WO2023106097A1 - Reactive adhesive, laminated film, and packaging - Google Patents

Reactive adhesive, laminated film, and packaging Download PDF

Info

Publication number
WO2023106097A1
WO2023106097A1 PCT/JP2022/043264 JP2022043264W WO2023106097A1 WO 2023106097 A1 WO2023106097 A1 WO 2023106097A1 JP 2022043264 W JP2022043264 W JP 2022043264W WO 2023106097 A1 WO2023106097 A1 WO 2023106097A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive
reactive adhesive
polyol
acid
Prior art date
Application number
PCT/JP2022/043264
Other languages
French (fr)
Japanese (ja)
Inventor
常行 手島
寛知 永田
千勇 徳永
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023514036A priority Critical patent/JPWO2023106097A1/ja
Publication of WO2023106097A1 publication Critical patent/WO2023106097A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a reactive adhesive for laminated films suitable for recycled plastics, laminated films and packaging materials using the same.
  • Laminated films which are conventionally manufactured by the lamination method using adhesives, are not only intended for packaging, but also provide various high-performance functions such as barrier properties, moisture resistance, and retort resistance with a single packaging material. It has been developed and evolved to laminate films of different resin types in order to meet the demands. (See Patent Document 1, for example) However, in recent years, there have been voices that these different resin types of laminated films deteriorate the quality of recycled plastics, and there is a demand for highly functional and recyclable packaging materials.
  • a method for laminating laminated films there is a method in which each layer is formed by co-extrusion molding as described in paragraph 0070 of Patent Document 1, and a method in which each film is adhered with an adhesive to obtain a laminated film.
  • a laminated film laminated using a thermosetting reactive adhesive obtained by a reaction between an isocyanate compound and a polyol compound has strong lamination adhesive strength because the adhesive layer after the reaction is crosslinked, heat resistance, It is excellent in chemical resistance and oil resistance, and is used, for example, as a retort food packaging material that requires retort resistance (see, for example, Patent Document 2).
  • a laminated flexible film that consists of only a polyolefin film as a thermosetting reactive adhesive through the reaction of an isocyanate compound and a polyol compound may not have the strength, especially the tensile elongation, of recycled plastic after recycling. rice field.
  • JP 2020-55176 A Japanese Patent Application Laid-Open No. 2001-335771
  • the object of the present invention is to provide a reactive adhesive that can be applied to laminated flexible films composed only of polyolefin films, and that can maintain the strength, particularly the tensile elongation, of recycled plastics.
  • the present invention provides a reactive adhesive that satisfies (1) and (2).
  • a polyolefin resin and a reactive adhesive are blended in the range of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 ⁇ m or less.
  • (2) E′ at 200° C. of the cured coating film of the reactive adhesive cured at 40° C. for 72 hours is in the range of 1.0 ⁇ 10 5 to 3.0 ⁇ 10 6 ;
  • the present invention also provides a laminated film obtained by laminating and adhering base films made of a plurality of olefinic resins with a reactive adhesive, wherein the reactive adhesive is the reactive adhesive described above. .
  • the present invention also provides a packaging material comprising the laminated film described above.
  • the present invention can be applied to laminated flexible films composed only of polyolefin films, and the strength of recycled plastics, especially tensile elongation, can be maintained.
  • the reactive adhesive of the present invention is characterized by satisfying (1) and (2).
  • a polyolefin resin and a reactive adhesive are blended in the range of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 ⁇ m or less.
  • (2) E′ at 200° C. of the cured coating film of the reactive adhesive cured at 40° C. for 72 hours is in the range of 1.0 ⁇ 10 5 to 3.0 ⁇ 10 6 ;
  • the general recycling method for waste plastics is to manually sort the collected waste plastics by type to a certain extent, and then undergo processes such as crushing, washing, melting, and extrusion to make recycled plastics.
  • laminated films laminated using a thermosetting reactive adhesive or the like by the reaction of an isocyanate compound and a polyol compound have a strong laminating adhesive strength, so the adhesive cannot be easily removed by hand. It cannot be separated from film. Therefore, the reactive adhesive and the plastic resin (mostly polyolefin resin), which is the material of the laminated film, are mixed together and undergo the steps of crushing, washing, melting, extrusion, and the like.
  • (1) in the present invention simulates the "melting" process in this process.
  • the present inventors found that even if the adhesive is mixed in the polyolefin resin, which is the material of the laminated film, in the melting process, (1) in the present invention, that is, the polyolefin resin and the reactive adhesive are in the range of 96:4. and having a particle size of 20 ⁇ m or less after melt-kneading at 230° C. for 3 minutes, it was found that the strength, especially tensile elongation, of recycled plastics can be maintained.
  • (2) in the present invention simulates the "crushing" process in this process.
  • the adhesive is mixed in the polyolefin resin that is the material of the laminated film
  • (2) in the present invention that is, the cured coating film of the reactive adhesive cured at 40 ° C. for 72 hours at 200 ° C.
  • An adhesive with E′ in the range of 1.0 ⁇ 10 5 to 3.0 ⁇ 10 6 facilitates pulverization of the adhesive during melt-kneading, and in the melting step following the pulverization step, the adhesive It becomes possible to further reduce the particle size, and it becomes easier to reduce the particle size of the adhesive to 20 ⁇ m or less in (1) above. As a result, it is estimated that the tensile elongation of the obtained recycled plastic can be maintained.
  • a polyolefin resin and a reactive adhesive are blended in a ratio of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 ⁇ m or less.
  • the polyolefin resin used here refers to the raw material of the polyolefin resin film, which is frequently used for the laminated film produced by the lamination method, for which there is a high demand for recycling.
  • polyethylene films linear low-density polyethylene film
  • LDPE low-density polyethylene film
  • MDOPE machine direction oriented polyethylene film
  • BOPE biaxially oriented polyethylene film
  • HDPE high-density polyethylene film
  • CPP unstretched polypropylene film
  • OPP biaxially stretched polypropylene film
  • Ethylene and propylene which are raw materials for the film, are commercially available, both petroleum-derived and bio-based raw materials.
  • the polyolefin resin and reactive adhesive are blended in the range of 96:4 in terms of mass ratio.
  • the reactive adhesive may contain an organic solvent as described later, in the present invention, it is defined as a solid content.
  • the melt-kneading conditions were as follows. 20 ⁇ m OPP film (biaxially oriented polypropylene film) or 30 ⁇ m CPP film (non-stretched polypropylene film), the adhesive coating liquid is bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 After the solvent is volatilized, it is laminated with a 30 ⁇ m CPP film using a desktop calender roll. Aging is performed at 40° C. for 72 hours to produce a laminated film. The ratio of "the sum of the weight of the OPP film and the weight of the CPP film" to "the solid content weight of the adhesive" of the obtained laminated film is 96:4.
  • the laminated film is cut into strips having a width of 10 mm and a length of 300 mm, and the strips are melt-kneaded at 240° C. and 100 rpm for 3 minutes using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.). The particle size of the adhesive after such melt-kneading conditions was measured.
  • the particle size of the adhesive was a value measured by the following method.
  • the laminated film obtained under the same conditions as the melt-kneading was cut into strips of 10 mm in width and 300 mm in length, and extruded at 240° C. using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.). , 100 rpm for 3 minutes, extruded from a nozzle, and immediately cooled with tap water to obtain a strand-like resin.
  • the resulting strand was randomly cut out at 10 locations with a microtome, and each cross section was observed with a SEM backscattered electron image at 15 KV and 150 magnifications to obtain an image with a field of view of 400 ⁇ m ⁇ 600 ⁇ m.
  • the adhesive particles are extracted from the obtained image using image processing analysis software ImageJ. In this process, 2 ⁇ 2 pixels or less were determined to be noise, and the diameter calculated from the area was calculated assuming that the particle was a circle, and a histogram was created. From the obtained histogram, the maximum value of the area that occupies 90% of the whole was taken as the adhesive particle size.
  • the particle size of the adhesive is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the lower limit is preferably 1 ⁇ m or more, most preferably 3 ⁇ m or more.
  • the cured coating film of the reactive adhesive cured at 40° C. for 72 hours has an E′ at 200° C. in the range of 1.0 ⁇ 10 5 to 3.0 ⁇ 10 6 .
  • the E′, E′′ and tan ⁇ peaks were values obtained by measuring by the following method. Using a dynamic viscoelasticity measuring device (RSA G2 manufactured by TA Instruments), a test piece for viscoelasticity measurement was measured under the following conditions, and E′ (storage elastic modulus), E′′ (loss elastic modulus), tan ⁇ (Loss tangent) is obtained under the following conditions. Sample: length 20 mm (excluding gripping allowance) x width 5 mm x thickness 0.3 mm Measurement temperature range: -50 to 200°C Frequency: 1.0Hz Heating rate 5°C/min
  • the range of E′ is preferably in the range of 2.0 ⁇ 10 5 to 2.0 ⁇ 10 6 , more preferably in the range of 3.0 ⁇ 10 5 to 1.0 ⁇ 10 6 . .
  • the reactive adhesive to be used preferably has a tan ⁇ peak of 0°C or higher and 40°C or lower after heating at 240°C. Since the tan ⁇ peak is within this range, the tensile elongation can be further maintained.
  • the tan ⁇ peak is preferably in the range of 2°C to 36°C, more preferably in the range of 2°C to 25°C.
  • the adhesive used in the present invention is a reactive adhesive, and contains a polyisocyanate composition (A) containing an isocyanate compound and a polyol compound, which are frequently used in laminated films produced by a lamination method with a high demand for recycling.
  • the polyisocyanate composition (A) contains a polyisocyanate compound (A1).
  • a known polyisocyanate compound (A1) can be used without particular limitation.
  • polyisocyanates having an aromatic structure in the molecular structure such as tolylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate, isocyanate groups of these polyisocyanates (may be abbreviated as NCO group) partially modified with carbodiimide;
  • Polyisocyanates having an alicyclic structure in the molecular structure such as isophorone diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate), 1,3-(isocyanatomethyl)cyclohexane; 1,6-hexamethylene diisocyanate, 1,5 -Linear aliphatic polyisocyanates such as pentamethylene diisocyanate, lysine diisocyanate and trimethylhexamethylene diisocyanate, compounds obtained by modifying some of the NCO groups of these polyisocyanates with carbodiimide; isocyanurate forms of these polyisocyanates; these polyisocyanates biuret forms of these polyisocyanates; adducts obtained by modifying these polyisocyanates with trimethylolpropane; and polyurethane polyisocyanates which are reaction products of these polyisocyanates and polyols.
  • polyurethane polyisocyanate is used as the polyisocyanate compound (A1)
  • the above-mentioned polyisocyanate and polyol are adjusted to the equivalent ratio [NCO] of the isocyanate group to the hydroxyl group.
  • /[OH] is preferably obtained by reacting at a ratio of 0.5 to 5.0.
  • polyols that are reactive components of polyurethane polyisocyanate include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Chains such as 1,6-hexanediol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and bishydroxyethoxybenzene aliphatic glycols;
  • Alicyclic glycols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol; Heterocyclic glycols such as tris(2-hydroxyethyl) isocyanurate; Trifunctional or tetrafunctional aliphatic alcohols; bisphenols such as bisphenol A, bisphenol F, hydrogenated bisphenol A and hydrogenated bisphenol F; dimer diol;
  • Polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and cyclohexylene in the presence of polymerization initiators such as glycols and trifunctional or tetrafunctional aliphatic alcohols. ;
  • polyester polyol (3) obtained by reacting the trifunctional or tetrafunctional aliphatic alcohol with a polycarboxylic acid
  • a polyester polyol (4) obtained by reacting a bifunctional polyol, the trifunctional or tetrafunctional aliphatic alcohol, and a polyvalent carboxylic acid
  • polyester polyols (5) which are polymers of hydroxyl acids such as dimethylolpropionic acid, castor oil fatty acid
  • polyester polyols (1), (2), (3), (4), (5) and polyether polyols Castor oil, hydrogenated castor oil, which is a hydrogenated castor oil, and castor oil-based polyols such as adducts of 5 to 50 mol of alkylene oxide of castor oil, etc., can be used alone or in combination.
  • polyester polyols (2) to (5) examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1, Aliphatic dicarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid , naphthalic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid; and anhydride or ester-forming derivatives of these aliphatic or dicarboxylic acids; p- Polybasic acids such as hydroxybenzoic acid, p-(2-hydroxyethylic acid, p-(2-hydroxye
  • polyisocyanate compound (A1) examples include polyisocyanates having an aromatic structure in the molecular structure, polyisocyanates having an aromatic structure in the molecular structure and some of the NCO groups of the polyisocyanate modified with carbodiimide, and polyisocyanates having an aromatic structure in the molecular structure.
  • Any isocyanurate, allophanate, biuret, or adduct of a polyisocyanate having a cyclic structure is preferable, and isocyanurate or allophanate of tolylene diisocyanate, 1,6-hexamethylene diisocyanate, xylylene diisocyanate, or isophorone diisocyanate.
  • Body, billet body and adduct body are preferred.
  • the polyol composition (B) used in the present invention is a composition containing a polyol compound (B1) as a main component.
  • the polyol compound (B1) may be used alone or in combination.
  • various polyols exemplified as reaction components when polyurethane polyisocyanate is used as the polyisocyanate compound (A1) can be used.
  • Alicyclic glycols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol; trifunctional or tetrafunctional aliphatic alcohols such as glycerin, trimethylolpropane, pentaerythritol; Bisphenols such as bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F; dimer diall;
  • Polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and cyclohexylene in the presence of polymerization initiators such as glycols and trifunctional or tetrafunctional aliphatic alcohols. ;
  • polyester polyol (3) obtained by reacting the trifunctional or tetrafunctional aliphatic alcohol with a polycarboxylic acid
  • a polyester polyol (4) obtained by reacting a bifunctional polyol, the trifunctional or tetrafunctional aliphatic alcohol, and a polyvalent carboxylic acid
  • polyester polyols (5) which are polymers of hydroxyl acids such as dimethylolpropionic acid, castor oil fatty acid
  • polyester polyols (1), (2), (3), (4), (5) and polyether polyols Castor oil, hydrogenated castor oil, which is a hydrogenated castor oil, and castor oil-based polyols such as adducts of 5 to 50 mol of alkylene oxide of castor oil, etc., can be used alone or in combination.
  • polyester polyols (2) to (5) examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1, Aliphatic dicarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid , naphthalic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid; and anhydride or ester-forming derivatives of these aliphatic or dicarboxylic acids; p- Polybasic acids such as hydroxybenzoic acid, p-(2-hydroxyethylic acid, p-(2-hydroxye
  • the reactive adhesive of the present invention may contain ingredients other than those mentioned above. These components may be contained in either or both of the polyisocyanate composition (A) and the polyol composition (B), or may be prepared separately from these and the polyisocyanate may be added immediately before coating the adhesive. It may be used by mixing with the composition (A) and the polyol composition (B). Each component will be described below.
  • the reactive adhesives of the present invention may be in either solvent-based or solvent-free form.
  • the "solvent type" adhesive referred to in the present invention is a method of applying the adhesive to a base material, heating it in an oven or the like to volatilize the organic solvent in the coating film, and then bonding it to another base material. , refers to a form used in a so-called dry lamination method.
  • Either one or both of the polyisocyanate composition (A) and the polyol composition (B) are used in the present invention by dissolving the constituent components of the polyisocyanate composition (A) and the polyol composition (B) ( containing organic solvents that can be diluted).
  • organic solvents examples include esters such as ethyl acetate, butyl acetate and cellosolve acetate; ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; and aromatic hydrocarbons such as toluene and xylene. , methylene chloride, halogenated hydrocarbons such as ethylene chloride, dimethylsulfoxide, dimethylsulfamide and the like.
  • the organic solvent used as a reaction medium during the production of the components of the polyisocyanate composition (A) or the polyol composition (B) may also be used as a diluent during coating.
  • solvent-free adhesive means that the polyisocyanate composition (A) and the polyol composition (B) are substantially The form of the adhesive used in the so-called non-solvent lamination method, which is a method in which the adhesive is applied to the base material and then laminated to another base material without the process of heating in an oven or the like to volatilize the solvent.
  • non-solvent lamination method which is a method in which the adhesive is applied to the base material and then laminated to another base material without the process of heating in an oven or the like to volatilize the solvent.
  • the polyisocyanate composition (A) contains a low-molecular-weight alcohol
  • the low-molecular-weight alcohol reacts with the polyol composition (B) and becomes part of the coating film, so it is not necessary to volatilize after coating.
  • Such forms are therefore also treated as solventless adhesives and low molecular weight alcohols are not considered organic solvents.
  • the curing reaction of the reactive adhesive of the present invention can be accelerated by using a catalyst as necessary.
  • the catalyst is not particularly limited as long as it promotes the urethanization reaction between the polyisocyanate composition (A) and the polyol composition (B), and includes metal catalysts, amine catalysts, aliphatic cyclic amide compounds, and titanium chelates. Complexes and the like are exemplified.
  • Metal-based catalysts include metal complex-based, inorganic metal-based, and organic metal-based catalysts.
  • the metal complex catalyst a group consisting of Fe (iron), Mn (manganese), Cu (copper), Zr (zirconium), Th (thorium), Ti (titanium), Al (aluminum), Co (cobalt) Examples include acetylacetonate salts of metals selected from the above, such as iron acetylacetonate, manganese acetylacetonate, copper acetylacetonate, zirconia acetylacetonate and the like. From the point of view of toxicity and catalytic activity, iron acetylacetonate (Fe(acac) 3 ) or manganese acetylacetonate (Mn(acac) 2 ) are preferred.
  • inorganic metal-based catalysts examples include those selected from Sn, Fe, Mn, Cu, Zr, Th, Ti, Al, Co, and the like.
  • Organometallic catalysts include organozinc compounds such as zinc octylate, zinc neodecanoate, and zinc naphthenate; , dioctyltin dilaurate, dibutyltin oxide, dibutyltin dichloride and other organic tin compounds, nickel octylate, nickel naphthenate and other organic nickel compounds, cobalt octylate, cobalt naphthenate and other organic cobalt compounds, bismuth octylate, neodecanoic acid
  • organozinc compounds such as zinc octylate, zinc neodecanoate, and zinc naphthenate
  • dioctyltin dilaurate dibutyltin oxide, dibutyltin dichloride and other organic tin compounds
  • nickel octylate, nickel naphthenate and other organic nickel compounds cobalt octylate, cobalt nap
  • Amine catalysts include triethylenediamine, 2-methyltriethylenediamine, quinuclidine, 2-methylquinuclidine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethyl Propylenediamine, N,N,N',N',N''-pentamethyldiethylenetriamine, N,N,N',N'',N'-pentamethyl-(3-aminopropyl)ethylenediamine, N,N,N', N′′,N′′-pentamethyldipropylenetriamine, N,N,N′,N′-tetramethylhexamethylenediamine, bis(2-dimethylaminoethyl)ether, dimethylethanolamine, dimethylisopropanolamine, dimethylaminoethoxyethanol , N,N-dimethyl-N'-(2-hydroxyethyl)ethylenediamine, N,N-dimethyl
  • Aliphatic cyclic amide compounds include, for example, ⁇ -valerolactam, ⁇ -caprolactam, ⁇ -enanthollactam, ⁇ -capryllactam, ⁇ -propiolactam and the like.
  • ⁇ -caprolactam is more effective in accelerating hardening.
  • the titanium chelate complex is a compound whose catalytic activity is enhanced by ultraviolet irradiation, and a titanium chelate complex having an aliphatic or aromatic diketone as a ligand is preferable from the viewpoint of excellent curing acceleration effect. Further, in the present invention, in addition to aromatic or aliphatic diketones, those having alcohols having 2 to 10 carbon atoms as ligands are preferred from the viewpoint that the effects of the present invention are more pronounced.
  • the amount of the catalyst compounded is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 2 parts by mass, per 100 parts by mass of the total solid content of the polyisocyanate composition (A) and the polyol composition (B). is more preferable.
  • the reactive adhesive of the present invention may contain a pigment if necessary.
  • the pigments used are not particularly limited, and extender pigments, white pigments, black pigments, gray pigments, red pigments, brown pigments, green pigments, and blue pigments described in the 1970 edition of the Handbook of Paint Materials (edited by the Japan Paint Manufacturers Association).
  • Organic and inorganic pigments such as pigments, metal powder pigments, luminescent pigments, and pearlescent pigments, and plastic pigments can be used.
  • Extender pigments include, for example, precipitated barium sulfate, rice flour, precipitated calcium carbonate, calcium bicarbonate, Kansui stone, alumina white, silica, hydrous fine silica (white carbon), ultrafine anhydrous silica (Aerosil), silica sand (silica sand), talc, precipitated magnesium carbonate, bentonite, clay, kaolin, loess, and the like.
  • organic pigments include various insoluble azo pigments such as Benzidine Yellow, Hansa Yellow and Laked 4R; soluble azo pigments such as Laked C, Carmine 6B and Bordeaux 10; various (copper) pigments such as phthalocyanine blue and phthalocyanine green.
  • insoluble azo pigments such as Benzidine Yellow, Hansa Yellow and Laked 4R
  • soluble azo pigments such as Laked C, Carmine 6B and Bordeaux 10
  • various (copper) pigments such as phthalocyanine blue and phthalocyanine green.
  • Phthalocyanine pigments various chlorine dyeing lakes such as rhodamine lake and methyl violet lake; various mordant pigments such as quinoline lake and fast sky blue; various pigments such as anthraquinone pigments, thioindigo pigments and perinone pigments vat dye-based pigments; various quinacridone-based pigments such as Cincasia Red B; various dioxazine-based pigments such as dioxazine violet; various condensed azo pigments such as chromophtal;
  • inorganic pigments include various chromates such as yellow lead, zinc chromate, molybdate orange; various ferrocyanic compounds such as Prussian blue; Various metal oxides such as zirconium oxide; various sulfides and selenides such as cadmium yellow, cadmium red, and mercury sulfide; various sulfates such as barium sulfate and lead sulfate; various types of silicon such as calcium silicate and ultramarine blue.
  • chromates such as yellow lead, zinc chromate, molybdate orange
  • ferrocyanic compounds such as Prussian blue
  • metal oxides such as zirconium oxide
  • various sulfides and selenides such as cadmium yellow, cadmium red, and mercury sulfide
  • various sulfates such as barium sulfate and lead sulfate
  • silicon such as calcium silicate and ultramarine blue.
  • various acid salts such as calcium carbonate and magnesium carbonate; various phosphates such as cobalt violet and manganese purple; various metal powder pigments such as aluminum powder, gold powder, silver powder, copper powder, bronze powder and brass powder; These metal flake pigments and mica flake pigments; metallic pigments and pearl pigments such as mica-like iron oxide pigments and mica-like iron oxide pigments coated with metal oxides; graphite, carbon black and the like.
  • plastic pigments examples include "Grandol PP-1000" and “PP-2000S” manufactured by DIC Corporation.
  • the pigment to be used may be appropriately selected according to the purpose.
  • inorganic oxides such as titanium oxide and zinc oxide are preferably used as white pigments because they are excellent in durability, weather resistance, and design.
  • Carbon black is preferably used as the pigment.
  • the amount of the pigment compounded is, for example, 1 to 400 parts by mass with respect to 100 parts by mass of the total solid content of the polyisocyanate composition (A) and the polyol composition (B), in order to improve adhesion. More preferably 10 to 300 parts by mass.
  • the reactive adhesive of the present invention may contain an adhesion promoter.
  • adhesion promoters include coupling agents such as silane coupling agents, titanate coupling agents and aluminum coupling agents, and epoxy resins.
  • Silane coupling agents include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -amino Aminosilanes such as propyltrimethyldimethoxysilane and N-phenyl- ⁇ -aminopropyltrimethoxysilane; ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxy epoxysilanes such as propyltriethoxysilane; vinylsilanes such as vinyltris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyl
  • Titanate-based coupling agents include, for example, tetraisopropoxytitanium, tetra-n-butoxytitanium, butyl titanate dimer, tetrastearyl titanate, titanium acetylacetonate, titanium lactate, tetraoctylene glycol titanate, titanium lactate, tetrastearoxy Titanium etc. are mentioned.
  • aluminum-based coupling agents examples include acetoalkoxyaluminum diisopropylate.
  • epoxy resin generally commercially available epibis type, novolak type, ⁇ -methyl epichloro type, cyclic oxirane type, glycidyl ether type, glycidyl ester type, polyglycol ether type, glycol ether type, epoxidized fatty acid ester type, poly Various epoxy resins such as carboxylic acid ester type, aminoglycidyl type, resorcinol type, triglycidyl tris(2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, acryl glycidyl compounds such as ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, phenol glycidyl ether, pt-butylphenyl glycidyl ether, diglycidyl
  • the reactive adhesive of the invention may contain an antioxidant.
  • Phosphorus-based antioxidants or bindered phenol-based antioxidants are particularly preferred as antioxidants.
  • Phosphorus-based antioxidants include, for example, triphenyl phosphite (Johoku Chemical Co., Ltd., JP-360), trisnonylphenyl phosphite, tricresyl phosphite, triethyl phosphite, trioleyl phosphite, diphenylmono ( 2-ethylhexyl) phosphite, tetraphenyl dipropylene glycol diphosphite, tetra(C12-C15 alkyl)-4,4'-isopropylidene diphenyl diphosphite, bis(decyl) pentaerythritol diphosphite, tristearyl phosphite etc.
  • Binderd phenol antioxidants include, for example, pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (BASF Japan Ltd., Irganox1010), thiodiethylene bis[3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-tert-butyl-hydroxyphenyl)propionate, 3,5-bis(1,1-dimethylethyl)benzylacetate -4-hydroxy-C7-C9 branched alkyl esters and the like.
  • the amount of the phosphorus-based antioxidant added is most preferably 0.1 to 1.0% by mass, and the amount of the bindered phenol-based antioxidant added is most preferably 0.1 to 5.0% by mass.
  • Phosphorus-based antioxidants or bindered phenol-based antioxidants may be used alone or in combination.
  • the reactive adhesive of the present invention includes a leveling agent, inorganic fine particles such as colloidal silica and alumina sol, polymethyl methacrylate-based organic fine particles, an antifoaming agent, an anti-sagging agent, a wetting and dispersing agent, a viscosity Regulators, UV absorbers, metal deactivators, peroxide decomposers, flame retardants, reinforcing agents, plasticizers, lubricants, rust inhibitors, fluorescent brighteners, inorganic heat absorbers, flame retardants , antistatic agents, dehydrating agents, known and commonly used thermoplastic elastomers, tackifiers, phosphoric compounds, melamine resins, reactive elastomers, and the like.
  • the blending amount of these additives is appropriately adjusted within a range that does not impair the desired properties of the reactive adhesive of the present invention.
  • the reactive adhesive of the present invention is particularly useful as a reactive adhesive for laminated films obtained by laminating and adhering base films made of a plurality of olefinic resins with a reactive adhesive.
  • the effect of the present invention particularly the maintenance of the tensile elongation of the recycled plastic, can be maximized.
  • the olefin resin is a polyethylene film (LLDPE: linear low density polyethylene film, LDPE: low density polyethylene film, MDOPE: machine direction oriented polyethylene film, BOPE: biaxially oriented polyethylene film, HDPE: high density polyethylene film) and polypropylene film (CPP: unstretched polypropylene film, OPP: biaxially stretched polypropylene film), etc., but not limited thereto.
  • Ethylene and propylene which are raw materials for the film, may be derived from petroleum or biomaterials, and are not particularly limited, and any commercially available olefin resin film can be used. These films are obtained by laminating them by a dry lamination method or a non-solvent lamination method.
  • the film may be stretched.
  • a stretching treatment method it is common to melt-extrude a resin into a sheet by an extrusion film-forming method or the like, and then subject the sheet to simultaneous biaxial stretching or sequential biaxial stretching.
  • sequential biaxial stretching it is common to first perform longitudinal stretching and then laterally stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used.
  • Base film 1/adhesive layer 1/sealant film (2) Base film 1/adhesive layer 1/unstretched film (3) Base film 1/adhesive layer 1/stretched film (4) Transparent evaporated stretched film /adhesive layer 1/sealant film (5) base film 1/adhesive layer 1/base film 2/adhesive layer 2/sealant film (6) base film 1/adhesive layer 1/stretched film/adhesive layer 2/sealant Examples include, but are not limited to, films.
  • the sealant film, unstretched film, and stretched film may be subjected to metal vapor deposition, transparent vapor deposition, or the like.
  • An OPP film is mentioned as the base film 1 used in the configuration (1). Further, as the base film 1, a film coated for the purpose of improving gas barrier properties, ink receptivity when providing a printing layer described later, and the like may be used. Commercially available coated base film 1 includes A-OPP film.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films.
  • a printed layer may be provided on the surface of the substrate film 1 on the adhesive layer 1 side (when a coated substrate film 1 is used, the surface of the coating layer on the adhesive layer 1 side). The printed layer is formed by a general printing method conventionally used for printing on polymer films using various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink.
  • the base film 1 used in the configurations (2) and (3) includes an OPP film.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention.
  • a CPP film can be mentioned, but a VM-CPP film to which aluminum or the like has been vapor-deposited can also be used.
  • An OPP film can be used as the stretched film, but a VM-OPP film on which aluminum or the like is vapor-deposited can also be used.
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on an OPP film. For the purpose of protecting the inorganic deposition layer of silica or alumina, etc., a film obtained by coating the deposition layer may be used.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
  • Examples of the base film 1 used in configuration (5) include an OPP film and the like.
  • Examples of the base film 2 include an OPP film and the like.
  • Adhesive layers 1 and 2 are cured coating films of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of the base film 1 of configuration (6) include the same ones as those of configurations (2) and (3).
  • Examples of stretched films include OPP films, and examples include VM-OPP films deposited with metal such as aluminum, and films deposited with silica, alumina, or the like.
  • At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • the reactive adhesive of the present invention can also be applied to general-purpose films other than the olefin films.
  • food packaging includes polyethylene terephthalate (PET) film, polystyrene film, polyamide film, polyacrylonitrile film, polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film and the like.
  • a barrier film containing a vapor-deposited layer of a metal such as aluminum, a metal oxide such as silica or alumina, or a gas barrier layer such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, or vinylidene chloride may be used in combination. good too.
  • a laminated film having barrier properties against water vapor, oxygen, alcohol, inert gas, volatile organic matter (aroma) and the like can be obtained.
  • Base film 1/Adhesive layer 1/Sealant film (2) Base film 1/Adhesive layer 1/Metal-deposited unstretched film (3) Base film 1/Adhesive layer 1/Metal-deposited stretched film (4) Transparent vapor deposited stretched film/adhesive layer 1/sealant film (5) Base film 1/adhesive layer 1/base film 2/adhesive layer 2/sealant film (6) Base film 1/adhesive layer 1/metal vapor deposited stretched film /adhesive layer 2/sealant film (7) base film 1/adhesive layer 1/transparent deposited stretched film/adhesive layer 2/sealant film (8) base film 1/adhesive layer 1/metal layer/adhesive layer 2/sealant Film (9) Base film 1/Adhesive layer 1/Base film 2/Adhesive layer 2/
  • Examples of the base film 1 used in configuration (1) include OPP film, PET film, nylon film (hereinafter also referred to as Ny film), and the like. Further, as the base film 1, a film coated for the purpose of improving gas barrier properties, ink receptivity when providing a printing layer described later, and the like may be used. Commercially available coated base film 1 includes A-OPP film.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films.
  • a printed layer may be provided on the surface of the substrate film 1 on the adhesive layer 1 side (when a coated substrate film 1 is used, the surface of the coating layer on the adhesive layer 1 side). The printed layer is formed by a general printing method conventionally used for printing on polymer films using various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention.
  • a VM-CPP film obtained by vapor-depositing a metal such as aluminum on a CPP film may be used as the unstretched metal vapor-deposited film, and a VM-OPP film obtained by vapor-depositing a metal such as aluminum on an OPP film may be used as the stretched metal-deposited film. can be done.
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on OPP films, PET films, nylon films, or the like.
  • a film obtained by coating the deposition layer may be used.
  • the adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
  • Examples of the base film 1 used in the configuration (5) include PET film and the like.
  • Examples of the base film 2 include a nylon film.
  • At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of the base film 1 of configuration (6) include the same ones as those of configurations (2) and (3).
  • Examples of the metal-deposited oriented film include VM-OPP film and VM-PET film obtained by subjecting an OPP film or PET film to metal deposition such as aluminum.
  • At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of the base film 1 of configuration (7) include a PET film and the like. Examples of the transparent vapor-deposited stretched film include those similar to those of the configuration (4). At least one of the adhesive layers 1 and 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of the base film 1 of configuration (8) include a PET film and the like. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1 and 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • Examples of the base film 1 of configurations (9) and (10) include a PET film and the like.
  • Examples of the base film 2 include a nylon film. Aluminum foil etc. are mentioned as a metal layer.
  • At least one of the adhesive layers 1, 2 and 3 is a cured coating film of the reactive adhesive of the present invention.
  • Examples of the sealant film include those similar to those of the configuration (1).
  • a printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
  • the laminated film of the present invention includes at least one of a metal vapor deposition film, a transparent vapor deposition film, and a metal layer
  • the metal vapor deposition layer, the transparent vapor deposition layer, and the adhesive layer in contact with the metal layer are formed by curing the reactive adhesive of the present invention. It is preferably a coating film.
  • the reactive adhesive of the present invention is a solvent type
  • the reactive adhesive of the present invention is applied to the film material as a substrate using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. After that, the other substrate is laminated to obtain the laminated film of the present invention. It is preferable to perform an aging treatment after lamination.
  • the aging temperature is preferably room temperature to 80° C.
  • the aging time is preferably 12 to 240 hours.
  • the reactive adhesive of the present invention When the reactive adhesive of the present invention is solvent-free, the reactive adhesive of the present invention preheated to about 40° C. to 100° C. is applied to the base film material using a roll such as a gravure roll. Immediately after coating with the other substrate, the laminate film of the present invention is obtained by laminating the other substrate. It is preferable to perform an aging treatment after lamination.
  • the aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours.
  • the adhesion aid of the present invention is applied to the base film material using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. Then, the laminated film of the present invention is obtained by laminating the polymer material melted by an extruder.
  • the amount of adhesive to be applied is appropriately adjusted.
  • the solid content is adjusted to 1 g/m 2 or more and 10 g/m 2 or less, preferably 2 g/m 2 or more and 5 g/m 2 or less.
  • the coating amount of the adhesive is, for example, 1 g/m 2 or more and 5 g/m 2 or less, preferably 1 g/m 2 or more and 3 g/m 2 or less.
  • the coating amount is, for example, 0.1 g/m 2 or more and 2 g/m 2 or less (solid content).
  • the laminated film of the present invention may further contain other films and substrates in addition to the above-described configurations (1) to (10).
  • other substrates in addition to the stretched film, unstretched film, and transparent vapor-deposited film described above, porous substrates such as paper, wood, and leather, which will be described later, can also be used. These can be removed as foreign matter by a mesh filter during melting and kneading in the recycling process, making it easier than separating different types of plastic.
  • the adhesive used when bonding other substrates may or may not be the reactive adhesive of the present invention.
  • a known paper base material can be used without any particular limitation. Specifically, it is produced by a known paper machine using natural fibers for papermaking such as wood pulp, but the papermaking conditions are not particularly specified.
  • natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps.
  • the types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acidic/neutral/alkaline sulfite cooking, soda salt cooking, and the like.
  • a printed layer may be provided on the outer surface or the inner surface of the paper layer, if necessary.
  • “Other layers” may contain known additives and stabilizers, such as antistatic agents, easy-adhesion coating agents, plasticizers, lubricants, and antioxidants.
  • the "other layers” are pre-treated with corona treatment, plasma treatment, ozone treatment, chemical treatment, solvent treatment, etc. in order to improve adhesion when laminated with other materials. may
  • the laminated film of the present invention can be used in various applications, such as packaging materials for foods, pharmaceuticals, and daily necessities, lid materials, paper straws, paper napkins, paper tableware such as paper spoons, paper plates, and paper cups, barrier materials, and roofs. materials, solar cell panel materials, battery packaging materials, window materials, outdoor flooring materials, lighting protection materials, automotive parts, signboards, outdoor industrial applications such as stickers, decorative sheets used for injection molding simultaneous decoration methods, etc. It can be suitably used as packaging materials for liquid laundry detergents, liquid kitchen detergents, liquid bath detergents, liquid bath soaps, liquid shampoos, liquid conditioners, and the like.
  • the laminated film of the present invention can be used as a multilayer packaging material for the purpose of protecting foods, pharmaceuticals, and the like.
  • the layer structure may vary depending on the contents, usage environment, and usage pattern.
  • the package of the present invention may be appropriately provided with an easy-opening treatment or a resealing means.
  • the packaging material of the present invention is obtained by using the laminated film of the present invention, stacking the laminated films with their sealant film surfaces facing each other, and then heat-sealing the peripheral edges to form a bag.
  • the laminated film of the present invention is folded or overlapped so that the inner layer surface (surface of the sealant film) faces each other, and the peripheral edge is sealed, for example, with a side seal type, a two-sided seal type, There are three-side seal type, four-side seal type, envelope-type seal type, joint-type seal type, fold-type seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-sealing methods. be done.
  • the packaging material of the present invention can take various forms depending on the contents, environment of use, and form of use.
  • a self-supporting packaging material (standing pouch) or the like is also possible.
  • As a heat sealing method known methods such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing and ultrasonic sealing can be used.
  • the opening is heat-sealed to manufacture a product using the packaging material of the present invention.
  • filling contents include foods such as rice confectionery, bean confectionery, nuts, biscuits and cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snacks, bread, snack noodles, and instant noodles.
  • Non-food items include cigarettes, disposable body warmers, medicines such as infusion packs, liquid laundry detergents, liquid kitchen detergents, liquid bath detergents, liquid bath soaps, liquid shampoos, liquid conditioners, cosmetics such as lotions and milky lotions, and vacuum cleaners. It can also be used as various packaging materials such as heat insulators, batteries and the like.
  • the laminated film especially the laminated film obtained by laminating and adhering a base film made of a plurality of olefinic resins with the reactive adhesive of the present invention can be reused as a recycled plastic whose tensile elongation is maintained.
  • a processing method for making the laminated film into a recycled plastic is shown.
  • the present invention is not limited to this, and various known recycled plastic processing methods can be applied.
  • the laminated film is crushed with a crusher or the like.
  • a known grinder may be used as the grinder, and there is no particular limitation.
  • the film pieces are physically blended by melt kneading, solvent cast blending, latex blending, polymer complexing, and the like.
  • a melt-kneading method is particularly common. Apparatuses for kneading include a tumbler, a Henschel mixer, a rotary mixer, a super mixer, a ribbon tumbler, a V-blender and the like. After being melted and kneaded by such a kneading device, the mixture is pelletized.
  • Single or multi-screw extruders are generally used for melt-kneading and pelletization, and in addition to these extruders, Banbury mixers, rollers, co-kneaders, blast mills, Plabender brautographs, etc. can also be used. They can be run batchwise or continuously. Alternatively, the resin may be used as a molding resin and melt-kneaded in a heating cylinder of a molding machine without melt-kneading.
  • Polyol B2 800 parts of isophthalic acid, 700 parts of sebacic acid, 150 parts of ethylene glycol, 700 parts of neopentyl glycol, and 0.3 parts of dioctyltin dilaurate are placed in a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. was charged, and an ester reaction was carried out at an internal temperature of 250°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to obtain a non-volatile content 60% by mass solution.
  • polyester polyol having a hydroxyl value of 12 mgKOH/g.
  • the number average molecular weight of this polyester polyol was about 5,500.
  • polyester polyol having a hydroxyl value of 9 mgKOH/g.
  • the number average molecular weight of this polyester polyol was about 7,500.
  • polyester polyol having a hydroxyl value of 8 mgKOH/g.
  • the number average molecular weight of this polyester polyol was about 8,300.
  • Polyisocyanate A1 A flask equipped with a stirrer, a thermometer, and a nitrogen gas inlet tube was charged with 90 parts of Desmodur N3210A (a hexamethylene diisocyanate biuret structure, manufactured by COVESTRO) and 10 parts of ethyl acetate to prepare a 90% by mass non-volatile solution.
  • the isocyanate (hereinafter sometimes referred to as NCO) content is 20.7% by mass.
  • Polyisocyanate A2 (Adjustment of polyisocyanate) (Polyisocyanate A2) Put 1260 parts of xylylene diisocyanate in a flask equipped with a stirrer, a thermometer, and a nitrogen gas introduction tube and stir while heating to 70 ° C., drop 750 parts of polyol B6 over 2 hours using a dropping funnel, After further stirring for 4 hours, a polyisocyanate was obtained. Its NCO content was 15.7%.
  • Example 1 (Preparation of adhesive coating solution) 10 parts of polyol B and 0.8 parts of polyisocyanate A were blended, and the solid content was adjusted to 30% with ethyl acetate to prepare an adhesive coating solution of Example 1.
  • Example 2 Adhesive coating solutions of Examples 2 to 5 were prepared in the same manner as in Example 1, except that the formulations of polyol B and polyisocyanate A used were changed to those shown in Table 1.
  • Comparative Example 1 Adhesive coating solutions of Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the formulations of polyol B and polyisocyanate A used were changed to those shown in Table 1.
  • a 30 ⁇ m CPP film is coated with an adhesive coating liquid using a bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 , and after volatilizing the solvent, a desktop calendar roll is applied.
  • a CPP film having a thickness of 30 ⁇ m was laminated using this.
  • a laminated film was produced by aging at 40° C. for 72 hours. The ratio of "the sum of the weight of the OPP film and the weight of the CPP film" to "the solid content weight of the adhesive" of the obtained laminated film is 96:4.
  • the laminated film is cut into strips with a width of 10 mm and a length of 300 mm, and is melted and kneaded at 240 ° C. and 100 rpm for 3 minutes using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.), and then extruded into a nozzle. and immediately cooled with tap water to obtain a strand-like resin.
  • the resulting strand was randomly cut out at 10 locations with a microtome, and each cross section was observed with a SEM backscattered electron image at 15 KV and 150 magnifications to obtain an image with a field of view of 400 ⁇ m ⁇ 600 ⁇ m.
  • Adhesive particles were extracted from the obtained image using image processing analysis software ImageJ. In this process, 2 ⁇ 2 pixels or less were determined to be noise, and the diameter calculated from the area was calculated assuming that the particle was a circle, and a histogram was created. The maximum value of the area that occupies 90% of the entire histogram was taken as the adhesive particle size.
  • the following CPP films were used. CPP film: Pyrene P1128 30 ⁇ m manufactured by Toyobo Co., Ltd. The evaluation was as follows. ⁇ : Adhesive particle size ⁇ 20 ⁇ m ⁇ : Adhesive particle size>20 ⁇ m
  • a 30 ⁇ m CPP film is coated with an adhesive coating liquid using a bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 , and after volatilizing the solvent, a desktop calendar roll is applied.
  • a CPP film having a thickness of 30 ⁇ m was laminated using this.
  • a laminated film was produced by aging at 40° C. for 72 hours. The laminated film is cut into strips with a width of 10 mm and a length of 300 mm, and is melted and kneaded at 240 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are: a reactive adhesive satisfying (1) and (2); and a laminated film in which a plurality of olefinic resin-containing base films are laminated and adhered with a reactive adhesive, wherein the reactive adhesive satisfies (1) and (2). (1) After a polyolefinic resin and the reactive adhesive are blended in a ratio of 96:4 and melt-kneaded at 240°C for 3 minutes, the particle size of the adhesive is 20 μm or less. (2) E' at 200°C of a cured film obtained by curing the reactive adhesive at 40°C for 72 hours is in the range of 1.0×105-3.0×106.

Description

反応性接着剤、積層フィルム、及び包装材Reactive adhesives, laminated films, and packaging materials
 本発明は、リサイクルプラスチックに適した積層フィルム用の反応性接着剤、それを使用した積層フィルム及び包装材に関する。 The present invention relates to a reactive adhesive for laminated films suitable for recycled plastics, laminated films and packaging materials using the same.
 従来、接着剤を使用してラミネート法により製造される積層フィルムは、単なる包装目的のみならず、バリア性、防湿性、耐レトルト性等の様々な高機能を1つの包装材料でかなえたい、という要求に答えるため異樹脂種のフィルムを積層させるために開発され進化してきた。(例えば特許文献1参照)
 しかしながら、近年は、これらの異樹脂種の積層フィルムが、リサイクルプラスチックの品質を低下させるという声があり、高機能且つリサイクル可能な包装材料であることが望まれている。
Laminated films, which are conventionally manufactured by the lamination method using adhesives, are not only intended for packaging, but also provide various high-performance functions such as barrier properties, moisture resistance, and retort resistance with a single packaging material. It has been developed and evolved to laminate films of different resin types in order to meet the demands. (See Patent Document 1, for example)
However, in recent years, there have been voices that these different resin types of laminated films deteriorate the quality of recycled plastics, and there is a demand for highly functional and recyclable packaging materials.
 包装材料の機能性をできる限り落とさずに、リサイクルプラスチックの品質を高める方法として、「包装材料をできるだけ単一種の原材料で構成する」という動き(モノマテリアル化と称されることがある)があり、主原料であるプラスチックの材料として、例えばポリエチレンフィルム等のポリオレフィンフィルムのみで構成しこれらを複数層積層した積層フィルム(モノマテリアルフィルムと称されることがある)を包装材料として使用する提案が始まっている(例えば特許文献1参照)。世界的な動向として、欧州の軟包装分野の循環型経済の実現を推進するコンソーシアムCEFLEX(Circular Economy for Flexible Packaging)のガイドラインは、モノマテリアルフィルムの中で、接着剤等不純物は5%未満で構成されることを決めている。後述のように、不純物である接着剤が5%未満であっても、モノマテリアルフィルムのリサイクル性に影響を与える。そのため、モノマテリアルフィルムのリサイクル性に影響を与えない接着剤の開発を考えなければならない。 As a method of improving the quality of recycled plastics without reducing the functionality of packaging materials as much as possible, there is a movement to ``compose packaging materials from a single type of raw material as much as possible'' (sometimes referred to as monomaterialization). , as a material of plastic, which is the main raw material, for example, a proposal to use a laminated film (sometimes called a mono-material film) composed only of polyolefin films such as polyethylene films laminated in multiple layers as a packaging material has begun. (See Patent Document 1, for example). As a global trend, the guidelines of CEFLEX (Circular Economy for Flexible Packaging), a consortium that promotes the realization of a circular economy in the flexible packaging field in Europe, contain less than 5% of impurities such as adhesives in mono-material films. decided to be As will be described later, even if the content of the adhesive, which is an impurity, is less than 5%, the recyclability of the monomaterial film is affected. Therefore, we must consider the development of adhesives that do not affect the recyclability of mono-material films.
 積層フィルムを積層する方法として、特許文献1の段落0070にあるような、各層が共押出成形により形成したものの他に、各々のフィルムを接着剤で接着して積層フィルムを得る方法もある。特にイソシアネート化合物とポリオール化合物との反応による熱硬化型の反応性接着剤を用いて積層させた積層フィルムは、反応後の接着剤層が架橋しているためにラミネート接着力が強く、耐熱性、耐薬品性、耐油性に優れ、例えばレトルト耐性等を必要とするレトルト食品包装材として利用されている(例えば特許文献2参照)。しかしながら、イソシアネート化合物とポリオール化合物との反応による熱硬化型の反応性接着剤をポリオレフィンフィルムのみで構成した積層フレキシブルフィルムは、リサイクル後のリサイクルプラスチックの強度、特に引っ張り伸度が得られない場合があった。 As a method for laminating laminated films, there is a method in which each layer is formed by co-extrusion molding as described in paragraph 0070 of Patent Document 1, and a method in which each film is adhered with an adhesive to obtain a laminated film. In particular, a laminated film laminated using a thermosetting reactive adhesive obtained by a reaction between an isocyanate compound and a polyol compound has strong lamination adhesive strength because the adhesive layer after the reaction is crosslinked, heat resistance, It is excellent in chemical resistance and oil resistance, and is used, for example, as a retort food packaging material that requires retort resistance (see, for example, Patent Document 2). However, a laminated flexible film that consists of only a polyolefin film as a thermosetting reactive adhesive through the reaction of an isocyanate compound and a polyol compound may not have the strength, especially the tensile elongation, of recycled plastic after recycling. rice field.
特開2020-55176号公報JP 2020-55176 A 特開2001-335771号公報Japanese Patent Application Laid-Open No. 2001-335771
 本発明の課題は、ポリオレフィンフィルムのみで構成した積層フレキシブルフィルムにも適用でき、且つリサイクルプラスチックの強度、特に引っ張り伸度が維持できる、反応型の反応性接着剤を提供することにある。 The object of the present invention is to provide a reactive adhesive that can be applied to laminated flexible films composed only of polyolefin films, and that can maintain the strength, particularly the tensile elongation, of recycled plastics.
 即ち本発明は、(1)及び(2)を満たす反応性接着剤を提供する。
(1)ポリオレフィン系樹脂と反応性接着剤を96:4の範囲で配合し、240℃で3分間溶融混錬後の接着剤粒径が20μm以下である。
(2)40℃で72時間硬化させた反応性接着剤の硬化塗膜の200℃におけるE’が1.0×10~3.0×10の範囲である。
That is, the present invention provides a reactive adhesive that satisfies (1) and (2).
(1) A polyolefin resin and a reactive adhesive are blended in the range of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 μm or less.
(2) E′ at 200° C. of the cured coating film of the reactive adhesive cured at 40° C. for 72 hours is in the range of 1.0×10 5 to 3.0×10 6 ;
 また本発明は、複数のオレフィン系樹脂からなる基材フィルムを反応性接着剤でラミネート接着した積層フィルムであって、前記反応性接着剤が前記記載の反応性接着剤である積層フィルムを提供する。 The present invention also provides a laminated film obtained by laminating and adhering base films made of a plurality of olefinic resins with a reactive adhesive, wherein the reactive adhesive is the reactive adhesive described above. .
 また本発明は、前記記載の積層フィルムからなる包装材を提供する。 The present invention also provides a packaging material comprising the laminated film described above.
 本発明によれば、ポリオレフィンフィルムのみで構成した積層フレキシブルフィルムに適用でき、且つリサイクルプラスチックの強度、特に引っ張り伸度が維持できる。 According to the present invention, it can be applied to laminated flexible films composed only of polyolefin films, and the strength of recycled plastics, especially tensile elongation, can be maintained.
(反応性接着剤)
 本発明の反応性接着剤は、(1)及び(2)を満たすことを特徴とする。
(1)ポリオレフィン系樹脂と反応性接着剤を96:4の範囲で配合し、240℃で3分間溶融混錬後の接着剤粒径が20μm以下である。
(2)40℃で72時間硬化させた反応性接着剤の硬化塗膜の200℃におけるE’が1.0×10~3.0×10の範囲である。
(reactive adhesive)
The reactive adhesive of the present invention is characterized by satisfying (1) and (2).
(1) A polyolefin resin and a reactive adhesive are blended in the range of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 μm or less.
(2) E′ at 200° C. of the cured coating film of the reactive adhesive cured at 40° C. for 72 hours is in the range of 1.0×10 5 to 3.0×10 6 ;
 現在、廃プラスチックの一般的なリサイクル方法としては、回収された廃プラスチックをある程度の種類別に人の手で選別した後、破砕、洗浄、溶融、押出等の工程を経て再生プラスチックとする方法である。
 この時、特にイソシアネート化合物とポリオール化合物との反応による熱硬化型の反応性接着剤等を用いて積層させた積層フィルムは、前述の通りラミネート接着力が強いために、人の手では接着剤とフィルムとに分別することはできない。従って、反応性接着剤と積層フィルムの材料であるプラスチック樹脂(多くはポリオレフィン樹脂であることが多い)とが混在した状態で、破砕、洗浄、溶融、押出等の工程を経ることとなる。
Currently, the general recycling method for waste plastics is to manually sort the collected waste plastics by type to a certain extent, and then undergo processes such as crushing, washing, melting, and extrusion to make recycled plastics. .
At this time, as described above, laminated films laminated using a thermosetting reactive adhesive or the like by the reaction of an isocyanate compound and a polyol compound have a strong laminating adhesive strength, so the adhesive cannot be easily removed by hand. It cannot be separated from film. Therefore, the reactive adhesive and the plastic resin (mostly polyolefin resin), which is the material of the laminated film, are mixed together and undergo the steps of crushing, washing, melting, extrusion, and the like.
 本発明における(1)は、この工程において「溶融」工程を模擬的に再現したものである。本発明者らは、溶融工程において、積層フィルムの材料であるポリオレフィン樹脂中に接着剤が混在しても、本発明における(1)、即ちポリオレフィン系樹脂と反応性接着剤を96:4の範囲で配合し、230℃で3分間溶融混錬後の接着剤粒径が20μm以下である接着剤であれば、リサイクルプラスチックの強度、特に引っ張り伸度が維持できることを見出した。 (1) in the present invention simulates the "melting" process in this process. The present inventors found that even if the adhesive is mixed in the polyolefin resin, which is the material of the laminated film, in the melting process, (1) in the present invention, that is, the polyolefin resin and the reactive adhesive are in the range of 96:4. and having a particle size of 20 μm or less after melt-kneading at 230° C. for 3 minutes, it was found that the strength, especially tensile elongation, of recycled plastics can be maintained.
 一方、本発明における(2)は、この工程において「破砕」工程を模擬的に再現したものである。破砕工程において、積層フィルムの材料であるポリオレフィン樹脂中に接着剤が混在しても、本発明における(2)、即ち40℃で72時間硬化させた反応性接着剤の硬化塗膜の200℃におけるE’が1.0×10~3.0×10の範囲である接着剤であれば、溶融混錬時の接着剤の粉砕が容易になり、破砕工程後に続く溶融工程において、接着剤粒径を更に小さくすることが可能となり、前記(1)の、接着剤粒径を20μm以下とすることが更に容易になる。その結果、得られるリサイクルプラスチックの引っ張り伸度を維持できると推定する。 On the other hand, (2) in the present invention simulates the "crushing" process in this process. In the crushing process, even if the adhesive is mixed in the polyolefin resin that is the material of the laminated film, (2) in the present invention, that is, the cured coating film of the reactive adhesive cured at 40 ° C. for 72 hours at 200 ° C. An adhesive with E′ in the range of 1.0×10 5 to 3.0×10 6 facilitates pulverization of the adhesive during melt-kneading, and in the melting step following the pulverization step, the adhesive It becomes possible to further reduce the particle size, and it becomes easier to reduce the particle size of the adhesive to 20 μm or less in (1) above. As a result, it is estimated that the tensile elongation of the obtained recycled plastic can be maintained.
 前記(1)について説明する。
 前記(1)は、ポリオレフィン系樹脂と反応性接着剤を96:4の範囲で配合し、240℃で3分間溶融混錬後の接着剤粒径が20μm以下である。
 ここで使用する、ポリオレフィン系樹脂は、リサイクルの要望の高いラミネート法により製造される積層フィルムに多用されるポリオレフィン系樹脂フィルムの原料を指す。これらの積層フィルムに多用される具体的なフィルムとしては、ポリエチレンフィルム(LLDPE:リニア低密度ポリエチレンフィルム、LDPE:低密度ポリエチレンフィルム、MDOPE:機械縦方向延伸ポリエチレンフィルム、BOPE:二軸延伸ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム等が挙げられる。また該フィルムの原料であるエチレンやプロピレンは、石油由来のものもバイオ原料由来のものも流通している。
The above (1) will be explained.
In (1), a polyolefin resin and a reactive adhesive are blended in a ratio of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 μm or less.
The polyolefin resin used here refers to the raw material of the polyolefin resin film, which is frequently used for the laminated film produced by the lamination method, for which there is a high demand for recycling. Specific films frequently used for these laminated films include polyethylene films (LLDPE: linear low-density polyethylene film, LDPE: low-density polyethylene film, MDOPE: machine direction oriented polyethylene film, BOPE: biaxially oriented polyethylene film, HDPE: high-density polyethylene film) and polypropylene films (CPP: unstretched polypropylene film, OPP: biaxially stretched polypropylene film) and other polyolefin films. Ethylene and propylene, which are raw materials for the film, are commercially available, both petroleum-derived and bio-based raw materials.
 ポリオレフィン系樹脂と反応性接着剤を、質量比に換算し96:4の範囲で配合する。反応性接着剤は後述の通り有機溶剤を含有する場合もあるが、本発明においては固形分とする。 The polyolefin resin and reactive adhesive are blended in the range of 96:4 in terms of mass ratio. Although the reactive adhesive may contain an organic solvent as described later, in the present invention, it is defined as a solid content.
 前記(1)において、溶融混錬の条件としては次の方法の通りとした。
 20μmのOPPフィルム(二軸延伸ポリプロピレンフィルム)または30μmのCPPフィルム(無延伸ポリプロピレンフィルム)に、接着剤塗工液を接着剤の固形分重量が約2.0g/mとなるようにバーコーターを使用して塗布し、溶剤を揮散させた後、卓上カレンダーロールを用いて30μmのCPPフィルムと貼り合わせを行う。40℃で72時間のエージングを行い、積層フィルムを作製する。
 得られた積層フィルムの、「OPPフィルムの重量とCPPフィルムの重量の和」:「接着剤の固形分重量」は、96:4である。
 積層フィルムを幅10mm、長さ300mmの短冊に裁断したものを、2軸混錬押出装置(株式会社テクノベル社製、ULTnano15TW)を用いて、240℃、100rpm、3分間溶融混錬する。このような溶融混錬条件後の接着剤粒径を測定した。
In the above (1), the melt-kneading conditions were as follows.
20 μm OPP film (biaxially oriented polypropylene film) or 30 μm CPP film (non-stretched polypropylene film), the adhesive coating liquid is bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 After the solvent is volatilized, it is laminated with a 30 μm CPP film using a desktop calender roll. Aging is performed at 40° C. for 72 hours to produce a laminated film.
The ratio of "the sum of the weight of the OPP film and the weight of the CPP film" to "the solid content weight of the adhesive" of the obtained laminated film is 96:4.
The laminated film is cut into strips having a width of 10 mm and a length of 300 mm, and the strips are melt-kneaded at 240° C. and 100 rpm for 3 minutes using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.). The particle size of the adhesive after such melt-kneading conditions was measured.
 また、接着剤粒径は、次の方法により測定した値とした。
 溶融混錬の条件と同様にして得た積層フィルムを、幅10mm、長さ300mmの短冊に裁断したものを、2軸混錬押出装置(株式会社テクノベル社製、ULTnano15TW)を用いて、240℃、100rpm、3分間溶融混錬した後、ノズルから押出し、直ちに水道水で冷却し、ストランド状の樹脂を得る。得られたストランドをランダムに10箇所ミクロトームで切り出し、各断面を15KV、150倍でSEM反射電子像を観察、400μm×600μmの視野の画像を得る。得られた画像を画像処理解析ソフトImageJを用いて接着剤粒子を抽出する。本処理において、2×2画素以下はノイズと判断し、粒子を円と仮定して面積から算出した直径を算出、ヒストグラムを作成した。得られたヒストグラムから、全体の90%を占める領域の最大値を接着剤粒径とした。
Also, the particle size of the adhesive was a value measured by the following method.
The laminated film obtained under the same conditions as the melt-kneading was cut into strips of 10 mm in width and 300 mm in length, and extruded at 240° C. using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.). , 100 rpm for 3 minutes, extruded from a nozzle, and immediately cooled with tap water to obtain a strand-like resin. The resulting strand was randomly cut out at 10 locations with a microtome, and each cross section was observed with a SEM backscattered electron image at 15 KV and 150 magnifications to obtain an image with a field of view of 400 μm×600 μm. The adhesive particles are extracted from the obtained image using image processing analysis software ImageJ. In this process, 2×2 pixels or less were determined to be noise, and the diameter calculated from the area was calculated assuming that the particle was a circle, and a histogram was created. From the obtained histogram, the maximum value of the area that occupies 90% of the whole was taken as the adhesive particle size.
 本発明においては、前記接着剤粒径が20μm以下であることが好ましく、より好ましくは 10μm以下である。一方下限は1μm以上であることが好ましく、3μm以上であることが最も好ましい。 In the present invention, the particle size of the adhesive is preferably 20 µm or less, more preferably 10 µm or less. On the other hand, the lower limit is preferably 1 μm or more, most preferably 3 μm or more.
 前記(2)について説明する。
 前記(2)は、40℃で72時間硬化させた反応性接着剤の硬化塗膜の200℃におけるE’が1.0×10~3.0×10の範囲である。
 本発明において、E’、E”、tanδピークは、次の方法により測定して得た値とした。
 動的粘弾性測定装置(TA Instruments社製 RSA G2)を用い、粘弾性測定用の試験片を下記の条件下で測定し、E’(貯蔵弾性率)、E”(損失弾性率)、tanδ(損失正接)を求める。この時の諸条件は次の通りである。
サンプル:長さ20mm(掴み代除く)×幅5mm×厚さ0.3mm  
測定温度範囲:-50~200℃  
周波数:1.0Hz  
昇温速度5℃/min
The above (2) will be explained.
In (2) above, the cured coating film of the reactive adhesive cured at 40° C. for 72 hours has an E′ at 200° C. in the range of 1.0×10 5 to 3.0×10 6 .
In the present invention, the E′, E″ and tan δ peaks were values obtained by measuring by the following method.
Using a dynamic viscoelasticity measuring device (RSA G2 manufactured by TA Instruments), a test piece for viscoelasticity measurement was measured under the following conditions, and E′ (storage elastic modulus), E″ (loss elastic modulus), tan δ (Loss tangent) is obtained under the following conditions.
Sample: length 20 mm (excluding gripping allowance) x width 5 mm x thickness 0.3 mm
Measurement temperature range: -50 to 200°C
Frequency: 1.0Hz
Heating rate 5°C/min
 前記E’の範囲は、中でも2.0×10~2.0×10の範囲であることが好ましく、3.0×10~1.0×10の範囲であることがより好ましい。 The range of E′ is preferably in the range of 2.0×10 5 to 2.0×10 6 , more preferably in the range of 3.0×10 5 to 1.0×10 6 . .
 また、本発明においては、使用する反応性接着剤の、240℃加熱後のtanδピークが0℃以上40℃以下であることが好ましい。tanδピークが当該範囲にあることで、更に引っ張り伸度が維持可能となる。
 前記tanδピークは、中でも、2℃~36℃の範囲であることが好ましく、2℃~25℃の範囲であることがより好ましい。
In the present invention, the reactive adhesive to be used preferably has a tan δ peak of 0°C or higher and 40°C or lower after heating at 240°C. Since the tan δ peak is within this range, the tensile elongation can be further maintained.
The tan δ peak is preferably in the range of 2°C to 36°C, more preferably in the range of 2°C to 25°C.
(反応性接着剤)
 本発明で使用する接着剤は反応性接着剤であり、リサイクルの要望の高いラミネート法により製造される積層フィルムに多用されるイソシアネート化合物を含有するポリイソシアネート組成物(A)とポリオール化合物を含有するポリオール組成物(B)とを含有する反応性接着剤である。
(reactive adhesive)
The adhesive used in the present invention is a reactive adhesive, and contains a polyisocyanate composition (A) containing an isocyanate compound and a polyol compound, which are frequently used in laminated films produced by a lamination method with a high demand for recycling. A reactive adhesive containing a polyol composition (B).
(ポリイソシアネート組成物(A))
 ポリイソシアネート組成物(A)は、ポリイソシアネート化合物(A1)を含む。ポリイソシアネート化合物(A1)は特に制限なく公知のものを用いることができる。例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート、キシリレンジイソシアネート等の分子構造内に芳香族構造を持つポリイソシアネート、これらのポリイソシアネートのイソシアネート基(NCO基と略す場合がある)の一部をカルボジイミドで変性した化合物; 
(Polyisocyanate composition (A))
The polyisocyanate composition (A) contains a polyisocyanate compound (A1). A known polyisocyanate compound (A1) can be used without particular limitation. For example, polyisocyanates having an aromatic structure in the molecular structure such as tolylene diisocyanate, diphenylmethane diisocyanate, polymeric diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, xylylene diisocyanate, isocyanate groups of these polyisocyanates (may be abbreviated as NCO group) partially modified with carbodiimide;
 イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,3-(イソシアナートメチル)シクロヘキサン等の分子構造内に脂環式構造を持つポリイソシアネート;1,6-ヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の直鎖状脂肪族ポリイソシアネート、これらのポリイソシアネートのNCO基の一部をカルボジイミドで変性した化合物;これらポリイソシアネートのイソシアヌレート体;これらポリイソシアネートのアロファネート体;これらポリイソシアネートのビゥレット体;これらのポリイソシアネートをトリメチロールプロパン変性したアダクト体;これらポリイソシアネートとポリオールとの反応生成物であるポリウレタンポリイソシアネートなどが挙げられる。 Polyisocyanates having an alicyclic structure in the molecular structure such as isophorone diisocyanate, 4,4′-methylenebis(cyclohexyl isocyanate), 1,3-(isocyanatomethyl)cyclohexane; 1,6-hexamethylene diisocyanate, 1,5 -Linear aliphatic polyisocyanates such as pentamethylene diisocyanate, lysine diisocyanate and trimethylhexamethylene diisocyanate, compounds obtained by modifying some of the NCO groups of these polyisocyanates with carbodiimide; isocyanurate forms of these polyisocyanates; these polyisocyanates biuret forms of these polyisocyanates; adducts obtained by modifying these polyisocyanates with trimethylolpropane; and polyurethane polyisocyanates which are reaction products of these polyisocyanates and polyols.
 ポリイソシアネート化合物(A1)としてポリウレタンポリイソシアネートを用いる場合、接着剤塗膜の凝集力と柔軟性のバランスの点から、上述したポリイソシアネートとポリオールとを、イソシアネート基と水酸基との当量比[NCO]/[OH]が0.5~5.0となる割合で反応させて得られるものが好ましい。 When polyurethane polyisocyanate is used as the polyisocyanate compound (A1), from the viewpoint of the balance between the cohesive force and flexibility of the adhesive coating film, the above-mentioned polyisocyanate and polyol are adjusted to the equivalent ratio [NCO] of the isocyanate group to the hydroxyl group. /[OH] is preferably obtained by reacting at a ratio of 0.5 to 5.0.
 ポリウレタンポリイソシアネートの反応成分であるポリオールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ビスヒドロキシエトキシベンゼン等の鎖状脂肪族グリコール; Examples of polyols that are reactive components of polyurethane polyisocyanate include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Chains such as 1,6-hexanediol, neopentyl glycol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, and bishydroxyethoxybenzene aliphatic glycols;
 1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等の脂環式グリコール;イソシアヌル酸トリス(2ーヒドロキシエチル)等の複素環式グリコール;グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能又は4官能の脂肪族アルコール;ビスフェノールA、ビスフェノールF、水素添加ビスフェノールA、水素添加ビスフェノールF等のビスフェノール;ダイマージオール; Alicyclic glycols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol; Heterocyclic glycols such as tris(2-hydroxyethyl) isocyanurate; Trifunctional or tetrafunctional aliphatic alcohols; bisphenols such as bisphenol A, bisphenol F, hydrogenated bisphenol A and hydrogenated bisphenol F; dimer diol;
 前記グリコール、3官能又は4官能の脂肪族アルコール等の重合開始剤の存在下にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン、シクロヘキシレン等のアルキレンオキシドを付加重合したポリエーテルポリオール; Polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and cyclohexylene in the presence of polymerization initiators such as glycols and trifunctional or tetrafunctional aliphatic alcohols. ;
 プロピオラクトン、ブチロラクトン、ε-カプロラクトン、σ-バレロラクトン、β-メチル-σ-バレロラクトン等の環状エステル化合物の開環重合反応によって得られるポリエステルと、前記グリコール又は3官能若しくは4官能の脂肪族アルコールとの反応物であるポリエステルポリオール(1);
 前記鎖状脂肪族グリコール、脂環式グリコール、ダイマージオール、ビスフェノール又は前記ポリエーテルポリオール等のポリオールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(2);
A polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as propiolactone, butyrolactone, ε-caprolactone, σ-valerolactone, β-methyl-σ-valerolactone, and the glycol or trifunctional or tetrafunctional aliphatic Polyester polyol (1) which is a reactant with alcohol;
A polyester polyol (2) obtained by reacting a polyol such as the linear aliphatic glycol, alicyclic glycol, dimer diol, bisphenol, or polyether polyol with a polyvalent carboxylic acid;
 前記3官能又は4官能の脂肪族アルコールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(3);
 2官能型ポリオールと、前記3官能又は4官能の脂肪族アルコールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(4);
 ジメチロールプロピオン酸、ヒマシ油脂肪酸等のヒドロキシル酸の重合体である、ポリエステルポリオール(5);
polyester polyol (3) obtained by reacting the trifunctional or tetrafunctional aliphatic alcohol with a polycarboxylic acid;
A polyester polyol (4) obtained by reacting a bifunctional polyol, the trifunctional or tetrafunctional aliphatic alcohol, and a polyvalent carboxylic acid;
polyester polyols (5), which are polymers of hydroxyl acids such as dimethylolpropionic acid, castor oil fatty acid;
 前記ポリエステルポリオール(1)、(2)、(3)、(4)、(5)とポリエーテルポリオールとの混合物;
 ヒマシ油、ヒマシ油の水素添加物であるヒマシ硬化油、ヒマシ油のアルキレンオキサイド5~50モル付加体等のヒマシ油系ポリオール等が挙げられ、単独または複数を組み合わせて用いることができる。
 また、ポリエステルポリオール(2)~(5)の反応成分である多価カルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸等の芳香族ジカルボン酸;及びこれら脂肪族又はジカルボン酸の無水物あるいはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体、ダイマー酸等の多塩基酸類が挙げられる。
mixtures of the polyester polyols (1), (2), (3), (4), (5) and polyether polyols;
Castor oil, hydrogenated castor oil, which is a hydrogenated castor oil, and castor oil-based polyols such as adducts of 5 to 50 mol of alkylene oxide of castor oil, etc., can be used alone or in combination.
Examples of polyvalent carboxylic acids that are reaction components of polyester polyols (2) to (5) include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1, Aliphatic dicarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid , naphthalic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid; and anhydride or ester-forming derivatives of these aliphatic or dicarboxylic acids; p- Polybasic acids such as hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, ester-forming derivatives of these dihydroxycarboxylic acids, and dimer acid can be mentioned.
 ポリイソシアネート化合物(A1)としては、分子構造内に芳香族構造を持つポリイソシアネート、分子構造内に芳香族構造を持つポリイソシアネートのNCO基の一部をカルボジイミドで変性した化合物、分子構造内に脂環式構造を持つポリイソシアネートのいずれかのイソシアヌレート体、アロファネート体、ビゥレット体、アダクト体が好ましく、トリレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネートのイソシアヌレート体、アロファネート体、ビゥレット体、アダクト体が好ましい。 Examples of the polyisocyanate compound (A1) include polyisocyanates having an aromatic structure in the molecular structure, polyisocyanates having an aromatic structure in the molecular structure and some of the NCO groups of the polyisocyanate modified with carbodiimide, and polyisocyanates having an aromatic structure in the molecular structure. Any isocyanurate, allophanate, biuret, or adduct of a polyisocyanate having a cyclic structure is preferable, and isocyanurate or allophanate of tolylene diisocyanate, 1,6-hexamethylene diisocyanate, xylylene diisocyanate, or isophorone diisocyanate. Body, billet body and adduct body are preferred.
(ポリオール組成物(B))
 本発明において使用するポリオール組成物(B)は、主成分としてポリオール化合物(B1)を含有する組成物である。ポリオール化合物(B1)は単独で使用しても複数を混合して使用することもできる。
 具体的には、前記ポリイソシアネート化合物(A1)としてポリウレタンポリイソシアネートを用いる場合の反応成分として例示した各種ポリオールを使用することができる。
例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ビスヒドロキシエトキシベンゼン等の鎖状脂肪族グリコール;
(Polyol composition (B))
The polyol composition (B) used in the present invention is a composition containing a polyol compound (B1) as a main component. The polyol compound (B1) may be used alone or in combination.
Specifically, various polyols exemplified as reaction components when polyurethane polyisocyanate is used as the polyisocyanate compound (A1) can be used.
For example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, neopentyl glycol , methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, bishydroxyethoxybenzene chain aliphatic glycols;
 1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等の脂環式グリコール;
 グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能又は4官能の脂肪族アルコール;
 ビスフェノールA、ビスフェノールF、水素添加ビスフェノールA、水素添加ビスフェノールF等のビスフェノール;
 ダイマージオール;
Alicyclic glycols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol;
trifunctional or tetrafunctional aliphatic alcohols such as glycerin, trimethylolpropane, pentaerythritol;
Bisphenols such as bisphenol A, bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F;
dimer diall;
 前記グリコール、3官能又は4官能の脂肪族アルコール等の重合開始剤の存在下にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン、シクロヘキシレン等のアルキレンオキシドを付加重合したポリエーテルポリオール; Polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran, and cyclohexylene in the presence of polymerization initiators such as glycols and trifunctional or tetrafunctional aliphatic alcohols. ;
 プロピオラクトン、ブチロラクトン、ε-カプロラクトン、σ-バレロラクトン、β-メチル-σ-バレロラクトン等の環状エステル化合物の開環重合反応によって得られるポリエステルと、前記グリコール又は3官能若しくは4官能の脂肪族アルコールとの反応物であるポリエステルポリオール(1);
 前記鎖状脂肪族グリコール、脂環式グリコール、ダイマージオール、ビスフェノール又は前記ポリエーテルポリオール等のポリオールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(2);
A polyester obtained by a ring-opening polymerization reaction of a cyclic ester compound such as propiolactone, butyrolactone, ε-caprolactone, σ-valerolactone, β-methyl-σ-valerolactone, and the glycol or trifunctional or tetrafunctional aliphatic Polyester polyol (1) which is a reactant with alcohol;
A polyester polyol (2) obtained by reacting a polyol such as the linear aliphatic glycol, alicyclic glycol, dimer diol, bisphenol, or polyether polyol with a polyvalent carboxylic acid;
 前記3官能又は4官能の脂肪族アルコールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(3);
 2官能型ポリオールと、前記3官能又は4官能の脂肪族アルコールと、多価カルボン酸とを反応させて得られるポリエステルポリオール(4);
 ジメチロールプロピオン酸、ヒマシ油脂肪酸等のヒドロキシル酸の重合体である、ポリエステルポリオール(5);
polyester polyol (3) obtained by reacting the trifunctional or tetrafunctional aliphatic alcohol with a polycarboxylic acid;
A polyester polyol (4) obtained by reacting a bifunctional polyol, the trifunctional or tetrafunctional aliphatic alcohol, and a polyvalent carboxylic acid;
polyester polyols (5), which are polymers of hydroxyl acids such as dimethylolpropionic acid, castor oil fatty acid;
 前記ポリエステルポリオール(1)、(2)、(3)、(4)、(5)とポリエーテルポリオールとの混合物;
 ヒマシ油、ヒマシ油の水素添加物であるヒマシ硬化油、ヒマシ油のアルキレンオキサイド5~50モル付加体等のヒマシ油系ポリオール等が挙げられ、単独または複数を組み合わせて用いることができる。
 また、ポリエステルポリオール(2)~(5)の反応成分である多価カルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸等の芳香族ジカルボン酸;及びこれら脂肪族又はジカルボン酸の無水物あるいはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体、ダイマー酸等の多塩基酸類が挙げられる。
mixtures of the polyester polyols (1), (2), (3), (4), (5) and polyether polyols;
Castor oil, hydrogenated castor oil, which is a hydrogenated castor oil, and castor oil-based polyols such as adducts of 5 to 50 mol of alkylene oxide of castor oil, etc., can be used alone or in combination.
Examples of polyvalent carboxylic acids that are reaction components of polyester polyols (2) to (5) include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1, Aliphatic dicarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid , naphthalic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid; and anhydride or ester-forming derivatives of these aliphatic or dicarboxylic acids; p- Polybasic acids such as hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid, ester-forming derivatives of these dihydroxycarboxylic acids, and dimer acid can be mentioned.
(接着剤のその他の成分)
 本発明の反応性接着剤は、上述の成分以外の成分を含んでいてもよい。これらの成分はポリイソシアネート組成物(A)またはポリオール組成物(B)のいずれかまたは両方に含まれていてもよいし、これらとは別に調整しておき、接着剤の塗工直前にポリイソシアネート組成物(A)、ポリオール組成物(B)とともに混合して用いてもよい。以下では各成分について説明する。
(Other components of adhesive)
The reactive adhesive of the present invention may contain ingredients other than those mentioned above. These components may be contained in either or both of the polyisocyanate composition (A) and the polyol composition (B), or may be prepared separately from these and the polyisocyanate may be added immediately before coating the adhesive. It may be used by mixing with the composition (A) and the polyol composition (B). Each component will be described below.
(有機溶剤)
 本発明の反応性接着剤は、溶剤型又は無溶剤型のいずれの形態であってもよい。本発明でいう「溶剤型」の接着剤とは、接着剤を基材に塗工した後に、オーブン等で加熱して塗膜中の有機溶剤を揮発させた後に他の基材と貼り合せる方法、いわゆるドライラミネート法に用いられる形態をいう。ポリイソシアネート組成物(A)、ポリオール組成物(B)のいずれか一方、もしくは両方が本発明で使用するポリイソシアネート組成物(A)の構成成分、ポリオール組成物(B)の構成成分を溶解(希釈)することが可能な有機溶剤を含む。
(Organic solvent)
The reactive adhesives of the present invention may be in either solvent-based or solvent-free form. The "solvent type" adhesive referred to in the present invention is a method of applying the adhesive to a base material, heating it in an oven or the like to volatilize the organic solvent in the coating film, and then bonding it to another base material. , refers to a form used in a so-called dry lamination method. Either one or both of the polyisocyanate composition (A) and the polyol composition (B) are used in the present invention by dissolving the constituent components of the polyisocyanate composition (A) and the polyol composition (B) ( containing organic solvents that can be diluted).
 有機溶剤としては、例えば酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル類、アセトン、メチルエチルケトン、イソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、メチレンクロリド、エチレンクロリド等のハロゲン化炭化水素類、ジメチルスルホキシド、ジメチルスルホアミド等が挙げられる。ポリイソシアネート組成物(A)またはポリオール組成物(B)の構成成分の製造時に反応媒体として使用された有機溶剤が、更に塗装時に希釈剤として使用される場合もある。 Examples of organic solvents include esters such as ethyl acetate, butyl acetate and cellosolve acetate; ketones such as acetone, methyl ethyl ketone, isobutyl ketone and cyclohexanone; ethers such as tetrahydrofuran and dioxane; and aromatic hydrocarbons such as toluene and xylene. , methylene chloride, halogenated hydrocarbons such as ethylene chloride, dimethylsulfoxide, dimethylsulfamide and the like. The organic solvent used as a reaction medium during the production of the components of the polyisocyanate composition (A) or the polyol composition (B) may also be used as a diluent during coating.
 本明細書において「無溶剤型」の接着剤とは、ポリイソシアネート組成物(A)及びポリオール組成物(B)が上述したような溶解性の高い有機溶剤、特に酢酸エチル又はメチルエチルケトンを実質的に含まず、接着剤を基材に塗工した後に、オーブン等で加熱して溶剤を揮発させる工程を経ずに他の基材と貼り合せる方法、いわゆるノンソルベントラミネート法に用いられる接着剤の形態を指す。ポリイソシアネート組成物(A)またはポリオール組成物(B)の構成成分や、その原料の製造時に反応媒体として使用された有機溶剤が除去しきれずに、ポリイソシアネート組成物(A)やポリオール組成物(B)中に微量の有機溶剤が残留してしまっている場合は、有機溶剤を実質的に含まないと解される。また、ポリイソシアネート組成物(A)が低分子量アルコールを含む場合、低分子量アルコールはポリオール組成物(B)と反応して塗膜の一部となるため、塗工後に揮発させる必要はない。従ってこのような形態も無溶剤型接着剤として扱い、低分子量アルコールは有機溶剤とはみなされない。 As used herein, the term "solvent-free" adhesive means that the polyisocyanate composition (A) and the polyol composition (B) are substantially The form of the adhesive used in the so-called non-solvent lamination method, which is a method in which the adhesive is applied to the base material and then laminated to another base material without the process of heating in an oven or the like to volatilize the solvent. point to The constituent components of the polyisocyanate composition (A) or the polyol composition (B) and the organic solvent used as the reaction medium during the production of the raw materials cannot be completely removed, resulting in the polyisocyanate composition (A) or the polyol composition ( If a small amount of organic solvent remains in B), it is understood that the organic solvent is not substantially contained. Further, when the polyisocyanate composition (A) contains a low-molecular-weight alcohol, the low-molecular-weight alcohol reacts with the polyol composition (B) and becomes part of the coating film, so it is not necessary to volatilize after coating. Such forms are therefore also treated as solventless adhesives and low molecular weight alcohols are not considered organic solvents.
(触媒)
 本発明の反応性接着剤は必要に応じて触媒を使用することにより硬化反応を促進することができる。触媒としては、ポリイソシアネート組成物(A)とポリオール組成物(B)のウレタン化反応を促進するものであれば特に制限されず、金属系触媒、アミン系触媒、脂肪族環状アミド化合物、チタンキレート錯体等が例示される。
(catalyst)
The curing reaction of the reactive adhesive of the present invention can be accelerated by using a catalyst as necessary. The catalyst is not particularly limited as long as it promotes the urethanization reaction between the polyisocyanate composition (A) and the polyol composition (B), and includes metal catalysts, amine catalysts, aliphatic cyclic amide compounds, and titanium chelates. Complexes and the like are exemplified.
 金属系触媒としては、金属錯体系、無機金属系、有機金属系の触媒が挙げられる。金属錯体系の触媒としては、Fe(鉄)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Th(トリウム)、Ti(チタン)、Al(アルミニウム)、Co(コバルト)からなる群より選ばれる金属のアセチルアセトナート塩、例えば鉄アセチルアセトネート、マンガンアセチルアセトネート、銅アセチルアセトネート、ジルコニアアセチルアセトネート等が例示される。毒性と触媒活性の点から、鉄アセチルアセトネート(Fe(acac))またはマンガンアセチルアセトネート(Mn(acac))が好ましい。 Metal-based catalysts include metal complex-based, inorganic metal-based, and organic metal-based catalysts. As the metal complex catalyst, a group consisting of Fe (iron), Mn (manganese), Cu (copper), Zr (zirconium), Th (thorium), Ti (titanium), Al (aluminum), Co (cobalt) Examples include acetylacetonate salts of metals selected from the above, such as iron acetylacetonate, manganese acetylacetonate, copper acetylacetonate, zirconia acetylacetonate and the like. From the point of view of toxicity and catalytic activity, iron acetylacetonate (Fe(acac) 3 ) or manganese acetylacetonate (Mn(acac) 2 ) are preferred.
 無機金属系の触媒としては、Sn、Fe、Mn、Cu、Zr、Th、Ti、Al、Co等から選ばれるものが挙げられる。 Examples of inorganic metal-based catalysts include those selected from Sn, Fe, Mn, Cu, Zr, Th, Ti, Al, Co, and the like.
 有機金属系触媒としては、オクチル酸亜鉛、ネオデカン酸亜鉛、ナフテン酸亜鉛等の有機亜鉛化合物、スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫オキサイド、ジブチル錫ジクロライド等の有機錫化合物、オクチル酸ニッケル、ナフテン酸ニッケル等の有機ニッケル化合物、オクチル酸コバルト、ナフテン酸コバルト等の有機コバルト化合物、オクチル酸ビスマス、ネオデカン酸ビスマス、ナフテン酸ビスマス等の有機ビスマス化合物、テトライソプロピルオキシチタネート、ジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライド等のチタン系化合物等が挙げられる。 Organometallic catalysts include organozinc compounds such as zinc octylate, zinc neodecanoate, and zinc naphthenate; , dioctyltin dilaurate, dibutyltin oxide, dibutyltin dichloride and other organic tin compounds, nickel octylate, nickel naphthenate and other organic nickel compounds, cobalt octylate, cobalt naphthenate and other organic cobalt compounds, bismuth octylate, neodecanoic acid Examples include organic bismuth compounds such as bismuth and bismuth naphthenate, and titanium compounds such as tetraisopropyloxytitanate, dibutyltitanium dichloride, tetrabutyltitanate and butoxytitanium trichloride.
 アミン系触媒としては、トリエチレンジアミン、2-メチルトリエチレンジアミン、キヌクリジン、2-メチルキヌクリジン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチル-(3-アミノプロピル)エチレンジアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルエタノールアミン、ジメチルイソプロパノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチル-N’-(2-ヒドロキシエチル)エチレンジアミン、N,N-ジメチル-N’-(2-ヒドロキシエチル)プロパンジアミン、ビス(ジメチルアミノプロピル)アミン、ビス(ジメチルアミノプロピル)イソプロパノールアミン、3-キヌクリジノール、N,N,N’,N’-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、N-メチル-N’-(2-ジメチルアミノエチル)ピペラジン、N,N’-ジメチルピペラジン、ジメチルシクロヘキシルアミン、N-メチルモルホリン、N-エチルモルホリン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール、N,N-ジメチルヘキサノールアミン、N-メチル-N’-(2-ヒドロキシエチル)ピペラジン、1-(2-ヒドロキシエチル)イミダゾール、1-(2-ヒドロキシプロピル)イミダゾール、1-(2-ヒドロキシエチル)-2-メチルイミダゾール、1-(2-ヒドロキシプロピル)-2-メチルイミダゾール等が挙げられる。 Amine catalysts include triethylenediamine, 2-methyltriethylenediamine, quinuclidine, 2-methylquinuclidine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethyl Propylenediamine, N,N,N',N'',N''-pentamethyldiethylenetriamine, N,N,N',N'',N''-pentamethyl-(3-aminopropyl)ethylenediamine, N,N,N', N″,N″-pentamethyldipropylenetriamine, N,N,N′,N′-tetramethylhexamethylenediamine, bis(2-dimethylaminoethyl)ether, dimethylethanolamine, dimethylisopropanolamine, dimethylaminoethoxyethanol , N,N-dimethyl-N'-(2-hydroxyethyl)ethylenediamine, N,N-dimethyl-N'-(2-hydroxyethyl)propanediamine, bis(dimethylaminopropyl)amine, bis(dimethylaminopropyl) isopropanolamine, 3-quinuclidinol, N,N,N',N'-tetramethylguanidine, 1,3,5-tris(N,N-dimethylaminopropyl)hexahydro-S-triazine, 1,8-diazabicyclo[5 .4.0]undecene-7, N-methyl-N′-(2-dimethylaminoethyl)piperazine, N,N′-dimethylpiperazine, dimethylcyclohexylamine, N-methylmorpholine, N-ethylmorpholine, 1-methyl imidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole, N,N-dimethylhexanolamine, N-methyl-N'-(2-hydroxyethyl)piperazine, 1- (2-hydroxyethyl)imidazole, 1-(2-hydroxypropyl)imidazole, 1-(2-hydroxyethyl)-2-methylimidazole, 1-(2-hydroxypropyl)-2-methylimidazole and the like.
 脂肪族環状アミド化合物は、例えば、δ-バレロラクタム、ε-カプロラクタム、ω-エナントールラクタム、η-カプリルラクタム、β-プロピオラクタム等が挙げられる。これらの中でもε-カプロラクタムが硬化促進により効果的である。 Aliphatic cyclic amide compounds include, for example, δ-valerolactam, ε-caprolactam, ω-enanthollactam, η-capryllactam, β-propiolactam and the like. Among these, ε-caprolactam is more effective in accelerating hardening.
 チタンキレート錯体は、紫外線照射により触媒活性が高められる化合物であり、脂肪族又は芳香族ジケトンをリガンドとするチタンキレート錯体であることが硬化促進効果に優れる点から好ましい。又、本発明ではリガンドとして芳香族又は脂肪族ジケトンに加え、炭素原子数2~10のアルコールを持つものがより本発明の効果が顕著なものとなる点から好ましい。 The titanium chelate complex is a compound whose catalytic activity is enhanced by ultraviolet irradiation, and a titanium chelate complex having an aliphatic or aromatic diketone as a ligand is preferable from the viewpoint of excellent curing acceleration effect. Further, in the present invention, in addition to aromatic or aliphatic diketones, those having alcohols having 2 to 10 carbon atoms as ligands are preferred from the viewpoint that the effects of the present invention are more pronounced.
 これらの触媒は単独または2種以上を組み合わせて用いることができる。触媒の配合量は、ポリイソシアネート組成物(A)とポリオール組成物(B)の固形分総量100質量部に対して0.001~3質量部とすることが好ましく、0.01~2質量部とすることがより好ましい。 These catalysts can be used alone or in combination of two or more. The amount of the catalyst compounded is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 2 parts by mass, per 100 parts by mass of the total solid content of the polyisocyanate composition (A) and the polyol composition (B). is more preferable.
(顔料)
 本発明の反応性接着剤は、必要に応じて顔料を含んでいてもよい。用いられる顔料としては特に制限はなく、塗料原料便覧1970年度版(日本塗料工業会編)に記載されている体質顔料、白顔料、黒顔料、灰色顔料、赤色顔料、茶色顔料、緑色顔料、青顔料、金属粉顔料、発光顔料、真珠色顔料等の有機顔料や無機顔料、さらにはプラスチック顔料などが挙げられる。
(pigment)
The reactive adhesive of the present invention may contain a pigment if necessary. The pigments used are not particularly limited, and extender pigments, white pigments, black pigments, gray pigments, red pigments, brown pigments, green pigments, and blue pigments described in the 1970 edition of the Handbook of Paint Materials (edited by the Japan Paint Manufacturers Association). Organic and inorganic pigments such as pigments, metal powder pigments, luminescent pigments, and pearlescent pigments, and plastic pigments can be used.
 体質顔料としては、例えば、沈降性硫酸バリウム、ご粉、沈降炭酸カルシウム、重炭酸カルシウム、寒水石、アルミナ白、シリカ、含水微粉シリカ(ホワイトカーボン)、超微粉無水シリカ(アエロジル)、珪砂(シリカサンド)、タルク、沈降性炭酸マグネシウム、ベントナイト、クレー、カオリン、黄土などが挙げられる。 Extender pigments include, for example, precipitated barium sulfate, rice flour, precipitated calcium carbonate, calcium bicarbonate, Kansui stone, alumina white, silica, hydrous fine silica (white carbon), ultrafine anhydrous silica (Aerosil), silica sand (silica sand), talc, precipitated magnesium carbonate, bentonite, clay, kaolin, loess, and the like.
 有機顔料の具体例としては、ベンチジンエロー、ハンザエロー、レーキッド4R等の、各種の不溶性アゾ顔料;レーキッドC、カーミン6B、ボルドー10等の溶性アゾ顔料;フタロシアニンブルー、フタロシアニングリーン等の各種(銅)フタロシアニン系顔料;ローダミンレーキ、メチルバイオレットレーキ等の各種の塩素性染め付けレーキ;キノリンレーキ、ファストスカイブルー等の各種の媒染染料系顔料;アンスラキノン系顔料、チオインジゴ系顔料、ペリノン系顔料等の各種の建染染料系顔料;シンカシアレッドB等の各種のキナクリドン系顔料;ヂオキサジンバイオレット等の各種のヂオキサジン系顔料;クロモフタール等の各種の縮合アゾ顔料;アニリンブラックなどが挙げられる。 Specific examples of organic pigments include various insoluble azo pigments such as Benzidine Yellow, Hansa Yellow and Laked 4R; soluble azo pigments such as Laked C, Carmine 6B and Bordeaux 10; various (copper) pigments such as phthalocyanine blue and phthalocyanine green. Phthalocyanine pigments; various chlorine dyeing lakes such as rhodamine lake and methyl violet lake; various mordant pigments such as quinoline lake and fast sky blue; various pigments such as anthraquinone pigments, thioindigo pigments and perinone pigments vat dye-based pigments; various quinacridone-based pigments such as Cincasia Red B; various dioxazine-based pigments such as dioxazine violet; various condensed azo pigments such as chromophtal;
 無機顔料としては、黄鉛、ジンククロメート、モリブデートオレンジ等の如き、各種のクロム酸塩;紺青等の各種のフェロシアン化合物;酸化チタン、亜鉛華、マピコエロー、酸化鉄、ベンガラ、酸化クロームグリーン、酸化ジルコニウム等の各種の金属酸化物;カドミウムエロー、カドミウムレッド、硫化水銀等の各種の硫化物ないしはセレン化物;硫酸バリウム、硫酸鉛等の各種の硫酸塩;ケイ酸カルシウム、群青等の各種のケイ酸塩;炭酸カルシウム、炭酸マグネシウム等の各種の炭酸塩;コバルトバイオレット、マンガン紫等の各種の燐酸塩;アルミニウム粉、金粉、銀粉、銅粉、ブロンズ粉、真鍮粉等の各種の金属粉末顔料;これら金属のフレーク顔料、マイカ・フレーク顔料;金属酸化物を被覆した形のマイカ・フレーク顔料、雲母状酸化鉄顔料等のメタリック顔料やパール顔料;黒鉛、カーボンブラック等が挙げられる。 Examples of inorganic pigments include various chromates such as yellow lead, zinc chromate, molybdate orange; various ferrocyanic compounds such as Prussian blue; Various metal oxides such as zirconium oxide; various sulfides and selenides such as cadmium yellow, cadmium red, and mercury sulfide; various sulfates such as barium sulfate and lead sulfate; various types of silicon such as calcium silicate and ultramarine blue. acid salts; various carbonates such as calcium carbonate and magnesium carbonate; various phosphates such as cobalt violet and manganese purple; various metal powder pigments such as aluminum powder, gold powder, silver powder, copper powder, bronze powder and brass powder; These metal flake pigments and mica flake pigments; metallic pigments and pearl pigments such as mica-like iron oxide pigments and mica-like iron oxide pigments coated with metal oxides; graphite, carbon black and the like.
 プラスチック顔料としては、例えば、DIC(株)製「グランドールPP-1000」、「PP-2000S」等が挙げられる。 Examples of plastic pigments include "Grandol PP-1000" and "PP-2000S" manufactured by DIC Corporation.
 用いる顔料については目的に応じて適宜選択すればよいが、例えば耐久性、対候性、意匠性に優れることから白色顔料としては酸化チタン、亜鉛華等の無機酸化物を用いることが好ましく、黒色顔料としてはカーボンブラックを用いることが好ましい。 The pigment to be used may be appropriately selected according to the purpose. For example, inorganic oxides such as titanium oxide and zinc oxide are preferably used as white pigments because they are excellent in durability, weather resistance, and design. Carbon black is preferably used as the pigment.
 顔料の配合量は、一例としてポリイソシアネート組成物(A)とポリオール組成物(B)の固形分総量100質量部に対して1~400質量部であり、接着性をより良好なものとするため10~300質量部とすることがより好ましい。 The amount of the pigment compounded is, for example, 1 to 400 parts by mass with respect to 100 parts by mass of the total solid content of the polyisocyanate composition (A) and the polyol composition (B), in order to improve adhesion. More preferably 10 to 300 parts by mass.
(接着促進剤)
 本発明の反応性接着剤は、接着促進剤を含んでいてもよい。接着促進剤としては、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等のカップリング剤、エポキシ樹脂等が挙げられる。
(adhesion promoter)
The reactive adhesive of the present invention may contain an adhesion promoter. Examples of adhesion promoters include coupling agents such as silane coupling agents, titanate coupling agents and aluminum coupling agents, and epoxy resins.
 シランカップリング剤としては、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン;ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン;ヘキサメチルジシラザン、γ-メルカプトプロピルトリメトキシシラン等が挙げられる。 Silane coupling agents include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl)-γ-aminopropyltrimethoxysilane, N-β (aminoethyl)-γ-amino Aminosilanes such as propyltrimethyldimethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane; β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxy epoxysilanes such as propyltriethoxysilane; vinylsilanes such as vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane; hexamethyldisilazane, γ-mercaptopropyltrisilane; methoxysilane and the like.
 チタネート系カップリング剤としては、例えば、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、ブチルチタネートダイマー、テトラステアリルチタネート、チタンアセチルアセトネート、チタンラクテート、テトラオクチレングリコールチタネート、チタンラクテート、テトラステアロキシチタン等が挙げられる。 Titanate-based coupling agents include, for example, tetraisopropoxytitanium, tetra-n-butoxytitanium, butyl titanate dimer, tetrastearyl titanate, titanium acetylacetonate, titanium lactate, tetraoctylene glycol titanate, titanium lactate, tetrastearoxy Titanium etc. are mentioned.
 アルミニウム系カップリング剤としては、例えば、アセトアルコキシアルミニウムジイソプロピレート等が挙げられる。 Examples of aluminum-based coupling agents include acetoalkoxyaluminum diisopropylate.
 エポキシ樹脂としては、一般的に市販されているエピビス型、ノボラック型、βーメチルエピクロ型、環状オキシラン型、グリシジルエーテル型、グリシジルエステル型、ポリグリコールエーテル型、グリコールエーテル型、エポキシ化脂肪酸エステル型、多価カルボン酸エステル型、アミノグリシジル型、レゾルシン型等の各種エポキシ樹脂や、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アクリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、フェノールグリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、グリシジルメタクリレート、ブチルグリシジルエーテル等の化合物等が挙げられる。 As the epoxy resin, generally commercially available epibis type, novolak type, β-methyl epichloro type, cyclic oxirane type, glycidyl ether type, glycidyl ester type, polyglycol ether type, glycol ether type, epoxidized fatty acid ester type, poly Various epoxy resins such as carboxylic acid ester type, aminoglycidyl type, resorcinol type, triglycidyl tris(2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, acryl glycidyl compounds such as ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, phenol glycidyl ether, pt-butylphenyl glycidyl ether, diglycidyl adipate, o-diglycidyl phthalate, glycidyl methacrylate, butyl glycidyl ether; mentioned.
(酸化防止剤)
 本発明の反応性接着剤は、酸化防止剤を含有してもよい。酸化防止剤として特に、リン系酸化防止剤又はビンダードフェノール系酸化防止剤が好ましい。リン系酸化防止剤としては、例えば、トリフェニルホスファイト(城北化学工業株式会社、JP-360)、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリエチルホスファイト、トリオレイルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラ(C12~C15アルキル)-4,4‘-イソプロピリデンジフェニルジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト等が挙げられる。ビンダードフェノール系酸化防止剤としては例えば、ペンタエリスリトールテトラキス(3-(3,5-ジーtert-ブチルー4-ヒドロキシフェニル)プロピオネート)(BASFジャパン株式会社、Irganox1010)、チオジエチレンビス[3-(3,5-ジーtert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジーtert-ブチル-ヒドロキシフェニル)プロピオネート、ベンジル酢酸3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9分岐アルキルエステル等が挙げられる。
 リン系酸化防止剤の添加量は、0.1~1.0質量%が最も好ましく、ビンダードフェノール系酸化防止剤の添加量は0.1~5.0質量%が最も好ましい。リン系酸化防止剤又はビンダードフェノール系酸化防止剤は、単独で使用してもよく、併用してもよい。
(Antioxidant)
The reactive adhesive of the invention may contain an antioxidant. Phosphorus-based antioxidants or bindered phenol-based antioxidants are particularly preferred as antioxidants. Phosphorus-based antioxidants include, for example, triphenyl phosphite (Johoku Chemical Co., Ltd., JP-360), trisnonylphenyl phosphite, tricresyl phosphite, triethyl phosphite, trioleyl phosphite, diphenylmono ( 2-ethylhexyl) phosphite, tetraphenyl dipropylene glycol diphosphite, tetra(C12-C15 alkyl)-4,4'-isopropylidene diphenyl diphosphite, bis(decyl) pentaerythritol diphosphite, tristearyl phosphite etc. Binderd phenol antioxidants include, for example, pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (BASF Japan Ltd., Irganox1010), thiodiethylene bis[3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-tert-butyl-hydroxyphenyl)propionate, 3,5-bis(1,1-dimethylethyl)benzylacetate -4-hydroxy-C7-C9 branched alkyl esters and the like.
The amount of the phosphorus-based antioxidant added is most preferably 0.1 to 1.0% by mass, and the amount of the bindered phenol-based antioxidant added is most preferably 0.1 to 5.0% by mass. Phosphorus-based antioxidants or bindered phenol-based antioxidants may be used alone or in combination.
(その他の添加剤)
 本発明の反応性接着剤は、上述した成分以外に、レベリング剤、コロイド状シリカやアルミナゾルなどの無機微粒子、ポリメチルメタクリレート系の有機微粒子、消泡剤、タレ性防止剤、湿潤分散剤、粘性調整剤、紫外線吸収剤、金属不活性化剤、過酸化物分解剤、難燃剤、補強剤、可塑剤、潤滑剤、防錆剤、蛍光性増白剤、無機系熱線吸収剤、防炎剤、帯電防止剤、脱水剤、公知慣用の熱可塑性エラストマー、粘着付与剤、燐酸化合物、メラミン樹脂、反応性エラストマー等を含んでいてもよい。これらの添加剤の配合量は、本発明の反応性接着剤の希望を損なわない範囲で適宜調整される。
(Other additives)
In addition to the components described above, the reactive adhesive of the present invention includes a leveling agent, inorganic fine particles such as colloidal silica and alumina sol, polymethyl methacrylate-based organic fine particles, an antifoaming agent, an anti-sagging agent, a wetting and dispersing agent, a viscosity Regulators, UV absorbers, metal deactivators, peroxide decomposers, flame retardants, reinforcing agents, plasticizers, lubricants, rust inhibitors, fluorescent brighteners, inorganic heat absorbers, flame retardants , antistatic agents, dehydrating agents, known and commonly used thermoplastic elastomers, tackifiers, phosphoric compounds, melamine resins, reactive elastomers, and the like. The blending amount of these additives is appropriately adjusted within a range that does not impair the desired properties of the reactive adhesive of the present invention.
(積層フィルム)
 本発明の反応性接着剤は、特に、複数のオレフィン系樹脂からなる基材フィルムを反応性接着剤でラミネート接着させて得る積層フィルム用の反応性接着剤として有用である。この構成の積層フィルムにおいて、特にリサイクルプラスチックの引っ張り伸度維持という本発明の効果を最大限に発揮できる。
(Laminated film)
The reactive adhesive of the present invention is particularly useful as a reactive adhesive for laminated films obtained by laminating and adhering base films made of a plurality of olefinic resins with a reactive adhesive. In the laminated film having this structure, the effect of the present invention, particularly the maintenance of the tensile elongation of the recycled plastic, can be maximized.
 オレフィン系樹脂とは、具体的には、ポリエチレンフィルム(LLDPE:リニア低密度ポリエチレンフィルム、LDPE:低密度ポリエチレンフィルム、MDOPE:機械縦方向延伸ポリエチレンフィルム、BOPE:二軸延伸ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:無延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム等が挙げられるがこれに限定されるものではない。また該フィルムの原料であるエチレンやプロピレンは、石油由来であってもバイオ原料由来であってもよく特に限定はなく市場に流通するオレフィン系樹脂フィルムであれば使用することができる。これらのフィルムは、ドライラミネート法またはノンソルベントラミネート法にて貼り合わせて得られる。 Specifically, the olefin resin is a polyethylene film (LLDPE: linear low density polyethylene film, LDPE: low density polyethylene film, MDOPE: machine direction oriented polyethylene film, BOPE: biaxially oriented polyethylene film, HDPE: high density polyethylene film) and polypropylene film (CPP: unstretched polypropylene film, OPP: biaxially stretched polypropylene film), etc., but not limited thereto. Ethylene and propylene, which are raw materials for the film, may be derived from petroleum or biomaterials, and are not particularly limited, and any commercially available olefin resin film can be used. These films are obtained by laminating them by a dry lamination method or a non-solvent lamination method.
 フィルムは延伸処理を施されたものであってもよい。延伸処理方法としては、押出製膜法等で樹脂を溶融押出してシート状にした後、同時二軸延伸あるいは逐次二軸延伸を行うことが一版的である。また逐次二軸延伸の場合は、はじめに縦延伸処理を行い、次に横延伸を行うことが一般的である。具体的には、ロール間の速度差を利用した縦延伸とテンターを用いた横延伸を組み合わせる方法が多く用いられる。 The film may be stretched. As a stretching treatment method, it is common to melt-extrude a resin into a sheet by an extrusion film-forming method or the like, and then subject the sheet to simultaneous biaxial stretching or sequential biaxial stretching. In the case of sequential biaxial stretching, it is common to first perform longitudinal stretching and then laterally stretching. Specifically, a method of combining longitudinal stretching using a speed difference between rolls and transverse stretching using a tenter is often used.
 より具体的な積層フィルムの構成としては、
(1)基材フィルム1/接着層1/シーラントフィルム
(2)基材フィルム1/接着層1/未延伸フィルム
(3)基材フィルム1/接着層1/延伸フィルム
(4)透明蒸着延伸フィルム/接着層1/シーラントフィルム
(5)基材フィルム1/接着層1/基材フィルム2/接着層2/シーラントフィルム
(6)基材フィルム1/接着層1/延伸フィルム/接着層2/シーラントフィルム
等が挙げられるがこれに限定されない。シーラントフィルム、未延伸フィルム、延伸フィルムは金属蒸着、透明蒸着等が施されていてもよい。
As a more specific structure of the laminated film,
(1) Base film 1/adhesive layer 1/sealant film (2) Base film 1/adhesive layer 1/unstretched film (3) Base film 1/adhesive layer 1/stretched film (4) Transparent evaporated stretched film /adhesive layer 1/sealant film (5) base film 1/adhesive layer 1/base film 2/adhesive layer 2/sealant film (6) base film 1/adhesive layer 1/stretched film/adhesive layer 2/sealant Examples include, but are not limited to, films. The sealant film, unstretched film, and stretched film may be subjected to metal vapor deposition, transparent vapor deposition, or the like.
 構成(1)に用いられる基材フィルム1としては、OPPフィルムが挙げられる。また、基材フィルム1としてガスバリア性や、後述する印刷層を設ける際のインキ受容性の向上等を目的としたコーティングが施されたものを用いてもよい。コーティングが施された基材フィルム1の市販品としては、A-OPPフィルムが挙げられる。接着層1は、本発明の反応性接着剤の硬化塗膜である。シーラントフィルムとしては、CPPフィルム、LLDPEフィルム等が挙げられる。基材フィルム1の接着層1側の面(基材フィルム1としてコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)に、印刷層を設けてもよい。印刷層は、グラビアインキ、フレキソインキ、オフセットインキ、孔版インキ、インクジェットインク等各種印刷インキにより、従来ポリマーフィルムへの印刷に用いられてきた一般的な印刷方法で形成される。 An OPP film is mentioned as the base film 1 used in the configuration (1). Further, as the base film 1, a film coated for the purpose of improving gas barrier properties, ink receptivity when providing a printing layer described later, and the like may be used. Commercially available coated base film 1 includes A-OPP film. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films. A printed layer may be provided on the surface of the substrate film 1 on the adhesive layer 1 side (when a coated substrate film 1 is used, the surface of the coating layer on the adhesive layer 1 side). The printed layer is formed by a general printing method conventionally used for printing on polymer films using various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink.
 構成(2)、(3)に用いられる基材フィルム1としては、OPPフィルムが挙げられる。接着層1は、本発明の反応性接着剤の硬化塗膜である。未延伸フィルムとしては、CPPフィルムが挙げられるが、アルミニウム等の蒸着を施したVM-CPPフィルムを用いることもできる。延伸フィルムとしては、OPPフィルムが挙げられるが、アルミニウム等の蒸着を施したVM-OPPフィルムを用いることもできる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 The base film 1 used in the configurations (2) and (3) includes an OPP film. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. As an unstretched film, a CPP film can be mentioned, but a VM-CPP film to which aluminum or the like has been vapor-deposited can also be used. An OPP film can be used as the stretched film, but a VM-OPP film on which aluminum or the like is vapor-deposited can also be used. A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(4)に用いられる透明蒸着延伸フィルムとしては、OPPフィルムにシリカやアルミナ蒸着を施したフィルムが挙げられる。シリカやアルミナの無機蒸着層の保護等を目的として、蒸着層上にコーティングが施されたフィルムを用いてもよい。接着層1は、本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。透明蒸着延伸フィルムの接着層1側の面(無機蒸着層上にコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)に印刷層を設けてもよい。印刷層の形成方法は構成(1)と同様である。 Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on an OPP film. For the purpose of protecting the inorganic deposition layer of silica or alumina, etc., a film obtained by coating the deposition layer may be used. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
 構成(5)に用いられる基材フィルム1としては、OPPフィルム等が挙げられる。基材フィルム2としては、OPPフィルム等が挙げられる。接着層1、接着層2は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 used in configuration (5) include an OPP film and the like. Examples of the base film 2 include an OPP film and the like. Adhesive layers 1 and 2 are cured coating films of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(6)の基材フィルム1としては、構成(2)、(3)と同様のものが挙げられる。延伸フィルムとしては、OPPフィルムが挙げられるが、アルミニウム等の金属蒸着を施したVM-OPPフィルムやシリカやアルミナ等を蒸着したフィルムが挙げられる。接着層1、接着層2の少なくとも一方は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 of configuration (6) include the same ones as those of configurations (2) and (3). Examples of stretched films include OPP films, and examples include VM-OPP films deposited with metal such as aluminum, and films deposited with silica, alumina, or the like. At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 また、勿論前記オレフィンフィルム以外の汎用のフィルムにも本発明の反応性接着剤は適用可能である。例えば、食品包装用としては、ポリエチレンテレフタレート(PET)フィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム等が挙げられる。 In addition, of course, the reactive adhesive of the present invention can also be applied to general-purpose films other than the olefin films. For example, food packaging includes polyethylene terephthalate (PET) film, polystyrene film, polyamide film, polyacrylonitrile film, polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film and the like.
 あるいは、アルミニウム等の金属、シリカやアルミナ等の金属酸化物の蒸着層を積層したフィルム、ポリビニルアルコールやエチレン・ビニルアルコール共重合体、塩化ビニリデン等のガスバリア層を含有するバリア性フィルムを併用してもよい。このようなフィルムを用いることで、水蒸気、酸素、アルコール、不活性ガス、揮発性有機物(香り)等に対するバリア性を備えた積層フィルムとすることができる。 Alternatively, a barrier film containing a vapor-deposited layer of a metal such as aluminum, a metal oxide such as silica or alumina, or a gas barrier layer such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, or vinylidene chloride may be used in combination. good too. By using such a film, a laminated film having barrier properties against water vapor, oxygen, alcohol, inert gas, volatile organic matter (aroma) and the like can be obtained.
 より具体的な積層フィルムの構成としては、
(1)基材フィルム1/接着層1/シーラントフィルム
(2)基材フィルム1/接着層1/金属蒸着未延伸フィルム
(3)基材フィルム1/接着層1/金属蒸着延伸フィルム
(4)透明蒸着延伸フィルム/接着層1/シーラントフィルム
(5)基材フィルム1/接着層1/基材フィルム2/接着層2/シーラントフィルム
(6)基材フィルム1/接着層1/金属蒸着延伸フィルム/接着層2/シーラントフィルム
(7)基材フィルム1/接着層1/透明蒸着延伸フィルム/接着層2/シーラントフィルム
(8)基材フィルム1/接着層1/金属層/接着層2/シーラントフィルム
(9)基材フィルム1/接着層1/基材フィルム2/接着層2/金属層/接着層3/シーラントフィルム
(10)基材フィルム1/接着層1/金属層/接着層2/基材フィルム2/接着層3/シーラントフィルム
等が挙げられるがこれに限定されない。
As a more specific structure of the laminated film,
(1) Base film 1/Adhesive layer 1/Sealant film (2) Base film 1/Adhesive layer 1/Metal-deposited unstretched film (3) Base film 1/Adhesive layer 1/Metal-deposited stretched film (4) Transparent vapor deposited stretched film/adhesive layer 1/sealant film (5) Base film 1/adhesive layer 1/base film 2/adhesive layer 2/sealant film (6) Base film 1/adhesive layer 1/metal vapor deposited stretched film /adhesive layer 2/sealant film (7) base film 1/adhesive layer 1/transparent deposited stretched film/adhesive layer 2/sealant film (8) base film 1/adhesive layer 1/metal layer/adhesive layer 2/sealant Film (9) Base film 1/Adhesive layer 1/Base film 2/Adhesive layer 2/Metal layer/Adhesive layer 3/Sealant film (10) Base film 1/Adhesive layer 1/Metal layer/Adhesive layer 2/ Examples include base film 2/adhesive layer 3/sealant film, but are not limited thereto.
 構成(1)に用いられる基材フィルム1としては、OPPフィルム、PETフィルム、ナイロンフィルム(以後Nyフィルムともいう)等が挙げられる。また、基材フィルム1としてガスバリア性や、後述する印刷層を設ける際のインキ受容性の向上等を目的としたコーティングが施されたものを用いてもよい。コーティングが施された基材フィルム1の市販品としては、A-OPPフィルムが挙げられる。接着層1は、本発明の反応性接着剤の硬化塗膜である。シーラントフィルムとしては、CPPフィルム、LLDPEフィルム等が挙げられる。基材フィルム1の接着層1側の面(基材フィルム1としてコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)に、印刷層を設けてもよい。印刷層は、グラビアインキ、フレキソインキ、オフセットインキ、孔版インキ、インクジェットインク等各種印刷インキにより、従来ポリマーフィルムへの印刷に用いられてきた一般的な印刷方法で形成される。 Examples of the base film 1 used in configuration (1) include OPP film, PET film, nylon film (hereinafter also referred to as Ny film), and the like. Further, as the base film 1, a film coated for the purpose of improving gas barrier properties, ink receptivity when providing a printing layer described later, and the like may be used. Commercially available coated base film 1 includes A-OPP film. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of sealant films include CPP films and LLDPE films. A printed layer may be provided on the surface of the substrate film 1 on the adhesive layer 1 side (when a coated substrate film 1 is used, the surface of the coating layer on the adhesive layer 1 side). The printed layer is formed by a general printing method conventionally used for printing on polymer films using various printing inks such as gravure ink, flexo ink, offset ink, stencil ink, and inkjet ink.
 構成(2)、(3)に用いられる基材フィルム1としては、OPPフィルムやPETフィルム等が挙げられる。接着層1は、本発明の反応性接着剤の硬化塗膜である。金属蒸着未延伸フィルムとしては、CPPフィルムにアルミニウム等の金属蒸着を施したVM-CPPフィルムを、金属蒸着延伸フィルムとしては、OPPフィルムにアルミニウム等の金属蒸着を施したVM-OPPフィルムを用いることができる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 used in configurations (2) and (3) include OPP films and PET films. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. A VM-CPP film obtained by vapor-depositing a metal such as aluminum on a CPP film may be used as the unstretched metal vapor-deposited film, and a VM-OPP film obtained by vapor-depositing a metal such as aluminum on an OPP film may be used as the stretched metal-deposited film. can be done. A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(4)に用いられる透明蒸着延伸フィルムとしては、OPPフィルム、PETフィルム、ナイロンフィルム等にシリカやアルミナ蒸着を施したフィルムが挙げられる。シリカやアルミナの無機蒸着層の保護等を目的として、蒸着層上にコーティングが施されたフィルムを用いてもよい。接着層1は、本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。透明蒸着延伸フィルムの接着層1側の面(無機蒸着層上にコーティングが施されたものを用いる場合には、コーティング層の接着層1側の面)に印刷層を設けてもよい。印刷層の形成方法は構成(1)と同様である。 Examples of transparent vapor-deposited stretched films used in configuration (4) include films obtained by vapor-depositing silica or alumina on OPP films, PET films, nylon films, or the like. For the purpose of protecting the inorganic deposition layer of silica or alumina, etc., a film obtained by coating the deposition layer may be used. The adhesive layer 1 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the transparent vapor deposited stretched film (when using a film having a coated inorganic vapor deposited layer, the surface of the coating layer on the adhesive layer 1 side). The method of forming the printed layer is the same as that of configuration (1).
 構成(5)に用いられる基材フィルム1としては、PETフィルム等が挙げられる。基材フィルム2としては、ナイロンフィルム等が挙げられる。接着層1、接着層2の少なくとも一方は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 used in the configuration (5) include PET film and the like. Examples of the base film 2 include a nylon film. At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(6)の基材フィルム1としては、構成(2)、(3)と同様のものが挙げられる。金属蒸着延伸フィルムとしては、OPPフィルムやPETフィルムにアルミニウム等の金属蒸着を施したVM-OPPフィルムやVM-PETフィルムが挙げられる。接着層1、接着層2の少なくとも一方は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 of configuration (6) include the same ones as those of configurations (2) and (3). Examples of the metal-deposited oriented film include VM-OPP film and VM-PET film obtained by subjecting an OPP film or PET film to metal deposition such as aluminum. At least one of adhesive layer 1 and adhesive layer 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(7)の基材フィルム1としては、PETフィルム等が挙げられる。透明蒸着延伸フィルムとしては、構成(4)と同様のものが挙げられる。接着層1、2の少なくとも一方は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 of configuration (7) include a PET film and the like. Examples of the transparent vapor-deposited stretched film include those similar to those of the configuration (4). At least one of the adhesive layers 1 and 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(8)の基材フィルム1としては、PETフィルム等が挙げられる。金属層としては、アルミニウム箔等が挙げられる。接着層1、2の少なくとも一方は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 of configuration (8) include a PET film and the like. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1 and 2 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 構成(9)、(10)の基材フィルム1としては、PETフィルム等が挙げられる。基材フィルム2としては、ナイロンフィルム等が挙げられる。金属層としては、アルミニウム箔等が挙げられる。接着層1、2、3の少なくとも一層は本発明の反応性接着剤の硬化塗膜である。シーラントフィルムは構成(1)と同様のものが挙げられる。構成(1)と同様にして、基材フィルム1の接着層1側の面に印刷層を設けてもよい。 Examples of the base film 1 of configurations (9) and (10) include a PET film and the like. Examples of the base film 2 include a nylon film. Aluminum foil etc. are mentioned as a metal layer. At least one of the adhesive layers 1, 2 and 3 is a cured coating film of the reactive adhesive of the present invention. Examples of the sealant film include those similar to those of the configuration (1). A printed layer may be provided on the adhesive layer 1 side of the base film 1 in the same manner as in the configuration (1).
 本発明の積層フィルムが、金属蒸着フィルム、透明蒸着フィルム、金属層の少なくとも一つを含む場合、金属蒸着層、透明蒸着層、金属層に接する接着層は、本発明の反応性接着剤の硬化塗膜であることが好ましい。 When the laminated film of the present invention includes at least one of a metal vapor deposition film, a transparent vapor deposition film, and a metal layer, the metal vapor deposition layer, the transparent vapor deposition layer, and the adhesive layer in contact with the metal layer are formed by curing the reactive adhesive of the present invention. It is preferably a coating film.
 本発明の反応性接着剤が溶剤型である場合、基材となるフィルム材料に本発明の反応性接着剤をグラビアロール等のロールを用いて塗布し、オーブン等での加熱により有機溶剤を揮発させた後、他方の基材を貼り合せて本発明の積層フィルムを得る。ラミネート後に、エージング処理を行うことが好ましい。エージング温度は室温~80℃、エージング時間は12~240時間が好ましい。 When the reactive adhesive of the present invention is a solvent type, the reactive adhesive of the present invention is applied to the film material as a substrate using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. After that, the other substrate is laminated to obtain the laminated film of the present invention. It is preferable to perform an aging treatment after lamination. The aging temperature is preferably room temperature to 80° C., and the aging time is preferably 12 to 240 hours.
 本発明の反応性接着剤が無溶剤型である場合、基材となるフィルム材料に予め40℃~100℃程度に加熱しておいた本発明の反応性接着剤をグラビアロール等のロールを用いて塗布した後、直ちに他方の基材を貼り合せて本発明の積層フィルムを得る。ラミネート後に、エージング処理を行うことが好ましい。エージング温度は室温~70℃、エージング時間は6~240時間が好ましい。 When the reactive adhesive of the present invention is solvent-free, the reactive adhesive of the present invention preheated to about 40° C. to 100° C. is applied to the base film material using a roll such as a gravure roll. Immediately after coating with the other substrate, the laminate film of the present invention is obtained by laminating the other substrate. It is preferable to perform an aging treatment after lamination. The aging temperature is preferably room temperature to 70° C., and the aging time is preferably 6 to 240 hours.
 本発明の反応性接着剤を接着補助剤として用いる場合、基材となるフィルム材料に本発明の接着補助剤をグラビアロール等のロールを用いて塗布し、オーブン等での加熱により有機溶剤を揮発させた後、押出し機により溶融させたポリマー材料をラミネートすることにより本発明の積層フィルムを得る。 When the reactive adhesive of the present invention is used as an adhesion aid, the adhesion aid of the present invention is applied to the base film material using a roll such as a gravure roll, and the organic solvent is volatilized by heating in an oven or the like. Then, the laminated film of the present invention is obtained by laminating the polymer material melted by an extruder.
 接着剤の塗布量は、適宜調整する。溶剤型接着剤の場合、一例として固形分量が1g/m以上10g/m以下、好ましくは2g/m以上5g/m以下となるよう調整する。無溶剤型接着剤の場合、接着剤の塗布量が一例として1g/m以上5g/m以下、好ましくは1g/m以上3g/m以下である。 The amount of adhesive to be applied is appropriately adjusted. In the case of a solvent-based adhesive, for example, the solid content is adjusted to 1 g/m 2 or more and 10 g/m 2 or less, preferably 2 g/m 2 or more and 5 g/m 2 or less. In the case of a solventless adhesive, the coating amount of the adhesive is, for example, 1 g/m 2 or more and 5 g/m 2 or less, preferably 1 g/m 2 or more and 3 g/m 2 or less.
 本発明の反応性接着剤を接着補助剤として用いる場合、塗布量は一例として0.1g/m以上2g/m以下(固形分)である。 When the reactive adhesive of the present invention is used as an adhesion aid, the coating amount is, for example, 0.1 g/m 2 or more and 2 g/m 2 or less (solid content).
 本発明の積層フィルムは、上述した構成(1)~(10)に加えて、更に他のフィルムや基材を含んでいてもよい。他の基材としては、上述した延伸フィルム、未延伸フィルム、透明蒸着フィルムに加え、後述の紙、木材、皮革等の多孔質の基材を使用することもできる。これらはリサイクル工程における溶融混錬時に異物としてメッシュフィルターにより除去することが可能であるため、異種プラスチックの分離よりも容易である。他の基材を貼り合せる際に用いる接着剤は、本発明の反応性接着剤であってもよいし、そうでなくてもよい。 The laminated film of the present invention may further contain other films and substrates in addition to the above-described configurations (1) to (10). As other substrates, in addition to the stretched film, unstretched film, and transparent vapor-deposited film described above, porous substrates such as paper, wood, and leather, which will be described later, can also be used. These can be removed as foreign matter by a mesh filter during melting and kneading in the recycling process, making it easier than separating different types of plastic. The adhesive used when bonding other substrates may or may not be the reactive adhesive of the present invention.
 紙としては、特に限定なく公知の紙基材を使用することができる。具体的には、木材パルプ等の製紙用天然繊維を用いて公知の抄紙機にて製造されるが、その抄紙条件は特に規定されるものではない。製紙用天然繊維としては、針葉樹パルプ、広葉樹パルプ等の木材パルプ、マニラ麻パルプ、サイザル麻パルプ、亜麻パルプ等の非木材パルプ、およびそれらのパルプに化学変性を施したパルプ等が挙げられる。パルプの種類としては、硫酸塩蒸解法、酸性・中性・アルカリ性亜硫酸塩蒸解法、ソーダ塩蒸解法等による化学パルプ、グランドパルプ、ケミグランドパルプ、サーモメカニカルパルプ等を使用することができる。 As the paper, a known paper base material can be used without any particular limitation. Specifically, it is produced by a known paper machine using natural fibers for papermaking such as wood pulp, but the papermaking conditions are not particularly specified. Examples of natural fibers for papermaking include wood pulp such as softwood pulp and hardwood pulp, non-wood pulp such as Manila hemp pulp, sisal pulp and flax pulp, and pulp obtained by chemically modifying these pulps. The types of pulp that can be used include chemical pulp, ground pulp, chemi-grand pulp, thermomechanical pulp, and the like prepared by sulfate cooking, acidic/neutral/alkaline sulfite cooking, soda salt cooking, and the like.
 また、市販の各種上質紙やコート紙、裏打ち紙、含浸紙、ボール紙や板紙などを用いることもできる。また紙層の外表面または内面側には、必要に応じて印刷層を設けてもよい。 In addition, various commercially available high-quality papers, coated papers, lined papers, impregnated papers, cardboards, paperboards, etc. can also be used. A printed layer may be provided on the outer surface or the inner surface of the paper layer, if necessary.
 「他の層」は、公知の添加剤や安定剤、例えば帯電防止剤、易接着コート剤、可塑剤、滑剤、酸化防止剤などを含んでいてもよい。また「他の層」は、その他の材料と積層する場合の密着性を向上させるために、前処理としてフィルムの表面をコロナ処理、プラズマ処理、オゾン処理、薬品処理、溶剤処理などしたものであってもよい。 "Other layers" may contain known additives and stabilizers, such as antistatic agents, easy-adhesion coating agents, plasticizers, lubricants, and antioxidants. In addition, the "other layers" are pre-treated with corona treatment, plasma treatment, ozone treatment, chemical treatment, solvent treatment, etc. in order to improve adhesion when laminated with other materials. may
 本発明の積層フィルムは、様々な用途、例えば食品や医薬品、生活用品の包装材料や、蓋材、紙ストローや紙ナプキン、紙スプーン、紙皿、紙コップ等の紙製食器、防壁材、屋根材、太陽電池パネル材、電池用包装材、窓材、屋外フローリング材、照明保護材、自動車部材、看板、ステッカー等の屋外産業用途、射出成形同時加飾方法等に使用する加飾用シート、洗濯用液体洗剤、台所用液体洗剤、浴用液体洗剤、浴用液体石鹸、液体シャンプー、液体コンディショナー等包装材料等として、好適に使用することができる。 The laminated film of the present invention can be used in various applications, such as packaging materials for foods, pharmaceuticals, and daily necessities, lid materials, paper straws, paper napkins, paper tableware such as paper spoons, paper plates, and paper cups, barrier materials, and roofs. materials, solar cell panel materials, battery packaging materials, window materials, outdoor flooring materials, lighting protection materials, automotive parts, signboards, outdoor industrial applications such as stickers, decorative sheets used for injection molding simultaneous decoration methods, etc. It can be suitably used as packaging materials for liquid laundry detergents, liquid kitchen detergents, liquid bath detergents, liquid bath soaps, liquid shampoos, liquid conditioners, and the like.
<包装材>
 本発明の積層フィルムは、食品や医薬品などの保護を目的とする多層包装材料として使用することができる。多層包装材料として使用する場合には、内容物や使用環境、使用形態に応じてその層構成は変化し得る。また、本発明の包装体に易開封処理や再封性手段を適宜設けてあってもよい。
<Packaging material>
The laminated film of the present invention can be used as a multilayer packaging material for the purpose of protecting foods, pharmaceuticals, and the like. When used as a multilayer packaging material, the layer structure may vary depending on the contents, usage environment, and usage pattern. Moreover, the package of the present invention may be appropriately provided with an easy-opening treatment or a resealing means.
 本発明の包装材は、本発明の積層フィルムを使用し、積層フィルムのシーラントフィルムの面を対向して重ね合わせた後、その周辺端部をヒートシールして袋状にして得られる。製袋方法としては、本発明の積層フィルムを折り曲げるか、あるいは重ねあわせてその内層の面(シーラントフィルムの面)を対向させ、その周辺端部を、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型、ひだ付シール型、平底シール型、角底シール型、ガゼット型、その他のヒートシール型等の形態によりヒートシールする方法が挙げられる。本発明の包装材は内容物や使用環境、使用形態に応じて種々の形態をとり得る。自立性包装材(スタンディングパウチ)等も可能である。ヒートシールの方法としては、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シール等の公知の方法で行うことができる。 The packaging material of the present invention is obtained by using the laminated film of the present invention, stacking the laminated films with their sealant film surfaces facing each other, and then heat-sealing the peripheral edges to form a bag. As a bag-making method, the laminated film of the present invention is folded or overlapped so that the inner layer surface (surface of the sealant film) faces each other, and the peripheral edge is sealed, for example, with a side seal type, a two-sided seal type, There are three-side seal type, four-side seal type, envelope-type seal type, joint-type seal type, fold-type seal type, flat-bottom seal type, square-bottom seal type, gusset type, and other heat-sealing methods. be done. The packaging material of the present invention can take various forms depending on the contents, environment of use, and form of use. A self-supporting packaging material (standing pouch) or the like is also possible. As a heat sealing method, known methods such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing and ultrasonic sealing can be used.
 本発明の包装材に、その開口部から内容物を充填した後、開口部をヒートシールして本発明の包装材を使用した製品が製造される。充填される内容物として、例えば食品としては、米菓、豆菓子、ナッツ類、ビスケット・クッキー、ウェハース菓子、マシュマロ、パイ、半生ケーキ、キャンディ、スナック菓子などの菓子類、パン、スナックめん、即席めん、乾めん、パスタ、無菌包装米飯、ぞうすい、おかゆ、包装もち、シリアルフーズなどのステープル類、漬物、煮豆、納豆、味噌、凍豆腐、豆腐、なめ茸、こんにゃく、山菜加工品、ジャム類、ピーナッツクリーム、サラダ類、冷凍野菜、ポテト加工品などの農産加工品、ハム類、ベーコン、ソーセージ類、チキン加工品、コンビーフ類などの畜産加工品、魚肉ハム・ソーセージ、水産練製品、かまぼこ、のり、佃煮、かつおぶし、塩辛、スモークサーモン、辛子明太子などの水産加工品、桃、みかん、パイナップル、りんご、洋ナシ、さくらんぼなどの果肉類、コーン、アスパラガス、マッシュルーム、玉ねぎ、人参、大根、じゃがいもなどの野菜類、ハンバーグ、ミートボール、水産フライ、ギョーザ、コロッケなどを代表とする冷凍惣菜、チルド惣菜などの調理済食品、バター、マーガリン、チーズ、クリーム、インスタントクリーミーパウダー、育児用調整粉乳などの乳製品、液体調味料、レトルトカレー、ペットフードなどの食品類が挙げられる。 After the packaging material of the present invention is filled with contents through its opening, the opening is heat-sealed to manufacture a product using the packaging material of the present invention. Examples of filling contents include foods such as rice confectionery, bean confectionery, nuts, biscuits and cookies, wafer confectionery, marshmallows, pies, half-baked cakes, candy, snacks, bread, snack noodles, and instant noodles. , dried noodles, pasta, aseptic packaged rice, rice porridge, rice porridge, packaged mochi, staples such as cereal foods, pickles, boiled beans, natto, miso, frozen tofu, tofu, mushrooms, konjac, processed wild plants, jams, peanut cream, Salads, frozen vegetables, processed agricultural products such as potato processed products, hams, bacon, sausages, processed chicken products, processed livestock products such as corned beef, fish hams and sausages, fish paste products, kamaboko, seaweed, tsukudani, Processed marine products such as bonito flakes, salted fish, smoked salmon, and mustard cod roe; fruits such as peaches, oranges, pineapples, apples, pears, and cherries; vegetables such as corn, asparagus, mushrooms, onions, carrots, radishes, and potatoes. , hamburgers, meatballs, fried seafood, gyoza, croquettes, and other frozen and chilled prepared foods; butter, margarine, cheese, cream; instant creamy powder; Foods such as seasonings, retort pouch curry, and pet food can be mentioned.
 また非食品としては、タバコ、使い捨てカイロ、輸液パック等の医薬品、洗濯用液体洗剤、台所用液体洗剤、浴用液体洗剤、浴用液体石鹸、液体シャンプー、液体コンディショナー、化粧水や乳液等の化粧品、真空断熱材、電池等、様々な包装材料としても使用され得る。 Non-food items include cigarettes, disposable body warmers, medicines such as infusion packs, liquid laundry detergents, liquid kitchen detergents, liquid bath detergents, liquid bath soaps, liquid shampoos, liquid conditioners, cosmetics such as lotions and milky lotions, and vacuum cleaners. It can also be used as various packaging materials such as heat insulators, batteries and the like.
(リサイクルプラスチック)
 前記積層フィルムにおいて、特に、複数のオレフィン系樹脂からなる基材フィルムを本発明の反応性接着剤でラミネート接着した積層フィルムは、引っ張り伸度が維持されたリサイクルプラスチックとして再利用可能である。
 ここで、積層フィルムをリサイクルプラスチックとする加工方法の一例を示す。もちろん本発明においてはこの限りではなく各種公知のリサイクルプラスチック加工方法を適用することが可能である。
(recycled plastic)
In the laminated film, especially the laminated film obtained by laminating and adhering a base film made of a plurality of olefinic resins with the reactive adhesive of the present invention can be reused as a recycled plastic whose tensile elongation is maintained.
Here, an example of a processing method for making the laminated film into a recycled plastic is shown. Of course, the present invention is not limited to this, and various known recycled plastic processing methods can be applied.
 積層フィルムを、破砕機等で破砕する。破砕機は公知の粉砕機を使用すればよく特に限定はない。
粉砕した後のフィルム片は、溶融混練、溶媒キャストブレンド、ラテックスブレンド、ポリマーコンプレックス等で物理にブレンドする。特に溶融混練法が一般的である。混練するための装置としては、タンブラ、ヘンシェルミキサ、ロータリーミキサ、スーパーミキサ、リボンタンブラ、Vブレンダ等が挙げられる。このような混練装置によって溶融混練した上で、ペレット化する。溶融混練ペレット化には単軸、または多軸押出機を用いるのが一般的で、更にこれら押出機以外に、バンバリーミキサ、ローラ、コ・ニーダ、ブラストミル、プラベンダーブラウトグラフ等を用いることもでき、これらは回分的、または連続的に運転される。また、溶融混練はせずに、成形用樹脂として使用し成形機加熱筒内で溶融混練する方法でもよい。
The laminated film is crushed with a crusher or the like. A known grinder may be used as the grinder, and there is no particular limitation.
After pulverization, the film pieces are physically blended by melt kneading, solvent cast blending, latex blending, polymer complexing, and the like. A melt-kneading method is particularly common. Apparatuses for kneading include a tumbler, a Henschel mixer, a rotary mixer, a super mixer, a ribbon tumbler, a V-blender and the like. After being melted and kneaded by such a kneading device, the mixture is pelletized. Single or multi-screw extruders are generally used for melt-kneading and pelletization, and in addition to these extruders, Banbury mixers, rollers, co-kneaders, blast mills, Plabender brautographs, etc. can also be used. They can be run batchwise or continuously. Alternatively, the resin may be used as a molding resin and melt-kneaded in a heating cylinder of a molding machine without melt-kneading.
 以下、本発明を具体的な実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の例において、「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」をそれぞれ表す。 The present invention will be described in more detail below with specific examples, but the present invention is not limited to these examples. In the following examples, "parts" and "%" represent "mass parts" and "mass%", respectively, unless otherwise specified.
(ポリオールの合成)
(ポリオールB1)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、イソフタル酸640部、セバシン酸670部、エチレングリコール350部、ジエチレングリコール700部、ジブチル錫ジラウレート2.1部を仕込み、内温250℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これを酢酸エチルで溶解希釈し、不揮発分60質量%溶液とし、水酸基価7mgKOH/gのポリエステルポリオールを得た。このポリエステルポリオールの数平均分子量は約9500であった。
(Synthesis of polyol)
(Polyol B1)
640 parts of isophthalic acid, 670 parts of sebacic acid, 350 parts of ethylene glycol, 700 parts of diethylene glycol, and 2.1 parts of dibutyltin dilaurate are charged into a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. , and an internal temperature of 250°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to form a 60% by mass non-volatile solution to obtain a polyester polyol having a hydroxyl value of 7 mgKOH/g. The number average molecular weight of this polyester polyol was about 9,500.
(ポリオールの合成)
(ポリオールB2)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、イソフタル酸800部、セバシン酸700部、エチレングリコール150部、ネオペンチルグリコール700部、ジオクチル錫ジラウレート0.3部を仕込み、内温250℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これを酢酸エチルで溶解希釈し、不揮発分60質量%溶液とした。さらに、この得られた中間体ポリエステルポリオール固形分100部に対し、イソホロンジイソシアネート4部を加え、80℃に加熱して遊離のNCO基が実質的になくなるまでウレタン化反応を行って、水酸基価7mgKOH/gのポリエステルウレタンポリオールを得た。このポリエステルウレタンポリオールの数平均分子量は約9000であった。
(Synthesis of polyol)
(Polyol B2)
800 parts of isophthalic acid, 700 parts of sebacic acid, 150 parts of ethylene glycol, 700 parts of neopentyl glycol, and 0.3 parts of dioctyltin dilaurate are placed in a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. was charged, and an ester reaction was carried out at an internal temperature of 250°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to obtain a non-volatile content 60% by mass solution. Furthermore, 4 parts of isophorone diisocyanate was added to 100 parts of the obtained intermediate polyester polyol solid content, and the mixture was heated to 80° C. to carry out a urethanization reaction until free NCO groups were substantially eliminated, resulting in a hydroxyl value of 7 mg KOH. / g of polyester urethane polyol was obtained. The number average molecular weight of this polyester urethane polyol was about 9,000.
(ポリオールの合成)
(ポリオールB3)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、イソフタル酸600部、無水フタル酸300部、セバシン酸325部、ネオペンチルグリコール1275部、ジブチル錫ジラウレート2.1部を仕込み、内温250℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これを酢酸エチルで溶解希釈し、不揮発分57質量%溶液とし、水酸基価12mgKOH/gのポリエステルポリオールを得た。このポリエステルポリオールの数平均分子量は約5500であった。
(Synthesis of polyol)
(Polyol B3)
600 parts of isophthalic acid, 300 parts of phthalic anhydride, 325 parts of sebacic acid, 1275 parts of neopentyl glycol, and 2.1 parts of dibutyltin dilaurate are added to a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. A portion was charged, and an ester reaction was carried out at an internal temperature of 250°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to obtain a solution of 57% by mass of non-volatile matter to obtain a polyester polyol having a hydroxyl value of 12 mgKOH/g. The number average molecular weight of this polyester polyol was about 5,500.
(ポリオールの合成)
(ポリオールB4)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、テレフタル酸425部、イソフタル酸250部、アジピン酸525部、エチレングリコール925部、ビスフェノールAプロピレンオキシド(2モル)付加物400部、ジブチル錫ジラウレート2.1部を仕込み、内温260℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これを酢酸エチルで溶解希釈し、不揮発分51質量%溶液とし、水酸基価9mgKOH/gのポリエステルポリオールを得た。このポリエステルポリオールの数平均分子量は約7500であった。
(Synthesis of polyol)
(Polyol B4)
425 parts of terephthalic acid, 250 parts of isophthalic acid, 525 parts of adipic acid, 925 parts of ethylene glycol, bisphenol A propylene oxide (2 mol) were placed in a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. 400 parts of the adduct and 2.1 parts of dibutyltin dilaurate were charged, and an ester reaction was carried out at an internal temperature of 260°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to obtain a solution of 51% by mass of non-volatile matter to obtain a polyester polyol having a hydroxyl value of 9 mgKOH/g. The number average molecular weight of this polyester polyol was about 7,500.
(ポリオールの合成)
(ポリオールB5)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、イソフタル酸900部、1,4ーシクロヘキサンジカルボン酸689部、アジピン酸525部、エチレングリコール1596部、ネオペンチルグリコール749部、ジオクチル錫ジラウレート0.35部を仕込み、内温260℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これを酢酸エチルで溶解希釈し、不揮発分60質量%溶液とし、水酸基価8mgKOH/gのポリエステルポリオールを得た。このポリエステルポリオールの数平均分子量は約8300であった。
(Synthesis of polyol)
(Polyol B5)
900 parts of isophthalic acid, 689 parts of 1,4-cyclohexanedicarboxylic acid, 525 parts of adipic acid, 1596 parts of ethylene glycol, and neopentyl glycol are placed in a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc. 749 parts of dioctyltin dilaurate and 0.35 parts of dioctyltin dilaurate were charged, and an ester reaction was carried out at an internal temperature of 260°C. After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. This was dissolved and diluted with ethyl acetate to obtain a 60% by mass non-volatile solution to obtain a polyester polyol having a hydroxyl value of 8 mgKOH/g. The number average molecular weight of this polyester polyol was about 8,300.
(ポリオールの合成)
(ポリオールB6)
 攪拌機、温度計、窒素ガス導入管、精留管等を備えたポリエステル反応容器に、コハク酸666部、エチレングリコール361部、イソシアヌル酸トリス(2-ヒドロキシエチル)1474部を仕込み、内温220℃にてエステル反応を行った。脱水反応後、酸価1mgKOH/gの中間体ポリエステルポリオールを得た。これにりん酸を0.2部加え、水酸基価410mgKOH/gのポリエステルポリオールを得た。このポリエステルポリオールの数平均分子量は約420であった。
(Synthesis of polyol)
(Polyol B6)
666 parts of succinic acid, 361 parts of ethylene glycol, and 1474 parts of tris(2-hydroxyethyl) isocyanurate were charged into a polyester reaction vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, rectifying tube, etc., and the internal temperature was 220°C. The ester reaction was carried out at After the dehydration reaction, an intermediate polyester polyol having an acid value of 1 mgKOH/g was obtained. 0.2 part of phosphoric acid was added to this to obtain a polyester polyol having a hydroxyl value of 410 mgKOH/g. The number average molecular weight of this polyester polyol was about 420.
(ポリイソシアネートの調整)
(ポリイソシアネートA1)
 攪拌機、温度計、窒素ガス導入管を備えたフラスコに、デスモジュールN3210A(ヘキサメチレンジイソシアネートビウレット構造体、COVESTRO社製) 90部、酢酸エチル10部を仕込み、不揮発分90質量%溶液を調整した。そのイソシアネート(以後NCOと称する場合がある)含有率は20.7質量%である。
(Adjustment of polyisocyanate)
(Polyisocyanate A1)
A flask equipped with a stirrer, a thermometer, and a nitrogen gas inlet tube was charged with 90 parts of Desmodur N3210A (a hexamethylene diisocyanate biuret structure, manufactured by COVESTRO) and 10 parts of ethyl acetate to prepare a 90% by mass non-volatile solution. The isocyanate (hereinafter sometimes referred to as NCO) content is 20.7% by mass.
(ポリイソシアネートの調整)
(ポリイソシアネートA2)
 攪拌機、温度計、窒素ガス導入管を備えたフラスコに、キシリレンジイソシアネート1260部を入れて70℃に加熱しながら撹拌し、ポリオールB6 750部を、滴下漏斗を用いて2時間かけて滴下し、更に4時間撹拌し、ポリイソシアネートを得た。そのNCO含有率は15.7%であった。
(Adjustment of polyisocyanate)
(Polyisocyanate A2)
Put 1260 parts of xylylene diisocyanate in a flask equipped with a stirrer, a thermometer, and a nitrogen gas introduction tube and stir while heating to 70 ° C., drop 750 parts of polyol B6 over 2 hours using a dropping funnel, After further stirring for 4 hours, a polyisocyanate was obtained. Its NCO content was 15.7%.
(接着剤塗工液の調製)
(実施例1)
 ポリオールB1:10部、ポリイソシアネートA1:0.8部を配合し、酢酸エチルで固形分30%に調整して実施例1の接着剤塗工液を調製した。
(Preparation of adhesive coating solution)
(Example 1)
10 parts of polyol B and 0.8 parts of polyisocyanate A were blended, and the solid content was adjusted to 30% with ethyl acetate to prepare an adhesive coating solution of Example 1.
(実施例2)~(実施例5)
 用いるポリオールB、ポリイソシアネートAの配合を表1に示すものに変更した以外は実施例1と同様にして実施例2~実施例5の接着剤塗工液を調製した。
(Example 2) to (Example 5)
Adhesive coating solutions of Examples 2 to 5 were prepared in the same manner as in Example 1, except that the formulations of polyol B and polyisocyanate A used were changed to those shown in Table 1.
(比較例1)~(比較例2)
 用いるポリオールB、ポリイソシアネートAの配合を表1に示すものに変更した以外は実施例1と同様にして比較例1~2の接着剤塗工液を調製した。
(Comparative Example 1) to (Comparative Example 2)
Adhesive coating solutions of Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the formulations of polyol B and polyisocyanate A used were changed to those shown in Table 1.
(評価)
(硬化塗膜の粘弾性測定)
 接着剤塗工液を膜厚2mmになるように、シャーレ上に滴下し、酢酸エチルを室温にて揮発させた後、40℃72時間のエージングを行った。
動的粘弾性測定装置(TA Instruments社製 RSA G2)を用い、粘弾性測定用の硬化塗膜を下記の条件下で測定し、200℃におけるE’を求めた。  
硬化塗膜:長さ20mm(掴み代除く)×幅5mm×厚さ0.3mm  
測定温度範囲:-50~200℃  
周波数:1.0Hz  
昇温速度5℃/min
(evaluation)
(Viscoelasticity measurement of cured coating film)
The adhesive coating liquid was dropped onto a petri dish so as to have a film thickness of 2 mm, ethyl acetate was volatilized at room temperature, and then aging was performed at 40° C. for 72 hours.
Using a dynamic viscoelasticity measuring device (RSA G2 manufactured by TA Instruments), the cured coating film for viscoelasticity measurement was measured under the following conditions to obtain E' at 200°C.
Cured coating film: length 20 mm (excluding gripping allowance) x width 5 mm x thickness 0.3 mm
Measurement temperature range: -50 to 200°C
Frequency: 1.0Hz
Heating rate 5°C/min
(硬化塗膜を240℃加熱した後の粘弾性測定)
 接着剤塗工液を膜厚2mmになるように、シャーレ上に滴下し、酢酸エチルを室温にて揮発させた後、40℃72時間のエージングを行った。できあがった硬化塗膜を電気オーブンにて、230℃になるまで45分間加温し、240℃に到達してから15分間保持した。
動的粘弾性測定装置(TA Instruments社製 RSA G2)を用い、粘弾性測定用の硬化塗膜を下記の条件下で測定し、tanδピーク温度を求めた。  
硬化塗膜:長さ20mm(掴み代除く)×幅5mm×厚さ0.3mm  
測定温度範囲:-50~200℃  
周波数:1.0Hz  
昇温速度5℃/min
(Viscoelasticity measurement after heating the cured coating film at 240°C)
The adhesive coating liquid was dropped onto a petri dish so as to have a film thickness of 2 mm, ethyl acetate was volatilized at room temperature, and then aging was performed at 40° C. for 72 hours. The resulting cured coating film was heated in an electric oven to 230°C for 45 minutes, and after reaching 240°C, it was held for 15 minutes.
Using a dynamic viscoelasticity measuring device (RSA G2, manufactured by TA Instruments), the cured coating film for viscoelasticity measurement was measured under the following conditions to determine the tan δ peak temperature.
Cured coating film: length 20 mm (excluding gripping allowance) x width 5 mm x thickness 0.3 mm
Measurement temperature range: -50 to 200°C
Frequency: 1.0Hz
Heating rate 5°C/min
(溶融混錬後の接着剤粒子径)
 30μmのCPPフィルムに、接着剤塗工液を接着剤の固形分重量が約2.0g/mとなるようにバーコーターを使用して塗布し、溶剤を揮散させた後、卓上カレンダーロールを用いて30μmのCPPフィルムと貼り合わせを行った。40℃で72時間のエージングを行い、積層フィルムを作製した。
 得られた積層フィルムの、「OPPフィルムの重量とCPPフィルムの重量の和」:「接着剤の固形分重量」は、96:4である。
 積層フィルムを幅10mm、長さ300mmの短冊に裁断したものを、2軸混錬押出装置(株式会社テクノベル社製、ULTnano15TW)を用いて、240℃、100rpm、3分間溶融混錬した後、ノズルから押出し、直ちに水道水で冷却し、ストランド状の樹脂を得た。
 得られたストランドをランダムに10箇所ミクロトームで切り出し、各断面を15KV、150倍でSEM反射電子像を観察、400μm×600μmの視野の画像を得た。
得られた画像を画像処理解析ソフトImageJを用いて接着剤粒子を抽出した。本処理において、2×2画素以下はノイズと判断し、粒子を円と仮定して面積から算出した直径を算出、ヒストグラムを作成した。得られたヒストグラムから全体の90%を占める領域の最大値を接着剤粒径とした。 なお、CPPフィルムは下記のものを使用した。
CPPフィルム:東洋紡(株)製 パイレン P1128 30μm
評価は次の通りとした。
 ○:接着剤粒径≦20μm
 ×:接着剤粒径>20μm
(Adhesive particle size after melt-kneading)
A 30 μm CPP film is coated with an adhesive coating liquid using a bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 , and after volatilizing the solvent, a desktop calendar roll is applied. A CPP film having a thickness of 30 μm was laminated using this. A laminated film was produced by aging at 40° C. for 72 hours.
The ratio of "the sum of the weight of the OPP film and the weight of the CPP film" to "the solid content weight of the adhesive" of the obtained laminated film is 96:4.
The laminated film is cut into strips with a width of 10 mm and a length of 300 mm, and is melted and kneaded at 240 ° C. and 100 rpm for 3 minutes using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.), and then extruded into a nozzle. and immediately cooled with tap water to obtain a strand-like resin.
The resulting strand was randomly cut out at 10 locations with a microtome, and each cross section was observed with a SEM backscattered electron image at 15 KV and 150 magnifications to obtain an image with a field of view of 400 μm×600 μm.
Adhesive particles were extracted from the obtained image using image processing analysis software ImageJ. In this process, 2×2 pixels or less were determined to be noise, and the diameter calculated from the area was calculated assuming that the particle was a circle, and a histogram was created. The maximum value of the area that occupies 90% of the entire histogram was taken as the adhesive particle size. The following CPP films were used.
CPP film: Pyrene P1128 30 μm manufactured by Toyobo Co., Ltd.
The evaluation was as follows.
○: Adhesive particle size ≤ 20 μm
×: Adhesive particle size>20 μm
(リサイクルプラスチックの引っ張り伸度)
 30μmのCPPフィルムに、接着剤塗工液を接着剤の固形分重量が約2.0g/mとなるようにバーコーターを使用して塗布し、溶剤を揮散させた後、卓上カレンダーロールを用いて30μmのCPPフィルムと貼り合わせを行った。40℃で72時間のエージングを行い、積層フィルムを作製した。
 積層フィルムを幅10mm、長さ300mmの短冊に裁断したものを、2軸混錬押出装置(株式会社テクノベル社製、ULTnano15TW)を用いて、240℃、100rpm、3分間溶融混錬した後、ノズルから押出し、直ちに水道水で冷却し、ストランド状の樹脂を得て、裁断することによりリペレットサンプルを得た。
 リペレットサンプルを9gをステンレス製プレス額縁金型(内寸100mm角、厚さ1mm)の中に投入し、ステンレス板(厚さ2mm)に挟み、210℃、30MPa、3分間圧縮成型することにより、厚さ1mmのプラスチック板を作製し、株式会社ダンベル社製スーパーダンベルカッターSDK500 1/3を用い、JIS K6251-5号の1/3サイズ試験片を打ち抜き、引張試験に用いた。引張試験は50mm/min、チャック間距離30mmで実施し、引っ張り伸度を測定した。
(Tensile elongation of recycled plastic)
A 30 μm CPP film is coated with an adhesive coating liquid using a bar coater so that the solid content weight of the adhesive is about 2.0 g / m 2 , and after volatilizing the solvent, a desktop calendar roll is applied. A CPP film having a thickness of 30 μm was laminated using this. A laminated film was produced by aging at 40° C. for 72 hours.
The laminated film is cut into strips with a width of 10 mm and a length of 300 mm, and is melted and kneaded at 240 ° C. and 100 rpm for 3 minutes using a twin-screw kneading extruder (ULTnano 15TW manufactured by Technobell Co., Ltd.), and then extruded into a nozzle. and immediately cooled with tap water to obtain a strand-shaped resin, which was cut to obtain a repellet sample.
9 g of the repellet sample was put into a stainless steel press picture frame mold (inner dimension 100 mm square, thickness 1 mm), sandwiched between stainless steel plates (thickness 2 mm), and compression molded at 210 ° C., 30 MPa, for 3 minutes, A plastic plate with a thickness of 1 mm was prepared, and a 1/3 size test piece of JIS K6251-5 was punched out using a Super Dumbbell Cutter SDK500 1/3 manufactured by Dumbbell Co., Ltd. and used for a tensile test. The tensile test was performed at 50 mm/min and the distance between chucks was 30 mm, and the tensile elongation was measured.
 実施例の結果を表1、比較例の結果を表2に示す。なお空欄は未配合を示す。 The results of Examples are shown in Table 1, and the results of Comparative Examples are shown in Table 2. In addition, a blank indicates unblended.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001


Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1. (1)及び(2)を満たすことを特徴とする反応性接着剤。
    (1)ポリオレフィン系樹脂と反応性接着剤を96:4の範囲で配合し、240℃で3分間溶融混錬後の接着剤粒径が20μm以下である。
    (2)40℃で72時間硬化させた反応性接着剤の硬化塗膜の200℃におけるE’が1.0×10~3.0×10の範囲である。
    A reactive adhesive characterized by satisfying (1) and (2).
    (1) A polyolefin resin and a reactive adhesive are blended in the range of 96:4, and the particle size of the adhesive after melt-kneading at 240° C. for 3 minutes is 20 μm or less.
    (2) E′ at 200° C. of the cured coating film of the reactive adhesive cured at 40° C. for 72 hours is in the range of 1.0×10 5 to 3.0×10 6 ;
  2. 前記反応性接着剤の、240℃加熱後のtanδピークが 0℃以上40℃以下である請求項1に記載の反応性接着剤。 The reactive adhesive according to claim 1, wherein the reactive adhesive has a tan δ peak of 0°C or higher and 40°C or lower after heating at 240°C.
  3. 前記反応性接着剤が、ポリイソシアネート化合物(A1)を含むポリイソシアネート組成物(A)と、ポリオール(B1)を含むポリオール組成物(B)とを含有する反応性接着剤である請求項1に記載の反応性接着剤。 The reactive adhesive is a reactive adhesive containing a polyisocyanate composition (A) containing a polyisocyanate compound (A1) and a polyol composition (B) containing a polyol (B1). Reactive adhesive as described.
  4.  複数のオレフィン系樹脂からなる基材フィルムを反応性接着剤でラミネート接着した積層フィルムであって、前記反応性接着剤が請求項1~3のいずれかに記載の反応性接着剤であることを特徴とする積層フィルム。 A laminated film obtained by laminating and bonding base films made of a plurality of olefinic resins with a reactive adhesive, wherein the reactive adhesive is the reactive adhesive according to any one of claims 1 to 3. A laminated film characterized by:
  5.  請求項4に記載の積層フィルムからなる包装材。 A packaging material made of the laminated film according to claim 4.
PCT/JP2022/043264 2021-12-09 2022-11-24 Reactive adhesive, laminated film, and packaging WO2023106097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514036A JPWO2023106097A1 (en) 2021-12-09 2022-11-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021199940 2021-12-09
JP2021-199940 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106097A1 true WO2023106097A1 (en) 2023-06-15

Family

ID=86730364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043264 WO2023106097A1 (en) 2021-12-09 2022-11-24 Reactive adhesive, laminated film, and packaging

Country Status (2)

Country Link
JP (1) JPWO2023106097A1 (en)
WO (1) WO2023106097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499395B1 (en) 2023-10-13 2024-06-13 日本マタイ株式会社 Manufacturing method of laminated sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008160A (en) * 2004-06-24 2006-01-12 Nissan Motor Co Ltd Multilayer container
KR101492789B1 (en) * 2013-08-14 2015-02-23 전승호 Recyclable polyolefin food packaging with multi-function and manufacturing method thereof
WO2018096377A2 (en) * 2016-11-28 2018-05-31 "Jáger Invest" Kereskedelmi, Szolgáltató És Ingatlanhasznosító Kft. Homogeneous polymer agglomerate containing ground rubber, reinforced thermoset plastic waste and thermoplastic waste
JP2018154701A (en) * 2017-03-16 2018-10-04 東ソー株式会社 Resin composition and laminate formed from the same
WO2021060308A1 (en) * 2019-09-24 2021-04-01 株式会社クラレ Laminate
JP2021088184A (en) * 2019-11-25 2021-06-10 東洋インキScホールディングス株式会社 Packaging material and package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008160A (en) * 2004-06-24 2006-01-12 Nissan Motor Co Ltd Multilayer container
KR101492789B1 (en) * 2013-08-14 2015-02-23 전승호 Recyclable polyolefin food packaging with multi-function and manufacturing method thereof
WO2018096377A2 (en) * 2016-11-28 2018-05-31 "Jáger Invest" Kereskedelmi, Szolgáltató És Ingatlanhasznosító Kft. Homogeneous polymer agglomerate containing ground rubber, reinforced thermoset plastic waste and thermoplastic waste
JP2018154701A (en) * 2017-03-16 2018-10-04 東ソー株式会社 Resin composition and laminate formed from the same
WO2021060308A1 (en) * 2019-09-24 2021-04-01 株式会社クラレ Laminate
JP2021088184A (en) * 2019-11-25 2021-06-10 東洋インキScホールディングス株式会社 Packaging material and package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499395B1 (en) 2023-10-13 2024-06-13 日本マタイ株式会社 Manufacturing method of laminated sheet

Also Published As

Publication number Publication date
JPWO2023106097A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2023106097A1 (en) Reactive adhesive, laminated film, and packaging
JP6763499B1 (en) Reactive adhesives, laminates, and packaging
JP2022055658A (en) Reactive adhesive, laminate film, and packaging material
WO2023112687A1 (en) Two-pack curable coating agent, layered body, and packaging material
JP6892020B1 (en) Reactive adhesives, laminated films, and packaging
JP6733835B1 (en) Reactive adhesive, laminate, and package
JP7332075B1 (en) Adhesives, laminates, packaging materials
JP7173389B2 (en) Reactive adhesives, laminates and packages
JP7347708B2 (en) Laminated films and packaging materials
JP7396547B2 (en) Adhesives, laminates, laminate manufacturing methods, packaging materials
JP7036293B1 (en) Adhesives, laminates, packaging materials
JP7364122B1 (en) Laminated films and packaging materials
JP7184181B2 (en) Adhesive composition, laminate, and package
WO2022138188A1 (en) Gas barrier multilayer body and packaging material
WO2023112688A1 (en) Adhesive, laminate, and packaging material
WO2024122292A1 (en) Adhesive agent, laminate, and packaging material
WO2024101165A1 (en) Gas barrier composition, coating agent and multilayer body
WO2024135514A1 (en) Two-part curable adhesive, multilayer body and package
CN110894418A (en) Two-component adhesive, laminate, and packaging material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514036

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904028

Country of ref document: EP

Kind code of ref document: A1