WO2023105909A1 - Water electrolysis device - Google Patents

Water electrolysis device Download PDF

Info

Publication number
WO2023105909A1
WO2023105909A1 PCT/JP2022/037689 JP2022037689W WO2023105909A1 WO 2023105909 A1 WO2023105909 A1 WO 2023105909A1 JP 2022037689 W JP2022037689 W JP 2022037689W WO 2023105909 A1 WO2023105909 A1 WO 2023105909A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
separator member
gas diffusion
water electrolysis
electrolysis device
Prior art date
Application number
PCT/JP2022/037689
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 安藤
達也 常木
拓人 櫛
将史 河村
Original Assignee
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京瓦斯株式会社 filed Critical 東京瓦斯株式会社
Publication of WO2023105909A1 publication Critical patent/WO2023105909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to water electrolysis devices.
  • the structure of the cell stack has also been developed, and various technologies have been proposed for the cell structure including the electrolyte membrane, anode, cathode, and separator. (See Patent Document 1, for example).
  • the present invention has been made in consideration of the above facts, and an object of the present invention is to provide a water electrolysis device capable of suppressing manufacturing costs.
  • a water electrolysis device includes an electrolyte membrane in which an anode catalyst layer is laminated on one surface of an electrolyte layer and a cathode catalyst layer is laminated on the other surface thereof; are arranged at an average pitch of 20 ⁇ m or more and 500 ⁇ m or less on the surface, and the protrusions formed between the adjacent recesses of the uneven pattern are arranged in contact with the anode catalyst layer, and the anode catalyst layer and a conductive separator member forming a gas diffusion path between.
  • a water electrolysis device includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side, and convexes with an average distance between the tops of 10 ⁇ m or more and 250 ⁇ m or less
  • An uneven pattern in which portions are arranged at an average pitch of 20 ⁇ m or more and 500 ⁇ m or less is integrally formed on the surface, the convex portions of the uneven pattern are arranged in contact with the anode catalyst layer, and a gas diffusion path is formed between the anode catalyst layer and the uneven pattern. and a conductive separator member.
  • the uneven pattern is integrally formed on the surface of the conductive separator member, and the convex portions of the uneven pattern are arranged in contact with the anode catalyst layer, and are in contact with the anode catalyst layer.
  • a gas diffusion path is constructed between them.
  • concave portions having an average opening width of 10 ⁇ m or more and 250 ⁇ m or less or convex portions having an average interval between apexes of 10 ⁇ m or more and 250 ⁇ m or less are arranged at an average pitch of 20 ⁇ m or more and 500 ⁇ m or less. can be diffused.
  • the uneven pattern has an average pitch smaller than the thickness of the separator member.
  • the average pitch of the uneven pattern smaller than the thickness of the separator member, it is possible to maintain ease of manufacture while ensuring gas diffusibility.
  • a water electrolysis device includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side of the electrolyte layer, and groove-shaped recesses that are uneven in the thickness direction are adjacent to each other.
  • a water electrolysis device includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side of the electrolyte layer, and projections that are convex in the thickness direction and are separated from each other are formed.
  • a concave-convex pattern in which concave portions are formed between the adjacent convex portions is integrally formed, the convex portions of the concave-convex pattern are disposed in contact with the anode catalyst layer, and gas diffusion paths are provided between the anode catalyst layer and the anode catalyst layer. wherein the average pitch of the uneven pattern is smaller than the thickness of the separator member.
  • the contact ratio with the electrolyte membrane per unit area in the uneven pattern is 40% or more and 85% or less.
  • water electrolysis device According to the water electrolysis device according to the sixth aspect, it is possible to ensure good electrical conductivity and maintain gas diffusion between the separator member and the anode catalyst layer.
  • the projections are circular.
  • a gas diffusion path can be configured between the anode catalyst layer and the convex portion of the concave-convex pattern by making the convex portion circular.
  • the concave portion has a groove shape.
  • the separator member is formed with a main portion having a flow path resistance smaller than that of the uneven pattern from the upstream side to the downstream side of the gas diffusion path.
  • the separator member is formed with a main flow portion having a lower flow path resistance than the uneven pattern. Since the main flow portion extends from the upstream side to the downstream side of the gas diffusion path, water and oxygen flow from the gas diffusion flow path into the main flow portion, thereby improving the flow of water and oxygen.
  • the separator member is made of titanium.
  • oxidation resistance can be improved by making the separator member made of titanium.
  • FIG. 4 is a plan view of an anode-side separator member of the water electrolysis device according to the first embodiment
  • FIG. FIG. 2B is a cross-sectional view of the anode-side separator member of the water electrolysis device according to the first embodiment taken along line 2-2 in FIG. 2A.
  • 4 is a plan view of a cathode-side separator member of the water electrolysis device according to the first embodiment;
  • FIG. 3B is a cross-sectional view of the cathode-side separator member of the water electrolysis device according to the first embodiment taken along line 3-3 of FIG. 3A.
  • FIG. 4 is a plan view of an anode-side separator member of a water electrolysis device according to a modification of the first embodiment;
  • FIG. 4B is a cross-sectional view along line 4-4 of FIG. 4A of the anode-side separator member of the water electrolysis device according to the modification of the first embodiment.
  • FIG. 8 is a plan view of an anode-side separator member of a water electrolysis device according to a second embodiment;
  • FIG. 5B is a cross-sectional view of the anode-side separator member of the water electrolysis device according to the second embodiment taken along line 5-5 in FIG. 5A.
  • FIG. 8 is a plan view of a cathode-side separator member of a water electrolysis device according to a second embodiment;
  • FIG. 6B is a cross-sectional view of the cathode-side separator member of the water electrolysis device according to the second embodiment taken along line 6-6 in FIG. 6A.
  • FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment;
  • FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment;
  • FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment; It is a figure which shows the schematic cross-sectional structure of the water electrolysis apparatus which concerns on other embodiment.
  • FIG. 1 shows a schematic cross-section of a cell 20 of the water electrolysis device 10. As shown in FIG.
  • the cell 20 has an electrolyte membrane 21 .
  • the electrolyte membrane 21 is formed by stacking an anode catalyst layer 24 on one side of the electrolyte layer 22 and a cathode catalyst layer 34 on the other side.
  • a separator member 26 is laminated on the anode catalyst layer 24 of the electrolyte membrane 21
  • a separator member 36 is laminated on the cathode catalyst layer 34 .
  • the electrolyte layer 22 has a rectangular shape, and a carbon-fluorine polymer film, a carbon-fluorine polymer film, or the like can be used.
  • the anode catalyst layer 24 covers the inner peripheral side narrower than the outer periphery of one surface of the electrolyte membrane 21, and can use an Ir-based catalyst or the like.
  • the cathode catalyst layer 34 covers the inner circumference narrower than the outer circumference of the other surface of the electrolyte membrane 21, and can use a Pt/carbon catalyst or the like.
  • a frame-shaped anode seal layer 25 is laminated on the anode catalyst layer 24 side of the electrolyte membrane 21 .
  • the anode seal layer 25 is formed on the outer periphery of the anode catalyst layer 24 of the electrolyte layer 22, as shown in FIG.
  • An anode opening 25A is formed within the frame of the anode seal layer 25, and the anode catalyst layer 24 and a gas diffusion portion 27 of a separator member 26, which will be described later, are arranged in the anode opening 25A.
  • the anode seal layer 25 is in close contact with the electrolyte layer 22 and the separator member 26 to provide a seal therebetween.
  • the anode seal layer 25 can be made of resin or rubber material.
  • a separator member 26 is laminated on the anode seal layer 25 .
  • the separator member 26 has a rectangular plate shape, and a gas diffusion portion 27 is integrally formed on the surface on the anode catalyst layer 24 side.
  • the gas diffusion part 27 is formed at a position corresponding to the anode catalyst layer 24 in plan view, and has the same shape as the anode catalyst layer 24 in plan view, and the wall part 28 is formed in a square shape in plan view.
  • the gas diffusion portion 27 has a circular projection 27B formed on the entire surface thereof in a plan view.
  • the convex portion 27B has a top portion 27AP that is flush with the surface of the separator member 26 (based on the thickness surface of the portion where the uneven pattern is not formed).
  • a concave portion 27A recessed from the surface of the separator member 26 is formed between the adjacent convex portions 27B (portion where the convex portion 27B is not formed).
  • the gas diffusion part 27 is thus integrally formed with an uneven pattern on its surface.
  • integrated formed as used herein means that it is composed of one member rather than separate members.
  • the convex portion 27B is formed apart from the adjacent convex portion 27B, and the top portion 27AP of the convex portion 27B is flat. By flattening the top portion 27AP in this manner, the contact area with the anode catalyst layer 24 can be increased.
  • An average interval D1 between adjacent convex portions 27B is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average opening width D2 (same as D1 in the present embodiment) of the concave portion 27A in plan view is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average pitch P1 of the uneven pattern formed by the convex portions 27B and the concave portions 27A is set to 20 ⁇ m or more and 500 ⁇ m or less.
  • the average opening width D2 is less than 10 ⁇ m, and the average pitch P1 is less than 20 ⁇ m, manufacturing becomes difficult. If the average interval D1, the average opening diameter D2 exceeds 250 ⁇ m, and the average pitch P1 exceeds 500 ⁇ m, the diffusion of gas becomes insufficient and the performance deteriorates.
  • the average interval D1 and the average opening width D2 are preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the depth B1 of the concave portion 27A is set to be shallower than the thickness T1 of the separator member 26, and the average pitch P1 of the uneven pattern is set to be smaller than the thickness T1.
  • the convex portion 27B is arranged in contact with the anode catalyst layer 24 of the electrolyte membrane 21 .
  • the convex portions 27B are maintained in contact with the anode catalyst layer 24 to ensure electrical conductivity, but the concave portions 27A are arranged so as to surround each convex portion 27B, and the fluid in the concave portions 27A is maintained. It is possible to move.
  • the contact ratio with the anode catalyst layer 24 per unit area in the gas diffusion part 27 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusibility.
  • the average interval D1, the average opening width D2, the average pitch P1 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images acquired through these, and the like.
  • a gas diffusion path 27C is formed between the inner anode catalyst layer 24 surrounded by the anode seal layer 25 and the concave portion 27A of the gas diffusion portion 27 .
  • Water is supplied to the gas diffusion path 27C from a water flow path (not shown) provided at one end of the gas diffusion path 27C, and oxygen is supplied from an oxygen flow path (not shown) provided at the other end of the gas diffusion path 27C. sent out.
  • Titanium, stainless steel, and carbon can be used as the separator member 26 .
  • oxygen is generated on the anode side, so it is preferable to use titanium, which is a material with high oxidation resistance, in order to suppress oxidation.
  • the sharpening process refers to a processing method for sharpening the surface of the plate material by applying a blade in an oblique direction to the surface of the plate material, similar to the processing method used when forming the uneven shape of a grater.
  • a frame-shaped cathode seal layer 35 is laminated on the cathode catalyst layer 34 side of the electrolyte membrane 21 .
  • the cathode seal layer 35 is formed on the outside of the cathode catalyst layer 34 of the electrolyte layer 22, as shown in FIG.
  • a cathode opening 35A is formed within the frame of the cathode seal layer 35, and the cathode catalyst layer 34 and a gas diffusion portion 37 of a separator member 36, which will be described later, are arranged in the cathode opening 35A.
  • the cathode seal layer 35 is in close contact with the electrolyte layer 22 and the separator member 36 to provide a seal therebetween.
  • the cathode seal layer 35 can be made of resin or rubber material.
  • a separator member 36 is laminated on the cathode seal layer 35 .
  • the separator member 36 has a rectangular plate shape, and a gas diffusion portion 37 is integrally formed on the surface on the cathode catalyst layer 34 side.
  • the gas diffusion part 37 is formed at a position corresponding to the cathode catalyst layer 34 in plan view, and has the same shape as the cathode catalyst layer 34 in plan view, and the wall part 28 is formed in a square shape in plan view. there is ing.
  • the gas diffusion portion 37 has a circular convex portion 37B formed on the entire surface in a plan view.
  • the convex portion 37B has a top portion 37AP that is flush with the surface of the separator member 36 .
  • a concave portion 37A is formed between the adjacent convex portions 37B (portion where the convex portion 37B is not formed). The gas diffusion part 37 is thus integrally formed with an uneven pattern on its surface.
  • the convex portion 37B is formed apart from the adjacent convex portion 37B, and the top portion 37AP of the convex portion 37B is flat. By flattening the top portion 37AP in this way, the contact area with the cathode catalyst layer 34 can be increased.
  • An average interval D3 between adjacent recesses 37A is set to 10 ⁇ m or more and 250 ⁇ m or less. Further, the average opening width D4 (same as D3 in the present embodiment) of the concave portion 37A in plan view is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average pitch P2 of the uneven pattern formed by the convex portions 37B and the concave portions 37A is set to 20 ⁇ m or more and 500 ⁇ m or less.
  • the average aperture width D4 is less than 10 ⁇ m, and the average pitch P2 is less than 20 ⁇ m, manufacturing becomes difficult. If the average interval D3, the average opening width D4 exceeds 250 ⁇ m, and the average pitch P2 exceeds 500 ⁇ m, the diffusion of gas becomes insufficient and the performance deteriorates.
  • the average interval D3 and the average opening width D4 are preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the average interval D3, the average opening width D4, the average pitch P2 of the concave-convex pattern, and the depth B2 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
  • the depth B2 of the concave portion 37A is set shallower than the thickness T2 of the separator member 36, and the average pitch P2 of the uneven pattern is set smaller than the thickness T2.
  • the convex portion 37B is arranged in contact with the cathode catalyst layer 34 of the electrolyte membrane 21 .
  • the protrusions 37B maintain contact with the cathode catalyst layer 34 to ensure electrical conductivity, but the recesses 37A are arranged so as to surround each protrusion 37B. It is possible to move.
  • the contact ratio with the cathode catalyst layer 34 per unit area in the gas diffusion part 37 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusibility.
  • a gas diffusion path 37C is formed between the inner cathode catalyst layer 34 surrounded by the cathode seal layer 35 and the recessed portion 37A of the gas diffusion portion 37 .
  • Hydrogen is delivered to the gas diffusion path 37C from a hydrogen flow path (not shown) provided at the other end of the gas diffusion path 37C (the other end remote from the one end of the gas diffusion path 27C provided with the water flow path). be done.
  • Titanium, stainless steel, carbon, or the like can be used as the separator member 36 .
  • the water electrolysis device 10 includes voltage applying means (not shown). A voltage is applied between the separator member 26 and the separator member 36 by the voltage application means. The voltage and current of the separator member 26 and the separator member 36 are measured by a voltmeter and an ammeter (not shown), and are controlled by a controller (not shown) based on the voltage and current values between the separator member 26 and the separator member 36. be done.
  • the oxygen O 2 is diffused by the gas diffusion portion 27 having an uneven pattern, flows toward the other end of the gas diffusion path 27C, and is sent out from the oxygen flow path together with unreacted water (H 2 O).
  • the hydrogen ions H 2 + move to the cathode side through the electrolyte membrane 21, acquire electrons e ⁇ supplied through the external wiring (reaction (2)), become hydrogen H 2 , diffuse in the gas diffusion section 37, and become gaseous. It is delivered from a hydrogen channel provided at the other end of the diffusion channel 37C.
  • the uneven pattern gas diffusion portions 27 and 37 formed integrally with the separator members 26 and 37 can diffuse water, oxygen, and hydrogen in the gas diffusion paths 27C and 37C. Therefore, there is no need to provide a separate member for gas diffusion, and costs such as material costs and processing costs can be reduced. In particular, compared to cells in which the gas diffusion layer and the separator member are separate members, there is no need to plate the separator member, and the manufacturing cost can be reduced. In addition, the interface between the gas diffusion layer and the separator member is eliminated, and deterioration of electrical connection due to oxidation of the interface can be prevented.
  • the depths B1 and B2 of the concave portions 27B and 37B are shallower than the thicknesses T1 and T2 of the separator members 26 and 36, and the average pitches P1 and P2 of the uneven patterns are equal to the thickness T1 , T2, the gas diffusion paths 27C and 37C can maintain the easiness of manufacturing the gas diffusion portions 27 and 37 while ensuring the gas diffusibility.
  • main flow portion 29 may also be formed in the separator member 36 on the cathode side.
  • FIGS. 5A, 5B, 6A and 6B A second embodiment of the present invention will now be described with reference to FIGS. 5A, 5B, 6A and 6B.
  • the same reference numerals are given to the same parts as in the first embodiment, and detailed description thereof will be omitted.
  • the water electrolysis device 10 of the present embodiment uses separator members 26-2 and 36-2 instead of the separator members 26 and 36. Configurations other than the separator members 26 and 36 are the same as in the first embodiment.
  • a separator member 26 - 2 is laminated on the anode seal layer 25 .
  • the separator member 26-2 has a rectangular plate shape, and a gas diffusion section 27-2 is integrally formed on the surface on the anode catalyst layer 24 side.
  • the gas diffusion part 27-2 is formed at a position corresponding to the anode catalyst layer 24 in plan view, and has the same shape as the anode catalyst layer 24 in plan view.
  • the gas diffusion portion 27-2 includes a groove recess 27B-2 formed by a plurality of grooves extending from one end side to the other end side in a plan view, and a gap between the groove recess 27B-2.
  • a convex portion 27A-2 is formed on the .
  • the recessed groove 27B-2 is recessed from the surface of the separator member 26-2.
  • a long protrusion 27A-2 sandwiched between the adjacent groove recesses 27B-2 is formed in a portion where the groove recesses 27B-2 are not formed.
  • the gas diffusion part 27-2 is thus integrally formed with an uneven pattern on its surface.
  • the groove recess 27B-2 is formed apart from the adjacent groove recess 27B-2, and the top 27AP-2 of the projection 27A-2 is flat. By flattening the top portion 27AP-2 in this manner, the contact area with the anode catalyst layer 24 can be increased.
  • An average interval D5 between adjacent convex portions 27A-2 is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average opening width D6 (same as D5 in this embodiment) in plan view is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average pitch P3 of the concave/convex pattern formed by the convex portions 27A-2 and the groove concave portions 27B-2 is set to 20 ⁇ m or more and 500 ⁇ m or less.
  • the average opening width D6 is less than 10 ⁇ m, and the average pitch P3 is less than 20 ⁇ m, manufacturing becomes difficult. If the average interval D5, the average aperture width D6 exceeds 250 ⁇ m, and the average pitch P3 exceeds 500 ⁇ m, the diffusion of gas becomes insufficient and the performance deteriorates.
  • the depth B1 of the groove recess 27B-2 is set to be shallower than the thickness T1 of the separator member 26-2, and the average pitch P3 of the uneven pattern is set to be smaller than the thickness T1.
  • the contact ratio with the anode catalyst layer 24 per unit area in the gas diffusion part 27-2 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusion.
  • the average interval D5, the average opening width D6, the average pitch P3 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
  • a gas diffusion path 27C is formed between the inner anode catalyst layer 24 surrounded by the anode seal layer 25 and the groove recess 27B-2 of the gas diffusion section 27-2.
  • separator member 26-2 a member similar to the separator member 26 can be used.As a method of forming the concave-convex pattern on the surface of the separator member 26-2, pressing, embossing, dressing, cutting, etc. can be used. can be used.
  • a separator member 36 - 2 is laminated on the cathode seal layer 35 .
  • the separator member 36-2 has a rectangular plate shape, and a gas diffusion section 37-2 is integrally formed on the surface on the cathode catalyst layer 34 side.
  • the gas diffusion part 37-2 is formed at a position corresponding to the cathode catalyst layer 34 in plan view, and has the same shape as the cathode catalyst layer 34 in plan view.
  • the gas diffusion portion 37-2 includes groove recesses 37B-2 formed of a plurality of grooves extending from one end side to the other end side in a plan view, and a groove between the groove recesses 37B-2.
  • a convex portion 37A-2 is formed on the .
  • the groove recess 37B-2 is recessed from the surface of the separator member 36-2. In the portion where the recessed groove 37B-2 is not formed, an elongated projection 37A-2 is formed between the adjacent recessed grooves 37B-2.
  • the gas diffusion portion 37-2 is thus integrally formed with an uneven pattern on its surface.
  • the groove recess 37B-2 is formed apart from the adjacent groove recess 37B-2, and the top 37AP-2 of the projection 37A-2 is flat. By flattening the top portion 37AP-2 in this manner, the contact area with the cathode catalyst layer 34 can be increased.
  • An average interval D7 between adjacent convex portions 37A-2 is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average opening width D8 (same as D7 in this embodiment) in plan view is set to 10 ⁇ m or more and 250 ⁇ m or less.
  • the average pitch P4 of the concave/convex pattern formed by the convex portions 37A-2 and the groove concave portions 37B-2 is set to 20 ⁇ m or more and 500 ⁇ m or less.
  • the average aperture width D8 is less than 10 ⁇ m, and the average pitch P4 is less than 20 ⁇ m, manufacturing becomes difficult. If the average interval D7, the average opening width D8 exceeds 250 ⁇ m, and the average pitch P4 exceeds 500 ⁇ m, the diffusion of gas becomes insufficient and the performance deteriorates.
  • the average interval D7 and the average opening width D8 are preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the depth B1 of the groove recess 37B-2 is set to be shallower than the thickness T1 of the separator member 36-2, and the average pitch P4 of the uneven pattern is set to be smaller than the thickness T1.
  • the convex portion 37A-2 is arranged in contact with the cathode catalyst layer 34 of the electrolyte membrane 21 .
  • the projections 37A-2 maintain contact with the cathode catalyst layer 34 to ensure conductivity, but have gaps that allow fluid movement between the grooves and recesses 37B-2. ing.
  • the contact ratio with the cathode catalyst layer 34 per unit area in the gas diffusion part 37-2 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusion.
  • the average interval D7, the average opening width D8, the average pitch P4 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
  • a gas diffusion path 37C is formed between the inner cathode catalyst layer 34 surrounded by the cathode seal layer 35 and the groove recess 37B-2 of the gas diffusion section 37-2.
  • separator member 36-2 a member similar to the separator member 36 can be used.As a method for forming the concave-convex pattern on the surface of the separator member 36-2, pressing, embossing, dressing, cutting, etc. can be used. can be used.
  • the protrusions may be randomly arranged without aligning them. Furthermore, the size and shape of the protrusions do not need to be the same, and may be random shapes.
  • a plurality of elongated straight grooves in a plan view has been described as an example.
  • grooves of other shapes are also possible.
  • a concavo-convex pattern may be employed in which a plurality of wavy grooves 41 are used as concave portions and convex portions 42 are formed between adjacent grooves.
  • the elongated linear groove 43 arranged obliquely in a plan view may be used as the concave portion, and the portion surrounded by the groove 43 may be used as the convex portion 44 .
  • the gas diffusion portions 27, 37 are formed on one side of the separator members 26, 36, but as shown in FIG. 8, they can be formed on both sides to form a cell stack.
  • one side of the one separator member 26 arranged in the middle of the stack serves as the gas diffusion section 27 facing the anode catalyst layer 24, and the other side serves as the gas diffusion section 37 facing the cathode catalyst layer 34.
  • solid polymer electrolyte membrane (PEM) water electrolysis device 10 was described as an example, but the present invention can also be used for an anion exchange membrane (AEM) water electrolysis device. .
  • AEM anion exchange membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This water electrolysis device 10 is provided with: an electrolyte membrane 21 obtained by laminating an anode catalyst layer 24 on one surface of an electrolyte layer 22 and laminating a cathode catalyst layer 34 on the other surface; and an electrically conductive separator member 26 obtained by integrally forming, on the surface, a protrusion/recess pattern in which recesses having an average opening width of 10-250 μm or protrusions having an average inter-apex interval of 10-250 μm are arranged at an average pitch of 20-500 μm, disposing the protrusions of the recess/protrusion pattern in contact with the anode catalyst layer 24, and forming a gas diffusion path 27C between the anode catalyst layer 24 and the separator member 26.

Description

水電解デバイスWater electrolysis device
 本発明は、水電解デバイスに関する。 The present invention relates to water electrolysis devices.
 近年、クリーンエネルギーの活用として、水素を生成する水電解デバイス、が注目されている。再生可能エネルギーから得た電力により水電解デバイスで水素を生成して貯留し、必要に応じて水素を用いて燃料電池で発電することにより、安定しない再生可能エネルギーによる場合でも、継続的に電力を供給することができる。 In recent years, water electrolysis devices that generate hydrogen have attracted attention as a way to use clean energy. Electric power obtained from renewable energy is used to generate and store hydrogen in a water electrolysis device, and when necessary, hydrogen is used to generate electricity in a fuel cell. can supply.
 このような、水電解デバイスについては、セルスタックの構成についても開発が行われており、電解質膜、アノード、カソード、セパレータを含むセル構造についても、様々な技術が提案されている。(例えば特許文献1参照)。 For such water electrolysis devices, the structure of the cell stack has also been developed, and various technologies have been proposed for the cell structure including the electrolyte membrane, anode, cathode, and separator. (See Patent Document 1, for example).
WO2021/111775号WO2021/111775
 このような、水電解デバイスにおいては、特に、アノード側に強い酸化条件が生じるため、構成材料が限定され、コストが高くなりやすい。 In such a water electrolysis device, a strong oxidizing condition occurs especially on the anode side, so the constituent materials are limited and the cost tends to be high.
 本発明は、上記事実を考慮して成されたものであり、製造コストを抑制できる水電解デバイスを提供することを目的とする。 The present invention has been made in consideration of the above facts, and an object of the present invention is to provide a water electrolysis device capable of suppressing manufacturing costs.
 第1の態様に係る水電解デバイスは、電解質層の一方面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、開口平均幅10μm以上250μm以下の溝形状の凹部が平均ピッチ20μm以上500μm以下で配置される凹凸パターンが表面に一体形成され、前記凹凸パターンの隣り合う前記凹部の間に形成される凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材と、備えている。
 第2の態様に係る水電解デバイスは、電解質層の一方面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、頂部同士の平均間隔が10μm以上250μm以下の凸部が平均ピッチ20μm以上500μm以下で配置される凹凸パターンが表面に一体形成され、前記凹凸パターンの前記凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材と、を備えている。
A water electrolysis device according to a first aspect includes an electrolyte membrane in which an anode catalyst layer is laminated on one surface of an electrolyte layer and a cathode catalyst layer is laminated on the other surface thereof; are arranged at an average pitch of 20 μm or more and 500 μm or less on the surface, and the protrusions formed between the adjacent recesses of the uneven pattern are arranged in contact with the anode catalyst layer, and the anode catalyst layer and a conductive separator member forming a gas diffusion path between.
A water electrolysis device according to a second aspect includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side, and convexes with an average distance between the tops of 10 μm or more and 250 μm or less An uneven pattern in which portions are arranged at an average pitch of 20 μm or more and 500 μm or less is integrally formed on the surface, the convex portions of the uneven pattern are arranged in contact with the anode catalyst layer, and a gas diffusion path is formed between the anode catalyst layer and the uneven pattern. and a conductive separator member.
 第1、第2の態様に係る水電解デバイスでは、導電性のセパレータ部材の表面に凹凸パターンが一体形成されており、凹凸パターンの凸部がアノード触媒層に接触配置され、アノード触媒層との間にガス拡散路を構成する。当該凹凸パターンは、開口平均幅10μm以上250μm以下の凹部または頂部同士の平均間隔が10μm以上250μm以下の凸部が平均ピッチ20μm以上500μm以下で配置されているので、ガス拡散路において、水や酸素を拡散させることができる。 In the water electrolysis device according to the first and second aspects, the uneven pattern is integrally formed on the surface of the conductive separator member, and the convex portions of the uneven pattern are arranged in contact with the anode catalyst layer, and are in contact with the anode catalyst layer. A gas diffusion path is constructed between them. In the uneven pattern, concave portions having an average opening width of 10 μm or more and 250 μm or less or convex portions having an average interval between apexes of 10 μm or more and 250 μm or less are arranged at an average pitch of 20 μm or more and 500 μm or less. can be diffused.
 このように、セパレータ部材の表面に凹凸パターンを一体形成してガス拡散を行うことにより、ガス拡散のために別途部材を設ける必要がなく、コストを削減することができる。 In this way, by integrally forming the concave-convex pattern on the surface of the separator member and performing gas diffusion, there is no need to provide a separate member for gas diffusion, and costs can be reduced.
 第3の態様に係る水電解デバイスは、前記凹凸パターンの平均ピッチが、前記セパレータ部材の厚みよりも小さい。 In the water electrolysis device according to the third aspect, the uneven pattern has an average pitch smaller than the thickness of the separator member.
 第3の態様に係る水電解デバイスでは、凹凸パターンの平均ピッチをセパレータ部材の厚みよりも小さくすることにより、ガス拡散性を確保しつつ製造の容易さを維持することができる。 In the water electrolysis device according to the third aspect, by making the average pitch of the uneven pattern smaller than the thickness of the separator member, it is possible to maintain ease of manufacture while ensuring gas diffusibility.
 第4の態様に係る水電解デバイスは、電解質層の一方側面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、厚み方向に凹凸となる溝形状の凹部と隣り合う前記凹部の間に形成される凸部が形成される凹凸パターンが一体形成され、前記凹凸パターンの前記凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材であって、前記凹凸パターンの平均ピッチが、前記セパレータ部材の厚みよりも小さい、導電性のセパレータ部材と、を備えている。
 第5の態様に係る水電解デバイスは、電解質層の一方側面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、厚み方向に凸で互いに離隔する凸部が形成され、隣り合う前記凸部の間に凹部が形成される凹凸パターンが一体形成され、前記凹凸パターンの前記凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材であって、前記凹凸パターンの平均ピッチが、前記セパレータ部材の厚みよりも小さい、導電性のセパレータ部材と、を備えている。
A water electrolysis device according to a fourth aspect includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side of the electrolyte layer, and groove-shaped recesses that are uneven in the thickness direction are adjacent to each other. A concavo-convex pattern in which protruding portions are formed between the matching concave portions is integrally formed, the protruding portions of the concavo-convex pattern are disposed in contact with the anode catalyst layer, and gas diffusion paths are provided between the anode catalyst layer and the anode catalyst layer. wherein the average pitch of the uneven pattern is smaller than the thickness of the separator member.
A water electrolysis device according to a fifth aspect includes an electrolyte membrane in which an anode catalyst layer is laminated on one side of an electrolyte layer and a cathode catalyst layer is laminated on the other side of the electrolyte layer, and projections that are convex in the thickness direction and are separated from each other are formed. A concave-convex pattern in which concave portions are formed between the adjacent convex portions is integrally formed, the convex portions of the concave-convex pattern are disposed in contact with the anode catalyst layer, and gas diffusion paths are provided between the anode catalyst layer and the anode catalyst layer. wherein the average pitch of the uneven pattern is smaller than the thickness of the separator member.
 第4、第5の態様に係る水電解デバイスでは、導電性のセパレータ部材の表面に凹凸パターンが一体形成されており、凹凸パターンの凸部がアノード触媒層に接触配置され、アノード触媒層との間にガス拡散路を構成する。 In the water electrolysis device according to the fourth and fifth aspects, the uneven pattern is integrally formed on the surface of the conductive separator member, and the convex portions of the uneven pattern are arranged in contact with the anode catalyst layer, and are in contact with the anode catalyst layer. A gas diffusion path is constructed between them.
 このように、セパレータ部材の表面に凹凸パターンを一体形成してガス拡散路を構成することにより、ガス拡散のために別途部材を設ける必要がなく、コストを削減することができる。また、当該凹凸パターンは、平均ピッチが、セパレータ部材の厚みよりも小さく設定されているので、ガス拡散路において、ガス拡散性を確保しつつ製造の容易さを維持することができる。 In this way, by integrally forming the concave-convex pattern on the surface of the separator member to configure the gas diffusion path, there is no need to provide a separate member for gas diffusion, and the cost can be reduced. In addition, since the uneven pattern has an average pitch smaller than the thickness of the separator member, it is possible to maintain ease of manufacture while ensuring gas diffusion in the gas diffusion path.
 第6の態様に係る水電解デバイスは、前記凹凸パターンにおける単位面積当たりの前記電解質膜との接触率は、40%以上85%以下である。 In the water electrolysis device according to the sixth aspect, the contact ratio with the electrolyte membrane per unit area in the uneven pattern is 40% or more and 85% or less.
 第6の態様に係る水電解デバイスによれば、セパレータ部材とアノード触媒層との間で、良好な導通性を確保すると共に、ガス拡散性を維持することができる。 According to the water electrolysis device according to the sixth aspect, it is possible to ensure good electrical conductivity and maintain gas diffusion between the separator member and the anode catalyst layer.
 第7の態様に係る水電解デバイスは、前記凸部は、円形状である。 In the water electrolysis device according to the seventh aspect, the projections are circular.
 凹凸パターンの凸部を、円形状とすることにより、アノード触媒層との間にガス拡散路を構成することができる。 A gas diffusion path can be configured between the anode catalyst layer and the convex portion of the concave-convex pattern by making the convex portion circular.
 第1の態様に係る水電解デバイスは、前記凹部は、溝形状である。 In the water electrolysis device according to the first aspect, the concave portion has a groove shape.
 凹凸パターンの凹部を、溝形状とすることにより、アノード触媒層との間にガス拡散路を構成することができる。 A gas diffusion path can be formed between the anode catalyst layer and the recessed portions of the uneven pattern by making them groove-shaped.
 第8の態様に係る水電解デバイスは、前記セパレータ部材には、前記ガス拡散路の上流側から下流側へ向かって、前記凹凸パターンよりも流路抵抗が小さい主流部、が形成されている。 In the water electrolysis device according to the eighth aspect, the separator member is formed with a main portion having a flow path resistance smaller than that of the uneven pattern from the upstream side to the downstream side of the gas diffusion path.
 第8の態様に係る水電解デバイスでは、セパレータ部材に、凹凸パターンよりも流路抵抗が小さい主流部が形成されている。当該主流部は、ガス拡散路の上流側から下流側へ向かっているので、ガス拡散路から主流部へ水や酸素が流入することにより、水や酸素の流れを良好にすることができる。 In the water electrolysis device according to the eighth aspect, the separator member is formed with a main flow portion having a lower flow path resistance than the uneven pattern. Since the main flow portion extends from the upstream side to the downstream side of the gas diffusion path, water and oxygen flow from the gas diffusion flow path into the main flow portion, thereby improving the flow of water and oxygen.
 第9の態様に係る水電解デバイスは、前記セパレータ部材は、チタン製である。 In the water electrolysis device according to the ninth aspect, the separator member is made of titanium.
 第9の態様に係る水電解デバイスでは、セパレータ部材をチタン製にすることにより、耐酸化性を向上させることができる。 In the water electrolysis device according to the ninth aspect, oxidation resistance can be improved by making the separator member made of titanium.
 本発明に係る水電解デバイスによれば、製造コストを抑制することができる。 According to the water electrolysis device according to the present invention, manufacturing costs can be suppressed.
第1実施形態に係る水電解装置の概略断面構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the schematic cross-sectional structure of the water electrolysis apparatus which concerns on 1st Embodiment. 第1施形態に係る水電解装置のアノード側セパレータ部材の平面図である。4 is a plan view of an anode-side separator member of the water electrolysis device according to the first embodiment; FIG. 第1施形態に係る水電解装置のアノード側セパレータ部材の図2Aの2-2線の断面図である。FIG. 2B is a cross-sectional view of the anode-side separator member of the water electrolysis device according to the first embodiment taken along line 2-2 in FIG. 2A. 第1施形態に係る水電解装置のカソード側セパレータ部材の平面図である。4 is a plan view of a cathode-side separator member of the water electrolysis device according to the first embodiment; FIG. 第1施形態に係る水電解装置のカソード側セパレータ部材の図3Aの3-3線の断面図である。FIG. 3B is a cross-sectional view of the cathode-side separator member of the water electrolysis device according to the first embodiment taken along line 3-3 of FIG. 3A. 第1施形態の変形例に係る水電解装置のアノード側セパレータ部材の平面図である。FIG. 4 is a plan view of an anode-side separator member of a water electrolysis device according to a modification of the first embodiment; 第1施形態の変形例に係る水電解装置のアノード側セパレータ部材の図4Aの4-4線の断面図である。FIG. 4B is a cross-sectional view along line 4-4 of FIG. 4A of the anode-side separator member of the water electrolysis device according to the modification of the first embodiment. 第2施形態に係る水電解装置のアノード側セパレータ部材の平面図である。FIG. 8 is a plan view of an anode-side separator member of a water electrolysis device according to a second embodiment; 第2施形態に係る水電解装置のアノード側セパレータ部材の図5Aの5-5線の断面図である。FIG. 5B is a cross-sectional view of the anode-side separator member of the water electrolysis device according to the second embodiment taken along line 5-5 in FIG. 5A. 第2施形態に係る水電解装置のカソード側セパレータ部材の平面図である。FIG. 8 is a plan view of a cathode-side separator member of a water electrolysis device according to a second embodiment; 第2施形態に係る水電解装置のカソード側セパレータ部材の図6Aの6-6線の断面図である。FIG. 6B is a cross-sectional view of the cathode-side separator member of the water electrolysis device according to the second embodiment taken along line 6-6 in FIG. 6A. その他の実施形態に係る水電解装置のガス拡散部の例を示す図である。FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment; その他の実施形態に係る水電解装置のガス拡散部の例を示す図である。FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment; その他の実施形態に係る水電解装置のガス拡散部の例を示す図である。FIG. 10 is a diagram showing an example of a gas diffusion part of a water electrolysis device according to another embodiment; その他の実施形態に係る水電解装置の概略断面構成を示す図である。It is a figure which shows the schematic cross-sectional structure of the water electrolysis apparatus which concerns on other embodiment.
 <第1実施形態>
 本発明の水電解デバイスの第1実施形態を図面を参照して説明する。本実施形態では、固体高分子電解質膜型(PEM)の水電解装置10を例に説明する。図1には、水電解装置10のセル20の概略断面が示されている。
<First Embodiment>
A first embodiment of a water electrolysis device of the present invention will be described with reference to the drawings. In the present embodiment, a solid polymer electrolyte membrane (PEM) water electrolysis device 10 will be described as an example. FIG. 1 shows a schematic cross-section of a cell 20 of the water electrolysis device 10. As shown in FIG.
 セル20は、電解質膜21を備えている。電解質膜21は、電解質層22の一方面に、アノード触媒層24が積層され、他方面にカソード触媒層34が積層されて形成されている。電解質膜21のアノード触媒層24には、セパレータ部材26が積層され、カソード触媒層34には、セパレータ部材36が積層されている。 The cell 20 has an electrolyte membrane 21 . The electrolyte membrane 21 is formed by stacking an anode catalyst layer 24 on one side of the electrolyte layer 22 and a cathode catalyst layer 34 on the other side. A separator member 26 is laminated on the anode catalyst layer 24 of the electrolyte membrane 21 , and a separator member 36 is laminated on the cathode catalyst layer 34 .
 電解質層22は、方形状とされ、炭素-フッ素系高分子膜や炭素-フッ素系高分子膜などを用いることができる。アノード触媒層24は、電解質膜21の一方面の外周よりも狭い内周側を覆っており、Ir系触媒などを用いることができる。カソード触媒層34は、電解質膜21の他方面の外周よりも狭い内周側を覆っており、Pt/カーボン系触媒などを用いることができる。 The electrolyte layer 22 has a rectangular shape, and a carbon-fluorine polymer film, a carbon-fluorine polymer film, or the like can be used. The anode catalyst layer 24 covers the inner peripheral side narrower than the outer periphery of one surface of the electrolyte membrane 21, and can use an Ir-based catalyst or the like. The cathode catalyst layer 34 covers the inner circumference narrower than the outer circumference of the other surface of the electrolyte membrane 21, and can use a Pt/carbon catalyst or the like.
 電解質膜21のアノード触媒層24側には、枠状のアノードシール層25が積層されている。アノードシール層25は、図1に示されるように、電解質層22のアノード触媒層24の外周に形成されている。アノードシール層25の枠内には、アノード開口25Aが形成されており、アノード開口25Aには、アノード触媒層24、及び、後述するセパレータ部材26のガス拡散部27が配置される。アノードシール層25は、電解質層22とセパレータ部材26に密着されており、両者の間をシールしている。アノードシール層25は、樹脂、ゴム材料で形成することができる。 A frame-shaped anode seal layer 25 is laminated on the anode catalyst layer 24 side of the electrolyte membrane 21 . The anode seal layer 25 is formed on the outer periphery of the anode catalyst layer 24 of the electrolyte layer 22, as shown in FIG. An anode opening 25A is formed within the frame of the anode seal layer 25, and the anode catalyst layer 24 and a gas diffusion portion 27 of a separator member 26, which will be described later, are arranged in the anode opening 25A. The anode seal layer 25 is in close contact with the electrolyte layer 22 and the separator member 26 to provide a seal therebetween. The anode seal layer 25 can be made of resin or rubber material.
 アノードシール層25には、セパレータ部材26が積層されている。セパレータ部材26は、長方形板状とされ、アノード触媒層24側の表面にガス拡散部27が一体形成されている。 A separator member 26 is laminated on the anode seal layer 25 . The separator member 26 has a rectangular plate shape, and a gas diffusion portion 27 is integrally formed on the surface on the anode catalyst layer 24 side.
 ガス拡散部27は、平面視でアノード触媒層24に対応する位置に形成されており、平
面視でアノード触媒層24と同様の形状とされ、壁部28が平面視で方形状に形成されている。ガス拡散部27には、図2Aに示されるように、平面視で円形状の凸部27Bが全面に形成されている。図2Bに示されるように、凸部27Bは、セパレータ部材26の表面(凹凸パターンが形成されていない部分の厚み表面を基準とする)と面一に頂部27APが配置されている。隣り合う凸部27Bの間(凸部27Bが形成されていない部分)には、セパレータ部材26の表面から凹む凹部27Aが形成されている。ガス拡散部27は、このように、凹凸パターンが表面に一体形成されたものである。ここでの「一体形成」は、別部材でなく一部材で構成されていることを意味している。
The gas diffusion part 27 is formed at a position corresponding to the anode catalyst layer 24 in plan view, and has the same shape as the anode catalyst layer 24 in plan view, and the wall part 28 is formed in a square shape in plan view. there is As shown in FIG. 2A, the gas diffusion portion 27 has a circular projection 27B formed on the entire surface thereof in a plan view. As shown in FIG. 2B, the convex portion 27B has a top portion 27AP that is flush with the surface of the separator member 26 (based on the thickness surface of the portion where the uneven pattern is not formed). A concave portion 27A recessed from the surface of the separator member 26 is formed between the adjacent convex portions 27B (portion where the convex portion 27B is not formed). The gas diffusion part 27 is thus integrally formed with an uneven pattern on its surface. The term "integrally formed" as used herein means that it is composed of one member rather than separate members.
 凸部27Bは、隣接する凸部27Bと離隔して形成されており、凸部27Bの頂部27APは、平坦状とされている。このように、頂部27APを平坦状とすることにより、アノード触媒層24との接触面積を大きくすることができる。隣り合う凸部27B同士の平均間隔D1は、10μm以上250μm以下とされている。また、平面視での凹部27Aの開口平均幅D2(本実施形態ではD1と同一)は、10μm以上250μm以下とされている。凸部27B及び凹部27Aで形成される凹凸パターンの平均ピッチP1は、20μm以上500μm以下とされている。 The convex portion 27B is formed apart from the adjacent convex portion 27B, and the top portion 27AP of the convex portion 27B is flat. By flattening the top portion 27AP in this manner, the contact area with the anode catalyst layer 24 can be increased. An average interval D1 between adjacent convex portions 27B is set to 10 μm or more and 250 μm or less. In addition, the average opening width D2 (same as D1 in the present embodiment) of the concave portion 27A in plan view is set to 10 μm or more and 250 μm or less. The average pitch P1 of the uneven pattern formed by the convex portions 27B and the concave portions 27A is set to 20 μm or more and 500 μm or less.
 平均間隔D1、開口平均幅D2が10μm未満、平均ピッチP1が20μm未満の場合には、製造が難しくなる。平均間隔D1、開口平均径D2が250μm超、平均ピッチP1が500μm超の場合には、ガスの拡散が不十分となり性能が悪化する。 When the average interval D1, the average opening width D2 is less than 10 μm, and the average pitch P1 is less than 20 μm, manufacturing becomes difficult. If the average interval D1, the average opening diameter D2 exceeds 250 μm, and the average pitch P1 exceeds 500 μm, the diffusion of gas becomes insufficient and the performance deteriorates.
 なお、平均間隔D1、開口平均幅D2は、10μm以上150μm以下であることが好ましい。 The average interval D1 and the average opening width D2 are preferably 10 μm or more and 150 μm or less.
 また、凹部27Aの深さB1は、セパレータ部材26の厚みT1よりも浅く、凹凸パターンの平均ピッチP1は、厚みT1よりも小さく設定されている。 Also, the depth B1 of the concave portion 27A is set to be shallower than the thickness T1 of the separator member 26, and the average pitch P1 of the uneven pattern is set to be smaller than the thickness T1.
 凸部27Bは、電解質膜21のアノード触媒層24と接触配置されている。凸部27Bは、アノード触媒層24との間の導電性確保のための接触が維持されているが、凹部27Aは、各々の凸部27Bを囲むように配置されており、凹部27Aでの流体移動が可能とされている。 The convex portion 27B is arranged in contact with the anode catalyst layer 24 of the electrolyte membrane 21 . The convex portions 27B are maintained in contact with the anode catalyst layer 24 to ensure electrical conductivity, but the concave portions 27A are arranged so as to surround each convex portion 27B, and the fluid in the concave portions 27A is maintained. It is possible to move.
 ガス拡散部27における単位面積当たりのアノード触媒層24との接触率は、導電性の確保とガス拡散性の維持を考慮して、40%以上85%以下であることが好ましい。 The contact ratio with the anode catalyst layer 24 per unit area in the gas diffusion part 27 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusibility.
 なお、平均間隔D1、開口平均幅D2、凹凸パターンの平均ピッチP1、深さB1の測定は、走査電子顕微鏡、光学顕微鏡、これらを介して取得した画像などにより行うことができる。 The average interval D1, the average opening width D2, the average pitch P1 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images acquired through these, and the like.
 アノードシール層25に囲まれた内側のアノード触媒層24とガス拡散部27の凹部27Aの間に、ガス拡散路27Cが形成されている。ガス拡散路27Cには、ガス拡散路27Cの一端部に設けられた不図示の水流路から水が供給され、ガス拡散路27Cの他端部に設けられた不図示の酸素流路から酸素が送出される。 A gas diffusion path 27C is formed between the inner anode catalyst layer 24 surrounded by the anode seal layer 25 and the concave portion 27A of the gas diffusion portion 27 . Water is supplied to the gas diffusion path 27C from a water flow path (not shown) provided at one end of the gas diffusion path 27C, and oxygen is supplied from an oxygen flow path (not shown) provided at the other end of the gas diffusion path 27C. sent out.
 セパレータ部材26としては、チタン、ステンレス、カーボンを用いることができる。特に、本実施形態のように水電解装置のセルとして用いる場合には、アノード側に酸素が発生するため、酸化抑制のために耐酸化性能の高い材料であるチタンを用いることが好ましい。 Titanium, stainless steel, and carbon can be used as the separator member 26 . In particular, when used as a cell of a water electrolysis device as in the present embodiment, oxygen is generated on the anode side, so it is preferable to use titanium, which is a material with high oxidation resistance, in order to suppress oxidation.
 セパレータ部材26の表面に凹凸パターンを形成する方法としては、プレス加工、エン
ボス加工、目立て加工、切削加工などを用いることができる。なお、目立て加工とは、おろし金の凹凸形状を形成する際に用いられる加工方法と同様に、板材表面の斜め方向に刃を当てることで、表面を削り起こす加工方法を指す。
As a method for forming the concave-convex pattern on the surface of the separator member 26, press working, embossing, dressing, cutting, or the like can be used. It should be noted that the sharpening process refers to a processing method for sharpening the surface of the plate material by applying a blade in an oblique direction to the surface of the plate material, similar to the processing method used when forming the uneven shape of a grater.
 電解質膜21のカソード触媒層34側には、枠状のカソードシール層35が積層されている。カソードシール層35は、図1に示されるように、電解質層22のカソード触媒層34の外側に形成されている。カソードシール層35の枠内には、カソード開口35Aが形成されており、カソード開口35Aには、カソード触媒層34、及び、後述するセパレータ部材36のガス拡散部37が配置される。カソードシール層35は、電解質層22とセパレータ部材36に密着されており、両者の間をシールしている。カソードシール層35は、樹脂、ゴム材料で形成することができる。 A frame-shaped cathode seal layer 35 is laminated on the cathode catalyst layer 34 side of the electrolyte membrane 21 . The cathode seal layer 35 is formed on the outside of the cathode catalyst layer 34 of the electrolyte layer 22, as shown in FIG. A cathode opening 35A is formed within the frame of the cathode seal layer 35, and the cathode catalyst layer 34 and a gas diffusion portion 37 of a separator member 36, which will be described later, are arranged in the cathode opening 35A. The cathode seal layer 35 is in close contact with the electrolyte layer 22 and the separator member 36 to provide a seal therebetween. The cathode seal layer 35 can be made of resin or rubber material.
 カソードシール層35には、セパレータ部材36が積層されている。セパレータ部材36は、長方形板状とされ、カソード触媒層34側の表面にガス拡散部37が一体形成されている。 A separator member 36 is laminated on the cathode seal layer 35 . The separator member 36 has a rectangular plate shape, and a gas diffusion portion 37 is integrally formed on the surface on the cathode catalyst layer 34 side.
 ガス拡散部37は、平面視でカソード触媒層34に対応する位置に形成されており、平面視でカソード触媒層34と同様の形状とされ、壁部28が平面視で方形状に形成されている。ている。ガス拡散部37は、図3Aに示されるように、平面視で円形状の凸部37Bが全面に形成されている。図3Bに示されるように、凸部37Bは、セパレータ部材36の表面と面一に頂部37APが配置されている。隣り合う凸部37Bの間(凸部37Bが形成されていない部分)には、凹部37Aが形成されている。ガス拡散部37は、このように、凹凸パターンが表面に一体形成されたものである。 The gas diffusion part 37 is formed at a position corresponding to the cathode catalyst layer 34 in plan view, and has the same shape as the cathode catalyst layer 34 in plan view, and the wall part 28 is formed in a square shape in plan view. there is ing. As shown in FIG. 3A, the gas diffusion portion 37 has a circular convex portion 37B formed on the entire surface in a plan view. As shown in FIG. 3B , the convex portion 37B has a top portion 37AP that is flush with the surface of the separator member 36 . A concave portion 37A is formed between the adjacent convex portions 37B (portion where the convex portion 37B is not formed). The gas diffusion part 37 is thus integrally formed with an uneven pattern on its surface.
 凸部37Bは、隣接する凸部37Bと離隔して形成されており、凸部37Bの頂部37APは、平坦状とされている。このように、頂部37APを平坦状とすることにより、カソード触媒層34との接触面積を大きくすることができる。隣り合う凹部37A同士の平均間隔D3は、10μm以上250μm以下とされている。また、平面視での凹部37Aの開口平均幅D4(本実施形態ではD3と同一)は、10μm以上250μm以下とされている。凸部37B及び凹部37Aで形成される凹凸パターンの平均ピッチP2は、20μm以上500μm以下とされている。 The convex portion 37B is formed apart from the adjacent convex portion 37B, and the top portion 37AP of the convex portion 37B is flat. By flattening the top portion 37AP in this way, the contact area with the cathode catalyst layer 34 can be increased. An average interval D3 between adjacent recesses 37A is set to 10 μm or more and 250 μm or less. Further, the average opening width D4 (same as D3 in the present embodiment) of the concave portion 37A in plan view is set to 10 μm or more and 250 μm or less. The average pitch P2 of the uneven pattern formed by the convex portions 37B and the concave portions 37A is set to 20 μm or more and 500 μm or less.
 平均間隔D3、開口平均幅D4が10μm未満、平均ピッチP2が20μm未満の場合には、製造が難しくなる。平均間隔D3、開口平均幅D4が250μm超、平均ピッチP2が500μm超の場合には、ガスの拡散が不十分となり性能が悪化する。 When the average interval D3, the average aperture width D4 is less than 10 μm, and the average pitch P2 is less than 20 μm, manufacturing becomes difficult. If the average interval D3, the average opening width D4 exceeds 250 μm, and the average pitch P2 exceeds 500 μm, the diffusion of gas becomes insufficient and the performance deteriorates.
 なお、平均間隔D3、開口平均幅D4は、10μm以上150μm以下であることが好ましい。 The average interval D3 and the average opening width D4 are preferably 10 μm or more and 150 μm or less.
 なお、平均間隔D3、開口平均幅D4、凹凸パターンの平均ピッチP2、深さB2の測定は、走査電子顕微鏡、光学顕微鏡、これらを介して取得した画像などにより行うことができる。 The average interval D3, the average opening width D4, the average pitch P2 of the concave-convex pattern, and the depth B2 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
 また、凹部37Aの深さB2は、セパレータ部材36の厚みT2よりも浅く、凹凸パターンの平均ピッチP2は、厚みT2よりも小さく設定されている。 Also, the depth B2 of the concave portion 37A is set shallower than the thickness T2 of the separator member 36, and the average pitch P2 of the uneven pattern is set smaller than the thickness T2.
 凸部37Bは、電解質膜21のカソード触媒層34と接触配置されている。凸部37Bは、カソード触媒層34との間の導電性確保のための接触が維持されているが、凹部37Aは、各々の凸部37Bを囲むように配置されており、凹部37Aでの流体移動が可能とされている。 The convex portion 37B is arranged in contact with the cathode catalyst layer 34 of the electrolyte membrane 21 . The protrusions 37B maintain contact with the cathode catalyst layer 34 to ensure electrical conductivity, but the recesses 37A are arranged so as to surround each protrusion 37B. It is possible to move.
 ガス拡散部37における単位面積当たりのカソード触媒層34との接触率は、導電性の確保とガス拡散性の維持を考慮して、40%以上85%以下であることが好ましい。 The contact ratio with the cathode catalyst layer 34 per unit area in the gas diffusion part 37 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusibility.
 カソードシール層35に囲まれた内側のカソード触媒層34とガス拡散部37の凹部37Aの間に、ガス拡散路37Cが形成されている。ガス拡散路37Cには、ガス拡散路37Cの他端部(ガス拡散路27Cの水流路が設けられた一端部と離れた他端部)に設けられた不図示の水素流路から水素が送出される。 A gas diffusion path 37C is formed between the inner cathode catalyst layer 34 surrounded by the cathode seal layer 35 and the recessed portion 37A of the gas diffusion portion 37 . Hydrogen is delivered to the gas diffusion path 37C from a hydrogen flow path (not shown) provided at the other end of the gas diffusion path 37C (the other end remote from the one end of the gas diffusion path 27C provided with the water flow path). be done.
 セパレータ部材36としては、チタン、ステンレス、カーボンなどを用いることができる。 Titanium, stainless steel, carbon, or the like can be used as the separator member 36 .
 セパレータ部材26の表面に凹凸パターンを形成する方法としては、プレス加工、エンボス加工、目立て加工、切削加工などを用いることができる。 As a method for forming an uneven pattern on the surface of the separator member 26, press working, embossing, dressing, cutting, etc. can be used.
 水電解装置10は、不図示の電圧印加手段を備えている。電圧印加手段により、セパレータ部材26とセパレータ部材36の間に電圧が印加される。セパレータ部材26とセパレータ部材36の電圧、電流は、不図示の電圧計、電流計により計測され、セパレータ部材26とセパレータ部材36の間の電圧、電流値に基づいて、不図示の制御部により制御される。 The water electrolysis device 10 includes voltage applying means (not shown). A voltage is applied between the separator member 26 and the separator member 36 by the voltage application means. The voltage and current of the separator member 26 and the separator member 36 are measured by a voltmeter and an ammeter (not shown), and are controlled by a controller (not shown) based on the voltage and current values between the separator member 26 and the separator member 36. be done.
 次に、本実施形態の水電解装置10の作用効果について説明する。 Next, the effects of the water electrolysis device 10 of this embodiment will be described.
 不図示の水流路からガス拡散路27Cの一端部へ水が供給されるとセパレータ部材26とセパレータ部材36間への電圧印加により、アノード触媒層24の表面では、以下の反応(1)が生じる。
 HO → 2H + 0.5O + 2e (1)
When water is supplied from a water channel (not shown) to one end of the gas diffusion channel 27C, the following reaction (1) occurs on the surface of the anode catalyst layer 24 due to voltage application between the separator members 26 and 36. .
H 2 O → 2H + + 0.5O 2 + 2e (1)
 酸素Oは、凹凸パターンを有するガス拡散部27で拡散され、ガス拡散路27Cの他端部へ向かって流れ、未反応の水(HO)と共に酸素流路から送出される。 The oxygen O 2 is diffused by the gas diffusion portion 27 having an uneven pattern, flows toward the other end of the gas diffusion path 27C, and is sent out from the oxygen flow path together with unreacted water (H 2 O).
 水素イオンHは、電解質膜21を通ってカソード側へ移動し、外部配線で供給される電子eを得て(反応(2))水素Hとなり、ガス拡散部37で拡散され、ガス拡散路37Cの他端部に設けられた水素流路から送出される。
  2H + 2e → H2 (2)
The hydrogen ions H 2 + move to the cathode side through the electrolyte membrane 21, acquire electrons e supplied through the external wiring (reaction (2)), become hydrogen H 2 , diffuse in the gas diffusion section 37, and become gaseous. It is delivered from a hydrogen channel provided at the other end of the diffusion channel 37C.
2H + + 2e → H 2 (2)
 本実施形態では、セパレータ部材26、37に一体的に形成された凹凸パターンのガス拡散部27、37により、ガス拡散路27C、37C内の水、酸素、水素、を拡散させることができる。したがって、ガス拡散のために別途部材を設ける必要がなく、材料費、加工費など、コストを削減することができる。特に、ガス拡散層とセパレータ部材が別部材で構成されているセルと比較して、セパレータ部材にメッキを施す必要がなく、製造コストを削減することができる。
 また、ガス拡散層とセパレータ部材界面部分がなくなり、当該界面部分の酸化による電気的接続の低下を防止することができる。さらに、プレス加工、エンボス加工、目立て加工などの製法を用いることにより、連続的に製造することができ、繊維焼結体、粉末焼結体をガス拡散層として用いる場合と比較して、サイズの自由度が高くなると共に、生産性を向上させることができる。
In this embodiment, the uneven pattern gas diffusion portions 27 and 37 formed integrally with the separator members 26 and 37 can diffuse water, oxygen, and hydrogen in the gas diffusion paths 27C and 37C. Therefore, there is no need to provide a separate member for gas diffusion, and costs such as material costs and processing costs can be reduced. In particular, compared to cells in which the gas diffusion layer and the separator member are separate members, there is no need to plate the separator member, and the manufacturing cost can be reduced.
In addition, the interface between the gas diffusion layer and the separator member is eliminated, and deterioration of electrical connection due to oxidation of the interface can be prevented. Furthermore, by using manufacturing methods such as press working, embossing, and dressing, it can be continuously manufactured, and compared with the case of using a fiber sintered body or a powder sintered body as a gas diffusion layer, the size can be reduced. The degree of freedom is increased, and productivity can be improved.
 また、本実施形態では、凹部27B、37Bの深さB1、B2は、セパレータ部材26、36の厚みT1、T2よりも浅く、凹凸パターンの平均ピッチP1、P2は、厚みT1
、T2よりも小さく設定されているので、ガス拡散路27C、37Cにおいて、ガス拡散性を確保しつつ、ガス拡散部27、37の製造の容易さを維持することができる。
Further, in the present embodiment, the depths B1 and B2 of the concave portions 27B and 37B are shallower than the thicknesses T1 and T2 of the separator members 26 and 36, and the average pitches P1 and P2 of the uneven patterns are equal to the thickness T1
, T2, the gas diffusion paths 27C and 37C can maintain the easiness of manufacturing the gas diffusion portions 27 and 37 while ensuring the gas diffusibility.
 なお、セパレータ部材26のガス拡散部27には、図4A、図4Bに示されるように、主流部29を設けることもできる。主流部29は、ガス拡散路27Cの上流側(水流路からの水が流入する一端部側)から下流側(酸素と水が流出する酸素流路が形成された他端部側)へ向かう溝であり、凹部27Bの径よりも溝幅が大きい。一例として、図4Aでは、図の上側が上流であり、下側が下流である。したがって、主流部29の流路抵抗は、凹部27Bのみ形成されている凹凸パターン部分よりも小さい。主流部29を形成することにより、ガス拡散路27Cから主流部29へ水や酸素が流入することにより、水や酸素の流れを良好にすることができる。 The gas diffusion portion 27 of the separator member 26 can also be provided with a main flow portion 29 as shown in FIGS. 4A and 4B. The main flow portion 29 is a groove extending from the upstream side of the gas diffusion path 27C (one end side into which water flows from the water flow path) to the downstream side (the other end side where an oxygen flow path is formed through which oxygen and water flow out). , and the groove width is larger than the diameter of the recess 27B. As an example, in FIG. 4A, the upper side of the figure is upstream and the lower side is downstream. Therefore, the flow path resistance of the main flow portion 29 is smaller than that of the concave-convex pattern portion where only the recessed portions 27B are formed. Forming the main flow portion 29 allows water and oxygen to flow into the main flow portion 29 from the gas diffusion path 27C, thereby improving the flow of water and oxygen.
 なお、主流部29は、カソード側のセパレータ部材36にも形成してもよい。 Note that the main flow portion 29 may also be formed in the separator member 36 on the cathode side.
 <第2実施形態>
 次に、図5A、図5B、図6A、図6Bを参照して、本発明の第2実施形態を説明する。本実施形態では、第1実施形態と同様の部分については同一の符号を付し、その詳細な説明は省略する。
<Second embodiment>
A second embodiment of the present invention will now be described with reference to FIGS. 5A, 5B, 6A and 6B. In this embodiment, the same reference numerals are given to the same parts as in the first embodiment, and detailed description thereof will be omitted.
 本実施形態の水電解装置10は、セパレータ部材26、36に代えて、セパレータ部材26-2、36-2を用いている。セパレータ部材26、36以外の構成については、第1実施形態と同様である。 The water electrolysis device 10 of the present embodiment uses separator members 26-2 and 36-2 instead of the separator members 26 and 36. Configurations other than the separator members 26 and 36 are the same as in the first embodiment.
 アノードシール層25には、セパレータ部材26-2が積層されている。セパレータ部材26-2は、長方形板状とされ、アノード触媒層24側の表面にガス拡散部27-2が一体形成されている。 A separator member 26 - 2 is laminated on the anode seal layer 25 . The separator member 26-2 has a rectangular plate shape, and a gas diffusion section 27-2 is integrally formed on the surface on the anode catalyst layer 24 side.
 ガス拡散部27-2は、平面視でアノード触媒層24に対応する位置に形成されており、平面視でアノード触媒層24と同様の形状とされている。ガス拡散部27-2には、図5Aに示されるように、平面視で一端辺側から他端辺側に延びる複数の溝で形成される溝凹部27B-2と、溝凹部27B-2間に形成される凸部27A-2が形成されている。図5Bに示されるように、溝凹部27B-2は、セパレータ部材26-2の表面から凹む凹状となっている。溝凹部27B-2が形成されていない部分には、隣り合う溝凹部27B-2に挾まれた長尺の凸部27A-2が形成されている。ガス拡散部27-2は、このように、凹凸パターンが表面に一体形成されたものである。 The gas diffusion part 27-2 is formed at a position corresponding to the anode catalyst layer 24 in plan view, and has the same shape as the anode catalyst layer 24 in plan view. As shown in FIG. 5A, the gas diffusion portion 27-2 includes a groove recess 27B-2 formed by a plurality of grooves extending from one end side to the other end side in a plan view, and a gap between the groove recess 27B-2. A convex portion 27A-2 is formed on the . As shown in FIG. 5B, the recessed groove 27B-2 is recessed from the surface of the separator member 26-2. A long protrusion 27A-2 sandwiched between the adjacent groove recesses 27B-2 is formed in a portion where the groove recesses 27B-2 are not formed. The gas diffusion part 27-2 is thus integrally formed with an uneven pattern on its surface.
 溝凹部27B-2は、隣接する溝凹部27B-2と離隔して形成されており、凸部27A-2の頂部27AP-2は、平坦状とされている。このように、頂部27AP-2を平坦状とすることにより、アノード触媒層24との接触面積を大きくすることができる。隣り合う凸部27A-2同士の平均間隔D5は、10μm以上250μm以下とされている。また、平面視での開口平均幅D6(本実施形態ではD5と同一)は、10μm以上250μm以下とされている。凸部27A-2及び溝凹部27B-2で形成される凹凸パターンの平均ピッチP3は、20μm以上500μm以下とされている。 The groove recess 27B-2 is formed apart from the adjacent groove recess 27B-2, and the top 27AP-2 of the projection 27A-2 is flat. By flattening the top portion 27AP-2 in this manner, the contact area with the anode catalyst layer 24 can be increased. An average interval D5 between adjacent convex portions 27A-2 is set to 10 μm or more and 250 μm or less. Also, the average opening width D6 (same as D5 in this embodiment) in plan view is set to 10 μm or more and 250 μm or less. The average pitch P3 of the concave/convex pattern formed by the convex portions 27A-2 and the groove concave portions 27B-2 is set to 20 μm or more and 500 μm or less.
 平均間隔D5、開口平均幅D6が10μm未満、平均ピッチP3が20μm未満の場合には、製造が難しくなる。平均間隔D5、開口平均幅D6が250μm超、平均ピッチP3が500μm超の場合には、ガスの拡散が不十分となり性能が悪化する。 When the average interval D5, the average opening width D6 is less than 10 μm, and the average pitch P3 is less than 20 μm, manufacturing becomes difficult. If the average interval D5, the average aperture width D6 exceeds 250 μm, and the average pitch P3 exceeds 500 μm, the diffusion of gas becomes insufficient and the performance deteriorates.
 なお、平均間隔D5、開口平均幅D6は、10μm以上150μm以下であることが好ましい。 The average interval D5 and the average opening width D6 are preferably 10 μm or more and 150 μm or less.
 また、溝凹部27B-2の深さB1は、セパレータ部材26-2の厚みT1よりも浅く、凹凸パターンの平均ピッチP3は、厚みT1よりも小さく設定されている。 Further, the depth B1 of the groove recess 27B-2 is set to be shallower than the thickness T1 of the separator member 26-2, and the average pitch P3 of the uneven pattern is set to be smaller than the thickness T1.
 凸部27A-2は、電解質膜21のアノード触媒層24と接触配置されている。凸部27A-2は、アノード触媒層24との間の導電性確保のための接触が維持されているが、各々の溝凹部27B-2間での流体移動が可能な程度の隙間を有している。 The convex portion 27A-2 is arranged in contact with the anode catalyst layer 24 of the electrolyte membrane 21 . The protrusions 27A-2 maintain contact with the anode catalyst layer 24 to ensure electrical conductivity, but have gaps that allow fluid movement between the grooves and recesses 27B-2. ing.
 ガス拡散部27-2における単位面積当たりのアノード触媒層24との接触率は、導電性の確保とガス拡散性の維持を考慮して、40%以上85%以下であることが好ましい。 The contact ratio with the anode catalyst layer 24 per unit area in the gas diffusion part 27-2 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusion.
 なお、平均間隔D5、開口平均幅D6、凹凸パターンの平均ピッチP3、深さB1の測定は、走査電子顕微鏡、光学顕微鏡、これらを介して取得した画像などにより行うことができる。 The average interval D5, the average opening width D6, the average pitch P3 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
 アノードシール層25に囲まれた内側のアノード触媒層24とガス拡散部27-2の溝凹部27B-2の間に、ガス拡散路27Cが形成されている。 A gas diffusion path 27C is formed between the inner anode catalyst layer 24 surrounded by the anode seal layer 25 and the groove recess 27B-2 of the gas diffusion section 27-2.
 セパレータ部材26-2としては、セパレータ部材26と同様の部材を用いることができる セパレータ部材26-2の表面に凹凸パターンを形成する方法としては、プレス加工、エンボス加工、目立て加工、切削加工などを用いることができる。 As the separator member 26-2, a member similar to the separator member 26 can be used.As a method of forming the concave-convex pattern on the surface of the separator member 26-2, pressing, embossing, dressing, cutting, etc. can be used. can be used.
 カソードシール層35には、セパレータ部材36-2が積層されている。セパレータ部材36-2は、長方形板状とされ、カソード触媒層34側の表面にガス拡散部37-2が一体形成されている。 A separator member 36 - 2 is laminated on the cathode seal layer 35 . The separator member 36-2 has a rectangular plate shape, and a gas diffusion section 37-2 is integrally formed on the surface on the cathode catalyst layer 34 side.
 ガス拡散部37-2は、平面視でカソード触媒層34に対応する位置に形成されており、平面視でカソード触媒層34と同様の形状とされている。ガス拡散部37-2には、図6Aに示されるように、平面視で一端辺側から他端辺側に延びる複数の溝で形成される溝凹部37B-2と、溝凹部37B-2間に形成される凸部37A-2が形成されている。図6Bに示されるように、溝凹部37B-2は、セパレータ部材36-2の表面から凹む凹状となっている。溝凹部37B-2が形成されていない部分には、隣り合う溝凹部37B-2に挾まれて長尺状の凸部37A-2が形成されている。ガス拡散部37-2は、このように、凹凸パターンが表面に一体形成されたものである。 The gas diffusion part 37-2 is formed at a position corresponding to the cathode catalyst layer 34 in plan view, and has the same shape as the cathode catalyst layer 34 in plan view. As shown in FIG. 6A, the gas diffusion portion 37-2 includes groove recesses 37B-2 formed of a plurality of grooves extending from one end side to the other end side in a plan view, and a groove between the groove recesses 37B-2. A convex portion 37A-2 is formed on the . As shown in FIG. 6B, the groove recess 37B-2 is recessed from the surface of the separator member 36-2. In the portion where the recessed groove 37B-2 is not formed, an elongated projection 37A-2 is formed between the adjacent recessed grooves 37B-2. The gas diffusion portion 37-2 is thus integrally formed with an uneven pattern on its surface.
 溝凹部37B-2は、隣接する溝凹部37B-2と離隔して形成されており、凸部37A-2の頂部37AP-2は、平坦状とされている。このように、頂部37AP-2を平坦状とすることにより、カソード触媒層34との接触面積を大きくすることができる。隣り合う凸部37A-2同士の平均間隔D7は、10μm以上250μm以下とされている。また、平面視での開口平均幅D8(本実施形態ではD7と同一)は、10μm以上250μm以下とされている。凸部37A-2及び溝凹部37B-2で形成される凹凸パターンの平均ピッチP4は、20μm以上500μm以下とされている。 The groove recess 37B-2 is formed apart from the adjacent groove recess 37B-2, and the top 37AP-2 of the projection 37A-2 is flat. By flattening the top portion 37AP-2 in this manner, the contact area with the cathode catalyst layer 34 can be increased. An average interval D7 between adjacent convex portions 37A-2 is set to 10 μm or more and 250 μm or less. In addition, the average opening width D8 (same as D7 in this embodiment) in plan view is set to 10 μm or more and 250 μm or less. The average pitch P4 of the concave/convex pattern formed by the convex portions 37A-2 and the groove concave portions 37B-2 is set to 20 μm or more and 500 μm or less.
 平均間隔D7、開口平均幅D8が10μm未満、平均ピッチP4が20μm未満の場合には、製造が難しくなる。平均間隔D7、開口平均幅D8が250μm超、平均ピッチP4が500μm超の場合には、ガスの拡散が不十分となり性能が悪化する。 When the average interval D7, the average aperture width D8 is less than 10 μm, and the average pitch P4 is less than 20 μm, manufacturing becomes difficult. If the average interval D7, the average opening width D8 exceeds 250 μm, and the average pitch P4 exceeds 500 μm, the diffusion of gas becomes insufficient and the performance deteriorates.
 なお、平均間隔D7、開口平均幅D8は、10μm以上150μm以下であることが好ましい。 The average interval D7 and the average opening width D8 are preferably 10 μm or more and 150 μm or less.
 また、溝凹部37B-2の深さB1は、セパレータ部材36-2の厚みT1よりも浅く
、凹凸パターンの平均ピッチP4は、厚みT1よりも小さく設定されている。
Further, the depth B1 of the groove recess 37B-2 is set to be shallower than the thickness T1 of the separator member 36-2, and the average pitch P4 of the uneven pattern is set to be smaller than the thickness T1.
 凸部37A-2は、電解質膜21のカソード触媒層34と接触配置されている。凸部37A-2は、カソード触媒層34との間の導電性確保のための接触が維持されているが、各々の溝凹部37B-2間での流体移動が可能な程度の隙間を有している。 The convex portion 37A-2 is arranged in contact with the cathode catalyst layer 34 of the electrolyte membrane 21 . The projections 37A-2 maintain contact with the cathode catalyst layer 34 to ensure conductivity, but have gaps that allow fluid movement between the grooves and recesses 37B-2. ing.
 ガス拡散部37-2における単位面積当たりのカソード触媒層34との接触率は、導電性の確保とガス拡散性の維持を考慮して、40%以上85%以下であることが好ましい。 The contact ratio with the cathode catalyst layer 34 per unit area in the gas diffusion part 37-2 is preferably 40% or more and 85% or less in consideration of ensuring electrical conductivity and maintaining gas diffusion.
 なお、平均間隔D7、開口平均幅D8、凹凸パターンの平均ピッチP4、深さB1の測定は、走査電子顕微鏡、光学顕微鏡、これらを介して取得した画像などにより行うことができる。 The average interval D7, the average opening width D8, the average pitch P4 of the concave-convex pattern, and the depth B1 can be measured using a scanning electron microscope, an optical microscope, images obtained through these, and the like.
 カソードシール層35に囲まれた内側のカソード触媒層34とガス拡散部37-2の溝凹部37B-2の間に、ガス拡散路37Cが形成されている。 A gas diffusion path 37C is formed between the inner cathode catalyst layer 34 surrounded by the cathode seal layer 35 and the groove recess 37B-2 of the gas diffusion section 37-2.
 セパレータ部材36-2としては、セパレータ部材36と同様の部材を用いることができる セパレータ部材36-2の表面に凹凸パターンを形成する方法としては、プレス加工、エンボス加工、目立て加工、切削加工などを用いることができる。 As the separator member 36-2, a member similar to the separator member 36 can be used.As a method for forming the concave-convex pattern on the surface of the separator member 36-2, pressing, embossing, dressing, cutting, etc. can be used. can be used.
 <その他の実施形態>
 第1実施形態では、セパレータ部材26、36においてガス拡散部27を形成するための凹凸パターンとして、平面視で円形状の凸部を例に説明したが、他の形状の凸部でもよい。例えば、図7Cに示されるように、長円状45を凸部とし、長円状45が形成されていない部分に凹部46が形成される凹凸パターンでもよい。
<Other embodiments>
In the first embodiment, as the concave-convex pattern for forming the gas diffusion portions 27 in the separator members 26 and 36, circular protrusions in a plan view have been described as an example, but protrusions of other shapes may be used. For example, as shown in FIG. 7C, an uneven pattern may be employed in which elliptical shapes 45 are used as projecting portions and recessed portions 46 are formed in portions where the elliptical shapes 45 are not formed.
 また、凸部は整列させずにランダム配置としてもよい。さらに、凸部の大きさや形状も同一である必要はなく、ランダムな形状であってもよい。 Also, the protrusions may be randomly arranged without aligning them. Furthermore, the size and shape of the protrusions do not need to be the same, and may be random shapes.
 また、第2実施形態では、セパレータ部材26-2、36-2においてガス拡散部27-2を形成するための凹凸パターンとして、平面視で複数本の長尺直線状の溝を例に説明したが、他の形状の溝でもよい。例えば、図7Aに示されるように、波状の複数の溝41を凹部とし、隣り合う溝間部分に凸部42が形成される凹凸パターンでもよい。また、平面視で斜めに配置される長尺直線状の溝43を凹部とし、溝43に囲まれた部分の凸部44としてもよい。 In addition, in the second embodiment, as an uneven pattern for forming the gas diffusion portion 27-2 in the separator members 26-2 and 36-2, a plurality of elongated straight grooves in a plan view has been described as an example. However, grooves of other shapes are also possible. For example, as shown in FIG. 7A, a concavo-convex pattern may be employed in which a plurality of wavy grooves 41 are used as concave portions and convex portions 42 are formed between adjacent grooves. Alternatively, the elongated linear groove 43 arranged obliquely in a plan view may be used as the concave portion, and the portion surrounded by the groove 43 may be used as the convex portion 44 .
 また、本実施形態では、セパレータ部材26、36の片面にガス拡散部27、37を形成したが、図8に示すように、両面に形成し、セルスタックを構成することができる。この場合には、積層の中間部に配置される一のセパレータ部材26の一方面側がアノード触媒層24に対向するガス拡散部27となり、他方面側がカソード触媒層34に対向するガス拡散部37となる。 Also, in this embodiment, the gas diffusion portions 27, 37 are formed on one side of the separator members 26, 36, but as shown in FIG. 8, they can be formed on both sides to form a cell stack. In this case, one side of the one separator member 26 arranged in the middle of the stack serves as the gas diffusion section 27 facing the anode catalyst layer 24, and the other side serves as the gas diffusion section 37 facing the cathode catalyst layer 34. Become.
 また、前述の各実施形態では、固体高分子電解質膜型(PEM)の水電解装置10を例に説明したが、本発明は、アニオン交換膜型(AEM)の水電解装置に用いることもできる。 Further, in each of the above-described embodiments, the solid polymer electrolyte membrane (PEM) water electrolysis device 10 was described as an example, but the present invention can also be used for an anion exchange membrane (AEM) water electrolysis device. .
 日本出願2021-198440の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2021-198440 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (7)

  1.  電解質層の一方面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、
     開口平均幅10μm以上250μm以下の溝形状の凹部が平均ピッチ20μm以上500μm以下で配置される凹凸パターンが表面に一体形成され前記凹凸パターンの隣り合う前記凹部の間に形成される凸部が前記アノード触媒層に接触配置されるか、又は、頂部同士の平均間隔が10μm以上250μm以下の凸部が平均ピッチ20μm以上500μm以下で配置される凹凸パターンが表面に一体形成され、前記凹凸パターンの前記凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材と、
     を備えた、水電解デバイス。
    an electrolyte membrane having an anode catalyst layer laminated on one side of the electrolyte layer and a cathode catalyst layer laminated on the other side;
    An uneven pattern in which groove-shaped recesses having an average opening width of 10 μm or more and 250 μm or less are arranged at an average pitch of 20 μm or more and 500 μm or less is integrally formed on the surface, and the protrusions formed between the adjacent recesses of the uneven pattern are the anodes. A concavo-convex pattern is disposed in contact with the catalyst layer, or a concavo-convex pattern in which convex portions having an average distance between apexes of 10 μm or more and 250 μm or less are arranged at an average pitch of 20 μm or more and 500 μm or less is integrally formed on the surface, and the convexes of the concavo-convex pattern a conductive separator member having a portion disposed in contact with the anode catalyst layer and forming a gas diffusion path between the anode catalyst layer and the anode catalyst layer;
    A water electrolysis device.
  2.  前記凹凸パターンの平均ピッチが、前記セパレータ部材の厚みよりも小さい、
     請求項1に記載の水電解デバイス。
    The average pitch of the uneven pattern is smaller than the thickness of the separator member,
    The water electrolysis device according to claim 1.
  3.  電解質層の一方側面にアノード触媒層が積層され、他方面にカソード触媒層が積層された電解質膜と、
     厚み方向に凹凸となる溝形状の凹部と隣り合う前記凹部の間に形成される凸部が形成される凹凸パターンが一体形成されるか、又は、厚み方向に凸で互いに離隔する凸部が形成され隣り合う前記凸部の間に凹部が形成される凹凸パターンが一体形成され、前記凹凸パターンの前記凸部が前記アノード触媒層に接触配置され、前記アノード触媒層との間にガス拡散路を構成する導電性のセパレータ部材であって、前記凹凸パターンの平均ピッチが、前記セパレータ部材の厚みよりも小さい、導電性のセパレータ部材と、
     を備えた、
     水電解デバイス。
    an electrolyte membrane having an anode catalyst layer laminated on one side of the electrolyte layer and a cathode catalyst layer laminated on the other side;
    An uneven pattern is integrally formed in which groove-shaped recesses that are uneven in the thickness direction and protrusions formed between the adjacent recesses are formed, or protrusions that are convex in the thickness direction and are separated from each other are formed. An uneven pattern in which concave portions are formed between the adjacent convex portions is integrally formed, and the convex portions of the uneven pattern are disposed in contact with the anode catalyst layer, and a gas diffusion path is formed between the anode catalyst layer and the convex portions. a conductive separator member constituting the conductive separator member, wherein the average pitch of the uneven pattern is smaller than the thickness of the separator member;
    with
    water electrolysis device.
  4.  前記凸部は、円形状である、
     請求項1~請求項3のいずれか1項に記載の水電解デバイス。
    The convex portion is circular,
    The water electrolysis device according to any one of claims 1 to 3.
  5.  前記凹凸パターンにおける単位面積当たりの前記電解質膜との接触率は、40%以上85%以下である、
     請求項1~請求項4のいずれか1項に記載の水電解デバイス。
    A contact ratio with the electrolyte membrane per unit area in the uneven pattern is 40% or more and 85% or less.
    The water electrolysis device according to any one of claims 1 to 4.
  6.  前記セパレータ部材には、前記ガス拡散路の上流側から下流側へ向かって、前記凹凸パターンよりも流路抵抗が小さい主流部、が形成されている、
     請求項1~請求項5のいずれか1項に記載の水電解デバイス。
    In the separator member, a main flow portion having a flow path resistance smaller than that of the uneven pattern is formed from the upstream side to the downstream side of the gas diffusion path.
    The water electrolysis device according to any one of claims 1 to 5.
  7. 前記セパレータ部材は、チタン製である、
     請求項1~請求項6のいずれか1項に記載の水電解デバイス。
    The separator member is made of titanium,
    The water electrolysis device according to any one of claims 1 to 6.
PCT/JP2022/037689 2021-12-07 2022-10-07 Water electrolysis device WO2023105909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198440 2021-12-07
JP2021198440A JP7102599B1 (en) 2021-12-07 2021-12-07 Water electrolysis device

Publications (1)

Publication Number Publication Date
WO2023105909A1 true WO2023105909A1 (en) 2023-06-15

Family

ID=82457385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037689 WO2023105909A1 (en) 2021-12-07 2022-10-07 Water electrolysis device

Country Status (2)

Country Link
JP (1) JP7102599B1 (en)
WO (1) WO2023105909A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117468024A (en) * 2023-10-31 2024-01-30 温州高企氢能科技有限公司 Array flow field structure for producing hydrogen by alkaline water electrolysis and electrolytic tank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135108A1 (en) * 2005-06-17 2006-12-21 University Of Yamanashi Metal separator for fuel cell and manufacturing method thereof
JP2020132965A (en) * 2019-02-21 2020-08-31 株式会社東芝 Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device having same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135108A1 (en) * 2005-06-17 2006-12-21 University Of Yamanashi Metal separator for fuel cell and manufacturing method thereof
JP2020132965A (en) * 2019-02-21 2020-08-31 株式会社東芝 Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device having same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117468024A (en) * 2023-10-31 2024-01-30 温州高企氢能科技有限公司 Array flow field structure for producing hydrogen by alkaline water electrolysis and electrolytic tank

Also Published As

Publication number Publication date
JP2023084326A (en) 2023-06-19
JP7102599B1 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
CA2919064C (en) Deformation absorption member and fuel-cell-stack
JP5429357B2 (en) Fuel cell
WO2023105909A1 (en) Water electrolysis device
KR20190000809A (en) Method for producing fuel cell separator
US20140377682A1 (en) Fuel cell
JP2014509052A (en) High performance proton exchange membrane fuel cell
KR20130057716A (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
JPWO2013011578A1 (en) Fuel cell
JP2007220632A (en) Tube type fuel cell module
CA3001024C (en) Resin frame and separator configuration in a fuel cell
JP2008059760A (en) Fuel cell, and manufacturing method of fuel cell
WO2018042975A1 (en) Membrane electrode assembly, fuel cell provided with same and method for producing membrane electrode assembly
JP2011134448A (en) Solid electrolyte fuel cell
JP5341321B2 (en) Electrolyte membrane / electrode structure for polymer electrolyte fuel cells
KR101220866B1 (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
JP2006310104A (en) Diffusion layer for fuel cell, and the fuel cell
JP2019157190A (en) Electrochemical type hydrogen pump
JP2007280615A (en) Seal structure for fuel cell and manufacturing method of seal
KR102432482B1 (en) Simple sealing fuel cell structure and fuel cell stack including same
KR20200036249A (en) Seperator for fuel cell
JP2019192449A (en) Fuel cell, and manufacturing method of separator for fuel cell
CN113451597B (en) Separator and method for manufacturing separator
US11322755B2 (en) Fuel cell device
KR20070035859A (en) Bipolar plate and fuel cell stack having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903843

Country of ref document: EP

Kind code of ref document: A1