WO2023106236A1 - Strain gauge module - Google Patents

Strain gauge module Download PDF

Info

Publication number
WO2023106236A1
WO2023106236A1 PCT/JP2022/044578 JP2022044578W WO2023106236A1 WO 2023106236 A1 WO2023106236 A1 WO 2023106236A1 JP 2022044578 W JP2022044578 W JP 2022044578W WO 2023106236 A1 WO2023106236 A1 WO 2023106236A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
metal substrate
strain gauge
strain
gauge module
Prior art date
Application number
PCT/JP2022/044578
Other languages
French (fr)
Japanese (ja)
Inventor
位 小野
誠 北爪
桂介 國府田
智貴 樋上
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2023106236A1 publication Critical patent/WO2023106236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to strain gauge modules.
  • a strain gauge having a resistor formed on a flexible base material such as polyimide is known (see, for example, Patent Document 1).
  • Such film-like devices are required to have improved detection sensitivity.
  • the present invention has been made in view of the above points, and aims to provide a strain gauge module with excellent detection sensitivity.
  • the strain gauge module (1) comprises a film-shaped strain detection device (30) attached to an object to be measured and having terminals (34, 35) on the upper surface for detecting strain occurring in the object to be measured; a thin metal substrate (10) having a bottom surface (10a) and a bottom surface (10b); A strain detection device (30) is mounted, the lower surface (10b) is used as a mounting surface for the measurement object, and a thin plate thickness is partially reduced on the lower surface (10b) of the thin metal substrate (10). A portion (11) is formed.
  • FIG. 1 is a top view illustrating a strain gauge module according to a first embodiment
  • FIG. 1 is a cross-sectional view (Part 1) illustrating the strain gauge module according to the first embodiment
  • FIG. It is a figure explaining surface roughness Ra and the thickness of an adhesive agent.
  • It is a figure explaining a resistor area
  • FIG. 2 is a cross-sectional view (part 2) illustrating the strain gauge module according to the first embodiment
  • FIG. 2 is a bottom view illustrating the strain gauge module according to the first embodiment
  • FIG. 1 is a top view illustrating a strain gauge module according to a first embodiment
  • FIG. 1 is a cross-sectional view (Part 1) illustrating the strain gauge module according to the first embodiment
  • FIG. It is a figure explaining surface roughness Ra and the thickness of an adhesive agent.
  • It is a figure explaining a resistor area
  • FIG. 2 is a cross-sectional
  • FIG. 11 is a bottom view (Part 2) illustrating variations of the shape of the thin portion;
  • FIG. 11 is a bottom view (No. 3) illustrating variations of the shape of the thin portion;
  • It is a measurement result (1) of the output of the film-shaped strain detection device.
  • It is a measurement result (2) of the output of the film-shaped strain detection device.
  • It is a measurement result (3) of the output of the film-shaped strain detection device.
  • It is a measurement result (5) of the output of the film-shaped strain detection device.
  • FIG. 11 is a plan view illustrating a strain gauge module according to a modified example of the second embodiment;
  • FIG. 10 is a diagram showing a rate of change in strain detection sensitivity;
  • FIG. 10 is a diagram illustrating a processing system for signals output from the strain gauge module according to the second embodiment;
  • FIG. 10 is a diagram (Part 1) exemplifying the output voltage of the strain gauge module according to the comparative example;
  • FIG. 11 is a diagram (part 2) exemplifying the output voltage of the strain gauge module according to the comparative example;
  • FIG. 11 is a diagram (part 1) illustrating the output voltage of the strain gauge module according to the second embodiment;
  • FIG. 11 is a diagram (part 2) illustrating the output voltage of the strain gauge module according to the second embodiment; It is a measurement result of the output of the film-shaped strain detection device.
  • FIG. 1 is a top view illustrating the strain gauge module according to the first embodiment.
  • FIG. 2 is a cross-sectional view (Part 1) illustrating the strain gauge module according to the first embodiment, showing a cross section along line AA in FIG.
  • FIG. 3 is a diagram for explaining the surface roughness Ra and the thickness of the adhesive.
  • FIG. 4 is a diagram for explaining the resistor region.
  • the strain gauge module 1 has a thin plate metal substrate 10, an adhesive 20, and a film strain detection device 30.
  • the strain gauge module 1 is attached to an object to be measured, and the film-shaped strain detection device 30 can detect strain occurring in the object to be measured.
  • the thin metal substrate 10 is a member on which the film strain detection device 30 is arranged. Specifically, the thin metal substrate 10 has an upper surface 10a and a lower surface 10b. A film-shaped strain detection device 30 is mounted on the upper surface 10a of the thin metal substrate 10, and the lower surface 10b serves as a mounting surface for an object to be measured.
  • the thin metal substrate refers to a metal substrate having a thickness of 200 ⁇ m or less.
  • the thickness of the thin metal substrate 10 is preferably 20 ⁇ m or more and 120 ⁇ m or less, more preferably 20 ⁇ m or more and 80 ⁇ m or less, and even more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the thin plate metal substrate 10 referred to here is the thickness of a region other than the thin portion 11 which will be described later.
  • the thickness of the thin metal substrate 10 By setting the thickness of the thin metal substrate 10 to 20 ⁇ m or more, distortion can be stably detected. By setting the thickness of the thin metal substrate 10 to 120 ⁇ m or less, strain can be detected with high sensitivity. Further, by making the thickness of the thin metal substrate 10 thinner, the strain can be detected with higher sensitivity. Moreover, if the thickness of the thin metal substrate 10 is 20 ⁇ m or more and 80 ⁇ m or less, it can be easily fixed even to a curved object to be measured. If the thickness of the thin plate metal substrate 10 is 20 ⁇ m or more and 50 ⁇ m or less, it can be more easily fixed even to a curved object to be measured.
  • the surface roughness Ra of the upper surface 10a of the thin metal substrate 10 is preferably 3 ⁇ m or more and 20 ⁇ m or less, more preferably 3 ⁇ m or more and 10 ⁇ m or less, and even more preferably 3 ⁇ m or more and 5 ⁇ m or less.
  • the surface roughness Ra is a kind of numerical value representing surface roughness, and is called arithmetic mean roughness. Specifically, as shown in FIG. It is the arithmetic mean of the absolute values of the heights measured from the surface, which is the average line.
  • SUS stainless steel/iron-based alloy having high hardness (easily transmitting strain) is suitable for transmitting strain, but the material is not limited thereto. A copper alloy or the like may also be used. In addition, SUS is suitable in that it is easily available.
  • the size of the thin metal substrate 10 is not particularly limited, but is larger than the size of the film strain detection device 30 in plan view.
  • the film strain detection device 30 is mounted on the upper surface 10a of the thin metal substrate 10 with an adhesive 20 interposed therebetween.
  • the adhesive 20 for example, an epoxy resin or the like can be used.
  • the bending elastic modulus of the adhesive 20 can be, for example, 3 GPa or more and 20 GPa or less.
  • Adhesive 20 may contain a filler if needed.
  • the adhesive 20 contains a filler the contained filler may be an inorganic filler or an organic filler.
  • the filler diameter is preferably 5 ⁇ m or less, and when it contains an organic filler, the filler diameter is preferably 10 ⁇ m or less.
  • the thickness T of the adhesive 20 is preferably 30 ⁇ m or less. If the thickness T of the adhesive 20 is 30 ⁇ m or less, the distortion of the thin metal substrate 10 can be efficiently transmitted to the film-like distortion detection device 30 .
  • the thickness T of the adhesive 20 is the distance from the top surface 10a of the thin metal substrate 10 to the bottom surface of the base material 31 from the tip of the convex portion indicated by the solid line, excluding abnormal protrusions (spikes). is.
  • the unevenness indicated by broken lines in FIG. 3 is a virtual image. 3, that is, the gaps between the unevenness of the upper surface 10a of the thin metal substrate 10 are filled with the adhesive 20. As shown in FIG.
  • the entire lower surface of the film-shaped strain detection device 30 is adhered to the upper surface 10 a of the thin metal substrate 10 with an adhesive 20 .
  • the variation in the thickness of the adhesive 20 is preferably ⁇ 5 ⁇ m or less.
  • the film strain detection device 30 has a substrate 31, a resistor 32, wiring 33, and terminals 34 and 35.
  • the size of the film-shaped strain detection device 30 is not particularly limited, but from the viewpoint of miniaturization of the strain gauge module 1, the film-shaped strain detection device 30 is also preferably small. It can be square or rectangular with a length of about 1.5 mm to 2 mm.
  • the base material 31 is a member that serves as a base layer for forming the resistor 32 and has flexibility.
  • the thickness of the base material 31 is not particularly limited and can be appropriately selected according to the purpose.
  • the base material 31 can be formed from, for example, an insulating resin film such as PI (polyimide) resin.
  • the resistor 32 is a thin film formed on the upper surface of the base material 31, and is a sensing part that undergoes strain and changes in resistance.
  • the resistor 32 may be formed directly on the top surface of the base material 31 or may be formed on the top surface of the base material 31 via another layer.
  • the thickness of the resistor 32 is not particularly limited and can be appropriately selected depending on the purpose.
  • a plurality of elongated portions are arranged in the same longitudinal direction (the direction perpendicular to line AA in the example of FIG. 1) at predetermined intervals, and the ends of adjacent elongated portions are staggered. It is a structure that is connected to and folded back in a zigzag as a whole.
  • the longitudinal direction of the plurality of elongated portions is the grid direction, and the direction perpendicular to the grid direction is the grid width direction (in the example of FIG. 1, the direction of line AA).
  • the resistor 32 can be made of, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 32 can be made of a material containing at least one of Cr and Ni.
  • Materials containing Ni include, for example, Cu—Ni (copper nickel).
  • Materials containing both Cr and Ni include, for example, Ni—Cr (nickel chromium).
  • a Cr mixed phase film may be used as the resistor 32 .
  • the Cr mixed phase film is a film in which Cr, CrN, Cr 2 N, or the like is mixed.
  • the Cr mixed phase film may contain unavoidable impurities such as chromium oxide.
  • the terminals 34 and 35 are formed on the upper surface near the ends of the wiring 33 .
  • the terminals 34 and 35 are connected to both ends of the resistor 32 via wiring 33 made of copper or the like, and are formed, for example, in a rectangular shape in plan view.
  • Terminals 34 and 35 are a pair of electrodes for outputting a change in the resistance value of resistor 32 caused by strain.
  • the terminals 34 and 35 are made of copper or the like, for example.
  • a gold film or the like may be laminated on the surface of copper or the like.
  • the strain gauge module 1 may have a resin portion 36 covering the film strain detection device 30 on the thin metal substrate 10 .
  • the resin portion 36 can be formed, for example, so as to expose part or all of the terminals 34 and 35 of the film strain detection device 30 .
  • the resin portion 36 is made of a material that does not contain a filler, or a material that contains an inorganic or organic filler of 3 ⁇ m or less. It is preferably formed from The resin portion 36 is preferably made of a material having a hardness of D90 to A15 suitable for strain propagation and a tensile strength of 0.3 MPa to 10 MPa. Such materials include, for example, thermosetting or photosetting silicone-based resins and epoxy-based resins. By using such a low-stress resin as the material of the resin portion 36, the influence of the coating with the resin portion 36 on the characteristics (sensitivity) of the film strain detection device 30 can be reduced.
  • the thin metal substrate 10 preferably has a rectangular shape in plan view. By forming the thin plate metal substrate 10 in a rectangular shape in plan view, it is possible to detect longitudinal strain with high sensitivity.
  • the thin metal substrate 10 has a rectangular shape in plan view, and a straight line L1 indicates a line passing through the midpoints of the opposing short sides of the thin metal substrate 10 . That is, the straight line L1 is a line that bisects the thin metal substrate 10 in the longitudinal direction.
  • a straight line L2 indicates a line passing through the midpoints of the opposed long sides of the thin metal substrate 10 .
  • the straight line L2 is a line that bisects the thin metal substrate 10 in the lateral direction.
  • the intersection of the straight lines L1 and L2 passes through the center of gravity Gp of the thin metal substrate 10 in plan view.
  • the center of gravity here is the center of gravity in plan view, that is, the center of gravity of a plane figure.
  • the center of gravity Gp of the thin metal substrate 10 is the center of gravity of the rectangle shown in FIG. 1 without considering the thickness of the thin metal substrate 10 .
  • the film-shaped strain detection device 30 has a resistor region R on its upper surface. As shown in FIG. 4 , on the upper surface of the base material 31 , a rectangular region in plan view where the resistor 32 is formed is the resistor region R. As shown in FIG. Resistor region R is the smallest rectangular region that can be drawn to include all resistors 32 . Gr shown in FIG. 4 indicates the center of gravity Gr of the resistor region R.
  • the resistor 32 preferably includes a portion that overlaps the center of gravity Gp of the thin metal substrate 10 . Furthermore, in the strain gauge module 1, it is preferable that the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R coincide with each other.
  • the center of gravity of A and the center of gravity of B are coincident includes, of course, the case where the center of gravity of A and the center of gravity of B are completely coincident in plan view. and the center of gravity of B is within the range of 50 ⁇ m.
  • the direction of deviation may be arbitrary, and it is sufficient if the center of gravity of B is positioned within a radius of 50 ⁇ m with respect to the center of gravity of A.
  • the fact that the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R are coincident means that the diagonal line of the thin metal substrate 10 and the intersection of the diagonal lines of the resistor region R coincide with each other.
  • the permissible amount of deviation between the intersection of the diagonal lines of the thin metal substrate 10 and the intersection of the diagonal lines of the resistor region R is the same as in the above case. That is, if the amount of deviation between the intersections of the two diagonal lines is within the range of 50 ⁇ m, the intersections of the two diagonal lines are considered to match.
  • the center of gravity Gp of the thin metal substrate 10 is the point where strain is most concentrated when the thin metal substrate 10 is attached to the object to be measured and the thin metal substrate 10 receives strain from the object to be measured. Therefore, since the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R coincide with each other, the strain detection sensitivity of the film strain detection device 30 can be improved. That is, the strain gauge module 1 with excellent detection sensitivity can be realized. This effect can be obtained even when the thin metal substrate 10 is not rectangular in plan view.
  • the center of gravity Gr of the resistor region R is located within a radius of 20 ⁇ m from the center of gravity Gp of the thin metal substrate 10, and the resistance is located within a radius of 10 ⁇ m. It is more preferable that the center of gravity Gr of the resistor region R is located, and more preferably that the center of gravity Gr of the resistor region R is located within a radius of 5 ⁇ m. preferable.
  • Arrow D shown in FIG. 1 indicates the vibration propagation direction.
  • the vibration propagation direction D and the longitudinal direction of the thin metal substrate 10 match.
  • the vibration propagation direction D and the grid direction of the resistors 32 formed in the resistor region R match.
  • the longitudinal direction of the thin metal substrate 10 and the grid direction of the resistors 32 formed in the resistor region R match. Due to such a relationship, the detection sensitivity of strain in the vibration propagation direction D can be improved.
  • FIG. 6 is a cross-sectional view (part 2) illustrating the strain gauge module according to the first embodiment, showing a cross section taken along line BB of FIG. 7 is a bottom view illustrating the strain gauge module according to the first embodiment;
  • a thin portion 11 is formed on the lower surface 10b of the thin plate metal substrate 10 so as to be recessed from the lower surface 10b toward the upper surface 10a.
  • the thin portion 11 includes a first portion 11a, a second portion 11b, and a third portion 11c.
  • the first portion 11a is an elongated portion that is inclined with respect to the straight line L1.
  • the second portion 11b is an elongated portion that is inclined with respect to the straight line L1 at an angle different from that of the first portion 11a.
  • the first portion 11a and the second portion 11b intersect so as to pass through the center of gravity Gp of the thin plate metal substrate 10 and form, for example, an X shape.
  • the third portion 11 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 .
  • the third portion 11c has, for example, a rectangular shape, but may have a circular shape, an elliptical shape, or the like.
  • the maximum depth of the thin portion 11 can be 10% or more of the thickness of the thin metal substrate 10.
  • the maximum depth of the thin portion 11 may be 50% or less of the thickness of the thin metal substrate 10 with respect to the lower surface 10 b of the thin metal substrate 10 .
  • the thin portion 11 can be formed by an appropriate method such as a corrosion method, an electropolishing method, or a blasting method.
  • the shape of the vertical cross section taken in the direction perpendicular to the longitudinal direction is, for example, rectangular, semicircular (U-shaped), or triangular (V-shaped). , a trapezoidal shape, or the like.
  • the shape of the longitudinal section taken along the straight line L1 or L2 is, for example, rectangular, semicircular (U-shaped), triangular (V-shaped), trapezoidal, or the like.
  • the depth of the deepest portion is preferably substantially constant regardless of location.
  • the depth of the deepest portion of the first portion 11a, the depth of the deepest portion of the second portion 11b, and the depth of the deepest portion of the third portion 11c are preferably the same. .
  • the sensitivity characteristics of the film-shaped strain detection device 30 may be attenuated.
  • the strain gauge module 1 by forming the thin portion 11 on the lower surface 10b of the thin plate metal substrate 10, the attenuated strain can be recovered or amplified by concentrating the attenuated strain. As a result, the characteristic fluctuation of the film-shaped strain detection device 30 can be suppressed, and the strain gauge module 1 with excellent stability and high sensitivity can be realized.
  • the shape of the thin portion for obtaining the above effects is not limited to the shape of the thin portion 11 .
  • the thin portion has a line-symmetrical shape with respect to a straight line passing through the center of gravity Gp of the thin plate metal substrate 10 in plan view.
  • Examples of the straight line passing through the center of gravity Gp of the thin metal substrate 10 include the straight line L1 and the straight line L2.
  • the straight line passing through the center of gravity Gp of the thin plate metal substrate 10 is not limited to the straight line L1 or the straight line L2. can be particularly enhanced.
  • the thin portion 11 is symmetrical with respect to the straight lines L1 and L2.
  • the thin portion 11 is formed at a position including the center of gravity Gp of the thin metal substrate 10 in plan view, and the resistor 32 overlaps with the center of gravity Gp of the thin metal substrate 10. preferably included. It is preferable that the center of gravity Gt1 of the thin portion 11 and the center of gravity Gp of the thin plate metal substrate 10 coincide with each other. It is particularly preferable that the center of gravity Gt1 of thin portion 11, the center of gravity Gp of thin plate metal substrate 10, and the center of gravity Gr of resistor region R coincide with each other.
  • the thin portion is preferably a combination of two or more patterns.
  • the thin portion 11 is a combination of three patterns: a first portion 11a that is a first pattern, a second portion 11b that is a second pattern, and a third portion 11c that is a third pattern. .
  • the lower surface 10b of the thin metal substrate 10 is attached to the object to be measured by applying a liquid or film (tape) adhesive or adhesive to the object to be measured.
  • a liquid or film (tape) adhesive or adhesive can be easily fixed as
  • the thickness of the adhesive or pressure-sensitive adhesive can be, for example, about 25 ⁇ m.
  • the strain gauge module 1 does not have a bottom layer made of flexible resin (such as polyimide), so it can be easily attached to the object to be measured. Moreover, since polyimide is a difficult-to-adhere material, a special adhesion method (heating and pressure) is required to attach it to the object to be measured. No method is required.
  • flexible resin such as polyimide
  • the thin metal substrate 10 should be adhered to the object to be measured in a substantially flat state, for example, with an adhesive within a thickness range of about 3 to 100 ⁇ m, with a thickness variation of about ⁇ 5 ⁇ m. is preferred. Thereby, strain from the object to be measured can be efficiently transmitted to the thin metal substrate 10 .
  • [Variation of thin part shape] 8 to 10 are bottom views illustrating variations of the shape of the thin portion.
  • the shape of the thin portion may be the shape of the thin portion 11 shown in FIG. 7 or the like, the shape of the thin portions 12 to 14 shown in FIGS. 8 to 10, or any other shape. good too.
  • a strain gauge module 1A shown in FIG. 8 has the same structure as the strain gauge module 1 except that a thin portion 12 is formed instead of the thin portion 11.
  • the thin portion 12 is a combination of two patterns including a first portion 12a and a second portion 12b.
  • the first portion 12a has a substantially semicircular shape that draws an arc toward the straight line L1 side.
  • the second portion 12b is symmetrical with the first portion 12a with respect to the straight line L1.
  • Each of the first portion 12a and the second portion 12b is symmetrical with respect to the straight line L2. It is preferable that the center of gravity Gt2 of the thin portion 12 and the center of gravity Gp of the thin plate metal substrate 10 match.
  • a strain gauge module 1B shown in FIG. 9 has the same structure as the strain gauge module 1 except that a thin portion 13 is formed instead of the thin portion 11.
  • the thin portion 13 is a combination of three patterns including a first portion 13a, a second portion 13b, and a third portion 13c.
  • the first portion 13a has a substantially semi-elliptical shape that draws an arc toward the straight line L1 side.
  • the second portion 13b is symmetrical with the first portion 13a with respect to the straight line L1.
  • the third portion 13c has a substantially rectangular shape and is provided at a position bridging the first portion 13a and the second portion 13b.
  • the third portion 13 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 .
  • the thin portion 13 is symmetrical with respect to the straight lines L1 and L2. It is preferable that the center of gravity Gt3 of the thin portion 13 and the center of gravity Gp of the thin plate metal substrate 10 match.
  • a strain gauge module 1C shown in FIG. 10 has the same structure as the strain gauge module 1 except that a thin portion 14 is formed instead of the thin portion 11.
  • the thin portion 14 is a combination of three patterns including a first portion 14a, a second portion 14b, and a third portion 14c.
  • the first portion 14a has a substantially semicircular shape that draws an arc toward the peripheral portion of the thin plate metal substrate 10 .
  • the second portion 14b is symmetrical with the first portion 14a with respect to the straight line L1.
  • the third portion 14c is rectangular and symmetrical with respect to the straight lines L1 and L2.
  • the third portion 14 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 .
  • the thin portion 14 is symmetrical with respect to the straight lines L1 and L2. It is preferable that the center of gravity Gt4 of the thin portion 14 and the center of gravity Gp of the thin plate metal substrate 10 match.
  • the output of the film-shaped distortion detection device 30 was measured when the film-shaped distortion detection device 30 was directly attached to the object to be measured.
  • a strain gauge module having the same structure as the strain gauge module 1 except that the thin portion is not formed (for convenience, referred to as the strain gauge module 100) is manufactured, and the film is attached to the object to be measured.
  • the output of the shape distortion detection device 30 was measured.
  • Fig. 11 shows the measurement results.
  • the measurement result of the film-shaped strain detection device 30 alone is indicated by a dashed line (single device), and the measurement result of the strain gauge module 100 according to the comparative example is indicated by a dashed line (without thin portion).
  • the vertical axis represents the amount of change in the value (output) obtained by converting the resistance value of the film-shaped distortion detection device 30 into analog/digital (for convenience, output). showing.
  • the horizontal axis is elapsed time.
  • the comparative example when comparing the dashed line (single device) representing the measurement result of the film-shaped strain detection device 30 alone with the dashed line (without the thin portion) representing the measurement result of the strain gauge module 100 according to the comparative example, the comparative example It has been found that the related strain gauge module 100 has an output attenuated by about 2% as compared with the film-shaped strain detection device 30 alone.
  • FIGS. 6 and 7 the strain gauge module 1 formed with the thin portion 11 shown in FIGS. 6 and 7 was produced, and the output of the film-shaped strain detection device 30 when attached to the measurement object was measured.
  • the measurement results are indicated by a solid line (thin portion 11) in FIG.
  • FIG. 12 shows the dashed line (single device) and the dashed line (without the thin portion) shown in FIG. 11 for comparison.
  • FIGS. 13 to 15 The same applies to FIGS. 13 to 15 below.
  • the strain gauge module 1A having the thin portion 12 shown in FIG. 8 was produced, and the output of the film-shaped strain detection device 30 when attached to the measurement object was measured.
  • the measurement results are indicated by a solid line (thin portion 12) in FIG.
  • the strain gauge module 1B having the thin portion 13 shown in FIG. 9 was produced, and the output of the film-shaped strain detection device 30 was measured when it was attached to the object to be measured.
  • the measurement results are indicated by a solid line (thin portion 13) in FIG.
  • a strain gauge module 1C having a thin portion 14 shown in FIG. 10 was produced, and the output of the film-shaped strain detection device 30 was measured when the module was attached to a measurement object.
  • the measurement results are indicated by a solid line (thin portion 14) in FIG.
  • the solid line (each thin portion) exceeds the dashed line (without the thin portion).
  • the output of the film strain detection device 30 increases more than when the thin portions are not formed. That is, by forming a thin portion recessed from the lower surface 10b toward the upper surface 10a on the lower surface 10b of the thin metal substrate 10, the strain attenuated by the structure in which the film strain detection device 30 is adhered to the thin metal substrate 10 (broken line ( It was confirmed that detection sensitivity can be improved by recovering or amplifying (no thin portion)).
  • the thin portion 11 shown in FIGS. 6 and 7 it is mainly the first portion 11a and the second portion 11b that contribute to the improvement of detection sensitivity.
  • the third portion 11c by forming the third portion 11c, the flow of the adhesive filled inside the thin portion 11 is improved, so that the entire thin portion 11 can be uniformly filled with the adhesive.
  • the thin portion may not be formed on the bottom surface of the thin plate metal substrate 10 . Also in this case, detection sensitivity can be increased by reducing the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R.
  • FIG. 1 the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R.
  • the positional relationship between the resistor region R and the terminals 34 and 35 is not limited to the example in FIG.
  • the positions of the terminals 34 and 35 may be different in the longitudinal direction of the thin plate metal substrate 10 .
  • terminals 34 and 35 may be in positions other than those of FIGS. The point is that the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R only need to coincide with each other.
  • FIG. 17 is a diagram showing the rate of change in strain detection sensitivity.
  • the detection sensitivity when the stress is 100 is The rate of change is about -2%.
  • the change rate of the detection sensitivity when the stress is 100 is about -5%.
  • the rate of change in detection sensitivity when the stress is 100 is about ⁇ 5%, it can be used in practice. Therefore, from the data in FIG. It can be said that the amount of deviation of the resistor region R from the center of gravity Gr is 50 ⁇ m in the longitudinal direction of the thin plate metal substrate 10 .
  • the rate of change in the strain detection sensitivity is maximized when the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R are deviated in the longitudinal direction of the thin metal substrate 10 . Therefore, it can be said that the amount of deviation between the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R that is permissible for the strain gauge module 1 is within the range of 50 ⁇ m in all directions.
  • FIG. 18 is a diagram illustrating a signal processing system output from the strain gauge module according to the second embodiment. Although the strain gauge module 1 is used in FIG. 18, the strain gauge module 1A may be used.
  • the output of strain gauge module 1 is connected to bridge box 150 .
  • the terminals 34 and 35 of the film strain detection device 30 mounted on the strain gauge module 1 are connected to the bridge box 150 by wires or the like.
  • Bridge box 150 is connected to signal processing section 200 .
  • the signal processing section 200 has a bridge voltage 210, a distortion amplifier 220, and an A/D converter 230, for example.
  • a bridge circuit is arranged in the bridge box 150, one side of the bridge circuit is composed of the resistor 32 connected between the terminals 34 and 35, and the other three sides are composed of fixed resistors.
  • a bridge circuit in the bridge box 150 is supplied with a DC voltage from a bridge voltage 210 .
  • an analog signal corresponding to the resistance value of the resistor 32 can be obtained as the output of the bridge circuit.
  • the analog signal obtained by the bridge box 150 is input to the distortion amplifier 220 and amplified by the distortion amplifier 220 .
  • the analog signal amplified by the distortion amplifier 220 is converted to a digital signal by the A/D converter 230, input to the computer 300, and subjected to predetermined calculations.
  • a storage device 400 is connected to the computer 300, and results of calculations by the computer 300 are stored.
  • 19A and 19B are diagrams illustrating output voltages of strain gauge modules according to comparative examples.
  • 19A shows the output voltage from the bridge box 150 when the strain gauge module according to the comparative example is connected in place of the strain gauge module 1 in FIG. 18, and
  • FIG. 19B shows the output voltage from the strain amplifier 220. is the output voltage.
  • the strain gauge module according to the comparative example is similar to the strain gauge module 1 except that the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is 100 ⁇ m in the longitudinal direction of the thin plate metal substrate 10 . They have the same structure.
  • 20A and 20B are diagrams illustrating output voltages of the strain gauge module according to the second embodiment.
  • 20A is the output voltage output from the bridge box 150 of FIG. 18, and
  • FIG. 20B is the output voltage output from the distortion amplifier 220 of FIG.
  • the strain gauge module 1 is used in which the amount of deviation between the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R is 5 ⁇ m in the longitudinal direction of the thin metal substrate 10 .
  • the strain gauge module 1 has a high detection sensitivity because the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is smaller than that of the strain gauge module according to the comparative example. Therefore, as can be seen by comparing FIG. 19A and FIG. 20A, the strain gauge module 1 can obtain a larger amplitude output voltage from the bridge box 150 than the strain gauge module according to the comparative example.
  • the gain of the strain amplifier 220 can be made lower than when using the strain gauge module according to the comparative example. Therefore, as can be seen by comparing FIG. 19B and FIG. 20B, the use of the strain gauge module 1 reduces the influence of noise from the strain amplifier 220 more than the use of the strain gauge module according to the comparative example. An output voltage with a high S/N ratio can be obtained. As a result, using the strain gauge module 1 enables highly accurate strain detection.
  • the third embodiment shows an example of a strain gauge module using a thin plate substrate 10A made of amorphous material or nanocrystalline material instead of the thin plate metal substrate 10 shown in the first and second embodiments. Note that the plan view and the cross-sectional view are the same as those in FIGS. 1 and 2, so illustration thereof is omitted. The thin portion may not be formed on the lower surface of the thin plate substrate 10A.
  • the thin plate substrate 10A has flatness over the entire surface with no waviness and warpage.
  • the surface roughness Ra of the upper surface 10a of the thin substrate 10A is preferably 3 ⁇ m or more and 20 ⁇ m or less, more preferably 3 ⁇ m or more and 10 ⁇ m or less, and 3 ⁇ m or more and 5 ⁇ m or less. is more preferable.
  • the thin plate substrate 10A is made of amorphous material or nanocrystalline material.
  • the material of the thin plate substrate 10A is glass, which is an example of an amorphous material.
  • the material of the thin plate substrate 10A is an amorphous alloy, which is an example of a nanocrystalline material.
  • Amorphous alloys are Fe-based, Ni-based, or cobalt-based materials that contain 15 to 30 atomic percent of boron, carbon, silicon, phosphorus, etc., as current materials. It has excellent characteristics in terms of surface, and can be used in a wide range of environments.
  • Amorphous materials such as glasses and amorphous alloys are known to have the property of avoiding strain attenuation due to the crystal structure and recovering or amplifying the strain that has been attenuated.
  • the thin plate substrate 10A using such a material is formed by an appropriate method such as a corrosion method, an electropolishing method, or a mechanical cutting method.
  • the size of the thin plate substrate 10A is not particularly limited, but is larger than the size of the film strain detection device 30 in a plan view.
  • the sensitivity characteristics of the film-shaped strain detection device 30 may be attenuated due to the crystal structure (grain boundaries).
  • the strain gauge module 1 by using an amorphous material or a nanocrystalline material as the material of the thin plate substrate 10A, the property is used to avoid strain attenuation due to the crystal structure, or recover or amplify the strain that has been attenuated. be able to. As a result, the characteristic fluctuation of the film-shaped strain detection device 30 can be suppressed, and the strain gauge module 1 with excellent stability and high sensitivity can be realized.
  • the thin plate substrate 10A was used in place of the thin plate metal substrate 10, and changes in the detection sensitivity of the film strain detection device 30 were examined. No thin portion is formed on the lower surface of the thin plate substrate 10A.
  • the output of the film-shaped distortion detection device 30 was measured when the film-shaped distortion detection device 30 was directly attached to the object to be measured.
  • a strain gauge module having the same structure as the strain gauge module 1 except that a metal substrate is used for the thin plate substrate 10A is manufactured (for convenience, referred to as a strain gauge module 100) and attached to the object to be measured.
  • the output of the film strain detection device 30 was measured.
  • the strain gauge module 1 using a glass substrate as the thin plate substrate 10A was produced, and the output of the film-shaped strain detection device 30 was measured when the strain gauge module 1 was attached to the object to be measured.
  • Fig. 21 shows the measurement results.
  • the dashed line 30 indicates the measurement result of the film strain detection device 30 alone
  • the solid line 100 indicates the measurement result of the strain gauge module 100 according to the comparative example
  • the dashed line 1 indicates the measurement result of the strain gauge module 1.
  • the vertical axis indicates the amount of change in the value (output for convenience) obtained by converting the resistance value of the film-shaped distortion detection device 30 to analog/digital. showing.
  • the horizontal axis is elapsed time.
  • the strain gauge module 100 shows that the film-shaped strain detection device 30 alone It was found that the output was attenuated by about 2%. On the other hand, in the strain gauge module 1, it was found that the output of the film-shaped strain detection device 30 increased more than that in the strain gauge module 100.
  • FIG. That is, by using the glass substrate as the thin plate substrate 10A, the attenuated strain (solid line 100) when using the metal substrate is recovered or amplified compared to the strain (single dashed line 30) when the metal substrate is not used. It was confirmed that the detection sensitivity can be improved.
  • the Fe-based amorphous alloy substrate was used as the thin plate substrate 10A, substantially the same results were obtained as when the glass substrate was used as the thin plate substrate 10A.
  • a film-shaped strain detection device attached to a measurement object and having terminals and a resistor area on the upper surface for detecting strain occurring in the measurement object; and a thin sheet metal substrate having an upper surface and a lower surface. configured, The film-shaped strain detection device is mounted on the upper surface of the thin metal substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object, A strain gauge module in which the center of gravity of the thin metal substrate coincides with the center of gravity of the resistor region.
  • (Appendix 2) The strain gauge module according to appendix 1, wherein the thin metal substrate and the resistor region are rectangular in plan view, and an intersection point of diagonal lines of the thin metal substrate and an intersection point of diagonal lines of the resistor region are aligned.
  • (Appendix 3) The thin metal substrate has a rectangular shape in plan view, 3.
  • the strain gauge module according to appendix 1 or 2 wherein the longitudinal direction of the thin metal substrate and the grid direction of the resistors formed in the resistor region are aligned.
  • (Appendix 4) 4. The strain gauge module according to any one of Appendices 1 to 3, wherein the adhesive has a thickness of 30 ⁇ m or less.
  • Appendix 9 9. The strain gauge module according to any one of Appendices 1 to 8, wherein the film strain detection device includes a base material made of polyimide and a resistor formed on the base material.
  • Appendix 10 A film-shaped strain detection device attached to a measurement object and having terminals and a resistor area on the upper surface for detecting strain occurring in the measurement object; and a thin sheet metal substrate having an upper surface and a lower surface.
  • the film-shaped strain detection device is mounted on the upper surface of the thin metal substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
  • the strain gauge module wherein the center of gravity of the resistor region is located within a radius of 50 ⁇ m from the center of gravity of the thin metal substrate. (Appendix 11) 11.
  • Appendix 12 A film-shaped distortion detection device attached to an object to be measured, having a terminal on the upper surface for detecting distortion occurring in the object to be measured, and a thin plate substrate having an upper surface and a lower surface, The film-shaped strain detection device is mounted on the upper surface of the thin plate substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
  • the strain gauge module wherein the thin substrate is made of amorphous material or nanocrystalline material.
  • Appendix 13 13.
  • Appendix 15 15. The strain gauge module according to any one of appendices 12 to 14, wherein the material of the thin plate substrate is glass.
  • Appendix 16 15. The strain gauge module according to any one of appendices 12 to 14, wherein the material of the thin plate substrate is an amorphous alloy.
  • Appendix 17 17.
  • the film-shaped strain detection device includes a resistor region in which a resistor is formed, 19.
  • 1, 1A, 1B, 1C strain gauge module 10 thin plate metal substrate, 10a upper surface, 10b lower surface, 11, 12, 13, 14 thin portion, 11a, 12a, 13a, 14a first portion, 11b, 12b, 13b, 14b Second part, 11c, 13c, 14c Third part, 20 Adhesive, 30 Film strain detection device, 31 Base material, 32 Resistor, 33 Wiring, 34, 35 Terminal, 36 Resin part, 150 Bridge box, 200 Signal Processing unit, 210 bridge voltage, 220 distortion amplifier, 230 A/D converter, 300 computer, 400 storage device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

This strain gauge module comprises: a film-like strain detection device that is attached to an object to be measured, has a terminal on an upper surface thereof, and is for detecting strain that occurs in the object to be measured; and a thin-plate metal substrate that has an upper surface and a lower surface. The film-like strain detection device is mounted on the upper surface of the thin-plate metal substrate with an adhesive therebetween. The lower surface is an attachment surface for the object to be measured, and a thin-walled section having a partially reduced plate thickness is formed on the lower surface of the thin-plate metal substrate.

Description

歪みゲージモジュールstrain gauge module
 本発明は、歪みゲージモジュールに関する。 The present invention relates to strain gauge modules.
 フィルム状デバイスとして、例えば、可撓性を有するポリイミド等の基材上に形成された抵抗体を有する歪みゲージが知られている(例えば、特許文献1参照)。このようなフィルム状デバイスにおいて、検出感度を向上することが求められている。 As a film-like device, for example, a strain gauge having a resistor formed on a flexible base material such as polyimide is known (see, for example, Patent Document 1). Such film-like devices are required to have improved detection sensitivity.
特開2018-185346号公報JP 2018-185346 A
 本発明は、上記の点に鑑みてなされたもので、検出感度に優れた歪みゲージモジュールの提供を目的とする。 The present invention has been made in view of the above points, and aims to provide a strain gauge module with excellent detection sensitivity.
 本歪みゲージモジュール(1)は、測定対象物に装着し、上面に端子(34,35)を有し前記測定対象物に生じる歪みを検出するためのフィルム状歪み検出デバイス(30)と、上面(10a)と下面(10b)とを有する薄板金属基板(10)と、を含んで構成され、前記薄板金属基板(10)の前記上面(10a)に接着剤(20)を介して前記フィルム状歪み検出デバイス(30)が搭載され、前記下面(10b)を前記測定対象物への装着面とし、前記薄板金属基板(10)の前記下面(10b)には部分的に板厚を薄くした薄厚部(11)が形成されている。 The strain gauge module (1) comprises a film-shaped strain detection device (30) attached to an object to be measured and having terminals (34, 35) on the upper surface for detecting strain occurring in the object to be measured; a thin metal substrate (10) having a bottom surface (10a) and a bottom surface (10b); A strain detection device (30) is mounted, the lower surface (10b) is used as a mounting surface for the measurement object, and a thin plate thickness is partially reduced on the lower surface (10b) of the thin metal substrate (10). A portion (11) is formed.
 なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。 It should be noted that the reference numerals in parentheses above are attached for easy understanding, and are merely examples, and are not limited to the illustrated embodiment.
 開示の技術によれば、検出感度に優れた歪みゲージモジュールを提供できる。 According to the disclosed technology, it is possible to provide a strain gauge module with excellent detection sensitivity.
第1実施形態に係る歪みゲージモジュールを例示する上面図である。1 is a top view illustrating a strain gauge module according to a first embodiment; FIG. 第1実施形態に係る歪みゲージモジュールを例示する断面図(その1)である。1 is a cross-sectional view (Part 1) illustrating the strain gauge module according to the first embodiment; FIG. 表面粗さRaと接着剤の厚さについて説明する図である。It is a figure explaining surface roughness Ra and the thickness of an adhesive agent. 抵抗体領域について説明する図である。It is a figure explaining a resistor area|region. 薄板金属基板と抵抗体領域の重心の一致について説明する図である。It is a figure explaining the agreement of the center of gravity of a thin plate metal substrate and a resistor area|region. 第1実施形態に係る歪みゲージモジュールを例示する断面図(その2)である。FIG. 2 is a cross-sectional view (part 2) illustrating the strain gauge module according to the first embodiment; 第1実施形態に係る歪みゲージモジュールを例示する下面図である。FIG. 2 is a bottom view illustrating the strain gauge module according to the first embodiment; FIG. 薄厚部形状のバリエーションを例示する下面図(その1)である。It is a bottom view (1) which illustrates the variation of thin part shape. 薄厚部形状のバリエーションを例示する下面図(その2)である。FIG. 11 is a bottom view (Part 2) illustrating variations of the shape of the thin portion; 薄厚部形状のバリエーションを例示する下面図(その3)である。FIG. 11 is a bottom view (No. 3) illustrating variations of the shape of the thin portion; フィルム状歪み検出デバイスの出力の測定結果(1)である。It is a measurement result (1) of the output of the film-shaped strain detection device. フィルム状歪み検出デバイスの出力の測定結果(2)である。It is a measurement result (2) of the output of the film-shaped strain detection device. フィルム状歪み検出デバイスの出力の測定結果(3)である。It is a measurement result (3) of the output of the film-shaped strain detection device. フィルム状歪み検出デバイスの出力の測定結果(4)である。It is a measurement result (4) of the output of the film-shaped strain detection device. フィルム状歪み検出デバイスの出力の測定結果(5)である。It is a measurement result (5) of the output of the film-shaped strain detection device. 第2実施形態の変形例に係る歪みゲージモジュールを例示する平面図である。FIG. 11 is a plan view illustrating a strain gauge module according to a modified example of the second embodiment; 歪みの検出感度の変化率を示す図である。FIG. 10 is a diagram showing a rate of change in strain detection sensitivity; 第2実施形態に係る歪みゲージモジュールから出力される信号の処理システムを例示する図である。FIG. 10 is a diagram illustrating a processing system for signals output from the strain gauge module according to the second embodiment; 比較例に係る歪みゲージモジュールの出力電圧を例示する図(その1)である。FIG. 10 is a diagram (Part 1) exemplifying the output voltage of the strain gauge module according to the comparative example; 比較例に係る歪みゲージモジュールの出力電圧を例示する図(その2)である。FIG. 11 is a diagram (part 2) exemplifying the output voltage of the strain gauge module according to the comparative example; 第2実施形態に係る歪みゲージモジュールの出力電圧を例示する図(その1)である。FIG. 11 is a diagram (part 1) illustrating the output voltage of the strain gauge module according to the second embodiment; 第2実施形態に係る歪みゲージモジュールの出力電圧を例示する図(その2)である。FIG. 11 is a diagram (part 2) illustrating the output voltage of the strain gauge module according to the second embodiment; フィルム状歪み検出デバイスの出力の測定結果である。It is a measurement result of the output of the film-shaped strain detection device.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, the embodiments for carrying out the invention will be described with reference to the drawings. In each drawing, the same components are denoted by the same reference numerals, and redundant description may be omitted.
 〈第1実施形態〉
 (歪みゲージモジュール)
 図1は、第1実施形態に係る歪みゲージモジュールを例示する上面図である。図2は、第1実施形態に係る歪みゲージモジュールを例示する断面図(その1)であり、図1のA-A線に沿う断面を示している。図3は、表面粗さRaと接着剤の厚さについて説明する図である。図4は、抵抗体領域について説明する図である。
<First embodiment>
(Strain gauge module)
FIG. 1 is a top view illustrating the strain gauge module according to the first embodiment. FIG. FIG. 2 is a cross-sectional view (Part 1) illustrating the strain gauge module according to the first embodiment, showing a cross section along line AA in FIG. FIG. 3 is a diagram for explaining the surface roughness Ra and the thickness of the adhesive. FIG. 4 is a diagram for explaining the resistor region.
 図1及び図2を参照すると、歪みゲージモジュール1は、薄板金属基板10と、接着剤20と、フィルム状歪み検出デバイス30とを有する。歪みゲージモジュール1は、測定対象物に装着し、フィルム状歪み検出デバイス30により、測定対象物に生じる歪みを検出することができる。 1 and 2, the strain gauge module 1 has a thin plate metal substrate 10, an adhesive 20, and a film strain detection device 30. The strain gauge module 1 is attached to an object to be measured, and the film-shaped strain detection device 30 can detect strain occurring in the object to be measured.
 薄板金属基板10は、フィルム状歪み検出デバイス30を配置する部材である。詳細には、薄板金属基板10は、上面10aと下面10bとを有する。薄板金属基板10の上面10aにはフィルム状歪み検出デバイス30が搭載され、下面10bは測定対象物への装着面となる。 The thin metal substrate 10 is a member on which the film strain detection device 30 is arranged. Specifically, the thin metal substrate 10 has an upper surface 10a and a lower surface 10b. A film-shaped strain detection device 30 is mounted on the upper surface 10a of the thin metal substrate 10, and the lower surface 10b serves as a mounting surface for an object to be measured.
 ここで、薄板金属基板とは、厚さが200μm以下である金属製の基板を指す。薄板金属基板10の厚さは、20μm以上120μm以下であることが好ましく、さらに20μm以上80μm以下であることがより好ましく、20μm以上50μm以下であることがさらに好ましい。なお、ここでいう薄板金属基板10の厚さは、後述の薄厚部11以外の領域の厚さである。 Here, the thin metal substrate refers to a metal substrate having a thickness of 200 μm or less. The thickness of the thin metal substrate 10 is preferably 20 μm or more and 120 μm or less, more preferably 20 μm or more and 80 μm or less, and even more preferably 20 μm or more and 50 μm or less. The thickness of the thin plate metal substrate 10 referred to here is the thickness of a region other than the thin portion 11 which will be described later.
 薄板金属基板10の厚さを20μm以上とすることで、歪みを安定して検出することができる。薄板金属基板10の厚さを120μm以下とすることで、歪みを感度よく検出することができる。また、薄板金属基板10の厚さをより薄くすることで、歪みをさらに感度よく検出することができる。また、薄板金属基板10の厚さが20μm以上80μm以下であれば、湾曲した測定対象物に対しても容易に固定することができる。薄板金属基板10の厚さが20μm以上50μm以下であれば、湾曲した測定対象物に対してもさらに容易に固定することができる。 By setting the thickness of the thin metal substrate 10 to 20 μm or more, distortion can be stably detected. By setting the thickness of the thin metal substrate 10 to 120 μm or less, strain can be detected with high sensitivity. Further, by making the thickness of the thin metal substrate 10 thinner, the strain can be detected with higher sensitivity. Moreover, if the thickness of the thin metal substrate 10 is 20 μm or more and 80 μm or less, it can be easily fixed even to a curved object to be measured. If the thickness of the thin plate metal substrate 10 is 20 μm or more and 50 μm or less, it can be more easily fixed even to a curved object to be measured.
 薄板金属基板10の上面10aの表面粗さRaは、3μm以上20μm以下であることが好ましく、さらに3μm以上10μm以下であることがより好ましく、3μm以上5μm以下であることがさらに好ましい。薄板金属基板10の上面10aの表面粗さRaを3μm以上20μm以下とすることにより、フィルム状歪み検出デバイス30に対する薄板金属基板10の上面10aの表面粗さRaの影響を低減することが可能となり、歪みを容易に、かつ正確に測定することができる。 The surface roughness Ra of the upper surface 10a of the thin metal substrate 10 is preferably 3 μm or more and 20 μm or less, more preferably 3 μm or more and 10 μm or less, and even more preferably 3 μm or more and 5 μm or less. By setting the surface roughness Ra of the upper surface 10a of the thin metal substrate 10 to 3 μm or more and 20 μm or less, it is possible to reduce the influence of the surface roughness Ra of the upper surface 10a of the thin metal substrate 10 on the film strain detection device 30. , strain can be measured easily and accurately.
 ここで、表面粗さRaとは、表面粗さを表わす数値の一種であり、算術平均粗さと呼ばれるものであって、具体的には、図3に示すように、基準長さL内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものである。 Here, the surface roughness Ra is a kind of numerical value representing surface roughness, and is called arithmetic mean roughness. Specifically, as shown in FIG. It is the arithmetic mean of the absolute values of the heights measured from the surface, which is the average line.
 薄板金属基板10の材料としては、歪みを伝えるために硬度の高い(歪みの伝搬が容易な)SUS(ステンレス鋼・鉄系合金)が好適であるが、これには限定されず、アルミニウム合金や銅合金等を用いてもよい。なお、SUSは、入手が容易である点でも好適である。薄板金属基板10の大きさは、特に制限はないが、平面視でフィルム状歪み検出デバイス30の大きさよりも大きい。 As the material of the thin plate metal substrate 10, SUS (stainless steel/iron-based alloy) having high hardness (easily transmitting strain) is suitable for transmitting strain, but the material is not limited thereto. A copper alloy or the like may also be used. In addition, SUS is suitable in that it is easily available. The size of the thin metal substrate 10 is not particularly limited, but is larger than the size of the film strain detection device 30 in plan view.
 フィルム状歪み検出デバイス30は、薄板金属基板10の上面10aに、接着剤20を介して搭載されている。接着剤20としては、例えば、エポキシ系樹脂等を用いることができる。接着剤20の曲げ弾性率は、例えば、3GPa以上20GPa以下とすることができる。接着剤20は、必要に応じて、フィラーを含有してもよい。接着剤20がフィラーを含有する場合、含有するフィラーは無機フィラーでも有機フィラーでもよい。接着剤20が無機フィラーを含有する場合、フィラー径は5μm以下であることが好ましく、有機フィラーを含有する場合、フィラー径は10μm以下であることが好ましい。 The film strain detection device 30 is mounted on the upper surface 10a of the thin metal substrate 10 with an adhesive 20 interposed therebetween. As the adhesive 20, for example, an epoxy resin or the like can be used. The bending elastic modulus of the adhesive 20 can be, for example, 3 GPa or more and 20 GPa or less. Adhesive 20 may contain a filler if needed. When the adhesive 20 contains a filler, the contained filler may be an inorganic filler or an organic filler. When the adhesive 20 contains an inorganic filler, the filler diameter is preferably 5 μm or less, and when it contains an organic filler, the filler diameter is preferably 10 μm or less.
 接着剤20の厚さTは、30μm以下であることが好ましい。接着剤20の厚さTが30μm以下であれば、薄板金属基板10の歪みをフィルム状歪み検出デバイス30に効率よく伝達することができる。なお、図3に示すように、接着剤20の厚さTは、薄板金属基板10の上面10aにおいて、異常突起(スパイク)を除く実線で示す凸部の先端から基材31の下面までの距離である。図3の破線で示す凹凸は虚像である。なお、図3のUの部分、すなわち薄板金属基板10の上面10aの凹凸の隙間は、接着剤20で埋まる。 The thickness T of the adhesive 20 is preferably 30 μm or less. If the thickness T of the adhesive 20 is 30 μm or less, the distortion of the thin metal substrate 10 can be efficiently transmitted to the film-like distortion detection device 30 . As shown in FIG. 3, the thickness T of the adhesive 20 is the distance from the top surface 10a of the thin metal substrate 10 to the bottom surface of the base material 31 from the tip of the convex portion indicated by the solid line, excluding abnormal protrusions (spikes). is. The unevenness indicated by broken lines in FIG. 3 is a virtual image. 3, that is, the gaps between the unevenness of the upper surface 10a of the thin metal substrate 10 are filled with the adhesive 20. As shown in FIG.
 フィルム状歪み検出デバイス30の下面の全面が接着剤20により薄板金属基板10の上面10aに接着されることが好ましい。この際、接着剤20の厚さのばらつきは±5μm以下であることが好ましい。これにより、フィルム状歪み検出デバイス30全体が薄板金属基板10の上面10aに平坦に保持された状態となるため、薄板金属基板10の歪みをフィルム状歪み検出デバイス30にさらに効率よく伝達することができる。 It is preferable that the entire lower surface of the film-shaped strain detection device 30 is adhered to the upper surface 10 a of the thin metal substrate 10 with an adhesive 20 . At this time, the variation in the thickness of the adhesive 20 is preferably ±5 μm or less. As a result, the entire film-shaped strain detection device 30 is flatly held on the upper surface 10a of the thin metal substrate 10, so that the strain of the thin metal substrate 10 can be transmitted to the film-shaped strain detection device 30 more efficiently. can.
 フィルム状歪み検出デバイス30は、基材31と、抵抗体32と、配線33と、端子34及び35とを有している。フィルム状歪み検出デバイス30の大きさは、特に制限はないが、歪みゲージモジュール1の小型化の観点からは、フィルム状歪み検出デバイス30も小型であることが好ましく、例えば、基材31を一辺の長さが1.5mm~2mm程度の正方形状や長方形状とすることができる。 The film strain detection device 30 has a substrate 31, a resistor 32, wiring 33, and terminals 34 and 35. The size of the film-shaped strain detection device 30 is not particularly limited, but from the viewpoint of miniaturization of the strain gauge module 1, the film-shaped strain detection device 30 is also preferably small. It can be square or rectangular with a length of about 1.5 mm to 2 mm.
 基材31は、抵抗体32を形成するためのベース層となる部材であり、可撓性を有する。基材31の厚さは、特に制限はなく、目的に応じて適宜選択できる。基材31は、例えば、PI(ポリイミド)樹脂等の絶縁樹脂フィルムから形成できる。 The base material 31 is a member that serves as a base layer for forming the resistor 32 and has flexibility. The thickness of the base material 31 is not particularly limited and can be appropriately selected according to the purpose. The base material 31 can be formed from, for example, an insulating resin film such as PI (polyimide) resin.
 抵抗体32は、基材31の上面に形成された薄膜であり、歪みを受けて抵抗変化を生じる受感部である。抵抗体32は、基材31の上面に直接形成されてもよいし、基材31の上面に他の層を介して形成されてもよい。抵抗体32の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、0.05μm以上50μm以下である。 The resistor 32 is a thin film formed on the upper surface of the base material 31, and is a sensing part that undergoes strain and changes in resistance. The resistor 32 may be formed directly on the top surface of the base material 31 or may be formed on the top surface of the base material 31 via another layer. The thickness of the resistor 32 is not particularly limited and can be appropriately selected depending on the purpose.
 抵抗体32は、複数の細長状部が長手方向を同一方向(図1の例ではA-A線に垂直なの方向)に向けて所定間隔で配置され、隣接する細長状部の端部が互い違いに連結されて、全体としてジグザグに折り返す構造である。複数の細長状部の長手方向がグリッド方向となり、グリッド方向と垂直な方向がグリッド幅方向(図1の例ではA-A線の方向)となる。 In the resistor 32, a plurality of elongated portions are arranged in the same longitudinal direction (the direction perpendicular to line AA in the example of FIG. 1) at predetermined intervals, and the ends of adjacent elongated portions are staggered. It is a structure that is connected to and folded back in a zigzag as a whole. The longitudinal direction of the plurality of elongated portions is the grid direction, and the direction perpendicular to the grid direction is the grid width direction (in the example of FIG. 1, the direction of line AA).
 抵抗体32は、例えば、Cr(クロム)を含む材料、Ni(ニッケル)を含む材料、又はCrとNiの両方を含む材料から形成できる。すなわち、抵抗体32は、CrとNiの少なくとも一方を含む材料から形成できる。Niを含む材料としては、例えば、Cu-Ni(銅ニッケル)が挙げられる。CrとNiの両方を含む材料としては、例えば、Ni-Cr(ニッケルクロム)が挙げられる。 The resistor 32 can be made of, for example, a material containing Cr (chromium), a material containing Ni (nickel), or a material containing both Cr and Ni. That is, the resistor 32 can be made of a material containing at least one of Cr and Ni. Materials containing Ni include, for example, Cu—Ni (copper nickel). Materials containing both Cr and Ni include, for example, Ni—Cr (nickel chromium).
 抵抗体32として、Cr混相膜を用いてもよい。ここで、Cr混相膜とは、Cr、CrN、CrN等が混相した膜である。Cr混相膜は、酸化クロム等の不可避不純物を含んでもよい。抵抗体32としてCr混相膜を用いた場合、フィルム状歪み検出デバイス30を高感度化かつ小型化できる。 A Cr mixed phase film may be used as the resistor 32 . Here, the Cr mixed phase film is a film in which Cr, CrN, Cr 2 N, or the like is mixed. The Cr mixed phase film may contain unavoidable impurities such as chromium oxide. When a Cr mixed-phase film is used as the resistor 32, the sensitivity of the film strain detection device 30 can be increased and the size can be reduced.
 端子34及び35は、配線33の端部付近の上面に形成されている。端子34及び35は、銅等からなる配線33を介して抵抗体32の両端部に接続されており、例えば平面視において矩形状に形成されている。端子34及び35は、歪みにより生じる抵抗体32の抵抗値の変化を出力するための一対の電極である。端子34及び35は、例えば、銅等から形成される。銅等の表面に金膜等が積層されてもよい。 The terminals 34 and 35 are formed on the upper surface near the ends of the wiring 33 . The terminals 34 and 35 are connected to both ends of the resistor 32 via wiring 33 made of copper or the like, and are formed, for example, in a rectangular shape in plan view. Terminals 34 and 35 are a pair of electrodes for outputting a change in the resistance value of resistor 32 caused by strain. The terminals 34 and 35 are made of copper or the like, for example. A gold film or the like may be laminated on the surface of copper or the like.
 図2に示すように、歪みゲージモジュール1は、薄板金属基板10上に、フィルム状歪み検出デバイス30を覆う樹脂部36を有してもよい。樹脂部36は、例えば、フィルム状歪み検出デバイス30の端子34及び35の一部又は全部を露出するように形成することができる。薄板金属基板10上にフィルム状歪み検出デバイス30を覆う樹脂部36を設けることで、フィルム状歪み検出デバイス30の端子34及び35の機械的強度を向上させると共に、フィルム状歪み検出デバイス30の耐環境性(湿度、ガス)を向上させることができる。 As shown in FIG. 2 , the strain gauge module 1 may have a resin portion 36 covering the film strain detection device 30 on the thin metal substrate 10 . The resin portion 36 can be formed, for example, so as to expose part or all of the terminals 34 and 35 of the film strain detection device 30 . By providing the resin portion 36 covering the film-shaped strain detection device 30 on the thin metal substrate 10, the mechanical strength of the terminals 34 and 35 of the film-shaped strain detection device 30 is improved and the resistance of the film-shaped strain detection device 30 is improved. Environmental properties (humidity, gas) can be improved.
 樹脂部36は、歪みが印加されていないときのフィルム状歪み検出デバイス30の出力(オフセット)を抑えるために、フィラーを含まない材料か、或いは3μm以下の無機系又は有機系のフィラーを含む材料から形成することが好ましい。又、樹脂部36は、歪み伝搬に適した硬度がD90~A15で引っ張り強度が0.3MPa~10MPaの材料から形成することが好ましい。このような材料としては、例えば、熱硬化性又は光硬化性のシリコーン系樹脂やエポキシ系樹脂が挙げられる。樹脂部36の材料として、このような低応力の樹脂を用いることで、樹脂部36で被覆したことによるフィルム状歪み検出デバイス30の特性(感度)への影響を低減できる。 In order to suppress the output (offset) of the film-shaped strain detection device 30 when strain is not applied, the resin portion 36 is made of a material that does not contain a filler, or a material that contains an inorganic or organic filler of 3 μm or less. It is preferably formed from The resin portion 36 is preferably made of a material having a hardness of D90 to A15 suitable for strain propagation and a tensile strength of 0.3 MPa to 10 MPa. Such materials include, for example, thermosetting or photosetting silicone-based resins and epoxy-based resins. By using such a low-stress resin as the material of the resin portion 36, the influence of the coating with the resin portion 36 on the characteristics (sensitivity) of the film strain detection device 30 can be reduced.
 [薄板金属基板と抵抗体領域との位置関係]
 薄板金属基板10は、平面視で矩形状であることが好ましい。薄板金属基板10を平面視で矩形状とすることで、長手方向の歪みを感度よく検出することができる。図1において、薄板金属基板10は平面視で矩形状であり、直線L1は薄板金属基板10の対向する短辺の中点を通る線を示している。つまり、直線L1は、薄板金属基板10を長手方向に2分する線である。また、直線L2は薄板金属基板10の対向する長辺の中点を通る線を示している。つまり、直線L2は、薄板金属基板10を短手方向に2分する線である。直線L1と直線L2の交点は、平面視で薄板金属基板10の重心Gpを通る。なお、ここでいう重心は、平面視における重心、つまり平面図形の重心である。例えば、薄板金属基板10の重心Gpは、薄板金属基板10の厚さを考慮しない図1に示す矩形の重心である。
[Positional relationship between thin metal substrate and resistor region]
The thin metal substrate 10 preferably has a rectangular shape in plan view. By forming the thin plate metal substrate 10 in a rectangular shape in plan view, it is possible to detect longitudinal strain with high sensitivity. In FIG. 1 , the thin metal substrate 10 has a rectangular shape in plan view, and a straight line L1 indicates a line passing through the midpoints of the opposing short sides of the thin metal substrate 10 . That is, the straight line L1 is a line that bisects the thin metal substrate 10 in the longitudinal direction. A straight line L2 indicates a line passing through the midpoints of the opposed long sides of the thin metal substrate 10 . That is, the straight line L2 is a line that bisects the thin metal substrate 10 in the lateral direction. The intersection of the straight lines L1 and L2 passes through the center of gravity Gp of the thin metal substrate 10 in plan view. The center of gravity here is the center of gravity in plan view, that is, the center of gravity of a plane figure. For example, the center of gravity Gp of the thin metal substrate 10 is the center of gravity of the rectangle shown in FIG. 1 without considering the thickness of the thin metal substrate 10 .
 フィルム状歪み検出デバイス30は、上面に抵抗体領域Rを有している。図4に示すように、基材31の上面において、抵抗体32が形成されている平面視で矩形状の領域が抵抗体領域Rである。抵抗体領域Rは、抵抗体32をすべて含むように描くことができる最小の矩形状の領域である。図4に示すGrは、抵抗体領域Rの重心Grを示している。 The film-shaped strain detection device 30 has a resistor region R on its upper surface. As shown in FIG. 4 , on the upper surface of the base material 31 , a rectangular region in plan view where the resistor 32 is formed is the resistor region R. As shown in FIG. Resistor region R is the smallest rectangular region that can be drawn to include all resistors 32 . Gr shown in FIG. 4 indicates the center of gravity Gr of the resistor region R. FIG.
 図5に示すように、歪みゲージモジュール1において、抵抗体32は薄板金属基板10の重心Gpと重なる部分を含むことが好ましい。さらに、歪みゲージモジュール1において、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grは一致していることが好ましい。なお、本願において、『Aの重心とBの重心は一致している』とは、平面視でAの重心とBの重心が完全に一致している場合を含むことはもちろんであるが、Aの重心とBの重心とのずれ量が50μmの範囲内にある場合を含むものとする。また、ずれの方向は任意でよく、Aの重心に対して半径50μmの範囲内にBの重心が位置していればよいものとする。 As shown in FIG. 5 , in the strain gauge module 1 , the resistor 32 preferably includes a portion that overlaps the center of gravity Gp of the thin metal substrate 10 . Furthermore, in the strain gauge module 1, it is preferable that the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R coincide with each other. In the present application, "the center of gravity of A and the center of gravity of B are coincident" includes, of course, the case where the center of gravity of A and the center of gravity of B are completely coincident in plan view. and the center of gravity of B is within the range of 50 μm. Moreover, the direction of deviation may be arbitrary, and it is sufficient if the center of gravity of B is positioned within a radius of 50 μm with respect to the center of gravity of A. FIG.
 また、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grが一致しているとは、薄板金属基板10と抵抗体領域Rが平面視で矩形状であれば、薄板金属基板10の対角線の交点と抵抗体領域Rの対角線の交点が一致していることと同義である。薄板金属基板10の対角線の交点と抵抗体領域Rの対角線の交点の許容されるずれ量については、上記の場合と同様である。つまり、2つの対角線の交点のずれ量が50μmの範囲内であれば、2つの対角線の交点が一致しているものとみなす。 Further, when the thin metal substrate 10 and the resistor region R are rectangular in plan view, the fact that the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R are coincident means that the diagonal line of the thin metal substrate 10 and the intersection of the diagonal lines of the resistor region R coincide with each other. The permissible amount of deviation between the intersection of the diagonal lines of the thin metal substrate 10 and the intersection of the diagonal lines of the resistor region R is the same as in the above case. That is, if the amount of deviation between the intersections of the two diagonal lines is within the range of 50 μm, the intersections of the two diagonal lines are considered to match.
 薄板金属基板10の重心Gpは、薄板金属基板10を測定対象物に貼り付けて、薄板金属基板10が測定対象物から歪みを受ける際に、歪みが最も集中する点である。したがって、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grが一致していることで、フィルム状歪み検出デバイス30における歪みの検出感度を向上できる。すなわち、検出感度に優れた歪みゲージモジュール1を実現できる。なお、この効果は、薄板金属基板10が平面視で矩形状でない場合にも得られる。 The center of gravity Gp of the thin metal substrate 10 is the point where strain is most concentrated when the thin metal substrate 10 is attached to the object to be measured and the thin metal substrate 10 receives strain from the object to be measured. Therefore, since the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R coincide with each other, the strain detection sensitivity of the film strain detection device 30 can be improved. That is, the strain gauge module 1 with excellent detection sensitivity can be realized. This effect can be obtained even when the thin metal substrate 10 is not rectangular in plan view.
 フィルム状歪み検出デバイス30における歪みの検出感度を一層向上する観点から、薄板金属基板10の重心Gpに対して、半径20μm以内に抵抗体領域Rの重心Grが位置すると好ましく、半径10μm以内に抵抗体領域Rの重心Grが位置するとより好ましく、半径5μm以内に抵抗体領域Rの重心Grが位置するとさらに好ましく、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grが完全に一致すると特に好ましい。 From the viewpoint of further improving the strain detection sensitivity of the film strain detection device 30, it is preferable that the center of gravity Gr of the resistor region R is located within a radius of 20 μm from the center of gravity Gp of the thin metal substrate 10, and the resistance is located within a radius of 10 μm. It is more preferable that the center of gravity Gr of the resistor region R is located, and more preferably that the center of gravity Gr of the resistor region R is located within a radius of 5 μm. preferable.
 図1に示す矢印Dは、振動伝搬方向を示している。薄板金属基板10が平面視で矩形状である場合、振動伝搬方向Dと薄板金属基板10の長手方向が一致していることが好ましい。また、振動伝搬方向Dと抵抗体領域Rに形成された抵抗体32のグリッド方向が一致していることが好ましい。つまり、薄板金属基板10の長手方向と抵抗体領域Rに形成された抵抗体32のグリッド方向が一致していることが好ましい。このような関係により、振動伝搬方向Dの歪みの検出感度を向上することができる。 Arrow D shown in FIG. 1 indicates the vibration propagation direction. When the thin metal substrate 10 has a rectangular shape in plan view, it is preferable that the vibration propagation direction D and the longitudinal direction of the thin metal substrate 10 match. Moreover, it is preferable that the vibration propagation direction D and the grid direction of the resistors 32 formed in the resistor region R match. In other words, it is preferable that the longitudinal direction of the thin metal substrate 10 and the grid direction of the resistors 32 formed in the resistor region R match. Due to such a relationship, the detection sensitivity of strain in the vibration propagation direction D can be improved.
 [薄板金属基板と薄厚部との位置関係]
 図6は、第1実施形態に係る歪みゲージモジュールを例示する断面図(その2)であり、図1のB-B線に沿う断面を示している。図7は、第1実施形態に係る歪みゲージモジュールを例示する下面図である。
[Positional relationship between thin metal substrate and thin part]
FIG. 6 is a cross-sectional view (part 2) illustrating the strain gauge module according to the first embodiment, showing a cross section taken along line BB of FIG. 7 is a bottom view illustrating the strain gauge module according to the first embodiment; FIG.
 図6及び図7を参照すると、薄板金属基板10の下面10bには、下面10bから上面10a側に窪む薄厚部11が形成されている。図6及び図7の例では、薄厚部11は、第1部分11aと、第2部分11bと、第3部分11cとを含む。 6 and 7, a thin portion 11 is formed on the lower surface 10b of the thin plate metal substrate 10 so as to be recessed from the lower surface 10b toward the upper surface 10a. In the example of FIGS. 6 and 7, the thin portion 11 includes a first portion 11a, a second portion 11b, and a third portion 11c.
 平面視で、第1部分11aは、直線L1に対して傾斜する細長状の部分である。また、第2部分11bは、直線L1に対して第1部分11aとは異なる角度で傾斜する細長状の部分である。第1部分11aと第2部分11bは、薄板金属基板10の重心Gpを通るように交差し、例えばX字形状をなす。第3部分11cは、薄板金属基板10の重心Gpを含む位置に形成されている。第3部分11cは、例えば、矩形状であるが、円形状や楕円形状等であってもよい。 In plan view, the first portion 11a is an elongated portion that is inclined with respect to the straight line L1. The second portion 11b is an elongated portion that is inclined with respect to the straight line L1 at an angle different from that of the first portion 11a. The first portion 11a and the second portion 11b intersect so as to pass through the center of gravity Gp of the thin plate metal substrate 10 and form, for example, an X shape. The third portion 11 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 . The third portion 11c has, for example, a rectangular shape, but may have a circular shape, an elliptical shape, or the like.
 薄板金属基板10の下面10bを基準として、薄厚部11の最大深さは、薄板金属基板10の厚さの10パーセント以上とすることができる。薄板金属基板10の下面10bを基準として、薄厚部11の最大深さは、薄板金属基板10の厚さの50パーセント以下であってもよい。薄厚部11は、例えば、腐食法、電解研磨法、ブラスト法などの適宜な方法により形成することができる。 With the lower surface 10b of the thin metal substrate 10 as a reference, the maximum depth of the thin portion 11 can be 10% or more of the thickness of the thin metal substrate 10. The maximum depth of the thin portion 11 may be 50% or less of the thickness of the thin metal substrate 10 with respect to the lower surface 10 b of the thin metal substrate 10 . The thin portion 11 can be formed by an appropriate method such as a corrosion method, an electropolishing method, or a blasting method.
 第1部分11a及び第2部分11bにおいて、長手方向に垂直な方向に切った縦断面の形状は、例えば、矩形状であるが、半円形状(U字形状)、三角形状(V字形状)、台形状等であってもよい。第3部分11cにおいて、直線L1又はL2を通るように切った縦断面の形状は、例えば、矩形状であるが、半円形状(U字形状)、三角形状(V字形状)、台形状等であってもよい。 In the first portion 11a and the second portion 11b, the shape of the vertical cross section taken in the direction perpendicular to the longitudinal direction is, for example, rectangular, semicircular (U-shaped), or triangular (V-shaped). , a trapezoidal shape, or the like. In the third portion 11c, the shape of the longitudinal section taken along the straight line L1 or L2 is, for example, rectangular, semicircular (U-shaped), triangular (V-shaped), trapezoidal, or the like. may be
 薄厚部11において、最も深い部分の深さは、場所によらず略一定であることが好ましい。例えば、薄厚部11において、第1部分11aの最も深い部分の深さと、第2部分11bの最も深い部分の深さと、第3部分11cの最も深い部分の深さとは、同じであることが好ましい。 In the thin portion 11, the depth of the deepest portion is preferably substantially constant regardless of location. For example, in the thin portion 11, the depth of the deepest portion of the first portion 11a, the depth of the deepest portion of the second portion 11b, and the depth of the deepest portion of the third portion 11c are preferably the same. .
 フィルム状歪み検出デバイス30を薄板金属基板10に接着する構造では、フィルム状歪み検出デバイス30の感受特性が減衰する場合がある。歪みゲージモジュール1では、薄板金属基板10の下面10bに薄厚部11を形成することにより、減衰した歪みを集中させることで、減衰した歪みを回復又は増幅させることができる。これにより、フィルム状歪み検出デバイス30の特性変動を抑制し、安定性に優れた高感度の歪みゲージモジュール1を実現することができる。 In the structure in which the film-shaped strain detection device 30 is adhered to the thin metal substrate 10, the sensitivity characteristics of the film-shaped strain detection device 30 may be attenuated. In the strain gauge module 1, by forming the thin portion 11 on the lower surface 10b of the thin plate metal substrate 10, the attenuated strain can be recovered or amplified by concentrating the attenuated strain. As a result, the characteristic fluctuation of the film-shaped strain detection device 30 can be suppressed, and the strain gauge module 1 with excellent stability and high sensitivity can be realized.
 減衰した歪みを回復又は増幅させる効果は、薄板金属基板10の下面10bに薄厚部を形成することにより得られる。したがって、上記の効果を得るための薄厚部の形状は、薄厚部11の形状には限定されない。ただし、上記の効果をより高める観点から、平面視で、薄厚部は薄板金属基板10の重心Gpを通る直線に関し線対称形状であることが好ましい。 The effect of recovering or amplifying the attenuated strain is obtained by forming a thin portion on the lower surface 10b of the thin metal substrate 10. Therefore, the shape of the thin portion for obtaining the above effects is not limited to the shape of the thin portion 11 . However, from the viewpoint of enhancing the above effect, it is preferable that the thin portion has a line-symmetrical shape with respect to a straight line passing through the center of gravity Gp of the thin plate metal substrate 10 in plan view.
 薄板金属基板10の重心Gpを通る直線の例としては、直線L1や直線L2が挙げられる。薄板金属基板10の重心Gpを通る直線は、直線L1や直線L2には限定されないが、薄厚部が薄板金属基板10の長手方向に平行な直線L1に関し線対称形状である場合に、上記の効果を特に高めることができる。なお、薄厚部11は、直線L1及び直線L2に関し線対称形状である。 Examples of the straight line passing through the center of gravity Gp of the thin metal substrate 10 include the straight line L1 and the straight line L2. The straight line passing through the center of gravity Gp of the thin plate metal substrate 10 is not limited to the straight line L1 or the straight line L2. can be particularly enhanced. The thin portion 11 is symmetrical with respect to the straight lines L1 and L2.
 また、上記の効果をより高める観点から、平面視で、薄厚部11は薄板金属基板10の重心Gpを含む位置に形成されており、抵抗体32は薄板金属基板10の重心Gpと重なる部分を含むことが好ましい。薄厚部11の重心Gt1と薄板金属基板10の重心Gpとは、一致していること好ましい。薄厚部11の重心Gt1と薄板金属基板10の重心Gpと抵抗体領域Rの重心Grが一致していることが、特に好ましい。 In addition, from the viewpoint of further enhancing the above effect, the thin portion 11 is formed at a position including the center of gravity Gp of the thin metal substrate 10 in plan view, and the resistor 32 overlaps with the center of gravity Gp of the thin metal substrate 10. preferably included. It is preferable that the center of gravity Gt1 of the thin portion 11 and the center of gravity Gp of the thin plate metal substrate 10 coincide with each other. It is particularly preferable that the center of gravity Gt1 of thin portion 11, the center of gravity Gp of thin plate metal substrate 10, and the center of gravity Gr of resistor region R coincide with each other.
 また、上記の効果をより高める観点から、薄厚部は、2つ以上のパターンの組合わせであることが好ましい。例えば、薄厚部11は、第1のパターンである第1部分11aと、第2のパターンである第2部分11bと、第3のパターンである第3部分11cとの3つのパターンの組み合わせである。 Also, from the viewpoint of further enhancing the above effect, the thin portion is preferably a combination of two or more patterns. For example, the thin portion 11 is a combination of three patterns: a first portion 11a that is a first pattern, a second portion 11b that is a second pattern, and a third portion 11c that is a third pattern. .
 歪みゲージモジュール1は、最下層が薄板金属基板10であるため、測定対象物に液状又はフィルム(テープ)状の接着剤又は粘着剤で薄板金属基板10の下面10bを測定対象物への装着面として容易に固定することができる。接着剤又は粘着剤の厚さは、例えば、25μm程度とすることができる。 Since the bottom layer of the strain gauge module 1 is the thin metal substrate 10, the lower surface 10b of the thin metal substrate 10 is attached to the object to be measured by applying a liquid or film (tape) adhesive or adhesive to the object to be measured. can be easily fixed as The thickness of the adhesive or pressure-sensitive adhesive can be, for example, about 25 μm.
 すなわち、歪みゲージモジュール1は、従来の歪みゲージのように最下層が可撓性の樹脂(ポリイミド等)ではないため、測定対象物への取り付けが容易である。又、ポリイミドは難接着材料であるため、測定対象物への取り付けには特殊な接着方法(加熱及び加圧)が必要であるが、薄板金属基板10を測定対象物に取り付けるために特殊な接着方法は不要である。 That is, unlike conventional strain gauges, the strain gauge module 1 does not have a bottom layer made of flexible resin (such as polyimide), so it can be easily attached to the object to be measured. Moreover, since polyimide is a difficult-to-adhere material, a special adhesion method (heating and pressure) is required to attach it to the object to be measured. No method is required.
 なお、歪みゲージモジュール1を測定対象物へ接着する際には、薄板金属基板10の下面10bの全体に接着剤を塗布すると共に、薄厚部11の内部の全体に接着剤を充填することが好ましい。これにより、薄厚部11の内部に空隙が形成されないため、測定対象物からの歪みを薄板金属基板10に効率よく伝達することができる。歪みゲージモジュール1と測定対象物との接着に用いる接着剤としては、例えば、エポキシ系樹脂等が挙げられる。 When the strain gauge module 1 is adhered to the object to be measured, it is preferable to apply the adhesive to the entire lower surface 10b of the thin plate metal substrate 10 and to fill the entire inside of the thin portion 11 with the adhesive. . As a result, no gap is formed inside the thin portion 11 , so strain from the object to be measured can be efficiently transmitted to the thin metal substrate 10 . Examples of the adhesive used for bonding the strain gauge module 1 and the object to be measured include epoxy-based resin and the like.
 また、薄板金属基板10は、例えば、接着剤が3~100μm程度の厚さの範囲内で、かつ厚さばらつきが±5μm程度で、測定対象物に対して略平坦な状態で接着されることが好ましい。これにより、測定対象物からの歪みを薄板金属基板10に効率よく伝達することができる。 In addition, the thin metal substrate 10 should be adhered to the object to be measured in a substantially flat state, for example, with an adhesive within a thickness range of about 3 to 100 μm, with a thickness variation of about ±5 μm. is preferred. Thereby, strain from the object to be measured can be efficiently transmitted to the thin metal substrate 10 .
 [薄厚部形状のバリエーション]
 図8~図10は、薄厚部形状のバリエーションを例示する下面図である。薄厚部の形状は、図7等に示す薄厚部11の形状であってもよいし、図8~図10に示す薄厚部12~14の形状であってもよいし、その他の形状であってもよい。
[Variation of thin part shape]
8 to 10 are bottom views illustrating variations of the shape of the thin portion. The shape of the thin portion may be the shape of the thin portion 11 shown in FIG. 7 or the like, the shape of the thin portions 12 to 14 shown in FIGS. 8 to 10, or any other shape. good too.
 図8に示す歪みゲージモジュール1Aは、薄厚部11に代えて薄厚部12を形成した以外は、歪みゲージモジュール1と同じ構造である。薄厚部12は、第1部分12aと、第2部分12bとを含む2つのパターンの組み合わせである。第1部分12aは、直線L1側に向かって円弧を描く略半円形状である。第2部分12bは、直線L1に関して第1部分12aと線対称形状である。第1部分12a及び第2部分12bのそれぞれは、直線L2に関して線対称形状である。薄厚部12の重心Gt2と薄板金属基板10の重心Gpは一致していることが好ましい。 A strain gauge module 1A shown in FIG. 8 has the same structure as the strain gauge module 1 except that a thin portion 12 is formed instead of the thin portion 11. The thin portion 12 is a combination of two patterns including a first portion 12a and a second portion 12b. The first portion 12a has a substantially semicircular shape that draws an arc toward the straight line L1 side. The second portion 12b is symmetrical with the first portion 12a with respect to the straight line L1. Each of the first portion 12a and the second portion 12b is symmetrical with respect to the straight line L2. It is preferable that the center of gravity Gt2 of the thin portion 12 and the center of gravity Gp of the thin plate metal substrate 10 match.
 図9に示す歪みゲージモジュール1Bは、薄厚部11に代えて薄厚部13を形成した以外は、歪みゲージモジュール1と同じ構造である。薄厚部13は、第1部分13aと、第2部分13bと、第3部分13cとを含む3つのパターンの組み合わせである。第1部分13aは、直線L1側に向かって円弧を描く略半楕円形状である。第2部分13bは、直線L1に関して第1部分13aと線対称形状である。第3部分13cは、略矩形状であり、第1部分13aと第2部分13bとを橋渡しする位置に設けられている。第3部分13cは、薄板金属基板10の重心Gpを含む位置に形成されている。薄厚部13は、直線L1及びL2に関して線対称形状である。薄厚部13の重心Gt3と薄板金属基板10の重心Gpは一致していることが好ましい。 A strain gauge module 1B shown in FIG. 9 has the same structure as the strain gauge module 1 except that a thin portion 13 is formed instead of the thin portion 11. The thin portion 13 is a combination of three patterns including a first portion 13a, a second portion 13b, and a third portion 13c. The first portion 13a has a substantially semi-elliptical shape that draws an arc toward the straight line L1 side. The second portion 13b is symmetrical with the first portion 13a with respect to the straight line L1. The third portion 13c has a substantially rectangular shape and is provided at a position bridging the first portion 13a and the second portion 13b. The third portion 13 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 . The thin portion 13 is symmetrical with respect to the straight lines L1 and L2. It is preferable that the center of gravity Gt3 of the thin portion 13 and the center of gravity Gp of the thin plate metal substrate 10 match.
 図10に示す歪みゲージモジュール1Cは、薄厚部11に代えて薄厚部14を形成した以外は、歪みゲージモジュール1と同じ構造である。薄厚部14は、第1部分14aと、第2部分14bと、第3部分14cとを含む3つのパターンの組み合わせである。第1部分14aは、薄板金属基板10の周辺部に向かって円弧を描く略半円形状である。第2部分14bは、直線L1に関して第1部分14aと線対称形状である。第3部分14cは、矩形状であり、直線L1及びL2に関して線対称形状である。第3部分14cは、薄板金属基板10の重心Gpを含む位置に形成されている。薄厚部14は、直線L1及びL2に関して線対称形状である。薄厚部14の重心Gt4と薄板金属基板10の重心Gpは一致していることが好ましい。 A strain gauge module 1C shown in FIG. 10 has the same structure as the strain gauge module 1 except that a thin portion 14 is formed instead of the thin portion 11. The thin portion 14 is a combination of three patterns including a first portion 14a, a second portion 14b, and a third portion 14c. The first portion 14a has a substantially semicircular shape that draws an arc toward the peripheral portion of the thin plate metal substrate 10 . The second portion 14b is symmetrical with the first portion 14a with respect to the straight line L1. The third portion 14c is rectangular and symmetrical with respect to the straight lines L1 and L2. The third portion 14 c is formed at a position including the center of gravity Gp of the thin metal plate substrate 10 . The thin portion 14 is symmetrical with respect to the straight lines L1 and L2. It is preferable that the center of gravity Gt4 of the thin portion 14 and the center of gravity Gp of the thin plate metal substrate 10 match.
 [検出感度の変化]
 歪みゲージモジュール1において、フィルム状歪み検出デバイス30の検出感度の変化について調べた。
[Change in detection sensitivity]
In the strain gauge module 1, changes in detection sensitivity of the film strain detection device 30 were investigated.
 まず、フィルム状歪み検出デバイス30を直接測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。次に、比較例として、薄厚部を形成しない以外は歪みゲージモジュール1と同様の構造の歪みゲージモジュールを作製し(便宜上、歪みゲージモジュール100とする)、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。 First, the output of the film-shaped distortion detection device 30 was measured when the film-shaped distortion detection device 30 was directly attached to the object to be measured. Next, as a comparative example, a strain gauge module having the same structure as the strain gauge module 1 except that the thin portion is not formed (for convenience, referred to as the strain gauge module 100) is manufactured, and the film is attached to the object to be measured. The output of the shape distortion detection device 30 was measured.
 図11は、測定結果である。図11においては、フィルム状歪み検出デバイス30単体の測定結果を破線(デバイス単体)で示し、比較例に係わる歪みゲージモジュール100の測定結果を破線(薄厚部なし)で示している。なお、図11において、縦軸はフィルム状歪み検出デバイス30の抵抗値をAnalog/Digital変換した値(便宜上、出力とする)の変化量を示しており、縦軸の上側ほど出力が大きいことを示している。図11において、横軸は経過時間である。 Fig. 11 shows the measurement results. In FIG. 11, the measurement result of the film-shaped strain detection device 30 alone is indicated by a dashed line (single device), and the measurement result of the strain gauge module 100 according to the comparative example is indicated by a dashed line (without thin portion). In FIG. 11, the vertical axis represents the amount of change in the value (output) obtained by converting the resistance value of the film-shaped distortion detection device 30 into analog/digital (for convenience, output). showing. In FIG. 11, the horizontal axis is elapsed time.
 図11において、フィルム状歪み検出デバイス30単体の測定結果である破線(デバイス単体)と比較例に係わる歪みゲージモジュール100の測定結果である破線(薄厚部なし)とを比較したところ、比較例に係わる歪みゲージモジュール100では、フィルム状歪み検出デバイス30単体よりも出力が2%程度減衰することが分かった。 In FIG. 11, when comparing the dashed line (single device) representing the measurement result of the film-shaped strain detection device 30 alone with the dashed line (without the thin portion) representing the measurement result of the strain gauge module 100 according to the comparative example, the comparative example It has been found that the related strain gauge module 100 has an output attenuated by about 2% as compared with the film-shaped strain detection device 30 alone.
 次に、図6及び図7に示す薄厚部11を形成した歪みゲージモジュール1を作製し、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。測定結果を図12に実線(薄厚部11)で示す。なお、図12では、比較対象として、図11に示した破線(デバイス単体)と破線(薄厚部なし)を示している。以降の図13~図15についても同様である。 Next, the strain gauge module 1 formed with the thin portion 11 shown in FIGS. 6 and 7 was produced, and the output of the film-shaped strain detection device 30 when attached to the measurement object was measured. The measurement results are indicated by a solid line (thin portion 11) in FIG. Note that FIG. 12 shows the dashed line (single device) and the dashed line (without the thin portion) shown in FIG. 11 for comparison. The same applies to FIGS. 13 to 15 below.
 次に、図8に示す薄厚部12を形成した歪みゲージモジュール1Aを作製し、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。測定結果を図13に実線(薄厚部12)で示す。また、図9に示す薄厚部13を形成した歪みゲージモジュール1Bを作製し、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。測定結果を図14に実線(薄厚部13)で示す。また、図10に示す薄厚部14を形成した歪みゲージモジュール1Cを作製し、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。測定結果を図15に実線(薄厚部14)で示す。 Next, the strain gauge module 1A having the thin portion 12 shown in FIG. 8 was produced, and the output of the film-shaped strain detection device 30 when attached to the measurement object was measured. The measurement results are indicated by a solid line (thin portion 12) in FIG. In addition, the strain gauge module 1B having the thin portion 13 shown in FIG. 9 was produced, and the output of the film-shaped strain detection device 30 was measured when it was attached to the object to be measured. The measurement results are indicated by a solid line (thin portion 13) in FIG. Also, a strain gauge module 1C having a thin portion 14 shown in FIG. 10 was produced, and the output of the film-shaped strain detection device 30 was measured when the module was attached to a measurement object. The measurement results are indicated by a solid line (thin portion 14) in FIG.
 図12~図15において、破線(薄厚部なし)と実線(各薄厚部)とを比較すると、いずれも実線(各薄厚部)が破線(薄厚部なし)を上回っている。つまり、図12~図15より、薄厚部11~14を形成した場合は、いずれも薄厚部なしの場合よりもフィルム状歪み検出デバイス30の出力が増加することが分かった。すなわち、薄板金属基板10の下面10bに、下面10bから上面10a側に窪む薄厚部を形成することで、フィルム状歪み検出デバイス30を薄板金属基板10に接着する構造により減衰した歪み(破線(薄厚部なし))を回復又は増幅して検出感度を向上できることが確認された。  In FIGS. 12 to 15, when comparing the dashed line (without the thin portion) and the solid line (each thin portion), the solid line (each thin portion) exceeds the dashed line (without the thin portion). 12 to 15, when the thin portions 11 to 14 are formed, the output of the film strain detection device 30 increases more than when the thin portions are not formed. That is, by forming a thin portion recessed from the lower surface 10b toward the upper surface 10a on the lower surface 10b of the thin metal substrate 10, the strain attenuated by the structure in which the film strain detection device 30 is adhered to the thin metal substrate 10 (broken line ( It was confirmed that detection sensitivity can be improved by recovering or amplifying (no thin portion)).
 なお、図6及び図7に示す薄厚部11において、検出感度の向上に寄与するのは主に第1部分11a及び第2部分11bである。しかし、第3部分11cを形成することで、薄厚部11の内部に充填する接着剤の流れが良くなるため、薄厚部11の全体に接着剤をムラなく充填することができる。 In addition, in the thin portion 11 shown in FIGS. 6 and 7, it is mainly the first portion 11a and the second portion 11b that contribute to the improvement of detection sensitivity. However, by forming the third portion 11c, the flow of the adhesive filled inside the thin portion 11 is improved, so that the entire thin portion 11 can be uniformly filled with the adhesive.
 〈第2実施形態〉
 第2実施形態では、薄板金属基板の下面に薄厚部が形成されていない歪みゲージモジュールの例を示す。
<Second embodiment>
In the second embodiment, an example of a strain gauge module in which a thin portion is not formed on the lower surface of the thin plate metal substrate is shown.
 図1及び図2に示した歪みゲージモジュール1において、薄板金属基板10の下面に薄厚部が形成されていなくてもよい。この場合も、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量を小さくすることにより、検出感度を高くすることができる。 In the strain gauge module 1 shown in FIGS. 1 and 2, the thin portion may not be formed on the bottom surface of the thin plate metal substrate 10 . Also in this case, detection sensitivity can be increased by reducing the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R. FIG.
 なお、抵抗体領域Rと端子34及び35との位置関係は、図1の例には限定されない。例えば、図16に示す歪みゲージモジュール1Aのように、薄板金属基板10の長手方向において、端子34と端子35の位置が異なっていてもよい。もちろん、端子34及び35は図1及び図16以外の位置にあってもよい。要は、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grが一致していればよく、一致していることで、フィルム状歪み検出デバイス30における歪みの検出感度を向上できる。 Note that the positional relationship between the resistor region R and the terminals 34 and 35 is not limited to the example in FIG. For example, as in a strain gauge module 1A shown in FIG. 16, the positions of the terminals 34 and 35 may be different in the longitudinal direction of the thin plate metal substrate 10 . Of course, terminals 34 and 35 may be in positions other than those of FIGS. The point is that the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R only need to coincide with each other.
 [検出感度の変化]
 歪みゲージモジュール1において、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に5μmである場合と、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に50μmである場合について、応力が変化した場合のフィルム状歪み検出デバイス30の検出感度の変化率について調べた。なお、薄板金属基板10の下面に薄厚部は形成されていない。
[Change in detection sensitivity]
In the strain gauge module 1, the displacement between the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R is 5 μm in the longitudinal direction of the thin metal substrate 10, and the center of gravity Gp of the thin metal substrate 10 and the resistors The rate of change in the detection sensitivity of the film-shaped strain detection device 30 when the stress changes was investigated in the case where the deviation amount of the region R from the center of gravity Gr is 50 μm in the longitudinal direction of the thin plate metal substrate 10 . No thin portion is formed on the lower surface of the thin metal substrate 10 .
 図17は、歪みの検出感度の変化率を示す図である。図17に示すように、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に5μmである場合は、応力が100のときの検出感度の変化率が-2%程度である。これに対して、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に50μmである場合は、応力が100のときの検出感度の変化率が-5%程度である。 FIG. 17 is a diagram showing the rate of change in strain detection sensitivity. As shown in FIG. 17, when the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is 5 μm in the longitudinal direction of the thin plate metal substrate 10, the detection sensitivity when the stress is 100 is The rate of change is about -2%. On the other hand, when the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is 50 μm in the longitudinal direction of the thin plate metal substrate 10, the change rate of the detection sensitivity when the stress is 100 is is about -5%.
 応力が100のときの検出感度の変化率が-5%程度であれば、実使用が可能であることから、図17のデータより、歪みゲージモジュール1として許容できる薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量は薄板金属基板10の長手方向に50μmであるといえる。 If the rate of change in detection sensitivity when the stress is 100 is about −5%, it can be used in practice. Therefore, from the data in FIG. It can be said that the amount of deviation of the resistor region R from the center of gravity Gr is 50 μm in the longitudinal direction of the thin plate metal substrate 10 .
 また、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が小さくなるほど検出感度が向上し、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に5μmであれば、十分な感度が得られているといえる。 Further, the smaller the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R, the better the detection sensitivity. It can be said that sufficient sensitivity is obtained when the thickness of the thin metal substrate 10 is 5 μm in the longitudinal direction.
 なお、歪みの検出感度の変化率は、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとが薄板金属基板10の長手方向にずれた場合に最も大きくなる。そのため、歪みゲージモジュール1として許容できる薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量は、全方向に50μmの範囲内であるといえる。 Note that the rate of change in the strain detection sensitivity is maximized when the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R are deviated in the longitudinal direction of the thin metal substrate 10 . Therefore, it can be said that the amount of deviation between the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R that is permissible for the strain gauge module 1 is within the range of 50 μm in all directions.
 [信号処理プロセスの一例]
 ここで、歪みゲージモジュールを用いた信号処理プロセスの一例について説明する。図18は、第2実施形態に係る歪みゲージモジュールから出力される信号の処理システムを例示する図である。図18では、歪みゲージモジュール1を用いているが、歪みゲージモジュール1Aを用いてもよい。
[Example of signal processing process]
An example of a signal processing process using a strain gauge module will now be described. FIG. 18 is a diagram illustrating a signal processing system output from the strain gauge module according to the second embodiment. Although the strain gauge module 1 is used in FIG. 18, the strain gauge module 1A may be used.
 図18に示すように、歪みゲージモジュール1の出力は、ブリッジボックス150に接続されている。例えば、歪みゲージモジュール1に搭載されたフィルム状歪み検出デバイス30の端子34及び35が線材等によりブリッジボックス150に接続される。ブリッジボックス150は、信号処理部200と接続されている。信号処理部200は、例えば、ブリッジ電圧210、歪みアンプ220、及びA/D変換器230を有している。 As shown in FIG. 18, the output of strain gauge module 1 is connected to bridge box 150 . For example, the terminals 34 and 35 of the film strain detection device 30 mounted on the strain gauge module 1 are connected to the bridge box 150 by wires or the like. Bridge box 150 is connected to signal processing section 200 . The signal processing section 200 has a bridge voltage 210, a distortion amplifier 220, and an A/D converter 230, for example.
 ブリッジボックス150内には、例えば、ブリッジ回路が配置され、ブリッジ回路の1辺が端子34及び35の間に接続された抵抗体32により構成され、他の3辺が固定抵抗で構成される。また、ブリッジボックス150内のブリッジ回路には、ブリッジ電圧210から直流電圧が供給されている。これにより、ブリッジ回路の出力として、抵抗体32の抵抗値に対応したアナログ信号を得ることができる。 For example, a bridge circuit is arranged in the bridge box 150, one side of the bridge circuit is composed of the resistor 32 connected between the terminals 34 and 35, and the other three sides are composed of fixed resistors. A bridge circuit in the bridge box 150 is supplied with a DC voltage from a bridge voltage 210 . As a result, an analog signal corresponding to the resistance value of the resistor 32 can be obtained as the output of the bridge circuit.
 ブリッジボックス150で得られたアナログ信号は、歪みアンプ220に入力され、歪みアンプ220で増幅される。歪みアンプ220で増幅されたアナログ信号は、A/D変換器230によりデジタル信号に変換され、コンピュータ300に入力されて所定の演算等がなされる。コンピュータ300には、例えば、ストレージデバイス400が接続され、コンピュータ300による演算の結果等が記憶される。 The analog signal obtained by the bridge box 150 is input to the distortion amplifier 220 and amplified by the distortion amplifier 220 . The analog signal amplified by the distortion amplifier 220 is converted to a digital signal by the A/D converter 230, input to the computer 300, and subjected to predetermined calculations. For example, a storage device 400 is connected to the computer 300, and results of calculations by the computer 300 are stored.
 図19A及び図19Bは、比較例に係る歪みゲージモジュールの出力電圧を例示する図である。図19Aは、図18において、歪みゲージモジュール1の代わりに比較例に係る歪みゲージモジュールを接続した場合に、ブリッジボックス150から出力される出力電圧であり、図19Bは、歪みアンプ220から出力される出力電圧である。比較例に係る歪みゲージモジュールは、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に100μmである点を除いて、歪みゲージモジュール1と同一構造である。 19A and 19B are diagrams illustrating output voltages of strain gauge modules according to comparative examples. 19A shows the output voltage from the bridge box 150 when the strain gauge module according to the comparative example is connected in place of the strain gauge module 1 in FIG. 18, and FIG. 19B shows the output voltage from the strain amplifier 220. is the output voltage. The strain gauge module according to the comparative example is similar to the strain gauge module 1 except that the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is 100 μm in the longitudinal direction of the thin plate metal substrate 10 . They have the same structure.
 図20A及び図20Bは、第2実施形態に係る歪みゲージモジュールの出力電圧を例示する図である。図20Aは、図18のブリッジボックス150から出力される出力電圧であり、図20Bは、図18の歪みアンプ220から出力される出力電圧である。ここでは、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が薄板金属基板10の長手方向に5μmである歪みゲージモジュール1を用いた。 20A and 20B are diagrams illustrating output voltages of the strain gauge module according to the second embodiment. 20A is the output voltage output from the bridge box 150 of FIG. 18, and FIG. 20B is the output voltage output from the distortion amplifier 220 of FIG. Here, the strain gauge module 1 is used in which the amount of deviation between the center of gravity Gp of the thin metal substrate 10 and the center of gravity Gr of the resistor region R is 5 μm in the longitudinal direction of the thin metal substrate 10 .
 歪みゲージモジュール1は、比較例に係る歪みゲージモジュールに比べて、薄板金属基板10の重心Gpと抵抗体領域Rの重心Grとのずれ量が小さいため、検出感度が高い。そのため、図19Aと図20Aとを比較するとわかるように、歪みゲージモジュール1の方が、比較例に係る歪みゲージモジュールよりも、ブリッジボックス150から振幅の大きな出力電圧を得ることができる。 The strain gauge module 1 has a high detection sensitivity because the amount of deviation between the center of gravity Gp of the thin plate metal substrate 10 and the center of gravity Gr of the resistor region R is smaller than that of the strain gauge module according to the comparative example. Therefore, as can be seen by comparing FIG. 19A and FIG. 20A, the strain gauge module 1 can obtain a larger amplitude output voltage from the bridge box 150 than the strain gauge module according to the comparative example.
 また、検出感度が高くブリッジボックス150から振幅の大きな出力電圧を得ることができる歪みゲージモジュール1を用いる場合、比較例に係る歪みゲージモジュールを用いる場合よりも歪みアンプ220の利得を低くできる。そのため、図19Bと図20Bとを比較するとわかるように、歪みゲージモジュール1を用いる場合の方が、比較例に係る歪みゲージモジュールを用いる場合よりも、歪みアンプ220のノイズの影響を低減してS/N比の高い出力電圧を得ることができる。その結果、歪みゲージモジュール1を用いることで、高精度の歪み検出が可能となる。 Also, when using the strain gauge module 1 which has high detection sensitivity and can obtain a large amplitude output voltage from the bridge box 150, the gain of the strain amplifier 220 can be made lower than when using the strain gauge module according to the comparative example. Therefore, as can be seen by comparing FIG. 19B and FIG. 20B, the use of the strain gauge module 1 reduces the influence of noise from the strain amplifier 220 more than the use of the strain gauge module according to the comparative example. An output voltage with a high S/N ratio can be obtained. As a result, using the strain gauge module 1 enables highly accurate strain detection.
 〈第3実施形態〉
 第3実施形態では、第1実施形態及び第2実施形態に示した薄板金属基板10に代えて、非晶質材料又はナノ結晶材料からなる薄板基板10Aを用いる歪みゲージモジュールの例を示す。なお、平面図及び断面図は図1及び図2と同様であるため、図示は省略する。薄板基板10Aの下面に薄厚部は形成されていなくてもよい。
<Third embodiment>
The third embodiment shows an example of a strain gauge module using a thin plate substrate 10A made of amorphous material or nanocrystalline material instead of the thin plate metal substrate 10 shown in the first and second embodiments. Note that the plan view and the cross-sectional view are the same as those in FIGS. 1 and 2, so illustration thereof is omitted. The thin portion may not be formed on the lower surface of the thin plate substrate 10A.
 薄板基板10Aは、全面において、うねり及び反りの排除された平坦性を有することが好ましい。また、薄板基板10Aは、薄板金属基板10と同様に、上面10aの表面粗さRaは、3μm以上20μm以下であることが好ましく、さらに3μm以上10μm以下であることがより好ましく、3μm以上5μm以下であることがさらに好ましい。薄板基板10Aの上面10aの表面粗さRaを3μm以上20μm以下とすることにより、フィルム状歪み検出デバイス30に対する薄板基板10Aの上面10aの表面粗さRaの影響を低減することが可能となり、歪みを容易に、かつ正確に測定することができる。 It is preferable that the thin plate substrate 10A has flatness over the entire surface with no waviness and warpage. As with the thin metal substrate 10, the surface roughness Ra of the upper surface 10a of the thin substrate 10A is preferably 3 μm or more and 20 μm or less, more preferably 3 μm or more and 10 μm or less, and 3 μm or more and 5 μm or less. is more preferable. By setting the surface roughness Ra of the upper surface 10a of the thin plate substrate 10A to 3 μm or more and 20 μm or less, it is possible to reduce the influence of the surface roughness Ra of the upper surface 10a of the thin plate substrate 10A on the film-shaped strain detection device 30, and the strain is reduced. can be measured easily and accurately.
 薄板基板10Aは、非晶質材料又はナノ結晶材料からなる。具体的には、薄板基板10Aの材料は、非晶質材料の一例であるガラスである。あるいは、薄板基板10Aの材料は、ナノ結晶材料の一例である非晶質合金である。特に非晶質合金は、現行の材料としてFe基、Ni基、コバルト基で、15~30原子%のボロン、炭素、ケイ素、リンなどを含むものを主としており、強さ、耐食性、軟磁性の面で特性的に優れ、使用環境の幅が広い。これらのガラスや非晶質合金などの非晶質材料は、結晶構造に起因する歪み減衰を回避したり、減衰した歪を回復又は増幅させる性質を有することが知られている。このような材料を用いた薄板基板10Aは、例えば、腐食法、電解研磨法、機械的切断法などの適宜な方法にて形成される。薄板基板10Aの大きさは、特に制限はないが、平面視でフィルム状歪み検出デバイス30の大きさよりも大きい。 The thin plate substrate 10A is made of amorphous material or nanocrystalline material. Specifically, the material of the thin plate substrate 10A is glass, which is an example of an amorphous material. Alternatively, the material of the thin plate substrate 10A is an amorphous alloy, which is an example of a nanocrystalline material. Amorphous alloys, in particular, are Fe-based, Ni-based, or cobalt-based materials that contain 15 to 30 atomic percent of boron, carbon, silicon, phosphorus, etc., as current materials. It has excellent characteristics in terms of surface, and can be used in a wide range of environments. Amorphous materials such as glasses and amorphous alloys are known to have the property of avoiding strain attenuation due to the crystal structure and recovering or amplifying the strain that has been attenuated. The thin plate substrate 10A using such a material is formed by an appropriate method such as a corrosion method, an electropolishing method, or a mechanical cutting method. The size of the thin plate substrate 10A is not particularly limited, but is larger than the size of the film strain detection device 30 in a plan view.
 フィルム状歪み検出デバイス30を薄板基板10Aに接着する構造では、フィルム状歪み検出デバイス30の感受特性が結晶構造(粒界)により減衰する場合がある。歪みゲージモジュール1では、薄板基板10Aの材料として非晶質材料又はナノ結晶材料を用いることによりその性質を利用し、結晶構造に起因する歪み減衰を回避、あるいは、減衰した歪を回復又は増幅させることができる。これにより、フィルム状歪み検出デバイス30の特性変動を抑制し、安定性に優れた高感度の歪みゲージモジュール1を実現することができる。 In the structure in which the film-shaped strain detection device 30 is adhered to the thin plate substrate 10A, the sensitivity characteristics of the film-shaped strain detection device 30 may be attenuated due to the crystal structure (grain boundaries). In the strain gauge module 1, by using an amorphous material or a nanocrystalline material as the material of the thin plate substrate 10A, the property is used to avoid strain attenuation due to the crystal structure, or recover or amplify the strain that has been attenuated. be able to. As a result, the characteristic fluctuation of the film-shaped strain detection device 30 can be suppressed, and the strain gauge module 1 with excellent stability and high sensitivity can be realized.
 [検出感度の変化]
 歪みゲージモジュール1において、薄板金属基板10に代えて薄板基板10Aを用い、フィルム状歪み検出デバイス30の検出感度の変化について調べた。なお、薄板基板10Aの下面に薄厚部は形成されていない。
[Change in detection sensitivity]
In the strain gauge module 1, the thin plate substrate 10A was used in place of the thin plate metal substrate 10, and changes in the detection sensitivity of the film strain detection device 30 were examined. No thin portion is formed on the lower surface of the thin plate substrate 10A.
 まず、フィルム状歪み検出デバイス30を直接測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。次に、比較例として、薄板基板10Aに金属基板を用いた以外は歪みゲージモジュール1と同様の構造の歪みゲージモジュールを作製し(便宜上、歪みゲージモジュール100とする)、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。次に、薄板基板10Aにガラス基板を用いた歪みゲージモジュール1を作製し、測定対象物に貼り付けた場合のフィルム状歪み検出デバイス30の出力を測定した。 First, the output of the film-shaped distortion detection device 30 was measured when the film-shaped distortion detection device 30 was directly attached to the object to be measured. Next, as a comparative example, a strain gauge module having the same structure as the strain gauge module 1 except that a metal substrate is used for the thin plate substrate 10A is manufactured (for convenience, referred to as a strain gauge module 100) and attached to the object to be measured. The output of the film strain detection device 30 was measured. Next, the strain gauge module 1 using a glass substrate as the thin plate substrate 10A was produced, and the output of the film-shaped strain detection device 30 was measured when the strain gauge module 1 was attached to the object to be measured.
 図21は、測定結果である。図21においては、フィルム状歪み検出デバイス30単体の測定結果を破線30単体で示し、比較例に係わる歪みゲージモジュール100の測定結果を実線100で示し、歪みゲージモジュール1の測定結果を破線1で示している。なお、図21において、縦軸はフィルム状歪み検出デバイス30の抵抗値をAnalog/Digital変換した値(便宜上、出力とする)の変化量を示しており、縦軸の上側ほど出力が大きいことを示している。図21において、横軸は経過時間である。 Fig. 21 shows the measurement results. In FIG. 21, the dashed line 30 indicates the measurement result of the film strain detection device 30 alone, the solid line 100 indicates the measurement result of the strain gauge module 100 according to the comparative example, and the dashed line 1 indicates the measurement result of the strain gauge module 1. showing. In FIG. 21, the vertical axis indicates the amount of change in the value (output for convenience) obtained by converting the resistance value of the film-shaped distortion detection device 30 to analog/digital. showing. In FIG. 21, the horizontal axis is elapsed time.
 図21において、フィルム状歪み検出デバイス30単体の測定結果(破線30単体)と歪みゲージモジュール100の測定結果(実線100)とを比較したところ、歪みゲージモジュール100では、フィルム状歪み検出デバイス30単体よりも出力が2%程度減衰することが分かった。これに対して、歪みゲージモジュール1では、歪みゲージモジュール100よりもフィルム状歪み検出デバイス30の出力が増加することが分かった。すなわち、薄板基板10Aとしてガラス基板を用いることで、金属基板を用いていない場合の歪み(破線30単体)と比べて金属基板を用いた場合の減衰した歪み(実線100)を回復又は増幅して検出感度を向上できることが確認された。薄板基板10AとしてFe基非晶質合金の基板を用いた場合も、薄板基板10Aとしてガラス基板を用いた場合とほぼ同様の結果であった。 In FIG. 21, when the measurement result of the film-shaped strain detection device 30 alone (broken line 30 alone) and the measurement result of the strain gauge module 100 (solid line 100) are compared, the strain gauge module 100 shows that the film-shaped strain detection device 30 alone It was found that the output was attenuated by about 2%. On the other hand, in the strain gauge module 1, it was found that the output of the film-shaped strain detection device 30 increased more than that in the strain gauge module 100. FIG. That is, by using the glass substrate as the thin plate substrate 10A, the attenuated strain (solid line 100) when using the metal substrate is recovered or amplified compared to the strain (single dashed line 30) when the metal substrate is not used. It was confirmed that the detection sensitivity can be improved. When the Fe-based amorphous alloy substrate was used as the thin plate substrate 10A, substantially the same results were obtained as when the glass substrate was used as the thin plate substrate 10A.
 以上、好ましい実施形態について詳説したが、上述した実施形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。 Although the preferred embodiment has been described in detail above, it is not limited to the above-described embodiment, and various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the claims. can be done.
 以上の実施形態に加えて、さらに以下の付記を開示する。
(付記1)
 測定対象物に装着し、上面に端子及び抵抗体領域を有し前記測定対象物に生じる歪みを検出するためのフィルム状歪み検出デバイスと、上面と下面とを有する薄板金属基板と、を含んで構成され、
 前記薄板金属基板の前記上面に接着剤を介して前記フィルム状歪み検出デバイスが搭載され、前記下面を前記測定対象物への装着面とし、
 前記薄板金属基板の重心と前記抵抗体領域の重心が一致している歪みゲージモジュール。
(付記2)
 前記薄板金属基板と前記抵抗体領域は平面視で矩形状であり、前記薄板金属基板の対角線の交点と前記抵抗体領域の対角線の交点が一致している付記1に記載の歪みゲージモジュール。
(付記3)
 前記薄板金属基板は平面視で矩形状であり、
 前記薄板金属基板の長手方向と前記抵抗体領域に形成された抵抗体のグリッド方向が一致している付記1又は2に記載の歪みゲージモジュール。
(付記4)
 前記接着剤の厚さは、30μm以下である付記1乃至3の何れか一に記載の歪みゲージモジュール。
(付記5)
 前記フィルム状歪み検出デバイスの下面の全面が前記接着剤により前記薄板金属基板の上面に接着され、
 前記接着剤の厚さのばらつきは±5μm以下である付記4に記載の歪みゲージモジュール。
(付記6)
 前記薄板金属基板の厚さは、20μm以上120μm以下である付記1乃至5の何れか一に記載の歪みゲージモジュール。
(付記7)
 前記薄板金属基板の上面の表面粗さRaは、3μm以上20μm以下である付記1乃至6の何れか一に記載の歪みゲージモジュール。
(付記8)
 前記薄板金属基板の材料は、ステンレス鋼である付記1乃至7の何れか一に記載の歪みゲージモジュール。
(付記9)
 前記フィルム状歪み検出デバイスは、ポリイミドからなる基材と、前記基材上に形成された抵抗体と、を含む付記1乃至8の何れか一に記載の歪みゲージモジュール。
(付記10)
 測定対象物に装着し、上面に端子及び抵抗体領域を有し前記測定対象物に生じる歪みを検出するためのフィルム状歪み検出デバイスと、上面と下面とを有する薄板金属基板と、を含んで構成され、
 前記薄板金属基板の前記上面に接着剤を介して前記フィルム状歪み検出デバイスが搭載され、前記下面を前記測定対象物への装着面とし、
 前記抵抗体領域の重心は、前記薄板金属基板の重心から半径50μm以内に位置している歪みゲージモジュール。
(付記11)
 前記抵抗体領域の重心のずれ量は、前記薄板金属基板の重心から、前記薄板金属基板の長手方向に50μm以内である付記10に記載の歪みゲージモジュール。
(付記12)
 測定対象物に装着し、上面に端子を有し前記測定対象物に生じる歪みを検出するためのフィルム状歪み検出デバイスと、上面と下面とを有する薄板基板と、を含んで構成され、
 前記薄板基板の前記上面に接着剤を介して前記フィルム状歪み検出デバイスが搭載され、前記下面を前記測定対象物への装着面とし、
 前記薄板基板は非晶質材料又はナノ結晶材料からなる歪みゲージモジュール。
(付記13)
 前記薄板基板の厚さは、20μm以上120μm以下である付記12に記載の歪みゲージモジュール。
(付記14)
 前記薄板基板の上面の表面粗さRaは、3μm以上20μm以下である付記12又は13に記載の歪みゲージモジュール。
(付記15)
 前記薄板基板の材料は、ガラスである付記12乃至14の何れか一に記載の歪みゲージモジュール。
(付記16)
 前記薄板基板の材料は、非晶質合金である付記12乃至14の何れか一に記載の歪みゲージモジュール。
(付記17)
 前記薄板基板の材料は、Fe基非晶質合金である付記16に記載の歪みゲージモジュール。
(付記18)
 前記薄板基板は、平面視で矩形状である付記12乃至17の何れか一に記載の歪みゲージモジュール。
(付記19)
 前記フィルム状歪み検出デバイスは、抵抗体が形成された抵抗体領域を含み、
 前記抵抗体は前記薄板基板の重心と重なる部分を含む付記12乃至18の何れか一に記載の歪みゲージモジュール。
(付記20)
 前記薄板基板の重心と前記抵抗体領域の重心が一致している付記19に記載の歪みゲージモジュール。
(付記21)
 前記フィルム状歪み検出デバイスは、ポリイミドからなる基材を含み、前記抵抗体は前記基材上に形成されている付記19又は20に記載の歪みゲージモジュール。
In addition to the above embodiments, the following additional remarks are disclosed.
(Appendix 1)
A film-shaped strain detection device attached to a measurement object and having terminals and a resistor area on the upper surface for detecting strain occurring in the measurement object; and a thin sheet metal substrate having an upper surface and a lower surface. configured,
The film-shaped strain detection device is mounted on the upper surface of the thin metal substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
A strain gauge module in which the center of gravity of the thin metal substrate coincides with the center of gravity of the resistor region.
(Appendix 2)
The strain gauge module according to appendix 1, wherein the thin metal substrate and the resistor region are rectangular in plan view, and an intersection point of diagonal lines of the thin metal substrate and an intersection point of diagonal lines of the resistor region are aligned.
(Appendix 3)
The thin metal substrate has a rectangular shape in plan view,
3. The strain gauge module according to appendix 1 or 2, wherein the longitudinal direction of the thin metal substrate and the grid direction of the resistors formed in the resistor region are aligned.
(Appendix 4)
4. The strain gauge module according to any one of Appendices 1 to 3, wherein the adhesive has a thickness of 30 μm or less.
(Appendix 5)
The entire lower surface of the film strain detection device is adhered to the upper surface of the thin metal substrate with the adhesive,
5. The strain gauge module according to appendix 4, wherein the thickness variation of the adhesive is ±5 μm or less.
(Appendix 6)
6. The strain gauge module according to any one of appendices 1 to 5, wherein the thin metal substrate has a thickness of 20 μm or more and 120 μm or less.
(Appendix 7)
7. The strain gauge module according to any one of Appendices 1 to 6, wherein the surface roughness Ra of the upper surface of the thin metal substrate is 3 μm or more and 20 μm or less.
(Appendix 8)
8. The strain gauge module according to any one of Appendices 1 to 7, wherein the thin metal substrate is made of stainless steel.
(Appendix 9)
9. The strain gauge module according to any one of Appendices 1 to 8, wherein the film strain detection device includes a base material made of polyimide and a resistor formed on the base material.
(Appendix 10)
A film-shaped strain detection device attached to a measurement object and having terminals and a resistor area on the upper surface for detecting strain occurring in the measurement object; and a thin sheet metal substrate having an upper surface and a lower surface. configured,
The film-shaped strain detection device is mounted on the upper surface of the thin metal substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
The strain gauge module, wherein the center of gravity of the resistor region is located within a radius of 50 μm from the center of gravity of the thin metal substrate.
(Appendix 11)
11. The strain gauge module according to claim 10, wherein the displacement of the center of gravity of the resistor region is within 50 μm in the longitudinal direction of the thin metal substrate from the center of gravity of the thin metal substrate.
(Appendix 12)
A film-shaped distortion detection device attached to an object to be measured, having a terminal on the upper surface for detecting distortion occurring in the object to be measured, and a thin plate substrate having an upper surface and a lower surface,
The film-shaped strain detection device is mounted on the upper surface of the thin plate substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
The strain gauge module, wherein the thin substrate is made of amorphous material or nanocrystalline material.
(Appendix 13)
13. The strain gauge module according to appendix 12, wherein the thin substrate has a thickness of 20 μm or more and 120 μm or less.
(Appendix 14)
14. The strain gauge module according to appendix 12 or 13, wherein the surface roughness Ra of the upper surface of the thin plate substrate is 3 μm or more and 20 μm or less.
(Appendix 15)
15. The strain gauge module according to any one of appendices 12 to 14, wherein the material of the thin plate substrate is glass.
(Appendix 16)
15. The strain gauge module according to any one of appendices 12 to 14, wherein the material of the thin plate substrate is an amorphous alloy.
(Appendix 17)
17. The strain gauge module according to appendix 16, wherein the material of the thin plate substrate is an Fe-based amorphous alloy.
(Appendix 18)
18. The strain gauge module according to any one of appendices 12 to 17, wherein the thin plate substrate has a rectangular shape in plan view.
(Appendix 19)
The film-shaped strain detection device includes a resistor region in which a resistor is formed,
19. The strain gauge module according to any one of appendices 12 to 18, wherein the resistor includes a portion overlapping the center of gravity of the thin plate substrate.
(Appendix 20)
20. The strain gauge module according to appendix 19, wherein the center of gravity of the thin substrate coincides with the center of gravity of the resistor region.
(Appendix 21)
21. The strain gauge module according to appendix 19 or 20, wherein the film strain detection device includes a base material made of polyimide, and the resistor is formed on the base material.
 本国際出願は2021年12月8日に出願した日本国特許出願2021-199467号、2021年12月17日に出願した日本国特許出願2021-204877号、及び2021年12月17日に出願した日本国特許出願2021-204878号に基づく優先権を主張するものであり、日本国特許出願2021-199467号、日本国特許出願2021-204877号、及び日本国特許出願2021-204878号の全内容を本国際出願に援用する。 This international application is Japanese Patent Application No. 2021-199467 filed on December 8, 2021, Japanese Patent Application No. 2021-204877 filed on December 17, 2021, and filed on December 17, 2021 It claims priority based on Japanese Patent Application No. 2021-204878, and the entire contents of Japanese Patent Application No. 2021-199467, Japanese Patent Application No. 2021-204877, and Japanese Patent Application No. 2021-204878 incorporated into this international application.
 1,1A,1B,1C 歪みゲージモジュール、10 薄板金属基板、10a 上面、10b 下面、11,12,13,14 薄厚部、11a,12a,13a,14a 第1部分、11b,12b,13b,14b 第2部分、11c,13c,14c 第3部分、20 接着剤、30 フィルム状歪み検出デバイス、31 基材、32 抵抗体、33 配線、34、35 端子、36 樹脂部、150 ブリッジボックス、200 信号処理部、210 ブリッジ電圧、220 歪みアンプ、230 A/D変換器、300 コンピュータ、400 ストレージデバイス 1, 1A, 1B, 1C strain gauge module, 10 thin plate metal substrate, 10a upper surface, 10b lower surface, 11, 12, 13, 14 thin portion, 11a, 12a, 13a, 14a first portion, 11b, 12b, 13b, 14b Second part, 11c, 13c, 14c Third part, 20 Adhesive, 30 Film strain detection device, 31 Base material, 32 Resistor, 33 Wiring, 34, 35 Terminal, 36 Resin part, 150 Bridge box, 200 Signal Processing unit, 210 bridge voltage, 220 distortion amplifier, 230 A/D converter, 300 computer, 400 storage device

Claims (10)

  1.  測定対象物に装着し、上面に端子を有し前記測定対象物に生じる歪みを検出するためのフィルム状歪み検出デバイスと、上面と下面とを有する薄板金属基板と、を含んで構成され、
     前記薄板金属基板の前記上面に接着剤を介して前記フィルム状歪み検出デバイスが搭載され、前記下面を前記測定対象物への装着面とし、
     前記薄板金属基板の前記下面には部分的に板厚を薄くした薄厚部が形成されている歪みゲージモジュール。
    A film strain detection device attached to an object to be measured and having a terminal on the upper surface for detecting strain occurring in the object to be measured; and a thin plate metal substrate having an upper surface and a lower surface,
    The film-shaped strain detection device is mounted on the upper surface of the thin metal substrate via an adhesive, and the lower surface is used as a mounting surface for the measurement object,
    A strain gauge module in which a thin portion having a partially reduced plate thickness is formed on the lower surface of the thin plate metal substrate.
  2.  平面視で、前記薄厚部は、前記薄板金属基板の重心を通る直線に関し線対称形状である請求項1に記載の歪みゲージモジュール。 The strain gauge module according to claim 1, wherein the thin portion has a line-symmetrical shape with respect to a straight line passing through the center of gravity of the thin metal substrate when viewed from above.
  3.  前記フィルム状歪み検出デバイスは、抵抗体が形成された抵抗体領域を含み、
     平面視で、前記薄厚部は前記薄板金属基板の重心を含む位置に形成されており、前記抵抗体は前記薄板金属基板の重心と重なる部分を含む請求項1又は2に記載の歪みゲージモジュール。
    The film-shaped strain detection device includes a resistor region in which a resistor is formed,
    3. The strain gauge module according to claim 1, wherein the thin portion is formed at a position including the center of gravity of the thin metal plate substrate in a plan view, and the resistor includes a portion overlapping the center of gravity of the thin metal plate substrate.
  4.  前記薄厚部の重心と前記薄板金属基板の重心と前記抵抗体領域の重心が一致している請求項3に記載の歪みゲージモジュール。 The strain gauge module according to claim 3, wherein the center of gravity of said thin portion, the center of gravity of said thin plate metal substrate, and the center of gravity of said resistor region are aligned.
  5.  前記フィルム状歪み検出デバイスは、ポリイミドからなる基材を含み、前記抵抗体は前記基材上に形成されている請求項3又は4に記載の歪みゲージモジュール。 The strain gauge module according to claim 3 or 4, wherein the film strain detection device includes a base material made of polyimide, and the resistor is formed on the base material.
  6.  前記薄厚部の最大深さは、前記薄板金属基板の厚さの10パーセント以上である請求項1乃至5の何れか一項に記載の歪みゲージモジュール。 The strain gauge module according to any one of claims 1 to 5, wherein the maximum depth of said thin portion is 10% or more of the thickness of said thin plate metal substrate.
  7.  前記薄板金属基板の前記薄厚部以外の領域の厚さは、20μm以上120μm以下である請求項1乃至6の何れか一項に記載の歪みゲージモジュール。 The strain gauge module according to any one of claims 1 to 6, wherein the thickness of the thin plate metal substrate other than the thin portion is 20 µm or more and 120 µm or less.
  8.  前記薄板金属基板の上面の表面粗さRaは、3μm以上20μm以下である請求項1乃至7の何れか一項に記載の歪みゲージモジュール。 The strain gauge module according to any one of claims 1 to 7, wherein the surface roughness Ra of the upper surface of the thin metal substrate is 3 µm or more and 20 µm or less.
  9.  前記薄板金属基板の材料は、ステンレス鋼である請求項1乃至8の何れか一項に記載の歪みゲージモジュール。 The strain gauge module according to any one of claims 1 to 8, wherein the thin metal substrate is made of stainless steel.
  10.  前記薄板金属基板は、平面視で矩形状である請求項1乃至9の何れか一項に記載の歪みゲージモジュール。 The strain gauge module according to any one of claims 1 to 9, wherein the thin metal substrate has a rectangular shape in plan view.
PCT/JP2022/044578 2021-12-08 2022-12-02 Strain gauge module WO2023106236A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021199467 2021-12-08
JP2021-199467 2021-12-08
JP2021204878 2021-12-17
JP2021-204877 2021-12-17
JP2021204877 2021-12-17
JP2021-204878 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023106236A1 true WO2023106236A1 (en) 2023-06-15

Family

ID=86730335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044578 WO2023106236A1 (en) 2021-12-08 2022-12-02 Strain gauge module

Country Status (1)

Country Link
WO (1) WO2023106236A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262205U (en) * 1985-10-08 1987-04-17
JP2018185346A (en) * 2018-08-27 2018-11-22 ミネベアミツミ株式会社 Strain gauge
JP2019035638A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Torque detector and manufacturing method thereof
JP2021156718A (en) * 2020-03-26 2021-10-07 旭化成エレクトロニクス株式会社 Strain sensor module, method for correcting offset, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262205U (en) * 1985-10-08 1987-04-17
JP2019035638A (en) * 2017-08-14 2019-03-07 アズビル株式会社 Torque detector and manufacturing method thereof
JP2018185346A (en) * 2018-08-27 2018-11-22 ミネベアミツミ株式会社 Strain gauge
JP2021156718A (en) * 2020-03-26 2021-10-07 旭化成エレクトロニクス株式会社 Strain sensor module, method for correcting offset, and program

Similar Documents

Publication Publication Date Title
JP6869710B2 (en) A strain-causing body and a force sensor equipped with the strain-causing body
US7331230B2 (en) Semiconductor-type three-axis acceleration sensor
WO2013175636A1 (en) Mechanical-quantity measuring device
WO2007135895A1 (en) Array type capacitance sensor
JP4084803B2 (en) Strain gauge
JP2015224903A (en) Pressure sensor, microphone, ultrasonic sensor, blood pressure sensor, and touch panel
JPH095014A (en) Bend sensor
WO2023106236A1 (en) Strain gauge module
JP6373239B2 (en) Pressure sensor, microphone, ultrasonic sensor, blood pressure sensor, and touch panel
JPH0755598A (en) Tactile sensor and tactile imager
US20130283914A1 (en) Acceleration sensor
US8561467B2 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
WO2023074715A1 (en) Strain gauge module
US6252335B1 (en) Beam-type accelerometer
KR101573367B1 (en) Piezoresistive typed ceramic pressure sensor
JPH09269258A (en) Load cell
JPH06300776A (en) Revolution accelerometer
JP7234750B2 (en) Physical quantity sensor elements, pressure sensors, microphones, ultrasonic sensors and touch panels
JP7075110B2 (en) Vibration sensor
JPH03249530A (en) Distribution type tactile sensor
JP5656070B2 (en) Vibration type absolute pressure transducer
JP2009229450A (en) Acceleration sensor device and method for manufacturing acceleration sensor device
JPS59217374A (en) Semiconductor strain converter
JP2009264933A (en) Acceleration sensor device and method of manufacturing acceleration sensor device
JP5345134B2 (en) Acceleration sensor element and acceleration sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE