression unit Four flows of flue gas (LY4) of the carbon dioxide liquefaction line (CCL) passing through (300) are heat exchanged, and in the low-temperature heat exchange unit (100l), LNG (LY6) of the fuel supply line (GL), refrigerant heat exchanger 150 and Three streams of flue gas (LY7) of the carbon dioxide liquefaction line (CCL) and carbon dioxide boil-off gas (LY8) of the re-liquefaction line (RL) passing through the membrane separator 400 undergo heat exchange. A dummy plate DP is installed between the high-temperature heat exchange unit and the low-temperature heat exchange unit (LY5).
연료전지, 천연가스 개질 수소 추출기, 순산소연소기(oxy-fuel combustor) 등과 같이 연소장치의 연료로 공급될 LNG 유량이 적어 플루가스 냉각 및 이산화탄소 액화·과냉을 위해 필요한 냉열이 부족한 경우에는 소량의 질소 냉매를 간헐적으로 공급하여 부족한 LNG 냉열을 보충해준다. A small amount of nitrogen when the flow of LNG to be supplied as fuel for combustion devices such as fuel cells, natural gas reforming hydrogen extractors, oxy-fuel combustors, etc. is low and the cooling heat required for flue gas cooling and carbon dioxide liquefaction/subcooling is insufficient Refrigerant is supplied intermittently to make up for insufficient LNG cooling heat.
또한 선박 엔진, 산업용 엔진, 화력발전소, 보일러 등과 같은 연소장치에서처럼 연료로 공급될 LNG 냉열에 비해 연소장치에서 발생하여 회수·액화해야할 이산화탄소 양이 많은 경우에는 이산화탄소 액화에 필요한 냉열 중 50 내지 60%는 연료로 공급될 LNG로부터 확보하고, 부족한 40 내지 50%의 냉열은 질소 냉매를 통해 추가 공급할 수 있다. In addition, when the amount of carbon dioxide to be recovered and liquefied from the combustion device is greater than the cold heat of LNG to be supplied as fuel, as in combustion devices such as ship engines, industrial engines, thermal power plants, and boilers, 50 to 60% of the cold heat required to liquefy carbon dioxide is It is secured from LNG to be supplied as fuel, and 40 to 50% of the insufficient cold heat can be additionally supplied through nitrogen refrigerant.
이상에서 살펴본 바와 같이 본 실시예들에서는 연소장치에서 발생하는 플루가스로부터 이산화탄소를 분리한 후 액화하여 이산화탄소를 효과적으로 처리하면서, 열교환기의 내부에 더미 플레이트를 구비하여 열교환기를 저온 열교환부와 고온 열교환부로 분리하고 각 영역별로 일정한 온도범위 내의 유체 간에 열교환이 이루어지도록 함으로써 열교환 효율을 높일 수 있다. As described above, in the present embodiments, the carbon dioxide is separated from the flue gas generated in the combustion device and then liquefied to effectively treat the carbon dioxide, and a dummy plate is provided inside the heat exchanger to convert the heat exchanger into a low-temperature heat exchange unit and a high-temperature heat exchange unit. Heat exchange efficiency can be increased by separating and allowing heat exchange between fluids within a certain temperature range for each region.
본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명한 것이다. It is obvious to those skilled in the art that the present invention is not limited to the above embodiments and can be variously modified or modified without departing from the technical gist of the present invention. it did

Claims (10)

  1. LNG를 연료로 사용하는 연소장치에서 발생하는 플루가스(flue gas)를 공급받아 이산화탄소를 분리하여 액화하는 이산화탄소액화라인; A carbon dioxide liquefaction line for receiving flue gas generated from a combustion device using LNG as fuel, separating and liquefying carbon dioxide;
    상기 이산화탄소액화라인에 마련되며 저온 열교환부와 고온 열교환부를 포함하는 열교환기; 및a heat exchanger provided in the carbon dioxide liquefaction line and including a low-temperature heat exchange unit and a high-temperature heat exchange unit; and
    상기 연소장치로 LNG를 공급하는 연료공급라인:을 포함하되,Including: a fuel supply line for supplying LNG to the combustion device,
    상기 연료공급라인의 LNG는 상기 열교환기의 저온 열교환부를 통과한 후 다시 고온 열교환부를 거쳐 냉매로 사용되면서 기화되어 상기 연소장치로 공급되고, LNG in the fuel supply line passes through the low-temperature heat exchanger of the heat exchanger and then passes through the high-temperature heat exchanger again to be vaporized while being used as a refrigerant and supplied to the combustion device;
    상기 이산화탄소액화라인의 플루가스는 상기 열교환기의 고온 열교환부를 거쳐 냉각된 후 상기 저온 열교환부에서 추가 냉각되어 액화되는 것을 특징으로 하는 이산화탄소 액화 시스템. The carbon dioxide liquefaction system, characterized in that the flue gas of the carbon dioxide liquefaction line is cooled through the high-temperature heat exchanger of the heat exchanger and further cooled in the low-temperature heat exchanger to be liquefied.
  2. 제 1항에 있어서, According to claim 1,
    상기 열교환기의 내부에는 더미 플레이트(dummy plate)가 삽입되어 상기 저온 열교환부와 고온 열교환부가 분리되는 것을 특징으로 하는 이산화탄소 액화 시스템. Carbon dioxide liquefaction system, characterized in that a dummy plate is inserted into the heat exchanger to separate the low-temperature heat exchange part and the high-temperature heat exchange part.
  3. 제 2항에 있어서, 상기 더미 플레이트는,The method of claim 2, wherein the dummy plate,
    플레이트 바디; 및plate body; and
    상기 플레이트 바디의 표면에 형성되는 복수의 유체 유로:를 포함하며, A plurality of fluid passages formed on the surface of the plate body;
    상기 유체 유로에는 공기가 채워져 상기 저온 열교환부와 고온 열교환부 간의 열전달률을 감소시키는 것을 특징으로 하는 이산화탄소 액화 시스템. The carbon dioxide liquefaction system, characterized in that the fluid passage is filled with air to reduce the heat transfer rate between the low-temperature heat exchange part and the high-temperature heat exchange part.
  4. 제 1항에 있어서, 상기 이산화탄소액화라인에는The method of claim 1, wherein the carbon dioxide liquefaction line
    상기 열교환기의 고온 열교환부를 거쳐 냉각된 플루가스를 공급받아 수분을 제거하는 탈수부; a dehydration unit receiving the cooled flue gas through the high-temperature heat exchange unit of the heat exchanger and removing moisture therefrom;
    상기 탈수부를 거친 플루가스를 공급받아 압축하여 상기 열교환기의 고온 열교환부로 이송하는 압축부; a compression unit that receives flue gas that has passed through the dehydration unit, compresses it, and transfers it to a high-temperature heat exchange unit of the heat exchanger;
    상기 압축부 및 상기 고온 열교환부를 거친 플루가스를 공급받아 질소를 막 분리하여 제거하고 상기 저온 열교환부로 공급하는 막분리부; 및a membrane separator receiving flue gas that has passed through the compression unit and the high-temperature heat exchange unit, separating and removing nitrogen from the flue gas, and supplying the nitrogen to the low-temperature heat exchange unit; and
    상기 저온 열교환부에서 냉각된 플루가스를 공급받아 감압하는 감압부:가 마련되는 것을 특징으로 하는 이산화탄소 액화 시스템. A carbon dioxide liquefaction system, characterized in that a decompression unit for receiving the flue gas cooled in the low-temperature heat exchange unit and reducing the pressure.
  5. 제 4항에 있어서, According to claim 4,
    상기 감압부를 거쳐 액화된 이산화탄소는 저장탱크로 이송되고,The carbon dioxide liquefied through the pressure reducing unit is transferred to a storage tank,
    상기 저장탱크에서 발생하는 이산화탄소 증발가스는 재액화라인을 통해 상기 저장탱크로부터 배출되는 것을 특징으로 하는 이산화탄소 액화 시스템. Carbon dioxide liquefaction system, characterized in that the carbon dioxide evaporation gas generated in the storage tank is discharged from the storage tank through a re-liquefaction line.
  6. 제 5항에 있어서, According to claim 5,
    상기 재액화라인에 마련되어 상기 이산화탄소 증발가스를 승압하는 블로어(blower):를 더 포함하고,Further comprising a blower provided in the re-liquefaction line and boosting the carbon dioxide boil-off gas,
    상기 블로어에서 승압된 이산화탄소 증발가스는 상기 열교환기의 저온 열교환부를 거쳐 상기 이산화탄소액화라인의 막분리부 후단으로 공급되는 것을 특징으로 하는 이산화탄소 액화 시스템. Carbon dioxide liquefaction system, characterized in that the carbon dioxide evaporation gas increased in pressure in the blower is supplied to the rear end of the membrane separation part of the carbon dioxide liquefaction line through the low-temperature heat exchanger of the heat exchanger.
  7. 제 6항에 있어서,According to claim 6,
    열교환기의 저온 열교환부에서는 상기 연료공급라인의 LNG, 상기 막분리부를 거친 이산화탄소액화라인의 플루가스, 상기 재액화라인의 이산화탄소 증발가스의 세 흐름이 열교환되고, In the low-temperature heat exchange unit of the heat exchanger, three flows of LNG in the fuel supply line, flue gas in the carbon dioxide liquefaction line passing through the membrane separator, and carbon dioxide boil-off gas in the re-liquefaction line are heat exchanged,
    상기 고온 열교환부에서는 상기 연소장치에서 이송된 이산화탄소액화라인의 플루가스, 상기 저온 열교환부를 거친 연료공급라인의 LNG, 탈수부 및 압축부를 거친 이산화탄소액화라인의 플루가스의 세 흐름이 열교환되는 것을 특징으로 하는 이산화탄소 액화 시스템. In the high-temperature heat exchange unit, three flows of flue gas from the carbon dioxide liquefaction line transferred from the combustion device, LNG from the fuel supply line passing through the low-temperature heat exchange unit, and flue gas from the carbon dioxide liquefaction line passing through the dehydration unit and compression unit are heat exchanged. carbon dioxide liquefaction system.
  8. 제 6항에 있어서, According to claim 6,
    상기 이산화탄소액화라인에서 상기 막분리부의 전단에 마련되어 상기 고온 열교환부에서 냉각된 후 상기 막분리부로 공급될 플루가스를 질소 냉매에 의해 추가 냉각하는 냉매 열교환기:를 더 포함하고,A refrigerant heat exchanger provided in the front end of the membrane separator in the carbon dioxide liquefaction line and additionally cooling the flue gas to be supplied to the membrane separator by a nitrogen refrigerant after cooling in the high-temperature heat exchange unit;
    상기 냉매 열교환기를 통과한 질소 냉매는 상기 열교환기의 고온 열교환부의 냉매로 재사용되는 것을 특징으로 하는 이산화탄소 액화 시스템.The carbon dioxide liquefaction system, characterized in that the nitrogen refrigerant passing through the refrigerant heat exchanger is reused as a refrigerant in the high-temperature heat exchange part of the heat exchanger.
  9. 제 8항에 있어서,According to claim 8,
    상기 냉매 열교환기로 질소 냉매를 공급하는 냉매공급라인;a refrigerant supply line supplying nitrogen refrigerant to the refrigerant heat exchanger;
    상기 이산화탄소액화라인에서 상기 막분리부 전단의 플루가스 온도를 감지하는 온도감지부; 및a temperature sensor for sensing flue gas temperature in front of the membrane separator in the carbon dioxide liquefaction line; and
    상기 냉매공급라인에 마련되는 컨트롤밸브:를 더 포함하며, Further comprising a control valve provided in the refrigerant supply line,
    상기 온도감지부에서는 플루가스 온도에 따라 상기 컨트롤밸브를 제어하여 상기 냉매 열교환기로 공급될 질소 냉매의 유량을 조절하는 것을 특징으로 하는 이산화탄소 액화 시스템. The carbon dioxide liquefaction system, characterized in that the temperature sensor controls the control valve according to the flue gas temperature to adjust the flow rate of the nitrogen refrigerant to be supplied to the refrigerant heat exchanger.
  10. 제 9항에 있어서, According to claim 9,
    상기 열교환기의 상기 저온 열교환부에서는 상기 연료공급라인의 LNG, 상기 냉매 열교환기 및 막분리부를 거친 이산화탄소액화라인의 플루가스, 상기 재액화라인의 이산화탄소 증발가스의 세 흐름이 열교환되고, In the low-temperature heat exchange unit of the heat exchanger, three streams of LNG in the fuel supply line, flue gas in the carbon dioxide liquefaction line through the refrigerant heat exchanger and the membrane separator, and carbon dioxide evaporation gas in the re-liquefaction line are heat exchanged,
    상기 고온 열교환부에서는 상기 냉매 열교환기를 통과한 냉매공급라인의 질소 냉매, 상기 연소장치에서 이송된 이산화탄소액화라인의 플루가스, 상기 저온 열교환부를 거친 연료공급라인의 LNG, 상기 탈수부 및 압축부를 거친 이산화탄소액화라인의 플루가스의 네 흐름이 열교환되는 것을 특징으로 하는 이산화탄소 액화 시스템. In the high-temperature heat exchange unit, nitrogen refrigerant in the refrigerant supply line passing through the refrigerant heat exchanger, flue gas in the carbon dioxide liquefaction line transferred from the combustion device, LNG in the fuel supply line passing through the low-temperature heat exchange unit, carbon dioxide passing through the dehydration unit and compression unit A carbon dioxide liquefaction system, characterized in that the four flows of flue gas in the liquefaction line are heat exchanged.
PCT/KR2022/017720 2021-12-07 2022-11-11 Carbon dioxide liquefaction system WO2023106660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210173653A KR102471374B1 (en) 2021-12-07 2021-12-07 Carbon Dioxide Capturing And Liquefaction System
KR10-2021-0173653 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106660A1 true WO2023106660A1 (en) 2023-06-15

Family

ID=84235321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017720 WO2023106660A1 (en) 2021-12-07 2022-11-11 Carbon dioxide liquefaction system

Country Status (2)

Country Link
KR (1) KR102471374B1 (en)
WO (1) WO2023106660A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074165A (en) * 2009-12-24 2011-06-30 삼성중공업 주식회사 System for capturing carbon dioxide from exhaust gas
KR20150133483A (en) * 2014-05-20 2015-11-30 한국가스공사 System for natural gas engine and system for natural gas burner
KR20190048178A (en) * 2017-10-30 2019-05-09 두산중공업 주식회사 Carbon dioxide capture apparatus and power generation system using cold heat of liquefied natural gas
KR20190075213A (en) * 2017-12-21 2019-07-01 대우조선해양 주식회사 Co2 capturing system using evaporative latent heat of lng
JP6728875B2 (en) * 2016-03-29 2020-07-22 株式会社Ihi Carbon dioxide recovery device and natural gas combustion system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074165A (en) * 2009-12-24 2011-06-30 삼성중공업 주식회사 System for capturing carbon dioxide from exhaust gas
KR20150133483A (en) * 2014-05-20 2015-11-30 한국가스공사 System for natural gas engine and system for natural gas burner
JP6728875B2 (en) * 2016-03-29 2020-07-22 株式会社Ihi Carbon dioxide recovery device and natural gas combustion system
KR20190048178A (en) * 2017-10-30 2019-05-09 두산중공업 주식회사 Carbon dioxide capture apparatus and power generation system using cold heat of liquefied natural gas
KR20190075213A (en) * 2017-12-21 2019-07-01 대우조선해양 주식회사 Co2 capturing system using evaporative latent heat of lng

Also Published As

Publication number Publication date
KR102471374B9 (en) 2023-02-23
KR102471374B1 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
RU2608451C2 (en) Liquefied gas processing system for ship
KR101519541B1 (en) BOG Treatment System
WO2017082552A1 (en) Vessel
KR101302010B1 (en) Apparatus and Method for Supplying Fuel Gas of Ship Engine
WO2010101356A2 (en) Boil-off gas treatment apparatus for electric-propelled lng carrier having re-liquefaction function and method thereof
KR20100123302A (en) A fuel gas supply system and a lng carrier with the same
KR20140075594A (en) Reliquefaction System And Method For Boil Off Gas
WO2022131770A1 (en) Boil-off gas management system
KR20200056513A (en) Boil-Off Gas Treatment System And Method For Ship
WO2022234941A1 (en) Vaporizer- and heat exchanger-integrated boil-off gas re-liquefaction system
WO2021167245A1 (en) Lng boil-off gas reliquefaction system for small- and medium-sized lng-fueled ships, and lng boil-off gas reliquefaction method using same
WO2023106660A1 (en) Carbon dioxide liquefaction system
WO2016195237A1 (en) Boil-off gas re-liquefying system
KR101675879B1 (en) Device and method for re-liquefying BOG
WO2023043030A1 (en) Boil-off gas re-liquefying system and ship comprising same
KR102436053B1 (en) Gas treatment system and ship having the same
KR20200005270A (en) Floating Marine Structure with Hydrogen Storage Tank
KR102496987B1 (en) Liquid hydrogen recovery system for carrying vessel
KR102065860B1 (en) gas treatment system and offshore plant having the same
KR102065859B1 (en) gas treatment system and offshore plant having the same
KR20240106573A (en) System for Re-liquefying Boil-Off Gas of Liquefied Carbon Dioxide for Vessel
WO2022244941A1 (en) Power-saving type liquefied-gas-fuel ship and method for processing boil-off gas for liquefied-gas-fuel ship
EP4191177A1 (en) Lng exergy optimization for sbcc
KR101831178B1 (en) Vessel Operating System and Method
CN115610635A (en) Energy management system for production, storage and carbon capture of low-temperature liquid goods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904493

Country of ref document: EP

Kind code of ref document: A1