WO2023105968A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023105968A1
WO2023105968A1 PCT/JP2022/039871 JP2022039871W WO2023105968A1 WO 2023105968 A1 WO2023105968 A1 WO 2023105968A1 JP 2022039871 W JP2022039871 W JP 2022039871W WO 2023105968 A1 WO2023105968 A1 WO 2023105968A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
turning
leg
state
pattern
Prior art date
Application number
PCT/JP2022/039871
Other languages
French (fr)
Japanese (ja)
Inventor
翔吾 廣田
賢治 花村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023105968A1 publication Critical patent/WO2023105968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power converter that converts DC power into DC power of another voltage.
  • V2H Vehicle to Home
  • the V2H system can charge and discharge between the storage battery installed in the EV/PHEV and the power source/load in the home.
  • an EV/PHEV can be charged with power generated by a home solar power generation system.
  • the storage battery installed in the EV/PHEV can be used for peak shift of domestic load and for backup purposes.
  • the DC/DC converters used in V2H systems are required to have a wide voltage range and isolation.
  • One DC/DC converter that meets these requirements is a DAB (Dual Active Bridge) converter.
  • a DAB converter regardless of whether it is a phase shift method (for example, Patent Document 1) or a PWM (Pulse Width Modulation) method, the amount of power consumed varies between the step-down operation and the step-up operation with respect to the change in the control operation amount. A dead period (dead band) that does not change occurs.
  • phase shift method for example, Patent Document 1
  • PWM Pulse Width Modulation
  • the dead period between buck operation and boost operation is a factor that distorts the output current. There is a demand for seamless switching between the step-down operation and the step-up operation without generating such a dead period.
  • the present disclosure has been made in view of such circumstances, and its object is to provide a power conversion device capable of smoothly switching between step-down operation and step-up operation.
  • a power converter includes a first leg in which a first switching element and a second switching element are connected in series, and a third switching element and a fourth switching element in series.
  • a first bridge circuit in which the first leg and the second leg are connected in parallel to the first DC section; and a third bridge circuit in which a fifth switching element and a sixth switching element are connected in series.
  • a second bridge circuit having a leg, a fourth leg in which a seventh switching element and an eighth switching element are connected in series, and in which the third leg and the fourth leg are connected in parallel to a second DC section;
  • An isolation transformer connected between the first bridge circuit and the second bridge circuit, and a control circuit for controlling the first switching element to the eighth switching element.
  • a diode is connected or formed in inverse parallel to each of the first switching element to the eighth switching element, and the control circuit is configured such that the first bridge circuit a transmission state in which the second bridge circuit conducts the secondary winding of the isolating transformer with the second DC section, short-circuiting both ends of the primary winding in the first bridge circuit; a first mode of operation in which a second bridge circuit is controlled to include a commutation state in which the secondary winding is in communication with the second DC section; a storage state in which the winding is conductive and both ends of the secondary winding are short-circuited in the second bridge circuit; a second operation mode for controlling to include the transmission state; the transmission state and the storage; and a third operating mode controlling to include the commutation state.
  • FIGS. 2(a) to 2(c) are diagrams for explaining the operating state of the power conversion device according to Comparative Example 1.
  • FIG. FIGS. 3(a) to 3(c) are diagrams for explaining the operating state of the power converter according to Comparative Example 2.
  • FIG. FIGS. 4A to 4D are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to Comparative Example 2 of the power converter.
  • FIGS. 5(a) to 5(d) are diagrams for explaining operating states according to the embodiment of the power converter.
  • FIGS. 6A to 6C are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to the embodiment of the power converter.
  • FIG. 4 is a diagram for explaining switching among a first operation mode, a second operation mode, and a third operation mode according to the embodiment;
  • FIGS. 8A to 8C are diagrams for explaining switching patterns during reverse transmission of the first switching element to the eighth switching element according to the embodiment of the power converter.
  • FIGS. 9A to 9C are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to the modification of the power converter.
  • FIG. 1 is a diagram for explaining the configuration of the power converter 1 according to the embodiment.
  • the power conversion device 1 is an insulated bidirectional DC/DC converter (DAB converter), converts DC power supplied from a first DC power supply E1, and transmits the converted DC power to a second DC power supply E2.
  • the power conversion device 1 also converts the DC power supplied from the second DC power supply E2 and transmits the converted DC power to the first DC power supply E1.
  • the power converter 1 can step down the voltage for power transmission, or step up the voltage for power transmission.
  • the first DC power source E1 corresponds to, for example, a storage battery or electric double layer capacitor mounted on an EV, or a stationary storage battery or electric double layer capacitor.
  • the second DC power supply E2 corresponds to, for example, a DC bus connected to a commercial power system via an inverter. Other storage batteries, solar cells, fuel cells, or the like may be connected to the DC bus via other DC/DC converters.
  • the power converter 1 includes a primary capacitor Ca, a first bridge circuit 11, a first inductor L1, an isolation transformer TR1, a second inductor L2, a second bridge circuit 12, a secondary capacitor Cb, and a control circuit 13.
  • a primary side capacitor Ca is connected in parallel with the first DC power supply E1.
  • a secondary capacitor Cb is connected in parallel with the second DC power supply E2.
  • electrolytic capacitors are used for the primary side capacitor Ca and the secondary side capacitor Cb.
  • the first DC power source E1 and the primary side capacitor Ca are collectively called a first DC section
  • the second DC power source E2 and the secondary side capacitor Cb are collectively called a second DC section.
  • first bridge circuit 11 a first leg in which a first switching element Q1 and a second switching element Q2 are connected in series and a second leg in which a third switching element Q3 and a fourth switching element Q4 are connected in series are connected in parallel.
  • the first bridge circuit 11 is connected in parallel with the first DC section, and the middle point of the first leg and the middle point of the second leg are connected to both ends of the primary winding n1 of the isolation transformer TR1.
  • the first bridge circuit 11 can convert the DC voltage on the primary side supplied from the first DC section into AC voltage and output it to the primary winding n1 of the isolation transformer TR1.
  • the first bridge circuit 11 can also convert the AC voltage supplied from the primary winding n1 of the isolation transformer TR1 into a DC voltage and output it to the first DC section.
  • a third leg in which a fifth switching element Q5 and a sixth switching element Q6 are connected in series and a fourth leg in which a seventh switching element Q7 and an eighth switching element Q8 are connected in series are connected in parallel.
  • the second bridge circuit 12 is connected in parallel with the second DC section, and the middle point of the third leg and the middle point of the fourth leg are connected to both ends of the secondary winding n2 of the isolation transformer TR1.
  • the second bridge circuit 12 can convert the secondary-side DC voltage supplied from the second DC section into an AC voltage and output it to the secondary winding n2 of the isolation transformer TR1.
  • the second bridge circuit 12 can convert the AC voltage supplied from the secondary winding n2 of the insulating transformer TR1 into a DC voltage and output it to the second DC section.
  • a first diode D1 to an eighth diode D8 are connected or formed in antiparallel to the first switching element Q1 to the eighth switching element Q8, respectively.
  • a first capacitor C1 to an eighth capacitor C8 are connected or formed in parallel to the first switching element Q1 to the eighth switching element Q8, respectively.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • external capacitors may be connected between the collectors and emitters of the first switching element Q1 to the eighth switching element Q8 as first capacitance C1 to the eighth capacitance C8, respectively, or the first switching element Q1 to the eighth switching element Q8 may be connected.
  • Parasitic capacitances respectively formed between the collector and emitter of are used as the first capacitance C1 to the eighth capacitance C8.
  • the parasitic diodes formed between the drain and source of the first switching element Q1 to the eighth switching element Q8 are the first diode D1 to the eighth switching element Q8. Either the diode D8 is used, or external diode elements are connected as the first diode D1 to the eighth diode D8, respectively. Also, the parasitic capacitances formed between the drain and source of the first switching element Q1-eighth switching element Q8 are used as the first capacitance C1-eighth capacitance C8, or the first switching element Q1-eighth switching element External capacitors are connected between the drain and source of Q8 as first capacitor C1 to eighth capacitor C8, respectively.
  • the capacitance values of the first capacitor C1 to the eighth capacitor C8 connected or formed in parallel with the first switching element Q1 to the eighth switching element Q8 respectively correspond to each other. That is, the capacitance values between the collector and emitter or between the drain and source of the first switching element Q1 to the eighth switching element Q8 are substantially equal.
  • the isolation transformer TR1 is connected between the AC terminals of the first bridge circuit 11 and the AC terminals of the second bridge circuit 12 .
  • the isolation transformer TR1 converts the output voltage of the first bridge circuit 11 connected to the primary winding n1 according to the turns ratio between the primary winding n1 and the secondary winding n2, and is connected to the secondary winding n2. output to the second bridge circuit 12.
  • the isolation transformer TR1 converts the output voltage of the second bridge circuit 12 connected to the secondary winding n2 according to the turns ratio between the secondary winding n2 and the primary winding n1, and connects it to the primary winding n1. output to the first bridge circuit 11 where the
  • the first inductance L1 is connected or formed in series between the AC terminal of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1.
  • a second inductance L2 is connected or formed in series between the AC terminal of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1.
  • the first inductance L1 is composed of a reactor element connected between the midpoint of the first leg of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1.
  • the second inductance L2 is composed of a reactor element connected between the middle point of the third leg of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1.
  • first inductance L1 may be composed of the leakage inductance of the primary winding n1 formed between the midpoint of the first leg of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1.
  • the second inductance L2 may be composed of the leakage inductance of the secondary winding n2 formed between the middle point of the third leg of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1. . Either one of the first inductance L1 and the second inductance L2 may be omitted.
  • a first voltage sensor that detects the voltage across the first DC section
  • a first current sensor that detects the current flowing through the first DC section
  • a second voltage sensor that detects the voltage across the second DC section.
  • Two voltage sensors and a second current sensor that detects the current flowing through the second DC section are provided, and the respective detection values are output to the control circuit 13 .
  • the control circuit 13 supplies a driving signal (PWM (Pulse Width Modulation) signal) to the gate terminals or base terminals of the first switching element Q1 to the eighth switching element Q8, thereby controlling the first switching element Q1 to the eighth switching element Q8.
  • PWM Pulse Width Modulation
  • the configuration of the control circuit 13 can be realized by cooperation of hardware resources and software resources, or only by hardware resources. Analog devices, microcontrollers, DSPs, ROMs, RAMs, ASICs, FPGAs, and other LSIs can be used as hardware resources. Programs such as firmware can be used as software resources.
  • the control circuit 13 executes the following control as basic control.
  • the control circuit 13 detects the current value (discharge current value) detected by the first current sensor as the current command value. or so that the voltage value (discharge voltage value) detected by the first voltage sensor maintains the voltage command value.
  • the secondary-side current value detected by the second current sensor may be controlled, and the secondary-side voltage value detected by the second voltage sensor may be controlled.
  • the control circuit 13 determines that the current value (charging current value) detected by the first current sensor is the current command.
  • the first switching element Q1 to the eighth switching element Q8 are controlled so as to maintain the value or so that the voltage value (charge voltage value) detected by the first voltage sensor maintains the voltage command value.
  • the secondary-side current value detected by the second current sensor may be controlled, and the secondary-side voltage value detected by the second voltage sensor may be controlled.
  • the DAB converter has a symmetrical configuration on the primary side and the secondary side, and can transmit power in both directions.
  • the operation of the power converter 1 will be described below.
  • FIGS. 2A to 2C are diagrams for explaining the operating state of the power converter 1 according to Comparative Example 1.
  • the control circuit 13 turns on the first switching element Q1, the fourth switching element Q4, the sixth switching element Q6, and the seventh switching element Q7, the second switching element Q2,
  • the third switching element Q3, the fifth switching element Q5 and the eighth switching element Q8 are controlled to be turned off.
  • power is charged from the first DC power supply E1 to the first inductor L1
  • power is charged from the second DC power supply E2 to the second inductor L2.
  • the control circuit 13 turns on the first switching element Q1, the fourth switching element Q4, the fifth switching element Q5, and the eighth switching element Q8, the second switching element Q2,
  • the third switching element Q3, the sixth switching element Q6 and the seventh switching element Q7 are controlled to be turned off.
  • the power of the first DC power supply E1 the power accumulated in the first inductor L1
  • the power accumulated in the second inductor L2 are transmitted to the second DC power supply E2.
  • the control circuit 13 turns on the second switching element Q2, the third switching element Q3, the fifth switching element Q5, and the eighth switching element Q8, and turns on the first switching element Q1 and the fourth switching element Q1.
  • the element Q4, the sixth switching element Q6 and the seventh switching element Q7 are controlled to be turned off. In this state, power is charged from the first DC power supply E1 to the first inductor L1, and power is charged from the second DC power supply E2 to the second inductor L2.
  • the control circuit 13 turns on the second switching element Q2, the third switching element Q3, the sixth switching element Q6, and the seventh switching element Q7, and turns on the first switching element Q1 and the fourth switching element Q1.
  • the element Q4, the fifth switching element Q5 and the eighth switching element Q8 are controlled to be turned off.
  • the power of the first DC power supply E1 the power accumulated in the first inductor L1
  • the power accumulated in the second inductor L2 are transmitted to the second DC power supply E2.
  • the power of the second DC power supply E2 is charged to the second inductor L2 in the first state (see FIG. 2(a)) and the third state (not shown).
  • the power accumulated in the second inductor L2 is discharged to the second DC power source E2. That is, a reactive current irrelevant to power transmission flows on the secondary side. Wasteful loss occurs due to the flow of this reactive current.
  • FIG. 2(c) shows the flow of current when the voltage of the first DC power supply E1 is significantly lower than the voltage of the second DC power supply E2 in the second state shown in FIG. 2(b). .
  • the voltage of the second DC power supply E2 becomes higher than the voltage of the first DC power supply E1
  • the direction of current is reversed, and the current flows back from the second DC power supply E2 to the first DC power supply E1.
  • the first switching element Q1 and the fourth switching element Q4 are turned off and the second switching element Q2 and the third switching element Q3 are turned on in order to transition to the next state
  • the second switching element Q2 and the third switching element Q3 are turned on.
  • the third switching element Q3 goes into hard switching, and the first diode D1 of the first switching element Q1 and the fourth diode D4 of the fourth switching element Q4 go into recovery operation, increasing the loss.
  • FIGS. 3A to 3C are diagrams for explaining the operating state of the power converter 1 according to Comparative Example 2.
  • FIG. FIGS. 4A to 4D are diagrams for explaining switching patterns of the first switching element Q1 to the eighth switching element Q8 according to Comparative Example 2 of the power converter 1.
  • FIG. Comparative Example 2 employs a phase shift method. The duty ratio of the first switching element Q1 to the sixth switching element Q6 is fixed at 50%, and the seventh switching element Q7 and the eighth switching element Q8 are kept in the fully off state.
  • the phase of the first leg (first switching element Q1 and second switching element Q2) is fixed, and the phase of the second leg (third switching element Q2) is fixed.
  • the phase difference ⁇ 1 between the first leg and the second leg is controlled.
  • the third leg (the fifth switching element Q5 and the sixth switching element Q6) is controlled in synchronization with the second leg.
  • the control circuit 13 controls the phase difference ⁇ 1 to decrease (shifts the phase of the second leg to the left), and transmits from the primary side to the secondary side.
  • control is performed so that the phase difference ⁇ 1 increases (the phase of the second leg is shifted to the right).
  • the phases of the first leg and the second leg are fixed, the phase of the third leg is variable, and the phase of the third leg is controlled.
  • the phase difference ⁇ 2 between the first and second legs and the third leg is controlled.
  • the control circuit 13 controls the phase difference ⁇ 2 to increase (shifts the phase of the third leg to the right), and transmits from the primary side to the secondary side.
  • control is performed so that the phase difference ⁇ 2 becomes smaller (the phase of the third leg is shifted to the left).
  • FIG. 3(a) shows a state in which power is transmitted from the first DC power source E1 to the second DC power source E2 (hereinafter referred to as a transmission state).
  • the transmission state the second bridge circuit 12 on the secondary side only needs to be in the rectifying state, and both the fifth switching element Q5 and the sixth switching element Q6 constituting the third leg may be controlled to be in the OFF state. .
  • FIG. 3(b) shows a state in which power is transmitted from the first inductor L1 and the second inductor L2 to the second DC power supply E2 (hereinafter referred to as a commutation state).
  • FIG. 3(c) shows a state in which electric power is accumulated in the first inductor L1 and the second inductor L2 from the first DC power source E1 (hereinafter referred to as an accumulation state).
  • step-down operation the voltage or current of the power to be transmitted is controlled by the ratio between the transmission state and the commutation state.
  • the higher the ratio of commutation states the lower the voltage or current of the power to be transmitted is controlled.
  • step-up operation the voltage or current of the power to be transmitted is controlled by the ratio between the transmission state and the storage state. The higher the stored state ratio, the higher the voltage or current of the power to be transmitted is controlled.
  • dead time Td of the third leg when transitioning from the switching pattern at maximum power for step-down operation shown in FIG. 4(b) to the switch pattern at minimum power for boost operation shown in FIG. 4(c).
  • the dead time Td is a period (dead period) during which the transmitted power does not change with respect to changes in the control operation amount (changes in the switching waveform). That is, although the control circuit 13 controls to increase the power to be transmitted, it is a period in which the power does not actually increase.
  • this embodiment proposes a DAB converter control method that does not generate a reverse current from the second DC power supply E2 and does not generate a dead period. Note that the dead period also occurs in the PWM method.
  • FIGS. 5(a) to 5(d) are diagrams for explaining operating states according to the embodiment of the power conversion device 1.
  • FIG. 6A to 6C are diagrams for explaining switching patterns of the first switching element Q1 to the eighth switching element Q8 according to the embodiment of the power converter 1.
  • FIG. This embodiment employs the PWM method, and the control circuit 13 controls the ON/OFF time of each switching element Q1 to the eighth switching element Q8, so that the first DC section changes to the second switching element. Controls the voltage or current of the power transmitted to the DC section.
  • the voltage or current of the power to be transmitted is controlled by switching the transmission state, commutation state, and accumulation state.
  • the first bridge circuit 11 conducts the first DC section and the primary winding n1 of the isolation transformer TR1
  • the second bridge circuit 12 conducts the secondary winding n2 of the isolation transformer TR1 to the second DC section. state.
  • the transmission state includes the first pattern and the second pattern.
  • the first pattern is a pattern in which the first switching element Q1 and the fourth switching element Q4 are in an ON state, the second switching element Q2 and the third switching element Q3 are in an OFF state, and the second bridge circuit 12 is in a rectifying state. (See FIGS. 5(a)-(b)).
  • the transmission state a shown in FIG. 5A is an example of diode rectification on the secondary side
  • the transmission state b shown in FIG. 5B is an example of synchronous rectification on the secondary side.
  • the second pattern is a pattern in which the second switching element Q2 and the third switching element Q3 are on, the first switching element Q1 and the fourth switching element Q4 are off, and the second bridge circuit 12 is in the rectifying state. .
  • the commutation state includes a third pattern and a fourth pattern.
  • the third pattern the first switching element Q1 or the fourth switching element Q4 is in the ON state
  • the second switching element Q2 and the third switching element Q3 are in the OFF state, This is a pattern in which the second bridge circuit 12 is in a rectifying state (see FIG. 5(c)).
  • the second switching element Q2 or the third switching element Q3 is in the ON state
  • the third switching element Q3 or the second switching element Q2 and the first switching element Q1 and the fourth switching element Q4 are in the OFF state
  • the accumulation state includes a fifth pattern and a sixth pattern.
  • a fifth pattern is a pattern in which the first switching element Q1, the fourth switching element Q4, and the sixth switching element Q6 or the seventh switching element Q7 are in the ON state, and the remaining switching elements are in the OFF state.
  • a sixth pattern is a pattern in which the second switching element Q2, the third switching element Q3, and the fifth switching element Q5 or the eighth switching element Q8 are in the ON state, and the remaining switching elements are in the OFF state.
  • the control circuit 13 synchronizes the period of the first pattern and the period of the second pattern. That is, the period of the first pattern and the period of the second pattern are controlled to be substantially the same. Further, the control circuit 13 synchronizes the period of the third pattern and the period of the fourth pattern. That is, the period of the third pattern and the period of the fourth pattern are controlled to be substantially the same time. Further, the control circuit 13 synchronizes the period of the fifth pattern and the period of the sixth pattern. That is, the period of the fifth pattern and the period of the sixth pattern are controlled to be substantially the same time.
  • FIG. 6(a) shows the switching pattern in the first operation mode.
  • the first operation mode is an operation mode during step-down.
  • the duty ratio of the second leg is fixed at 100% and the duty ratio of the first leg is variable. The higher the duty ratio of the first leg (the longer the ON time), the longer the transmission period than the commutation period, and the more power is transmitted.
  • the voltage or current of power to be transmitted is controlled by PWM control on the primary side.
  • the control circuit 13 turns on the fourth switching element Q4 in synchronization with turning on the first switching element Q1.
  • the control circuit 13 turns on the eighth switching element Q8 in synchronization with the turning off of the first switching element Q1.
  • the fourth switching element Q4 is turned off instead of the first switching element Q1.
  • Synchronous rectification is performed by turning on the eighth switching element Q8. Since synchronous rectification has less loss than diode rectification, loss on the secondary side is reduced compared to the case where current passes through the eighth diode D8 while the eighth switching element Q8 is in the OFF state. In addition, when the fifth switching element Q5 is in the OFF state, current passes through the fifth diode D5, thereby preventing the direction of the current flowing to the secondary side from reversing. Note that the fifth switching element Q5 may be turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
  • control circuit 13 turns off the eighth switching element Q8 in synchronization with turning off the fourth switching element Q4.
  • the control circuit 13 With the dead time Td in between, the control circuit 13 turns on the third switching element Q3 in synchronization with the turn-on of the second switching element Q2. Next, the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the second switching element Q2. When the duty ratio of the second leg is made variable, the third switching element Q3 is turned off instead of the second switching element Q2.
  • Synchronous rectification is performed by turning on the seventh switching element Q7.
  • the sixth switching element Q6 may be turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
  • control circuit 13 turns off the seventh switching element Q7 in synchronization with turning off the third switching element Q3.
  • One cycle is completed by the above.
  • FIG. 6(b) shows the switching pattern of the second operation mode.
  • the second operation mode is an operation mode during boosting.
  • the duty ratios of both the first leg and the second leg are fixed at 100%
  • the duty ratio of one of the third leg and the fourth leg is variable
  • the other leg Complementary operation with leg or all off state.
  • the power transmitted is controlled by the duty ratio of the third leg. longer, increasing the power transmitted.
  • the voltage or current of the power to be transmitted is controlled by PWM control on the secondary side.
  • the control circuit 13 turns on the fourth switching element Q4 and the sixth switching element Q6 in synchronization with turning on the first switching element Q1. Note that the seventh switching element Q7 may be turned on instead of the sixth switching element Q6.
  • the control circuit 13 turns on the eighth switching element Q8 in synchronization with turning off the sixth switching element Q6.
  • the seventh switching element Q7 is turned off instead of the sixth switching element Q6, the fifth switching element Q5 is turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
  • the control circuit 13 turns off the fourth switching element Q4 and the eighth switching element Q8 in synchronization with the turning off of the first switching element Q1.
  • the control circuit 13 turns on the third switching element Q3 and the fifth switching element Q5 in synchronization with the turning on of the second switching element Q2.
  • the eighth switching element Q8 may be turned on instead of the fifth switching element Q5.
  • the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the fifth switching element Q5.
  • the eighth switching element Q8 is turned off instead of the fifth switching element Q5
  • the sixth switching element Q6 is turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
  • control circuit 13 turns off the third switching element Q3 and the seventh switching element Q7 in synchronization with turning off the second switching element Q2.
  • One cycle is completed by the above.
  • FIG. 6(c) shows the switching pattern of the third operation mode.
  • a third operation mode is an operation mode when the step-down operation is switched to the step-up operation.
  • the third operation mode is activated when the duty ratio of the first leg reaches a threshold ⁇ obtained by subtracting the duty ratio corresponding to the dead time from 100% in the step-down operation mode.
  • the threshold ⁇ can be appropriately set to any value.
  • power control by PWM control on the primary side in the first operation mode and power control by PWM control on the secondary side in the second operation mode coexist.
  • the control circuit 13 turns on the fourth switching element Q4 and the sixth switching element Q6 in synchronization with turning on the first switching element Q1. Note that the seventh switching element Q7 may be turned on instead of the sixth switching element Q6.
  • the control circuit 13 turns on the eighth switching element Q8 in synchronization with turning off the sixth switching element Q6.
  • the seventh switching element Q7 is turned off instead of the sixth switching element Q6, the fifth switching element Q5 is turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
  • control circuit 13 turns off the first switching element Q1.
  • the fourth switching element Q4 is turned off instead of the first switching element Q1.
  • control circuit 13 turns off the eighth switching element Q8 in synchronization with turning off the fourth switching element Q4.
  • the duty ratio of the second leg is variable, the first switching element Q1 is turned off instead of the fourth switching element Q4.
  • the control circuit 13 turns on the third switching element Q3 and the fifth switching element Q5 in synchronization with the turning on of the second switching element Q2.
  • the eighth switching element Q8 may be turned on instead of the fifth switching element Q5.
  • the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the fifth switching element Q5.
  • the eighth switching element Q8 is turned off instead of the fifth switching element Q5
  • the sixth switching element Q6 is turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
  • control circuit 13 turns off the second switching element Q2.
  • the third switching element Q3 is turned off instead of the second switching element Q2.
  • control circuit 13 turns off the seventh switching element Q7 in synchronization with turning off the third switching element Q3.
  • the second switching element Q2 is turned off instead of the third switching element Q3.
  • FIG. 7 is a diagram for explaining switching among the first operation mode, the second operation mode, and the third operation mode according to the embodiment.
  • a third operation mode is interposed between the first operation mode (step down) and the second operation mode (step up).
  • the control circuit 13 calculates the control operation amount based on the deviation between the target value of the voltage or current to be controlled and the actual detected value. For example, the deviation is PI-compensated to calculate the control operation amount.
  • the control circuit 13 switches the operation mode based on the calculated control operation amount.
  • the control circuit 13 PWM-controls the first leg, fixes the second leg to a duty ratio of 100%, sets the third leg to a fully off state, and sets the fourth leg to a complementary state to the first leg. make it work.
  • the fourth leg is also turned off.
  • the control circuit 13 fixes the duty ratio of the first leg and the second leg to 100%, PWM-controls the third leg, and causes the fourth leg to operate complementary to the third leg. Note that when synchronous rectification is not to be performed, the fourth leg is completely off.
  • the control circuit 13 PWM-controls the first leg, fixes the duty ratio of the second leg to 100%, PWM-controls the third leg, and operates the fourth leg and the third leg in complementary operation. Let Note that when synchronous rectification is not to be performed, the fourth leg is completely off.
  • the control circuit 13 switches from the first operation mode to the third operation mode at the timing when the duty ratio of the first leg rises to the threshold ⁇ obtained by subtracting the duty ratio corresponding to the dead time from 100%.
  • the control circuit 13 continues the PWM control of the first leg until the duty ratio of the third leg rises to the threshold value ⁇ obtained by adding the duty ratio corresponding to the dead time to 0%.
  • the threshold ⁇ can be appropriately set to any value.
  • the control circuit 13 switches from the second operation mode to the third operation mode at the timing when the duty ratio of the third leg has decreased to the threshold value ⁇ .
  • the control circuit 13 continues the PWM control of the third leg until the duty ratio of the first leg drops to the threshold value ⁇ .
  • the control circuit 13 controls the voltage or current of power transmitted from the first DC section to the second DC section by controlling the duty ratio of the first leg. Further, in the second operation mode, the control circuit 13 controls the voltage or current of power transmitted from the first DC section to the second DC section by controlling the duty ratio of the third leg. Further, in the third operation mode, the control circuit 13 controls the duty ratio of the first leg and the duty ratio of the third leg to control the voltage or current of the power transmitted from the first DC section to the second DC section. Control.
  • the control circuit 13 makes the transition to the third operation mode before the duty ratio of the first leg reaches 1 in the first operation mode. In addition, the control circuit 13 makes the transition to the third operation mode before the duty ratio of the third leg reaches zero in the second operation mode.
  • FIGS. 8(a)-(c) are diagrams for explaining switching patterns during reverse transmission of the first switching element Q1 to the eighth switching element Q8 according to the embodiment of the power converter 1.
  • FIG. 8A to 8C the control circuit 13 supplies the drive signal to the first switching element Q1 to the fourth switching element Q4, the fifth switching element Q5 to the eighth switching element It suffices to replace the drive signal supplied to Q8.
  • control is performed by the PWM method instead of the phase shift method, it is possible to easily generate the dead time when all of the first switching element Q1 to the eighth switching element Q8 are off. As a result, it is possible to suppress the occurrence of diode recovery loss. As described above, according to this embodiment, it is possible to smoothly switch between the step-down operation and the step-up operation, and to achieve high efficiency.
  • FIG. 9(a)-(c) are diagrams for explaining the switching patterns of the first switching element Q1 to the eighth switching element Q8 according to the modification of the power conversion device 1.
  • FIG. FIG. 9(a) shows a switching pattern in the first operation mode according to the modification.
  • the first operation mode is an operation mode during step-down.
  • the phase of one of the first and second legs is fixed and the phase of the other leg is shifted.
  • the phase of the second leg is fixed and the phase of the first leg is shifted.
  • the smaller the phase difference between the first leg and the second leg the longer the transmission period than the commutation period, and the more power is transmitted.
  • phase shift control on the primary side controls the voltage or current of the power to be transmitted.
  • the control on the secondary side is the same as the control in the above embodiment shown in FIG. 6(a).
  • FIG. 9(b) shows the switching pattern of the second operation mode.
  • the second operation mode is an operation mode during boosting.
  • the control at the time of boosting is the same as the control of the above embodiment shown in FIG. 6(a).
  • FIG. 9(c) shows the switching pattern of the third operation mode according to the modification.
  • a third operation mode is an operation mode when the step-down operation is switched to the step-up operation.
  • the third operating mode is activated when the phase difference between the first leg and the second leg in the first operating mode is reduced to the phase difference ⁇ corresponding to the dead time.
  • power control by phase shift control on the primary side in the first operation mode and power control by PWM control on the secondary side in the second operation mode coexist.
  • phase shift control on the primary side and PWM control on the secondary side it is also possible to realize the first operation mode to the third operation mode.
  • phase-shifting the primary side there is no period in which the switching elements Q1-Q8 are completely off in the first and part of the third operation mode, but synchronous rectification is performed during the commutation state. It can be performed.
  • the first switching element Q1 to the eighth switching element Q8 are made of wide bandgap semiconductors using silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), diamond (C), etc.
  • SiC silicon carbide
  • GaN gallium nitride
  • Ga2O3 gallium oxide
  • C diamond
  • the embodiment may be specified by the following items.
  • [Item 1] It has a first leg in which a first switching element (Q1) and a second switching element (Q2) are connected in series, and a second leg in which a third switching element (Q3) and a fourth switching element (Q4) are connected in series. and a first bridge circuit (11) in which the first leg and the second leg are connected in parallel to a first DC section (E1, Ca); It has a third leg in which a fifth switching element (Q5) and a sixth switching element (Q6) are connected in series, and a fourth leg in which a seventh switching element (Q7) and an eighth switching element (Q8) are connected in series.
  • the first bridge circuit (11) connects the first DC section (E1, Ca) and the primary winding (n1) of the isolation transformer (TR1), and the second bridge circuit (12) connects the isolation transformer ( A transmission state in which the secondary winding (n2) of TR1) is electrically connected to the second DC part (E2, Cb), and both ends of the primary winding (n1) are short-circuited in the first bridge circuit (11).
  • the first bridge circuit (11) electrically connects the first DC section (E1, Ca) and the primary winding (n1), and both ends of the secondary winding (n2) are connected to the second bridge circuit (12).
  • a second mode of operation that controls to include an accumulation state shorted within and the transmission state; a third operating mode that controls to include the transmission state, the accumulation state, and the commutation state;
  • a power converter (1) comprising: According to this, it is possible to smoothly switch between the first operation mode and the second operation mode.
  • the transmission state includes a first pattern and a second pattern
  • the commutation state includes a third pattern and a fourth pattern
  • the first pattern the first switching element (Q1) and the fourth switching element (Q4) are in an ON state
  • the second switching element (Q2) and the third switching element (Q3) are in an OFF state
  • the second bridge circuit (12) is in a rectifying state
  • the second pattern the second switching element (Q2) and the third switching element (Q3) are in an ON state
  • the first switching element (Q1) and the fourth switching element (Q4) are in an OFF state
  • the second bridge circuit (12) is in a rectifying state
  • the third pattern the first switching element (Q1) or the fourth switching element (Q4) is in an ON state
  • the fourth switching element (Q4) or the first switching element (Q1) and the second switching element (Q4) are switched on.
  • the switching element (Q2) and the third switching element (Q3) are in an off state, and the second bridge circuit (12) is in a rectifying state;
  • the second switching element (Q2) or the third switching element (Q3) is in an ON state
  • the third switching element (Q3) or the second switching element (Q2) and the first The switching element (Q1) and the fourth switching element (Q4) are in an OFF state
  • the second bridge circuit (12) is in a rectifying state.
  • the accumulation state includes a fifth pattern and a sixth pattern;
  • the first switching element (Q1), the fourth switching element (Q4), and the sixth switching element (Q6) or the seventh switching element (Q7) are in an ON state, and the remaining switching elements are switched.
  • the element is in the off state
  • the second switching element (Q2), the third switching element (Q3), and the fifth switching element (Q5) or the eighth switching element (Q8) are on, and the remaining switching elements are the element is in the off state, 3.
  • the control circuit (13) controls the on/off time of each switching element to control the voltage or to control the current, A power converter (1) according to any one of items 1 to 3. According to this, by controlling by the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced.
  • the control circuit (13) By controlling the duty ratio of the first leg or the second leg in the first operation mode, By controlling the duty ratio of the third leg or the fourth leg in the second operation mode, By controlling the duty ratio of the first leg or the second leg and the duty ratio of the third leg or the fourth leg in the third operation mode, Controlling the voltage or current of power transmitted from the first DC section (E1, Ca) to the second DC section (E2, Cb); 5.
  • the control circuit (13) In the first operating mode, turning on the fourth switching element (Q4) in synchronization with turning on the first switching element (Q1); turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the first switching element (Q1) or the fourth switching element (Q4); turning off the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the fourth switching element (Q4) or the first switching element (Q1); turning on the third switching element (Q3) in synchronization with turning on the second switching element (Q2); turning on the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the second switching element (Q2) or the third switching element (Q3); Turning off the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the third switching element (Q3) or the second switching element (Q2); 8.
  • a power converter (1) according to any one of items 1 to 7. According to this, by controlling the step-down operation by the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced.
  • the control circuit (13) In the second operation mode, turning on the fourth switching element (Q4) and the sixth switching element (Q6) or the seventh switching element (Q7) in synchronization with turning on the first switching element (Q1); turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the sixth switching element (Q6) or the seventh switching element (Q7); turning off the fourth switching element (Q4) and the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with the turn-off of the first switching element (Q1); turning on the third switching element (Q3) and the fifth switching element (Q5) or the eighth switching element (Q8) in synchronization with turning on the second switching element (Q2); turning on the seventh switching element (Q7) or the sixth switching
  • the control circuit (13) In the third operating mode, turning on the fourth switching element (Q4) and the sixth switching element (Q6) or the seventh switching element (Q7) in synchronization with turning on the first switching element (Q1); turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the sixth switching element (Q6) or the seventh switching element (Q7); turning off the first switching element (Q1) or the fourth switching element (Q4); turning off the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the fourth switching element (Q4) or the first switching element (Q1); turning on the third switching element (Q3) and the fifth switching element (Q5) or the eighth switching element (Q8) in synchronization with turning on the second switching element (Q2); turning on the seventh switching element (Q7)
  • the control circuit (13) When transmitting power from the secondary side to the primary side, exchanging the drive signal supplied to the first switching element (Q1)-the fourth switching element (Q4) and the drive signal supplied to the fifth switching element (Q5)-the eighth switching element (Q8); 13.
  • a power converter (1) according to any one of items 1 to 12. Thereby, a DC/DC converter capable of bidirectional transmission can be realized.
  • the present invention can be used for power conditioners in photovoltaic power generation systems.
  • E1 First DC power supply E2 Second DC power supply, 1 Power converter, 11 First bridge circuit, 12 Second bridge circuit, 13 Control circuit, Q1-Q8 Switching element, D1-D8 Diode, C1-C8 Capacitance, L1 First inductance, L2 second inductance, TR1 isolation transformer, n1 primary winding, n2 secondary winding, Ca primary side capacitor, Cb secondary side capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In a dual active bridge (DAB) converter, a control circuit 13 has: a first operation mode that performs control so as to include a transmission state in which a first bridge circuit 11 energizes a first DC part and a primary winding n1 of an insulated transformer TR1, and a second bridge circuit 12 energizes a secondary winding n2 of the insulated transformer TR1 together with second DC parts E2, Cb, and a commutation state in which both ends of the primary winding n1 are short circuited in the first bridge circuit 11, and the second bridge circuit 12 energizes the secondary winding n2 together with the secondary DC parts; a second operation mode that performs control so as to include the transmission state and an accumulation state in which the first bridge circuit energizes the primary winding together with the DC part, and both ends of the secondary wiring are short circuited in the second bridge circuit; and a third operation mode that performs control so as to include the transmission state, accumulation state, and commutation state.

Description

電力変換装置power converter
 本発明は、直流電力を別の電圧の直流電力に変換する電力変換装置に関する。 The present invention relates to a power converter that converts DC power into DC power of another voltage.
 太陽光発電システムやV2H(Vehicle to Home)システムに使用されるパワーコンディショナは、高効率な電力変換が求められる。V2Hシステムは、EV/PHEVに搭載された蓄電池と、家庭内の電源/負荷との間で充放電することができる。例えば、家庭用の太陽光発電システムで発電した電力をEV/PHEVに充電することができる。また、EV/PHEVに搭載された蓄電池を、家庭内の負荷のピークシフトやバックアップ用途に利用することができる。V2Hシステムで使用されるDC/DCコンバータには高効率であることに加え、広範囲の電圧レンジと絶縁型であることが求められる。これらの要求を満たすDC/DCコンバータの一つに、DAB(Dual Active Bridge)コンバータがある。 Power conditioners used in photovoltaic power generation systems and V2H (Vehicle to Home) systems are required to have highly efficient power conversion. The V2H system can charge and discharge between the storage battery installed in the EV/PHEV and the power source/load in the home. For example, an EV/PHEV can be charged with power generated by a home solar power generation system. In addition, the storage battery installed in the EV/PHEV can be used for peak shift of domestic load and for backup purposes. In addition to high efficiency, the DC/DC converters used in V2H systems are required to have a wide voltage range and isolation. One DC/DC converter that meets these requirements is a DAB (Dual Active Bridge) converter.
 DABコンバータでは、位相シフト方式(例えば、特許文献1)であるかPWM(Pulse Width Modulation)方式であるかに関わらず、降圧動作と昇圧動作の間に、制御操作量の変化に対して電力が変化しない不感期間(不感帯)が発生する。 In a DAB converter, regardless of whether it is a phase shift method (for example, Patent Document 1) or a PWM (Pulse Width Modulation) method, the amount of power consumed varies between the step-down operation and the step-up operation with respect to the change in the control operation amount. A dead period (dead band) that does not change occurs.
国際公開第16/125374号WO 16/125374
 降圧動作と昇圧動作の間の不感期間は出力電流を歪ませる要因となる。このような不感期間を発生させずに、降圧動作と昇圧動作とのシームレスな切り替えが求められる。 The dead period between buck operation and boost operation is a factor that distorts the output current. There is a demand for seamless switching between the step-down operation and the step-up operation without generating such a dead period.
 本開示はこうした状況に鑑みなされたものであり、その目的は、降圧動作と昇圧動作との間を滑らかに切り替えることができる電力変換装置を提供することにある。 The present disclosure has been made in view of such circumstances, and its object is to provide a power conversion device capable of smoothly switching between step-down operation and step-up operation.
 上記課題を解決するために、本開示のある態様の電力変換装置は、第1スイッチング素子と第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子と第4スイッチング素子が直列接続された第2レグを有し、前記第1レグと前記第2レグが第1直流部に並列接続される第1ブリッジ回路と、第5スイッチング素子と第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子と第8スイッチング素子が直列接続された第4レグを有し、前記第3レグと前記第4レグが第2直流部に並列接続される第2ブリッジ回路と、前記第1ブリッジ回路と前記第2ブリッジ回路の間に接続された絶縁トランスと、前記第1スイッチング素子-前記第8スイッチング素子を制御する制御回路と、を備える。前記第1スイッチング素子-前記第8スイッチング素子のそれぞれに、逆並列にダイオードが接続または形成されており、前記制御回路は、前記第1ブリッジ回路が前記第1直流部と前記絶縁トランスの一次巻線を導通させ、前記第2ブリッジ回路が前記絶縁トランスの二次巻線を前記第2直流部と導通させる伝送状態と、前記一次巻線の両端を前記第1ブリッジ回路内で短絡させ、前記第2ブリッジ回路が前記二次巻線を前記第2直流部と導通させた転流状態を含むように制御する第1の動作モードと、前記第1ブリッジ回路が前記第1直流部と前記一次巻線を導通させ、前記二次巻線の両端を前記第2ブリッジ回路内で短絡させた蓄積状態と、前記伝送状態を含むように制御する第2の動作モードと、前記伝送状態と前記蓄積状態と前記転流状態を含むように制御する第3の動作モードと、を有する。 In order to solve the above problems, a power converter according to an aspect of the present disclosure includes a first leg in which a first switching element and a second switching element are connected in series, and a third switching element and a fourth switching element in series. a first bridge circuit in which the first leg and the second leg are connected in parallel to the first DC section; and a third bridge circuit in which a fifth switching element and a sixth switching element are connected in series. a second bridge circuit having a leg, a fourth leg in which a seventh switching element and an eighth switching element are connected in series, and in which the third leg and the fourth leg are connected in parallel to a second DC section; An isolation transformer connected between the first bridge circuit and the second bridge circuit, and a control circuit for controlling the first switching element to the eighth switching element. A diode is connected or formed in inverse parallel to each of the first switching element to the eighth switching element, and the control circuit is configured such that the first bridge circuit a transmission state in which the second bridge circuit conducts the secondary winding of the isolating transformer with the second DC section, short-circuiting both ends of the primary winding in the first bridge circuit; a first mode of operation in which a second bridge circuit is controlled to include a commutation state in which the secondary winding is in communication with the second DC section; a storage state in which the winding is conductive and both ends of the secondary winding are short-circuited in the second bridge circuit; a second operation mode for controlling to include the transmission state; the transmission state and the storage; and a third operating mode controlling to include the commutation state.
 本開示によれば、降圧動作と昇圧動作との間を滑らかに切り替えることができる。 According to the present disclosure, it is possible to smoothly switch between the step-down operation and the step-up operation.
実施の形態に係る電力変換装置の構成を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the structure of the power converter device which concerns on embodiment. 図2(a)-(c)は、電力変換装置の比較例1に係る動作状態を説明するための図である。FIGS. 2(a) to 2(c) are diagrams for explaining the operating state of the power conversion device according to Comparative Example 1. FIG. 図3(a)-(c)は、電力変換装置の比較例2に係る動作状態を説明するための図である。FIGS. 3(a) to 3(c) are diagrams for explaining the operating state of the power converter according to Comparative Example 2. FIG. 図4(a)-(d)は、電力変換装置の比較例2に係る第1スイッチング素子-第8スイッチング素子のスイッチングパターンを説明するための図である。FIGS. 4A to 4D are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to Comparative Example 2 of the power converter. 図5(a)-(d)は、電力変換装置の実施例に係る動作状態を説明するための図である。FIGS. 5(a) to 5(d) are diagrams for explaining operating states according to the embodiment of the power converter. 図6(a)-(c)は、電力変換装置の実施例に係る第1スイッチング素子-第8スイッチング素子のスイッチングパターンを説明するための図である。FIGS. 6A to 6C are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to the embodiment of the power converter. 実施例に係る第1の動作モード、第2の動作モード、第3の動作モードの切り替えを説明するための図である。FIG. 4 is a diagram for explaining switching among a first operation mode, a second operation mode, and a third operation mode according to the embodiment; 図8(a)-(c)は、電力変換装置の実施例に係る第1スイッチング素子-第8スイッチング素子の逆方向伝送時のスイッチングパターンを説明するための図である。FIGS. 8A to 8C are diagrams for explaining switching patterns during reverse transmission of the first switching element to the eighth switching element according to the embodiment of the power converter. 図9(a)-(c)は、電力変換装置の変形例に係る第1スイッチング素子-第8スイッチング素子のスイッチングパターンを説明するための図である。FIGS. 9A to 9C are diagrams for explaining switching patterns of the first switching element to the eighth switching element according to the modification of the power converter.
 図1は、実施の形態に係る電力変換装置1の構成を説明するための図である。電力変換装置1は絶縁型の双方向DC/DCコンバータ(DABコンバータ)であり、第1直流電源E1から供給される直流電力を変換して第2直流電源E2に伝送する。また電力変換装置1は、第2直流電源E2から供給される直流電力を変換して第1直流電源E1に伝送する。電力変換装置1は降圧して電力伝送することも、昇圧して電力伝送することも可能である。 FIG. 1 is a diagram for explaining the configuration of the power converter 1 according to the embodiment. The power conversion device 1 is an insulated bidirectional DC/DC converter (DAB converter), converts DC power supplied from a first DC power supply E1, and transmits the converted DC power to a second DC power supply E2. The power conversion device 1 also converts the DC power supplied from the second DC power supply E2 and transmits the converted DC power to the first DC power supply E1. The power converter 1 can step down the voltage for power transmission, or step up the voltage for power transmission.
 第1直流電源E1は例えば、EVに搭載された蓄電池や電気二重層コンデンサ、又は定置型の蓄電池や電気二重層コンデンサが該当する。第2直流電源E2は例えば、インバータを介して商用電力系統に接続された直流バスが該当する。当該直流バスには、他のDC/DCコンバータを介して他の蓄電池、太陽電池、燃料電池等が接続されていてもよい。 The first DC power source E1 corresponds to, for example, a storage battery or electric double layer capacitor mounted on an EV, or a stationary storage battery or electric double layer capacitor. The second DC power supply E2 corresponds to, for example, a DC bus connected to a commercial power system via an inverter. Other storage batteries, solar cells, fuel cells, or the like may be connected to the DC bus via other DC/DC converters.
 電力変換装置1は、一次側コンデンサCa、第1ブリッジ回路11、第1インダクタンスL1、絶縁トランスTR1、第2インダクタンスL2、第2ブリッジ回路12、二次側コンデンサCb及び制御回路13を備える。 The power converter 1 includes a primary capacitor Ca, a first bridge circuit 11, a first inductor L1, an isolation transformer TR1, a second inductor L2, a second bridge circuit 12, a secondary capacitor Cb, and a control circuit 13.
 第1直流電源E1と並列に一次側コンデンサCaが接続される。第2直流電源E2と並列に二次側コンデンサCbが接続される。一次側コンデンサCa及び二次側コンデンサCbには例えば、電解コンデンサが使用される。本明細書では、第1直流電源E1と一次側コンデンサCaを総称して第1直流部と呼び、第2直流電源E2と二次側コンデンサCbを総称して第2直流部と呼ぶ。 A primary side capacitor Ca is connected in parallel with the first DC power supply E1. A secondary capacitor Cb is connected in parallel with the second DC power supply E2. For example, electrolytic capacitors are used for the primary side capacitor Ca and the secondary side capacitor Cb. In this specification, the first DC power source E1 and the primary side capacitor Ca are collectively called a first DC section, and the second DC power source E2 and the secondary side capacitor Cb are collectively called a second DC section.
 第1ブリッジ回路11は、第1スイッチング素子Q1と第2スイッチング素子Q2が直列接続された第1レグと、第3スイッチング素子Q3と第4スイッチング素子Q4が直列接続された第2レグが並列接続されて構成されるフルブリッジ回路である。第1ブリッジ回路11は第1直流部と並列接続され、第1レグの中点と第2レグの中点が、絶縁トランスTR1の一次巻線n1の両端にそれぞれ接続される。第1ブリッジ回路11は、第1直流部から供給される一次側の直流電圧を交流電圧に変換して、絶縁トランスTR1の一次巻線n1に出力することができる。また第1ブリッジ回路11は、絶縁トランスTR1の一次巻線n1から供給される交流電圧を直流電圧に変換して、第1直流部に出力することができる。 In the first bridge circuit 11, a first leg in which a first switching element Q1 and a second switching element Q2 are connected in series and a second leg in which a third switching element Q3 and a fourth switching element Q4 are connected in series are connected in parallel. This is a full bridge circuit configured by The first bridge circuit 11 is connected in parallel with the first DC section, and the middle point of the first leg and the middle point of the second leg are connected to both ends of the primary winding n1 of the isolation transformer TR1. The first bridge circuit 11 can convert the DC voltage on the primary side supplied from the first DC section into AC voltage and output it to the primary winding n1 of the isolation transformer TR1. The first bridge circuit 11 can also convert the AC voltage supplied from the primary winding n1 of the isolation transformer TR1 into a DC voltage and output it to the first DC section.
 第2ブリッジ回路12は、第5スイッチング素子Q5と第6スイッチング素子Q6が直列接続された第3レグと、第7スイッチング素子Q7と第8スイッチング素子Q8が直列接続された第4レグが並列接続されて構成されるフルブリッジ回路である。第2ブリッジ回路12は第2直流部と並列接続され、第3レグの中点と第4レグの中点が、絶縁トランスTR1の二次巻線n2の両端にそれぞれ接続される。第2ブリッジ回路12は、第2直流部から供給される二次側の直流電圧を交流電圧に変換して、絶縁トランスTR1の二次巻線n2に出力することができる。また第2ブリッジ回路12は、絶縁トランスTR1の二次巻線n2から供給される交流電圧を直流電圧に変換して、第2直流部に出力することができる。 In the second bridge circuit 12, a third leg in which a fifth switching element Q5 and a sixth switching element Q6 are connected in series and a fourth leg in which a seventh switching element Q7 and an eighth switching element Q8 are connected in series are connected in parallel. This is a full bridge circuit configured by The second bridge circuit 12 is connected in parallel with the second DC section, and the middle point of the third leg and the middle point of the fourth leg are connected to both ends of the secondary winding n2 of the isolation transformer TR1. The second bridge circuit 12 can convert the secondary-side DC voltage supplied from the second DC section into an AC voltage and output it to the secondary winding n2 of the isolation transformer TR1. Also, the second bridge circuit 12 can convert the AC voltage supplied from the secondary winding n2 of the insulating transformer TR1 into a DC voltage and output it to the second DC section.
 第1スイッチング素子Q1-第8スイッチング素子Q8にはそれぞれ、第1ダイオードD1-第8ダイオードD8が逆並列に接続または形成される。また、第1スイッチング素子Q1-第8スイッチング素子Q8にはそれぞれ、第1容量C1-第8容量C8が並列に接続または形成される。 A first diode D1 to an eighth diode D8 are connected or formed in antiparallel to the first switching element Q1 to the eighth switching element Q8, respectively. A first capacitor C1 to an eighth capacitor C8 are connected or formed in parallel to the first switching element Q1 to the eighth switching element Q8, respectively.
 第1スイッチング素子Q1-第8スイッチング素子Q8には例えば、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用できる。第1スイッチング素子Q1-第8スイッチング素子Q8にIGBTが使用される場合、第1スイッチング素子Q1-第8スイッチング素子Q8のコレクタ・エミッタ間に外付けのダイオード素子を第1ダイオードD1-第8ダイオードD8としてそれぞれ接続する。また、第1スイッチング素子Q1-第8スイッチング素子Q8のコレクタ・エミッタ間に外付けのコンデンサを第1容量C1-第8容量C8としてそれぞれ接続するか、第1スイッチング素子Q1-第8スイッチング素子Q8のコレクタ・エミッタ間にそれぞれ形成される寄生容量を第1容量C1-第8容量C8として使用する。 For example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) can be used for the first switching element Q1 to the eighth switching element Q8. When an IGBT is used for the first switching element Q1-eighth switching element Q8, the first diode D1-eighth diode is connected between the collector and emitter of the first switching element Q1-eighth switching element Q8. Connect as D8 respectively. Alternatively, external capacitors may be connected between the collectors and emitters of the first switching element Q1 to the eighth switching element Q8 as first capacitance C1 to the eighth capacitance C8, respectively, or the first switching element Q1 to the eighth switching element Q8 may be connected. Parasitic capacitances respectively formed between the collector and emitter of are used as the first capacitance C1 to the eighth capacitance C8.
 第1スイッチング素子Q1-第8スイッチング素子Q8にMOSFETが使用される場合、第1スイッチング素子Q1-第8スイッチング素子Q8のドレイン・ソース間にそれぞれ形成される寄生ダイオードを第1ダイオードD1-第8ダイオードD8として使用するか、外付けのダイオード素子を第1ダイオードD1-第8ダイオードD8としてそれぞれ接続する。また、第1スイッチング素子Q1-第8スイッチング素子Q8のドレイン・ソース間にそれぞれ形成される寄生容量を第1容量C1-第8容量C8として使用するか、第1スイッチング素子Q1-第8スイッチング素子Q8のドレイン・ソース間に外付けのコンデンサを第1容量C1-第8容量C8としてそれぞれ接続する。 When MOSFETs are used for the first switching element Q1 to the eighth switching element Q8, the parasitic diodes formed between the drain and source of the first switching element Q1 to the eighth switching element Q8 are the first diode D1 to the eighth switching element Q8. Either the diode D8 is used, or external diode elements are connected as the first diode D1 to the eighth diode D8, respectively. Also, the parasitic capacitances formed between the drain and source of the first switching element Q1-eighth switching element Q8 are used as the first capacitance C1-eighth capacitance C8, or the first switching element Q1-eighth switching element External capacitors are connected between the drain and source of Q8 as first capacitor C1 to eighth capacitor C8, respectively.
 第1スイッチング素子Q1-第8スイッチング素子Q8にそれぞれ並列に接続または形成される第1容量C1-第8容量C8の容量値は全て対応している。即ち、第1スイッチング素子Q1-第8スイッチング素子Q8のコレクタ・エミッタ間またはドレイン・ソース間の容量値は実質的に等しい。同様に、第1スイッチング素子Q1-第8スイッチング素子Q8にそれぞれ逆並列に接続または形成される第1ダイオードD1-第8ダイオードD8の抵抗値も全て対応している。このように、第1レグ-第4レグの構成は全て対応しており、製造コストと回路面積の低減に寄与している。また、どのようなスイッチングパターンにも柔軟に対応することができる。 The capacitance values of the first capacitor C1 to the eighth capacitor C8 connected or formed in parallel with the first switching element Q1 to the eighth switching element Q8 respectively correspond to each other. That is, the capacitance values between the collector and emitter or between the drain and source of the first switching element Q1 to the eighth switching element Q8 are substantially equal. Similarly, the resistance values of the first diode D1 to the eighth diode D8 connected or formed in antiparallel with the first switching element Q1 to the eighth switching element Q8, respectively, all correspond. In this way, the configurations of the first leg to the fourth leg all correspond to each other, which contributes to the reduction of manufacturing cost and circuit area. Also, any switching pattern can be flexibly adapted.
 絶縁トランスTR1は、第1ブリッジ回路11の交流端子と第2ブリッジ回路12の交流端子との間に接続される。絶縁トランスTR1は、一次巻線n1に接続される第1ブリッジ回路11の出力電圧を、一次巻線n1と二次巻線n2の巻数比に応じて変換し、二次巻線n2に接続される第2ブリッジ回路12に出力する。また絶縁トランスTR1は、二次巻線n2に接続される第2ブリッジ回路12の出力電圧を、二次巻線n2と一次巻線n1の巻数比に応じて変換し、一次巻線n1に接続される第1ブリッジ回路11に出力する。 The isolation transformer TR1 is connected between the AC terminals of the first bridge circuit 11 and the AC terminals of the second bridge circuit 12 . The isolation transformer TR1 converts the output voltage of the first bridge circuit 11 connected to the primary winding n1 according to the turns ratio between the primary winding n1 and the secondary winding n2, and is connected to the secondary winding n2. output to the second bridge circuit 12. Also, the isolation transformer TR1 converts the output voltage of the second bridge circuit 12 connected to the secondary winding n2 according to the turns ratio between the secondary winding n2 and the primary winding n1, and connects it to the primary winding n1. output to the first bridge circuit 11 where the
 第1インダクタンスL1は、第1ブリッジ回路11の交流端子と絶縁トランスTR1の一次巻線n1の間に、直列に接続または形成される。第2インダクタンスL2は、第2ブリッジ回路12の交流端子と絶縁トランスTR1の二次巻線n2の間に、直列に接続または形成される。図1に示す例では、第1インダクタンスL1は、第1ブリッジ回路11の第1レグの中点と絶縁トランスTR1の一次巻線n1との間に接続されたリアクトル素子で構成されている。第2インダクタンスL2は、第2ブリッジ回路12の第3レグの中点と絶縁トランスTR1の二次巻線n2との間に接続されたリアクトル素子で構成されている。 The first inductance L1 is connected or formed in series between the AC terminal of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1. A second inductance L2 is connected or formed in series between the AC terminal of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1. In the example shown in FIG. 1, the first inductance L1 is composed of a reactor element connected between the midpoint of the first leg of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1. The second inductance L2 is composed of a reactor element connected between the middle point of the third leg of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1.
 なお、第1インダクタンスL1は、第1ブリッジ回路11の第1レグの中点と、絶縁トランスTR1の一次巻線n1との間に形成される一次巻線n1の漏れインダクタンスで構成されてもよい。第2インダクタンスL2は、第2ブリッジ回路12の第3レグの中点と、絶縁トランスTR1の二次巻線n2との間に形成される二次巻線n2の漏れインダクタンスで構成されてもよい。なお、第1インダクタンスL1と第2インダクタンスL2のいずれか一方が省略されてもよい。 It should be noted that the first inductance L1 may be composed of the leakage inductance of the primary winding n1 formed between the midpoint of the first leg of the first bridge circuit 11 and the primary winding n1 of the isolation transformer TR1. . The second inductance L2 may be composed of the leakage inductance of the secondary winding n2 formed between the middle point of the third leg of the second bridge circuit 12 and the secondary winding n2 of the isolation transformer TR1. . Either one of the first inductance L1 and the second inductance L2 may be omitted.
 図1には示していないが、第1直流部の両端電圧を検出する第1電圧センサ、第1直流部に流れる電流を検出する第1電流センサ、第2直流部の両端電圧を検出する第2電圧センサ、及び第2直流部に流れる電流を検出する第2電流センサが設けられ、それぞれの検出値が制御回路13に出力される。 Although not shown in FIG. 1, a first voltage sensor that detects the voltage across the first DC section, a first current sensor that detects the current flowing through the first DC section, and a second voltage sensor that detects the voltage across the second DC section. Two voltage sensors and a second current sensor that detects the current flowing through the second DC section are provided, and the respective detection values are output to the control circuit 13 .
 制御回路13は、第1スイッチング素子Q1-第8スイッチング素子Q8のゲート端子またはベース端子に駆動信号(PWM(Pulse Width Modulation)信号)を供給することにより、第1スイッチング素子Q1-第8スイッチング素子Q8を制御する。制御回路13の構成は、ハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源としてアナログ素子、マイクロコントローラ、DSP、ROM、RAM、ASIC、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。 The control circuit 13 supplies a driving signal (PWM (Pulse Width Modulation) signal) to the gate terminals or base terminals of the first switching element Q1 to the eighth switching element Q8, thereby controlling the first switching element Q1 to the eighth switching element Q8. Control Q8. The configuration of the control circuit 13 can be realized by cooperation of hardware resources and software resources, or only by hardware resources. Analog devices, microcontrollers, DSPs, ROMs, RAMs, ASICs, FPGAs, and other LSIs can be used as hardware resources. Programs such as firmware can be used as software resources.
 制御回路13は基本制御として以下の制御を実行する。制御回路13は、第1直流部から第2直流部へ電力伝送する際(第1直流電源E1から放電する際)、第1電流センサにより検出される電流値(放電電流値)が電流指令値を維持するように、又は第1電圧センサにより検出される電圧値(放電電圧値)が電圧指令値を維持するように第1スイッチング素子Q1-第8スイッチング素子Q8を制御する。なお、第2電流センサにより検出される二次側の電流値を制御してもよいし、第2電圧センサにより検出される二次側の電圧値を制御してもよい。 The control circuit 13 executes the following control as basic control. When power is transmitted from the first DC section to the second DC section (when discharging from the first DC power source E1), the control circuit 13 detects the current value (discharge current value) detected by the first current sensor as the current command value. or so that the voltage value (discharge voltage value) detected by the first voltage sensor maintains the voltage command value. Note that the secondary-side current value detected by the second current sensor may be controlled, and the secondary-side voltage value detected by the second voltage sensor may be controlled.
 また制御回路13は、第2直流部から第1直流部へ電力伝送する際(第1直流電源E1に充電する際)、第1電流センサにより検出される電流値(充電電流値)が電流指令値を維持するように、又は第1電圧センサにより検出される電圧値(充電電圧値)が電圧指令値を維持するように第1スイッチング素子Q1-第8スイッチング素子Q8を制御する。なお、第2電流センサにより検出される二次側の電流値を制御してもよいし、第2電圧センサにより検出される二次側の電圧値を制御してもよい。 Further, when power is transmitted from the second DC section to the first DC section (when charging the first DC power supply E1), the control circuit 13 determines that the current value (charging current value) detected by the first current sensor is the current command. The first switching element Q1 to the eighth switching element Q8 are controlled so as to maintain the value or so that the voltage value (charge voltage value) detected by the first voltage sensor maintains the voltage command value. Note that the secondary-side current value detected by the second current sensor may be controlled, and the secondary-side voltage value detected by the second voltage sensor may be controlled.
 このようにDABコンバータは、一次側と二次側が対称な構成であり、双方向に電力伝送することができる。以下、電力変換装置1の動作を説明する。 In this way, the DAB converter has a symmetrical configuration on the primary side and the secondary side, and can transmit power in both directions. The operation of the power converter 1 will be described below.
(比較例1)
 図2(a)-(c)は、電力変換装置1の比較例1に係る動作状態を説明するための図である。図2(a)に示す第1状態では、制御回路13は、第1スイッチング素子Q1、第4スイッチング素子Q4、第6スイッチング素子Q6及び第7スイッチング素子Q7をオン状態、第2スイッチング素子Q2、第3スイッチング素子Q3、第5スイッチング素子Q5及び第8スイッチング素子Q8をオフ状態に制御する。この状態では第1直流電源E1から第1インダクタンスL1に電力が充電され、第2直流電源E2から第2インダクタンスL2に電力が充電される。
(Comparative example 1)
FIGS. 2A to 2C are diagrams for explaining the operating state of the power converter 1 according to Comparative Example 1. FIG. In the first state shown in FIG. 2A, the control circuit 13 turns on the first switching element Q1, the fourth switching element Q4, the sixth switching element Q6, and the seventh switching element Q7, the second switching element Q2, The third switching element Q3, the fifth switching element Q5 and the eighth switching element Q8 are controlled to be turned off. In this state, power is charged from the first DC power supply E1 to the first inductor L1, and power is charged from the second DC power supply E2 to the second inductor L2.
 図2(b)に示す第2状態では、制御回路13は、第1スイッチング素子Q1、第4スイッチング素子Q4、第5スイッチング素子Q5及び第8スイッチング素子Q8をオン状態、第2スイッチング素子Q2、第3スイッチング素子Q3、第6スイッチング素子Q6及び第7スイッチング素子Q7をオフ状態に制御する。この状態では第1直流電源E1の電力と、第1インダクタンスL1に蓄積された電力と、第2インダクタンスL2に蓄積された電力が第2直流電源E2に伝送される。 In the second state shown in FIG. 2B, the control circuit 13 turns on the first switching element Q1, the fourth switching element Q4, the fifth switching element Q5, and the eighth switching element Q8, the second switching element Q2, The third switching element Q3, the sixth switching element Q6 and the seventh switching element Q7 are controlled to be turned off. In this state, the power of the first DC power supply E1, the power accumulated in the first inductor L1, and the power accumulated in the second inductor L2 are transmitted to the second DC power supply E2.
 第3状態(不図示)では、制御回路13は、第2スイッチング素子Q2、第3スイッチング素子Q3、第5スイッチング素子Q5及び第8スイッチング素子Q8をオン状態、第1スイッチング素子Q1、第4スイッチング素子Q4、第6スイッチング素子Q6及び第7スイッチング素子Q7をオフ状態に制御する。この状態では第1直流電源E1から第1インダクタンスL1に電力が充電され、第2直流電源E2から第2インダクタンスL2に電力が充電される。 In a third state (not shown), the control circuit 13 turns on the second switching element Q2, the third switching element Q3, the fifth switching element Q5, and the eighth switching element Q8, and turns on the first switching element Q1 and the fourth switching element Q1. The element Q4, the sixth switching element Q6 and the seventh switching element Q7 are controlled to be turned off. In this state, power is charged from the first DC power supply E1 to the first inductor L1, and power is charged from the second DC power supply E2 to the second inductor L2.
 第4状態(不図示)では、制御回路13は、第2スイッチング素子Q2、第3スイッチング素子Q3、第6スイッチング素子Q6及び第7スイッチング素子Q7をオン状態、第1スイッチング素子Q1、第4スイッチング素子Q4、第5スイッチング素子Q5及び第8スイッチング素子Q8をオフ状態に制御する。この状態では第1直流電源E1の電力と、第1インダクタンスL1に蓄積された電力と、第2インダクタンスL2に蓄積された電力が第2直流電源E2に伝送される。 In a fourth state (not shown), the control circuit 13 turns on the second switching element Q2, the third switching element Q3, the sixth switching element Q6, and the seventh switching element Q7, and turns on the first switching element Q1 and the fourth switching element Q1. The element Q4, the fifth switching element Q5 and the eighth switching element Q8 are controlled to be turned off. In this state, the power of the first DC power supply E1, the power accumulated in the first inductor L1, and the power accumulated in the second inductor L2 are transmitted to the second DC power supply E2.
 当該比較例1に係る制御では、第1状態(図2(a)参照)と第3状態(不図示)で、第2直流電源E2の電力が第2インダクタンスL2に充電されている。その後の第2状態(図2(b)参照)と第4状態(不図示)で、第2インダクタンスL2に蓄積された電力が第2直流電源E2に放電されている。即ち、二次側において電力伝送に関係ない無効電流が流れている。この無効電流が流れることにより無駄な損失が発生している。 In the control according to Comparative Example 1, the power of the second DC power supply E2 is charged to the second inductor L2 in the first state (see FIG. 2(a)) and the third state (not shown). In the subsequent second state (see FIG. 2(b)) and fourth state (not shown), the power accumulated in the second inductor L2 is discharged to the second DC power source E2. That is, a reactive current irrelevant to power transmission flows on the secondary side. Wasteful loss occurs due to the flow of this reactive current.
 図2(c)は、図2(b)に示した第2状態において、第1直流電源E1の電圧が第2直流電源E2の電圧に対して大きく低下した場合の電流の流れを示している。第2直流電源E2の電圧が第1直流電源E1の電圧に対して高くなると、電流の向きが逆になり、第2直流電源E2から第1直流電源E1に電流が逆流する。この状態において、次の状態に遷移するために第1スイッチング素子Q1及び第4スイッチング素子Q4がターンオフされ、第2スイッチング素子Q2及び第3スイッチング素子Q3がターンオンされると、第2スイッチング素子Q2及び第3スイッチング素子Q3がハードスイッチングになり、また、第1スイッチング素子Q1の第1ダイオードD1及び第4スイッチング素子Q4の第4ダイオードD4はリカバリ動作となり、損失が増加する。 FIG. 2(c) shows the flow of current when the voltage of the first DC power supply E1 is significantly lower than the voltage of the second DC power supply E2 in the second state shown in FIG. 2(b). . When the voltage of the second DC power supply E2 becomes higher than the voltage of the first DC power supply E1, the direction of current is reversed, and the current flows back from the second DC power supply E2 to the first DC power supply E1. In this state, when the first switching element Q1 and the fourth switching element Q4 are turned off and the second switching element Q2 and the third switching element Q3 are turned on in order to transition to the next state, the second switching element Q2 and the third switching element Q3 are turned on. The third switching element Q3 goes into hard switching, and the first diode D1 of the first switching element Q1 and the fourth diode D4 of the fourth switching element Q4 go into recovery operation, increasing the loss.
(比較例2)
 図3(a)-(c)は、電力変換装置1の比較例2に係る動作状態を説明するための図である。図4(a)-(d)は、電力変換装置1の比較例2に係る第1スイッチング素子Q1-第8スイッチング素子Q8のスイッチングパターンを説明するための図である。比較例2では、位相シフト方式を採用している。第1スイッチング素子Q1-第6スイッチング素子Q6のデューティ比は50%で固定され、第7スイッチング素子Q7及び第8スイッチング素子Q8は全オフ状態を維持する。
(Comparative example 2)
FIGS. 3A to 3C are diagrams for explaining the operating state of the power converter 1 according to Comparative Example 2. FIG. FIGS. 4A to 4D are diagrams for explaining switching patterns of the first switching element Q1 to the eighth switching element Q8 according to Comparative Example 2 of the power converter 1. FIG. Comparative Example 2 employs a phase shift method. The duty ratio of the first switching element Q1 to the sixth switching element Q6 is fixed at 50%, and the seventh switching element Q7 and the eighth switching element Q8 are kept in the fully off state.
 図4(a)-(b)に示すように比較例2の降圧動作では、第1レグ(第1スイッチング素子Q1と第2スイッチング素子Q2)の位相が固定、第2レグ(第3スイッチング素子Q3と第4スイッチング素子Q4)の位相が可変とされ、第2レグの位相が制御されることにより、第1レグと第2レグの位相差θ1が制御される。第3レグ(第5スイッチング素子Q5と第6スイッチング素子Q6)は、第2レグに同期して制御される。制御回路13は、一次側から二次側へ伝送する電力を増加させる場合、位相差θ1が小さくなるように制御し(第2レグの位相を左にシフト)、一次側から二次側へ伝送する電力を減少させる場合、位相差θ1が大きくなるように制御する(第2レグの位相を右にシフト)。 As shown in FIGS. 4A and 4B, in the step-down operation of Comparative Example 2, the phase of the first leg (first switching element Q1 and second switching element Q2) is fixed, and the phase of the second leg (third switching element Q2) is fixed. By making the phase of Q3 and the fourth switching element Q4) variable and controlling the phase of the second leg, the phase difference θ1 between the first leg and the second leg is controlled. The third leg (the fifth switching element Q5 and the sixth switching element Q6) is controlled in synchronization with the second leg. When increasing the power transmitted from the primary side to the secondary side, the control circuit 13 controls the phase difference θ1 to decrease (shifts the phase of the second leg to the left), and transmits from the primary side to the secondary side. When decreasing the power to be applied, control is performed so that the phase difference θ1 increases (the phase of the second leg is shifted to the right).
 図4(c)-(d)に示すように比較例2の昇圧動作では、第1レグ及び第2レグの位相が固定、第3レグの位相が可変とされ、第3レグの位相が制御されることにより、第1レグ及び第2レグと、第3レグとの位相差θ2が制御される。制御回路13は、一次側から二次側へ伝送する電力を増加させる場合、位相差θ2が大きくなるように制御し(第3レグの位相を右にシフト)、一次側から二次側へ伝送する電力を減少させる場合、位相差θ2が小さくなるように制御する(第3レグの位相を左にシフト)。 As shown in FIGS. 4(c)-(d), in the boosting operation of Comparative Example 2, the phases of the first leg and the second leg are fixed, the phase of the third leg is variable, and the phase of the third leg is controlled. By doing so, the phase difference θ2 between the first and second legs and the third leg is controlled. When increasing the power transmitted from the primary side to the secondary side, the control circuit 13 controls the phase difference θ2 to increase (shifts the phase of the third leg to the right), and transmits from the primary side to the secondary side. When decreasing the power to be supplied, control is performed so that the phase difference θ2 becomes smaller (the phase of the third leg is shifted to the left).
 図3(a)は、第1直流電源E1から第2直流電源E2へ電力が伝送される状態を示している(以下、伝送状態という)。なお、伝送状態では二次側の第2ブリッジ回路12は整流状態であればよく、第3レグを構成する第5スイッチング素子Q5及び第6スイッチング素子Q6の両方がオフ状態に制御されてもよい。 FIG. 3(a) shows a state in which power is transmitted from the first DC power source E1 to the second DC power source E2 (hereinafter referred to as a transmission state). In the transmission state, the second bridge circuit 12 on the secondary side only needs to be in the rectifying state, and both the fifth switching element Q5 and the sixth switching element Q6 constituting the third leg may be controlled to be in the OFF state. .
 図3(b)は、第1インダクタンスL1及び第2インダクタンスL2から第2直流電源E2へ電力が伝送される状態を示している(以下、転流状態という)。図3(c)は、第1直流電源E1から第1インダクタンスL1及び第2インダクタンスL2に電力が蓄積される状態を示している(以下、蓄積状態という)。 FIG. 3(b) shows a state in which power is transmitted from the first inductor L1 and the second inductor L2 to the second DC power supply E2 (hereinafter referred to as a commutation state). FIG. 3(c) shows a state in which electric power is accumulated in the first inductor L1 and the second inductor L2 from the first DC power source E1 (hereinafter referred to as an accumulation state).
 降圧動作では伝送状態と転流状態の比率で、伝送される電力の電圧または電流が制御される。転流状態の比率が高いほど、伝送される電力の電圧または電流が低く制御される。昇圧動作では伝送状態と蓄積状態の比率で、伝送される電力の電圧または電流が制御される。蓄積状態の比率が高いほど、伝送される電力の電圧または電流が高く制御される。 In step-down operation, the voltage or current of the power to be transmitted is controlled by the ratio between the transmission state and the commutation state. The higher the ratio of commutation states, the lower the voltage or current of the power to be transmitted is controlled. In step-up operation, the voltage or current of the power to be transmitted is controlled by the ratio between the transmission state and the storage state. The higher the stored state ratio, the higher the voltage or current of the power to be transmitted is controlled.
 比較例2では、第7スイッチング素子Q7及び第8スイッチング素子Q8は全オフ状態を維持するため第2直流電源E2から、第2インダクタンスL2、第1インダクタンスL1及び第1直流電源E1に電流が逆流することはない。即ち、比較例1に示したような第2直流電源E2から電流が逆流することによる無効電流が発生しない。また、第2直流電源E2の電圧が第1直流電源E1の電圧に対して高くなっても、第2直流電源E2から第1直流電源E1に電流が逆流することはない。したがって、第1ダイオードD1及び第4ダイオードD4によるリカバリ損失、及び第2スイッチング素子Q2及び第3スイッチング素子Q3のハードスイッチングを抑制できる。 In Comparative Example 2, since the seventh switching element Q7 and the eighth switching element Q8 are kept completely off, current flows backward from the second DC power supply E2 to the second inductor L2, the first inductor L1, and the first DC power supply E1. never do. That is, there is no reactive current due to reverse current flow from the second DC power supply E2 as shown in the first comparative example. Further, even if the voltage of the second DC power supply E2 becomes higher than the voltage of the first DC power supply E1, current does not flow back from the second DC power supply E2 to the first DC power supply E1. Therefore, recovery loss by the first diode D1 and the fourth diode D4 and hard switching of the second switching element Q2 and the third switching element Q3 can be suppressed.
 しかしながら、図4(b)に示す降圧動作の最大電力時スイッチングパターンから、図4(c)に示す昇圧動作の最小電力時スイッチパターンに遷移する際、第3レグのデッドタイムTdを挿入する必要がある。即ち、降圧動作から昇圧動作に遷移するには伝送状態から蓄積状態に遷移させる必要があり、その遷移の間にデッドタイムTdを挿入する必要がある。このデッドタイムTdは、制御操作量の変化(スイッチング波形の変化)に対して、伝送される電力が変化しない期間(不感期間)となる。即ち、制御回路13が伝送する電力を増加させるように制御しているが、実際には電力が増加しない期間となる。この不感期間により、出力電流に歪みが発生しやすくなる。以下、本実施例では、第2直流電源E2からの逆流も発生せず、不感期間も発生しないDABコンバータの制御方法を提案する。なお、不感期間はPWM方式でも発生する。 However, it is necessary to insert dead time Td of the third leg when transitioning from the switching pattern at maximum power for step-down operation shown in FIG. 4(b) to the switch pattern at minimum power for boost operation shown in FIG. 4(c). There is That is, in order to make a transition from a step-down operation to a step-up operation, it is necessary to make a transition from a transmission state to an accumulation state, and it is necessary to insert a dead time Td during this transition. The dead time Td is a period (dead period) during which the transmitted power does not change with respect to changes in the control operation amount (changes in the switching waveform). That is, although the control circuit 13 controls to increase the power to be transmitted, it is a period in which the power does not actually increase. This dead period tends to cause distortion in the output current. In the following, this embodiment proposes a DAB converter control method that does not generate a reverse current from the second DC power supply E2 and does not generate a dead period. Note that the dead period also occurs in the PWM method.
(実施例)
 図5(a)-(d)は、電力変換装置1の実施例に係る動作状態を説明するための図である。図6(a)-(c)は、電力変換装置1の実施例に係る第1スイッチング素子Q1-第8スイッチング素子Q8のスイッチングパターンを説明するための図である。本実施例はPWM方式を採用しており、制御回路13は、第1スイッチング素子Q1-第8スイッチング素子Q8の各スイッチング素子のオン/オフ時間を制御することで、第1直流部から第2直流部へ伝送する電力の電圧または電流を制御する。
(Example)
FIGS. 5(a) to 5(d) are diagrams for explaining operating states according to the embodiment of the power conversion device 1. FIG. 6A to 6C are diagrams for explaining switching patterns of the first switching element Q1 to the eighth switching element Q8 according to the embodiment of the power converter 1. FIG. This embodiment employs the PWM method, and the control circuit 13 controls the ON/OFF time of each switching element Q1 to the eighth switching element Q8, so that the first DC section changes to the second switching element. Controls the voltage or current of the power transmitted to the DC section.
 本実施例でも伝送状態、転流状態、蓄積状態を切り替えることにより、伝送される電力の電圧または電流を制御する。伝送状態は、第1ブリッジ回路11が第1直流部と絶縁トランスTR1の一次巻線n1を導通させ、第2ブリッジ回路12が絶縁トランスTR1の二次巻線n2を第2直流部と導通させた状態である。 Also in this embodiment, the voltage or current of the power to be transmitted is controlled by switching the transmission state, commutation state, and accumulation state. In the transmission state, the first bridge circuit 11 conducts the first DC section and the primary winding n1 of the isolation transformer TR1, and the second bridge circuit 12 conducts the secondary winding n2 of the isolation transformer TR1 to the second DC section. state.
 伝送状態は、第1パターンと第2パターンを含む。第1パターンは、第1スイッチング素子Q1と第4スイッチング素子Q4がオン状態で、第2スイッチング素子Q2と第3スイッチング素子Q3がオフ状態で、第2ブリッジ回路12が整流状態であるパターンである(図5(a)-(b)参照)。図5(a)に示す伝送状態aは二次側をダイオード整流させた例であり、図5(b)に示す伝送状態bは二次側を同期整流させた例である。第2パターンは、第2スイッチング素子Q2と第3スイッチング素子Q3がオン状態で、第1スイッチング素子Q1と第4スイッチング素子Q4がオフ状態で、第2ブリッジ回路12が整流状態であるパターンである。 The transmission state includes the first pattern and the second pattern. The first pattern is a pattern in which the first switching element Q1 and the fourth switching element Q4 are in an ON state, the second switching element Q2 and the third switching element Q3 are in an OFF state, and the second bridge circuit 12 is in a rectifying state. (See FIGS. 5(a)-(b)). The transmission state a shown in FIG. 5A is an example of diode rectification on the secondary side, and the transmission state b shown in FIG. 5B is an example of synchronous rectification on the secondary side. The second pattern is a pattern in which the second switching element Q2 and the third switching element Q3 are on, the first switching element Q1 and the fourth switching element Q4 are off, and the second bridge circuit 12 is in the rectifying state. .
 転流状態は、絶縁トランスTR1の一次巻線n1の両端が第1ブリッジ回路12内で短絡し、第2ブリッジ回路12が絶縁トランスTR1の二次巻線n2を第2直流部と導通させた状態である。転流状態は、第3パターンと第4パターンを含む。第3パターンは、第1スイッチング素子Q1または第4スイッチング素子Q4がオン状態で、第4スイッチング素子Q4または第1スイッチング素子Q1、及び第2スイッチング素子Q2と第3スイッチング素子Q3がオフ状態で、第2ブリッジ回路12が整流状態であるパターンである(図5(c)参照)。第4パターンは、第2スイッチング素子Q2または第3スイッチング素子Q3がオン状態で、第3スイッチング素子Q3または第2スイッチング素子Q2、及び第1スイッチング素子Q1と第4スイッチング素子Q4がオフ状態で、第2ブリッジ回路12が整流状態であるパターンである。 In the commutation state, both ends of the primary winding n1 of the isolation transformer TR1 are short-circuited within the first bridge circuit 12, and the second bridge circuit 12 electrically connects the secondary winding n2 of the isolation transformer TR1 to the second DC section. state. The commutation state includes a third pattern and a fourth pattern. In the third pattern, the first switching element Q1 or the fourth switching element Q4 is in the ON state, the fourth switching element Q4 or the first switching element Q1, and the second switching element Q2 and the third switching element Q3 are in the OFF state, This is a pattern in which the second bridge circuit 12 is in a rectifying state (see FIG. 5(c)). In the fourth pattern, the second switching element Q2 or the third switching element Q3 is in the ON state, the third switching element Q3 or the second switching element Q2, and the first switching element Q1 and the fourth switching element Q4 are in the OFF state, This is a pattern in which the second bridge circuit 12 is in a rectifying state.
 蓄積状態は、第1ブリッジ回路11が第1直流部と絶縁トランスTR1の一次巻線n1を導通させ、絶縁トランスTR1の二次巻線n2の両端が第2ブリッジ回路12内で短絡した状態である。蓄積状態は、第5パターンと第6パターンを含む。第5パターンは、第1スイッチング素子Q1と第4スイッチング素子Q4、及び第6スイッチング素子Q6または第7スイッチング素子Q7がオン状態で、残りのスイッチング素子がオフ状態であるパターンである。第6パターンは、第2スイッチング素子Q2と第3スイッチング素子Q3、及び第5スイッチング素子Q5または第8スイッチング素子Q8がオン状態で、残りのスイッチング素子がオフ状態であるパターンである。 In the accumulation state, the first bridge circuit 11 conducts the first DC part and the primary winding n1 of the isolation transformer TR1, and both ends of the secondary winding n2 of the isolation transformer TR1 are short-circuited in the second bridge circuit 12. be. The accumulation state includes a fifth pattern and a sixth pattern. A fifth pattern is a pattern in which the first switching element Q1, the fourth switching element Q4, and the sixth switching element Q6 or the seventh switching element Q7 are in the ON state, and the remaining switching elements are in the OFF state. A sixth pattern is a pattern in which the second switching element Q2, the third switching element Q3, and the fifth switching element Q5 or the eighth switching element Q8 are in the ON state, and the remaining switching elements are in the OFF state.
 制御回路13は、第1パターンの期間と第2パターンの期間を同期させる。即ち、第1パターンの期間と第2パターンの期間を実質的に同じ時間に制御する。また制御回路13は、第3パターンの期間と第4パターンの期間を同期させる。即ち、第3パターンの期間と第4パターンの期間を実質的に同じ時間に制御する。また制御回路13は、第5パターンの期間と第6パターンの期間を同期させる。即ち、第5パターンの期間と第6パターンの期間を実質的に同じ時間に制御する。これらの制御により、正負対称な動作となり、絶縁トランスTR1に直流偏磁が発生することを抑制することができる。 The control circuit 13 synchronizes the period of the first pattern and the period of the second pattern. That is, the period of the first pattern and the period of the second pattern are controlled to be substantially the same. Further, the control circuit 13 synchronizes the period of the third pattern and the period of the fourth pattern. That is, the period of the third pattern and the period of the fourth pattern are controlled to be substantially the same time. Further, the control circuit 13 synchronizes the period of the fifth pattern and the period of the sixth pattern. That is, the period of the fifth pattern and the period of the sixth pattern are controlled to be substantially the same time. By these controls, positive and negative symmetrical operation can be achieved, and the occurrence of DC bias magnetism in the insulating transformer TR1 can be suppressed.
 図6(a)は、第1の動作モードのスイッチングパターンを示す。第1の動作モードは降圧時の動作モードである。第1の動作モードでは、第1レグと第2レグの一方のレグのデューティ比を100%(時比率=1)に固定し、他方のレグのデューティ比を可変とする。本実施例では、デューティ比=100%(時比率=1)を、(半周期(Tsw/2)-デッドタイムTd)とする。図6(a)に示す例では第2レグのデューティ比を100%に固定し、第1レグのデューティ比を可変としている。第1レグのデューティ比が大きくなる(オン時間が長くなる)ほど、転流期間より伝送期間が長くなり、伝送される電力が増加する。このように降圧動作では、一次側のPWM制御で、伝送される電力の電圧または電流が制御される。 FIG. 6(a) shows the switching pattern in the first operation mode. The first operation mode is an operation mode during step-down. In the first operation mode, the duty ratio of one of the first leg and the second leg is fixed at 100% (duty ratio=1), and the duty ratio of the other leg is variable. In this embodiment, duty ratio=100% (duty ratio=1) is defined as (half cycle (Tsw/2)−dead time Td). In the example shown in FIG. 6A, the duty ratio of the second leg is fixed at 100% and the duty ratio of the first leg is variable. The higher the duty ratio of the first leg (the longer the ON time), the longer the transmission period than the commutation period, and the more power is transmitted. Thus, in step-down operation, the voltage or current of power to be transmitted is controlled by PWM control on the primary side.
 第1の動作モードにおいて、制御回路13は、第1スイッチング素子Q1のターンオンに同期して、第4スイッチング素子Q4をターンオンさせる。次に制御回路13は、第1スイッチング素子Q1のターンオフに同期して、第8スイッチング素子Q8をターンオンさせる。なお、第2レグのデューティ比を可変とする場合、第1スイッチング素子Q1ではなく第4スイッチング素子Q4をターンオフさせる。 In the first operation mode, the control circuit 13 turns on the fourth switching element Q4 in synchronization with turning on the first switching element Q1. Next, the control circuit 13 turns on the eighth switching element Q8 in synchronization with the turning off of the first switching element Q1. When the duty ratio of the second leg is variable, the fourth switching element Q4 is turned off instead of the first switching element Q1.
 第8スイッチング素子Q8をターンオンさせることにより同期整流させている。同期整流はダイオード整流より損失が少ないため、第8スイッチング素子Q8がオフ状態で第8ダイオードD8を電流が通過する場合と比較して、二次側の損失が低減される。また、第5スイッチング素子Q5がオフ状態で第5ダイオードD5を電流が通過することにより、二次側に流れる電流の向きが反転することを防止することができる。なお、第8スイッチング素子Q8の代わりに第5スイッチング素子Q5をターンオンさせてもよい。なお、同期整流させない場合は、第8スイッチング素子Q8及び第5スイッチング素子Q5をターンオンさせる必要はない。 Synchronous rectification is performed by turning on the eighth switching element Q8. Since synchronous rectification has less loss than diode rectification, loss on the secondary side is reduced compared to the case where current passes through the eighth diode D8 while the eighth switching element Q8 is in the OFF state. In addition, when the fifth switching element Q5 is in the OFF state, current passes through the fifth diode D5, thereby preventing the direction of the current flowing to the secondary side from reversing. Note that the fifth switching element Q5 may be turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
 次に制御回路13は、第4スイッチング素子Q4のターンオフに同期して、第8スイッチング素子Q8をターンオフさせる。 Next, the control circuit 13 turns off the eighth switching element Q8 in synchronization with turning off the fourth switching element Q4.
 デッドタイムTdを挟み、制御回路13は、第2スイッチング素子Q2のターンオンに同期して、第3スイッチング素子Q3をターンオンさせる。次に制御回路13は、第2スイッチング素子Q2のターンオフに同期して、第7スイッチング素子Q7をターンオンさせる。なお、第2レグのデューティ比を可変とする場合、第2スイッチング素子Q2ではなく第3スイッチング素子Q3をターンオフさせる。 With the dead time Td in between, the control circuit 13 turns on the third switching element Q3 in synchronization with the turn-on of the second switching element Q2. Next, the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the second switching element Q2. When the duty ratio of the second leg is made variable, the third switching element Q3 is turned off instead of the second switching element Q2.
 第7スイッチング素子Q7をターンオンさせることにより同期整流させている。なお、第7スイッチング素子Q7の代わりに第6スイッチング素子Q6をターンオンさせてもよい。なお、同期整流させない場合は、第7スイッチング素子Q7及び第6スイッチング素子Q6をターンオンさせる必要はない。 Synchronous rectification is performed by turning on the seventh switching element Q7. The sixth switching element Q6 may be turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
 次に制御回路13は、第3スイッチング素子Q3のターンオフに同期して、第7スイッチング素子Q7をターンオフさせる。以上により一サイクルが終了する。 Next, the control circuit 13 turns off the seventh switching element Q7 in synchronization with turning off the third switching element Q3. One cycle is completed by the above.
 図6(b)は、第2の動作モードのスイッチングパターンを示す。第2の動作モードは昇圧時の動作モードである。第2の動作モードでは、第1レグと第2レグの両方のデューティ比を100%に固定し、第3レグと第4レグの一方のレグのデューティ比を可変とし、他方のレグを一方のレグと相補動作させるか全オフ状態とする。図6(b)に示す例では第3レグのデューティ比で伝送される電力を制御しており、第3レグのデューティ比が大きくなる(オン時間が長くなる)ほど、伝送期間より蓄積期間が長くなり、伝送される電力が増加する。このように昇圧動作では、二次側のPWM制御で、伝送される電力の電圧または電流が制御される。 FIG. 6(b) shows the switching pattern of the second operation mode. The second operation mode is an operation mode during boosting. In the second operation mode, the duty ratios of both the first leg and the second leg are fixed at 100%, the duty ratio of one of the third leg and the fourth leg is variable, and the other leg Complementary operation with leg or all off state. In the example shown in FIG. 6B, the power transmitted is controlled by the duty ratio of the third leg. longer, increasing the power transmitted. In this way, in the step-up operation, the voltage or current of the power to be transmitted is controlled by PWM control on the secondary side.
 第2の動作モードにおいて、制御回路13は、第1スイッチング素子Q1のターンオンに同期して、第4スイッチング素子Q4と第6スイッチング素子Q6をターンオンさせる。なお、第6スイッチング素子Q6の代わりに第7スイッチング素子Q7をターンオンさせてもよい。 In the second operation mode, the control circuit 13 turns on the fourth switching element Q4 and the sixth switching element Q6 in synchronization with turning on the first switching element Q1. Note that the seventh switching element Q7 may be turned on instead of the sixth switching element Q6.
 次に制御回路13は、第6スイッチング素子Q6のターンオフに同期して、第8スイッチング素子Q8をターンオンさせる。なお、第6スイッチング素子Q6の代わりに第7スイッチング素子Q7がターンオフされる場合は、第8スイッチング素子Q8の代わりに第5スイッチング素子Q5をターンオンさせる。なお、同期整流させない場合は、第8スイッチング素子Q8及び第5スイッチング素子Q5をターンオンさせる必要はない。 Next, the control circuit 13 turns on the eighth switching element Q8 in synchronization with turning off the sixth switching element Q6. When the seventh switching element Q7 is turned off instead of the sixth switching element Q6, the fifth switching element Q5 is turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
 次に制御回路13は、第1スイッチング素子Q1のターンオフに同期して、第4スイッチング素子Q4と第8スイッチング素子Q8をターンオフさせる。デッドタイムTdを挟み、制御回路13は、第2スイッチング素子Q2のターンオンに同期して、第3スイッチング素子Q3と第5スイッチング素子Q5をターンオンさせる。なお、第5スイッチング素子Q5の代わりに第8スイッチング素子Q8をターンオンさせてもよい。 Next, the control circuit 13 turns off the fourth switching element Q4 and the eighth switching element Q8 in synchronization with the turning off of the first switching element Q1. After the dead time Td, the control circuit 13 turns on the third switching element Q3 and the fifth switching element Q5 in synchronization with the turning on of the second switching element Q2. The eighth switching element Q8 may be turned on instead of the fifth switching element Q5.
 次に制御回路13は、第5スイッチング素子Q5のターンオフに同期して、第7スイッチング素子Q7をターンオンさせる。なお、第5スイッチング素子Q5の代わりに第8スイッチング素子Q8がターンオフされる場合は、第7スイッチング素子Q7の代わりに第6スイッチング素子Q6をターンオンさせる。なお、同期整流させない場合は、第7スイッチング素子Q7及び第6スイッチング素子Q6をターンオンさせる必要はない。 Next, the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the fifth switching element Q5. When the eighth switching element Q8 is turned off instead of the fifth switching element Q5, the sixth switching element Q6 is turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
 次に制御回路13は、第2スイッチング素子Q2のターンオフに同期して、第3スイッチング素子Q3と第7スイッチング素子Q7をターンオフさせる。以上により一サイクルが終了する。 Next, the control circuit 13 turns off the third switching element Q3 and the seventh switching element Q7 in synchronization with turning off the second switching element Q2. One cycle is completed by the above.
 図6(c)は、第3の動作モードのスイッチングパターンを示す。第3の動作モードは降圧動作から昇圧動作に切り替わる時の動作モードである。第3の動作モードは、降圧動作モードにおいて、第1レグのデューティ比が、デッドタイムに相当する時比率を100%から減算した閾値αに到達した際に発動される。閾値αは任意の値に適宜設定できる。第3の動作モードでは、第1の動作モードの一次側のPWM制御による電力制御と、第2の動作モードの二次側のPWM制御による電力制御が併存する。 FIG. 6(c) shows the switching pattern of the third operation mode. A third operation mode is an operation mode when the step-down operation is switched to the step-up operation. The third operation mode is activated when the duty ratio of the first leg reaches a threshold α obtained by subtracting the duty ratio corresponding to the dead time from 100% in the step-down operation mode. The threshold α can be appropriately set to any value. In the third operation mode, power control by PWM control on the primary side in the first operation mode and power control by PWM control on the secondary side in the second operation mode coexist.
 第3の動作モードにおいて、制御回路13は、第1スイッチング素子Q1のターンオンに同期して、第4スイッチング素子Q4と第6スイッチング素子Q6をターンオンさせる。なお、第6スイッチング素子Q6の代わりに第7スイッチング素子Q7をターンオンさせてもよい。 In the third operation mode, the control circuit 13 turns on the fourth switching element Q4 and the sixth switching element Q6 in synchronization with turning on the first switching element Q1. Note that the seventh switching element Q7 may be turned on instead of the sixth switching element Q6.
 次に制御回路13は、第6スイッチング素子Q6のターンオフに同期して、第8スイッチング素子Q8をターンオンさせる。なお、第6スイッチング素子Q6の代わりに第7スイッチング素子Q7がターンオフされる場合は、第8スイッチング素子Q8の代わりに第5スイッチング素子Q5をターンオンさせる。なお、同期整流させない場合は、第8スイッチング素子Q8及び第5スイッチング素子Q5をターンオンさせる必要はない。 Next, the control circuit 13 turns on the eighth switching element Q8 in synchronization with turning off the sixth switching element Q6. When the seventh switching element Q7 is turned off instead of the sixth switching element Q6, the fifth switching element Q5 is turned on instead of the eighth switching element Q8. If synchronous rectification is not used, it is not necessary to turn on the eighth switching element Q8 and the fifth switching element Q5.
 次に制御回路13は、第1スイッチング素子Q1をターンオフさせる。なお、第2レグのデューティ比を可変とする場合、第1スイッチング素子Q1ではなく第4スイッチング素子Q4をターンオフさせる。 Next, the control circuit 13 turns off the first switching element Q1. When the duty ratio of the second leg is variable, the fourth switching element Q4 is turned off instead of the first switching element Q1.
 次に制御回路13は、第4スイッチング素子Q4のターンオフに同期して、第8スイッチング素子Q8をターンオフさせる。なお、第2レグのデューティ比を可変とする場合、第4スイッチング素子Q4ではなく第1スイッチング素子Q1をターンオフさせる。 Next, the control circuit 13 turns off the eighth switching element Q8 in synchronization with turning off the fourth switching element Q4. When the duty ratio of the second leg is variable, the first switching element Q1 is turned off instead of the fourth switching element Q4.
 デッドタイムTdを挟み、制御回路13は、第2スイッチング素子Q2のターンオンに同期して、第3スイッチング素子Q3と第5スイッチング素子Q5をターンオンさせる。なお、第5スイッチング素子Q5の代わりに第8スイッチング素子Q8をターンオンさせてもよい。 With the dead time Td in between, the control circuit 13 turns on the third switching element Q3 and the fifth switching element Q5 in synchronization with the turning on of the second switching element Q2. The eighth switching element Q8 may be turned on instead of the fifth switching element Q5.
 次に制御回路13は、第5スイッチング素子Q5のターンオフに同期して、第7スイッチング素子Q7をターンオンさせる。なお、第5スイッチング素子Q5の代わりに第8スイッチング素子Q8がターンオフされる場合は、第7スイッチング素子Q7の代わりに第6スイッチング素子Q6をターンオンさせる。なお、同期整流させない場合は、第7スイッチング素子Q7及び第6スイッチング素子Q6をターンオンさせる必要はない。 Next, the control circuit 13 turns on the seventh switching element Q7 in synchronization with turning off the fifth switching element Q5. When the eighth switching element Q8 is turned off instead of the fifth switching element Q5, the sixth switching element Q6 is turned on instead of the seventh switching element Q7. If synchronous rectification is not used, it is not necessary to turn on the seventh switching element Q7 and the sixth switching element Q6.
 次に制御回路13は、第2スイッチング素子Q2をターンオフさせる。なお、第2レグのデューティ比を可変とする場合、第2スイッチング素子Q2ではなく第3スイッチング素子Q3をターンオフさせる。 Next, the control circuit 13 turns off the second switching element Q2. When the duty ratio of the second leg is made variable, the third switching element Q3 is turned off instead of the second switching element Q2.
 次に制御回路13は、第3スイッチング素子Q3のターンオフに同期して、第7スイッチング素子Q7をターンオフさせる。なお、第2レグのデューティ比を可変とする場合、第3スイッチング素子Q3ではなく第2スイッチング素子Q2をターンオフさせる。以上により一サイクルが終了する。 Next, the control circuit 13 turns off the seventh switching element Q7 in synchronization with turning off the third switching element Q3. When the duty ratio of the second leg is variable, the second switching element Q2 is turned off instead of the third switching element Q3. One cycle is completed by the above.
 図7は、実施例に係る第1の動作モード、第2の動作モード、第3の動作モードの切り替えを説明するための図である。本実施例では、第1の動作モード(降圧)と第2の動作モード(昇圧)の間に第3の動作モードが介在する。 FIG. 7 is a diagram for explaining switching among the first operation mode, the second operation mode, and the third operation mode according to the embodiment. In this embodiment, a third operation mode is interposed between the first operation mode (step down) and the second operation mode (step up).
 制御回路13は、制御対象の電圧または電流の目標値と、実際の検出値との偏差をもとに制御操作量を算出する。例えば、偏差をPI補償して制御操作量を算出する。制御回路13は、算出した制御操作量をもとに動作モードを切り替える。 The control circuit 13 calculates the control operation amount based on the deviation between the target value of the voltage or current to be controlled and the actual detected value. For example, the deviation is PI-compensated to calculate the control operation amount. The control circuit 13 switches the operation mode based on the calculated control operation amount.
 第1の動作モードでは、制御回路13は、第1レグをPWM制御し、第2レグをデューティ比100%に固定し、第3レグを全オフ状態とし、第4レグを第1レグと相補動作させる。なお、同期整流させない場合は、第4レグも全オフ状態とする。 In the first operation mode, the control circuit 13 PWM-controls the first leg, fixes the second leg to a duty ratio of 100%, sets the third leg to a fully off state, and sets the fourth leg to a complementary state to the first leg. make it work. When synchronous rectification is not performed, the fourth leg is also turned off.
 第2の動作モードでは、制御回路13は、第1レグ及び第2レグをデューティ比100%に固定し、第3レグをPWM制御し、第4レグを第3レグと相補動作させる。なお、同期整流させない場合は、第4レグを全オフ状態とする。 In the second operation mode, the control circuit 13 fixes the duty ratio of the first leg and the second leg to 100%, PWM-controls the third leg, and causes the fourth leg to operate complementary to the third leg. Note that when synchronous rectification is not to be performed, the fourth leg is completely off.
 第3の動作モードでは、制御回路13は、第1レグをPWM制御し、第2レグをデューティ比100%に固定し、第3レグをPWM制御し、第4レグを第3レグと相補動作させる。なお、同期整流させない場合は、第4レグを全オフ状態とする。 In the third operation mode, the control circuit 13 PWM-controls the first leg, fixes the duty ratio of the second leg to 100%, PWM-controls the third leg, and operates the fourth leg and the third leg in complementary operation. Let Note that when synchronous rectification is not to be performed, the fourth leg is completely off.
 制御回路13は、第1の動作モードから第3の動作モードへ、第1レグのデューティ比が、デッドタイムに相当する時比率を100%から減算した閾値αまで上昇したタイミングで切り替える。制御回路13は、第3レグのデューティ比が、デッドタイムに相当する時比率を0%に加算した閾値βまで上昇したタイミングまで、第1レグのPWM制御を継続する。閾値βは任意の値に適宜設定できる。 The control circuit 13 switches from the first operation mode to the third operation mode at the timing when the duty ratio of the first leg rises to the threshold α obtained by subtracting the duty ratio corresponding to the dead time from 100%. The control circuit 13 continues the PWM control of the first leg until the duty ratio of the third leg rises to the threshold value β obtained by adding the duty ratio corresponding to the dead time to 0%. The threshold β can be appropriately set to any value.
 制御回路13は、第2の動作モードから第3の動作モードへ、第3レグのデューティ比が閾値βまで低下したタイミングで切り替える。制御回路13は、第1レグのデューティ比が閾値βまで低下したタイミングまで、第3レグのPWM制御を継続する。 The control circuit 13 switches from the second operation mode to the third operation mode at the timing when the duty ratio of the third leg has decreased to the threshold value β. The control circuit 13 continues the PWM control of the third leg until the duty ratio of the first leg drops to the threshold value β.
 このように制御回路13は、第1の動作モードにおいて、第1レグのデューティ比を制御することで、第1直流部から第2直流部へ伝送する電力の電圧または電流を制御する。また制御回路13は、第2の動作モードにおいて、第3レグのデューティ比を制御することで、第1直流部から第2直流部へ伝送する電力の電圧または電流を制御する。また制御回路13は、第3の動作モードにおいて、第1レグのデューティ比と第3レグのデューティ比を制御することで、第1直流部から第2直流部へ伝送する電力の電圧または電流を制御する。制御回路13は、第1の動作モードにおいて、第1レグのデューティ比が1に到達する前に、第3の動作モードに遷移させる。また制御回路13は、第2の動作モードにおいて、第3レグのデューティ比が0に到達する前に、第3の動作モードに遷移させる。 Thus, in the first operation mode, the control circuit 13 controls the voltage or current of power transmitted from the first DC section to the second DC section by controlling the duty ratio of the first leg. Further, in the second operation mode, the control circuit 13 controls the voltage or current of power transmitted from the first DC section to the second DC section by controlling the duty ratio of the third leg. Further, in the third operation mode, the control circuit 13 controls the duty ratio of the first leg and the duty ratio of the third leg to control the voltage or current of the power transmitted from the first DC section to the second DC section. Control. The control circuit 13 makes the transition to the third operation mode before the duty ratio of the first leg reaches 1 in the first operation mode. In addition, the control circuit 13 makes the transition to the third operation mode before the duty ratio of the third leg reaches zero in the second operation mode.
 図8(a)-(c)は、電力変換装置1の実施例に係る第1スイッチング素子Q1-第8スイッチング素子Q8の逆方向伝送時のスイッチングパターンを説明するための図である。図6(a)-(c)に示した第1スイッチング素子Q1-第8スイッチング素子Q8のスイッチングパターンでは、第1直流部から第2直流部へ電力を伝送する例を説明した。この点、第2直流部から第1直流部へ電力を伝送することも可能である。この場合、図8(a)-(c)に示すように、制御回路13は、第1スイッチング素子Q1-第4スイッチング素子Q4に供給する駆動信号と、第5スイッチング素子Q5-第8スイッチング素子Q8に供給する駆動信号を入れ替えればよい。 FIGS. 8(a)-(c) are diagrams for explaining switching patterns during reverse transmission of the first switching element Q1 to the eighth switching element Q8 according to the embodiment of the power converter 1. FIG. In the switching patterns of the first switching element Q1 to the eighth switching element Q8 shown in FIGS. 6(a) to 6(c), an example of transmitting power from the first DC section to the second DC section has been described. In this regard, it is also possible to transmit power from the second DC section to the first DC section. In this case, as shown in FIGS. 8A to 8C, the control circuit 13 supplies the drive signal to the first switching element Q1 to the fourth switching element Q4, the fifth switching element Q5 to the eighth switching element It suffices to replace the drive signal supplied to Q8.
 以上説明したように本実施例によれば、第3の動作モードを設けることにより、降圧動作と昇圧動作との間を滑らかに切り替えることができる。比較例2のように降圧動作と昇圧動作の間に不感期間が発生せず、出力電流の歪みの発生を抑制することができる。 As described above, according to this embodiment, by providing the third operation mode, it is possible to smoothly switch between the step-down operation and the step-up operation. Unlike Comparative Example 2, a dead period does not occur between the step-down operation and the step-up operation, and distortion of the output current can be suppressed.
 また、第2直流電源E2から、第2インダクタンスL2、第1インダクタンスL1及び第1直流電源E1に電流が逆流する期間が発生せず、第2直流電源E2から電流が逆流することによる無効電流が発生しない。また、第2直流電源E2の電圧が第1直流電源E1の電圧に対して高くなっても、第2直流電源E2から第1直流電源E1に電流が逆流することはない。したがって、第1ダイオードD1及び第4ダイオードD4によるリカバリ損失、及び第2スイッチング素子Q2及び第3スイッチング素子Q3のハードスイッチングを抑制できる。 In addition, there is no period in which the current flows backward from the second DC power supply E2 to the second inductor L2, the first inductor L1, and the first DC power supply E1, and there is no reactive current due to the current flowing backward from the second DC power supply E2. does not occur. Further, even if the voltage of the second DC power supply E2 becomes higher than the voltage of the first DC power supply E1, current does not flow back from the second DC power supply E2 to the first DC power supply E1. Therefore, recovery loss by the first diode D1 and the fourth diode D4 and hard switching of the second switching element Q2 and the third switching element Q3 can be suppressed.
 また本実施例によれば、位相シフト方式ではなくPWM方式で制御しているため、第1スイッチング素子Q1-第8スイッチング素子Q8の全オフ状態のデッドタイムを容易に生成することができる。これにより、ダイオードのリカバリ損失の発生を抑制することができる。このように本実施例によれば、降圧動作と昇圧動作との間を滑らかに切り替えることができ、かつ高効率化を図ることができる。 Also, according to this embodiment, since the control is performed by the PWM method instead of the phase shift method, it is possible to easily generate the dead time when all of the first switching element Q1 to the eighth switching element Q8 are off. As a result, it is possible to suppress the occurrence of diode recovery loss. As described above, according to this embodiment, it is possible to smoothly switch between the step-down operation and the step-up operation, and to achieve high efficiency.
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the embodiment. It is to be understood by those skilled in the art that the embodiment is an example, and that various modifications are possible in the combination of each component and each treatment process, and such modifications are also within the scope of the present disclosure. .
 上記実施例では、一次側も二次側もPWM制御方式で電力制御する例を説明した。以下の変形例では、一次側を位相シフト方式で、二次側をPWM方式で電力制御する例を説明する。 In the above embodiment, an example was explained in which power is controlled by the PWM control method on both the primary side and the secondary side. In the following modified example, an example will be described in which power control is performed on the primary side by the phase shift method and on the secondary side by the PWM method.
 図9(a)-(c)は、電力変換装置1の変形例に係る第1スイッチング素子Q1-第8スイッチング素子Q8のスイッチングパターンを説明するための図である。図9(a)は、変形例に係る第1の動作モードのスイッチングパターンを示す。第1の動作モードは降圧時の動作モードである。第1の動作モードでは、第1レグと第2レグの一方の位相を固定し、他方のレグの位相をシフトさせる。図9(a)に示す例では第2レグの位相を固定し、第1レグの位相をシフトさせている。第1レグと第2レグの位相差が小さくなるほど、転流期間より伝送期間が長くなり、伝送される電力が増加する。なお、図9(a)に示す転流期間には、第2ダイオードD2が導通してダイオード整流する転流期間aと、第2スイッチング素子Q2が同期整流する転流期間bの2種類が含まれる。このように降圧動作では、一次側の位相シフト制御で、伝送される電力の電圧または電流が制御される。なお、二次側の制御は、図6(a)に示した上記実施例の制御と同様である。 9(a)-(c) are diagrams for explaining the switching patterns of the first switching element Q1 to the eighth switching element Q8 according to the modification of the power conversion device 1. FIG. FIG. 9(a) shows a switching pattern in the first operation mode according to the modification. The first operation mode is an operation mode during step-down. In a first mode of operation, the phase of one of the first and second legs is fixed and the phase of the other leg is shifted. In the example shown in FIG. 9A, the phase of the second leg is fixed and the phase of the first leg is shifted. The smaller the phase difference between the first leg and the second leg, the longer the transmission period than the commutation period, and the more power is transmitted. The commutation period shown in FIG. 9(a) includes two types of commutation period a, in which the second diode D2 conducts and diode rectification occurs, and commutation period b in which the second switching element Q2 performs synchronous rectification. be Thus, in step-down operation, phase shift control on the primary side controls the voltage or current of the power to be transmitted. The control on the secondary side is the same as the control in the above embodiment shown in FIG. 6(a).
 図9(b)は、第2の動作モードのスイッチングパターンを示す。第2の動作モードは昇圧時の動作モードである。昇圧時の制御は、図6(a)に示した上記実施例の制御と同様である。 FIG. 9(b) shows the switching pattern of the second operation mode. The second operation mode is an operation mode during boosting. The control at the time of boosting is the same as the control of the above embodiment shown in FIG. 6(a).
 図9(c)は、変形例に係る第3の動作モードのスイッチングパターンを示す。第3の動作モードは降圧動作から昇圧動作に切り替わる時の動作モードである。第3の動作モードは、第1の動作モードにおいて、第1レグと第2レグの位相差が、デッドタイムに相当する位相差θまで縮小すると発動される。第3の動作モードでは、第1の動作モードの一次側の位相シフト制御による電力制御と、第2の動作モードの二次側のPWM制御による電力制御が併存する。 FIG. 9(c) shows the switching pattern of the third operation mode according to the modification. A third operation mode is an operation mode when the step-down operation is switched to the step-up operation. The third operating mode is activated when the phase difference between the first leg and the second leg in the first operating mode is reduced to the phase difference θ corresponding to the dead time. In the third operation mode, power control by phase shift control on the primary side in the first operation mode and power control by PWM control on the secondary side in the second operation mode coexist.
 このように一次側を位相シフト制御、二次側をPWM制御することによっても、第1の動作モード-第3の動作モードを実現することができる。一次側を位相シフト制御することにより、第1の動作モードと第3の動作モードの一部において、スイッチング素子Q1-Q8が全オフする期間が存在しなくなるが、転流状態の際に同期整流を行うことができる。 By thus performing phase shift control on the primary side and PWM control on the secondary side, it is also possible to realize the first operation mode to the third operation mode. By phase-shifting the primary side, there is no period in which the switching elements Q1-Q8 are completely off in the first and part of the third operation mode, but synchronous rectification is performed during the commutation state. It can be performed.
 上記実施の形態では、第1スイッチング素子Q1-第8スイッチング素子Q8にIGBTまたはMOSFETを使用する例を想定した。この点、第1スイッチング素子Q1-第8スイッチング素子Q8に、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンド(C)等を使用したワイドバンドギャップ半導体で構成されたスイッチング素子を使用してもよい。 In the above embodiment, an example is assumed in which IGBTs or MOSFETs are used for the first switching element Q1 to the eighth switching element Q8. In this respect, the first switching element Q1 to the eighth switching element Q8 are made of wide bandgap semiconductors using silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), diamond (C), etc. A switching element may be used.
 なお、実施の形態は、以下の項目によって特定されてもよい。 The embodiment may be specified by the following items.
[項目1]
 第1スイッチング素子(Q1)と第2スイッチング素子(Q2)が直列接続された第1レグと、第3スイッチング素子(Q3)と第4スイッチング素子(Q4)が直列接続された第2レグを有し、前記第1レグと前記第2レグが第1直流部(E1、Ca)に並列接続される第1ブリッジ回路(11)と、
 第5スイッチング素子(Q5)と第6スイッチング素子(Q6)が直列接続された第3レグと、第7スイッチング素子(Q7)と第8スイッチング素子(Q8)が直列接続された第4レグを有し、前記第3レグと前記第4レグが第2直流部(E2、Cb)に並列接続される第2ブリッジ回路(12)と、
 前記第1ブリッジ回路(11)と前記第2ブリッジ回路(12)の間に接続された絶縁トランス(TR1)と、
 前記第1スイッチング素子(Q1)-前記第8スイッチング素子(Q8)を制御する制御回路(13)と、を備え、
 前記第1スイッチング素子(Q1)-前記第8スイッチング素子(Q8)のそれぞれに、逆並列にダイオード(D1-D8)が接続または形成されており、
 前記制御回路(13)は、
 前記第1ブリッジ回路(11)が前記第1直流部(E1、Ca)と前記絶縁トランス(TR1)の一次巻線(n1)を導通させ、前記第2ブリッジ回路(12)が前記絶縁トランス(TR1)の二次巻線(n2)を前記第2直流部(E2、Cb)と導通させる伝送状態と、前記一次巻線(n1)の両端を前記第1ブリッジ回路(11)内で短絡させ、前記第2ブリッジ回路(12)が前記二次巻線(n2)を前記第2直流部(E2、Cb)と導通させた転流状態を含むように制御する第1の動作モードと、
 前記第1ブリッジ回路(11)が前記第1直流部(E1、Ca)と前記一次巻線(n1)を導通させ、前記二次巻線(n2)の両端を前記第2ブリッジ回路(12)内で短絡させた蓄積状態と、前記伝送状態を含むように制御する第2の動作モードと、
 前記伝送状態と前記蓄積状態と前記転流状態を含むように制御する第3の動作モードと、
 を有する電力変換装置(1)。
 これによれば、第1の動作モードと第2の動作モードとの間を滑らかに切り替えることができる。
[項目2]
 前記伝送状態は第1パターンと第2パターンを含み、前記転流状態は第3パターンと第4パターンを含み、
 前記第1パターンは、前記第1スイッチング素子(Q1)と前記第4スイッチング素子(Q4)がオン状態で、前記第2スイッチング素子(Q2)と前記第3スイッチング素子(Q3)がオフ状態で、前記第2ブリッジ回路(12)が整流状態であり、
 前記第2パターンは、前記第2スイッチング素子(Q2)と前記第3スイッチング素子(Q3)がオン状態で、前記第1スイッチング素子(Q1)と前記第4スイッチング素子(Q4)がオフ状態で、前記第2ブリッジ回路(12)が整流状態であり、
 前記第3パターンは、前記第1スイッチング素子(Q1)または前記第4スイッチング素子(Q4)がオン状態で、前記第4スイッチング素子(Q4)または前記第1スイッチング素子(Q1)、及び前記第2スイッチング素子(Q2)と前記第3スイッチング素子(Q3)がオフ状態で、前記第2ブリッジ回路(12)が整流状態であり、
 前記第4パターンは、前記第2スイッチング素子(Q2)または前記第3スイッチング素子(Q3)がオン状態で、前記第3スイッチング素子(Q3)または前記第2スイッチング素子(Q2)、及び前記第1スイッチング素子(Q1)と前記第4スイッチング素子(Q4)がオフ状態で、前記第2ブリッジ回路(12)が整流状態である、
 項目1に記載の電力変換装置(1)。
 これによれば、降圧動作時における第2直流部(E2、Cb)からの無効電流を抑制することができ、高効率化を図ることができる。
[項目3]
 前記蓄積状態は第5パターンと第6パターンを含み、
 前記第5パターンは、前記第1スイッチング素子(Q1)と前記第4スイッチング素子(Q4)、及び前記第6スイッチング素子(Q6)または前記第7スイッチング素子(Q7)がオン状態で、残りのスイッチング素子がオフ状態であり、
 前記第6パターンは、前記第2スイッチング素子(Q2)と前記第3スイッチング素子(Q3)、及び前記第5スイッチング素子(Q5)または前記第8スイッチング素子(Q8)がオン状態で、残りのスイッチング素子がオフ状態である、
 項目1または2に記載の電力変換装置(1)。
 これによれば、昇圧動作時における第2直流部(E2、Cb)からの無効電流を抑制することができ、高効率化を図ることができる。
[項目4]
 前記制御回路(13)は、各スイッチング素子のオン/オフ時間を制御することで、前記第1直流部(E1、Ca)から前記第2直流部(E2、Cb)へ伝送する電力の電圧または電流を制御する、
 項目1から3のいずれか1項に記載の電力変換装置(1)。
 これによれば、位相シフト方式を用いずにPWM方式で制御することで、全オフ状態のデッドタイムを容易に生成することができ、ダイオードのリカバリ損失を低減することができる。
[項目5]
 前記制御回路(13)は、
 前記第1の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比を制御することで、
 前記第2の動作モードにおいて、前記第3レグまたは前記第4レグのデューティ比を制御することで、
 前記第3の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比と、前記第3レグまたは前記第4レグのデューティ比を制御することで、
 前記第1直流部(E1、Ca)から前記第2直流部(E2、Cb)へ伝送する電力の電圧または電流を制御する、
 項目4に記載の電力変換装置(1)。
 これによれば、第3の動作モードにおいて、第1の動作モードのPWM制御と第2の動作モードのPWM制御を併存させることで、第1の動作モードと第2の動作モードとの間を滑らかに切り替えることができる。
[項目6]
 前記制御回路(13)は、
 前記第1の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比が1に到達する前に、前記第3の動作モードに遷移させる、
 項目5に記載の電力変換装置(1)。
 これによれば、第1の動作モードから第2の動作モードに滑らかに切り替えることができる。
[項目7]
 前記制御回路(13)は、
 前記第2の動作モードにおいて、前記第3レグまたは前記第4レグのデューティ比が0に到達する前に、前記第3の動作モードに遷移させる、
 項目5または6に記載の電力変換装置(1)。
 これによれば、第2の動作モードから第1の動作モードに滑らかに切り替えることができる。
[項目8]
 前記制御回路(13)は、
 前記第1の動作モードにおいて、
 前記第1スイッチング素子(Q1)のターンオンに同期して、前記第4スイッチング素子(Q4)をターンオンさせ、
 前記第1スイッチング素子(Q1)または前記第4スイッチング素子(Q4)のターンオフに同期して、前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオンさせ、
 前記第4スイッチング素子(Q4)または前記第1スイッチング素子(Q1)のターンオフに同期して、前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオフさせ、
 前記第2スイッチング素子(Q2)のターンオンに同期して、前記第3スイッチング素子(Q3)をターンオンさせ、
 前記第2スイッチング素子(Q2)または前記第3スイッチング素子(Q3)のターンオフに同期して、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオンさせ、
 前記第3スイッチング素子(Q3)または前記第2スイッチング素子(Q2)のターンオフに同期して、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオフさせる、
 項目1から7のいずれか1項に記載の電力変換装置(1)。
 これによれば、降圧動作において位相シフト方式を用いずにPWM方式で制御することで、全オフ状態のデッドタイムを容易に生成することができ、ダイオードのリカバリ損失を低減することができる。
[項目9]
 前記制御回路(13)は、
 前記第2の動作モードにおいて、
 前記第1スイッチング素子(Q1)のターンオンに同期して、前記第4スイッチング素子(Q4)と、前記第6スイッチング素子(Q6)または前記第7スイッチング素子(Q7)をターンオンさせ、
 前記第6スイッチング素子(Q6)または前記第7スイッチング素子(Q7)のターンオフに同期して、前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオンさせ、
 前記第1スイッチング素子(Q1)のターンオフに同期して、前記第4スイッチング素子(Q4)と、前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオフさせ、
 前記第2スイッチング素子(Q2)のターンオンに同期して、前記第3スイッチング素子(Q3)と、前記第5スイッチング素子(Q5)または前記第8スイッチング素子(Q8)をターンオンさせ、
 前記第5スイッチング素子(Q5)または前記第8スイッチング素子(Q8)のターンオフに同期して、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオンさせ、
 前記第2スイッチング素子(Q2)のターンオフに同期して、前記第3スイッチング素子(Q3)と、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオフさせる、
 項目1から8のいずれか1項に記載の電力変換装置(1)。
 これによれば、昇圧動作において、位相シフト方式を用いずにPWM方式で制御することで、全オフ状態のデッドタイムを容易に生成することができ、ダイオードのリカバリ損失を低減することができる。
[項目10]
 前記制御回路(13)は、
 前記第3の動作モードにおいて、
 前記第1スイッチング素子(Q1)のターンオンに同期して、前記第4スイッチング素子(Q4)と、前記第6スイッチング素子(Q6)または前記第7スイッチング素子(Q7)をターンオンさせ、
 前記第6スイッチング素子(Q6)または前記第7スイッチング素子(Q7)のターンオフに同期して、前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオンさせ、
 前記第1スイッチング素子(Q1)または前記第4スイッチング素子(Q4)をターンオフさせ、
 前記第4スイッチング素子(Q4)または前記第1スイッチング素子(Q1)のターンオフに同期して前記第8スイッチング素子(Q8)または前記第5スイッチング素子(Q5)をターンオフさせ、
 前記第2スイッチング素子(Q2)のターンオンに同期して、前記第3スイッチング素子(Q3)と、前記第5スイッチング素子(Q5)または前記第8スイッチング素子(Q8)をターンオンさせ、
 前記第5スイッチング素子(Q5)または前記第8スイッチング素子(Q8)のターンオフに同期して、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオンさせ、
 前記第2スイッチング素子(Q2)または前記第3スイッチング素子(Q3)をターンオフさせ、
 前記第3スイッチング素子(Q3)または前記第2スイッチング素子(Q2)のターンオフに同期して、前記第7スイッチング素子(Q7)または前記第6スイッチング素子(Q6)をターンオフさせる、
 項目1から9のいずれか1項に記載の電力変換装置(1)。
 これによれば、降圧動作と昇圧動作の切り替わり時において、位相シフト方式を用いずにPWM方式で制御することで、全オフ状態のデッドタイムを容易に生成することができ、ダイオードのリカバリ損失を低減することができる。
[項目11]
 前記制御回路(13)は、
 前記第1パターンの期間と前記第2パターンの期間を同期させ、
 前記第3パターンの期間と前記第4パターンの期間を同期させる、
 項目2に記載の電力変換装置(1)。
 これによれば、正負対称な動作となり、直流偏磁の発生を抑制することができる。
[項目12]
 前記制御回路(13)は、
 前記第5パターンの期間と前記第6パターンの期間を同期させる、
 項目3に記載の電力変換装置(1)。
 これによれば、正負対称な動作となり、直流偏磁の発生を抑制することができる。
[項目13]
 前記制御回路(13)は、
 二次側から一次側に電力を伝送する場合、
 前記第1スイッチング素子(Q1)-前記第4スイッチング素子(Q4)に供給する駆動信号と、前記第5スイッチング素子(Q5)-前記第8スイッチング素子(Q8)に供給する駆動信号を入れ替える、
 項目1から12のいずれか1項に記載の電力変換装置(1)。
 これにより、双方向に伝送可能なDC/DCコンバータを実現できる。
[Item 1]
It has a first leg in which a first switching element (Q1) and a second switching element (Q2) are connected in series, and a second leg in which a third switching element (Q3) and a fourth switching element (Q4) are connected in series. and a first bridge circuit (11) in which the first leg and the second leg are connected in parallel to a first DC section (E1, Ca);
It has a third leg in which a fifth switching element (Q5) and a sixth switching element (Q6) are connected in series, and a fourth leg in which a seventh switching element (Q7) and an eighth switching element (Q8) are connected in series. and a second bridge circuit (12) in which the third leg and the fourth leg are connected in parallel to a second DC section (E2, Cb);
an isolation transformer (TR1) connected between the first bridge circuit (11) and the second bridge circuit (12);
A control circuit (13) that controls the first switching element (Q1)-the eighth switching element (Q8),
Diodes (D1-D8) are connected or formed in antiparallel to each of the first switching element (Q1) to the eighth switching element (Q8),
The control circuit (13)
The first bridge circuit (11) connects the first DC section (E1, Ca) and the primary winding (n1) of the isolation transformer (TR1), and the second bridge circuit (12) connects the isolation transformer ( A transmission state in which the secondary winding (n2) of TR1) is electrically connected to the second DC part (E2, Cb), and both ends of the primary winding (n1) are short-circuited in the first bridge circuit (11). , a first operation mode in which the second bridge circuit (12) is controlled to include a commutation state in which the secondary winding (n2) is electrically connected to the second DC section (E2, Cb);
The first bridge circuit (11) electrically connects the first DC section (E1, Ca) and the primary winding (n1), and both ends of the secondary winding (n2) are connected to the second bridge circuit (12). a second mode of operation that controls to include an accumulation state shorted within and the transmission state;
a third operating mode that controls to include the transmission state, the accumulation state, and the commutation state;
A power converter (1) comprising:
According to this, it is possible to smoothly switch between the first operation mode and the second operation mode.
[Item 2]
the transmission state includes a first pattern and a second pattern, the commutation state includes a third pattern and a fourth pattern,
In the first pattern, the first switching element (Q1) and the fourth switching element (Q4) are in an ON state, and the second switching element (Q2) and the third switching element (Q3) are in an OFF state, the second bridge circuit (12) is in a rectifying state;
In the second pattern, the second switching element (Q2) and the third switching element (Q3) are in an ON state, and the first switching element (Q1) and the fourth switching element (Q4) are in an OFF state, the second bridge circuit (12) is in a rectifying state;
In the third pattern, the first switching element (Q1) or the fourth switching element (Q4) is in an ON state, and the fourth switching element (Q4) or the first switching element (Q1) and the second switching element (Q4) are switched on. the switching element (Q2) and the third switching element (Q3) are in an off state, and the second bridge circuit (12) is in a rectifying state;
In the fourth pattern, when the second switching element (Q2) or the third switching element (Q3) is in an ON state, the third switching element (Q3) or the second switching element (Q2) and the first The switching element (Q1) and the fourth switching element (Q4) are in an OFF state, and the second bridge circuit (12) is in a rectifying state.
A power converter (1) according to item 1.
According to this, the reactive current from the second DC section (E2, Cb) during the step-down operation can be suppressed, and the efficiency can be improved.
[Item 3]
the accumulation state includes a fifth pattern and a sixth pattern;
In the fifth pattern, the first switching element (Q1), the fourth switching element (Q4), and the sixth switching element (Q6) or the seventh switching element (Q7) are in an ON state, and the remaining switching elements are switched. the element is in the off state,
In the sixth pattern, the second switching element (Q2), the third switching element (Q3), and the fifth switching element (Q5) or the eighth switching element (Q8) are on, and the remaining switching elements are the element is in the off state,
3. A power converter (1) according to item 1 or 2.
According to this, it is possible to suppress the reactive current from the second DC section (E2, Cb) during the step-up operation, and it is possible to achieve high efficiency.
[Item 4]
The control circuit (13) controls the on/off time of each switching element to control the voltage or to control the current,
A power converter (1) according to any one of items 1 to 3.
According to this, by controlling by the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced.
[Item 5]
The control circuit (13)
By controlling the duty ratio of the first leg or the second leg in the first operation mode,
By controlling the duty ratio of the third leg or the fourth leg in the second operation mode,
By controlling the duty ratio of the first leg or the second leg and the duty ratio of the third leg or the fourth leg in the third operation mode,
Controlling the voltage or current of power transmitted from the first DC section (E1, Ca) to the second DC section (E2, Cb);
5. A power converter (1) according to item 4.
According to this, in the third operation mode, the PWM control in the first operation mode and the PWM control in the second operation mode coexist, thereby switching between the first operation mode and the second operation mode. You can switch smoothly.
[Item 6]
The control circuit (13)
In the first operation mode, transition to the third operation mode before the duty ratio of the first leg or the second leg reaches 1;
6. A power converter (1) according to item 5.
According to this, it is possible to smoothly switch from the first operation mode to the second operation mode.
[Item 7]
The control circuit (13)
In the second operation mode, transition to the third operation mode before the duty ratio of the third leg or the fourth leg reaches 0;
7. A power converter (1) according to item 5 or 6.
According to this, it is possible to smoothly switch from the second operation mode to the first operation mode.
[Item 8]
The control circuit (13)
In the first operating mode,
turning on the fourth switching element (Q4) in synchronization with turning on the first switching element (Q1);
turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the first switching element (Q1) or the fourth switching element (Q4);
turning off the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the fourth switching element (Q4) or the first switching element (Q1);
turning on the third switching element (Q3) in synchronization with turning on the second switching element (Q2);
turning on the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the second switching element (Q2) or the third switching element (Q3);
Turning off the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the third switching element (Q3) or the second switching element (Q2);
8. A power converter (1) according to any one of items 1 to 7.
According to this, by controlling the step-down operation by the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced.
[Item 9]
The control circuit (13)
In the second operation mode,
turning on the fourth switching element (Q4) and the sixth switching element (Q6) or the seventh switching element (Q7) in synchronization with turning on the first switching element (Q1);
turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the sixth switching element (Q6) or the seventh switching element (Q7);
turning off the fourth switching element (Q4) and the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with the turn-off of the first switching element (Q1);
turning on the third switching element (Q3) and the fifth switching element (Q5) or the eighth switching element (Q8) in synchronization with turning on the second switching element (Q2);
turning on the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the fifth switching element (Q5) or the eighth switching element (Q8);
Turning off the third switching element (Q3) and the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the second switching element (Q2);
A power converter (1) according to any one of items 1 to 8.
According to this, in the step-up operation, by controlling with the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced.
[Item 10]
The control circuit (13)
In the third operating mode,
turning on the fourth switching element (Q4) and the sixth switching element (Q6) or the seventh switching element (Q7) in synchronization with turning on the first switching element (Q1);
turning on the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the sixth switching element (Q6) or the seventh switching element (Q7);
turning off the first switching element (Q1) or the fourth switching element (Q4);
turning off the eighth switching element (Q8) or the fifth switching element (Q5) in synchronization with turning off the fourth switching element (Q4) or the first switching element (Q1);
turning on the third switching element (Q3) and the fifth switching element (Q5) or the eighth switching element (Q8) in synchronization with turning on the second switching element (Q2);
turning on the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the fifth switching element (Q5) or the eighth switching element (Q8);
turning off the second switching element (Q2) or the third switching element (Q3);
Turning off the seventh switching element (Q7) or the sixth switching element (Q6) in synchronization with turning off the third switching element (Q3) or the second switching element (Q2);
A power converter (1) according to any one of items 1 to 9.
According to this, when switching between the step-down operation and the step-up operation, by controlling with the PWM method without using the phase shift method, the dead time in the all-off state can be easily generated, and the recovery loss of the diode can be reduced. can be reduced.
[Item 11]
The control circuit (13)
synchronizing the period of the first pattern and the period of the second pattern;
synchronizing the period of the third pattern and the period of the fourth pattern;
3. A power converter (1) according to item 2.
According to this, the positive/negative symmetrical operation can be achieved, and the occurrence of DC bias magnetism can be suppressed.
[Item 12]
The control circuit (13)
synchronizing the period of the fifth pattern and the period of the sixth pattern;
4. A power converter (1) according to item 3.
According to this, the positive/negative symmetrical operation can be achieved, and the occurrence of DC bias magnetism can be suppressed.
[Item 13]
The control circuit (13)
When transmitting power from the secondary side to the primary side,
exchanging the drive signal supplied to the first switching element (Q1)-the fourth switching element (Q4) and the drive signal supplied to the fifth switching element (Q5)-the eighth switching element (Q8);
13. A power converter (1) according to any one of items 1 to 12.
Thereby, a DC/DC converter capable of bidirectional transmission can be realized.
 本発明は、太陽光発電システムのパワーコンディショナに利用可能である。 The present invention can be used for power conditioners in photovoltaic power generation systems.
 E1 第1直流電源、 E2 第2直流電源、 1 電力変換装置、 11 第1ブリッジ回路、 12 第2ブリッジ回路、 13 制御回路、 Q1-Q8 スイッチング素子、 D1-D8 ダイオード、 C1-C8 容量、 L1 第1インダクタンス、 L2 第2インダクタンス、 TR1 絶縁トランス、 n1 一次巻線、 n2 二次巻線、 Ca 一次側コンデンサ、 Cb 二次側コンデンサ。 E1 First DC power supply, E2 Second DC power supply, 1 Power converter, 11 First bridge circuit, 12 Second bridge circuit, 13 Control circuit, Q1-Q8 Switching element, D1-D8 Diode, C1-C8 Capacitance, L1 First inductance, L2 second inductance, TR1 isolation transformer, n1 primary winding, n2 secondary winding, Ca primary side capacitor, Cb secondary side capacitor.

Claims (13)

  1.  第1スイッチング素子と第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子と第4スイッチング素子が直列接続された第2レグを有し、前記第1レグと前記第2レグが第1直流部に並列接続される第1ブリッジ回路と、
     第5スイッチング素子と第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子と第8スイッチング素子が直列接続された第4レグを有し、前記第3レグと前記第4レグが第2直流部に並列接続される第2ブリッジ回路と、
     前記第1ブリッジ回路と前記第2ブリッジ回路の間に接続された絶縁トランスと、
     前記第1スイッチング素子-前記第8スイッチング素子を制御する制御回路と、を備え、
     前記第1スイッチング素子-前記第8スイッチング素子のそれぞれに、逆並列にダイオードが接続または形成されており、
     前記制御回路は、
     前記第1ブリッジ回路が前記第1直流部と前記絶縁トランスの一次巻線を導通させ、前記第2ブリッジ回路が前記絶縁トランスの二次巻線を前記第2直流部と導通させる伝送状態と、前記一次巻線の両端を前記第1ブリッジ回路内で短絡させ、前記第2ブリッジ回路が前記二次巻線を前記第2直流部と導通させた転流状態を含むように制御する第1の動作モードと、
     前記第1ブリッジ回路が前記第1直流部と前記一次巻線を導通させ、前記二次巻線の両端を前記第2ブリッジ回路内で短絡させた蓄積状態と、前記伝送状態を含むように制御する第2の動作モードと、
     前記伝送状態と前記蓄積状態と前記転流状態を含むように制御する第3の動作モードと、
     を有する電力変換装置。
    A first leg in which a first switching element and a second switching element are connected in series, and a second leg in which a third switching element and a fourth switching element are connected in series, wherein the first leg and the second leg are connected in series. a first bridge circuit connected in parallel to the first DC section;
    A third leg in which a fifth switching element and a sixth switching element are connected in series, and a fourth leg in which a seventh switching element and an eighth switching element are connected in series, wherein the third leg and the fourth leg are connected in series. a second bridge circuit connected in parallel to the second DC section;
    an isolation transformer connected between the first bridge circuit and the second bridge circuit;
    A control circuit that controls the first switching element-the eighth switching element,
    A diode is connected or formed in anti-parallel to each of the first switching element and the eighth switching element,
    The control circuit is
    a transmission state in which the first bridge circuit conducts the first DC section and the primary winding of the isolation transformer, and the second bridge circuit conducts the secondary winding of the isolation transformer with the second DC section; a first bridge circuit for controlling both ends of the primary winding to include a commutation state in which both ends of the primary winding are short-circuited in the first bridge circuit and the second bridge circuit conducts the secondary winding with the second DC section; mode of operation;
    The first bridge circuit conducts the first direct current part and the primary winding, and controls to include the storage state in which both ends of the secondary winding are short-circuited in the second bridge circuit, and the transmission state. a second mode of operation to
    a third operating mode that controls to include the transmission state, the accumulation state, and the commutation state;
    A power conversion device having
  2.  前記伝送状態は第1パターンと第2パターンを含み、前記転流状態は第3パターンと第4パターンを含み、
     前記第1パターンは、前記第1スイッチング素子と前記第4スイッチング素子がオン状態で、前記第2スイッチング素子と前記第3スイッチング素子がオフ状態で、前記第2ブリッジ回路が整流状態であり、
     前記第2パターンは、前記第2スイッチング素子と前記第3スイッチング素子がオン状態で、前記第1スイッチング素子と前記第4スイッチング素子がオフ状態で、前記第2ブリッジ回路が整流状態であり、
     前記第3パターンは、前記第1スイッチング素子または前記第4スイッチング素子がオン状態で、前記第4スイッチング素子または前記第1スイッチング素子、及び前記第2スイッチング素子と前記第3スイッチング素子がオフ状態で、前記第2ブリッジ回路が整流状態であり、
     前記第4パターンは、前記第2スイッチング素子または前記第3スイッチング素子がオン状態で、前記第3スイッチング素子または前記第2スイッチング素子、及び前記第1スイッチング素子と前記第4スイッチング素子がオフ状態で、前記第2ブリッジ回路が整流状態である、
     請求項1に記載の電力変換装置。
    the transmission state includes a first pattern and a second pattern, the commutation state includes a third pattern and a fourth pattern,
    In the first pattern, the first switching element and the fourth switching element are in an ON state, the second switching element and the third switching element are in an OFF state, and the second bridge circuit is in a rectifying state,
    In the second pattern, the second switching element and the third switching element are in an ON state, the first switching element and the fourth switching element are in an OFF state, and the second bridge circuit is in a rectifying state,
    In the third pattern, the first switching element or the fourth switching element is in an ON state, and the fourth switching element or the first switching element, the second switching element and the third switching element are in an OFF state. , wherein the second bridge circuit is in a rectifying state;
    In the fourth pattern, the second switching element or the third switching element is in an ON state, and the third switching element or the second switching element and the first switching element and the fourth switching element are in an OFF state. , wherein the second bridge circuit is in a rectifying state;
    The power converter according to claim 1.
  3.  前記蓄積状態は第5パターンと第6パターンを含み、
     前記第5パターンは、前記第1スイッチング素子と前記第4スイッチング素子、及び前記第6スイッチング素子または前記第7スイッチング素子がオン状態で、残りのスイッチング素子がオフ状態であり、
     前記第6パターンは、前記第2スイッチング素子と前記第3スイッチング素子、及び前記第5スイッチング素子または前記第8スイッチング素子がオン状態で、残りのスイッチング素子がオフ状態である、
     請求項1または2に記載の電力変換装置。
    the accumulation state includes a fifth pattern and a sixth pattern;
    In the fifth pattern, the first switching element, the fourth switching element, and the sixth switching element or the seventh switching element are in an ON state, and the remaining switching elements are in an OFF state;
    In the sixth pattern, the second switching element, the third switching element, and the fifth switching element or the eighth switching element are in an ON state, and the remaining switching elements are in an OFF state.
    The power converter according to claim 1 or 2.
  4.  前記制御回路は、各スイッチング素子のオン/オフ時間を制御することで、前記第1直流部から前記第2直流部へ伝送する電力の電圧または電流を制御する、
     請求項1から3のいずれか1項に記載の電力変換装置。
    The control circuit controls the voltage or current of power transmitted from the first DC section to the second DC section by controlling the on/off time of each switching element.
    The power converter according to any one of claims 1 to 3.
  5.  前記制御回路は、
     前記第1の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比を制御することで、
     前記第2の動作モードにおいて、前記第3レグまたは前記第4レグのデューティ比を制御することで、
     前記第3の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比と、前記第3レグまたは前記第4レグのデューティ比を制御することで、
     前記第1直流部から前記第2直流部へ伝送する電力の電圧または電流を制御する、
     請求項4に記載の電力変換装置。
    The control circuit is
    By controlling the duty ratio of the first leg or the second leg in the first operation mode,
    By controlling the duty ratio of the third leg or the fourth leg in the second operation mode,
    By controlling the duty ratio of the first leg or the second leg and the duty ratio of the third leg or the fourth leg in the third operation mode,
    controlling the voltage or current of power transmitted from the first DC section to the second DC section;
    The power converter according to claim 4.
  6.  前記制御回路は、
     前記第1の動作モードにおいて、前記第1レグまたは前記第2レグのデューティ比が1に到達する前に、前記第3の動作モードに遷移させる、
     請求項5に記載の電力変換装置。
    The control circuit is
    In the first operation mode, transition to the third operation mode before the duty ratio of the first leg or the second leg reaches 1;
    The power converter according to claim 5.
  7.  前記制御回路は、
     前記第2の動作モードにおいて、前記第3レグまたは前記第4レグのデューティ比が0に到達する前に、前記第3の動作モードに遷移させる、
     請求項5または6に記載の電力変換装置。
    The control circuit is
    In the second operation mode, transition to the third operation mode before the duty ratio of the third leg or the fourth leg reaches 0;
    The power converter according to claim 5 or 6.
  8.  前記制御回路は、
     前記第1の動作モードにおいて、
     前記第1スイッチング素子のターンオンに同期して、前記第4スイッチング素子をターンオンさせ、
     前記第1スイッチング素子または前記第4スイッチング素子のターンオフに同期して、前記第8スイッチング素子または前記第5スイッチング素子をターンオンさせ、
     前記第4スイッチング素子または前記第1スイッチング素子のターンオフに同期して、前記第8スイッチング素子または前記第5スイッチング素子をターンオフさせ、
     前記第2スイッチング素子のターンオンに同期して、前記第3スイッチング素子をターンオンさせ、
     前記第2スイッチング素子または前記第3スイッチング素子のターンオフに同期して、前記第7スイッチング素子または前記第6スイッチング素子をターンオンさせ、
     前記第3スイッチング素子または前記第2スイッチング素子のターンオフに同期して、前記第7スイッチング素子または前記第6スイッチング素子をターンオフさせる、
     請求項1から7のいずれか1項に記載の電力変換装置。
    The control circuit is
    In the first operating mode,
    turning on the fourth switching element in synchronization with turning on the first switching element;
    turning on the eighth switching element or the fifth switching element in synchronization with turning off the first switching element or the fourth switching element;
    turning off the eighth switching element or the fifth switching element in synchronization with turning off the fourth switching element or the first switching element;
    turning on the third switching element in synchronization with turning on the second switching element;
    turning on the seventh switching element or the sixth switching element in synchronization with turning off the second switching element or the third switching element;
    turning off the seventh switching element or the sixth switching element in synchronization with turning off the third switching element or the second switching element;
    The power converter according to any one of claims 1 to 7.
  9.  前記制御回路は、
     前記第2の動作モードにおいて、
     前記第1スイッチング素子のターンオンに同期して、前記第4スイッチング素子と、前記第6スイッチング素子または前記第7スイッチング素子をターンオンさせ、
     前記第6スイッチング素子または前記第7スイッチング素子のターンオフに同期して、前記第8スイッチング素子または前記第5スイッチング素子をターンオンさせ、
     前記第1スイッチング素子のターンオフに同期して、前記第4スイッチング素子と、前記第8スイッチング素子または前記第5スイッチング素子をターンオフさせ、
     前記第2スイッチング素子のターンオンに同期して、前記第3スイッチング素子と、前記第5スイッチング素子または前記第8スイッチング素子をターンオンさせ、
     前記第5スイッチング素子または前記第8スイッチング素子のターンオフに同期して、前記第7スイッチング素子または前記第6スイッチング素子をターンオンさせ、
     前記第2スイッチング素子のターンオフに同期して、前記第3スイッチング素子と、前記第7スイッチング素子または前記第6スイッチング素子をターンオフさせる、
     請求項1から8のいずれか1項に記載の電力変換装置。
    The control circuit is
    In the second operation mode,
    turning on the fourth switching element and the sixth switching element or the seventh switching element in synchronization with turning on the first switching element;
    turning on the eighth switching element or the fifth switching element in synchronization with turning off the sixth switching element or the seventh switching element;
    turning off the fourth switching element and the eighth switching element or the fifth switching element in synchronization with turning off the first switching element;
    turning on the third switching element and the fifth switching element or the eighth switching element in synchronization with turning on the second switching element;
    turning on the seventh switching element or the sixth switching element in synchronization with turning off the fifth switching element or the eighth switching element;
    turning off the third switching element and the seventh switching element or the sixth switching element in synchronization with turning off the second switching element;
    The power converter according to any one of claims 1 to 8.
  10.  前記制御回路は、
     前記第3の動作モードにおいて、
     前記第1スイッチング素子のターンオンに同期して、前記第4スイッチング素子と、前記第6スイッチング素子または前記第7スイッチング素子をターンオンさせ、
     前記第6スイッチング素子または前記第7スイッチング素子のターンオフに同期して、前記第8スイッチング素子または前記第5スイッチング素子をターンオンさせ、
     前記第1スイッチング素子または前記第4スイッチング素子をターンオフさせ、
     前記第4スイッチング素子または前記第1スイッチング素子のターンオフに同期して前記第8スイッチング素子または前記第5スイッチング素子をターンオフさせ、
     前記第2スイッチング素子のターンオンに同期して、前記第3スイッチング素子と、前記第5スイッチング素子または前記第8スイッチング素子をターンオンさせ、
     前記第5スイッチング素子または前記第8スイッチング素子のターンオフに同期して、前記第7スイッチング素子または前記第6スイッチング素子をターンオンさせ、
     前記第2スイッチング素子または前記第3スイッチング素子をターンオフさせ、
     前記第3スイッチング素子または前記第2スイッチング素子のターンオフに同期して、前記第7スイッチング素子または前記第6スイッチング素子をターンオフさせる、
     請求項1から9のいずれか1項に記載の電力変換装置。
    The control circuit is
    In the third operating mode,
    turning on the fourth switching element and the sixth switching element or the seventh switching element in synchronization with turning on the first switching element;
    turning on the eighth switching element or the fifth switching element in synchronization with turning off the sixth switching element or the seventh switching element;
    turning off the first switching element or the fourth switching element;
    turning off the eighth switching element or the fifth switching element in synchronization with turning off the fourth switching element or the first switching element;
    turning on the third switching element and the fifth switching element or the eighth switching element in synchronization with turning on the second switching element;
    turning on the seventh switching element or the sixth switching element in synchronization with turning off the fifth switching element or the eighth switching element;
    turning off the second switching element or the third switching element;
    turning off the seventh switching element or the sixth switching element in synchronization with turning off the third switching element or the second switching element;
    The power converter according to any one of claims 1 to 9.
  11.  前記制御回路は、
     前記第1パターンの期間と前記第2パターンの期間を同期させ、
     前記第3パターンの期間と前記第4パターンの期間を同期させる、
     請求項2に記載の電力変換装置。
    The control circuit is
    synchronizing the period of the first pattern and the period of the second pattern;
    synchronizing the period of the third pattern and the period of the fourth pattern;
    The power converter according to claim 2.
  12.  前記制御回路は、
     前記第5パターンの期間と前記第6パターンの期間を同期させる、
     請求項3に記載の電力変換装置。
    The control circuit is
    synchronizing the period of the fifth pattern and the period of the sixth pattern;
    The power converter according to claim 3.
  13.  前記制御回路は、
     二次側から一次側に電力を伝送する場合、
     前記第1スイッチング素子-前記第4スイッチング素子に供給する駆動信号と、前記第5スイッチング素子-前記第8スイッチング素子に供給する駆動信号を入れ替える、
     請求項1から12のいずれか1項に記載の電力変換装置。
    The control circuit is
    When transmitting power from the secondary side to the primary side,
    exchanging the drive signal supplied to the first switching element-the fourth switching element and the drive signal supplied to the fifth switching element-the eighth switching element;
    The power converter according to any one of claims 1 to 12.
PCT/JP2022/039871 2021-12-06 2022-10-26 Power conversion device WO2023105968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198133A JP2023084037A (en) 2021-12-06 2021-12-06 Power conversion device
JP2021-198133 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023105968A1 true WO2023105968A1 (en) 2023-06-15

Family

ID=86730082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039871 WO2023105968A1 (en) 2021-12-06 2022-10-26 Power conversion device

Country Status (2)

Country Link
JP (1) JP2023084037A (en)
WO (1) WO2023105968A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051082A (en) * 2015-08-31 2017-03-09 サンケン電気株式会社 Bidirectional dc/dc converter
JP2020137266A (en) * 2019-02-19 2020-08-31 オムロン株式会社 Power conversion device
JP2021048700A (en) * 2019-09-18 2021-03-25 パナソニックIpマネジメント株式会社 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051082A (en) * 2015-08-31 2017-03-09 サンケン電気株式会社 Bidirectional dc/dc converter
JP2020137266A (en) * 2019-02-19 2020-08-31 オムロン株式会社 Power conversion device
JP2021048700A (en) * 2019-09-18 2021-03-25 パナソニックIpマネジメント株式会社 Power conversion device

Also Published As

Publication number Publication date
JP2023084037A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
EP2388902B1 (en) System and method for digital control of a DC/DC power-converter device, in particular for automotive applications
US9667159B2 (en) Power conversion apparatus including a transformer, an invertor circuit and a plurality of switching devices controlled by a controller
JP2018166389A (en) Electric power conversion system
US9543823B2 (en) Power conversion apparatus having a switching circuit unit that includes a switching device and an auxiliary switching device
WO2008020629A1 (en) Insulation boost type push-pull soft-switching dc/dc converter
US20220278625A1 (en) Power conversion device
US20220360182A1 (en) Power conversion device
WO2022059294A1 (en) Power conversion device
Blinov et al. Bidirectional soft switching current source DC-DC converter for residential DC microgrids
JP7432894B2 (en) power converter
WO2023105968A1 (en) Power conversion device
Roggia et al. Comparison between full-bridge-forward converter and DAB converter
Sha et al. Unequal PWM control for a current-fed dc-dc converter for battery application
KR20090011604A (en) Bi-directional tri-state pwm dc to dc converter for fuel cell vehicle
JP7262054B2 (en) power converter
JP7262055B2 (en) power converter
JP7422347B2 (en) power converter
Beyer et al. Design of a universal charger for a light electric vehicle with effect of an RCD snubber on peak current control
JP7432892B2 (en) power converter
CN111262440B (en) Full-bridge direct-current converter suitable for electric direct-current operation power supply system of transformer substation
JP2024008097A (en) Power conversion device
CN217590634U (en) Novel vehicle-mounted inverter
JP7450223B2 (en) power converter
Bal et al. Modular bidirectional current-fed three-phase inverter for microgrid application
Wei et al. Auxiliary snubber cell for dual buckfull bridge inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903900

Country of ref document: EP

Kind code of ref document: A1