WO2023106206A1 - Layered body, adhesive agent composition, and circuit board material - Google Patents

Layered body, adhesive agent composition, and circuit board material Download PDF

Info

Publication number
WO2023106206A1
WO2023106206A1 PCT/JP2022/044397 JP2022044397W WO2023106206A1 WO 2023106206 A1 WO2023106206 A1 WO 2023106206A1 JP 2022044397 W JP2022044397 W JP 2022044397W WO 2023106206 A1 WO2023106206 A1 WO 2023106206A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
polyester resin
film
acid
less
Prior art date
Application number
PCT/JP2022/044397
Other languages
French (fr)
Japanese (ja)
Inventor
菜摘 向坂
宇之 中根
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280062333.XA priority Critical patent/CN117940528A/en
Priority to JP2023566274A priority patent/JPWO2023106206A1/ja
Priority to KR1020247004732A priority patent/KR20240033256A/en
Publication of WO2023106206A1 publication Critical patent/WO2023106206A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to a laminate having an adhesive layer made of a cured adhesive composition containing a polyester resin. More specifically, the present invention relates to a laminate having an adhesive layer that is excellent in heat resistance, has a low dielectric loss tangent, and has a high adhesive strength retention rate before and after a wet heat durability test. The invention also relates to a circuit board material comprising this laminate. The present invention also relates to an adhesive composition suitable for the adhesive layer of this laminate.
  • Polyester-based resins are excellent in heat resistance, chemical resistance, durability, and mechanical strength, so they are used in a wide range of fields such as films, PET bottles, fibers, toners, electrical parts, adhesives, and adhesives. .
  • Polyester-based resins are highly polar due to their polymer structure, and are known to exhibit excellent adhesion to polar polymers such as polyester, polyvinyl chloride, polyimide, and epoxy resins, as well as metal materials such as copper and aluminum. It is Utilizing this property, polyester resins are being investigated for use as adhesives for producing laminates of metal and plastic.
  • Patent Literature 1 proposes a thermosetting adhesive sheet that is excellent in dimensional stability when cured and excellent in adhesiveness, heat resistance, flexibility, electrical insulation, low dielectric constant and low dielectric loss tangent after curing. .
  • the total amount of the reactive functional group capable of reacting with at least one of the organometallic compound and the epoxy group-containing compound and the functional group having a heteroatom other than halogen is 0.01 mmol/g. It is formed from a thermosetting composition containing 9 mmol/g or less resin (for example, polyester resin), an organometallic compound, and a trifunctional or higher epoxy group-containing compound.
  • Patent Document 2 proposes a copolyester having excellent wet heat resistance and cationic acid resistance, compatibility with epoxy resins, and adhesiveness, and an adhesive composition containing it.
  • This copolymer polyester comprises an aromatic dicarboxylic acid component, a dimer diol, a first glycol, a second glycol or an oxyacid, and an alkylene glycol having 2 to 10 carbon atoms.
  • an adhesive composition having excellent long-term durability in a moist heat environment and further having high adhesiveness has an ester bond concentration of 7 mmol / g or less, an acid value of 3 mgKOH / g or more, and a glass transition
  • An adhesive composition containing a polyester resin (A1) satisfying the requirement that the temperature (Tg) is -5°C or higher has been proposed.
  • the physical properties required for the adhesive layer used there include excellent adhesiveness, heat resistance, and durability to moisture and heat, as well as transmission signals.
  • low dielectric properties such as a lower dielectric constant and a lower dielectric loss tangent, especially a low dielectric loss tangent, are strongly desired.
  • the dielectric loss tangent tends to increase, and it has been difficult to achieve both of these characteristics at a high level.
  • Patent Document 1 For example, in the technology disclosed in Patent Document 1, a large amount of polyhydric carboxylic acid or polyhydric alcohol having a long-chain alkyl group is used for the purpose of lowering the dielectric constant, dielectric loss tangent, and water absorption, so adhesion is poor. There were problems such as lowering. Further, Patent Document 1 does not take into consideration the long-term durability in a hot and humid environment, and further improvement is required.
  • the copolymerized polyester contains an ether bond-containing glycol such as polypropylene glycol as a copolymerization component, or is not given an acid value that serves as a reaction point with the epoxy resin. For this reason, the copolyester has a problem that it is inferior in adhesiveness and heat resistance.
  • the present invention is an adhesive composition that has excellent heat resistance, a low dielectric loss tangent, and can form an adhesive layer having a high adhesive strength maintenance rate before and after a wet heat durability test, and this adhesive composition. Laminates and circuit board materials are provided.
  • the present inventors have found that by controlling the dielectric loss tangent (Df) of a cured adhesive composition containing a polyester resin (A), a polyepoxy compound (B) and a filler (C), excellent heat resistance can be obtained. , contributed to low transmission loss, and obtained a laminate having a high adhesive force retention rate before and after the wet heat durability test.
  • Df dielectric loss tangent
  • the gist of the present invention is as follows.
  • the adhesive layer is a cured product of an adhesive composition containing a polyester resin (A), a polyepoxy compound (B), and a filler (C),
  • the content of the polyepoxy compound (B) in the adhesive composition is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more 2
  • polyester resin (A) contains structural units derived from polycarboxylic acids and structural units derived from polyhydric alcohols.
  • the base material is polyimide film, polyether ether ketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, silicone release treated paper, polyolefin
  • Df dielectric loss tangent
  • the content of the polyepoxy compound (B) is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more and less than 2. , [11] or the adhesive composition according to [12]
  • the adhesive layer of the laminate of the present invention has excellent heat resistance, contributes to low transmission loss, and maintains a high adhesive strength before and after the wet heat durability test. Moreover, according to the adhesive composition of the present invention, it is possible to form an adhesive layer which is excellent in heat resistance, contributes to low transmission loss, and has a high rate of maintaining adhesive strength before and after the wet heat durability test.
  • the laminate of the present invention is particularly suitable as a laminate obtained by bonding and integrating metal and plastic with an adhesive layer, for example, flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards, coverlays, bonding sheets, and the like.
  • flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards, coverlays, bonding sheets, and the like.
  • it is more preferably used as a circuit board material such as a flexible printed wiring board.
  • a circuit board material has excellent long-term durability and high reliability in a hot and humid environment.
  • the "class” attached after the compound name is a concept that includes not only the compound but also derivatives of the compound.
  • carboxylic acids includes carboxylic acids as well as carboxylic acid derivatives such as carboxylic acid salts, carboxylic acid anhydrides, carboxylic acid halides, and carboxylic acid esters.
  • the adhesive composition of the present invention contains a polyester resin (A), an epoxy compound (B) and a filler (C), and its cured product exhibits a specific dielectric loss tangent (Df).
  • polyester resin (A) The polyester-based resin (A) preferably contains a structural unit derived from a polycarboxylic acid and a structural unit derived from a polyhydric alcohol in the molecule, and particularly preferably, an ester of a polyhydric carboxylic acid and a polyhydric alcohol. It is obtained by combining.
  • Polyvalent carboxylic acids in polyvalent carboxylic acids include, for example, aromatic polyvalent carboxylic acids described later; 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and acid anhydrides thereof alicyclic polyvalent carboxylic acids such as polycarboxylic acids; and aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedioic acid. 1 type(s) or 2 or more types can be used for polyhydric carboxylic acid.
  • the polyvalent carboxylic acid preferably contains an aromatic polyvalent carboxylic acid.
  • aromatic polycarboxylic acids include monocyclic aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, dimethyl terephthalate, dimethyl isophthalate, and orthophthalic acid; biphenyldicarboxylic acid, naphthalenedicarboxylic acid, and naphthalenedicarboxylic acid; Polycyclic aromatic polycarboxylic acids such as dimethyl; Among polycyclic aromatic polycarboxylic acids, naphthalenedicarboxylic acid, condensed polycyclic aromatic polycarboxylic acids such as dimethyl naphthalenedicarboxylate, and these Derivatives (aromatic dicarboxylic acids) can be mentioned.
  • Aromatic oxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are also included.
  • trifunctional or higher functional aromatic carboxylic acids introduced for the purpose of imparting a branched skeleton and acid value to the polyester resin (A) are also included in the above aromatic polyvalent carboxylic acids.
  • tri- or higher functional aromatic carboxylic acids include trimellitic acid, trimesic acid, ethylene glycol bis(anhydrotrimellitate), glycerol tris(anhydrotrimellitate), trimellitic anhydride, and pyromellitic acid.
  • dianhydride oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3,3′ ,4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride etc.
  • polycyclic aromatic polycarboxylic acids are preferred from the viewpoint of dielectric properties, and condensed polycyclic aromatic polycarboxylic acids are particularly preferred.
  • condensed polycyclic aromatic polycarboxylic acids dimethyl naphthalenedicarboxylate is particularly preferred.
  • monocyclic aromatic polycarboxylic acids terephthalic acid, dimethyl terephthalate, isophthalic acid and dimethyl isophthalate are preferred.
  • the content of the aromatic polycarboxylic acid relative to the total polycarboxylic acid is preferably 25 mol% or more, more preferably 40 mol% or more, still more preferably 70 mol% or more, and particularly preferably 90 mol% or more. is.
  • Aromatic polycarboxylic acids may occupy 100 mol %. If the content of the aromatic carboxylic acid is too low, the long-term durability in a moist and hot environment tends to be insufficient, and the low dielectric loss tangent tends to be poor.
  • Aromatic polycarboxylic acid content (mol%) (aromatic polycarboxylic acids (mol)/polycarboxylic acids (mol)) x 100
  • the content of structural units derived from aromatic polycarboxylic acids relative to the entire polyester resin (A) is preferably 15 to 70% by weight, more preferably 20 to 65% by weight, and still more preferably 25 to 60% by weight. , particularly preferably 30 to 55% by weight. If the content of the structural unit derived from the aromatic polycarboxylic acid is too small, the initial adhesiveness tends to be insufficient and the low dielectric loss tangent tends to be poor. If the content of structural units derived from aromatic polycarboxylic acids is too high, the initial adhesiveness tends to be insufficient.
  • Polyvalent carboxylic acids preferably also contain trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups.
  • the valence of the carboxy group in such polyvalent carboxylic acids is preferably 3-6 valence, more preferably 3-4 valence.
  • Examples of such polyvalent carboxylic acids include those having 0 or 1 acid anhydride group among the above trifunctional or higher aromatic polyvalent carboxylic acids. Examples include trimellitic anhydride, trimellitic acid, and trimesic acid. Among these, those having one acid anhydride group are preferred, and trimellitic anhydride is particularly preferred.
  • Examples of trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups other than aromatic polyvalent carboxylic acids include hydrogenated trimellitic anhydride.
  • polyester resin (A) From the viewpoint of hygroscopicity of the polyester resin (A), sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5(4-sulfophenoxy)isophthalic acid, etc.
  • the content of aromatic dicarboxylic acids having a sulfonic acid group, and aromatic dicarboxylic acid salts having sulfonic acid groups such as metal salts and ammonium salts thereof, relative to the total polycarboxylic acids is 10 mol% or less. It is preferably 5 mol % or less, still more preferably 3 mol % or less, particularly preferably 1 mol % or less, and most preferably 0 mol %.
  • polyhydric alcohols examples include dimer diols, bisphenol skeleton-containing monomers, aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, and aromatic polyhydric alcohols. One or two or more polyhydric alcohols can be used.
  • the compound constituting the polyester resin (A) preferably contains dimer diols as polyhydric alcohols.
  • the dimer diols include, for example, dimer diols which are reductants of dimer acids (mainly those having 36 to 44 carbon atoms) derived from oleic acid, linoleic acid, linolenic acid, erucic acid, etc. and the like.
  • dimer diols which are reductants of dimer acids (mainly those having 36 to 44 carbon atoms) derived from oleic acid, linoleic acid, linolenic acid, erucic acid, etc. and the like.
  • hydrogenated products are preferable from the viewpoint of suppressing gelation during the production of the polyester-based resin (A).
  • the dimer diol content relative to the total polyhydric alcohols is preferably 2 to 80 mol%, more preferably 5 to 70 mol%, still more preferably 7 to 65 mol%, particularly preferably 10 to 60 mol%. is. If the content of dimer diols is too low, the hygroscopicity and dielectric properties tend to be poor. If the content of dimer diols is too high, the initial adhesiveness tends to be insufficient.
  • the content of structural units derived from dimer diols is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, still more preferably 12 to 55% by weight, and particularly preferably 12 to 55% by weight, based on the entire polyester resin (A). is 15 to 50% by weight. If the content of structural units derived from dimer diols is too small, the resulting composition tends to have low hygroscopicity and poor dielectric properties. If the content of structural units derived from dimer diols is too high, initial adhesion tends to be insufficient.
  • Examples of bisphenol skeleton-containing monomers include bisphenol A, bisphenol B, bisphenol E, bisphenol F, bisphenol AP, bisphenol BP, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, 4,4′-dihydroxybenzophenone, bisphenol fluorene,
  • Examples include bisphenylphenol fluorenes, hydrogenated products thereof, and glycols such as ethylene oxide adducts and propylene oxide adducts obtained by adding 1 to several moles of ethylene oxide or propylene oxide to the hydroxyl group of bisphenols. .
  • bisphenolfluorene and bisphenylphenolfluorene having a condensed polycyclic aromatic skeleton are preferred from the viewpoint of low dielectric properties, and ethylene oxide adducts are preferred from the viewpoint of reactivity.
  • ethylene oxide adducts are preferred from the viewpoint of reactivity.
  • adducts of 2 to 3 mol of ethylene oxide are preferred, and bisphenoxyethanol fluorene and bisphenylphenoxyethanol fluorene are most preferred.
  • aliphatic polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,5-pentane. diol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, dimethylolheptane, 2,2,4 -trimethyl-1,3-pentanediol and the like. Among them, it is preferable to use one having 5 or less carbon atoms from the viewpoint of dielectric properties.
  • alicyclic polyhydric alcohols examples include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethanol, and spiroglycol.
  • polycyclic compounds are preferred from the viewpoint of low dielectric properties, and tricyclodecanedimethanol is more preferred.
  • aromatic polyhydric alcohols examples include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, and ethylene oxide adducts of 1,4-phenylene glycol.
  • polyhydric alcohols having side chains examples include bisphenol A, bisphenol B, bisphenol E, bisphenol AP, bisphenol BP, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol fluorene, bisphenylphenol fluorene, and their water Additives, ethylene oxide or propylene oxide adducts obtained by adding 1 to several moles of ethylene oxide or propylene oxide to hydroxyl groups of bisphenols, bisphenol skeleton-containing monomers having side chains such as propylene oxide adducts, 1,2-propylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-2-butylpropanediol, dimethylolheptane, 2,2,4-trimethyl-
  • the content of the polyhydric alcohol having a side chain is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more, relative to the total polyhydric alcohols,
  • the upper limit is 95 mol%.
  • the content of the structural unit derived from a polyhydric alcohol having a side chain is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 15% by weight or more, relative to the entire polyester resin (A). Yes, the upper limit is 50% by weight. If the content of the polyhydric alcohol having a side chain is too small, the solubility in the solvent and the solution stability of the obtained polyester resin (A) solution tend to decrease.
  • the content of structural units derived from ether bond-containing glycols other than bisphenol skeleton-containing monomers such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. From the viewpoint of low hygroscopicity and long-term durability in a moist and heat environment, it is preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably 10% by weight with respect to the entire polyester resin (A). Below, it is particularly preferably 8% by weight or less, and most preferably 5% by weight or less.
  • polyester resin (A) in addition to the polyvalent carboxylic acid anhydride to be described later, for the purpose of introducing a branched skeleton as necessary, a tri- or more functional polycarboxylic acid and a tri- or more functional polyhydric alcohol At least one selected from the group consisting of the following may be copolymerized.
  • a cured product is obtained by reacting with the polyepoxy compound (B) described below, the introduction of a branched skeleton increases the terminal group concentration (reaction point) of the resin, resulting in a cured product with high crosslink density and high strength. Obtainable.
  • trifunctional or higher polyvalent carboxylic acids include, for example, trimellitic acid, trimesic acid, ethylene glycol bis(anhydrotrimellitate), glycerol tris(anhydrotrimellitate), trimellitic anhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3 ,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2′-bis[(dicarboxyphenoxy)phenyl]propane
  • examples include compounds such as dianhydrides.
  • tri- or higher functional polyhydric alcohols examples include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
  • Tri- or more functional polycarboxylic acids and tri- or more functional polyhydric alcohols may be used alone or in combination of two or more.
  • the entire polycarboxylic acid The content of trifunctional or higher polyhydric carboxylic acids, or the content of trifunctional or higher polyhydric alcohols with respect to the total polyhydric alcohols, is preferably 0.1 to 5 mol%, more preferably 0.1 It is in the range of ⁇ 3 mol%. If the content of either or both is too high, the adhesive layer formed from the adhesive composition tends to have reduced mechanical properties such as elongation at break, and gelation tends to occur during polymerization. .
  • Polyester-based resin (A) can be produced by a well-known method.
  • a polyhydric carboxylic acid and a polyhydric alcohol may be produced by subjecting them to an esterification reaction in the presence of a catalyst, if necessary, to obtain a polyester resin, and then introducing an acid value. can.
  • a method of introducing an acid value into a polyester resin for example, a method of introducing a carboxylic acid into the resin by acid addition after an esterification reaction or after reduced pressure polycondensation can be mentioned.
  • a monocarboxylic acid, dicarboxylic acid, or polyfunctional carboxylic acid compound is used for acid addition, the molecular weight may decrease due to transesterification, so it is preferable to use a compound having at least one carboxylic acid anhydride.
  • carboxylic anhydride examples include succinic anhydride, maleic anhydride, orthophthalic anhydride, 2,5-norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, and pyromellitic dianhydride.
  • oxydiphthalic dianhydride 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3,3′,4, Compounds such as 4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride etc.
  • a polycarboxylic acid is added to a hydroxyl group-containing prepolymer obtained by copolymerizing a polycarboxylic acid other than a polycarboxylic anhydride and a polyhydric alcohol.
  • a method of reacting an anhydride is preferable in terms of productivity.
  • the polyester-based resin (A) can also be obtained by another well-known method, for example, by subjecting polyhydric carboxylic acids and polyhydric alcohols to an esterification reaction, optionally in the presence of a catalyst, to obtain a prepolymer. After obtaining, it can be produced by polycondensing and further depolymerizing.
  • the temperature in the esterification reaction between polyhydric carboxylic acids and polyhydric alcohols is usually 180-280°C, and the reaction time is usually 60 minutes-8 hours.
  • the temperature in the polycondensation is usually 220-280°C, and the reaction time is usually 20 minutes-4 hours.
  • Polycondensation is preferably carried out under reduced pressure.
  • trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups from the viewpoint of initial adhesiveness.
  • trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups include compounds such as trimellitic acid, trimellitic anhydride, hydrogenated trimellitic anhydride and trimesic acid.
  • Polyvalent carboxylic acids having a valence of 3 or more and having one acid anhydride group are preferred from the viewpoint of suppressing a decrease in molecular weight, and examples thereof include trimellitic anhydride and hydrogenated trimellitic anhydride.
  • Trimellitic anhydride is particularly preferred from the viewpoint of low dielectric loss tangent.
  • the temperature in the depolymerization is usually 200-260° C., and the reaction time is usually 10 minutes-3 hours.
  • the ester bond concentration of the polyester resin (A) is preferably 10 mmol/g or less, more preferably 1 to 9 mmol/g, still more preferably 2 to 8.5 mmol/g, particularly preferably 2.5 ⁇ 8 mmol/g, particularly preferably 3 to 7.5 mmol/g. If the ester bond concentration is too high, low hygroscopicity and long-term durability in a moist and heat environment will be insufficient. If the ester bond concentration is too low, the initial adhesion will be insufficient.
  • the definition and measuring method of the ester bond concentration are as follows.
  • the ester bond concentration (mmol/g) is the number of moles of ester bonds in 1 g of the polyester-based resin, and is obtained, for example, by a calculated value from the charged amount.
  • This calculation method is a value obtained by dividing the number of moles of the smaller of the charged amounts of the polyhydric carboxylic acid and the polyhydric alcohol by the total weight of the resin, and an example of the calculation formula is shown below.
  • the polyhydric carboxylic acid and the polyhydric alcohol are charged in the same molar amount, either of the following formulas may be used. If a monomer having both a carboxy group and a hydroxyl group is used, or if a polyester is produced from caprolactone or the like, the calculation method will be changed as appropriate.
  • Ester bond concentration (mmol/g) [(A1/a1 ⁇ m1+A2/a2 ⁇ m2+A3/a3 ⁇ m3......)/Z] ⁇ 1000
  • B Charged amount of polyhydric alcohol
  • b molecular weight of polyhydric alcohol
  • n number of hydroxyl groups per molecule of polyhydric alcohol
  • Z finished weight (g)
  • ester bond concentration can also be measured by a known method using NMR or the like.
  • Concentrations of other polar groups other than ester bonds and reactive functional groups are preferably low from the viewpoint of low hygroscopicity and long-term durability in wet and heat environments.
  • Other polar groups include, for example, amide groups, imide groups, urethane groups, urea groups, ether groups, carbonate groups and the like.
  • the total concentration of amide groups, imide groups, urethane groups, and urea groups is preferably 3 millimoles/g or less, more preferably 2 millimoles/g or less, still more preferably 1 millimoles/g or less, and particularly preferably is less than or equal to 0.5 mmol/g, most preferably less than or equal to 0.2 mmol/g.
  • Ether groups include, for example, alkyl ether groups and phenyl ether groups. In terms of low hygroscopicity and long-term durability in a moist and hot environment, it is particularly preferred to lower the concentration of alkyl ether groups.
  • the alkyl ether group concentration is preferably 3 mmol/g or less, more preferably 2 mmol/g or less, still more preferably 1.5 mmol/g or less, particularly preferably 1 mmol/g or less, and most preferably is less than or equal to 0.5 mmol/g.
  • the phenyl ether group concentration is preferably 5 mmol/g or less, more preferably 4 mmol/g or less, still more preferably 3 mmol/g or less, and particularly preferably 2.5 mmol/g or less.
  • the carbonate group concentration is preferably 3 mmol/g or less, more preferably 2 mmol/g or less, still more preferably 1 mmol/g or less, particularly preferably 0.5 mmol/g or less, and most preferably 0.2 mmol/g or less.
  • the dielectric loss tangent (Df) at a frequency of 10 GHz in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH of the polyester resin (A) is preferably 0.005 or less, more preferably 0.0045 or less, and still more preferably It is 0.004 or less, more preferably 0.0035 or less, and particularly preferably 0.003 or less. If the dielectric loss tangent is too high, the resulting laminate will have a large transmission loss.
  • the relative dielectric constant (Dk) of the polyester resin (A) at a temperature of 23° C. and a relative humidity of 50% RH at a frequency of 10 GHz is preferably 2.9 or less, more preferably 2.8 or less, and still more preferably 2. 0.7 or less, particularly preferably 2.6 or less. If the dielectric constant is too high, the resulting laminate tends to have a low transmission speed or a large transmission loss.
  • the dielectric constant and dielectric loss tangent of the polyester resin (A) can be obtained by the cavity resonator perturbation method using a network analyzer. If it is difficult to prepare a measurement sample by itself due to the strong adhesiveness of the polyester resin (A), the dielectric properties of the polyester resin (A) alone can be estimated by measuring the sample sandwiched between films and subtracting the film amount. can also be calculated.
  • the acid value of the polyester resin (A) is preferably 3 mgKOH/g or more, more preferably 4 mgKOH/g or more, still more preferably 5 mgKOH/g or more, particularly preferably 6 mgKOH/g or more, particularly preferably 7 mgKOH/g or more. is.
  • the acid value of the polyester resin (A) is preferably 60 mgKOH/g or less, more preferably 40 mgKOH/g or less, still more preferably 30 mgKOH/g or less, and particularly preferably 20 mgKOH/g or less.
  • the acid value of the polyester-based resin (A) is too low, when the polyepoxy-based compound (B) is included in the adhesive composition, the cross-linking points with the polyepoxy-based compound (B) are insufficient, resulting in a low degree of cross-linking. As a result, the heat resistance becomes insufficient. If the acid value of the polyester-based resin (A) is too high, the hygroscopicity and long-term durability in a moist and heat environment are reduced, and a large amount of the polyepoxy-based compound (B) is required during curing. It tends to be inferior in dielectric properties, which has become more common.
  • the definition and measuring method of the acid value are as follows.
  • the acid value of the polyester resin (A) is due to the content of carboxy groups in the resin.
  • the glass transition temperature (Tg) of the polyester resin (A) is preferably ⁇ 5° C. or higher, more preferably 0° C. or higher, still more preferably 3° C. or higher, particularly preferably 5° C. or higher, particularly preferably 7° C. above, and most preferably above 10°C.
  • the glass transition temperature (Tg) of the polyester resin (A) is preferably 100° C. or lower, more preferably 80° C. or lower, still more preferably 60° C. or lower, particularly preferably 40° C. or lower, particularly preferably 30° C. or lower. is.
  • glass transition temperature (Tg) of the polyester-based resin (A) is too low, initial adhesiveness and tack-free properties will be insufficient. If the glass transition temperature (Tg) of the polyester-based resin (A) is too high, the initial adhesiveness and flexibility tend to be insufficient.
  • the method for measuring the glass transition temperature (Tg) is as follows.
  • the glass transition temperature (Tg) can be obtained by measuring with a differential scanning calorimeter.
  • the measurement conditions are a measurement temperature range of -70 to 140°C and a temperature increase rate of 10°C/min.
  • the peak top molecular weight (Mp) of the polyester resin (A) is preferably 5,000 to 150,000, more preferably 10,000 to 100,000, even more preferably 15,000 to 70,000, and particularly preferably 25,000 to 40,000. If the peak top molecular weight (Mp) is too low, low hygroscopicity, tack-free property, and long-term durability in a moist heat environment will be insufficient, and flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards will be produced. There is a tendency that problems such as the polyester-based resin of the adhesive layer flowing and oozing out during press processing when bonding are likely to occur. If the peak top molecular weight (Mp) is too high, the initial adhesion may be insufficient, or the viscosity of the solution at the time of coating may be too high, making it difficult to obtain a uniform coating film.
  • the weight average molecular weight (Mw) of the polyester resin (A) is preferably 5,000 to 300,000, more preferably 10,000 to 200,000, still more preferably 20,000 to 150,000, and particularly preferably 25,000 to 100,000. If the weight average molecular weight (Mw) is too low, low hygroscopicity, tack-free property, and long-term durability in a moist heat environment will be insufficient, and flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards will be produced. There is a tendency that problems such as the polyester-based resin of the adhesive layer flowing and oozing out during press processing when bonding are likely to occur. If the weight-average molecular weight (Mw) is too high, the initial adhesion may be insufficient, or the solution viscosity at the time of coating may be too high, making it difficult to obtain a uniform coating film.
  • Peak top molecular weight (Mp) and weight average molecular weight (Mw) are as follows.
  • the peak top molecular weight (Mp) and weight average molecular weight (Mw) were measured by high-performance liquid chromatography (manufactured by Tosoh Corporation, "HLC-8320GPC") on a column (TSKgel SuperMultipore HZ-M (exclusion limit molecular weight: 2 ⁇ 106, number of theoretical plates). : 16,000 plates/line, filler material: styrene-divinylbenzene copolymer, filler particle diameter: 4 ⁇ m)))), and can be obtained by standard polystyrene molecular weight conversion.
  • the water absorption of the polyester resin (A) is preferably 2% by weight or less, more preferably 1% by weight or less, still more preferably 0.8% by weight or less, and particularly preferably 0.6% by weight or less. If the water absorption is too high, the wet heat durability and insulation reliability tend to deteriorate, and the dielectric properties tend to deteriorate. Inferior in dielectric properties means that the values of relative permittivity and dielectric loss tangent do not decrease or increase.
  • the method for measuring water absorption is as follows.
  • the polyester resin solution (before blending the polyepoxy compound (B) and the filler (C)) was applied onto the release film with an applicator and dried at 120°C for 10 minutes, and the dry film thickness of the polyester resin layer was 65 ⁇ m.
  • Make a sheet This sheet is cut into a size of 7.5 cm ⁇ 11 cm, the polyester-based resin layer surface of the sheet is laminated on a glass plate, and then the release film is peeled off. By repeating this operation six times, a test plate having a polyester-based resin layer with a thickness of 390 ⁇ m on a glass plate is obtained.
  • the adhesive composition of the present invention may contain only the polyester resin (A) as the polyester resin, or may contain a polyester resin other than the polyester resin (A).
  • the content of the polyester resin (A) in the adhesive composition of the invention is preferably more than 50% by weight, more preferably 70% by weight or more, and still more preferably 85% by weight or more of the total polyester resin. Yes, and may be 100% by weight. If the content of the polyester-based resin (A) is too small, the low hygroscopicity and the long-term durability in a moist and hot environment tend to be insufficient, and the low dielectric loss tangent tends to be poor.
  • the adhesive composition of the present invention contains a polyepoxy compound (B). Since the adhesive composition of the present invention contains the polyepoxy compound (B), the epoxy groups in the polyepoxy compound (B) and the carboxy groups in the polyester resin (A) react to cure. As a result, it is possible to obtain an adhesive layer that is excellent not only in adhesive strength but also in solder heat resistance.
  • the equivalent weight of the epoxy group of the polyepoxy compound (B) in the adhesive composition to the carboxy group of the polyester resin (A) in the adhesive composition is preferably less than 2, more preferably 1.9 or less, and further It is preferably 1.7 or less, particularly preferably 1.5 or less.
  • the equivalent weight of the epoxy group of the polyepoxy compound (B) in the adhesive composition to the carboxy group of the polyester resin (A) in the adhesive composition is preferably 0.1 or more, more preferably 0.1. It is 3 or more, more preferably 0.5 or more, and most preferably 0.8 or more.
  • the corresponding amount is too large, the initial adhesiveness and low hygroscopicity tend to become insufficient, the dielectric properties deteriorate, and the solder heat resistance tends to deteriorate. If the corresponding amount is too small, there is a tendency that the long-term durability and solder heat resistance in a moist and hot environment become insufficient.
  • the equivalent weight of the epoxy group to the carboxy group (COOH) is obtained from the acid value of the polyester resin (A) and the epoxy equivalent weight (g/eq) of the blended polyepoxy compound (B) by the following formula.
  • Equivalent weight of epoxy group to COOH (e ⁇ WPE)/(AV ⁇ 56.1 ⁇ 1000 ⁇ P) e: weight (g) of the polyepoxy compound (B) used in the formulation
  • WPE epoxy equivalent (g/eq) of polyepoxy compound (B)
  • AV Acid value of polyester resin (A) (mgKOH/g)
  • p Weight (g) of the polyester resin (A) used in the formulation
  • the epoxy equivalent WPE of the polyepoxy compound (B) is preferably 500 g/eq or less, more preferably 350 g/eq or less, still more preferably 250 g/eq or less, and particularly preferably 200 g/eq or less. If the epoxy equivalent of the polyepoxy compound (B) is too large, the crosslink density after curing will be low, resulting in poor solder heat resistance, or it will be necessary to add a large amount of the polyepoxy compound (B) to increase the crosslink density. Therefore, it tends to be inferior in dielectric properties.
  • the epoxy equivalent WPE of the polyepoxy compound (B) is usually 50 g/eq or more.
  • "epoxy equivalent (WPE)" is defined as "weight of epoxy resin containing one equivalent of epoxy group” and can be measured according to JIS K7236.
  • polyepoxy compound (B) examples include glycidylamine types such as tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, tetraglycidylbisaminomethylcyclohexane, and N,N,N',N'-tetraglycidyl-m-xylenediamine. nitrogen atom-containing polyepoxy compounds.
  • glycidylamine types such as tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, tetraglycidylbisaminomethylcyclohexane, and N,N,N',N'-tetraglycidyl-m-xylenediamine.
  • bifunctional glycidyl ether types such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether; polyfunctional glycidyl ether types such as phenol novolac glycidyl ether and cresol novolac glycidyl ether; hexahydrophthalic acid Glycidyl ester types such as glycidyl ester and dimer acid glycidyl ester; alicyclic or aliphatic epoxides such as triglycidyl isocyanurate, 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil; Polyepoxy compound (B) can be used alone or in combination of two or more.
  • the adhesive composition of the present invention contains a nitrogen atom-containing polyepoxy compound (nitrogen atom-containing polyepoxy compound) as the polyepoxy compound (B), the adhesive composition can be formed by heating at a relatively low temperature. There is a tendency that the coating film of the object can be B-staged (semi-cured state), and the fluidity of the B-stage film can be suppressed to improve the workability in the bonding operation. Moreover, the effect of suppressing the foaming of the B-stage film can be expected, which is preferable.
  • nitrogen atom-containing polyepoxy compound nitrogen atom-containing polyepoxy compound
  • the adhesive composition of the present invention contains filler (C).
  • filler (C) By containing the filler (C), it is possible to obtain an adhesive that is excellent not only in adhesive strength but also in solder heat resistance. In addition, various functionalities such as flame retardancy can be imparted.
  • the filler is not particularly limited, but may be spherical, powdery, fibrous, needle-like, scale-like, or the like.
  • fillers examples include polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotri Fluoropolymer powder such as fluoroethylene (PCTFE), fluororubber (FKM), polyethylene powder, polyacrylate powder, epoxy resin powder, polyamide powder, polyurethane powder, polysiloxane powder, silicone, acrylic, styrene Polymer filler such as butadiene rubber, multi-layered core-shell using butadiene rubber; (Poly)phosphates such as melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, amide ammonium phosphate, amide ammonium polyphosphate, carbamate phosphate, and carba
  • mica margarite, tetrasilic mica, teniolite, etc.
  • talc clay
  • Clay minerals such as hydrotalcite, wollastonite, xonotlite, synthetic mica; etc.
  • fillers (C) can be used.
  • fluoropolymer powder (C1) and/or clay mineral (C2) are preferable from the viewpoint of further reducing the dielectric constant and dielectric loss tangent and further improving the effects of the present invention.
  • fluoropolymer powder (C1) and/or the clay mineral (C2) it is possible to obtain an adhesive having not only initial adhesive strength, but also low dielectric properties and high adhesive strength even after a wet heat durability test. can.
  • clay minerals are more preferred, and mica is particularly preferred.
  • fluoropolymer powder (C1) examples include polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer ( ETFE), polychlorotrifluoroethylene (PCTFE), fluororubber (FKM), and the like. These may be used alone or in combination of two or more.
  • the fluorine-based polymer powder (C1) is preferable from the viewpoint of further reducing the dielectric constant and dielectric loss tangent and further improving the effects of the present invention. It is particularly preferable from the viewpoint of compatibility and dispersibility with (A). By blending the fluorine-based polymer powder, it becomes possible to obtain a cured product having not only dielectric properties but also an excellent balance among adhesiveness, flexibility, electrical insulation and heat resistance.
  • Examples of the clay mineral (C2) include kaolinite group clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, etc.), antigorite group clay minerals (antigorite, chrysotile, etc.), smectite group clay minerals ( montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, etc.), vermiculite group clay minerals (vermiculite, etc.), mica or mica group clay minerals (muscovite, phlogopite, mica, margarite, tetrasilic mica, teniolite, etc.), talc, clay, hydrotalcite, wollastonite, xonotlite, synthetic mica, and the like. These may be used alone or in combination of two or more. Among these clay minerals (C2), mica group clay minerals and synthetic mica are preferred, and synthetic mica is more preferred, in terms of dispersibility in the polyester resin (A
  • the average particle size of these fillers (C) is preferably 0.1 ⁇ m to 25 ⁇ m.
  • a filler having an average particle diameter close to 0.1 ⁇ m is used, the modification effect of the filler is likely to be obtained, and the dispersibility and the stability of the dispersion liquid are likely to be improved.
  • a filler having an average particle size close to 25 ⁇ m is used, the mechanical properties of the cured film are likely to be improved.
  • the adhesive composition of the present invention contains a polyester-based resin (A), a polyepoxy-based compound (B) and a filler (C), and has low transmission properties, low moisture absorption, tack-free properties, initial adhesiveness, and a moist heat environment. It has an effect of being excellent in long-term durability under the environment.
  • the content of the polyepoxy compound (B) in the adhesive composition of the present invention is such that the epoxy groups of the polyepoxy compound (B) to the carboxy groups of the polyester resin (A) are in the aforementioned suitable equivalent ratio. If it is More specifically, the content of the polyepoxy compound (B) is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polyester resin (A). More preferably 1.5 to 15 parts by weight, particularly preferably 1.8 to 5 parts by weight. If the content of the polyepoxy-based compound (B) is too small, the heat resistance and long-term durability in a moist and hot environment tend to be insufficient. If the content of the polyepoxy-based compound (B) is too high, the initial adhesiveness and low hygroscopicity tend to be insufficient, and the dielectric properties tend to be poor.
  • the content of the filler (C) in the adhesive composition of the present invention is preferably 1 to 100 parts by weight, more preferably 5 to 90 parts by weight, and still more preferably 100 parts by weight of the polyester resin (A). 10 to 80 parts by weight, particularly preferably 15 to 70 parts by weight, particularly preferably 20 to 60 parts by weight.
  • the content of the filler (C) is within the above range, it is possible to reduce the dielectric loss tangent and improve the long-term durability in a wet and hot environment without impairing the adhesiveness, which is preferable. If the content of the filler (C) is too high, the adhesiveness tends to decrease.
  • the adhesive composition of the present invention containing the polyepoxy compound (B) may contain a catalyst for curing.
  • catalysts examples include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like.
  • Imidazole compounds triethylamine, triethylenediamine, N'-methyl-N-(2-dimethylaminoethyl)piperazine, 1,8-diazabicyclo(5,4,0)-undecene-7, 1,5-diazabicyclo(4, 3,0)-nonene-5,6-dibutylamino-1,8-diazabicyclo(5,4,0)-undecene-7 and other tertiary amines; compounds converted into amine salts with quaternized tetraphenylborate salts; cationic catalysts such as triallylsulfonium hexafluoroantimonate and diallyiodonium hexafluoroantimonate; and triphenylphosphine.
  • triethylamine triethylenediamine, N'-methyl-N-(2-dimethylaminoethyl)piperazine, 1,8-diazabicyclo(5,4,0
  • the content thereof is preferably 0.01 to 1 part by weight per 100 parts by weight of the polyester resin (A). Within this range, the catalytic effect on the reaction between the polyester-based resin (A) and the polyepoxy-based compound (B) is further increased, and strong adhesion performance can be obtained.
  • solvent A solvent may be added to the adhesive composition of the present invention in order to appropriately adjust the viscosity of the adhesive composition and to facilitate handling when forming a coating film.
  • the solvent is used to ensure handleability and workability in molding the adhesive composition, and the amount used is not particularly limited.
  • solvents examples include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate; ethers such as ethylene glycol monomethyl ether; amides such as dimethylacetamide; alcohols such as methanol and ethanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene, and the like. Only one kind of solvent may be used, or two or more kinds may be mixed and used in any combination and ratio.
  • ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone
  • esters such as ethyl acetate
  • ethers such as ethylene glycol monomethyl ether
  • amides such as dimethylacetamide
  • alcohols such as methanol and ethanol
  • the adhesive composition of the present invention may contain components other than those listed above for the purpose of further improving its functionality.
  • Other components include, for example, coupling agents such as silane coupling agents, UV inhibitors, antioxidants, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, Antifoaming agents, ion trapping agents, leveling agents, catalysts and the like are included.
  • the content of the other components is preferably 40% by weight or less, more preferably 0.05 to 30% by weight, and still more preferably 0% by weight. .1 to 20% by weight, particularly preferably 0.2 to 10% by weight.
  • the cured product of the adhesive composition of the present invention has a dielectric loss tangent (Df) of 0.005 or less, preferably 0.004 or less, and more preferably at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH. is 0.0038 or less, more preferably 0.0036 or less, still more preferably 0.0034 or less, particularly preferably 0.0032 or less, particularly preferably 0.0030 or less, and most preferably 0.0028 or less. If the dielectric loss tangent is too high, the transmission loss will increase when used in a laminate.
  • the cured product of the adhesive composition of the present invention has a dielectric constant (Dk) of preferably 3.0 or less, more preferably 2.9 or less, at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH. It is more preferably 2.8 or less, particularly preferably 2.7 or less. If the dielectric constant is too high, the transmission speed tends to be low and the transmission loss tends to increase when used in a laminate.
  • the method for measuring the dielectric loss tangent and the dielectric constant of the cured product of the adhesive composition of the present invention can be obtained by the cavity resonator perturbation method using a network analyzer. If the adhesion of the adhesive composition is too strong to prepare a measurement sample by itself, it is also possible to measure with the film sandwiched and subtract the film component to calculate the dielectric properties of the adhesive composition alone. can.
  • Examples of methods for obtaining an adhesive composition having excellent dielectric properties such that the dielectric loss tangent and the dielectric constant are equal to or less than the above upper limits include the following methods. (1) A polyester-based resin (A) having a low dielectric loss tangent and a low dielectric constant is used. (2) Designing a composition with few polar groups that deteriorate the dielectric properties. (3) A low dielectric filler is also used as the filler (C).
  • Adhesion layer The adhesive layer obtained by curing the adhesive composition of the present invention exhibits the effects of being excellent in initial adhesiveness, low hygroscopicity, and long-term durability under moist and heat environments.
  • “Curing” in the present invention means intentionally curing the adhesive composition with heat and/or light, etc., and the degree of curing can be controlled according to desired physical properties and applications.
  • the degree of curing can be confirmed by the gel fraction of the adhesive, which is preferably 50% or more, more preferably 60% or more, particularly preferably 70% or more, and still more preferably 75% or more. If the gel fraction is too low, the heat resistance and long-term durability in a moist and hot environment tend to be insufficient.
  • the above-mentioned gel fraction means the weight percentage of the undissolved cured product component relative to the weight of the cured product obtained by immersing the cured product of the adhesive composition in methyl ethyl ketone at 23° C. for 24 hours before immersion.
  • the curing method of the adhesive composition when curing or semi-curing the adhesive composition of the present invention varies depending on the ingredients and amounts in the adhesive composition, but is usually 80 to 200° C. for 10 minutes to 10 minutes. heating conditions of hours.
  • the adhesive composition of the present invention is excellent in initial adhesiveness, low moisture absorption, and long-term durability in a moist and heat environment, it is effective for bonding substrates made of various materials such as resins and metals. It is suitable as an adhesive for producing a laminated plate of a layer and a plastic layer, for example, an adhesive used for bonding electronic material members to be described later.
  • the laminate of the present invention is a laminate having an adhesive layer on at least one surface of a substrate or a conductor layer, wherein the adhesive layer comprises a polyester resin (A), a polyepoxy compound (B), and a filler. It is a cured product of an adhesive composition containing (C), and the adhesive layer (hereinafter sometimes referred to as the "adhesive layer of the present invention") exhibits a specific dielectric loss tangent (Df).
  • Df dielectric loss tangent
  • Adhesive composition As the adhesive composition constituting the adhesive layer of the laminate of the present invention, the above-described adhesive composition of the present invention can be used, and the curing method for forming the adhesive layer is also as described above.
  • the dielectric loss tangent (Df) of the adhesive layer of the present invention at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH is 0.005 or less, preferably 0.004 or less, more preferably 0.0038 or less. , more preferably 0.0036 or less, still more preferably 0.0034 or less, particularly preferably 0.0032 or less, particularly preferably 0.0030 or less, and most preferably 0.0028 or less. If the dielectric loss tangent is too high, the transmission loss of the laminate will increase.
  • the dielectric constant (Dk) of the adhesive layer of the present invention at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH is preferably 3.0 or less, more preferably 2.9 or less, still more preferably 2.9. 8 or less, particularly preferably 2.7 or less. If the dielectric constant is too high, the transmission speed of the laminate tends to be low and the transmission loss tends to increase.
  • the dielectric loss tangent and dielectric constant of the adhesive layer of the present invention can be measured by the same method as the method for measuring the cured product of the adhesive composition of the present invention described above.
  • the adhesive composition of the present invention having excellent dielectric properties can be obtained.
  • the method for forming the adhesive layer of the present invention is as described above. (1) A polyester-based resin (A) having a low dielectric loss tangent and a low dielectric constant is used in the adhesive composition. (2) The adhesive composition is designed to contain few polar groups that deteriorate the dielectric properties. (3) A low dielectric filler is also used as the filler (C).
  • the thickness of the adhesive layer of the present invention is usually 1 to 200 ⁇ m, although it varies depending on the application of the laminate.
  • the adhesive layer of the present invention can be produced by applying the adhesive composition of the present invention to a substrate or conductor layer, which will be described later. More specifically, after the resin composition is applied to the substrate or conductor layer, it is semi-cured (hereinafter also referred to as B stage) under certain conditions (temperature: 80 to 180 ° C., time: 2 to 30 minutes). to obtain an adhesive layer.
  • the thickness of the coating film may be about 1 to 200 ⁇ m, depending on the application.
  • the coating method is not particularly limited, and examples thereof include methods such as a comma coater, die coater, gravure coater, and roll coater.
  • the adhesive layer in the completely cured state (C stage) is obtained by laminating the adhesive layer in the B stage with another base material or conductor layer using a laminator or a press, and then applying a certain curing condition (temperature: 80 to 200 ° C., pressure: 0 to 3 MPa, time: 10 to 600 minutes).
  • a certain curing condition temperature: 80 to 200 ° C., pressure: 0 to 3 MPa, time: 10 to 600 minutes.
  • the adhesive layer of the present invention may be formed only on one surface of the substrate or conductor layer, or may be formed on both surfaces.
  • the base material of the laminate of the present invention is not particularly limited.
  • the substrate include polyimide film, polyetheretherketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, and silicone release treated paper. , polyolefin resin-coated paper, polymethylpentene film, and fluororesin film. These are preferable when the laminate of the present invention is used as a flexible laminate, which will be described later. Only one type of these base materials may be used, or two or more types may be used. For example, two or more of the above substrates may be laminated and used. Moreover, in this case, the adhesive layer of the present invention may be formed between the substrates.
  • polyimide film polyether ether ketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and fluorine resin Films are preferred, and among these, polyimide films, polyethylene naphthalate films, and liquid crystal polymer films are more preferred, and polyimide films and liquid crystal polymer films are even more preferred, from the viewpoint of adhesiveness and electrical properties.
  • the thickness of the base material there are no particular restrictions on the thickness of the base material, and it is appropriately designed according to the application of the laminate and the material of the base material used. From the viewpoint of obtaining the desired strength, it is preferably in the range of 1 to 500 ⁇ m, particularly 3 to 100 ⁇ m, especially 5 to 50 ⁇ m.
  • Conductor layer examples include foils made of general copper or copper alloys, stainless steel or alloys thereof, nickel or nickel alloys (including 42 alloys), aluminum or aluminum alloys. Copper foils such as rolled copper foils and electrolytic copper foils are often used as general circuit board materials, and they can also be preferably used in the present invention. A rust preventive layer, a heat resistant layer, or an adhesive layer may be applied to the surface of these metal foils. Moreover, the thickness of the metal foil is not particularly limited, and may be any thickness that can exhibit sufficient functions according to the application.
  • the conductor layer may be formed in a pattern as a circuit, or may be formed in a plane.
  • the thickness of the conductor layer is usually about 1 to 100 ⁇ m.
  • the laminate of the present invention may have other layers in addition to the adhesive layer of the present invention and the substrate or conductor layer.
  • the other layer is preferably a base material or a conductor layer, particularly when the laminate of the present invention is applied to a circuit board material.
  • the laminate of the present invention may have a release layer so as to be in contact with the adhesive layer of the present invention.
  • the release film that forms the release layer include polyolefin films such as polyethylene and polypropylene; polyester films such as polyethylene terephthalate and polyethylene naphthalate; polyimide films; can.
  • the thickness of the release film is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 10 to 150 ⁇ m, particularly preferably 20 to 120 ⁇ m.
  • the release film may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface in contact with the adhesive layer of the present invention.
  • the laminate of the present invention may have one or more of an adhesive layer, an insulating layer, and a conductor layer other than the above.
  • [Use] Applications of the laminate of the present invention include, for example, electronic material members such as flexible copper-clad laminates, coverlays, bonding sheets, and resin-coated copper foils.
  • Examples of products manufactured by laminating electronic material members include flexible laminates such as flexible printed circuit boards, multilayer printed wiring boards, laminates for electrical and electronic circuits such as capacitors, underfill materials, and 3D-LSI interconnects.
  • a chip fill, an insulating sheet, a heat dissipation substrate, and the like can be mentioned.
  • the laminate of the present invention can be used as a material for circuit boards, but is not limited to these.
  • a flexible laminate is, for example, a laminate obtained by sequentially laminating "flexible flexible substrate/adhesive layer/conductive metal layer made of copper, aluminum, alloys thereof, etc.”, and constitutes the adhesive layer.
  • the adhesive of the present invention can be used as an adhesive.
  • the flexible laminate may further include other insulating layers, other adhesive layers, and other conductive metal layers.
  • One aspect of the laminate of the present invention is a circuit board material. Further, another aspect of the laminate of the present invention includes a flexible copper-clad laminate, a coverlay film, a bonding sheet, a resin-coated copper foil, and the like.
  • a circuit board material as one aspect of the laminate of the present invention can be produced, for example, by the following method. After forming the adhesive layer of the present invention on a base material or conductor layer, further laminating a conductor or base material thereon, a circuit is formed using a photoresist or the like, and the necessary number of such layers are stacked. The lamination of the substrate and the conductor layer may be performed by directly laminating the conductive metal foils or by bonding the conductive metal foils with the adhesive composition of the present invention. Alternatively, a method of forming a conductive metal layer by plating or sputtering may be used, or a combination of these methods may be used.
  • composition (molar ratio) shown in Table 1-A below is the finished composition ratio (resin composition ratio), and is the relative ratio (molar ratio) of the amount of each constituent monomer of the obtained polyester resin.
  • polyester resin (A-1)> A thermometer, a stirrer, a rectifying column, and a reactor equipped with a nitrogen inlet tube were charged with 53.8 parts (0.3238 mol) of terephthalic acid (TPA) and 212.7 parts of isophthalic acid (IPA) as polyvalent carboxylic acids.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • trimellitic anhydride TMAn 3.1 parts (0.0161 mol), 2-methyl-1,3-propanediol (2MPG) 58.4 parts (0 .6480 mol), 140.1 parts (1.3452 mol) of neopentyl glycol (NPG), 102.9 parts (0.1944 mol) of dimer diol "PRIPOL 2033" (P2033) (manufactured by Croda), tetra 0.1 part of butyl titanate was charged, the temperature was raised over 2 hours until the internal temperature reached 260° C., and an esterification reaction was carried out at 260° C. for 1.5 hours.
  • TMAn trimellitic anhydride
  • Tables 1-A and 1-B show the resin compositions (structural units derived from components) and physical properties of the obtained polyester resins (A-1) and (A-2).
  • the abbreviations in Table 1-A are as follows.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • NDCM dimethyl 2,6-naphthalenedicarboxylate
  • TMAn trimellitic anhydride
  • EG ethylene glycol
  • 2MPG 2-methyl-1,3 - Propanediol
  • NPG Neopentyl glycol
  • TCD-DM Tricyclodecanedimethanol
  • P2033 Dimer diol "Pripol 2033” (manufactured by Croda)
  • C ⁇ Filler (C)> As the filler (C), the following were prepared.
  • Example 1 3.2 parts of the polyepoxy compound (B-1) (solid content) and 30 parts of the filler (C-1) are added to the polyester resin (A-1) solution (100 parts as solid content), Further, the mixture was diluted with methyl ethyl ketone to a solid content of 40%, stirred and mixed to obtain an adhesive composition.
  • the obtained adhesive composition was evaluated as follows. The results are shown in Tables 2 and 3.
  • the adhesive composition prepared above was applied to a 50 ⁇ m-thick polyimide film “Kapton 200H” (manufactured by Toray DuPont) with an applicator and then dried at 120° C. for 5 minutes to form an adhesive layer with a dry film thickness of 25 ⁇ m. .
  • a rolled copper foil having a thickness of 30 ⁇ m is laminated with the adhesive layer surface of the polyimide film with an adhesive layer (lamination conditions: 170 ° C., 0.2 MPa, feed rate 1.5 m / min), and then heat treated in an oven at 160 ° C. for 4 hours. , to obtain a laminate.
  • PI/Cu laminated body laminated with a rolled copper foil
  • a test piece was prepared by cutting the PI/Cu obtained above into a width of 1 cm.
  • the test piece was fixed to a glass plate with a thickness of 2 mm using double-sided tape, and the tensile peel strength (N / cm) of the test piece was measured using a peel tester in an environment of 23 ° C. and 50% RH (peel speed: 50 mm/min, peeling angle: 180°).
  • the evaluation criteria were as follows. ⁇ : 8 N / cm or more ⁇ : 6 N / cm or more, less than 8 N / cm ⁇ : 4 N / cm or more, less than 6 N / cm ⁇ : less than 4 N / cm
  • ⁇ Damp heat durability> Place the test piece prepared in the same manner as above in a constant temperature and humidity machine at 85 ° C. and 85% RH, remove it after a predetermined time (after 240, 500 or 1000 hours), and place it in an environment of 23 ° C. and 50% RH. After standing overnight, the tensile peel strength (N/cm) was measured in the same manner as the initial adhesive strength described above. The percentage of the adhesive strength after wet heat treatment to the initial adhesive strength was defined as "retention rate (%)". The absolute value of adhesive strength was evaluated using the same evaluation criteria as those for the initial adhesive strength. The adhesive force retention rate was evaluated based on the following evaluation criteria. ⁇ : retention rate of 80% or more ⁇ : retention rate of 60% or more and less than 80% ⁇ : retention rate of 40% or more and less than 60% ⁇ : retention rate of less than 40%
  • ⁇ Dielectric constant (Dk)/dielectric loss tangent (Df)> The adhesive composition prepared above was applied to a PET film having a thickness of 38 ⁇ m with an applicator, dried at 120° C. for 5 minutes, and then heat-treated and cured in an oven at 160° C. for 4 hours to prepare a cured film having a thickness of 50 ⁇ m. was determined at 10 GHz by the cavity resonator perturbation method using a network analyzer.
  • the evaluation criteria were as follows. With evaluations A and B, the transmission loss of the laminate is good. A: E ⁇ 0.004 B: 0.004 ⁇ E ⁇ 0.007 C: 0.007 ⁇ E ⁇ 0.009 D: 0.009 ⁇ E
  • the laminate of the present invention and the adhesive composition of the present invention, it is possible to provide a laminate having an adhesive layer with a low transmission loss and a high adhesive strength maintenance rate before and after the wet heat durability test. I know it can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

This layered body has an adhesive layer on at least one surface of a base material or a conductor layer thereof. The adhesive layer is a cured product of an adhesive agent composition containing a polyester-based resin (A), a polyepoxy-based compound (B), and a filler (C). The dielectric loss tangent (Df) (in an environment where the temperature is 23ºC and a relative humidity is 50%RH) at 10 GHz of the adhesive layer is 0.005 or less.

Description

積層体、接着剤組成物及び回路基板材料Laminates, adhesive compositions and circuit board materials
 本発明は、ポリエステル系樹脂を含有する接着剤組成物の硬化物よりなる接着層を有する積層体に関する。詳しくは、本発明は、耐熱性に優れ、低誘電正接であり、湿熱耐久試験前後での接着力の維持率が高い接着層を有する積層体に関する。
 本発明はまた、この積層体を有する回路基板材料に関する。
 本発明はまた、この積層体の接着層に好適な接着剤組成物に関する。
TECHNICAL FIELD The present invention relates to a laminate having an adhesive layer made of a cured adhesive composition containing a polyester resin. More specifically, the present invention relates to a laminate having an adhesive layer that is excellent in heat resistance, has a low dielectric loss tangent, and has a high adhesive strength retention rate before and after a wet heat durability test.
The invention also relates to a circuit board material comprising this laminate.
The present invention also relates to an adhesive composition suitable for the adhesive layer of this laminate.
 ポリエステル系樹脂は、耐熱性、耐薬品性、耐久性、機械的強度に優れているため、フィルムやペットボトル、繊維、トナー、電機部品、接着剤、粘着剤等、幅広い分野で用いられている。
 ポリエステル系樹脂は、そのポリマー構造ゆえに極性が高いので、ポリエステル、ポリ塩化ビニル、ポリイミド、エポキシ樹脂等の極性ポリマー、及び銅、アルミニウム等の金属材料に対して優れた接着性を発現することが知られている。この特性を利用し、ポリエステル系樹脂は、金属とプラスチックの積層体を作製するための接着剤としての使用が検討されている。
Polyester-based resins are excellent in heat resistance, chemical resistance, durability, and mechanical strength, so they are used in a wide range of fields such as films, PET bottles, fibers, toners, electrical parts, adhesives, and adhesives. .
Polyester-based resins are highly polar due to their polymer structure, and are known to exhibit excellent adhesion to polar polymers such as polyester, polyvinyl chloride, polyimide, and epoxy resins, as well as metal materials such as copper and aluminum. It is Utilizing this property, polyester resins are being investigated for use as adhesives for producing laminates of metal and plastic.
 特許文献1には、硬化時の寸法安定性に優れ、硬化後の接着性、耐熱性、屈曲性、電気絶縁性、低誘電率及び低誘電正接に優れる熱硬化性接着シートが提案されている。この熱硬化性接着シートは、有機金属化合物又はエポキシ基含有化合物の少なくともいずれか一方と反応し得る反応性官能基と、ハロゲン以外のヘテロ原子を有する官能基との合計量が0.01mmol/g以上、9mmol/g以下の樹脂(例えばポリエステル系樹脂)、有機金属化合物、及び3官能以上のエポキシ基含有化合物を含む熱硬化性組成物から形成されてなる。 Patent Literature 1 proposes a thermosetting adhesive sheet that is excellent in dimensional stability when cured and excellent in adhesiveness, heat resistance, flexibility, electrical insulation, low dielectric constant and low dielectric loss tangent after curing. . In this thermosetting adhesive sheet, the total amount of the reactive functional group capable of reacting with at least one of the organometallic compound and the epoxy group-containing compound and the functional group having a heteroatom other than halogen is 0.01 mmol/g. It is formed from a thermosetting composition containing 9 mmol/g or less resin (for example, polyester resin), an organometallic compound, and a trifunctional or higher epoxy group-containing compound.
 特許文献2には、耐湿熱性と耐カチオン酸性に優れ、エポキシ樹脂との相溶性、接着性を併せ持った共重合ポリエステル及びそれを含有する接着剤組成物が提案されている。この共重合ポリエステルは、芳香族ジカルボン酸成分と、ダイマージオール、第1のグリコール、第2のグリコール又はオキシ酸、炭素数2~10のアルキレングリコールからなる。 Patent Document 2 proposes a copolyester having excellent wet heat resistance and cationic acid resistance, compatibility with epoxy resins, and adhesiveness, and an adhesive composition containing it. This copolymer polyester comprises an aromatic dicarboxylic acid component, a dimer diol, a first glycol, a second glycol or an oxyacid, and an alkylene glycol having 2 to 10 carbon atoms.
 特許文献3には、湿熱環境下での長期耐久性に優れ、更には高い接着性を有する接着剤組成物として、エステル結合濃度が7ミリモル/g以下、酸価が3mgKOH/g以上、ガラス転移温度(Tg)が-5℃以上、の要件を満足するポリエステル系樹脂(A1)を含有する接着剤組成物が提案されている。 In Patent Document 3, an adhesive composition having excellent long-term durability in a moist heat environment and further having high adhesiveness has an ester bond concentration of 7 mmol / g or less, an acid value of 3 mgKOH / g or more, and a glass transition An adhesive composition containing a polyester resin (A1) satisfying the requirement that the temperature (Tg) is -5°C or higher has been proposed.
特開2017-031301号公報Japanese Patent Application Laid-Open No. 2017-031301 特開2003-183365号公報JP 2003-183365 A 国際公開第2021/079670号WO2021/079670
 近年、フレキシブル銅張積層板やフレキシブルプリント基板等の電子材料分野においては、そこに用いられる接着層に求められる物性として、接着性に優れ、耐熱性、湿熱耐久性に優れることに加え、伝送信号の高周波化に伴い、更なる低誘電率及び低誘電正接といった低誘電特性、特には低誘電正接が強く求められている。
 ところが、耐熱性や湿熱耐久性の向上を目的に樹脂を設計すると、誘電正接が高くなる傾向があり、これらの特性を高いレベルで両立させることは困難であった。
In recent years, in the field of electronic materials such as flexible copper-clad laminates and flexible printed circuit boards, the physical properties required for the adhesive layer used there include excellent adhesiveness, heat resistance, and durability to moisture and heat, as well as transmission signals. Along with the increase in the frequency of the radio frequency, low dielectric properties such as a lower dielectric constant and a lower dielectric loss tangent, especially a low dielectric loss tangent, are strongly desired.
However, when a resin is designed for the purpose of improving heat resistance and wet heat durability, the dielectric loss tangent tends to increase, and it has been difficult to achieve both of these characteristics at a high level.
 例えば、特許文献1の開示技術では、誘電率・誘電正接や吸水率の低下を目的として、長鎖アルキル基を有する多価カルボン酸や多価アルコールを多量に使用しているので、接着性が低下する等の問題があった。また、特許文献1では湿熱環境下での長期耐久性の点については考慮されておらず、更なる改良が求められる。 For example, in the technology disclosed in Patent Document 1, a large amount of polyhydric carboxylic acid or polyhydric alcohol having a long-chain alkyl group is used for the purpose of lowering the dielectric constant, dielectric loss tangent, and water absorption, so adhesion is poor. There were problems such as lowering. Further, Patent Document 1 does not take into consideration the long-term durability in a hot and humid environment, and further improvement is required.
 特許文献2に開示された接着剤組成物を用いて銅張積層板等を作製した場合、湿熱環境下での長期耐久性には比較的優れることが想定される。しかし、当該共重合ポリエステルは、ポリプロピレングリコール等のエーテル結合含有グリコールを共重合成分としている、或いは、エポキシ樹脂との反応点となる酸価が付与されていない。このため、当該共重合ポリエステルは、接着性や耐熱性に劣るといった問題がある。 When a copper-clad laminate or the like is produced using the adhesive composition disclosed in Patent Document 2, it is assumed that the long-term durability in a moist and hot environment is relatively excellent. However, the copolymerized polyester contains an ether bond-containing glycol such as polypropylene glycol as a copolymerization component, or is not given an acid value that serves as a reaction point with the epoxy resin. For this reason, the copolyester has a problem that it is inferior in adhesiveness and heat resistance.
 特許文献3に開示された接着剤組成物は、これらの課題を解決したものであるが、低誘電正接において更なる改善が望まれる。 Although the adhesive composition disclosed in Patent Document 3 has solved these problems, further improvement in low dielectric loss tangent is desired.
 本発明は、耐熱性に優れ、低誘電正接であり、湿熱耐久試験前後での接着力の維持率が高い接着層を形成することができる接着剤組成物と、この接着剤組成物を用いた積層体及び回路基板材料を提供するものである。 The present invention is an adhesive composition that has excellent heat resistance, a low dielectric loss tangent, and can form an adhesive layer having a high adhesive strength maintenance rate before and after a wet heat durability test, and this adhesive composition. Laminates and circuit board materials are provided.
 本発明者は、ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)及びフィラー(C)を含有する接着剤組成物の硬化物の誘電正接(Df)を制御することで、耐熱性に優れ、低伝送損失に寄与し、湿熱耐久試験前後での接着力の維持率が高い積層体が得られることを見出した。 The present inventors have found that by controlling the dielectric loss tangent (Df) of a cured adhesive composition containing a polyester resin (A), a polyepoxy compound (B) and a filler (C), excellent heat resistance can be obtained. , contributed to low transmission loss, and obtained a laminate having a high adhesive force retention rate before and after the wet heat durability test.
 本発明は以下を要旨とする。 The gist of the present invention is as follows.
[1] 基材あるいは導体層の少なくとも一方の面に接着層を有する積層体であって、
 前記接着層が、ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)、及びフィラー(C)を含有する接着剤組成物の硬化物であり、
 前記接着層の10GHzにおける誘電正接(Df)(温度23℃、相対湿度50%RH環境下)が0.005以下である、積層体。
[1] A laminate having an adhesive layer on at least one surface of a substrate or a conductor layer,
The adhesive layer is a cured product of an adhesive composition containing a polyester resin (A), a polyepoxy compound (B), and a filler (C),
A laminate in which the dielectric loss tangent (Df) of the adhesive layer at 10 GHz (at a temperature of 23° C. and a relative humidity of 50% RH) is 0.005 or less.
[2] 前記フィラー(C)がフッ素系ポリマー粉末(C1)及び/または粘土鉱物(C2)を含有する、[1]に記載の積層体。 [2] The laminate according to [1], wherein the filler (C) contains fluoropolymer powder (C1) and/or clay mineral (C2).
[3] 前記接着剤組成物の前記ポリエポキシ系化合物(B)の含有量が、前記ポリエステル系樹脂(A)のカルボキシ基に対する前記ポリエポキシ系化合物(B)のエポキシ当量が0.8以上2未満となる量である、[1]又は[2]に記載の積層体。 [3] The content of the polyepoxy compound (B) in the adhesive composition is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more 2 The laminate according to [1] or [2], which is less than the amount.
[4] 前記ポリエステル系樹脂(A)の酸価が3mgKOH/g以上で、ガラス転移温度が-5℃以上である、[1]~[3]のいずれかに記載の積層体。 [4] The laminate according to any one of [1] to [3], wherein the polyester resin (A) has an acid value of 3 mgKOH/g or higher and a glass transition temperature of -5°C or higher.
[5] 前記ポリエステル系樹脂(A)が、多価カルボン酸類由来の構造単位と多価アルコール類由来の構造単位とを含有する、[1]~[4]のいずれかに記載の積層体。 [5] The laminate according to any one of [1] to [4], wherein the polyester resin (A) contains structural units derived from polycarboxylic acids and structural units derived from polyhydric alcohols.
[6] 前記ポリエステル系樹脂(A)が、前記多価カルボン酸類由来の構造単位として、芳香族多価カルボン酸類由来の構造単位を含有する、[5]に記載の積層体。 [6] The laminate according to [5], wherein the polyester-based resin (A) contains a structural unit derived from an aromatic polycarboxylic acid as the structural unit derived from the polycarboxylic acid.
[7] 前記接着剤組成物の前記フィラー(C)の含有量が、前記ポリエステル系樹脂(A)100重量部に対して1~100重量部である、[1]~[6]のいずれかに記載の積層体。 [7] Any one of [1] to [6], wherein the content of the filler (C) in the adhesive composition is 1 to 100 parts by weight with respect to 100 parts by weight of the polyester resin (A) The laminate according to .
[8] 前記基材が、ポリイミドフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、アラミドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、シリコーン離型処理紙、ポリオレフィン樹脂コート紙、ポリメチルペンテンフィルム、及びフッ素系樹脂フィルムよりなる群から選択される少なくとも1種である、[1]~[7]のいずれかに記載の積層体。 [8] The base material is polyimide film, polyether ether ketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, silicone release treated paper, polyolefin The laminate according to any one of [1] to [7], which is at least one selected from the group consisting of resin-coated paper, polymethylpentene film, and fluorine resin film.
[9] 更に導体を積層してなる、[1]~[8]のいずれかに記載の積層体。 [9] The laminate according to any one of [1] to [8], which is further laminated with a conductor.
[10] [1]~[9]のいずれかに記載の積層体を有する回路基板材料。 [10] A circuit board material having the laminate according to any one of [1] to [9].
[11] ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)、及びフィラー(C)を含有する接着剤組成物であって、
 前記接着剤組成物の硬化物の10GHzにおける誘電正接(Df)(温度23℃、相対湿度50%RH環境下)が0.005以下である、接着剤組成物。
[11] An adhesive composition containing a polyester resin (A), a polyepoxy compound (B), and a filler (C),
An adhesive composition having a dielectric loss tangent (Df) at 10 GHz (at a temperature of 23° C. and a relative humidity of 50% RH) of 0.005 or less for a cured product of the adhesive composition.
[12] 前記フィラー(C)がフッ素系ポリマー粉末(C1)及び/または粘土鉱物(C2)を含有する、[11]に記載の接着剤組成物。 [12] The adhesive composition according to [11], wherein the filler (C) contains fluoropolymer powder (C1) and/or clay mineral (C2).
[13] 前記ポリエポキシ系化合物(B)の含有量が、前記ポリエステル系樹脂(A)のカルボキシ基に対する前記ポリエポキシ系化合物(B)のエポキシ当量が0.8以上2未満となる量である、[11]又は[12]に記載の接着剤組成物 [13] The content of the polyepoxy compound (B) is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more and less than 2. , [11] or the adhesive composition according to [12]
[14] 前記ポリエステル系樹脂(A)の酸価が3mgKOH/g以上で、ガラス転移温度が-5℃以上である、[11]~[13]のいずれかに記載の接着剤組成物。 [14] The adhesive composition according to any one of [11] to [13], wherein the polyester resin (A) has an acid value of 3 mgKOH/g or higher and a glass transition temperature of -5°C or higher.
[15] 前記ポリエステル系樹脂(A)の酸価が5mgKOH/g以上で、ガラス転移温度が-5℃以上である、[14]に記載の接着剤組成物。 [15] The adhesive composition according to [14], wherein the polyester resin (A) has an acid value of 5 mgKOH/g or higher and a glass transition temperature of -5°C or higher.
[16] 前記ポリエステル系樹脂(A)が、多価カルボン酸類由来の構造単位と多価アルコール類由来の構造単位とを含有する、[11]~[15]のいずれかに記載の接着剤組成物。 [16] The adhesive composition according to any one of [11] to [15], wherein the polyester resin (A) contains structural units derived from polycarboxylic acids and structural units derived from polyhydric alcohols. thing.
[17] 前記ポリエステル系樹脂(A)が、前記多価カルボン酸類由来の構造単位として、芳香族多価カルボン酸類由来の構造単位を含有する、[16]に記載の接着剤組成物。 [17] The adhesive composition according to [16], wherein the polyester-based resin (A) contains a structural unit derived from an aromatic polycarboxylic acid as the structural unit derived from the polycarboxylic acid.
[18] 前記フィラー(C)の含有量が、前記ポリエステル系樹脂(A)100重量部に対して1~100重量部である、[11]~[17]のいずれかに記載の接着剤組成物。 [18] The adhesive composition according to any one of [11] to [17], wherein the content of the filler (C) is 1 to 100 parts by weight with respect to 100 parts by weight of the polyester resin (A). thing.
 本発明の積層体の接着層は、耐熱性に優れ、低伝送損失に寄与するものであり、湿熱耐久試験前後での接着力の維持率が高いものである。
 また、本発明の接着剤組成物によれば、耐熱性に優れ、低伝送損失に寄与し、湿熱耐久試験前後での接着力の維持率が高い接着層を形成することができる。
The adhesive layer of the laminate of the present invention has excellent heat resistance, contributes to low transmission loss, and maintains a high adhesive strength before and after the wet heat durability test.
Moreover, according to the adhesive composition of the present invention, it is possible to form an adhesive layer which is excellent in heat resistance, contributes to low transmission loss, and has a high rate of maintaining adhesive strength before and after the wet heat durability test.
 本発明の積層体は、とりわけ金属とプラスチックとを接着層で接着一体化してなる積層体、例えば、フレキシブル銅張積層板やフレキシブルプリント基板等のフレキシブル積層板、カバーレイ、ボンディングシート等として好適であり、なかでもフレキシブルプリント配線板等の回路基板材料としてより好適に用いられる。かかる回路基板材料は、湿熱環境下での長期耐久性に優れた信頼性の高いものとなる。 The laminate of the present invention is particularly suitable as a laminate obtained by bonding and integrating metal and plastic with an adhesive layer, for example, flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards, coverlays, bonding sheets, and the like. Among them, it is more preferably used as a circuit board material such as a flexible printed wiring board. Such a circuit board material has excellent long-term durability and high reliability in a hot and humid environment.
 以下、本発明の構成につき詳細に説明する。以下の説明は、本発明の望ましい実施態様の一例を示すものである。 The configuration of the present invention will be described in detail below. The following description provides an example of a preferred embodiment of the invention.
 本発明において、化合物名の後に付された「類」は当該化合物に加え、当該化合物の誘導体をも包括する概念である。例えば、「カルボン酸類」との用語は、カルボン酸に加え、カルボン酸塩、カルボン酸無水物、カルボン酸ハロゲン化物、カルボン酸エステル等のカルボン酸誘導体も含むものである。 In the present invention, the "class" attached after the compound name is a concept that includes not only the compound but also derivatives of the compound. For example, the term "carboxylic acids" includes carboxylic acids as well as carboxylic acid derivatives such as carboxylic acid salts, carboxylic acid anhydrides, carboxylic acid halides, and carboxylic acid esters.
〔接着剤組成物〕
 本発明の接着剤組成物は、ポリエステル系樹脂(A)、エポキシ化合物(B)及びフィラー(C)を含有し、その硬化物が特定の誘電正接(Df)を示すものである。
[Adhesive composition]
The adhesive composition of the present invention contains a polyester resin (A), an epoxy compound (B) and a filler (C), and its cured product exhibits a specific dielectric loss tangent (Df).
[ポリエステル系樹脂(A)]
 ポリエステル系樹脂(A)は、多価カルボン酸類由来の構造単位と多価アルコール類由来の構造単位を分子中に含むものが好ましく、特に好ましくは、多価カルボン酸類と多価アルコール類とをエステル結合させて得られるものである。
[Polyester resin (A)]
The polyester-based resin (A) preferably contains a structural unit derived from a polycarboxylic acid and a structural unit derived from a polyhydric alcohol in the molecule, and particularly preferably, an ester of a polyhydric carboxylic acid and a polyhydric alcohol. It is obtained by combining.
<多価カルボン酸類>
 多価カルボン酸類における多価カルボン酸としては、例えば、後述する芳香族多価カルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸とその酸無水物等の脂環族多価カルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族多価カルボン酸を挙げることができる。多価カルボン酸類は1種又は2種以上を用いることができる。
<Polyvalent carboxylic acids>
Polyvalent carboxylic acids in polyvalent carboxylic acids include, for example, aromatic polyvalent carboxylic acids described later; 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and acid anhydrides thereof alicyclic polyvalent carboxylic acids such as polycarboxylic acids; and aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedioic acid. 1 type(s) or 2 or more types can be used for polyhydric carboxylic acid.
 多価カルボン酸類としては、芳香族多価カルボン酸類を含有することが好ましい。芳香族多価カルボン酸類としては、例えば、テレフタル酸、イソフタル酸、テレフタル酸ジメチル、イソフタル酸ジメチル、オルソフタル酸等の単環式芳香族多価カルボン酸類;ビフェニルジカルボン酸、ナフタレンジカルボン酸、ナフタレンジカルボン酸ジメチル等の多環式芳香族多価カルボン酸類;多環式芳香族多価カルボン酸類の中では、ナフタレンジカルボン酸、ナフタレンジカルボン酸ジメチル等の縮合多環式芳香族多価カルボン酸類や、これらの誘導体(芳香族ジカルボン酸類)が挙げられる。また、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族オキシカルボン酸類等を挙げることができる。 The polyvalent carboxylic acid preferably contains an aromatic polyvalent carboxylic acid. Examples of aromatic polycarboxylic acids include monocyclic aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, dimethyl terephthalate, dimethyl isophthalate, and orthophthalic acid; biphenyldicarboxylic acid, naphthalenedicarboxylic acid, and naphthalenedicarboxylic acid; Polycyclic aromatic polycarboxylic acids such as dimethyl; Among polycyclic aromatic polycarboxylic acids, naphthalenedicarboxylic acid, condensed polycyclic aromatic polycarboxylic acids such as dimethyl naphthalenedicarboxylate, and these Derivatives (aromatic dicarboxylic acids) can be mentioned. Aromatic oxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are also included.
 更に、ポリエステル系樹脂(A)に分岐骨格や酸価を付与する目的で導入される3官能以上の芳香族カルボン酸類も上記の芳香族多価カルボン酸類に含まれる。
 3官能以上の芳香族カルボン酸類としては、例えば、トリメリット酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、トリメリット酸無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物等が挙げられる。
Further, trifunctional or higher functional aromatic carboxylic acids introduced for the purpose of imparting a branched skeleton and acid value to the polyester resin (A) are also included in the above aromatic polyvalent carboxylic acids.
Examples of tri- or higher functional aromatic carboxylic acids include trimellitic acid, trimesic acid, ethylene glycol bis(anhydrotrimellitate), glycerol tris(anhydrotrimellitate), trimellitic anhydride, and pyromellitic acid. dianhydride, oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3,3′ ,4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride etc.
 上記多価カルボン酸類のうちでも誘電特性の観点から、多環式芳香族多価カルボン酸類が好ましく、中でも縮合多環式芳香族多価カルボン酸類が特に好ましい。縮合多環式芳香族多価カルボン酸類の中でも、ナフタレンジカルボン酸ジメチルが特に好ましい。
 単環式芳香族多価カルボン酸類の中ではテレフタル酸、テレフタル酸ジメチル、イソフタル酸、イソフタル酸ジメチルが好ましい。
 結晶性を下げて溶剤溶解後の安定性を確保するためには、複数種の多価カルボン酸類を使用することが好ましい。
Among the above polycarboxylic acids, polycyclic aromatic polycarboxylic acids are preferred from the viewpoint of dielectric properties, and condensed polycyclic aromatic polycarboxylic acids are particularly preferred. Among the condensed polycyclic aromatic polycarboxylic acids, dimethyl naphthalenedicarboxylate is particularly preferred.
Among the monocyclic aromatic polycarboxylic acids, terephthalic acid, dimethyl terephthalate, isophthalic acid and dimethyl isophthalate are preferred.
In order to reduce crystallinity and ensure stability after dissolution in a solvent, it is preferable to use a plurality of types of polyvalent carboxylic acids.
 多価カルボン酸類全体に対する芳香族多価カルボン酸類の含有量は、25モル%以上であることが好ましく、より好ましくは40モル%以上、更に好ましくは70モル%以上、特に好ましくは90モル%以上である。芳香族多価カルボン酸類が100モル%を占めてもよい。芳香族カルボン酸類の含有量が少なすぎると、湿熱環境下での長期耐久性が不充分となったり、低誘電正接に関して劣る傾向がある。 The content of the aromatic polycarboxylic acid relative to the total polycarboxylic acid is preferably 25 mol% or more, more preferably 40 mol% or more, still more preferably 70 mol% or more, and particularly preferably 90 mol% or more. is. Aromatic polycarboxylic acids may occupy 100 mol %. If the content of the aromatic carboxylic acid is too low, the long-term durability in a moist and hot environment tends to be insufficient, and the low dielectric loss tangent tends to be poor.
 多価カルボン酸類全体に対する芳香族多価カルボン酸類の含有量(モル比)は下記式から求められる。
 芳香族多価カルボン酸類含有量(モル%)
 =(芳香族多価カルボン酸類(モル)/多価カルボン酸類(モル))×100
The content (molar ratio) of the aromatic polycarboxylic acid relative to the total polycarboxylic acid is obtained from the following formula.
Aromatic polycarboxylic acid content (mol%)
= (aromatic polycarboxylic acids (mol)/polycarboxylic acids (mol)) x 100
 ポリエステル系樹脂(A)全体に対する芳香族多価カルボン酸類由来の構造単位の含有量は15~70重量%であることが好ましく、より好ましくは20~65重量%、更に好ましくは25~60重量%、特に好ましくは30~55重量%である。芳香族多価カルボン酸類由来の構造単位の含有量が少なすぎると、初期接着性が不充分となったり、低誘電正接に関して劣る傾向がある。芳香族多価カルボン酸類由来の構造単位の含有量が多すぎると初期接着性が不充分となる傾向がある。 The content of structural units derived from aromatic polycarboxylic acids relative to the entire polyester resin (A) is preferably 15 to 70% by weight, more preferably 20 to 65% by weight, and still more preferably 25 to 60% by weight. , particularly preferably 30 to 55% by weight. If the content of the structural unit derived from the aromatic polycarboxylic acid is too small, the initial adhesiveness tends to be insufficient and the low dielectric loss tangent tends to be poor. If the content of structural units derived from aromatic polycarboxylic acids is too high, the initial adhesiveness tends to be insufficient.
 多価カルボン酸類は、酸無水物基数が0又は1である3価以上の多価カルボン酸類も含有することが好ましい。かかる多価カルボン酸類におけるカルボキシ基の価数は、好ましくは3~6価であり、より好ましくは3~4価である。かかる多価カルボン酸類としては、例えば、上記の3官能以上の芳香族多価カルボン酸類のうち酸無水物基数が0又は1であるものが挙げられる。例えば、トリメリット酸無水物、トリメリット酸、トリメシン酸等が挙げられる。これらのなかでも、酸無水物基数が1であるものが好ましく、トリメリット酸無水物が特に好ましい。
 酸無水物基数が0又は1である3価以上の多価カルボン酸類のうち芳香族多価カルボン酸類以外のものとしては、例えば、水添トリメリット酸無水物等が挙げられる。
Polyvalent carboxylic acids preferably also contain trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups. The valence of the carboxy group in such polyvalent carboxylic acids is preferably 3-6 valence, more preferably 3-4 valence. Examples of such polyvalent carboxylic acids include those having 0 or 1 acid anhydride group among the above trifunctional or higher aromatic polyvalent carboxylic acids. Examples include trimellitic anhydride, trimellitic acid, and trimesic acid. Among these, those having one acid anhydride group are preferred, and trimellitic anhydride is particularly preferred.
Examples of trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups other than aromatic polyvalent carboxylic acids include hydrogenated trimellitic anhydride.
 ポリエステル系樹脂(A)の吸湿性の点から、スルホテレフタル酸、5-スルホイソフタル酸、4-スルホフタル酸、4-スルホナフタレン-2,7-ジカルボン酸、5(4-スルホフェノキシ)イソフタル酸等のスルホン酸基を有する芳香族ジカルボン酸、及びそれらの金属塩やアンモニウム塩等のスルホン酸塩基を有する芳香族ジカルボン酸塩の多価カルボン酸類全体に対する含有量は、10モル%以下であることが好ましく、より好ましくは5モル%以下、更に好ましくは3モル%以下、特に好ましくは1モル%以下であり、最も好ましくは0モル%である。 From the viewpoint of hygroscopicity of the polyester resin (A), sulfoterephthalic acid, 5-sulfoisophthalic acid, 4-sulfophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5(4-sulfophenoxy)isophthalic acid, etc. The content of aromatic dicarboxylic acids having a sulfonic acid group, and aromatic dicarboxylic acid salts having sulfonic acid groups such as metal salts and ammonium salts thereof, relative to the total polycarboxylic acids is 10 mol% or less. It is preferably 5 mol % or less, still more preferably 3 mol % or less, particularly preferably 1 mol % or less, and most preferably 0 mol %.
<多価アルコール類>
 多価アルコール類としては、例えば、ダイマージオール類、ビスフェノール骨格含有モノマー、脂肪族多価アルコール、脂環族多価アルコール、芳香族多価アルコールが挙げられる。多価アルコール類は1種又は2種以上を用いることができる。
<Polyhydric alcohols>
Examples of polyhydric alcohols include dimer diols, bisphenol skeleton-containing monomers, aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, and aromatic polyhydric alcohols. One or two or more polyhydric alcohols can be used.
 本発明において、ポリエステル系樹脂(A)を構成する化合物は、多価アルコール類としてダイマージオール類を含有することが好ましい。
 ダイマージオール類としては、例えば、オレイン酸、リノール酸、リノレン酸、エルカ酸等から誘導されるダイマー酸類(炭素数36~44のものを主とする)の還元体であるダイマージオール類、及びそれらの水素添加物等が挙げられる。なかでもポリエステル系樹脂(A)の製造時におけるゲル化抑制の点から、水素添加物が好ましい。
In the present invention, the compound constituting the polyester resin (A) preferably contains dimer diols as polyhydric alcohols.
The dimer diols include, for example, dimer diols which are reductants of dimer acids (mainly those having 36 to 44 carbon atoms) derived from oleic acid, linoleic acid, linolenic acid, erucic acid, etc. and the like. Among them, hydrogenated products are preferable from the viewpoint of suppressing gelation during the production of the polyester-based resin (A).
 多価アルコール類全体に対するダイマージオールの含有量は、2~80モル%であることが好ましく、より好ましくは5~70モル%、更に好ましくは7~65モル%、特に好ましくは10~60モル%である。ダイマージオール類の含有量が少なすぎると低吸湿性や誘電特性に劣る傾向がある。ダイマージオール類の含有量が多すぎると初期接着性が不充分となる傾向がある。 The dimer diol content relative to the total polyhydric alcohols is preferably 2 to 80 mol%, more preferably 5 to 70 mol%, still more preferably 7 to 65 mol%, particularly preferably 10 to 60 mol%. is. If the content of dimer diols is too low, the hygroscopicity and dielectric properties tend to be poor. If the content of dimer diols is too high, the initial adhesiveness tends to be insufficient.
 ポリエステル系樹脂(A)全体に対するダイマージオール類由来の構造単位の含有量は5~70重量%であることが好ましく、より好ましくは10~60重量%、更に好ましくは12~55重量%、特に好ましくは15~50重量%である。ダイマージオール類由来の構造単位の含有量が少なすぎると、低吸湿性や誘電特性に劣る傾向がある。ダイマージオール類由来の構造単位の含有量が多すぎると初期接着性が不充分となる傾向がある。 The content of structural units derived from dimer diols is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, still more preferably 12 to 55% by weight, and particularly preferably 12 to 55% by weight, based on the entire polyester resin (A). is 15 to 50% by weight. If the content of structural units derived from dimer diols is too small, the resulting composition tends to have low hygroscopicity and poor dielectric properties. If the content of structural units derived from dimer diols is too high, initial adhesion tends to be insufficient.
 ビスフェノール骨格含有モノマーとしては、例えば、ビスフェノールA、ビスフェノールB、ビスフェノールE、ビスフェノールF、ビスフェノールAP、ビスフェノールBP、ビスフェノールP、ビスフェノールPH、ビスフェノールS、ビスフェノールZ、4,4’-ジヒドロキシベンゾフェノン、ビスフェノールフルオレン、ビスフェニルフェノールフルオレンやそれらの水添物、及びビスフェノール類の水酸基にエチレンオキサイド又はプロピレンオキサイドを1~数モル付加して得られるエチレンオキサイド付加物等やプロピレンオキサイド付加物等のグリコール類等が挙げられる。なかでも低誘電特性の点からは縮合多環式芳香族骨格を有するビスフェノールフルオレンやビスフェニルフェノールフルオレンが好ましく、反応性の点からはエチレンオキサイド付加物が好ましい。特に耐熱性や低吸湿性、湿熱環境下での長期耐久性の点からエチレンオキサイド2~3モル付加物が好ましく、最も好ましくはビスフェノキシエタノールフルオレン、ビスフェニルフェノキシエタノールフルオレンである。 Examples of bisphenol skeleton-containing monomers include bisphenol A, bisphenol B, bisphenol E, bisphenol F, bisphenol AP, bisphenol BP, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, 4,4′-dihydroxybenzophenone, bisphenol fluorene, Examples include bisphenylphenol fluorenes, hydrogenated products thereof, and glycols such as ethylene oxide adducts and propylene oxide adducts obtained by adding 1 to several moles of ethylene oxide or propylene oxide to the hydroxyl group of bisphenols. . Among them, bisphenolfluorene and bisphenylphenolfluorene having a condensed polycyclic aromatic skeleton are preferred from the viewpoint of low dielectric properties, and ethylene oxide adducts are preferred from the viewpoint of reactivity. In particular, from the viewpoint of heat resistance, low hygroscopicity, and long-term durability in a moist heat environment, adducts of 2 to 3 mol of ethylene oxide are preferred, and bisphenoxyethanol fluorene and bisphenylphenoxyethanol fluorene are most preferred.
 脂肪族多価アルコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオール等を挙げることができる。なかでも、誘電特性の観点から炭素数5以下のものを用いることが好ましい。 Examples of aliphatic polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, and 1,5-pentane. diol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, dimethylolheptane, 2,2,4 -trimethyl-1,3-pentanediol and the like. Among them, it is preferable to use one having 5 or less carbon atoms from the viewpoint of dielectric properties.
 脂環族多価アルコールとしては、例えば、1,4-シクロヘキサンジオ-ル、1,4-シクロヘキサンジメタノール、トリシクロデカンジオール、トリシクロデカンジメタノール、スピログリコール等を挙げることができる。なかでも、低誘電特性の観点から多環式のものが好ましく、より好ましくはトリシクロデカンジメタノールである。 Examples of alicyclic polyhydric alcohols include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, tricyclodecanediol, tricyclodecanedimethanol, and spiroglycol. Among these, polycyclic compounds are preferred from the viewpoint of low dielectric properties, and tricyclodecanedimethanol is more preferred.
 芳香族多価アルコールとしては、例えば、パラキシレングリコール、メタキシレングリコール、オルトキシレングリコール、1,4-フェニレングリコール、1,4-フェニレングリコ-ルのエチレンオキサイド付加物等を挙げることができる。 Examples of aromatic polyhydric alcohols include para-xylene glycol, meta-xylene glycol, ortho-xylene glycol, 1,4-phenylene glycol, and ethylene oxide adducts of 1,4-phenylene glycol.
 上記多価アルコール類の中でも、溶剤溶解性及び溶液安定性の観点から、側鎖を有する多価アルコールを用いることが好ましい。側鎖を有する多価アルコールとしては、例えば、ビスフェノールA、ビスフェノールB、ビスフェノールE、ビスフェノールAP、ビスフェノールBP、ビスフェノールP、ビスフェノールPH、ビスフェノールS、ビスフェノールZ、ビスフェノールフルオレン、ビスフェニルフェノールフルオレンやそれらの水添物、及びビスフェノール類の水酸基にエチレンオキサイド又はプロピレンオキサイドを1~数モル付加して得られるエチレンオキサイド付加物等やプロピレンオキサイド付加物等の側鎖を有するビスフェノール骨格含有モノマー、1,2-プロピレングリコール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-エチル-2-ブチルプロパンジオール、ジメチロールヘプタン、2,2,4-トリメチル-1,3-ペンタンジオール等の側鎖を有する脂肪族多価アルコール、トリシクロデカンジオール、トリシクロデカンジメタノール、スピログリコール等の側鎖を有する脂環族多価アルコールを挙げることができる。 Among the above polyhydric alcohols, it is preferable to use polyhydric alcohols having side chains from the viewpoint of solvent solubility and solution stability. Examples of polyhydric alcohols having side chains include bisphenol A, bisphenol B, bisphenol E, bisphenol AP, bisphenol BP, bisphenol P, bisphenol PH, bisphenol S, bisphenol Z, bisphenol fluorene, bisphenylphenol fluorene, and their water Additives, ethylene oxide or propylene oxide adducts obtained by adding 1 to several moles of ethylene oxide or propylene oxide to hydroxyl groups of bisphenols, bisphenol skeleton-containing monomers having side chains such as propylene oxide adducts, 1,2-propylene glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-2-butylpropanediol, dimethylolheptane, 2,2,4-trimethyl- Aliphatic polyhydric alcohols having side chains such as 1,3-pentanediol, and alicyclic polyhydric alcohols having side chains such as tricyclodecanediol, tricyclodecanedimethanol and spiroglycol can be mentioned.
 側鎖を有する多価アルコールの含有量としては、多価アルコール類全体に対して、10モル%以上であることが好ましく、より好ましくは20モル%以上、更に好ましくは30モル%以上であり、上限は95モル%である。
 側鎖を有する多価アルコール由来の構造単位の含有量は、ポリエステル系樹脂(A)全体に対して、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上であり、上限は50重量%である。
 側鎖を有する多価アルコールの含有量が少なすぎると、溶剤溶解性及び得られるポリエステル系樹脂(A)溶液の溶液安定性が低下する傾向がある。
The content of the polyhydric alcohol having a side chain is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more, relative to the total polyhydric alcohols, The upper limit is 95 mol%.
The content of the structural unit derived from a polyhydric alcohol having a side chain is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 15% by weight or more, relative to the entire polyester resin (A). Yes, the upper limit is 50% by weight.
If the content of the polyhydric alcohol having a side chain is too small, the solubility in the solvent and the solution stability of the obtained polyester resin (A) solution tend to decrease.
 ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、更に、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のビスフェノール骨格含有モノマー以外のエ-テル結合含有グリコ-ル由来の構造単位の含有量は、耐熱性や低吸湿性、湿熱環境下での長期耐久性の観点から、ポリエステル系樹脂(A)全体に対して20重量%以下であることが好ましく、より好ましくは15重量%以下、更に好ましくは10重量%以下、特に好ましくは8重量%以下であり、最も好ましくは5重量%以下である。 The content of structural units derived from ether bond-containing glycols other than bisphenol skeleton-containing monomers such as diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. From the viewpoint of low hygroscopicity and long-term durability in a moist and heat environment, it is preferably 20% by weight or less, more preferably 15% by weight or less, and still more preferably 10% by weight with respect to the entire polyester resin (A). Below, it is particularly preferably 8% by weight or less, and most preferably 5% by weight or less.
 ポリエステル系樹脂(A)には、後述する多価カルボン酸無水物とは別に、必要に応じて分岐骨格を導入する目的で、3官能以上の多価カルボン酸類、及び3官能以上の多価アルコール類からなる群から選ばれる少なくとも一つを共重合してもよい。後述のポリエポキシ系化合物(B)と反応させて硬化物を得る場合、分岐骨格を導入することによって、樹脂の末端基濃度(反応点)が増え、架橋密度が高い、高強度な硬化物を得ることができる。 In the polyester resin (A), in addition to the polyvalent carboxylic acid anhydride to be described later, for the purpose of introducing a branched skeleton as necessary, a tri- or more functional polycarboxylic acid and a tri- or more functional polyhydric alcohol At least one selected from the group consisting of the following may be copolymerized. When a cured product is obtained by reacting with the polyepoxy compound (B) described below, the introduction of a branched skeleton increases the terminal group concentration (reaction point) of the resin, resulting in a cured product with high crosslink density and high strength. Obtainable.
 その場合の3官能以上の多価カルボン酸類としては、例えば、トリメリット酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、トリメリット酸無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物等の化合物等が挙げられる。3官能以上の多価アルコール類としては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 3官能以上の多価カルボン酸類及び3官能以上の多価アルコール類は、それぞれ1種又は2種以上を用いることができる。
In that case, trifunctional or higher polyvalent carboxylic acids include, for example, trimellitic acid, trimesic acid, ethylene glycol bis(anhydrotrimellitate), glycerol tris(anhydrotrimellitate), trimellitic anhydride, pyromellitic dianhydride, oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3 ,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2′-bis[(dicarboxyphenoxy)phenyl]propane Examples include compounds such as dianhydrides. Examples of tri- or higher functional polyhydric alcohols include glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol.
Tri- or more functional polycarboxylic acids and tri- or more functional polyhydric alcohols may be used alone or in combination of two or more.
 3官能以上の多価カルボン酸類、及び3官能以上の多価アルコール類からなる群から選ばれる少なくとも一つを、後述する多価カルボン酸無水物とは別に使用する場合は、多価カルボン酸類全体に対する3官能以上の多価カルボン酸類の含有量、又は多価アルコール類全体に対する3官能以上の多価アルコール類の含有量は、それぞれ好ましくは0.1~5モル%、より好ましくは0.1~3モル%の範囲である。両方又はいずれか一方の含有量が多すぎると、接着剤組成物により形成された接着層の破断点伸度等の力学物性が低下する傾向があり、また重合中にゲル化を起こす傾向もある。 When using at least one selected from the group consisting of trifunctional or higher polycarboxylic acids and trifunctional or higher polyhydric alcohols separately from the polycarboxylic anhydride described later, the entire polycarboxylic acid The content of trifunctional or higher polyhydric carboxylic acids, or the content of trifunctional or higher polyhydric alcohols with respect to the total polyhydric alcohols, is preferably 0.1 to 5 mol%, more preferably 0.1 It is in the range of ~3 mol%. If the content of either or both is too high, the adhesive layer formed from the adhesive composition tends to have reduced mechanical properties such as elongation at break, and gelation tends to occur during polymerization. .
<ポリエステル系樹脂(A)の製造>
 ポリエステル系樹脂(A)は周知の方法により製造することができる。例えば、多価カルボン酸類と多価アルコール類とを、必要に応じて触媒の存在下で、エステル化反応に付してポリエステル系樹脂を得て、更に酸価を導入することにより製造することができる。
<Production of polyester resin (A)>
Polyester-based resin (A) can be produced by a well-known method. For example, a polyhydric carboxylic acid and a polyhydric alcohol may be produced by subjecting them to an esterification reaction in the presence of a catalyst, if necessary, to obtain a polyester resin, and then introducing an acid value. can.
 ポリエステル系樹脂に酸価を導入する方法としては、例えば、エステル化反応後や減圧重縮合後に酸付加によってカルボン酸を樹脂に導入する方法が挙げられる。酸付加にモノカルボン酸、ジカルボン酸、多官能カルボン酸化合物を用いると、エステル交換により分子量の低下が起こる可能性があり、カルボン酸無水物を少なくとも一つもった化合物を用いることが好ましい。上記カルボン酸無水物としては、例えば、無水コハク酸、無水マレイン酸、オルソフタル酸無水物、2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸、トリメリット酸無水物、ピロメリット酸二無水物、オキシジフタル酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'-ジフェニルテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、4,4'-(ヘキサフロロイソプロピリデン)ジフタル酸二無水物、2,2'-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物等の化合物等が挙げられる。  As a method of introducing an acid value into a polyester resin, for example, a method of introducing a carboxylic acid into the resin by acid addition after an esterification reaction or after reduced pressure polycondensation can be mentioned. When a monocarboxylic acid, dicarboxylic acid, or polyfunctional carboxylic acid compound is used for acid addition, the molecular weight may decrease due to transesterification, so it is preferable to use a compound having at least one carboxylic acid anhydride. Examples of the carboxylic anhydride include succinic anhydride, maleic anhydride, orthophthalic anhydride, 2,5-norbornene dicarboxylic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, and pyromellitic dianhydride. , oxydiphthalic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-diphenyltetracarboxylic dianhydride, 3,3′,4, Compounds such as 4'-diphenylsulfonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride, 2,2'-bis[(dicarboxyphenoxy)phenyl]propane dianhydride etc.
 ポリエステル系樹脂を構成する全多価カルボン酸類由来の構造単位を100モル%としたとき、15モル%以上の酸付加を行うと、ゲル化を起こすことがある。酸付加の方法としては、バルク状態で直接付加する方法と、ポリエステル系樹脂を溶液化し付加する方法が挙げられる。バルク状態での反応は、速度が速いが、多量に付加するとゲル化が起こることがあり、かつ高温での反応になるので、酸素ガスを遮断し酸化を防ぐ等の注意が必要である。一方、溶液状態での付加は、反応は遅いが、多量のカルボキシ基を安定に導入することができる。 When the total structural units derived from polyvalent carboxylic acids constituting the polyester resin are taken as 100 mol %, if 15 mol % or more of acid addition is performed, gelation may occur. Methods of acid addition include a method of direct addition in a bulk state and a method of dissolving and adding a polyester resin. The reaction in the bulk state is fast, but if a large amount is added, gelation may occur and the reaction will be at a high temperature, so it is necessary to take precautions such as blocking oxygen gas to prevent oxidation. On the other hand, addition in a solution state is slow in reaction, but can stably introduce a large amount of carboxyl groups.
 側鎖にカルボキシ基を有するポリエステル系樹脂を得るに際しては、多価カルボン酸無水物を除く多価カルボン酸類と多価アルコール類とを共重合して得られる水酸基含有プレポリマーに、多価カルボン酸無水物を反応させる方法が生産性の点で好ましい。 When obtaining a polyester resin having a carboxyl group in the side chain, a polycarboxylic acid is added to a hydroxyl group-containing prepolymer obtained by copolymerizing a polycarboxylic acid other than a polycarboxylic anhydride and a polyhydric alcohol. A method of reacting an anhydride is preferable in terms of productivity.
 ポリエステル系樹脂(A)は、また、別の周知の方法、例えば、多価カルボン酸類と多価アルコール類とを、必要に応じて触媒の存在下で、エステル化反応に付してプレポリマーを得た後、重縮合を行い、更に解重合を行うことにより製造することができる。 The polyester-based resin (A) can also be obtained by another well-known method, for example, by subjecting polyhydric carboxylic acids and polyhydric alcohols to an esterification reaction, optionally in the presence of a catalyst, to obtain a prepolymer. After obtaining, it can be produced by polycondensing and further depolymerizing.
 多価カルボン酸類と多価アルコール類とのエステル化反応における温度は、通常180~280℃であり、反応時間は通常60分~8時間である。 The temperature in the esterification reaction between polyhydric carboxylic acids and polyhydric alcohols is usually 180-280°C, and the reaction time is usually 60 minutes-8 hours.
 重縮合における温度は、通常220~280℃であり、反応時間は通常20分~4時間である。重縮合は減圧下で行うことが好ましい。 The temperature in the polycondensation is usually 220-280°C, and the reaction time is usually 20 minutes-4 hours. Polycondensation is preferably carried out under reduced pressure.
 解重合は、酸無水物基数が0又は1である3価以上の多価カルボン酸類を用いることが初期接着性の点から好ましい。酸無水物基数が0又は1である3価以上の多価カルボン酸類としては、例えば、トリメリット酸、トリメリット酸無水物、水添トリメリット酸無水物、トリメシン酸等の化合物が挙げられる。好ましくは、分子量低下を抑制できる点から酸無水物基数が1である3価以上の多価カルボン酸類であり、例えば、トリメリット酸無水物、水添トリメリット酸無水物等が挙げられる。特には低誘電正接の点からトリメリット酸無水物が好ましい。
 解重合における温度は、通常200~260℃であり、反応時間は通常10分~3時間である。
For depolymerization, it is preferable to use trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups from the viewpoint of initial adhesiveness. Examples of trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups include compounds such as trimellitic acid, trimellitic anhydride, hydrogenated trimellitic anhydride and trimesic acid. Polyvalent carboxylic acids having a valence of 3 or more and having one acid anhydride group are preferred from the viewpoint of suppressing a decrease in molecular weight, and examples thereof include trimellitic anhydride and hydrogenated trimellitic anhydride. Trimellitic anhydride is particularly preferred from the viewpoint of low dielectric loss tangent.
The temperature in the depolymerization is usually 200-260° C., and the reaction time is usually 10 minutes-3 hours.
 ポリエステル系樹脂を構成する全多価カルボン酸類由来の構造単位を100モル%としたとき、酸無水物基数が0又は1である3価以上の多価カルボン酸類を20モル%を超えて用いて解重合を行うと、樹脂の分子量が大きく低下することがある。したがって、ポリエステル系樹脂を構成する全多価カルボン酸類由来の構造単位を100モル%としたとき、酸無水物基数が0又は1である3価以上の多価カルボン酸類を20モル%以下用いて解重合を行うことが好ましく、より好ましくは1~15モル%、更に好ましくは2~10モル%、特に好ましくは3~9モル%を用いて解重合を行う。 When the structural units derived from all polyvalent carboxylic acids constituting the polyester-based resin are 100 mol%, more than 20 mol% of trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups are used. Depolymerization can significantly reduce the molecular weight of the resin. Therefore, when the structural units derived from all polyvalent carboxylic acids constituting the polyester resin are 100 mol%, 20 mol% or less of trivalent or higher polyvalent carboxylic acids having 0 or 1 acid anhydride groups are used. Depolymerization is preferably carried out, more preferably 1 to 15 mol %, still more preferably 2 to 10 mol %, particularly preferably 3 to 9 mol %.
<ポリエステル系樹脂(A)のエステル結合濃度>
 ポリエステル系樹脂(A)のエステル結合濃度は、好ましくは10ミリモル/g以下であり、より好ましくは1~9ミリモル/g、更に好ましくは2~8.5ミリモル/g、特に好ましくは2.5~8ミリモル/g、とりわけ好ましくは3~7.5ミリモル/gである。
 エステル結合濃度が高すぎると、低吸湿性や湿熱環境下での長期耐久性が不充分となる。エステル結合濃度が低すぎると、初期接着性が不充分となる。
<Ester bond concentration of polyester resin (A)>
The ester bond concentration of the polyester resin (A) is preferably 10 mmol/g or less, more preferably 1 to 9 mmol/g, still more preferably 2 to 8.5 mmol/g, particularly preferably 2.5 ~8 mmol/g, particularly preferably 3 to 7.5 mmol/g.
If the ester bond concentration is too high, low hygroscopicity and long-term durability in a moist and heat environment will be insufficient. If the ester bond concentration is too low, the initial adhesion will be insufficient.
 エステル結合濃度の定義や測定方法については以下のとおりである。
 エステル結合濃度(ミリモル/g)とは、ポリエステル系樹脂1g中のエステル結合のモル数のことであり、例えば、仕込み量からの計算値で求められる。かかる計算方法は、多価カルボン酸類と多価アルコール類の各仕込み量のうち、より少ない方のモル数を樹脂全体重量で割った値であり、計算式の例を以下に示す。
 多価カルボン酸類と多価アルコール類の各仕込み量が同モル量の場合には、下記のどちらの計算式を用いてもよい。
 モノマーとして、カルボキシ基と水酸基を両方有するものを使用したり、カプロラクトン等からポリエステルを製造したりする場合等は、計算方法を適宜変えることとなる。
The definition and measuring method of the ester bond concentration are as follows.
The ester bond concentration (mmol/g) is the number of moles of ester bonds in 1 g of the polyester-based resin, and is obtained, for example, by a calculated value from the charged amount. This calculation method is a value obtained by dividing the number of moles of the smaller of the charged amounts of the polyhydric carboxylic acid and the polyhydric alcohol by the total weight of the resin, and an example of the calculation formula is shown below.
When the polyhydric carboxylic acid and the polyhydric alcohol are charged in the same molar amount, either of the following formulas may be used.
If a monomer having both a carboxy group and a hydroxyl group is used, or if a polyester is produced from caprolactone or the like, the calculation method will be changed as appropriate.
(多価カルボン酸類が多価アルコール類よりも少ない場合)
 エステル結合濃度(ミリモル/g)
 =〔(A1/a1×m1+A2/a2×m2+A3/a3×m3……)/Z〕×1000
 A:多価カルボン酸類の仕込み量(g)
 a:多価カルボン酸類の分子量
 m:多価カルボン酸類の1分子あたりのカルボン酸基の数
 Z:出来上がり重量(g)
(When polyhydric carboxylic acids are less than polyhydric alcohols)
Ester bond concentration (mmol/g)
=[(A1/a1×m1+A2/a2×m2+A3/a3×m3……)/Z]×1000
A: Charge amount (g) of polyvalent carboxylic acid
a: molecular weight of polyvalent carboxylic acid m: number of carboxylic acid groups per molecule of polyvalent carboxylic acid Z: finished weight (g)
(多価アルコール類が多価カルボン酸類よりも少ない場合)
 エステル結合濃度(ミリモル/g)
 =〔(B1/b1×n1+B2/b2×n2+B3/b3×n3……)/Z〕×1000
 B:多価アルコール類の仕込み量(g)
 b:多価アルコール類の分子量
 n:多価アルコール類の1分子あたりの水酸基の数
 Z:出来上がり重量(g)
(When polyhydric alcohols are less than polyhydric carboxylic acids)
Ester bond concentration (mmol/g)
=[(B1/b1×n1+B2/b2×n2+B3/b3×n3……)/Z]×1000
B: Charged amount of polyhydric alcohol (g)
b: molecular weight of polyhydric alcohol n: number of hydroxyl groups per molecule of polyhydric alcohol Z: finished weight (g)
 上記エステル結合濃度は、NMR等を用いて公知の方法で測定することもできる。 The above ester bond concentration can also be measured by a known method using NMR or the like.
 エステル結合や反応性官能基以外のその他の極性基濃度は、低吸湿性や湿熱環境下での長期耐久性の点から低い方が好ましい。
 その他の極性基としては、例えば、アミド基、イミド基、ウレタン基、ウレア基、エーテル基、カーボネート基等が挙げられる。
Concentrations of other polar groups other than ester bonds and reactive functional groups are preferably low from the viewpoint of low hygroscopicity and long-term durability in wet and heat environments.
Other polar groups include, for example, amide groups, imide groups, urethane groups, urea groups, ether groups, carbonate groups and the like.
 アミド基、イミド基、ウレタン基、ウレア基は、それらの合計の濃度が3ミリモル/g以下であることが好ましく、より好ましくは2ミリモル/g以下、更に好ましくは1ミリモル/g以下、特に好ましくは0.5ミリモル/g以下であり、最も好ましくは0.2ミリモル/g以下である。
 エーテル基としては、例えば、アルキルエーテル基やフェニルエーテル基が挙げられる。低吸湿性や湿熱環境下での長期耐久性の点から特にアルキルエーテル基の濃度を低くすることが好ましい。
 アルキルエーテル基濃度は、3ミリモル/g以下であることが好ましく、より好ましくは2ミリモル/g以下、更に好ましくは1.5ミリモル/g以下、特に好ましくは1ミリモル/g以下であり、最も好ましくは0.5ミリモル/g以下である。
 フェニルエーテル基濃度は、5ミリモル/g以下であることが好ましく、より好ましくは4ミリモル/g以下、更に好ましくは3ミリモル/g以下、特に好ましくは2.5ミリモル/g以下である。
 カーボネート基濃度は、3ミリモル/g以下であることが好ましく、より好ましくは2ミリモル/g以下、更に好ましくは1ミリモル/g以下、特に好ましくは0.5ミリモル/g以下であり、最も好ましくは0.2ミリモル/g以下である。
The total concentration of amide groups, imide groups, urethane groups, and urea groups is preferably 3 millimoles/g or less, more preferably 2 millimoles/g or less, still more preferably 1 millimoles/g or less, and particularly preferably is less than or equal to 0.5 mmol/g, most preferably less than or equal to 0.2 mmol/g.
Ether groups include, for example, alkyl ether groups and phenyl ether groups. In terms of low hygroscopicity and long-term durability in a moist and hot environment, it is particularly preferred to lower the concentration of alkyl ether groups.
The alkyl ether group concentration is preferably 3 mmol/g or less, more preferably 2 mmol/g or less, still more preferably 1.5 mmol/g or less, particularly preferably 1 mmol/g or less, and most preferably is less than or equal to 0.5 mmol/g.
The phenyl ether group concentration is preferably 5 mmol/g or less, more preferably 4 mmol/g or less, still more preferably 3 mmol/g or less, and particularly preferably 2.5 mmol/g or less.
The carbonate group concentration is preferably 3 mmol/g or less, more preferably 2 mmol/g or less, still more preferably 1 mmol/g or less, particularly preferably 0.5 mmol/g or less, and most preferably 0.2 mmol/g or less.
<ポリエステル系樹脂(A)の誘電特性>
(誘電正接(Df))
 ポリエステル系樹脂(A)の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける誘電正接(Df)は、好ましくは0.005以下であり、より好ましくは0.0045以下、更に好ましくは0.004以下、より更に好ましくは0.0035以下、特に好ましくは0.003以下である。上記誘電正接が高すぎると得られる積層体の伝送損失が大きくなる。
<Dielectric properties of polyester resin (A)>
(Dielectric loss tangent (Df))
The dielectric loss tangent (Df) at a frequency of 10 GHz in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH of the polyester resin (A) is preferably 0.005 or less, more preferably 0.0045 or less, and still more preferably It is 0.004 or less, more preferably 0.0035 or less, and particularly preferably 0.003 or less. If the dielectric loss tangent is too high, the resulting laminate will have a large transmission loss.
(比誘電率(Dk))
 ポリエステル系樹脂(A)の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける比誘電率(Dk)は、2.9以下が好ましく、より好ましくは2.8以下、更に好ましくは2.7以下、特に好ましくは2.6以下である。上記比誘電率が高すぎると得られる積層体の伝送速度が劣ったり伝送損失が大きくなる傾向がある。
(relative permittivity (Dk))
The relative dielectric constant (Dk) of the polyester resin (A) at a temperature of 23° C. and a relative humidity of 50% RH at a frequency of 10 GHz is preferably 2.9 or less, more preferably 2.8 or less, and still more preferably 2. 0.7 or less, particularly preferably 2.6 or less. If the dielectric constant is too high, the resulting laminate tends to have a low transmission speed or a large transmission loss.
 ポリエステル系樹脂(A)の比誘電率及び誘電正接は、ネットワークアナライザを用いた空洞共振器摂動法により求めることができる。ポリエステル系樹脂(A)の粘着性が強く単独での測定サンプルの作製が困難な場合は、フィルムにサンドした状態で測定し、フィルム分を差し引くことでポリエステル系樹脂(A)単独の誘電特性を算出することもできる。  The dielectric constant and dielectric loss tangent of the polyester resin (A) can be obtained by the cavity resonator perturbation method using a network analyzer. If it is difficult to prepare a measurement sample by itself due to the strong adhesiveness of the polyester resin (A), the dielectric properties of the polyester resin (A) alone can be estimated by measuring the sample sandwiched between films and subtracting the film amount. can also be calculated.
<ポリエステル系樹脂(A)の酸価>
 ポリエステル系樹脂(A)の酸価は好ましくは3mgKOH/g以上であり、より好ましくは4mgKOH/g以上、更に好ましくは5mgKOH/g以上、特に好ましくは6mgKOH/g以上、とりわけ好ましくは7mgKOH/g以上である。一方、ポリエステル系樹脂(A)の酸価は好ましくは60mgKOH/g以下、より好ましくは40mgKOH/g以下、更に好ましくは30mgKOH/g以下、特に好ましくは20mgKOH/g以下である。
 ポリエステル系樹脂(A)の酸価が低すぎると、接着剤組成物にポリエポキシ系化合物(B)を含有させた場合、ポリエポキシ系化合物(B)との架橋点が不足し架橋度が低くなるので、耐熱性が不充分となる。ポリエステル系樹脂(A)の酸価が高すぎると、吸湿性や湿熱環境下での長期耐久性が低下したり、硬化時に多量のポリエポキシ系化合物(B)を必要とすることから、近年要求されることが多くなった誘電特性において劣る傾向がある。
<Acid value of polyester resin (A)>
The acid value of the polyester resin (A) is preferably 3 mgKOH/g or more, more preferably 4 mgKOH/g or more, still more preferably 5 mgKOH/g or more, particularly preferably 6 mgKOH/g or more, particularly preferably 7 mgKOH/g or more. is. On the other hand, the acid value of the polyester resin (A) is preferably 60 mgKOH/g or less, more preferably 40 mgKOH/g or less, still more preferably 30 mgKOH/g or less, and particularly preferably 20 mgKOH/g or less.
If the acid value of the polyester-based resin (A) is too low, when the polyepoxy-based compound (B) is included in the adhesive composition, the cross-linking points with the polyepoxy-based compound (B) are insufficient, resulting in a low degree of cross-linking. As a result, the heat resistance becomes insufficient. If the acid value of the polyester-based resin (A) is too high, the hygroscopicity and long-term durability in a moist and heat environment are reduced, and a large amount of the polyepoxy-based compound (B) is required during curing. It tends to be inferior in dielectric properties, which has become more common.
 酸価の定義や測定方法については以下のとおりである。
 酸価(mgKOH/g)は、ポリエステル系樹脂1gをトルエン/メタノールの混合溶剤(例えば、体積比でトルエン/メタノール=7/3)30gに溶解し、JIS K0070に基づき中和滴定により求めることができる。
 本発明において、ポリエステル系樹脂(A)の酸価は、樹脂中におけるカルボキシ基の含有量に起因するものである。
The definition and measuring method of the acid value are as follows.
The acid value (mgKOH/g) can be obtained by dissolving 1 g of a polyester resin in 30 g of a mixed solvent of toluene/methanol (for example, toluene/methanol=7/3 by volume) and performing neutralization titration based on JIS K0070. can.
In the present invention, the acid value of the polyester resin (A) is due to the content of carboxy groups in the resin.
<ポリエステル系樹脂(A)のガラス転移温度(Tg)>
 ポリエステル系樹脂(A)のガラス転移温度(Tg)は、好ましくは-5℃以上であり、より好ましくは0℃以上、更に好ましくは3℃以上、特に好ましくは5℃以上、とりわけ好ましくは7℃以上、最も好ましくは10℃以上である。一方、ポリエステル系樹脂(A)のガラス転移温度(Tg)は、好ましくは100℃以下、より好ましくは80℃以下、更に好ましくは60℃以下、特に好ましくは40℃以下、とりわけ好ましくは30℃以下である。
 ポリエステル系樹脂(A)のガラス転移温度(Tg)が低すぎると、初期接着性やタックフリー性が不充分となる。ポリエステル系樹脂(A)のガラス転移温度(Tg)が高すぎると、初期接着性や屈曲性が不充分になる傾向がある。
<Glass transition temperature (Tg) of polyester resin (A)>
The glass transition temperature (Tg) of the polyester resin (A) is preferably −5° C. or higher, more preferably 0° C. or higher, still more preferably 3° C. or higher, particularly preferably 5° C. or higher, particularly preferably 7° C. above, and most preferably above 10°C. On the other hand, the glass transition temperature (Tg) of the polyester resin (A) is preferably 100° C. or lower, more preferably 80° C. or lower, still more preferably 60° C. or lower, particularly preferably 40° C. or lower, particularly preferably 30° C. or lower. is.
If the glass transition temperature (Tg) of the polyester-based resin (A) is too low, initial adhesiveness and tack-free properties will be insufficient. If the glass transition temperature (Tg) of the polyester-based resin (A) is too high, the initial adhesiveness and flexibility tend to be insufficient.
 ガラス転移温度(Tg)の測定方法は以下のとおりである。
 ガラス転移温度(Tg)は示差走査熱量計を用いて測定することにより求めることができる。測定条件は、測定温度範囲-70~140℃、温度上昇速度10℃/分である。
The method for measuring the glass transition temperature (Tg) is as follows.
The glass transition temperature (Tg) can be obtained by measuring with a differential scanning calorimeter. The measurement conditions are a measurement temperature range of -70 to 140°C and a temperature increase rate of 10°C/min.
<ポリエステル系樹脂(A)のピークトップ分子量(Mp)及び重量平均分子量(Mw)>
 ポリエステル系樹脂(A)のピークトップ分子量(Mp)は、5000~150000が好ましく、より好ましくは10000~100000、更に好ましくは15000~70000、特に好ましくは25000~40000である。
 ピークトップ分子量(Mp)が低すぎると、低吸湿性、タックフリー性、湿熱環境下での長期耐久性が不充分となったり、フレキシブル銅張積層板やフレキシブルプリント基板等のフレキシブル積層板を作製する際のプレス加工時に接着剤層のポリエステル系樹脂が流動し染み出してしまう等の不具合が生じる傾向がある。ピークトップ分子量(Mp)が高すぎると、初期接着性が不充分となったり、塗布時の溶液粘度が高すぎて、均一な塗膜が得られ難くなる傾向がある。
<Peak Top Molecular Weight (Mp) and Weight Average Molecular Weight (Mw) of Polyester Resin (A)>
The peak top molecular weight (Mp) of the polyester resin (A) is preferably 5,000 to 150,000, more preferably 10,000 to 100,000, even more preferably 15,000 to 70,000, and particularly preferably 25,000 to 40,000.
If the peak top molecular weight (Mp) is too low, low hygroscopicity, tack-free property, and long-term durability in a moist heat environment will be insufficient, and flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards will be produced. There is a tendency that problems such as the polyester-based resin of the adhesive layer flowing and oozing out during press processing when bonding are likely to occur. If the peak top molecular weight (Mp) is too high, the initial adhesion may be insufficient, or the viscosity of the solution at the time of coating may be too high, making it difficult to obtain a uniform coating film.
 ポリエステル系樹脂(A)の重量平均分子量(Mw)は、5000~300000が好ましく、より好ましくは10000~200000、更に好ましくは20000~150000、特に好ましくは25000~100000である。
 重量平均分子量(Mw)が低すぎると、低吸湿性、タックフリー性、湿熱環境下での長期耐久性が不充分となったり、フレキシブル銅張積層板やフレキシブルプリント基板等のフレキシブル積層板を作製する際のプレス加工時に接着剤層のポリエステル系樹脂が流動し染み出してしまう等の不具合が生じる傾向がある。重量平均分子量(Mw)が高すぎると、初期接着性が不充分となったり、塗布時の溶液粘度が高すぎて、均一な塗膜が得られ難くなる傾向がある。
The weight average molecular weight (Mw) of the polyester resin (A) is preferably 5,000 to 300,000, more preferably 10,000 to 200,000, still more preferably 20,000 to 150,000, and particularly preferably 25,000 to 100,000.
If the weight average molecular weight (Mw) is too low, low hygroscopicity, tack-free property, and long-term durability in a moist heat environment will be insufficient, and flexible laminates such as flexible copper-clad laminates and flexible printed circuit boards will be produced. There is a tendency that problems such as the polyester-based resin of the adhesive layer flowing and oozing out during press processing when bonding are likely to occur. If the weight-average molecular weight (Mw) is too high, the initial adhesion may be insufficient, or the solution viscosity at the time of coating may be too high, making it difficult to obtain a uniform coating film.
 ピークトップ分子量(Mp)及び重量平均分子量(Mw)の測定方法は以下のとおりである。
 ピークトップ分子量(Mp)及び重量平均分子量(Mw)は、高速液体クロマトグラフィー(東ソー社製、「HLC-8320GPC」)にてカラム(TSKgel SuperMultipore HZ-M(排除限界分子量:2×106、理論段数:16000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:4μm))の2本直列を用いて測定し、標準ポリスチレン分子量換算により求めることができる。
Methods for measuring peak top molecular weight (Mp) and weight average molecular weight (Mw) are as follows.
The peak top molecular weight (Mp) and weight average molecular weight (Mw) were measured by high-performance liquid chromatography (manufactured by Tosoh Corporation, "HLC-8320GPC") on a column (TSKgel SuperMultipore HZ-M (exclusion limit molecular weight: 2 × 106, number of theoretical plates). : 16,000 plates/line, filler material: styrene-divinylbenzene copolymer, filler particle diameter: 4 μm))))), and can be obtained by standard polystyrene molecular weight conversion.
<ポリエステル系樹脂(A)の吸水率(重量%)>
 ポリエステル系樹脂(A)の吸水率は、2重量%以下が好ましく、より好ましくは1重量%以下、更に好ましくは0.8重量%以下、特に好ましくは0.6重量%以下である。
 吸水率が高すぎると湿熱耐久性、絶縁信頼性が低下したり、誘電特性が劣ったりする傾向がある。誘電特性に劣るとは、比誘電率や誘電正接の値が小さくならないこと、あるいは、値が大きくなることを意味するものである。
<Water absorption rate (% by weight) of polyester resin (A)>
The water absorption of the polyester resin (A) is preferably 2% by weight or less, more preferably 1% by weight or less, still more preferably 0.8% by weight or less, and particularly preferably 0.6% by weight or less.
If the water absorption is too high, the wet heat durability and insulation reliability tend to deteriorate, and the dielectric properties tend to deteriorate. Inferior in dielectric properties means that the values of relative permittivity and dielectric loss tangent do not decrease or increase.
 吸水率の測定方法は以下のとおりである。
 ポリエステル系樹脂溶液(ポリエポキシ系化合物(B)やフィラー(C)配合前)を離型フィルム上にアプリケーターで塗布し、120℃で10分間乾燥し、ポリエステル系樹脂層の乾燥膜厚が65μmのシートを作製する。このシートを7.5cm×11cmのサイズに切り出し、シートのポリエステル系樹脂層面をガラス板上にラミネートした後、離型フィルムを剥がす。この作業を6回繰り返すことで、ガラス板上に厚み390μmのポリエステル系樹脂層を有する試験板を得る。
 このようにして得られる試験板を23℃の精製水に24時間浸漬させた後、取り出して表面の水気をふき取り、70℃で2時間乾燥させる。これらの各工程において必要な重量を測定して、下記式に従って重量変化から吸水率(重量%)を算出する。
 吸水率(重量%)=(c-d)×100/(b-a)
 a:ガラス板単独の重量
 b:初期の試験板の重量
 c:精製水から取り出して水気をふき取った直後の試験板の重量
 d:70℃で2時間乾燥させた後の試験板の重量
The method for measuring water absorption is as follows.
The polyester resin solution (before blending the polyepoxy compound (B) and the filler (C)) was applied onto the release film with an applicator and dried at 120°C for 10 minutes, and the dry film thickness of the polyester resin layer was 65 µm. Make a sheet. This sheet is cut into a size of 7.5 cm×11 cm, the polyester-based resin layer surface of the sheet is laminated on a glass plate, and then the release film is peeled off. By repeating this operation six times, a test plate having a polyester-based resin layer with a thickness of 390 μm on a glass plate is obtained.
After immersing the thus-obtained test plate in purified water at 23°C for 24 hours, it is taken out, the water on the surface is wiped off, and dried at 70°C for 2 hours. The weight required in each of these steps is measured, and the water absorption (% by weight) is calculated from the change in weight according to the following formula.
Water absorption (% by weight) = (cd) x 100/(ba)
a: Weight of the glass plate alone b: Weight of the initial test plate c: Weight of the test plate immediately after removing from the purified water and wiping off moisture d: Weight of the test plate after drying at 70 ° C. for 2 hours
<ポリエステル系樹脂(A)の含有量>
 本発明の接着剤組成物はポリエステル系樹脂として上記ポリエステル系樹脂(A)のみを含むものであってもよく、ポリエステル系樹脂(A)以外のポリエステル樹脂を含むものであってもよいが、本発明の接着剤組成物における上記ポリエステル系樹脂(A)の含有量は、ポリエステル系樹脂全体の50重量%超であることが好ましく、より好ましくは70重量%以上、更に好ましくは85重量%以上であり、100重量%であってもよい。ポリエステル系樹脂(A)の含有量が少なすぎると、低吸湿性や湿熱環境下での長期耐久性が不充分となったり、低誘電正接に関して劣る傾向がある。
<Content of polyester resin (A)>
The adhesive composition of the present invention may contain only the polyester resin (A) as the polyester resin, or may contain a polyester resin other than the polyester resin (A). The content of the polyester resin (A) in the adhesive composition of the invention is preferably more than 50% by weight, more preferably 70% by weight or more, and still more preferably 85% by weight or more of the total polyester resin. Yes, and may be 100% by weight. If the content of the polyester-based resin (A) is too small, the low hygroscopicity and the long-term durability in a moist and hot environment tend to be insufficient, and the low dielectric loss tangent tends to be poor.
[ポリエポキシ系化合物(B)]
 本発明の接着剤組成物は、ポリエポキシ系化合物(B)を含有する。本発明の接着剤組成物がポリエポキシ系化合物(B)を含有することで、ポリエポキシ系化合物(B)中のエポキシ基とポリエステル系樹脂(A)中のカルボキシ基とを反応させて硬化させることにより、接着力だけでなく、半田耐熱性にも優れた接着層を得ることができる。
[Polyepoxy compound (B)]
The adhesive composition of the present invention contains a polyepoxy compound (B). Since the adhesive composition of the present invention contains the polyepoxy compound (B), the epoxy groups in the polyepoxy compound (B) and the carboxy groups in the polyester resin (A) react to cure. As a result, it is possible to obtain an adhesive layer that is excellent not only in adhesive strength but also in solder heat resistance.
 接着剤組成物中のポリエステル系樹脂(A)のカルボキシ基に対する接着剤組成物中のポリエポキシ系化合物(B)のエポキシ基の当量は、2未満が好ましく、より好ましくは1.9以下、更に好ましくは1.7以下、特に好ましくは1.5以下である。一方、接着剤組成物中のポリエステル系樹脂(A)のカルボキシ基に対する接着剤組成物中のポリエポキシ系化合物(B)のエポキシ基の当量は、好ましくは0.1以上、より好ましくは0.3以上、更に好ましくは0.5以上であり、0.8以上であることが最も好ましい。
 当該当量が大きすぎると、初期接着性や低吸湿性が不充分となったり、誘電特性が劣ったり、半田耐熱性が悪化する傾向がある。当該当量が小さすぎると、湿熱環境下での長期耐久性や半田耐熱性が不充分となる傾向がある。
The equivalent weight of the epoxy group of the polyepoxy compound (B) in the adhesive composition to the carboxy group of the polyester resin (A) in the adhesive composition is preferably less than 2, more preferably 1.9 or less, and further It is preferably 1.7 or less, particularly preferably 1.5 or less. On the other hand, the equivalent weight of the epoxy group of the polyepoxy compound (B) in the adhesive composition to the carboxy group of the polyester resin (A) in the adhesive composition is preferably 0.1 or more, more preferably 0.1. It is 3 or more, more preferably 0.5 or more, and most preferably 0.8 or more.
If the corresponding amount is too large, the initial adhesiveness and low hygroscopicity tend to become insufficient, the dielectric properties deteriorate, and the solder heat resistance tends to deteriorate. If the corresponding amount is too small, there is a tendency that the long-term durability and solder heat resistance in a moist and hot environment become insufficient.
 カルボキシ基(COOH)に対するエポキシ基の当量は、ポリエステル系樹脂(A)の酸価と、配合したポリエポキシ系化合物(B)のエポキシ当量(g/eq)から、下記式により求められる。
 COOHに対するエポキシ基の当量
   =(e÷WPE)/(AV÷56.1÷1000×P)
 e:配合に用いたポリエポキシ系化合物(B)の重量(g)
 WPE:ポリエポキシ系化合物(B)のエポキシ当量(g/eq)
 AV:ポリエステル系樹脂(A)の酸価(mgKOH/g)
 p:配合に用いたポリエステル系樹脂(A)の重量(g)
The equivalent weight of the epoxy group to the carboxy group (COOH) is obtained from the acid value of the polyester resin (A) and the epoxy equivalent weight (g/eq) of the blended polyepoxy compound (B) by the following formula.
Equivalent weight of epoxy group to COOH = (e÷WPE)/(AV÷56.1÷1000×P)
e: weight (g) of the polyepoxy compound (B) used in the formulation
WPE: epoxy equivalent (g/eq) of polyepoxy compound (B)
AV: Acid value of polyester resin (A) (mgKOH/g)
p: Weight (g) of the polyester resin (A) used in the formulation
 ポリエポキシ系化合物(B)のエポキシ当量WPEは500g/eq以下であることが好ましく、より好ましくは350g/eq以下、更に好ましくは250g/eq以下、特に好ましくは200g/eq以下である。ポリエポキシ系化合物(B)のエポキシ当量が大きすぎると硬化後の架橋密度が低くなるため半田耐熱性に劣ったり、架橋密度を稼ぐために多量のポリエポキシ系化合物(B)を添加する必要があるため誘電特性に劣る傾向がある。ポリエポキシ系化合物(B)のエポキシ当量WPEは通常50g/eq以上である。
 本発明において「エポキシ当量(WPE)」とは、「1当量のエポキシ基を含むエポキシ樹脂の重量」と定義され、JIS K7236に準じて測定することができる。
The epoxy equivalent WPE of the polyepoxy compound (B) is preferably 500 g/eq or less, more preferably 350 g/eq or less, still more preferably 250 g/eq or less, and particularly preferably 200 g/eq or less. If the epoxy equivalent of the polyepoxy compound (B) is too large, the crosslink density after curing will be low, resulting in poor solder heat resistance, or it will be necessary to add a large amount of the polyepoxy compound (B) to increase the crosslink density. Therefore, it tends to be inferior in dielectric properties. The epoxy equivalent WPE of the polyepoxy compound (B) is usually 50 g/eq or more.
In the present invention, "epoxy equivalent (WPE)" is defined as "weight of epoxy resin containing one equivalent of epoxy group" and can be measured according to JIS K7236.
 ポリエポキシ系化合物(B)としては、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等のグリシジルアミンタイプなどの窒素原子含有ポリエポキシ系化合物が挙げられる。その他、ビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル等の2官能グリシジルエーテルタイプ;フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル等の多官能グリシジルエーテルタイプ;ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ;トリグリシジルイソシアヌレート、3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族又は脂肪族エポキサイド等が挙げられる。ポリエポキシ系化合物(B)は、1種又は2種以上を用いることができる。 Examples of the polyepoxy compound (B) include glycidylamine types such as tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, tetraglycidylbisaminomethylcyclohexane, and N,N,N',N'-tetraglycidyl-m-xylenediamine. nitrogen atom-containing polyepoxy compounds. In addition, bifunctional glycidyl ether types such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether; polyfunctional glycidyl ether types such as phenol novolac glycidyl ether and cresol novolac glycidyl ether; hexahydrophthalic acid Glycidyl ester types such as glycidyl ester and dimer acid glycidyl ester; alicyclic or aliphatic epoxides such as triglycidyl isocyanurate, 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil; Polyepoxy compound (B) can be used alone or in combination of two or more.
 本発明の接着剤組成物は、ポリエポキシ系化合物(B)として、窒素原子を含有するポリエポキシ系化合物(窒素原子含有ポリエポキシ系化合物)を含有すると、比較的低い温度の加熱で接着剤組成物の塗膜をBステージ化(半硬化状態)することができ、かつBステージフィルムの流動性を抑えて接着操作における作業性を向上させることができる傾向にある。またBステージフィルムの発泡を抑える効果が期待でき、好ましい。 When the adhesive composition of the present invention contains a nitrogen atom-containing polyepoxy compound (nitrogen atom-containing polyepoxy compound) as the polyepoxy compound (B), the adhesive composition can be formed by heating at a relatively low temperature. There is a tendency that the coating film of the object can be B-staged (semi-cured state), and the fluidity of the B-stage film can be suppressed to improve the workability in the bonding operation. Moreover, the effect of suppressing the foaming of the B-stage film can be expected, which is preferable.
[フィラー(C)]
 本発明の接着剤組成物は、フィラー(C)を含有する。フィラー(C)を含有することで、接着力だけでなく、半田耐熱性に優れた接着剤を得ることができる。また、難燃性等の各種機能性を付与することができる。
[Filler (C)]
The adhesive composition of the present invention contains filler (C). By containing the filler (C), it is possible to obtain an adhesive that is excellent not only in adhesive strength but also in solder heat resistance. In addition, various functionalities such as flame retardancy can be imparted.
 フィラーとしては、特に限定されないが、形状としては球状、粉状、繊維状、針状、鱗片状等が挙げられる。 The filler is not particularly limited, but may be spherical, powdery, fibrous, needle-like, scale-like, or the like.
 フィラーとしては例えば、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ素ゴム(FKM)等のフッ素系ポリマー粉末、ポリエチレン粉末、ポリアクリル酸エステル粉末、エポキシ樹脂粉末、ポリアミド粉末、ポリウレタン粉末、ポリシロキサンン粉末等の他、シリコーン、アクリル、スチレンブタジエンゴム、ブタジエンゴム等を用いた多層構造のコアシェル等のポリマーフィラー;
 リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート等の(ポリ)リン酸塩系化合物、有機リン酸エステル化合物、ホスファゼン化合物、ホスホン酸化合物、ジエチルホスフィン酸アルミニウム、メチルエチルホスフィン酸アルミニウム、ジフェニルホスフィン酸アルミニウム、エチルブチルホスフィン酸アルミニウム、メチルブチルホスフィン酸アルミニウム、ポリエチレンホスフィン酸アルミニウム等のホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、ホスホルアミド化合物等のリン系難燃フィラー;
 ベンゾグアナミン、メラミン、メラム、メレム、メロン、メラミンシアヌレート、シアヌル酸化合物、イソシアヌル酸化合物、トリアゾール系化合物、テトラゾール化合物、ジアゾ化合物、尿素等の窒素系難燃フィラー;
 シリカ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、リン酸水素カルシウム、リン酸カルシウム、ガラスフレーク、水和ガラス、チタン酸カルシウム、セピオライト、硫酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム、酸化チタン、酸化スズ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化アンチモン、酸化ニッケル、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ホウ酸亜鉛、ホウ酸アルミニウム等の無機フィラー等;
 カオリナイト族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライトなど)、アンチゴライト族粘土鉱物(アンチゴライト、クリソタイルなど)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなど)、バーミキュライト族粘土鉱物(バーミキュライトなど)、雲母またはマイカ族粘土鉱物(白雲母、金雲母などの雲母、マーガライト、テトラシリリックマイカ、テニオライトなど)、タルク、クレー、ハイドロタルサイト、ウォラストナイト、ゾノトライト、合成マイカ等の粘土鉱物;
などが挙げられる。
 フィラー(C)は、1種又は2種以上を用いることができる。
Examples of fillers include polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotri Fluoropolymer powder such as fluoroethylene (PCTFE), fluororubber (FKM), polyethylene powder, polyacrylate powder, epoxy resin powder, polyamide powder, polyurethane powder, polysiloxane powder, silicone, acrylic, styrene Polymer filler such as butadiene rubber, multi-layered core-shell using butadiene rubber;
(Poly)phosphates such as melamine phosphate, melamine polyphosphate, guanidine phosphate, guanidine polyphosphate, ammonium phosphate, ammonium polyphosphate, amide ammonium phosphate, amide ammonium polyphosphate, carbamate phosphate, and carbamate polyphosphate phosphines such as compounds, organophosphate compounds, phosphazene compounds, phosphonic acid compounds, aluminum diethylphosphinate, aluminum methylethylphosphinate, aluminum diphenylphosphinate, aluminum ethylbutylphosphinate, aluminum methylbutylphosphinate, and aluminum polyethylenephosphinate Phosphorus-based flame retardant fillers such as acid compounds, phosphine oxide compounds, phosphorane compounds, and phosphoramide compounds;
Nitrogen-based flame retardant fillers such as benzoguanamine, melamine, melam, melem, melon, melamine cyanurate, cyanuric acid compounds, isocyanuric acid compounds, triazole compounds, tetrazole compounds, diazo compounds, and urea;
Silica, silicon nitride, boron nitride, aluminum nitride, calcium hydrogen phosphate, calcium phosphate, glass flakes, hydrated glass, calcium titanate, sepiolite, magnesium sulfate, aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, barium hydroxide, Calcium hydroxide, titanium oxide, tin oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, antimony oxide, nickel oxide, zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, zinc borate, aluminum borate inorganic fillers such as;
Kaolinite group clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, etc.), antigorite group clay minerals (antigorite, chrysotile, etc.), smectite group clay minerals (montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, etc.), vermiculite group clay minerals (vermiculite, etc.), mica or mica group clay minerals (muscovite, phlogopite, etc. mica, margarite, tetrasilic mica, teniolite, etc.), talc, clay, Clay minerals such as hydrotalcite, wollastonite, xonotlite, synthetic mica;
etc.
One or two or more fillers (C) can be used.
 これらのフィラーのうち、誘電率や誘電正接をさらに低下させ、本発明の効果をより向上させる観点から、フッ素系ポリマー粉末(C1)及び/または粘土鉱物(C2)が好ましい。フッ素系ポリマー粉末(C1)及び/又は粘土鉱物(C2)を含有することで、初期接着力だけでなく、低誘電特性や湿熱耐久試験後であっても接着力の高い接着剤を得ることができる。また、ポリエステル系樹脂(A)への分散性の観点から、粘土鉱物がより好ましく、マイカが特に好ましい。 Among these fillers, fluoropolymer powder (C1) and/or clay mineral (C2) are preferable from the viewpoint of further reducing the dielectric constant and dielectric loss tangent and further improving the effects of the present invention. By containing the fluoropolymer powder (C1) and/or the clay mineral (C2), it is possible to obtain an adhesive having not only initial adhesive strength, but also low dielectric properties and high adhesive strength even after a wet heat durability test. can. From the viewpoint of dispersibility in the polyester-based resin (A), clay minerals are more preferred, and mica is particularly preferred.
 フッ素系ポリマー粉末(C1)としては、例えばポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、フッ素ゴム(FKM)等を挙げることができる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 フッ素系ポリマー粉末(C1)は、誘電率や誘電正接を更に低下させ、本発明の効果をより向上させる観点から好ましく、中でもテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体が接着性、ポリエステル系樹脂(A)との相溶性・分散性の観点から特に好ましい。フッ素系ポリマー粉末の配合で誘電特性のみならず接着性、屈曲性、電気絶縁性、耐熱性とのバランスに優れた硬化物を得ることができるようになる。
Examples of the fluoropolymer powder (C1) include polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer ( ETFE), polychlorotrifluoroethylene (PCTFE), fluororubber (FKM), and the like. These may be used alone or in combination of two or more.
The fluorine-based polymer powder (C1) is preferable from the viewpoint of further reducing the dielectric constant and dielectric loss tangent and further improving the effects of the present invention. It is particularly preferable from the viewpoint of compatibility and dispersibility with (A). By blending the fluorine-based polymer powder, it becomes possible to obtain a cured product having not only dielectric properties but also an excellent balance among adhesiveness, flexibility, electrical insulation and heat resistance.
 粘土鉱物(C2)としては、例えば、カオリナイト族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライトなど)、アンチゴライト族粘土鉱物(アンチゴライト、クリソタイルなど)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなど)、バーミキュライト族粘土鉱物(バーミキュライトなど)、雲母またはマイカ族粘土鉱物(白雲母、金雲母などの雲母、マーガライト、テトラシリリックマイカ、テニオライトなど)、タルク、クレー、ハイドロタルサイト、ウォラストナイト、ゾノトライト、合成マイカなどが挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 これらの粘土鉱物(C2)のうち、ポリエステル系樹脂(A)への分散性の点で、マイカ族粘土鉱物や合成マイカが好ましく、合成マイカがより好ましい。
Examples of the clay mineral (C2) include kaolinite group clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, etc.), antigorite group clay minerals (antigorite, chrysotile, etc.), smectite group clay minerals ( montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, stevensite, etc.), vermiculite group clay minerals (vermiculite, etc.), mica or mica group clay minerals (muscovite, phlogopite, mica, margarite, tetrasilic mica, teniolite, etc.), talc, clay, hydrotalcite, wollastonite, xonotlite, synthetic mica, and the like. These may be used alone or in combination of two or more.
Among these clay minerals (C2), mica group clay minerals and synthetic mica are preferred, and synthetic mica is more preferred, in terms of dispersibility in the polyester resin (A).
 これらフィラー(C)の平均粒子径は、0.1μm~25μmであることが好ましい。0.1μmに近い平均粒子径を示すフィラーを用いた場合、フィラーによる改質効果が得やすく、更に分散性や分散液の安定性が向上しやすい。25μmに近い平均粒子径を示すフィラーを用いた場合、硬化膜の機械特性が向上しやすくなる。 The average particle size of these fillers (C) is preferably 0.1 μm to 25 μm. When a filler having an average particle diameter close to 0.1 μm is used, the modification effect of the filler is likely to be obtained, and the dispersibility and the stability of the dispersion liquid are likely to be improved. When a filler having an average particle size close to 25 μm is used, the mechanical properties of the cured film are likely to be improved.
[接着剤組成物の配合]
 本発明の接着剤組成物は、ポリエステル系樹脂(A)とポリエポキシ系化合物(B)とフィラー(C)を含有し、低伝送特性、低吸湿性、タックフリー性、初期接着性、湿熱環境下での長期耐久性に優れるという効果を奏する。
[Formulation of Adhesive Composition]
The adhesive composition of the present invention contains a polyester-based resin (A), a polyepoxy-based compound (B) and a filler (C), and has low transmission properties, low moisture absorption, tack-free properties, initial adhesiveness, and a moist heat environment. It has an effect of being excellent in long-term durability under the environment.
 本発明の接着剤組成物のポリエポキシ系化合物(B)の含有量は、ポリエステル系樹脂(A)のカルボキシ基に対するポリエポキシ系化合物(B)のエポキシ基が前述の好適な当量比となる量であればよい。より具体的には、ポリエポキシ系化合物(B)の含有量は、ポリエステル系樹脂(A)100重量部に対して、好ましくは0.5~30重量部、より好ましくは1~20重量部、更に好ましくは1.5~15重量部、特に好ましくは1.8~5重量部である。ポリエポキシ系化合物(B)の含有量が少なすぎると耐熱性や湿熱環境下での長期耐久性が不充分となる傾向がある。ポリエポキシ系化合物(B)の含有量が多すぎると初期接着性や低吸湿性が不充分となったり、誘電特性が劣ったりする傾向がある。 The content of the polyepoxy compound (B) in the adhesive composition of the present invention is such that the epoxy groups of the polyepoxy compound (B) to the carboxy groups of the polyester resin (A) are in the aforementioned suitable equivalent ratio. If it is More specifically, the content of the polyepoxy compound (B) is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, with respect to 100 parts by weight of the polyester resin (A). More preferably 1.5 to 15 parts by weight, particularly preferably 1.8 to 5 parts by weight. If the content of the polyepoxy-based compound (B) is too small, the heat resistance and long-term durability in a moist and hot environment tend to be insufficient. If the content of the polyepoxy-based compound (B) is too high, the initial adhesiveness and low hygroscopicity tend to be insufficient, and the dielectric properties tend to be poor.
 本発明の接着剤組成物のフィラー(C)の含有量は、ポリエステル系樹脂(A)100重量部に対して、好ましくは1~100重量部、より好ましくは5~90重量部、更に好ましくは10~80重量部、特に好ましくは15~70重量部、とりわけ好ましくは20~60重量部である。フィラー(C)の含有量が上記の範囲内であると、接着性を損なわずに低誘電正接化や湿熱環境下での長期耐久性を向上させることができ、好ましい。フィラー(C)の含有量が多すぎると、接着性が低下する傾向がある。 The content of the filler (C) in the adhesive composition of the present invention is preferably 1 to 100 parts by weight, more preferably 5 to 90 parts by weight, and still more preferably 100 parts by weight of the polyester resin (A). 10 to 80 parts by weight, particularly preferably 15 to 70 parts by weight, particularly preferably 20 to 60 parts by weight. When the content of the filler (C) is within the above range, it is possible to reduce the dielectric loss tangent and improve the long-term durability in a wet and hot environment without impairing the adhesiveness, which is preferable. If the content of the filler (C) is too high, the adhesiveness tends to decrease.
[触媒]
 ポリエポキシ系化合物(B)を含有する本発明の接着剤組成物は、その硬化のために触媒を含有するものであってもよい。
[catalyst]
The adhesive composition of the present invention containing the polyepoxy compound (B) may contain a catalyst for curing.
 触媒としては、例えば、2-メチルイミダゾールや1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール系化合物;トリエチルアミンやトリエチレンジアミン、N’-メチル-N-(2-ジメチルアミノエチル)ピペラジン、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7、1,5-ジアザビシクロ(4,3,0)-ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の三級アミン類;及びこれらの三級アミン類をフェノールやオクチル酸、四級化テトラフェニルボレート塩等でアミン塩にした化合物;トリアリルスルフォニウムヘキサフルオロアンチモネートやジアリルヨードニウムヘキサフルオロアンチモナート等のカチオン触媒;トリフェニルフォスフィン等が挙げられる。これらのうち、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7や1,5-ジアザビシクロ(4,3,0)-ノネン-5、6-ジブチルアミノ-1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等の三級アミン類;及びこれらの三級アミン類をフェノールやオクチル酸、四級化テトラフェニルボレート塩等でアミン塩にした化合物が、熱硬化性及び耐熱性、金属への接着性、配合後の保存安定性の点で好ましい。これらの触媒は、1種又は2種以上を用いることができる。 Examples of catalysts include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, and the like. Imidazole compounds; triethylamine, triethylenediamine, N'-methyl-N-(2-dimethylaminoethyl)piperazine, 1,8-diazabicyclo(5,4,0)-undecene-7, 1,5-diazabicyclo(4, 3,0)-nonene-5,6-dibutylamino-1,8-diazabicyclo(5,4,0)-undecene-7 and other tertiary amines; compounds converted into amine salts with quaternized tetraphenylborate salts; cationic catalysts such as triallylsulfonium hexafluoroantimonate and diallyiodonium hexafluoroantimonate; and triphenylphosphine. Among these, 1,8-diazabicyclo(5,4,0)-undecene-7 and 1,5-diazabicyclo(4,3,0)-nonene-5,6-dibutylamino-1,8-diazabicyclo(5 ,4,0)-undecene-7 and other tertiary amines; and compounds obtained by converting these tertiary amines into amine salts with phenol, octylic acid, quaternary tetraphenylborate salts, etc., are thermosetting and heat-resistant. It is preferable in terms of properties, adhesion to metals, and storage stability after compounding. These catalysts can be used alone or in combination of two or more.
 本発明の接着剤組成物が触媒を含有する場合、その配合量は、ポリエステル系樹脂(A)100重量部に対して0.01~1重量部であることが好ましい。この範囲であればポリエステル系樹脂(A)とポリエポキシ系化合物(B)との反応に対する触媒効果が一段と増し、強固な接着性能を得ることができる。 When the adhesive composition of the present invention contains a catalyst, the content thereof is preferably 0.01 to 1 part by weight per 100 parts by weight of the polyester resin (A). Within this range, the catalytic effect on the reaction between the polyester-based resin (A) and the polyepoxy-based compound (B) is further increased, and strong adhesion performance can be obtained.
[溶剤]
 本発明の接着剤組成物には、接着剤組成物の粘度を適度に調整し、塗膜を形成する際の取り扱いを容易にするために、溶剤を配合してもよい。溶剤は、接着剤組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。
[solvent]
A solvent may be added to the adhesive composition of the present invention in order to appropriately adjust the viscosity of the adhesive composition and to facilitate handling when forming a coating film. The solvent is used to ensure handleability and workability in molding the adhesive composition, and the amount used is not particularly limited.
 溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル等のエステル類;エチレングリコールモノメチルエーテル等のエーテル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;メタノール、エタノール等のアルコール類;ヘキサン、シクロヘキサン等のアルカン類;トルエン、キシレン等の芳香族類等が挙げられる。溶剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Examples of solvents include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate; ethers such as ethylene glycol monomethyl ether; amides such as dimethylacetamide; alcohols such as methanol and ethanol; alkanes such as hexane and cyclohexane; aromatics such as toluene and xylene, and the like. Only one kind of solvent may be used, or two or more kinds may be mixed and used in any combination and ratio.
[その他の成分]
 本発明の接着剤組成物には、その機能性の更なる向上を目的として、上記に挙げた成分以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、シランカップリング剤等のカップリング剤、紫外線防止剤、酸化防止剤、可塑剤、フラックス、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤、レベリング剤、触媒等が挙げられる。
[Other ingredients]
The adhesive composition of the present invention may contain components other than those listed above for the purpose of further improving its functionality. Other components include, for example, coupling agents such as silane coupling agents, UV inhibitors, antioxidants, plasticizers, fluxes, flame retardants, colorants, dispersants, emulsifiers, elasticity reducing agents, diluents, Antifoaming agents, ion trapping agents, leveling agents, catalysts and the like are included.
 本発明の接着剤組成物がこれらのその他の成分を含有する場合、その他の成分の含有量は、好ましくは40重量%以下であり、より好ましくは0.05~30重量%、更に好ましくは0.1~20重量%、特に好ましくは0.2~10重量%である。 When the adhesive composition of the present invention contains these other components, the content of the other components is preferably 40% by weight or less, more preferably 0.05 to 30% by weight, and still more preferably 0% by weight. .1 to 20% by weight, particularly preferably 0.2 to 10% by weight.
[接着剤組成物の誘電特性]
<誘電正接(Df)>
 本発明の接着剤組成物の硬化物の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける誘電正接(Df)は、0.005以下であり、好ましくは0.004以下、より好ましくは0.0038以下、更に好ましくは0.0036以下、より更に好ましくは0.0034以下、特に好ましくは0.0032以下、とりわけ好ましくは0.0030以下、最も好ましくは0.0028以下である。上記誘電正接が高すぎると積層体に用いた際の伝送損失が大きくなる。
[Dielectric Properties of Adhesive Composition]
<Dielectric loss tangent (Df)>
The cured product of the adhesive composition of the present invention has a dielectric loss tangent (Df) of 0.005 or less, preferably 0.004 or less, and more preferably at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH. is 0.0038 or less, more preferably 0.0036 or less, still more preferably 0.0034 or less, particularly preferably 0.0032 or less, particularly preferably 0.0030 or less, and most preferably 0.0028 or less. If the dielectric loss tangent is too high, the transmission loss will increase when used in a laminate.
<比誘電率(Dk)>
 本発明の接着剤組成物の硬化物の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける比誘電率(Dk)は、3.0以下が好ましく、より好ましくは2.9以下、更に好ましくは2.8以下、特に好ましくは2.7以下である。上記比誘電率が高すぎると積層体に用いた際の伝送速度が劣ったり伝送損失が大きくなる傾向がある。
<Dielectric constant (Dk)>
The cured product of the adhesive composition of the present invention has a dielectric constant (Dk) of preferably 3.0 or less, more preferably 2.9 or less, at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH. It is more preferably 2.8 or less, particularly preferably 2.7 or less. If the dielectric constant is too high, the transmission speed tends to be low and the transmission loss tends to increase when used in a laminate.
 本発明の接着剤組成物の硬化物の誘電正接及び比誘電率の測定方法はネットワークアナライザを用いた空洞共振器摂動法により求めることができる。接着剤組成物の粘着性が強く単独での測定サンプルの作製が困難な場合は、フィルムにサンドした状態で測定し、フィルム分を差し引くことで接着剤組成物単独の誘電特性を算出することもできる。 The method for measuring the dielectric loss tangent and the dielectric constant of the cured product of the adhesive composition of the present invention can be obtained by the cavity resonator perturbation method using a network analyzer. If the adhesion of the adhesive composition is too strong to prepare a measurement sample by itself, it is also possible to measure with the film sandwiched and subtract the film component to calculate the dielectric properties of the adhesive composition alone. can.
 誘電正接、更には比誘電率が上記上限以下となる、誘電特性に優れた接着剤組成物を得るための方法としては、以下のような方法が挙げられる。
 (1)誘電正接、誘電率の低いポリエステル系樹脂(A)を使用する。
 (2)誘電特性を悪化させる極性基の少ない配合設計にする。
 (3)フィラー(C)として低誘電フィラーを併用する。
Examples of methods for obtaining an adhesive composition having excellent dielectric properties such that the dielectric loss tangent and the dielectric constant are equal to or less than the above upper limits include the following methods.
(1) A polyester-based resin (A) having a low dielectric loss tangent and a low dielectric constant is used.
(2) Designing a composition with few polar groups that deteriorate the dielectric properties.
(3) A low dielectric filler is also used as the filler (C).
[接着層]
 本発明の接着剤組成物を硬化することにより得られる接着層は、初期接着性、低吸湿性、湿熱環境下での長期耐久性に優れるという効果を奏する。
[Adhesion layer]
The adhesive layer obtained by curing the adhesive composition of the present invention exhibits the effects of being excellent in initial adhesiveness, low hygroscopicity, and long-term durability under moist and heat environments.
 本発明における「硬化」とは熱及び/又は光等により接着剤組成物を意図的に硬化させることを意味し、その硬化の程度は所望の物性、用途により制御することができる。硬化の程度は接着剤のゲル分率によって確認することができ、好ましくはゲル分率が50%以上、より好ましくは60%以上、特に好ましくは70%以上、更に好ましくは75%以上である。ゲル分率が低すぎると耐熱性や湿熱環境下での長期耐久性が不充分となる傾向がある。
 上記のゲル分率とは、接着剤組成物の硬化物をメチルエチルケトン中に23℃×24時間浸漬し、浸漬前の硬化物重量に対する不溶解の硬化物成分の重量百分率を意味する。
"Curing" in the present invention means intentionally curing the adhesive composition with heat and/or light, etc., and the degree of curing can be controlled according to desired physical properties and applications. The degree of curing can be confirmed by the gel fraction of the adhesive, which is preferably 50% or more, more preferably 60% or more, particularly preferably 70% or more, and still more preferably 75% or more. If the gel fraction is too low, the heat resistance and long-term durability in a moist and hot environment tend to be insufficient.
The above-mentioned gel fraction means the weight percentage of the undissolved cured product component relative to the weight of the cured product obtained by immersing the cured product of the adhesive composition in methyl ethyl ketone at 23° C. for 24 hours before immersion.
 本発明の接着剤組成物を硬化又は半硬化させる際の接着剤組成物の硬化方法は、接着剤組成物中の配合成分や配合量によっても異なるが、通常80~200℃で10分~10時間の加熱条件が挙げられる。 The curing method of the adhesive composition when curing or semi-curing the adhesive composition of the present invention varies depending on the ingredients and amounts in the adhesive composition, but is usually 80 to 200° C. for 10 minutes to 10 minutes. heating conditions of hours.
[用途]
 本発明の接着剤組成物は、初期接着性、低吸湿性、湿熱環境下での長期耐久性に優れるので、樹脂や金属等の各種材料からなる基材の接着に有効であり、特に、金属層とプラスチック層との積層板を作製するための接着剤、例えば、後述の電子材料部材の貼り合せに用いられる接着剤に好適である。
[Use]
Since the adhesive composition of the present invention is excellent in initial adhesiveness, low moisture absorption, and long-term durability in a moist and heat environment, it is effective for bonding substrates made of various materials such as resins and metals. It is suitable as an adhesive for producing a laminated plate of a layer and a plastic layer, for example, an adhesive used for bonding electronic material members to be described later.
〔積層体〕
 本発明の積層体は、基材あるいは導体層の少なくとも一方の面に接着層を有する積層体であって、前記接着層が、ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)、及びフィラー(C)を含有する接着剤組成物の硬化物であり、前記接着層(以下、「本発明の接着層」と称す場合がある。)が特定の誘電正接(Df)を示すものである。
[Laminate]
The laminate of the present invention is a laminate having an adhesive layer on at least one surface of a substrate or a conductor layer, wherein the adhesive layer comprises a polyester resin (A), a polyepoxy compound (B), and a filler. It is a cured product of an adhesive composition containing (C), and the adhesive layer (hereinafter sometimes referred to as the "adhesive layer of the present invention") exhibits a specific dielectric loss tangent (Df).
[接着剤組成物]
 本発明の積層体の接着層を構成する接着剤組成物としては、前述の本発明の接着剤組成物を用いることができ、その接着層形成のための硬化方法についても前述の通りである。
[Adhesive composition]
As the adhesive composition constituting the adhesive layer of the laminate of the present invention, the above-described adhesive composition of the present invention can be used, and the curing method for forming the adhesive layer is also as described above.
[接着層の誘電特性]
<誘電正接(Df)>
 本発明の接着層の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける誘電正接(Df)は、0.005以下であり、好ましくは0.004以下、より好ましくは0.0038以下、更に好ましくは0.0036以下、より更に好ましくは0.0034以下、特に好ましくは0.0032以下、とりわけ好ましくは0.0030以下、最も好ましくは0.0028以下である。上記誘電正接が高すぎると積層体の伝送損失が大きくなる。
[Dielectric properties of adhesive layer]
<Dielectric loss tangent (Df)>
The dielectric loss tangent (Df) of the adhesive layer of the present invention at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH is 0.005 or less, preferably 0.004 or less, more preferably 0.0038 or less. , more preferably 0.0036 or less, still more preferably 0.0034 or less, particularly preferably 0.0032 or less, particularly preferably 0.0030 or less, and most preferably 0.0028 or less. If the dielectric loss tangent is too high, the transmission loss of the laminate will increase.
<比誘電率(Dk)>
 本発明の接着層の温度23℃、相対湿度50%RH環境下での周波数10GHzにおける比誘電率(Dk)は、3.0以下が好ましく、より好ましくは2.9以下、更に好ましくは2.8以下、特に好ましくは2.7以下である。上記比誘電率が高すぎると積層体の伝送速度が劣ったり伝送損失が大きくなる傾向がある。
<Dielectric constant (Dk)>
The dielectric constant (Dk) of the adhesive layer of the present invention at a frequency of 10 GHz under an environment of a temperature of 23° C. and a relative humidity of 50% RH is preferably 3.0 or less, more preferably 2.9 or less, still more preferably 2.9. 8 or less, particularly preferably 2.7 or less. If the dielectric constant is too high, the transmission speed of the laminate tends to be low and the transmission loss tends to increase.
 本発明の接着層の誘電正接及び比誘電率は、前述の本発明の接着剤組成物の硬化物の測定方法と同様の方法で測定することができる。 The dielectric loss tangent and dielectric constant of the adhesive layer of the present invention can be measured by the same method as the method for measuring the cured product of the adhesive composition of the present invention described above.
 誘電正接、更には比誘電率が上記上限以下となる、誘電特性に優れた接着層を得るための方法については、本発明の接着剤組成物について、誘電特性に優れた接着剤組成物を得られるための方法として前述した通りであり、本発明の接着層を形成する接着剤組成物について、以下のような方法が挙げられる。
 (1)接着剤組成物に、誘電正接、誘電率の低いポリエステル系樹脂(A)を使用する。
 (2)接着剤組成物を誘電特性を悪化させる極性基の少ない配合設計にする。
 (3)フィラー(C)として低誘電フィラーを併用する。
With respect to the method for obtaining an adhesive layer having excellent dielectric properties in which the dielectric loss tangent and the dielectric constant are equal to or less than the above upper limits, the adhesive composition of the present invention having excellent dielectric properties can be obtained. The method for forming the adhesive layer of the present invention is as described above.
(1) A polyester-based resin (A) having a low dielectric loss tangent and a low dielectric constant is used in the adhesive composition.
(2) The adhesive composition is designed to contain few polar groups that deteriorate the dielectric properties.
(3) A low dielectric filler is also used as the filler (C).
[接着層の厚さ]
 本発明の接着層の厚さは、積層体の用途等によっても異なるが、通常1~200μmである。
[Thickness of adhesive layer]
The thickness of the adhesive layer of the present invention is usually 1 to 200 μm, although it varies depending on the application of the laminate.
[接着層の形成方法]
 本発明の接着層は、後述の基材あるいは導体層に、本発明の接着剤組成物を塗布することにより作製できる。より具体的には、基材あるいは導体層に樹脂組成物を塗布した後、一定の条件(温度:80~180℃、時間:2~30分)により半硬化状態(以下、Bステージともいう)になるまで乾燥させて接着層を得る。塗膜の厚さは、用途により異なるが、1~200μm程度でよい。塗布方法は、特に限定されず、例えば、コンマコーター、ダイコーター、グラビアコーター、ロールコーター等の方法が挙げられる。なお、完全硬化状態(Cステージ)の接着層は、Bステージの接着層を別の基材あるいは導体層とラミネーターまたはプレス機を用いて貼り合わせた後、一定の硬化条件(温度:80~200℃、圧力:0~3MPa、時間:10~600分)で処理することにより得ることができる。
 本発明の積層体は、本発明の接着層が、基材あるいは導体層の一方の面にのみ形成されたものであってもよく、両面に形成されたものであってもよい。
[Method for Forming Adhesive Layer]
The adhesive layer of the present invention can be produced by applying the adhesive composition of the present invention to a substrate or conductor layer, which will be described later. More specifically, after the resin composition is applied to the substrate or conductor layer, it is semi-cured (hereinafter also referred to as B stage) under certain conditions (temperature: 80 to 180 ° C., time: 2 to 30 minutes). to obtain an adhesive layer. The thickness of the coating film may be about 1 to 200 μm, depending on the application. The coating method is not particularly limited, and examples thereof include methods such as a comma coater, die coater, gravure coater, and roll coater. In addition, the adhesive layer in the completely cured state (C stage) is obtained by laminating the adhesive layer in the B stage with another base material or conductor layer using a laminator or a press, and then applying a certain curing condition (temperature: 80 to 200 ° C., pressure: 0 to 3 MPa, time: 10 to 600 minutes).
In the laminate of the present invention, the adhesive layer of the present invention may be formed only on one surface of the substrate or conductor layer, or may be formed on both surfaces.
[基材]
 本発明の積層体の基材としては特に制限はない。
 基材の具体例としては、例えば、ポリイミドフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、アラミドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、シリコーン離型処理紙、ポリオレフィン樹脂コート紙、ポリメチルペンテンフィルム、及びフッ素系樹脂フィルムなどが挙げられる。これらは本発明の積層体を後述のフレキシブル積層板として用いる場合に好ましい。
 これらの基材は、1種のみを用いてもよく、2種以上を用いてもよい。例えば、上記基材の2種以上を積層して用いてもよい。また、この場合において基材同士の間に本発明の接着層を形成してもよい。
[Base material]
The base material of the laminate of the present invention is not particularly limited.
Specific examples of the substrate include polyimide film, polyetheretherketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, and silicone release treated paper. , polyolefin resin-coated paper, polymethylpentene film, and fluororesin film. These are preferable when the laminate of the present invention is used as a flexible laminate, which will be described later.
Only one type of these base materials may be used, or two or more types may be used. For example, two or more of the above substrates may be laminated and used. Moreover, in this case, the adhesive layer of the present invention may be formed between the substrates.
 上記基材のうち、ポリイミドフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、アラミドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、及びフッ素系樹脂フィルムが好ましく、これらの中でも、接着性及び電気特性の観点から、ポリイミドフィルム、ポリエチレンナフタレートフィルム、及び液晶ポリマーフィルムがより好ましく、ポリイミドフィルム及び液晶ポリマーフィルムが更に好ましい。 Among the above substrates, polyimide film, polyether ether ketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and fluorine resin Films are preferred, and among these, polyimide films, polyethylene naphthalate films, and liquid crystal polymer films are more preferred, and polyimide films and liquid crystal polymer films are even more preferred, from the viewpoint of adhesiveness and electrical properties.
 基材の厚さについては特に制限はなく、積層体の用途や、用いる基材の材質などに応じて適宜設計されるが、積層体の薄肉化、フレキシブル化を図った上で、十分な機械的強度を得る観点から、1~500μm、特に3~100μm、とりわけ5~50μmの範囲であることが好ましい。 There are no particular restrictions on the thickness of the base material, and it is appropriately designed according to the application of the laminate and the material of the base material used. From the viewpoint of obtaining the desired strength, it is preferably in the range of 1 to 500 μm, particularly 3 to 100 μm, especially 5 to 50 μm.
[導体層]
 導体層を形成する導体としては、一般的な銅または銅合金、ステンレス鋼またはその合金、ニッケルまたはニッケル合金(42合金も含む)、アルミニウムまたはアルミニウム合金からなる箔を挙げることができる。一般的な回路基板材料では、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においても好ましく用いることができる。なお、これらの金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。また、上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。
 導体層は回路としてパターン状に形成されていてもよく、面状に形成されていてもよい。
[Conductor layer]
Examples of conductors forming the conductor layer include foils made of general copper or copper alloys, stainless steel or alloys thereof, nickel or nickel alloys (including 42 alloys), aluminum or aluminum alloys. Copper foils such as rolled copper foils and electrolytic copper foils are often used as general circuit board materials, and they can also be preferably used in the present invention. A rust preventive layer, a heat resistant layer, or an adhesive layer may be applied to the surface of these metal foils. Moreover, the thickness of the metal foil is not particularly limited, and may be any thickness that can exhibit sufficient functions according to the application.
The conductor layer may be formed in a pattern as a circuit, or may be formed in a plane.
 導体層の厚さは通常1~100μm程度である。 The thickness of the conductor layer is usually about 1 to 100 μm.
[その他の層]
 本発明の積層体は、本発明の接着層と上記基材あるいは導体層の他、その他の層を有していてもよい。
 その他の層としては、特に本発明の積層体を回路基板材料に適用する場合において、基材あるいは導体層であることが好ましい。
[Other layers]
The laminate of the present invention may have other layers in addition to the adhesive layer of the present invention and the substrate or conductor layer.
The other layer is preferably a base material or a conductor layer, particularly when the laminate of the present invention is applied to a circuit board material.
 また、本発明の積層体は、本発明の接着層と接するように離型層を有していてもよい。
 離型層を形成する離型フィルムとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンフィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;ポリイミドフィルム;ポリカーボネートフィルム等を主成分とする樹脂フィルムを用いることができる。
 離型フィルムの厚さは、1~300μmが好ましく、5~200μmがより好ましく、10~150μmが更に好ましく、20~120μmが特に好ましい。
 離型フィルムは、本発明の接着層と接する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。
Moreover, the laminate of the present invention may have a release layer so as to be in contact with the adhesive layer of the present invention.
Examples of the release film that forms the release layer include polyolefin films such as polyethylene and polypropylene; polyester films such as polyethylene terephthalate and polyethylene naphthalate; polyimide films; can.
The thickness of the release film is preferably 1 to 300 μm, more preferably 5 to 200 μm, still more preferably 10 to 150 μm, particularly preferably 20 to 120 μm.
The release film may be subjected to matte treatment, corona treatment, or antistatic treatment on the surface in contact with the adhesive layer of the present invention.
 本発明の積層体は、その他、上記以外の接着層や絶縁層、導体層の1種又は2種以上を有していてもよい。 In addition, the laminate of the present invention may have one or more of an adhesive layer, an insulating layer, and a conductor layer other than the above.
[用途]
 本発明の積層体の用途としては、例えば、フレキシブル銅張積層板、カバーレイ、ボンディングシート、樹脂付き銅箔等の電子材料部材が挙げられる。
 電子材料部材の貼り合せにより作製されるものとしては、例えば、フレキシブルプリント基板等のフレキシブル積層板、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、放熱基板等が挙げられる。その他、本発明の積層体は、回路基板の材料として用いることができるが、何らこれらに限定されるものではない。
 フレキシブル積層板は、例えば、「可撓性を有するフレキシブル基板/接着剤層/銅やアルミニウム、これらの合金等からなる導電性金属層」を順次積層した積層体であり、接着剤層を構成する接着剤として本発明の接着剤を用いることができる。フレキシブル積層板は、上記の各種層以外に、他の絶縁層、他の接着剤層、他の導電性金属層を更に含んでいてもよい。
[Use]
Applications of the laminate of the present invention include, for example, electronic material members such as flexible copper-clad laminates, coverlays, bonding sheets, and resin-coated copper foils.
Examples of products manufactured by laminating electronic material members include flexible laminates such as flexible printed circuit boards, multilayer printed wiring boards, laminates for electrical and electronic circuits such as capacitors, underfill materials, and 3D-LSI interconnects. A chip fill, an insulating sheet, a heat dissipation substrate, and the like can be mentioned. In addition, the laminate of the present invention can be used as a material for circuit boards, but is not limited to these.
A flexible laminate is, for example, a laminate obtained by sequentially laminating "flexible flexible substrate/adhesive layer/conductive metal layer made of copper, aluminum, alloys thereof, etc.", and constitutes the adhesive layer. The adhesive of the present invention can be used as an adhesive. In addition to the various layers described above, the flexible laminate may further include other insulating layers, other adhesive layers, and other conductive metal layers.
 本発明の積層体の一態様として、回路基板材料が挙げられる。
 また、本発明の積層体の別の態様として、フレキシブル銅張積層板、カバーレイフィルム、ボンディングシート、樹脂付き銅箔等が挙げられる。
One aspect of the laminate of the present invention is a circuit board material.
Further, another aspect of the laminate of the present invention includes a flexible copper-clad laminate, a coverlay film, a bonding sheet, a resin-coated copper foil, and the like.
[回路基板材料]
 本発明の積層体の一態様としての回路基板材料は、例えば次のような方法で製造できる。
 基材あるいは導体層上に本発明の接着層を形成し、更にこの上に導体あるいは基材を積層した後、フォトレジスト等を用いて回路を形成し、こうした層を必要数重ねる。
 基材と導体層との積層は、導電性金属箔を直接重ね合わせる方法であってもよく、本発明の接着剤組成物により導電性金属箔を接着する方法であってもよい。また、メッキやスパッタリングにより導電性金属層を形成する方法であってもよく、これらの方法を組み合わせて行ってもよい。
[Circuit board material]
A circuit board material as one aspect of the laminate of the present invention can be produced, for example, by the following method.
After forming the adhesive layer of the present invention on a base material or conductor layer, further laminating a conductor or base material thereon, a circuit is formed using a photoresist or the like, and the necessary number of such layers are stacked.
The lamination of the substrate and the conductor layer may be performed by directly laminating the conductive metal foils or by bonding the conductive metal foils with the adhesive composition of the present invention. Alternatively, a method of forming a conductive metal layer by plating or sputtering may be used, or a combination of these methods may be used.
 以下、実施例を挙げて本発明を更に具体的に説明する。本発明はその要旨を超えない限り以下の実施例に限定されるものではない。以下において、「部」、「%」とあるのは、重量基準を意味する。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the following, "parts" and "%" mean weight basis.
 多価カルボン酸類全体に対する芳香族多価カルボン酸類の割合(mol%)(表1-Bにおいては「芳香族酸含有量」と表記)、エステル結合濃度(mmol/g)、吸水率(%)、ガラス転移温度(Tg)(℃)、酸価(mgKOH/g)、ピークトップ分子量(Mp)、重量平均分子量(Mw)、誘電特性、COOHに対するエポキシ基の当量(エポキシ/COOH)については、本明細書の記載に従って測定を行なった。 Proportion of aromatic polycarboxylic acids to the total polycarboxylic acids (mol%) (referred to as "aromatic acid content" in Table 1-B), ester bond concentration (mmol/g), water absorption (%) , glass transition temperature (Tg) (° C.), acid value (mgKOH/g), peak top molecular weight (Mp), weight average molecular weight (Mw), dielectric properties, equivalent weight of epoxy group to COOH (epoxy/COOH), Measurements were performed as described herein.
[ポリエステル系樹脂の製造]
 下記表1-Aに記載された組成(モル比)は、出来上がりの組成比(樹脂組成比)であり、得られたポリエステル系樹脂の各構成モノマー量の相対比(モル比)である。
[Manufacturing of polyester resin]
The composition (molar ratio) shown in Table 1-A below is the finished composition ratio (resin composition ratio), and is the relative ratio (molar ratio) of the amount of each constituent monomer of the obtained polyester resin.
<製造例1:ポリエステル系樹脂(A-1)の製造>
 温度計、撹拌機、精留塔、窒素導入管の付いた反応缶に、多価カルボン酸類としてテレフタル酸(TPA)53.8部(0.3238モル)、イソフタル酸(IPA)212.7部(1.2802モル)、トリメリット酸無水物(TMAn)3.1部(0.0161モル)、多価アルコール類として2-メチル-1,3-プロパンジオール(2MPG)58.4部(0.6480モル)、ネオペンチルグリコール(NPG)140.1部(1.3452モル)、ダイマージオール「プリポール2033」(P2033)(クローダ社製)102.9部(0.1944モル)、触媒としてテトラブチルチタネート0.1部を仕込み、内温が260℃となるまで2時間かけて昇温し、260℃で1.5時間、エステル化反応を行った。次いで、触媒としてテトラブチルチタネート0.1部を追加し、系内を2.5hPaまで減圧し、2時間かけて重合反応を行った。その後、内温を240℃まで下げ、トリメリット酸無水物(TMAn)9.0部(0.0468モル)を添加し240℃で1時間解重合反応を行い、ポリエステル系樹脂(A-1)を得た。
<Production Example 1: Production of polyester resin (A-1)>
A thermometer, a stirrer, a rectifying column, and a reactor equipped with a nitrogen inlet tube were charged with 53.8 parts (0.3238 mol) of terephthalic acid (TPA) and 212.7 parts of isophthalic acid (IPA) as polyvalent carboxylic acids. (1.2802 mol), trimellitic anhydride (TMAn) 3.1 parts (0.0161 mol), 2-methyl-1,3-propanediol (2MPG) 58.4 parts (0 .6480 mol), 140.1 parts (1.3452 mol) of neopentyl glycol (NPG), 102.9 parts (0.1944 mol) of dimer diol "PRIPOL 2033" (P2033) (manufactured by Croda), tetra 0.1 part of butyl titanate was charged, the temperature was raised over 2 hours until the internal temperature reached 260° C., and an esterification reaction was carried out at 260° C. for 1.5 hours. Then, 0.1 part of tetrabutyl titanate was added as a catalyst, the pressure in the system was reduced to 2.5 hPa, and the polymerization reaction was carried out over 2 hours. Thereafter, the inner temperature is lowered to 240° C., 9.0 parts (0.0468 mol) of trimellitic anhydride (TMAn) is added, and depolymerization reaction is performed at 240° C. for 1 hour to obtain a polyester resin (A-1). got
<製造例2:ポリエステル系樹脂(A-2)の製造>
 樹脂組成を表1-Aに記載のとおりになるよう変更した以外は製造例1と同様にしてポリエステル系樹脂(A-2)を得た。
<Production Example 2: Production of polyester resin (A-2)>
A polyester resin (A-2) was obtained in the same manner as in Production Example 1 except that the resin composition was changed as shown in Table 1-A.
 得られたポリエステル系樹脂(A-1),(A-2)の樹脂組成(成分由来の構造単位)及び諸物性について表1-A,Bに示す。なお、表1-A中、各略称は以下のとおりである。
「TPA」:テレフタル酸
「IPA」:イソフタル酸
「NDCM」:2,6-ナフタレンジカルボン酸ジメチル
「TMAn」:トリメリット酸無水物
「EG」:エチレングリコール
「2MPG」:2-メチル-1,3-プロパンジオール
「NPG」:ネオペンチルグリコール
「TCD-DM」:トリシクロデカンジメタノール
「P2033」:ダイマージオール「プリポール2033」(クローダ社製)
Tables 1-A and 1-B show the resin compositions (structural units derived from components) and physical properties of the obtained polyester resins (A-1) and (A-2). The abbreviations in Table 1-A are as follows.
"TPA": terephthalic acid "IPA": isophthalic acid "NDCM": dimethyl 2,6-naphthalenedicarboxylate "TMAn": trimellitic anhydride "EG": ethylene glycol "2MPG": 2-methyl-1,3 - Propanediol "NPG": Neopentyl glycol "TCD-DM": Tricyclodecanedimethanol "P2033": Dimer diol "Pripol 2033" (manufactured by Croda)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<ポリエポキシ系化合物(B)>
 ポリエポキシ系化合物(B)として、以下のものを用意した。
(B-1):メタキシレンジアミン型エポキシ樹脂「TETRAD-X」(三菱ガス化学社製)(WPE=98(g/eq))
(B-2):グリシジルアミン型エポキシ樹脂「jER-604」(三菱ケミカル社製)(WPE=118(g/eq))
(B-3):パラアミノフェノール型エポキシ樹脂「jER-630」(三菱ケミカル社製)(WPE=98(g/eq))
(B-4):フェノールノボラック型エポキシ樹脂「YDPN-638」(日鉄ケミカル&マテリアル社製)(WPE=177(g/eq))
<Polyepoxy compound (B)>
The following was prepared as a polyepoxy-based compound (B).
(B-1): Meta-xylenediamine type epoxy resin "TETRAD-X" (manufactured by Mitsubishi Gas Chemical Company, Inc.) (WPE = 98 (g/eq))
(B-2): Glycidylamine type epoxy resin "jER-604" (manufactured by Mitsubishi Chemical Corporation) (WPE = 118 (g/eq))
(B-3): para-aminophenol type epoxy resin "jER-630" (manufactured by Mitsubishi Chemical Corporation) (WPE = 98 (g/eq))
(B-4): Phenolic novolak type epoxy resin "YDPN-638" (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) (WPE = 177 (g / eq))
<フィラー(C)>
 フィラー(C)として、以下のものを用意した。
(C-1):合成マイカ「ミクロマイカMK-100」(片倉コープアグリ社製)(平均粒子径=6μm)
(C-2):フッ素系ポリマー粉末「EA-2000」(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)(AGC社製)(平均粒子径=2~3μm)
<Filler (C)>
As the filler (C), the following were prepared.
(C-1): Synthetic mica "Micromica MK-100" (manufactured by Katakura Co-op Agri) (average particle size = 6 µm)
(C-2): Fluorinated polymer powder "EA-2000" (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) (manufactured by AGC) (average particle size = 2 to 3 µm)
[接着剤組成物の製造]
 ポリエステル系樹脂(A-1)、ポリエポキシ系化合物(B)及びフィラー(C)を用いて、下記のとおり接着剤組成物を製造した。
[Manufacture of adhesive composition]
Using the polyester resin (A-1), the polyepoxy compound (B) and the filler (C), an adhesive composition was produced as follows.
<実施例1>
 ポリエステル系樹脂(A-1)溶液(固形分として100部)に対し、ポリエポキシ系化合物(B-1)(固形分)を3.2部、フィラー(C-1)を30部配合し、更にメチルエチルケトンで固形分40%になるように希釈、撹拌、混合することにより、接着剤組成物を得た。
<Example 1>
3.2 parts of the polyepoxy compound (B-1) (solid content) and 30 parts of the filler (C-1) are added to the polyester resin (A-1) solution (100 parts as solid content), Further, the mixture was diluted with methyl ethyl ketone to a solid content of 40%, stirred and mixed to obtain an adhesive composition.
<実施例2~6、比較例1~3>
 実施例1において、表2に示すとおりの樹脂組成とした以外は同様にして、接着剤組成物を得た。
<Examples 2 to 6, Comparative Examples 1 to 3>
An adhesive composition was obtained in the same manner as in Example 1, except that the resin composition was as shown in Table 2.
 得られた接着剤組成物を用いて以下のとおり評価を行った。その結果を表2,3に示す。 The obtained adhesive composition was evaluated as follows. The results are shown in Tables 2 and 3.
[積層体の作製]
 上記で調製した接着剤組成物を厚み50μmのポリイミドフィルム「カプトン200H」(東レ・デュポン社製)にアプリケーターで塗布した後、120℃で5分間乾燥し、乾燥膜厚25μmの接着層を形成した。次に厚み30μmの圧延銅箔を上記接着層付きポリイミドフィルムの接着層面とラミネート(ラミネート条件:170℃、0.2MPa、送り速度1.5m/min)し、次いで160℃のオーブンで4時間熱処理、硬化させることで積層体を得た。
 便宜上、圧延銅箔とラミネートした積層体(ポリイミドフィルム/接着層/圧延銅箔)を「PI/Cu」と表記する。
[Preparation of laminate]
The adhesive composition prepared above was applied to a 50 μm-thick polyimide film “Kapton 200H” (manufactured by Toray DuPont) with an applicator and then dried at 120° C. for 5 minutes to form an adhesive layer with a dry film thickness of 25 μm. . Next, a rolled copper foil having a thickness of 30 μm is laminated with the adhesive layer surface of the polyimide film with an adhesive layer (lamination conditions: 170 ° C., 0.2 MPa, feed rate 1.5 m / min), and then heat treated in an oven at 160 ° C. for 4 hours. , to obtain a laminate.
For convenience, a laminated body (polyimide film/adhesive layer/rolled copper foil) laminated with a rolled copper foil is referred to as "PI/Cu".
[評価]
<ゲル分率>
 上記で得られた接着層付きポリイミドフィルムを160℃で4時間熱処理し硬化させた後、4cm×4cmサイズに切り出した。これを200メッシュのSUS製金網で包み、メチルエチルケトン中に23℃×24時間浸漬し、浸漬前の接着剤重量に対する金網中に残存した不溶解の接着剤成分の重量百分率をゲル分率とした。
[evaluation]
<Gel fraction>
After the polyimide film with the adhesive layer obtained above was cured by heat treatment at 160° C. for 4 hours, it was cut into a size of 4 cm×4 cm. This was wrapped in a 200-mesh SUS wire mesh, immersed in methyl ethyl ketone at 23° C. for 24 hours, and the weight percentage of the undissolved adhesive component remaining in the wire mesh relative to the weight of the adhesive before immersion was defined as the gel fraction.
<分散性>
 上記で得られた接着層付きポリイミドフィルムを160℃で4時間熱処理し硬化させた後、得られた接着層について、樹脂の相溶性やフィラーの分散性を目視で確認した。
 評価基準は下記のとおりとした。
 A:分散・溶解し凝集物がみられない
 B:分散するが、目視で微細な凝集物がみられる
 C:分散するが、目視で凝集物が多数みられる
 D:分散しない
<Dispersibility>
After the polyimide film with the adhesive layer obtained above was cured by heat treatment at 160° C. for 4 hours, the obtained adhesive layer was visually checked for resin compatibility and filler dispersibility.
The evaluation criteria were as follows.
A: Dispersed/dissolved and no aggregates are observed B: Dispersed, but fine aggregates are visually observed C: Dispersed, but a large number of aggregates are visually observed D: Not dispersed
<初期接着力>
 上記で得られたPI/Cuを1cm幅に切り出したものを試験片とした。両面テープを用いて試験片を厚み2mmのガラス板に固定し、23℃、50%RHの環境下で剥離試験機を用いて、試験片の引張剥離強度(N/cm)を測定した(剥離速度:50mm/min、剥離角度:180°)。評価基準は下記のとおりとした。
 ◎:8N/cm以上
 ○:6N/cm以上、8N/cm未満
 △:4N/cm以上、6N/cm未満
 ×:4N/cm未満
<Initial adhesive strength>
A test piece was prepared by cutting the PI/Cu obtained above into a width of 1 cm. The test piece was fixed to a glass plate with a thickness of 2 mm using double-sided tape, and the tensile peel strength (N / cm) of the test piece was measured using a peel tester in an environment of 23 ° C. and 50% RH (peel speed: 50 mm/min, peeling angle: 180°). The evaluation criteria were as follows.
◎: 8 N / cm or more ○: 6 N / cm or more, less than 8 N / cm △: 4 N / cm or more, less than 6 N / cm ×: less than 4 N / cm
<湿熱耐久性>
 上記と同様にして作製した試験片を85℃、85%RHの恒温恒湿機に入れ、所定時間後(240、500又は1000時間後)に取り出し、23℃、50%RHの環境下に一晩静置した後、上記の初期接着力と同様にして、引張剥離強度(N/cm)を測定した。初期の接着力に対する湿熱処理後の接着力の百分率を「維持率(%)」とした。
 接着力の絶対値については初期接着力と同様の評価基準を用いて評価した。
 接着力の維持率については下記の評価基準に基づいて評価した。
 ◎:維持率が80%以上
 ○:維持率が60%以上、80%未満
 △:維持率が40%以上、60%未満
 ×:維持率が40%未満
<Damp heat durability>
Place the test piece prepared in the same manner as above in a constant temperature and humidity machine at 85 ° C. and 85% RH, remove it after a predetermined time (after 240, 500 or 1000 hours), and place it in an environment of 23 ° C. and 50% RH. After standing overnight, the tensile peel strength (N/cm) was measured in the same manner as the initial adhesive strength described above. The percentage of the adhesive strength after wet heat treatment to the initial adhesive strength was defined as "retention rate (%)".
The absolute value of adhesive strength was evaluated using the same evaluation criteria as those for the initial adhesive strength.
The adhesive force retention rate was evaluated based on the following evaluation criteria.
◎: retention rate of 80% or more ○: retention rate of 60% or more and less than 80% △: retention rate of 40% or more and less than 60% ×: retention rate of less than 40%
<誘電率(Dk)・誘電正接(Df)>
 上記で調製した接着剤組成物を厚み38μmのPETフィルムにアプリケーターで塗布した後、120℃で5分間乾燥し、次いで160℃のオーブンで4時間熱処理、硬化させることにより作製した厚み50μmの硬化フィルムについて、10GHzでの値をネットワークアナライザを用いた空洞共振器摂動法により求めた。
<Dielectric constant (Dk)/dielectric loss tangent (Df)>
The adhesive composition prepared above was applied to a PET film having a thickness of 38 μm with an applicator, dried at 120° C. for 5 minutes, and then heat-treated and cured in an oven at 160° C. for 4 hours to prepare a cured film having a thickness of 50 μm. was determined at 10 GHz by the cavity resonator perturbation method using a network analyzer.
<伝送損失>
 積層体の伝送損失は導体損失と誘電損失の和からなり、誘電損失は誘電体層の誘電率(Dk)の平方根と誘電正接(Df)に比例する。
 そこで、伝送損失への影響評価として、伝送損失の誘電損失項の係数Eを下記の式とおき、10GHzでの誘電率(Dk)と誘電正接(Df)から、その値を算出した。
 E=(Dk)1/2×Df
 評価基準は下記のとおりとした。評価A及びBであれば、積層体の伝送損失が良好になる。
 A:E ≦ 0.004
 B:0.004 < E ≦ 0.007
 C:0.007 < E ≦ 0.009
 D:0.009 < E 
<Transmission loss>
The transmission loss of the laminate consists of the sum of the conductor loss and the dielectric loss, and the dielectric loss is proportional to the square root of the dielectric constant (Dk) and dielectric loss tangent (Df) of the dielectric layer.
Therefore, as an evaluation of the effect on transmission loss, the coefficient E of the dielectric loss term of transmission loss was set to the following formula, and the value was calculated from the dielectric constant (Dk) and the dielectric loss tangent (Df) at 10 GHz.
E = (Dk) 1/2 x Df
The evaluation criteria were as follows. With evaluations A and B, the transmission loss of the laminate is good.
A: E ≤ 0.004
B: 0.004 < E ≤ 0.007
C: 0.007 < E ≤ 0.009
D: 0.009 < E
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、本発明の積層体及び本発明の接着剤組成物によれば、低伝送損失であり、湿熱耐久試験前後での接着力の維持率が高い接着層を有する積層体を提供することができることが分かる。 From the above results, according to the laminate of the present invention and the adhesive composition of the present invention, it is possible to provide a laminate having an adhesive layer with a low transmission loss and a high adhesive strength maintenance rate before and after the wet heat durability test. I know it can be done.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年12月6日付で出願された日本特許出願2021-197875、日本特許出願2021-197876及び日本特許出願2021-197877に基づいており、その全体が引用により援用される。

 
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2021-197875, Japanese Patent Application 2021-197876 and Japanese Patent Application 2021-197877 filed on December 6, 2021, the entirety of which is incorporated by reference.

Claims (18)

  1.  基材あるいは導体層の少なくとも一方の面に接着層を有する積層体であって、
     前記接着層が、ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)、及びフィラー(C)を含有する接着剤組成物の硬化物であり、
     前記接着層の10GHzにおける誘電正接(Df)(温度23℃、相対湿度50%RH環境下)が0.005以下である、積層体。
    A laminate having an adhesive layer on at least one surface of a substrate or a conductor layer,
    The adhesive layer is a cured product of an adhesive composition containing a polyester resin (A), a polyepoxy compound (B), and a filler (C),
    A laminate in which the dielectric loss tangent (Df) of the adhesive layer at 10 GHz (under an environment of a temperature of 23° C. and a relative humidity of 50% RH) is 0.005 or less.
  2.  前記フィラー(C)がフッ素系ポリマー粉末(C1)及び/または粘土鉱物(C2)を含有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the filler (C) contains fluoropolymer powder (C1) and/or clay mineral (C2).
  3.  前記接着剤組成物の前記ポリエポキシ系化合物(B)の含有量が、前記ポリエステル系樹脂(A)のカルボキシ基に対する前記ポリエポキシ系化合物(B)のエポキシ当量が0.8以上2未満となる量である、請求項1又は2に記載の積層体。 The content of the polyepoxy compound (B) in the adhesive composition is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more and less than 2. The laminate according to claim 1 or 2, which is an amount.
  4.  前記ポリエステル系樹脂(A)の酸価が3mgKOH/g以上で、ガラス転移温度が-5℃以上である、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the polyester resin (A) has an acid value of 3 mgKOH/g or more and a glass transition temperature of -5°C or more.
  5.  前記ポリエステル系樹脂(A)が、多価カルボン酸類由来の構造単位と多価アルコール類由来の構造単位とを含有する、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the polyester resin (A) contains structural units derived from polyhydric carboxylic acids and structural units derived from polyhydric alcohols.
  6.  前記ポリエステル系樹脂(A)が、前記多価カルボン酸類由来の構造単位として、芳香族多価カルボン酸類由来の構造単位を含有する、請求項5に記載の積層体。 The laminate according to claim 5, wherein the polyester-based resin (A) contains a structural unit derived from an aromatic polycarboxylic acid as the structural unit derived from the polyvalent carboxylic acid.
  7.  前記接着剤組成物の前記フィラー(C)の含有量が、前記ポリエステル系樹脂(A)100重量部に対して1~100重量部である、請求項1~6のいずれか一項に記載の積層体。 The content of the filler (C) in the adhesive composition is 1 to 100 parts by weight with respect to 100 parts by weight of the polyester resin (A), according to any one of claims 1 to 6. laminate.
  8.  前記基材が、ポリイミドフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンサルファイドフィルム、アラミドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、シリコーン離型処理紙、ポリオレフィン樹脂コート紙、ポリメチルペンテンフィルム、及びフッ素系樹脂フィルムよりなる群から選択される少なくとも1種である、請求項1~7のいずれか一項に記載の積層体。 The base material is polyimide film, polyether ether ketone film, polyphenylene sulfide film, aramid film, polyethylene naphthalate film, liquid crystal polymer film, polyethylene terephthalate film, polyethylene film, polypropylene film, silicone release treated paper, polyolefin resin coated paper. The laminate according to any one of claims 1 to 7, which is at least one selected from the group consisting of , polymethylpentene film, and fluororesin film.
  9.  更に導体を積層してなる、請求項1~8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, which is further laminated with a conductor.
  10.  請求項1~9のいずれか一項に記載の積層体を有する回路基板材料。 A circuit board material having the laminate according to any one of claims 1 to 9.
  11.  ポリエステル系樹脂(A)、ポリエポキシ系化合物(B)、及びフィラー(C)を含有する接着剤組成物であって、
     前記接着剤組成物の硬化物の10GHzにおける誘電正接(Df)(温度23℃、相対湿度50%RH環境下)が0.005以下である、接着剤組成物。
    An adhesive composition containing a polyester resin (A), a polyepoxy compound (B), and a filler (C),
    An adhesive composition having a dielectric loss tangent (Df) at 10 GHz (at a temperature of 23° C. and a relative humidity of 50% RH) of 0.005 or less for a cured product of the adhesive composition.
  12.  前記フィラー(C)がフッ素系ポリマー粉末(C1)及び/または粘土鉱物(C2)を含有する、請求項11に記載の接着剤組成物。 The adhesive composition according to claim 11, wherein the filler (C) contains fluoropolymer powder (C1) and/or clay mineral (C2).
  13.  前記ポリエポキシ系化合物(B)の含有量が、前記ポリエステル系樹脂(A)のカルボキシ基に対する前記ポリエポキシ系化合物(B)のエポキシ当量が0.8以上2未満となる量である、請求項11又は12に記載の接着剤組成物 The content of the polyepoxy compound (B) is such that the epoxy equivalent of the polyepoxy compound (B) to the carboxy group of the polyester resin (A) is 0.8 or more and less than 2. The adhesive composition according to 11 or 12
  14.  前記ポリエステル系樹脂(A)の酸価が3mgKOH/g以上で、ガラス転移温度が-5℃以上である、請求項11~13のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 11 to 13, wherein the polyester resin (A) has an acid value of 3 mgKOH/g or more and a glass transition temperature of -5°C or more.
  15.  前記ポリエステル系樹脂(A)の酸価が5mgKOH/g以上で、ガラス転移温度が-5℃以上である、請求項14に記載の接着剤組成物。 The adhesive composition according to claim 14, wherein the polyester resin (A) has an acid value of 5 mgKOH/g or more and a glass transition temperature of -5°C or more.
  16.  前記ポリエステル系樹脂(A)が、多価カルボン酸類由来の構造単位と多価アルコール類由来の構造単位とを含有する、請求項11~15のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 11 to 15, wherein the polyester resin (A) contains structural units derived from polyhydric carboxylic acids and structural units derived from polyhydric alcohols.
  17.  前記ポリエステル系樹脂(A)が、前記多価カルボン酸類由来の構造単位として、芳香族多価カルボン酸類由来の構造単位を含有する、請求項16に記載の接着剤組成物。 The adhesive composition according to claim 16, wherein the polyester-based resin (A) contains a structural unit derived from an aromatic polycarboxylic acid as the structural unit derived from the polyvalent carboxylic acid.
  18.  前記フィラー(C)の含有量が、前記ポリエステル系樹脂(A)100重量部に対して1~100重量部である、請求項11~17のいずれか一項に記載の接着剤組成物。

     
    The adhesive composition according to any one of claims 11 to 17, wherein the content of said filler (C) is 1 to 100 parts by weight with respect to 100 parts by weight of said polyester resin (A).

PCT/JP2022/044397 2021-12-06 2022-12-01 Layered body, adhesive agent composition, and circuit board material WO2023106206A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280062333.XA CN117940528A (en) 2021-12-06 2022-12-01 Laminate, adhesive composition, and circuit board material
JP2023566274A JPWO2023106206A1 (en) 2021-12-06 2022-12-01
KR1020247004732A KR20240033256A (en) 2021-12-06 2022-12-01 Laminates, adhesive compositions and circuit board materials

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021197877 2021-12-06
JP2021-197876 2021-12-06
JP2021197876 2021-12-06
JP2021-197875 2021-12-06
JP2021-197877 2021-12-06
JP2021197875 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023106206A1 true WO2023106206A1 (en) 2023-06-15

Family

ID=86730293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044397 WO2023106206A1 (en) 2021-12-06 2022-12-01 Layered body, adhesive agent composition, and circuit board material

Country Status (4)

Country Link
JP (1) JPWO2023106206A1 (en)
KR (1) KR20240033256A (en)
TW (1) TW202330279A (en)
WO (1) WO2023106206A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193965A (en) * 2013-03-29 2014-10-09 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2017031301A (en) * 2015-07-31 2017-02-09 東洋インキScホールディングス株式会社 Thermosetting adhesive sheet and application thereof
WO2018179707A1 (en) * 2017-03-28 2018-10-04 東洋紡株式会社 Carboxylic acid group-containing polyester adhesive composition
JP2021066865A (en) * 2019-10-23 2021-04-30 三菱ケミカル株式会社 Adhesive composition and adhesive
JP2021088649A (en) * 2019-12-03 2021-06-10 ナガセケムテックス株式会社 Thermosetting resin composition
JP2021134344A (en) * 2020-02-21 2021-09-13 三菱ケミカル株式会社 Adhesive composition and adhesive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924162B2 (en) 2001-12-17 2007-06-06 ユニチカ株式会社 Copolyester and adhesive composition
TW202134381A (en) 2019-10-23 2021-09-16 日商三菱化學股份有限公司 Adhesive composition for flexible printed wiring board, adhesive for flexible printed wiring board, and flexible printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193965A (en) * 2013-03-29 2014-10-09 Nippon Steel & Sumikin Chemical Co Ltd High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2017031301A (en) * 2015-07-31 2017-02-09 東洋インキScホールディングス株式会社 Thermosetting adhesive sheet and application thereof
WO2018179707A1 (en) * 2017-03-28 2018-10-04 東洋紡株式会社 Carboxylic acid group-containing polyester adhesive composition
JP2021066865A (en) * 2019-10-23 2021-04-30 三菱ケミカル株式会社 Adhesive composition and adhesive
JP2021088649A (en) * 2019-12-03 2021-06-10 ナガセケムテックス株式会社 Thermosetting resin composition
JP2021134344A (en) * 2020-02-21 2021-09-13 三菱ケミカル株式会社 Adhesive composition and adhesive

Also Published As

Publication number Publication date
KR20240033256A (en) 2024-03-12
TW202330279A (en) 2023-08-01
JPWO2023106206A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP5050429B2 (en) Polyester resin composition and adhesive containing the same
JP7156267B2 (en) Carboxylic acid group-containing polyester adhesive composition
KR101660083B1 (en) Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
JP7211403B2 (en) Adhesive composition and adhesive
WO2015046032A1 (en) Polyurethane resin composition and adhesive composition, laminate, and printed wiring board using same
KR20110099763A (en) Resin composition for adhesive, adhesive comprising same, adhesive sheet, and printed wiring board including same as adhesive layer
JP7014296B2 (en) Adhesive composition containing dimerdiol copolymerized polyimide urethane resin
JP7334827B2 (en) Adhesive composition and adhesive
JP2023181334A (en) Resin composition, bonding film, laminate with resin composition layer, laminate, and electromagnetic shield film
WO2021079670A1 (en) Adhesive composition for flexible printed wiring board, adhesive for flexible printed wiring board, and flexible printed wiring board
JP7279842B2 (en) Polyester resin, adhesive composition and adhesive
JP6380710B1 (en) Carboxylic acid group-containing polymer compound and adhesive composition containing the same
WO2023106206A1 (en) Layered body, adhesive agent composition, and circuit board material
JP7156562B1 (en) Adhesive composition for flexible printed wiring board
CN117940528A (en) Laminate, adhesive composition, and circuit board material
JPWO2019244452A1 (en) Adhesive composition containing acrylonitrile butadiene rubber copolymerized polyamideimide resin
JP2024007384A (en) Adhesive agent composition and adhesive agent
JP2023146985A (en) Thermoplastic polyester composition, adhesive, resin film, laminate, coverlay film, copper foil with resin, metal clad laminate and circuit board
JP2023176914A (en) Adhesive composition and adhesive
CN114761491A (en) Resin composition, laminate with resin composition layer, laminate, flexible copper-clad laminate, flexible flat cable, and electromagnetic wave shielding film
JP2022164153A (en) Adhesive composition and adhesive composition for forming flat cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566274

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247004732

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004732

Country of ref document: KR