WO2023105859A1 - Rotor and rotating electric machine - Google Patents
Rotor and rotating electric machine Download PDFInfo
- Publication number
- WO2023105859A1 WO2023105859A1 PCT/JP2022/032322 JP2022032322W WO2023105859A1 WO 2023105859 A1 WO2023105859 A1 WO 2023105859A1 JP 2022032322 W JP2022032322 W JP 2022032322W WO 2023105859 A1 WO2023105859 A1 WO 2023105859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- magnet
- rotor
- bridge
- portions
- Prior art date
Links
- 238000010030 laminating Methods 0.000 claims abstract description 5
- 230000002093 peripheral effect Effects 0.000 claims description 59
- 230000004308 accommodation Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 11
- 230000004907 flux Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- PRQMIVBGRIUJHV-UHFFFAOYSA-N [N].[Fe].[Sm] Chemical compound [N].[Fe].[Sm] PRQMIVBGRIUJHV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present disclosure relates to an embedded magnet rotor and rotating electric machine.
- an embedded magnet type (so-called IPM type) rotor In a rotating electrical machine, an embedded magnet type (so-called IPM type) rotor is well known in which permanent magnets are embedded in radially inner positions of the rotor core.
- the embedded magnet type rotor is configured to obtain reluctance torque at an outer core portion located radially outside the permanent magnets, in addition to magnet torque from the permanent magnets.
- the permanent magnets are embedded in a folded shape convex radially inward, such as a V-shape or a U-shape when viewed in the axial direction.
- the folded shape of the permanent magnet is deepened radially inward, the outer core portion can be made large. That is, the larger the outer core portion is, the more reluctance torque can be obtained, which can lead to higher torque of the rotary electric machine.
- the above embedded magnet type rotor requires the formation of magnet accommodation holes for accommodating permanent magnets in the rotor core.
- the outer core portion which is provided so as to be surrounded by the magnet housing holes, is configured to be connected to the main body side of the rotor core at a narrow connecting portion called a bridge portion.
- the bridge portion is also the portion where some of the effective magnetic flux occurs as leakage. In order to reduce the leakage magnetic flux and thereby increase the torque of the rotary electric machine, it is desired to minimize the bridge portion or omit a part of the bridge portion.
- the bridge portion is also a portion that supports the outer core portion with respect to the peripheral portion of the rotor core. Therefore, if the bridge portion is not appropriately minimized or omitted, the support rigidity of the outer core portion will be lowered, and there is an increased concern that the strength of the rotor, for example, the centrifugal force, will be lowered.
- An object of the present disclosure is to provide a rotor and a rotating electric machine capable of reducing leakage magnetic flux while taking into account the strength of centrifugal force.
- a rotor according to an aspect of the present disclosure includes a rotor core including a plurality of laminated core sheets and having a magnet housing hole having a folded shape convex radially inward; and permanent magnets embedded in the magnet housing holes of the rotor core.
- the rotor includes a plurality of magnetic pole pieces. Each of the plurality of magnetic pole portions includes the permanent magnet positioned radially inside the rotor core, and an outer core portion which is a portion of the rotor core positioned radially outside the permanent magnet.
- the outer core portion of the rotor core is formed by stacking the outer core portions of the individual core sheets, and a bridge is positioned on at least one side of a pair of radially outer end portions of the folded magnet accommodating holes. It is supported with respect to the peripheral portion of the rotor core at a plurality of bridge portions including a portion.
- the outer core portion of the rotor core at least the outer core portion supported by one bridge piece of the core sheet forming the bridge portion of the one radially outer end portion is mixed, and a plurality of By stacking the core sheets, the outer core portion is supported by the plurality of bridge portions.
- a rotating electric machine includes a rotor and a stator.
- the rotor includes a rotor core that includes a plurality of laminated core sheets and has a magnet housing hole that is convex radially inward and has a folded shape, and permanent magnets that are embedded in the magnet housing holes of the rotor core.
- the stator applies a rotating magnetic field to the rotor.
- a rotor of the rotating electric machine includes a plurality of magnetic pole portions. Each of the plurality of magnetic pole portions includes the permanent magnet positioned radially inside the rotor core, and an outer core portion which is a portion of the rotor core positioned radially outside the permanent magnet.
- the outer core portion of the rotor core is formed by stacking the outer core portions of the individual core sheets, and a bridge is positioned on at least one side of a pair of radially outer end portions of the folded magnet accommodating holes. It is supported with respect to the peripheral portion of the rotor core at a plurality of bridge portions including a portion.
- the outer core portion of the rotor core at least the outer core portion supported by one bridge piece of the core sheet forming the bridge portion of the one radially outer end portion is mixed, and a plurality of By stacking the core sheets, the outer core portion is supported by the plurality of bridge portions.
- the outer core portion surrounded by the magnet containing holes and the permanent magnets includes at least one of the pair of radially outer end portions of the magnet containing holes that are folded back with respect to the peripheral portion of the rotor core. It is supported by a plurality of bridge portions including the bridge portion located on the side.
- each core sheet when configuring one outer core portion, at least the outer core portion supported by one bridge piece constituting the bridge portion at one radially outer end portion is mixed. .
- the outer core portion is supported by a plurality of bridge portions.
- the support rigidity of the outer core portion supported by the bridge portions at a plurality of locations is sufficiently high, the centrifugal force strength of the rotor can be ensured.
- the individual bridge pieces constituting the bridge portion that supports the outer core portion are appropriately thinned out. It is also possible to reduce leakage magnetic flux, which is a concern in each bridge portion.
- FIG. 1 is a configuration diagram of a rotating electric machine having an embedded magnet type rotor in one embodiment
- FIG. 2 is a plan view of the rotor in the same embodiment
- 3(a) and 3(b) are plan views of core sheets used in the same embodiment
- 4 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 4-4
- 5 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 5-5
- 6 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 6-6
- FIG. 1 is a configuration diagram of a rotating electric machine having an embedded magnet type rotor in one embodiment
- FIG. 2 is a plan view of the rotor in the same embodiment
- 3(a) and 3(b) are plan views of core sheets used in the same embodiment
- 4 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 4-4
- 5 is a cross-sectional view of the rotor
- FIG. 7 is a configuration diagram of a rotating electrical machine including a rotor in the same embodiment
- FIG. 8 is a configuration diagram of a rotating electrical machine including a rotor in Comparative Example 1
- FIG. 9 is a configuration diagram of a rotating electrical machine including a rotor in Comparative Example 2
- FIG. 10 is a comparison diagram of torque (cogging torque) corresponding to various shapes of permanent magnets.
- FIG. 11 is a comparison diagram of torque (torque ripple) corresponding to various shapes of permanent magnets
- FIG. 12 is a comparison diagram of torque ripple rates corresponding to various shapes of the tapered portion
- FIG. 13 is a comparison diagram of torque ripple rates corresponding to various shapes of the tapered portion;
- FIG. 10 is a comparison diagram of torque (cogging torque) corresponding to various shapes of permanent magnets.
- FIG. 11 is a comparison diagram of torque (torque ripple) corresponding to various shapes of permanent magnets
- FIG. 12 is a comparison diagram of torque ripple rates corresponding to
- FIG. 14 is a configuration diagram of a rotating electrical machine of a modification in which the permanent magnet shapes of adjacent magnetic pole portions are different;
- FIG. 15 is a comparison diagram of cogging torque in the modification,
- FIG. 16 is a comparison diagram of the torque ripple rate in the modified example.
- the rotary electric machine M of the present embodiment shown in FIG. 1 is configured by an embedded magnet brushless motor.
- the rotary electric machine M includes a substantially annular stator 10 and a substantially columnar rotor 20 rotatably arranged in a radially inner space of the stator 10 .
- Stator 10 imparts a rotating magnetic field to rotor 20 .
- the rotor 20 rotates by receiving a rotating magnetic field generated by the stator 10 .
- the stator 10 has a substantially annular stator core 11 .
- the stator core 11 is made of a magnetic metal material.
- the stator core 11 is configured by laminating a plurality of electromagnetic steel sheets, for example.
- the stator core 11 extends radially inward and has twelve teeth 12 arranged at equal intervals in the circumferential direction in this embodiment. Each tooth 12 has the same shape.
- the tooth 12 has a substantially T-shaped radially inner end, which is a tip. Tip surfaces 12 a of the teeth 12 are arc-shaped following the outer peripheral surface of the rotor 20 .
- a winding 13 is wound around each of the 12 teeth 12 by concentrated winding. That is, the number of magnetic poles of the stator 10 is "12".
- the windings 13 are three-phase connected and function as U-phase, V-phase, and W-phase, respectively, as shown in FIG.
- a rotating magnetic field for rotating the rotor 20 is generated in the stator 10 .
- the outer peripheral surface of stator core 11 is fixed to the inner peripheral surface of housing 14 .
- the rotor 20 includes a rotating shaft 21, a substantially cylindrical rotor core 22 in which the rotating shaft 21 is fitted and inserted in the center, and eight permanent magnets 23 embedded in radially inner positions of the rotor core 22 in this embodiment. It has That is, the number of magnetic poles of the rotor 20 is "8".
- the rotor 20 is rotatably arranged with respect to the stator 10 by supporting a rotating shaft 21 on a bearing (not shown) provided in the housing 14 .
- the rotor core 22 has magnet housing holes 24 for housing permanent magnets 23 therein.
- the rotor core 22 has magnet housing holes 24 for housing permanent magnets 23 therein.
- eight magnet housing holes 24 are provided at equal intervals in the circumferential direction of the rotor core 22 .
- Each magnet housing hole 24 penetrates the rotor core 22 along the axial direction.
- Each magnet housing hole 24 has a substantially V-shaped folded shape protruding radially inward when viewed in the axial direction.
- Each magnet housing hole 24 has a pair of linear portions 24a that are linear when viewed in the axial direction, and a bent portion 24b that connects radially inner ends of the pair of linear portions 24a.
- the pair of linear portions 24a gradually approach from the radially outer side to the inner side.
- Adjacent linear portions 24a in adjacent magnet housing holes 24 are arranged in parallel so as to be parallel to each other.
- Each linear portion 24a has its own radially outer end portion 24c located near the outer peripheral surface 22a of the rotor core 22, and is partially open to the outer peripheral surface 22a (see FIG. 4).
- the bent portion 24b is positioned near the shaft fitting insertion hole 22b in the central portion of the rotor core 22 into which the rotating shaft 21 is fitted.
- each magnet housing hole 24 has a substantially V-shaped folded shape that protrudes greatly from the radially outer side to the inner side.
- each magnet accommodation hole 24 of the present embodiment has a mixture of two types of hole structures, the magnet accommodation hole 24 of the first aspect A1 and the magnet accommodation hole 24 of the second aspect A2.
- the magnet housing holes 24 of the first and second modes A1 and A2 are provided alternately in the circumferential direction, and are provided alternately in the circumferential direction.
- first and second magnet through holes 31 and 32 formed in a core sheet 30 are arranged alternately in the axial direction.
- the magnet housing holes 24 of the first and second aspects A1 and A2 look like different holes when viewed in the axial direction because the first and second magnet through holes 31 and 32 are arranged in different order in the axial direction. has the same configuration.
- the detailed configuration of the magnet housing holes 24 of the first and second modes A1 and A2 will be described later.
- the permanent magnet 23 is a bond magnet formed by molding and solidifying a magnetic material in which magnet powder is mixed with resin. That is, the magnet housing holes 24 of the rotor core 22 are molds for the permanent magnets 23 . When the magnet material is filled into the magnet housing holes 24 without gaps by injection molding, the permanent magnets 23 are formed by solidifying the magnet material in the magnet housing holes 24 . Therefore, the hole shape of the magnet housing hole 24 is the outer shape of the permanent magnet 23 .
- Samarium-iron-nitrogen (SmFeN)-based magnets for example, are used as the magnet powder used for the permanent magnets 23 of the present embodiment, but other rare earth magnets and the like may also be used.
- each permanent magnet 23 is formed directly in each magnet accommodation hole 24 , so that each permanent magnet 23 has a shape corresponding to each magnet accommodation hole 24 , which is convex radially inward when viewed in the axial direction. has a substantially V-shaped folded shape.
- Each permanent magnet 23 has a pair of straight portions 23a positioned within a pair of straight portions 24a of each magnet housing hole 24, and a pair of straight portions 23a positioned within a curved portion 24b of each magnet housing hole 24. It has a bent portion 23b that connects the inner ends.
- the pair of linear portions 23a gradually approach from the radially outer side to the inner side. Adjacent linear portions 23a of adjacent permanent magnets 23 are arranged in parallel to each other.
- each permanent magnet 23 has a substantially V-shaped folded shape that protrudes greatly from the radially outer side to the inner side.
- a portion of the rotor core 22 located inside the V-shaped folded permanent magnet 23 and radially outward of the permanent magnet 23 functions as an outer core portion 25 that faces the stator 10 and obtains reluctance torque.
- Eight outer core portions 25 are provided like the permanent magnets 23 .
- Each outer core portion 25 has a substantially triangular shape with one vertex directed toward the center portion of the rotor 20 when viewed in the axial direction.
- One magnetic pole portion 26 of the rotor 20 is composed of one permanent magnet 23 and one outer core portion 25 .
- the rotor 20 of this embodiment has eight magnetic pole portions 26 .
- the curvature of the individual outer peripheral surface 26a is set larger than the curvature when the outer peripheral surface 22a of the rotor core 22 is a uniform circle. That is, the outer peripheral surface 22a of the rotor core 22 has a wavy shape that is slightly convex radially outward for each magnetic pole portion 26 .
- each magnet housing hole 24 in which each permanent magnet 23 is provided has two types of magnet housing holes 24 of the first and second aspects A1 and A2, but the substantial hole structure is the same. Therefore, although the magnetic pole portions 26, that is, the permanent magnets 23 and the outer core portions 25 appear to have different shapes and arrangements when viewed in the axial direction, they have substantially the same configuration.
- the first and second aspects A1 and A2 are used for each permanent magnet 23 and each outer core portion 25 corresponding to each magnet housing hole 24, and each magnetic pole portion 26 as well.
- the magnetic pole opening angle ⁇ m of the magnetic pole portion 26 between the adjacent magnetic pole boundary lines Ld is 45°.
- the circumferential centerline of the adjacent magnetic pole boundary lines Ld is the magnetic pole centerline Ls of each magnetic pole portion 26 .
- Each magnetic pole portion 26 having substantially the same configuration has a substantially line-symmetrical configuration about the magnetic pole center line Ls.
- Each outer core portion 25 has three apex portions connected to the peripheral portion of the rotor core 22 at connecting portions called bridge portions.
- a radial inner vertex portion of each outer core portion 25 is supported by a reinforcing bridge portion 22c.
- the reinforcing bridge portion 22c is a bridge portion that crosses the bent portion 24b of the magnet housing hole 24 in the hole width direction, in this case, the radial direction of the rotor core 22 .
- Two vertex portions on the radially outer side of each outer core portion 25 are supported by outer peripheral bridge portions 22d and 22e, respectively.
- the outer peripheral bridge portions 22 d and 22 e extend in the circumferential direction of the rotor core 22 from the radial outer end portion 24 c of the straight portion 24 a of the magnet housing hole 24 .
- Interpolar bridge portions 22f are provided between the adjacent magnet housing holes 24. As shown in FIG.
- the interpolar bridge portion 22f is a bridge portion extending radially between the straight portions 24a of the adjacent magnet housing holes 24.
- the interpolar bridge portion 22f, the reinforcing bridge portion 22c, and the outer peripheral bridge portions 22d and 22e are provided for each axially laminated core sheet 30 corresponding to the magnet housing holes 24 of the first and second aspects A1 and A2. It is configured so that it is alternately absent (see FIGS. 4 to 6).
- interpolar bridge portion 22f, the reinforcing bridge portion 22c, and the outer peripheral bridge portions 22d, 22e are reversed in order of presence/absence for each of the magnet housing holes 24 of the first and second aspects A1, A2. A detailed configuration will be described later.
- the permanent magnets 23 embedded in the magnet housing holes 24 of the rotor core 22 are magnetized from the outside of the rotor core 22 using a magnetizing device (not shown) after the magnet material before being magnetized is solidified. .
- each permanent magnet 23 is magnetized in its thickness direction.
- the linear portion 24a is magnetized in the direction orthogonal to the radial direction in which it extends, and the curved portion 24b is magnetized in the radial direction.
- the permanent magnets 23 of each magnetic pole portion 26 are magnetized so as to alternately have different polarities in the circumferential direction.
- each magnetic pole portion 26 is configured to obtain both magnet torque by the permanent magnet 23 and reluctance torque by the outer core portion 25 .
- the rotor core 22 is constructed by laminating a plurality of core sheets 30 made of electromagnetic steel sheets in the direction of the axis L. As shown in FIG. As for the individual core sheets 30, those having the same configuration as shown in FIG. 3(a) are used. Since each core sheet 30 uses the same parts, it is easy to manage. Although the core sheet 30 shown in FIG. 3(b) appears to have a different shape from the core sheet 30 shown in FIG. It is arranged at the second position rotated by 45°, which is the magnetic pole portion.
- a first magnet through hole 31 and a second magnet through hole 32 are mixedly formed as two types of magnet through holes having different shapes.
- the first and second magnet through holes 31 and 32 are alternately provided in each core sheet 30 in the circumferential direction.
- Each of the first and second magnet through holes 31 and 32 is provided alternately in the circumferential direction.
- the first and second magnet through-holes 31 and 32 each have a substantially V-shaped folded shape that protrudes radially inward. That is, the first magnet through-hole 31 has a shape in which the radially inner ends of the pair of linear portions 31a are connected to each other by the bent portion 31b.
- the second magnet through-hole 32 has a shape in which the radially inner ends of the pair of linear portions 32a are connected to each other by a bent portion 32b.
- the first magnet through hole 31 is provided at a position where its own hole center line L1 is offset from the magnetic pole center line Ls of each magnetic pole portion 26 in the counterclockwise direction in FIG. 3(a).
- the second magnet through-hole 32 is provided at a position where its own hole center line L2 is offset from the magnetic pole center line Ls of each magnetic pole portion 26 in the clockwise direction in FIG. 3(a).
- the straight portions 31a and 32a of the first magnet through-hole 31 and the second magnet through-hole 32 adjacent in the counterclockwise direction are coupled to each other.
- the first magnet through-hole 31 and the second magnet through-hole 32 adjacent thereto in the counterclockwise direction do not have the individual interpolar bridge pieces 33 constituting the interpolar bridge portion 22f.
- the straight portions 31a and 32a are joined at the magnetic pole boundary line Ld, the widths of the straight portions 31a and 32a themselves are not reduced.
- the portions where the straight portions 31a and 32a of the first and second magnet through holes 31 and 32 are spaced apart from each other, that is, the portions where the interpolar bridge pieces 33 are located are individual outer peripheral bridges constituting the outer peripheral bridge portions 22d and 22e. It has a mode with pieces 31c and 32c. Since the interpolar bridge piece 33 and the outer peripheral bridge pieces 31c and 32c are connected to each other, they have a rational relationship of supporting each other. On the other hand, the portions where the straight portions 31a and 32a of the first and second magnet through-holes 31 and 32 are coupled do not have the outer peripheral bridge pieces 31c and 32c that constitute the outer peripheral bridge portions 22d and 22e.
- the curved portion 31b of the first magnet through-hole 31 has individual reinforcing bridge pieces 31d that constitute the reinforcing bridge portion 22c.
- the bent portion 32b of the through-hole 32 for the second magnet does not have the individual reinforcing bridge pieces 31d that constitute the reinforcing bridge portion 22c.
- each outer core portion 34a provided so as to be surrounded by the first magnet through hole 31 to constitute the outer core portion 25 includes a reinforcing bridge piece 31d and an outer peripheral bridge piece at a portion where the interpolar bridge piece 33 is present. 31c is supported at two points.
- the individual outer core portions 34b provided so as to be surrounded by the second magnet through holes 32 to constitute the outer core portion 25 are provided only at one location on the outer peripheral bridge piece 32c where the interpolar bridge piece 33 is located. This is the supported mode.
- the supporting stiffness of the individual outer core portions 34a, 34b is not very high.
- the outer core portion 25 of the rotor core 22 produced by rolling the core sheets 30 is supported at a total of three points, that is, the reinforcing bridge portion 22c and the two outer peripheral bridge portions 22d and 22e.
- the support stiffness of is increased.
- a tapered portion is provided at the inner corner of the V-shaped folded shape at the radially outer end of the linear portion 31a positioned counterclockwise from the magnetic pole center line Ls. 31e is provided.
- a tapered portion 31f is provided at an inner corner portion of the V-shaped folded shape at the radially outer end portion of the linear portion 31a that is shifted clockwise from the magnetic pole center line Ls.
- a tapered portion is provided at the inner corner of the V-shaped folded portion at the radially outer end of the linear portion 32a positioned counterclockwise from the magnetic pole center line Ls. 32d is provided.
- a tapered portion 32e is provided at the inner corner of the V-shaped folded portion at the radially outer end portion of the linear portion 32a that is shifted clockwise from the magnetic pole center line Ls. It is The inner edges of the tapered portions 31e, 31f, 32d, and 32e project obliquely inward. Each of the tapered portions 31e and 32e is set to have a protrusion amount larger than that of each of the tapered portions 31f and 32d.
- the first magnet through-holes 31 appearing in the axial end face of the rotor core 22 are the magnet housing holes 24 of the first aspect A1 and the magnetic pole portions 26 of the first aspect A1.
- the first sheet of the core sheet 30 is the through hole 31 for the first magnet
- the second sheet of the core sheet 30 is the through hole 32 for the second magnet. That is, the odd-numbered core sheets 30 are configured with the first magnet through-holes 31 and the even-numbered core sheets 30 are configured with the second magnet through-holes 32 .
- the second magnet through holes 32 appearing in the axial end face of the rotor core 22 are the magnet containing holes 24 of the second mode A2 and the magnetic pole portions 26 of the second mode A2.
- the first sheet of the core sheet 30 is the through hole 32 for the second magnet
- the second sheet of the core sheet 30 is the through hole 31 for the first magnet. That is, the odd-numbered core sheets 30 are configured with the second magnet through-holes 32 and the even-numbered core sheets 30 are configured with the first magnet through-holes 31 .
- each magnet housing hole 24 of the first and second aspects A1 and A2 has a zigzag shape in the axial direction.
- the inner surface of each magnet housing hole 24 is configured to have an uneven shape. Therefore, the permanent magnets 23 manufactured by injection molding into the magnet housing holes 24 partially enter into the concave and convex portions of the inner surfaces of the magnet housing holes 24, so that the permanent magnets 23 are strongly connected to each other. .
- the number of core sheets 30 to be laminated is an even number, the same number of first and second magnet through holes 31 and 32 are formed in each magnet housing hole in both the first and second modes A1 and A2. 24 will be configured. Therefore, even if the shape of each magnet housing hole 24 appearing on the axial end surface of the rotor core 22 is different in the first and second aspects A1 and A2, the magnetic pole portions 26 in the first and second aspects A1 and A2 are They have substantially the same configuration.
- the rotor core 22 of this embodiment is composed of, for example, an even number of core sheets 30 .
- the core sheets 30 adjacent to each other in the stacking direction are fixed using an adhesive (not shown).
- adjacent core sheets 30 may be fixed using a crimping portion 35 (see FIG. 2).
- the caulking portion 35 is formed by, for example, forming a recess on the front side of the core sheet 30 and a protrusion on the back side of the core sheet 30, and fitting and crimping the protrusions and recesses in the stacking direction.
- One preferable example of the positions at which the crimped portions 35 are provided is to set one crimped portion 35 near the center of each outer core portion 25 on the magnetic pole center line Ls of each magnetic pole portion 26 .
- the arrangement, number, etc. of the crimped portions 35 are not limited to this, and may be changed as appropriate.
- each outer core portion 34a surrounded by the first magnet through-holes 31 consists of a reinforcing bridge piece 31d and an outer peripheral bridge piece 31c. It is support in places.
- Each outer core portion 34b surrounded by the second magnet through-holes 32 is supported only at one position on the outer peripheral bridge piece 32c.
- the outer core portion 25 is supported at a total of three points: the reinforcing bridge portion 22c and the two outer peripheral bridge portions 22d and 22e.
- the support rigidity of the outer core portion 25 in the finished state of the rotor core 22 is high, and the centrifugal force strength of the rotor core 22, that is, the rotor 20 is sufficient.
- the reinforcing bridge portion 22c and the outer peripheral bridge portions 22d and 22e shown in FIGS. Existence and nonexistence. In other words, the reinforcing bridge portion 22c and the outer peripheral bridge portions 22d and 22e are appropriately thinned out in the axial direction.
- the rotor 20 of the present embodiment is configured to ensure both the strength of the centrifugal force and the reduction of leakage magnetic flux.
- each magnet housing hole 24 has a configuration in which the first and second magnet through holes 31 and 32 are mixed in the axial direction in consideration of the rotation of the rotor core 22 . That is, since each magnet housing hole 24 has a zigzag shape in the axial direction, and the inner surface thereof is uneven, each permanent magnet 23 enters the uneven portion of the inner surface of each magnet housing hole 24 during the molding stage. Therefore, the connection between each permanent magnet 23 and the rotor core 22 becomes strong. This also contributes to increasing the rigidity of the rotor 20 as a whole.
- the tapered portions 31e, 31f, 32d, and 32e of the first and second magnet through holes 31 and 32 also have different protruding amounts, the corresponding V-shaped folded shape of the permanent magnets 23 is formed.
- the tapered portion 23c at the inner corner of the shaft also has an uneven shape in the axial direction. Also in this portion, the connection between each permanent magnet 23 and the rotor core 22 becomes strong. Further, since the reinforcing bridge portion 22c, the outer peripheral bridge portions 22d and 22e, and the interpolar bridge portion 22f shown in FIGS. 23 enters. Therefore, the connection between each permanent magnet 23 and the rotor core 22 is strong at this portion as well. This also contributes to improving the rigidity of the rotor 20 as a whole.
- the results of various comparative studies on the shape and arrangement of the permanent magnets 23 of the rotor 20 are shown below.
- the total width W1 is the sum of the linear portions 23a that connect the adjacent poles of the portion without the inter-electrode bridge portion 22f (or the inter-electrode bridge piece 33).
- the total width W2 is the sum of the straight portions 23a of adjacent poles including the width of the portion where the interpolar bridge portion 22f (or the interpolar bridge piece 33) is present.
- FIG. 7 shows the configuration of the present proposal.
- the linear portions 23a of the permanent magnets 23 having the same polarity are set to have the same width.
- the total width W2 is greater than the total width W1 (W1 ⁇ W2) due to the presence of the inter-electrode bridge portion 22f.
- FIG. 8 shows the configuration of Comparative Example 1
- FIG. 9 shows the configuration of Comparative Example 2.
- the width of the linear portion 23a at the portion where the inter-electrode bridge portion 22f is provided is narrowed.
- Comparative Example 2 is set such that the total width W1 is larger than the total width W2 (W1>W2).
- FIG. 10 shows torque fluctuations of the rotating electric machine M.
- FIG. 11 also shows the torque fluctuations of the rotating electric machine M.
- FIG. 12 shows the torque ripple rate of the rotating electric machine M.
- the ripple rate is suppressed as compared with the comparative example (not shown) in which the tapered portions are not provided. Since the comparative example without the tapered portion is also sufficiently acceptable, a configuration without the tapered portion may be employed.
- FIG. 13 also shows the torque ripple rate of the rotating electric machine M.
- This is the result of comparison and examination as to whether the sizes of the tapered portions 23c provided at the corners of the permanent magnets 23 (referred to as taper amounts in FIG. 13) are the same or different in the axial direction.
- ripples are less than in the comparative example (not shown) in which the sizes of the tapered portions are the same in the axial direction. rate is reduced.
- a comparative example in which the size of the tapered portion is the same in the axial direction is also sufficiently acceptable, so a configuration in which the size of the tapered portion is the same in the axial direction may be adopted.
- the outer core portion 25 is supported by the outer peripheral bridge portions 22d and 22e and the reinforcing bridge portion 22c. . Since the support rigidity of the outer core portion 25 supported by the bridge portions 22d, 22e, and 22c at a plurality of locations is sufficiently high, the strength of the centrifugal force of the rotor 20 can be ensured.
- the individual bridge pieces 31c, 22d, 22e, and 22c that support the outer core portion 25 are formed. 32c and 31d are moderately thinned out. Therefore, it is possible to reduce leakage magnetic flux that is a concern in each of the bridge portions 22d, 22e, and 22c.
- the outer peripheral bridge portion 22d and the outer peripheral bridge portion 22e correspond to the first bridge portion and the second bridge portion.
- the reinforcing bridge portion 22c corresponds to a third bridge portion.
- the peripheral bridge piece 31c and the peripheral bridge piece 32c correspond to the first bridge piece and the second bridge piece.
- the reinforcing bridge piece 31d corresponds to a third bridge piece.
- the first magnet through holes 31 having the outer peripheral bridge pieces 31c and the reinforcing bridge pieces 31d and the second magnet through holes 32 having the outer peripheral bridge pieces 32c are alternately arranged in the circumferential direction. are provided in a mixed manner on one sheet.
- the rotor core 22 rotates the core sheet 30 so that each predetermined number of core sheets 30 (in this embodiment, each sheet) has a magnet containing hole 24 in which the first and second magnet through holes 31 and 32 are mixed. It is a laminated structure. That is, since the rotor core 22 of the present embodiment can be configured with one type of core sheet 30, it can be realized with a simple response.
- the rotor core 22 is laminated by rotating the same number of core sheets 30, in this embodiment, one sheet at a time. As a result, improvement in rotational balance of the rotor 20 using the rotor core 22 can be expected.
- the rotor core 22 has inter-polar bridge portions 22 f between the magnet housing holes 24 of the adjacent magnetic pole portions 26 .
- the core sheet 30 has interpolar bridge pieces 33 between the adjacent first and second magnet through holes 31 and 32 on one side, and eliminates the interpolar bridge pieces 33 on the adjacent other side to form the first and second magnet through holes 31 and 32 .
- the two magnet through holes 31 and 32 are connected to each other.
- the outer peripheral bridge pieces 31c and 32c are provided only at a portion where the inter-electrode bridge piece 33 is present.
- the interpolar bridge piece 33 and the outer peripheral bridge pieces 31c and 32c are connected to each other and support each other, so this is a rational configuration.
- the inter-electrode bridge portion 22f corresponds to a fourth bridge portion.
- the inter-electrode bridge piece 33 corresponds to a fourth bridge piece.
- the linear portion 23a of the adjacent permanent magnets 23 corresponds to the side-by-side portion of the adjacent permanent magnets.
- the total width W1 corresponds to the first total width.
- the total width W2 corresponds to the second total width.
- the permanent magnet 23 is provided with a tapered portion 23c at the corner of the outer peripheral side end of the rotor core 22 .
- the sizes of the tapered portions 23c provided at the respective corners of the pair of linear portions 23a are set to be different from each other. With this as well, the effect of sufficiently suppressing the torque ripple of the rotary electric machine M can be expected.
- the first magnet through-hole 31 is arranged at a position offset to one side in the circumferential direction with respect to the magnetic pole center line Ls of the magnetic pole portion 26, and the second magnet through-hole 32 is arranged with respect to the magnetic pole center line Ls. is offset to the other side in the circumferential direction.
- the first and second magnet through-holes 31 and 32 are formed in a V-shaped folded shape asymmetrically with respect to the magnetic pole center line Ls.
- the magnet housing hole 24 is configured such that the first and second magnet through-holes 31 and 32 are intermingled, so that the inner surface thereof is uneven.
- the permanent magnets 23 manufactured by injection molding into the magnet housing holes 24 as in the present embodiment partly enter into the irregularities on the inner surface of the magnet housing holes 24, so that they are strongly coupled to each other. Become.
- the stronger coupling between the permanent magnets 23 and the rotor core 22 contributes to an improvement in the rigidity of the rotor 20 as a whole.
- the various comparative examples described above are also modified examples, and may be modified as appropriate. Also, the above-described embodiment and various comparative examples may be combined as appropriate.
- the shape of the magnet housing hole 24 and the first and second magnet through holes 31 and 32 is an example, and may be changed as appropriate. In this case, the shape of the permanent magnet 23 produced by injection molding into the magnet housing hole 24 is also changed.
- the main shape of the permanent magnets 23 of the adjacent magnetic pole portions 26 is configured symmetrically with respect to the magnetic pole boundary line Ld.
- the main shape of the permanent magnet 23 is an approximate shape excluding the portions related to the bridge portions 22c, 22d, and 22e of the magnet housing hole 24 and the tapered portions 23c.
- the main shape of the permanent magnets 23 of the adjacent magnetic pole portions 26 may be varied to be asymmetric with respect to the magnetic pole boundary line Ld.
- the widths of the pair of linear portions 23a in the permanent magnet 23 of the magnetic pole portion 26 of the second mode A2 are set to the same width W3.
- the widths of the linear portions 23a of the permanent magnets 23 of the magnetic pole portions 26 of the first mode A1 are set to different widths W4 and W5. This is an example in which the width of the permanent magnet 23 is changed as a main change in the shape of the permanent magnet 23 .
- One outer core portion 25 is supported at three locations, that is, the outer peripheral bridge portions 22d and 22e and the reinforcing bridge portion 22c, but one of these is omitted at two locations, or another bridge portion is added at four locations. It is good also as a support mode of the above multiple places.
- the shape, arrangement, presence/absence, and combination of the outer peripheral bridge portions 22d and 22e, the reinforcing bridge portion 22c and the interpolar bridge portion 22f, and the individual outer peripheral bridge pieces 31c and 32c, the reinforcing bridge piece 31d and the interpolar bridge piece 33, respectively. etc., may be changed as appropriate.
- the rotor core 22 is configured such that the core sheets 30 are rotated one by one to be laminated
- the core sheets 30 may be rotated and laminated by a predetermined number of sheets of two or more. In this case, it may be every same number of sheets or every different number of sheets.
- the rotor core 22 has a configuration in which a plurality of core sheets 30 of one type are laminated, it may have a configuration in which a plurality of types of core sheets (not shown) are laminated. In this case, the core sheets may be laminated while being rotated, or may be laminated without being rotated.
- each magnetic pole portion 26 is made larger than the curvature when the outer peripheral surface 22a of the rotor core 22 is a uniform circumference, and the outer peripheral surface 22a of the rotor core 22 is configured in a wavy shape. may be, for example, a generally uniform circumference.
- the permanent magnets 23 are produced by filling the magnet housing holes 24 with the magnet material that will become the permanent magnets 23, the permanent magnets 23 that have been produced in advance may be inserted into the magnet housing holes 24.
- the number of magnetic poles of the rotor 20, that is, the number of the permanent magnets 23 and the magnet housing holes 24 may be changed as appropriate. Also, the number of magnetic poles of the stator 10 may be changed as appropriate. - In addition to the above, the configuration of the rotary electric machine M may be changed as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
A rotor (20) comprises a permanent magnet (23) and a rotor core (22) including a plurality of core sheets (30). A plurality of magnetic poles (26) of the rotor each include the permanent magnet and an outside core portion (25). The outside core portion is constituted by laminating the outside core portions (34a, 34b) of the individual core sheets. The outside core portion is supported with respect to the periphery region of the rotor core by bridge portions (22d, 22e, 22c) at a plurality of sites including a bridge portion positioned on at least one side of a pair of outside end portions (24c) of a magnet housing hole in the radial direction. In the outside core portion, the outside core portion (34b) is at least mixed that is supported by one bridge piece (32c) of the core sheets constituting the bridge portion (22e) at the outside end portion in the radial direction on one side. When the plurality of core sheets are formed in a laminated state, the support form of the outside core portion by the bridge portions at the plurality of sites is established.
Description
本出願は、2021年12月9日に出願された日本出願番号2021-200266号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Application No. 2021-200266 filed on December 9, 2021, and the contents thereof are incorporated herein.
本開示は、埋込磁石型のロータ及び回転電機に関する。
The present disclosure relates to an embedded magnet rotor and rotating electric machine.
回転電機において、永久磁石がロータコアの径方向内側位置に埋め込まれる態様をなす埋込磁石型(いわゆるIPM型)のロータが周知である。埋込磁石型のロータは、永久磁石によるマグネットトルクに加えて、永久磁石より径方向外側に位置する外側コア部にてリラクタンストルクを得る構成となっている。
In a rotating electrical machine, an embedded magnet type (so-called IPM type) rotor is well known in which permanent magnets are embedded in radially inner positions of the rotor core. The embedded magnet type rotor is configured to obtain reluctance torque at an outer core portion located radially outside the permanent magnets, in addition to magnet torque from the permanent magnets.
埋込磁石型のロータは、例えば特許文献1に示されるように、軸方向視で永久磁石がV字及びU字等、径方向内側に凸の折返し形状の埋込態様とされている。永久磁石の折返し形状を径方向内側に向けて深くすると、外側コア部を大きく構成することが可能である。つまり、外側コア部を大きくするほどリラクタンストルクが得られるため、回転電機の高トルク化に繋げることができる。
In the embedded magnet type rotor, for example, as shown in Patent Document 1, the permanent magnets are embedded in a folded shape convex radially inward, such as a V-shape or a U-shape when viewed in the axial direction. When the folded shape of the permanent magnet is deepened radially inward, the outer core portion can be made large. That is, the larger the outer core portion is, the more reluctance torque can be obtained, which can lead to higher torque of the rotary electric machine.
上記埋込磁石型のロータは、ロータコアに対して永久磁石を収容するための磁石収容孔の形成が必要である。磁石収容孔に囲まれるように設けられる外側コア部は、ブリッジ部と呼ばれる幅の狭い連結部分にてロータコアの本体側と連結される構成となっている。ブリッジ部は、有効磁束の一部が漏れとして生じる部分でもある。漏れ磁束の低減ひいては回転電機の高トルク化を図るには、ブリッジ部の極小化や一部のブリッジ部の省略を図りたい。
The above embedded magnet type rotor requires the formation of magnet accommodation holes for accommodating permanent magnets in the rotor core. The outer core portion, which is provided so as to be surrounded by the magnet housing holes, is configured to be connected to the main body side of the rotor core at a narrow connecting portion called a bridge portion. The bridge portion is also the portion where some of the effective magnetic flux occurs as leakage. In order to reduce the leakage magnetic flux and thereby increase the torque of the rotary electric machine, it is desired to minimize the bridge portion or omit a part of the bridge portion.
しかしながら一方で、ブリッジ部は、外側コア部をロータコアの周囲部位に対して支持する部分でもある。そのため、ブリッジ部の極小化及や省略することを適切に行わないと、外側コア部の支持剛性の低下を招き、ロータの例えば遠心力強度の低下の懸念が増大する。
On the other hand, however, the bridge portion is also a portion that supports the outer core portion with respect to the peripheral portion of the rotor core. Therefore, if the bridge portion is not appropriately minimized or omitted, the support rigidity of the outer core portion will be lowered, and there is an increased concern that the strength of the rotor, for example, the centrifugal force, will be lowered.
本開示の目的は、遠心力強度の確保に配慮しつつ漏れ磁束の低減を図ることができるロータ及び回転電機を提供することにある。
本開示の一態様に係るロータは、積層された複数枚のコアシートを含み径方向内側に凸の折返し形状をなす磁石収容孔を有するロータコアと、前記ロータコアの磁石収容孔に埋め込まれる永久磁石とを備える。前記ロータは複数の磁極部を含んでいる。前記複数の磁極部の各々は、前記ロータコアの径方向内側に位置する前記永久磁石と、前記永久磁石よりも径方向外側に位置する前記ロータコアの一部位である外側コア部とを含んでいる。前記ロータコアの外側コア部は、個々の前記コアシートの外側コア部分の積層により構成されるとともに、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部にて前記ロータコアの周囲部位に対して支持される。前記ロータコアの外側コア部においては、前記一方側の径方向外側端部の前記ブリッジ部を構成する前記コアシートの1つのブリッジ片にて支持される前記外側コア部分が少なくとも混在しており、複数枚の前記コアシートを積層状態とすることで前記複数箇所のブリッジ部による前記外側コア部の支持態様が成立するように構成されている。 An object of the present disclosure is to provide a rotor and a rotating electric machine capable of reducing leakage magnetic flux while taking into account the strength of centrifugal force.
A rotor according to an aspect of the present disclosure includes a rotor core including a plurality of laminated core sheets and having a magnet housing hole having a folded shape convex radially inward; and permanent magnets embedded in the magnet housing holes of the rotor core. Prepare. The rotor includes a plurality of magnetic pole pieces. Each of the plurality of magnetic pole portions includes the permanent magnet positioned radially inside the rotor core, and an outer core portion which is a portion of the rotor core positioned radially outside the permanent magnet. The outer core portion of the rotor core is formed by stacking the outer core portions of the individual core sheets, and a bridge is positioned on at least one side of a pair of radially outer end portions of the folded magnet accommodating holes. It is supported with respect to the peripheral portion of the rotor core at a plurality of bridge portions including a portion. In the outer core portion of the rotor core, at least the outer core portion supported by one bridge piece of the core sheet forming the bridge portion of the one radially outer end portion is mixed, and a plurality of By stacking the core sheets, the outer core portion is supported by the plurality of bridge portions.
本開示の一態様に係るロータは、積層された複数枚のコアシートを含み径方向内側に凸の折返し形状をなす磁石収容孔を有するロータコアと、前記ロータコアの磁石収容孔に埋め込まれる永久磁石とを備える。前記ロータは複数の磁極部を含んでいる。前記複数の磁極部の各々は、前記ロータコアの径方向内側に位置する前記永久磁石と、前記永久磁石よりも径方向外側に位置する前記ロータコアの一部位である外側コア部とを含んでいる。前記ロータコアの外側コア部は、個々の前記コアシートの外側コア部分の積層により構成されるとともに、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部にて前記ロータコアの周囲部位に対して支持される。前記ロータコアの外側コア部においては、前記一方側の径方向外側端部の前記ブリッジ部を構成する前記コアシートの1つのブリッジ片にて支持される前記外側コア部分が少なくとも混在しており、複数枚の前記コアシートを積層状態とすることで前記複数箇所のブリッジ部による前記外側コア部の支持態様が成立するように構成されている。 An object of the present disclosure is to provide a rotor and a rotating electric machine capable of reducing leakage magnetic flux while taking into account the strength of centrifugal force.
A rotor according to an aspect of the present disclosure includes a rotor core including a plurality of laminated core sheets and having a magnet housing hole having a folded shape convex radially inward; and permanent magnets embedded in the magnet housing holes of the rotor core. Prepare. The rotor includes a plurality of magnetic pole pieces. Each of the plurality of magnetic pole portions includes the permanent magnet positioned radially inside the rotor core, and an outer core portion which is a portion of the rotor core positioned radially outside the permanent magnet. The outer core portion of the rotor core is formed by stacking the outer core portions of the individual core sheets, and a bridge is positioned on at least one side of a pair of radially outer end portions of the folded magnet accommodating holes. It is supported with respect to the peripheral portion of the rotor core at a plurality of bridge portions including a portion. In the outer core portion of the rotor core, at least the outer core portion supported by one bridge piece of the core sheet forming the bridge portion of the one radially outer end portion is mixed, and a plurality of By stacking the core sheets, the outer core portion is supported by the plurality of bridge portions.
本開示の更なる態様に係る回転電機は、ロータとステータとを備える。前記ロータは、積層された複数枚のコアシートを含み径方向内側に凸の折返し形状をなす磁石収容孔を有するロータコアと、前記ロータコアの磁石収容孔に埋め込まれる永久磁石とを備える。前記ステータは、前記ロータに対して回転磁界を付与する。前記回転電機のロータは複数の磁極部を含んでいる。前記複数の磁極部の各々は、前記ロータコアの径方向内側に位置する前記永久磁石と、前記永久磁石よりも径方向外側に位置する前記ロータコアの一部位である外側コア部とを含んでいる。前記ロータコアの外側コア部は、個々の前記コアシートの外側コア部分の積層により構成されるとともに、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部にて前記ロータコアの周囲部位に対して支持される。前記ロータコアの外側コア部においては、前記一方側の径方向外側端部の前記ブリッジ部を構成する前記コアシートの1つのブリッジ片にて支持される前記外側コア部分が少なくとも混在しており、複数枚の前記コアシートを積層状態とすることで前記複数箇所のブリッジ部による前記外側コア部の支持態様が成立するように構成されている。
A rotating electric machine according to a further aspect of the present disclosure includes a rotor and a stator. The rotor includes a rotor core that includes a plurality of laminated core sheets and has a magnet housing hole that is convex radially inward and has a folded shape, and permanent magnets that are embedded in the magnet housing holes of the rotor core. The stator applies a rotating magnetic field to the rotor. A rotor of the rotating electric machine includes a plurality of magnetic pole portions. Each of the plurality of magnetic pole portions includes the permanent magnet positioned radially inside the rotor core, and an outer core portion which is a portion of the rotor core positioned radially outside the permanent magnet. The outer core portion of the rotor core is formed by stacking the outer core portions of the individual core sheets, and a bridge is positioned on at least one side of a pair of radially outer end portions of the folded magnet accommodating holes. It is supported with respect to the peripheral portion of the rotor core at a plurality of bridge portions including a portion. In the outer core portion of the rotor core, at least the outer core portion supported by one bridge piece of the core sheet forming the bridge portion of the one radially outer end portion is mixed, and a plurality of By stacking the core sheets, the outer core portion is supported by the plurality of bridge portions.
上記ロータ及び回転電機によれば、磁石収容孔及び永久磁石にて囲まれる外側コア部は、ロータコアの周囲部位に対して、折返し形状をなす磁石収容孔の一対の径方向外側端部の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部にて支持される。個々のコアシートにおいては、1つの外側コア部を構成するにあたり、一方側の径方向外側端部のブリッジ部を構成する1つのブリッジ片にて支持される外側コア部分が少なくとも混在するようにする。そして、複数枚のコアシートを積層してロータコアを作製すると、複数箇所のブリッジ部による外側コア部の支持態様が成立する構成である。複数箇所のブリッジ部にて支持される外側コア部の支持剛性は十分に高くなるため、ロータの遠心力強度の確保が図れる。また一方で、1つのブリッジ片にて支持される外側コア部分を混在させたことで、外側コア部を支持するブリッジ部を構成する個々のブリッジ片が適度に間引かれた構成となるため、各ブリッジ部において懸念される漏れ磁束の低減も図ることが可能である。
According to the rotor and rotating electric machine described above, the outer core portion surrounded by the magnet containing holes and the permanent magnets includes at least one of the pair of radially outer end portions of the magnet containing holes that are folded back with respect to the peripheral portion of the rotor core. It is supported by a plurality of bridge portions including the bridge portion located on the side. In each core sheet, when configuring one outer core portion, at least the outer core portion supported by one bridge piece constituting the bridge portion at one radially outer end portion is mixed. . When a plurality of core sheets are laminated to manufacture a rotor core, the outer core portion is supported by a plurality of bridge portions. Since the support rigidity of the outer core portion supported by the bridge portions at a plurality of locations is sufficiently high, the centrifugal force strength of the rotor can be ensured. On the other hand, by mixing the outer core portions supported by one bridge piece, the individual bridge pieces constituting the bridge portion that supports the outer core portion are appropriately thinned out. It is also possible to reduce leakage magnetic flux, which is a concern in each bridge portion.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参酌しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態における埋込磁石型のロータを有する回転電機の構成図であり、
図2は、同実施形態におけるロータの平面図であり、
図3(a)(b)は、同実施形態に用いるコアシートの平面図であり、
図4は、図2に示すロータの4-4線断面図であり、
図5は、図2に示すロータの5-5線断面図であり、
図6は、図2に示すロータの6-6線断面図であり、
図7は、同実施形態におけるロータを含む回転電機の構成図であり、
図8は、比較例1におけるロータを含む回転電機の構成図であり、
図9は、比較例2におけるロータを含む回転電機の構成図であり、
図10は、永久磁石の各種形状に対応するトルク(コギングトルク)の比較図であり、
図11は、永久磁石の各種形状に対応するトルク(トルクリップル)の比較図であり、
図12は、テーパ状部の各種形状に対応するトルクリップル率の比較図であり、
図13は、テーパ状部の各種形状に対応するトルクリップル率の比較図であり、
図14は、隣接の磁極部の永久磁石形状を異ならせた変更例の回転電機の構成図であり、
図15は、変更例におけるコギングトルクの比較図であり、
図16は、変更例におけるトルクリップル率の比較図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description in conjunction with the accompanying drawings. The drawing is
FIG. 1 is a configuration diagram of a rotating electric machine having an embedded magnet type rotor in one embodiment, FIG. 2 is a plan view of the rotor in the same embodiment, 3(a) and 3(b) are plan views of core sheets used in the same embodiment, 4 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 4-4, 5 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 5-5, 6 is a cross-sectional view of the rotor shown in FIG. 2 taken along line 6-6, FIG. 7 is a configuration diagram of a rotating electrical machine including a rotor in the same embodiment, FIG. 8 is a configuration diagram of a rotating electrical machine including a rotor in Comparative Example 1; FIG. 9 is a configuration diagram of a rotating electrical machine including a rotor in Comparative Example 2; FIG. 10 is a comparison diagram of torque (cogging torque) corresponding to various shapes of permanent magnets. FIG. 11 is a comparison diagram of torque (torque ripple) corresponding to various shapes of permanent magnets, FIG. 12 is a comparison diagram of torque ripple rates corresponding to various shapes of the tapered portion; FIG. 13 is a comparison diagram of torque ripple rates corresponding to various shapes of the tapered portion; FIG. 14 is a configuration diagram of a rotating electrical machine of a modification in which the permanent magnet shapes of adjacent magnetic pole portions are different; FIG. 15 is a comparison diagram of cogging torque in the modification, FIG. 16 is a comparison diagram of the torque ripple rate in the modified example.
以下、ロータ及び回転電機の一実施形態について説明する。
[回転電機M]
図1に示す本実施形態の回転電機Mは、埋込磁石型のブラシレスモータにて構成されている。回転電機Mは、略円環状のステータ10と、ステータ10の径方向内側空間にて回転可能に配置される略円柱状のロータ20とを備えている。ステータ10は、ロータ20に対して回転磁界を付与する。ロータ20は、ステータ10にて生じる回転磁界を受けて回転する。 An embodiment of a rotor and a rotating electrical machine will be described below.
[Rotating electric machine M]
The rotary electric machine M of the present embodiment shown in FIG. 1 is configured by an embedded magnet brushless motor. The rotary electric machine M includes a substantiallyannular stator 10 and a substantially columnar rotor 20 rotatably arranged in a radially inner space of the stator 10 . Stator 10 imparts a rotating magnetic field to rotor 20 . The rotor 20 rotates by receiving a rotating magnetic field generated by the stator 10 .
[回転電機M]
図1に示す本実施形態の回転電機Mは、埋込磁石型のブラシレスモータにて構成されている。回転電機Mは、略円環状のステータ10と、ステータ10の径方向内側空間にて回転可能に配置される略円柱状のロータ20とを備えている。ステータ10は、ロータ20に対して回転磁界を付与する。ロータ20は、ステータ10にて生じる回転磁界を受けて回転する。 An embodiment of a rotor and a rotating electrical machine will be described below.
[Rotating electric machine M]
The rotary electric machine M of the present embodiment shown in FIG. 1 is configured by an embedded magnet brushless motor. The rotary electric machine M includes a substantially
[ステータ10]
ステータ10は、略円環状のステータコア11を備えている。ステータコア11は、磁性金属材料にて構成されている。ステータコア11は、例えば複数枚の電磁鋼板を積層して構成されている。ステータコア11は、径方向内側に向かって延び周方向等間隔に配置される本実施形態では12個のティース12を有している。各ティース12は、互いに同一形状をなしている。ティース12は、先端部である径方向内側端部が略T型をなしている。ティース12の先端面12aは、ロータ20の外周面に倣った円弧状をなしている。12個のティース12には、巻線13がそれぞれ集中巻きにて巻装されている。すなわち、ステータ10の磁極数は「12」である。巻線13は3相結線がなされ、図1ようにそれぞれU相、V相、W相として機能する。そして、巻線13に対して電源供給がなされると、ロータ20を回転駆動するための回転磁界がステータ10にて生じるようになっている。このようなステータ10は、ステータコア11の外周面がハウジング14の内周面に対して固定されている。 [Stator 10]
Thestator 10 has a substantially annular stator core 11 . The stator core 11 is made of a magnetic metal material. The stator core 11 is configured by laminating a plurality of electromagnetic steel sheets, for example. The stator core 11 extends radially inward and has twelve teeth 12 arranged at equal intervals in the circumferential direction in this embodiment. Each tooth 12 has the same shape. The tooth 12 has a substantially T-shaped radially inner end, which is a tip. Tip surfaces 12 a of the teeth 12 are arc-shaped following the outer peripheral surface of the rotor 20 . A winding 13 is wound around each of the 12 teeth 12 by concentrated winding. That is, the number of magnetic poles of the stator 10 is "12". The windings 13 are three-phase connected and function as U-phase, V-phase, and W-phase, respectively, as shown in FIG. When power is supplied to the windings 13 , a rotating magnetic field for rotating the rotor 20 is generated in the stator 10 . In such a stator 10 , the outer peripheral surface of stator core 11 is fixed to the inner peripheral surface of housing 14 .
ステータ10は、略円環状のステータコア11を備えている。ステータコア11は、磁性金属材料にて構成されている。ステータコア11は、例えば複数枚の電磁鋼板を積層して構成されている。ステータコア11は、径方向内側に向かって延び周方向等間隔に配置される本実施形態では12個のティース12を有している。各ティース12は、互いに同一形状をなしている。ティース12は、先端部である径方向内側端部が略T型をなしている。ティース12の先端面12aは、ロータ20の外周面に倣った円弧状をなしている。12個のティース12には、巻線13がそれぞれ集中巻きにて巻装されている。すなわち、ステータ10の磁極数は「12」である。巻線13は3相結線がなされ、図1ようにそれぞれU相、V相、W相として機能する。そして、巻線13に対して電源供給がなされると、ロータ20を回転駆動するための回転磁界がステータ10にて生じるようになっている。このようなステータ10は、ステータコア11の外周面がハウジング14の内周面に対して固定されている。 [Stator 10]
The
[ロータ20]
ロータ20は、回転軸21と、回転軸21が中心部に嵌挿される略円柱状のロータコア22と、ロータコア22の径方向内側位置に埋め込まれる態様をなす本実施形態では8つの永久磁石23とを備えている。すなわち、ロータ20の磁極数は「8」である。ロータ20は、回転軸21がハウジング14に設けられる図示略の軸受に支持されることで、ステータ10に対して回転可能に配置されている。 [Rotor 20]
Therotor 20 includes a rotating shaft 21, a substantially cylindrical rotor core 22 in which the rotating shaft 21 is fitted and inserted in the center, and eight permanent magnets 23 embedded in radially inner positions of the rotor core 22 in this embodiment. It has That is, the number of magnetic poles of the rotor 20 is "8". The rotor 20 is rotatably arranged with respect to the stator 10 by supporting a rotating shaft 21 on a bearing (not shown) provided in the housing 14 .
ロータ20は、回転軸21と、回転軸21が中心部に嵌挿される略円柱状のロータコア22と、ロータコア22の径方向内側位置に埋め込まれる態様をなす本実施形態では8つの永久磁石23とを備えている。すなわち、ロータ20の磁極数は「8」である。ロータ20は、回転軸21がハウジング14に設けられる図示略の軸受に支持されることで、ステータ10に対して回転可能に配置されている。 [Rotor 20]
The
[ロータコア22]
図2に示すように、ロータコア22は、永久磁石23を収容するための磁石収容孔24を有している。磁石収容孔24は、ロータコア22の周方向等間隔に本実施形態では8つ設けられている。各磁石収容孔24は、軸方向に沿ってロータコア22を貫通している。各磁石収容孔24は、軸方向視で径方向内側に向かって凸の略V字の折返し形状をなしている。 [Rotor core 22]
As shown in FIG. 2, therotor core 22 has magnet housing holes 24 for housing permanent magnets 23 therein. In this embodiment, eight magnet housing holes 24 are provided at equal intervals in the circumferential direction of the rotor core 22 . Each magnet housing hole 24 penetrates the rotor core 22 along the axial direction. Each magnet housing hole 24 has a substantially V-shaped folded shape protruding radially inward when viewed in the axial direction.
図2に示すように、ロータコア22は、永久磁石23を収容するための磁石収容孔24を有している。磁石収容孔24は、ロータコア22の周方向等間隔に本実施形態では8つ設けられている。各磁石収容孔24は、軸方向に沿ってロータコア22を貫通している。各磁石収容孔24は、軸方向視で径方向内側に向かって凸の略V字の折返し形状をなしている。 [Rotor core 22]
As shown in FIG. 2, the
各磁石収容孔24は、軸方向視で直線状をなす一対の直線部24aと、一対の直線部24aの径方向内側端部同士を繋ぐ屈曲部24bとを有している。一対の直線部24aは、径方向外側から内側に向けて次第に近接する態様をなしている。また、隣接する各磁石収容孔24で隣接の各直線部24a同士は、互いに平行となるように並設されている。各直線部24aは、自身の径方向外側端部24cがロータコア22の外周面22aの近くに位置し、一部が外周面22aに開口している(図4参照)。屈曲部24bは、回転軸21が嵌挿されるロータコア22の中心部の軸嵌挿孔22bの近くに位置している。つまり、各磁石収容孔24は、径方向外側から内側に向けて大きく凸をなす略V字の折返し形状をなしている。
Each magnet housing hole 24 has a pair of linear portions 24a that are linear when viewed in the axial direction, and a bent portion 24b that connects radially inner ends of the pair of linear portions 24a. The pair of linear portions 24a gradually approach from the radially outer side to the inner side. Adjacent linear portions 24a in adjacent magnet housing holes 24 are arranged in parallel so as to be parallel to each other. Each linear portion 24a has its own radially outer end portion 24c located near the outer peripheral surface 22a of the rotor core 22, and is partially open to the outer peripheral surface 22a (see FIG. 4). The bent portion 24b is positioned near the shaft fitting insertion hole 22b in the central portion of the rotor core 22 into which the rotating shaft 21 is fitted. In other words, each magnet housing hole 24 has a substantially V-shaped folded shape that protrudes greatly from the radially outer side to the inner side.
本実施形態の各磁石収容孔24は、詳細には、第1態様A1の磁石収容孔24と第2態様A2の磁石収容孔24との2種類の孔構造のものが混在している。第1及び第2態様A1,A2の磁石収容孔24は周方向に交互に設けられており、それぞれは周方向に1つ置きに設けられている。第1及び第2態様A1,A2の磁石収容孔24は、後述のコアシート30(図3参照)に形成される第1及び第2磁石用貫通孔31,32が軸方向に交互に並ぶことで構成されている。第1及び第2態様A1,A2の磁石収容孔24は、第1及び第2磁石用貫通孔31,32の軸方向の並び順が異なるため軸方向視で異なる孔に見えるものの、実質的には同様の構成となっている。なお、第1及び第2態様A1,A2の磁石収容孔24の詳細構成については後述する。
Specifically, each magnet accommodation hole 24 of the present embodiment has a mixture of two types of hole structures, the magnet accommodation hole 24 of the first aspect A1 and the magnet accommodation hole 24 of the second aspect A2. The magnet housing holes 24 of the first and second modes A1 and A2 are provided alternately in the circumferential direction, and are provided alternately in the circumferential direction. In the magnet housing holes 24 of the first and second modes A1 and A2, first and second magnet through holes 31 and 32 formed in a core sheet 30 (see FIG. 3), which will be described later, are arranged alternately in the axial direction. consists of The magnet housing holes 24 of the first and second aspects A1 and A2 look like different holes when viewed in the axial direction because the first and second magnet through holes 31 and 32 are arranged in different order in the axial direction. has the same configuration. The detailed configuration of the magnet housing holes 24 of the first and second modes A1 and A2 will be described later.
[永久磁石23及び外側コア部25]
永久磁石23は、本実施形態では磁石粉体を樹脂と混合した磁石材料を成型固化してなるボンド磁石を用いている。すなわち、ロータコア22の磁石収容孔24は、永久磁石23の成形型である。磁石材料が射出成形により磁石収容孔24内に隙間なく充填されると、磁石収容孔24内の磁石材料が固化することで永久磁石23が構成されている。したがって、磁石収容孔24の孔形状は、永久磁石23の外形形状となる。本実施形態の永久磁石23に用いられる磁石粉体としては、例えばサマリウム鉄窒素(SmFeN)系磁石が用いられるが、他の希土類磁石等を用いてもよい。 [Permanent magnet 23 and outer core portion 25]
In this embodiment, thepermanent magnet 23 is a bond magnet formed by molding and solidifying a magnetic material in which magnet powder is mixed with resin. That is, the magnet housing holes 24 of the rotor core 22 are molds for the permanent magnets 23 . When the magnet material is filled into the magnet housing holes 24 without gaps by injection molding, the permanent magnets 23 are formed by solidifying the magnet material in the magnet housing holes 24 . Therefore, the hole shape of the magnet housing hole 24 is the outer shape of the permanent magnet 23 . Samarium-iron-nitrogen (SmFeN)-based magnets, for example, are used as the magnet powder used for the permanent magnets 23 of the present embodiment, but other rare earth magnets and the like may also be used.
永久磁石23は、本実施形態では磁石粉体を樹脂と混合した磁石材料を成型固化してなるボンド磁石を用いている。すなわち、ロータコア22の磁石収容孔24は、永久磁石23の成形型である。磁石材料が射出成形により磁石収容孔24内に隙間なく充填されると、磁石収容孔24内の磁石材料が固化することで永久磁石23が構成されている。したがって、磁石収容孔24の孔形状は、永久磁石23の外形形状となる。本実施形態の永久磁石23に用いられる磁石粉体としては、例えばサマリウム鉄窒素(SmFeN)系磁石が用いられるが、他の希土類磁石等を用いてもよい。 [
In this embodiment, the
図2に示すように、各永久磁石23は、各磁石収容孔24に対して直接形成されることから、各磁石収容孔24と対応した形状である軸方向視で径方向内側に向かって凸の略V字の折返し形状をなしている。各永久磁石23は、各磁石収容孔24の一対の直線部24a内に位置する一対の直線部23aと、各磁石収容孔24の屈曲部24b内に位置して一対の直線部23aの径方向内側端部同士を繋ぐ屈曲部23bとを有している。一対の直線部23aは、径方向外側から内側に向けて次第に近接する態様をなしている。また、隣接する各永久磁石23で隣接の各直線部23a同士は、互いに平行となるように並設されている。直線部23aの径方向外側端部は、ロータコア22の外周面22aの近くに位置し、一部が外周面22aに露出している(図4参照)。屈曲部23bは、回転軸21が嵌挿されるロータコア22の中心部の軸嵌挿孔22bの近くに位置している。つまり、各永久磁石23は、径方向外側から内側に向けて大きく凸をなす略V字の折返し形状をなしている。
As shown in FIG. 2 , each permanent magnet 23 is formed directly in each magnet accommodation hole 24 , so that each permanent magnet 23 has a shape corresponding to each magnet accommodation hole 24 , which is convex radially inward when viewed in the axial direction. has a substantially V-shaped folded shape. Each permanent magnet 23 has a pair of straight portions 23a positioned within a pair of straight portions 24a of each magnet housing hole 24, and a pair of straight portions 23a positioned within a curved portion 24b of each magnet housing hole 24. It has a bent portion 23b that connects the inner ends. The pair of linear portions 23a gradually approach from the radially outer side to the inner side. Adjacent linear portions 23a of adjacent permanent magnets 23 are arranged in parallel to each other. A radially outer end portion of the straight portion 23a is located near the outer peripheral surface 22a of the rotor core 22 and partially exposed to the outer peripheral surface 22a (see FIG. 4). The bent portion 23b is located near the shaft fitting insertion hole 22b in the central portion of the rotor core 22 into which the rotating shaft 21 is fitted. That is, each permanent magnet 23 has a substantially V-shaped folded shape that protrudes greatly from the radially outer side to the inner side.
永久磁石23のV字の折返し形状の内側であり永久磁石23よりも径方向外側に位置するロータコア22の部位は、ステータ10と対向してリラクタンストルクを得るための外側コア部25として機能する。外側コア部25は、永久磁石23と同じく8つ設けられている。各外側コア部25は、軸方向視でロータ20の中心部方向に1つの頂点を向けた略三角形状をなしている。そして、1つの永久磁石23及び1つの外側コア部25にてロータ20の1つの磁極部26が構成されている。本実施形態のロータ20は、8つの磁極部26を有してなる。本実施形態の各磁極部26は、個々の外周面26aの曲率がロータコア22の外周面22aを一様な円周とした場合の曲率よりも大きく設定されている。つまり、ロータコア22の外周面22aは、各磁極部26毎に径方向外側に僅かに凸となる波状をなしている。
A portion of the rotor core 22 located inside the V-shaped folded permanent magnet 23 and radially outward of the permanent magnet 23 functions as an outer core portion 25 that faces the stator 10 and obtains reluctance torque. Eight outer core portions 25 are provided like the permanent magnets 23 . Each outer core portion 25 has a substantially triangular shape with one vertex directed toward the center portion of the rotor 20 when viewed in the axial direction. One magnetic pole portion 26 of the rotor 20 is composed of one permanent magnet 23 and one outer core portion 25 . The rotor 20 of this embodiment has eight magnetic pole portions 26 . In each magnetic pole portion 26 of the present embodiment, the curvature of the individual outer peripheral surface 26a is set larger than the curvature when the outer peripheral surface 22a of the rotor core 22 is a uniform circle. That is, the outer peripheral surface 22a of the rotor core 22 has a wavy shape that is slightly convex radially outward for each magnetic pole portion 26 .
上記したように、各永久磁石23が設けられる各磁石収容孔24は、第1及び第2態様A1,A2の磁石収容孔24の2種類があるものの実質的な孔構造は同様である。そのため、各磁極部26、すなわち各永久磁石23及び各外側コア部25についても軸方向視で異なる形状及び配置に見えるものの、実質的には同様の構成となっている。なお以降では、各磁石収容孔24と対応する各永久磁石23及び各外側コア部25、さらには各磁極部26についても第1及び第2態様A1,A2を用いる。各磁極部26の隣接間の磁極境界線Ldは周方向等間隔に8つある。隣接の磁極境界線Ld間である磁極部26の磁極開角度θmは45°である。また、隣接の磁極境界線Ldの周方向中心線は各磁極部26の磁極中心線Lsである。実質的に同様の構成をなす各磁極部26は磁極中心線Lsを中心とした実質的な線対称構成となっている。
As described above, each magnet housing hole 24 in which each permanent magnet 23 is provided has two types of magnet housing holes 24 of the first and second aspects A1 and A2, but the substantial hole structure is the same. Therefore, although the magnetic pole portions 26, that is, the permanent magnets 23 and the outer core portions 25 appear to have different shapes and arrangements when viewed in the axial direction, they have substantially the same configuration. Hereinafter, the first and second aspects A1 and A2 are used for each permanent magnet 23 and each outer core portion 25 corresponding to each magnet housing hole 24, and each magnetic pole portion 26 as well. There are eight magnetic pole boundary lines Ld between adjacent magnetic pole portions 26 at equal intervals in the circumferential direction. The magnetic pole opening angle θm of the magnetic pole portion 26 between the adjacent magnetic pole boundary lines Ld is 45°. The circumferential centerline of the adjacent magnetic pole boundary lines Ld is the magnetic pole centerline Ls of each magnetic pole portion 26 . Each magnetic pole portion 26 having substantially the same configuration has a substantially line-symmetrical configuration about the magnetic pole center line Ls.
各外側コア部25は、3つの頂点部分がそれぞれブリッジ部と呼ばれる連結部分にてロータコア22の周囲部位と連結されている。各外側コア部25の径方向内側の頂点部分は、補強ブリッジ部22cにて支持されている。補強ブリッジ部22cは、磁石収容孔24の屈曲部24bにて孔幅方向に横断する態様、この場合ロータコア22の径方向に横断する態様のブリッジ部である。各外側コア部25の径方向外側の2つの頂点部分は、それぞれ外周ブリッジ部22d,22eにて支持されている。外周ブリッジ部22d,22eは、磁石収容孔24の直線部24aの径方向外側端部24cをロータコア22の周方向に延びる態様のブリッジ部である。
Each outer core portion 25 has three apex portions connected to the peripheral portion of the rotor core 22 at connecting portions called bridge portions. A radial inner vertex portion of each outer core portion 25 is supported by a reinforcing bridge portion 22c. The reinforcing bridge portion 22c is a bridge portion that crosses the bent portion 24b of the magnet housing hole 24 in the hole width direction, in this case, the radial direction of the rotor core 22 . Two vertex portions on the radially outer side of each outer core portion 25 are supported by outer peripheral bridge portions 22d and 22e, respectively. The outer peripheral bridge portions 22 d and 22 e extend in the circumferential direction of the rotor core 22 from the radial outer end portion 24 c of the straight portion 24 a of the magnet housing hole 24 .
また、隣接の各磁石収容孔24間には、極間ブリッジ部22fが設けられている。極間ブリッジ部22fは、隣接の各磁石収容孔24の直線部24a間を径方向に延びる態様のブリッジ部である。極間ブリッジ部22f、上記補強ブリッジ部22c及び外周ブリッジ部22d,22eは、第1及び第2態様A1,A2の磁石収容孔24と対応して、軸方向に積層のコアシート30毎に有り無しが交互となるように構成されている(図4~図6参照)。また、極間ブリッジ部22f、上記補強ブリッジ部22c及び外周ブリッジ部22d,22eは、第1及び第2態様A1,A2の磁石収容孔24毎に、有り無しの順が逆になっている。詳細構成については後述する。
Interpolar bridge portions 22f are provided between the adjacent magnet housing holes 24. As shown in FIG. The interpolar bridge portion 22f is a bridge portion extending radially between the straight portions 24a of the adjacent magnet housing holes 24. As shown in FIG. The interpolar bridge portion 22f, the reinforcing bridge portion 22c, and the outer peripheral bridge portions 22d and 22e are provided for each axially laminated core sheet 30 corresponding to the magnet housing holes 24 of the first and second aspects A1 and A2. It is configured so that it is alternately absent (see FIGS. 4 to 6). Further, the interpolar bridge portion 22f, the reinforcing bridge portion 22c, and the outer peripheral bridge portions 22d, 22e are reversed in order of presence/absence for each of the magnet housing holes 24 of the first and second aspects A1, A2. A detailed configuration will be described later.
ロータコア22の磁石収容孔24内に埋込態様にて設けられる永久磁石23は、着磁前の磁石材料が固化した後に、図示略の着磁装置を用いてロータコア22の外部から着磁される。この場合、各永久磁石23は、自身の厚さ方向に磁化される。直線部24aでは自身が延びる径方向の直交方向に、屈曲部24bでは径方向にそれぞれ磁化される。各磁極部26の永久磁石23は、周方向に交互に異極となるように着磁される。こうして各磁極部26は、永久磁石23によるマグネットトルクと、外側コア部25によるリラクタンストルクとの両者が得られるものとして構成されている。
The permanent magnets 23 embedded in the magnet housing holes 24 of the rotor core 22 are magnetized from the outside of the rotor core 22 using a magnetizing device (not shown) after the magnet material before being magnetized is solidified. . In this case, each permanent magnet 23 is magnetized in its thickness direction. The linear portion 24a is magnetized in the direction orthogonal to the radial direction in which it extends, and the curved portion 24b is magnetized in the radial direction. The permanent magnets 23 of each magnetic pole portion 26 are magnetized so as to alternately have different polarities in the circumferential direction. Thus, each magnetic pole portion 26 is configured to obtain both magnet torque by the permanent magnet 23 and reluctance torque by the outer core portion 25 .
[コアシート30]
ロータコア22は、電磁鋼板よりなるコアシート30を軸線L方向に複数枚積層して構成されている。個々のコアシート30については、図3(a)に示すような同一構成のものが用いられている。各コアシート30は、同一部品を用いるために管理が容易である。なお、図3(b)に示すコアシート30は、図3(a)に示すコアシート30とは一見異なる形状に見えるが、実際は図3(a)にて示した第1位置に対して1磁極分である45°回転させた第2位置に配置したものである。 [Core sheet 30]
Therotor core 22 is constructed by laminating a plurality of core sheets 30 made of electromagnetic steel sheets in the direction of the axis L. As shown in FIG. As for the individual core sheets 30, those having the same configuration as shown in FIG. 3(a) are used. Since each core sheet 30 uses the same parts, it is easy to manage. Although the core sheet 30 shown in FIG. 3(b) appears to have a different shape from the core sheet 30 shown in FIG. It is arranged at the second position rotated by 45°, which is the magnetic pole portion.
ロータコア22は、電磁鋼板よりなるコアシート30を軸線L方向に複数枚積層して構成されている。個々のコアシート30については、図3(a)に示すような同一構成のものが用いられている。各コアシート30は、同一部品を用いるために管理が容易である。なお、図3(b)に示すコアシート30は、図3(a)に示すコアシート30とは一見異なる形状に見えるが、実際は図3(a)にて示した第1位置に対して1磁極分である45°回転させた第2位置に配置したものである。 [Core sheet 30]
The
1枚のコアシート30には、形状が互いに異なる2種類の磁石用貫通孔として第1磁石用貫通孔31と第2磁石用貫通孔32とが混在して形成されている。第1及び第2磁石用貫通孔31,32は、各コアシート30において周方向に交互に設けられている。第1及び第2磁石用貫通孔31,32のそれぞれは、周方向に1つ置きに設けられている。第1及び第2磁石用貫通孔31,32は、それぞれ径方向内側に向かって凸の略V字の折返し形状をなしている。すなわち、第1磁石用貫通孔31は、一対の直線部31aの径方向内側端部同士を屈曲部31bにて繋いだ形状をなしている。また、第2磁石用貫通孔32は、一対の直線部32aの径方向内側端部同士を屈曲部32bにて繋いだ形状をなしている。
In one core sheet 30, a first magnet through hole 31 and a second magnet through hole 32 are mixedly formed as two types of magnet through holes having different shapes. The first and second magnet through holes 31 and 32 are alternately provided in each core sheet 30 in the circumferential direction. Each of the first and second magnet through holes 31 and 32 is provided alternately in the circumferential direction. The first and second magnet through- holes 31 and 32 each have a substantially V-shaped folded shape that protrudes radially inward. That is, the first magnet through-hole 31 has a shape in which the radially inner ends of the pair of linear portions 31a are connected to each other by the bent portion 31b. The second magnet through-hole 32 has a shape in which the radially inner ends of the pair of linear portions 32a are connected to each other by a bent portion 32b.
第1磁石用貫通孔31は、自身の孔中心線L1が各磁極部26の磁極中心線Lsよりも図3(a)の反時計回り方向にオフセットした位置に設けられている。これに対し、第2磁石用貫通孔32は、自身の孔中心線L2が各磁極部26の磁極中心線Lsよりも図3(a)の時計回り方向にオフセットした位置に設けられている。これにより、第1磁石用貫通孔31とその時計回り方向に隣接する第2磁石用貫通孔32とについては、各直線部31a,32aが互いに離間している。第1磁石用貫通孔31とその時計回り方向に隣接する第2磁石用貫通孔32とは、極間ブリッジ部22fを構成する個々の極間ブリッジ片33の有る態様となっている。一方、第1磁石用貫通孔31とその反時計回り方向に隣接する第2磁石用貫通孔32とについては、各直線部31a,32aが互いに結合している。第1磁石用貫通孔31とその反時計回り方向に隣接する第2磁石用貫通孔32とは、極間ブリッジ部22fを構成する個々の極間ブリッジ片33の無い態様となっている。本実施形態では、各直線部31a,32aはちょうど磁極境界線Ldでの結合となっているため、各直線部31a,32a自身の幅は減少しない態様である。
The first magnet through hole 31 is provided at a position where its own hole center line L1 is offset from the magnetic pole center line Ls of each magnetic pole portion 26 in the counterclockwise direction in FIG. 3(a). On the other hand, the second magnet through-hole 32 is provided at a position where its own hole center line L2 is offset from the magnetic pole center line Ls of each magnetic pole portion 26 in the clockwise direction in FIG. 3(a). As a result, the linear portions 31a and 32a of the first magnet through-hole 31 and the second magnet through-hole 32 adjacent thereto in the clockwise direction are separated from each other. The first magnet through-hole 31 and the second magnet through-hole 32 adjacent thereto in the clockwise direction have individual interpolar bridge pieces 33 that constitute the interpolar bridge portion 22f. On the other hand, the straight portions 31a and 32a of the first magnet through-hole 31 and the second magnet through-hole 32 adjacent in the counterclockwise direction are coupled to each other. The first magnet through-hole 31 and the second magnet through-hole 32 adjacent thereto in the counterclockwise direction do not have the individual interpolar bridge pieces 33 constituting the interpolar bridge portion 22f. In this embodiment, since the straight portions 31a and 32a are joined at the magnetic pole boundary line Ld, the widths of the straight portions 31a and 32a themselves are not reduced.
また、第1及び第2磁石用貫通孔31,32の各直線部31a,32aが離間する部位、すなわち極間ブリッジ片33の有る部位は、外周ブリッジ部22d,22eを構成する個々の外周ブリッジ片31c,32cの有る態様となっている。極間ブリッジ片33と外周ブリッジ片31c,32cとは互いに連結しているため、互いに支持し合う合理的な関係である。一方、第1及び第2磁石用貫通孔31,32の各直線部31a,32aが結合する部位は、外周ブリッジ部22d,22eを構成する個々の外周ブリッジ片31c,32cの無い態様となっている。さらに、第1磁石用貫通孔31の屈曲部31bには、補強ブリッジ部22cを構成する個々の補強ブリッジ片31dの有る態様となっている。一方、第2磁石用貫通孔32の屈曲部32bには、補強ブリッジ部22cを構成する個々の補強ブリッジ片31dの無い態様となっている。
Further, the portions where the straight portions 31a and 32a of the first and second magnet through holes 31 and 32 are spaced apart from each other, that is, the portions where the interpolar bridge pieces 33 are located are individual outer peripheral bridges constituting the outer peripheral bridge portions 22d and 22e. It has a mode with pieces 31c and 32c. Since the interpolar bridge piece 33 and the outer peripheral bridge pieces 31c and 32c are connected to each other, they have a rational relationship of supporting each other. On the other hand, the portions where the straight portions 31a and 32a of the first and second magnet through- holes 31 and 32 are coupled do not have the outer peripheral bridge pieces 31c and 32c that constitute the outer peripheral bridge portions 22d and 22e. there is Further, the curved portion 31b of the first magnet through-hole 31 has individual reinforcing bridge pieces 31d that constitute the reinforcing bridge portion 22c. On the other hand, the bent portion 32b of the through-hole 32 for the second magnet does not have the individual reinforcing bridge pieces 31d that constitute the reinforcing bridge portion 22c.
つまり、外側コア部25を構成すべく第1磁石用貫通孔31に囲まれるように設けられる個々の外側コア部分34aは、補強ブリッジ片31dと、極間ブリッジ片33の有る部位の外周ブリッジ片31cとの2箇所で支持される態様である。一方、外側コア部25を構成すべく第2磁石用貫通孔32に囲まれるように設けられる個々の外側コア部分34bは、極間ブリッジ片33の有る部位の外周ブリッジ片32cの1箇所のみで支持される態様である。個々のコアシート30においては、個々の外側コア部分34a,34bの支持剛性はさほど高くない。しかしながら、本実施形態のロータコア22は、コアシート30を図3(a)の第1位置に配置したものと、45°回転させた図3(b)の第2位置に配置したものとを積層(いわゆる転積)するものである。コアシート30の転積により作製されるロータコア22の外側コア部25としては、補強ブリッジ部22c及び2箇所の外周ブリッジ部22d,22eの計3箇所で支持されることになり、外側コア部25の支持剛性は高くなる。
That is, each outer core portion 34a provided so as to be surrounded by the first magnet through hole 31 to constitute the outer core portion 25 includes a reinforcing bridge piece 31d and an outer peripheral bridge piece at a portion where the interpolar bridge piece 33 is present. 31c is supported at two points. On the other hand, the individual outer core portions 34b provided so as to be surrounded by the second magnet through holes 32 to constitute the outer core portion 25 are provided only at one location on the outer peripheral bridge piece 32c where the interpolar bridge piece 33 is located. This is the supported mode. In the individual core sheets 30, the supporting stiffness of the individual outer core portions 34a, 34b is not very high. However, in the rotor core 22 of this embodiment, the core sheet 30 arranged at the first position shown in FIG. 3A and the core sheet arranged at the second position shown in FIG. (so-called transduction). The outer core portion 25 of the rotor core 22 produced by rolling the core sheets 30 is supported at a total of three points, that is, the reinforcing bridge portion 22c and the two outer peripheral bridge portions 22d and 22e. The support stiffness of is increased.
また、第1磁石用貫通孔31において、磁極中心線Lsより反時計回り方向にずれて位置する直線部31aの径方向外側端部には、V字の折返し形状の内側角部においてテーパ状部31eが設けられている。第1磁石用貫通孔31において、磁極中心線Lsより時計回り方向にずれて位置する直線部31aの径方向外側端部には、V字の折返し形状の内側角部においてテーパ状部31fが設けられている。また、第2磁石用貫通孔32において、磁極中心線Lsより反時計回り方向にずれて位置する直線部32aの径方向外側端部には、V字の折返し形状の内側角部においてテーパ状部32dが設けられている。第2磁石用貫通孔32において、磁極中心線Lsより時計回り方向にずれて位置する直線部32aの径方向外側端部には、V字の折返し形状の内側角部においてテーパ状部32eが設けられている。各テーパ状部31e,31f,32d,32eは、内側縁が内側に斜状に迫り出している。各テーパ状部31e,32eは各テーパ状部31f,32dよりも迫出量が大きく設定されている。
In addition, in the first magnet through-hole 31, a tapered portion is provided at the inner corner of the V-shaped folded shape at the radially outer end of the linear portion 31a positioned counterclockwise from the magnetic pole center line Ls. 31e is provided. In the first magnet through-hole 31, a tapered portion 31f is provided at an inner corner portion of the V-shaped folded shape at the radially outer end portion of the linear portion 31a that is shifted clockwise from the magnetic pole center line Ls. It is In the second magnet through-hole 32, a tapered portion is provided at the inner corner of the V-shaped folded portion at the radially outer end of the linear portion 32a positioned counterclockwise from the magnetic pole center line Ls. 32d is provided. In the second magnet through-hole 32, a tapered portion 32e is provided at the inner corner of the V-shaped folded portion at the radially outer end portion of the linear portion 32a that is shifted clockwise from the magnetic pole center line Ls. It is The inner edges of the tapered portions 31e, 31f, 32d, and 32e project obliquely inward. Each of the tapered portions 31e and 32e is set to have a protrusion amount larger than that of each of the tapered portions 31f and 32d.
[コアシート30の積層によるロータコア22及びロータ20の作製]
ロータコア22を含むロータ20を作製するにあたり、本実施形態ではコアシート30を1枚単位で、図3(a)に示す第1位置に配置したものと、45°回転させた図3(b)に示す第2位置に配置したものとが交互となるように軸方向に積層される。これにより、第1磁石用貫通孔31と第2磁石用貫通孔32とが軸方向において交互に重なり、軸方向に重なる第1及び第2磁石用貫通孔31,32にてロータコア22の各磁石収容孔24が構成される。 [Fabrication ofrotor core 22 and rotor 20 by stacking core sheets 30]
In manufacturing therotor 20 including the rotor core 22, in the present embodiment, the core sheet 30 is placed one by one at the first position shown in FIG. are alternately stacked in the axial direction with those arranged at the second position shown in FIG. As a result, the first magnet through-holes 31 and the second magnet through-holes 32 are alternately overlapped in the axial direction, and the magnets of the rotor core 22 are separated by the axially overlapping first and second magnet through- holes 31 and 32 . A receiving hole 24 is formed.
ロータコア22を含むロータ20を作製するにあたり、本実施形態ではコアシート30を1枚単位で、図3(a)に示す第1位置に配置したものと、45°回転させた図3(b)に示す第2位置に配置したものとが交互となるように軸方向に積層される。これにより、第1磁石用貫通孔31と第2磁石用貫通孔32とが軸方向において交互に重なり、軸方向に重なる第1及び第2磁石用貫通孔31,32にてロータコア22の各磁石収容孔24が構成される。 [Fabrication of
In manufacturing the
図2に示す軸方向視において、ロータコア22の軸方向端面に第1磁石用貫通孔31が現れるのが第1態様A1の磁石収容孔24であり、第1態様A1の磁極部26である。第1態様A1の磁石収容孔24は、コアシート30の1枚目が第1磁石用貫通孔31であり、コアシート30の2枚目が第2磁石用貫通孔32である。つまり、コアシート30の奇数枚目が第1磁石用貫通孔31、偶数枚目が第2磁石用貫通孔32で構成されている。また、同じく軸方向視において、ロータコア22の軸方向端面に第2磁石用貫通孔32が現れるのが第2態様A2の磁石収容孔24であり、第2態様A2の磁極部26である。第2態様A2の磁石収容孔24は、コアシート30の1枚目が第2磁石用貫通孔32であり、コアシート30の2枚目が第1磁石用貫通孔31である。つまり、コアシート30の奇数枚目が第2磁石用貫通孔32、偶数枚目が第1磁石用貫通孔31で構成されている。
In the axial view shown in FIG. 2, the first magnet through-holes 31 appearing in the axial end face of the rotor core 22 are the magnet housing holes 24 of the first aspect A1 and the magnetic pole portions 26 of the first aspect A1. In the magnet housing hole 24 of the first mode A1, the first sheet of the core sheet 30 is the through hole 31 for the first magnet, and the second sheet of the core sheet 30 is the through hole 32 for the second magnet. That is, the odd-numbered core sheets 30 are configured with the first magnet through-holes 31 and the even-numbered core sheets 30 are configured with the second magnet through-holes 32 . Similarly, when viewed in the axial direction, the second magnet through holes 32 appearing in the axial end face of the rotor core 22 are the magnet containing holes 24 of the second mode A2 and the magnetic pole portions 26 of the second mode A2. In the magnet housing hole 24 of the second mode A2, the first sheet of the core sheet 30 is the through hole 32 for the second magnet, and the second sheet of the core sheet 30 is the through hole 31 for the first magnet. That is, the odd-numbered core sheets 30 are configured with the second magnet through-holes 32 and the even-numbered core sheets 30 are configured with the first magnet through-holes 31 .
またこの場合、第1磁石用貫通孔31は各磁極部26の磁極中心線Lsよりも反時計回り方向にオフセットし、第2磁石用貫通孔32は磁極中心線Lsよりも時計回り方向にオフセットしている。つまり、第1及び第2態様A1,A2の各磁石収容孔24は、軸方向にジグザグ状をなしている。各磁石収容孔24の内側面は、凹凸状をなして構成される。そのため、各磁石収容孔24への射出成形により作製される各永久磁石23は、自身の一部が各磁石収容孔24の内側面の凹凸部分に入り込む態様となるため、互いに強固な結合となる。
In this case, the first magnet through hole 31 is offset counterclockwise from the magnetic pole center line Ls of each magnetic pole portion 26, and the second magnet through hole 32 is offset clockwise from the magnetic pole center line Ls. are doing. That is, each magnet housing hole 24 of the first and second aspects A1 and A2 has a zigzag shape in the axial direction. The inner surface of each magnet housing hole 24 is configured to have an uneven shape. Therefore, the permanent magnets 23 manufactured by injection molding into the magnet housing holes 24 partially enter into the concave and convex portions of the inner surfaces of the magnet housing holes 24, so that the permanent magnets 23 are strongly connected to each other. .
なお、積層するコアシート30を偶数枚とすれば、第1及び第2態様A1,A2のいずれであっても互いに同数の第1及び第2磁石用貫通孔31,32にて各磁石収容孔24が構成されることになる。そのため、各磁石収容孔24は、第1及び第2態様A1,A2においてロータコア22の軸方向端面に現れる孔形状が異なっても、第1及び第2態様A1,A2の各磁極部26としては実質的に同様の構成となる。本実施形態のロータコア22は、例えば偶数枚のコアシート30にて構成される。
If the number of core sheets 30 to be laminated is an even number, the same number of first and second magnet through holes 31 and 32 are formed in each magnet housing hole in both the first and second modes A1 and A2. 24 will be configured. Therefore, even if the shape of each magnet housing hole 24 appearing on the axial end surface of the rotor core 22 is different in the first and second aspects A1 and A2, the magnetic pole portions 26 in the first and second aspects A1 and A2 are They have substantially the same configuration. The rotor core 22 of this embodiment is composed of, for example, an even number of core sheets 30 .
複数枚のコアシート30の固定について、一例としては、積層方向に隣接するコアシート30同士は接着剤(図示略)を用いて固定される。他例としては、隣接するコアシート30同士をかしめ部35(図2参照)を用いて固定させてもよい。かしめ部35は、例えばコアシート30の表面側を凹、裏面側を凸とし、積層方向に凹凸を嵌め合わせてかしめるものである。かしめ部35を設ける位置については、各磁極部26の磁極中心線Ls上で個々の外側コア部25の中心付近にそれぞれ1つずつ設定するのが一つの好ましい例である。かしめ部35の配置、数等はこれに限らず、適宜変更してもよい。
As for fixing the plurality of core sheets 30, for example, the core sheets 30 adjacent to each other in the stacking direction are fixed using an adhesive (not shown). As another example, adjacent core sheets 30 may be fixed using a crimping portion 35 (see FIG. 2). The caulking portion 35 is formed by, for example, forming a recess on the front side of the core sheet 30 and a protrusion on the back side of the core sheet 30, and fitting and crimping the protrusions and recesses in the stacking direction. One preferable example of the positions at which the crimped portions 35 are provided is to set one crimped portion 35 near the center of each outer core portion 25 on the magnetic pole center line Ls of each magnetic pole portion 26 . The arrangement, number, etc. of the crimped portions 35 are not limited to this, and may be changed as appropriate.
[本実施形態の作用]
本実施形態の作用について説明する。
図2に示すロータ20において、各磁極部26における外側コア部25は、1箇所の補強ブリッジ部22cと、2箇所の外周ブリッジ部22d,22eとの計3箇所で支持される構成となっている。これに対し、図3(a)に示す個々のコアシート30では、第1磁石用貫通孔31に囲まれる態様の個々の外側コア部分34aは、補強ブリッジ片31dと外周ブリッジ片31cとの2箇所での支持である。また、第2磁石用貫通孔32に囲まれる態様の個々の外側コア部分34bは、外周ブリッジ片32cの1箇所のみでの支持である。そして、複数枚のコアシート30の転積によりロータコア22を作製することで、外側コア部25の支持は補強ブリッジ部22c及び2箇所の外周ブリッジ部22d,22eの計3箇所となる。ロータコア22の完成状態での外側コア部25の支持剛性は高く、ロータコア22、すなわちロータ20の遠心力強度は十分となる。加えて、図4及び図5に示す補強ブリッジ部22cと外周ブリッジ部22d,22eとは、軸方向のコアシート30の1枚毎に個々の補強ブリッジ片31dと外周ブリッジ片31c,32cとが有り無しとなる。つまり、補強ブリッジ部22cと外周ブリッジ部22d,22eとは、軸方向に適度に間引きされた構成となっている。そのため、補強ブリッジ部22c及び外周ブリッジ部22d,22eにおいて懸念される漏れ磁束の低減も図れるものとなっている。つまり、本実施形態のロータ20は、遠心力強度の確保と漏れ磁束の低減との両立が図れる構成となっている。 [Action of this embodiment]
The operation of this embodiment will be described.
In therotor 20 shown in FIG. 2, the outer core portion 25 of each magnetic pole portion 26 is supported at a total of three locations, one reinforcing bridge portion 22c and two outer peripheral bridge portions 22d and 22e. there is On the other hand, in each core sheet 30 shown in FIG. 3(a), each outer core portion 34a surrounded by the first magnet through-holes 31 consists of a reinforcing bridge piece 31d and an outer peripheral bridge piece 31c. It is support in places. Each outer core portion 34b surrounded by the second magnet through-holes 32 is supported only at one position on the outer peripheral bridge piece 32c. By producing the rotor core 22 by rolling a plurality of core sheets 30, the outer core portion 25 is supported at a total of three points: the reinforcing bridge portion 22c and the two outer peripheral bridge portions 22d and 22e. The support rigidity of the outer core portion 25 in the finished state of the rotor core 22 is high, and the centrifugal force strength of the rotor core 22, that is, the rotor 20 is sufficient. In addition, the reinforcing bridge portion 22c and the outer peripheral bridge portions 22d and 22e shown in FIGS. Existence and nonexistence. In other words, the reinforcing bridge portion 22c and the outer peripheral bridge portions 22d and 22e are appropriately thinned out in the axial direction. Therefore, it is possible to reduce leakage magnetic flux, which is a concern in the reinforcing bridge portion 22c and the outer peripheral bridge portions 22d and 22e. In other words, the rotor 20 of the present embodiment is configured to ensure both the strength of the centrifugal force and the reduction of leakage magnetic flux.
本実施形態の作用について説明する。
図2に示すロータ20において、各磁極部26における外側コア部25は、1箇所の補強ブリッジ部22cと、2箇所の外周ブリッジ部22d,22eとの計3箇所で支持される構成となっている。これに対し、図3(a)に示す個々のコアシート30では、第1磁石用貫通孔31に囲まれる態様の個々の外側コア部分34aは、補強ブリッジ片31dと外周ブリッジ片31cとの2箇所での支持である。また、第2磁石用貫通孔32に囲まれる態様の個々の外側コア部分34bは、外周ブリッジ片32cの1箇所のみでの支持である。そして、複数枚のコアシート30の転積によりロータコア22を作製することで、外側コア部25の支持は補強ブリッジ部22c及び2箇所の外周ブリッジ部22d,22eの計3箇所となる。ロータコア22の完成状態での外側コア部25の支持剛性は高く、ロータコア22、すなわちロータ20の遠心力強度は十分となる。加えて、図4及び図5に示す補強ブリッジ部22cと外周ブリッジ部22d,22eとは、軸方向のコアシート30の1枚毎に個々の補強ブリッジ片31dと外周ブリッジ片31c,32cとが有り無しとなる。つまり、補強ブリッジ部22cと外周ブリッジ部22d,22eとは、軸方向に適度に間引きされた構成となっている。そのため、補強ブリッジ部22c及び外周ブリッジ部22d,22eにおいて懸念される漏れ磁束の低減も図れるものとなっている。つまり、本実施形態のロータ20は、遠心力強度の確保と漏れ磁束の低減との両立が図れる構成となっている。 [Action of this embodiment]
The operation of this embodiment will be described.
In the
また図2に示すように、各磁石収容孔24は、ロータコア22の転積を踏まえて第1及び第2磁石用貫通孔31,32が軸方向に混在する構成としている。つまり、各磁石収容孔24は軸方向にジグザグ状となって内側面が凹凸状となるため、各永久磁石23が成形の段階で各磁石収容孔24の内側面の凹凸部分に入り込む。そのため、各永久磁石23のロータコア22との結合は強固となる。このことは、ロータ20全体の剛性を高めるのにも貢献する。第1及び第2磁石用貫通孔31,32の各テーパ状部31e,31f,32d,32eについても迫出量を異ならせているため、これと対応する各永久磁石23のV字の折返し形状の内側角部のテーパ状部23cも軸方向に凹凸形状となる。この部分においても、各永久磁石23のロータコア22との結合が強固となる。また、図4~図6に示す補強ブリッジ部22c、外周ブリッジ部22d,22e及び極間ブリッジ部22fは軸方向に適度に間引きされた構成をなすため、この間引きされた部分にも各永久磁石23が入り込む。そのため、この部分においても各永久磁石23のロータコア22との結合が強固となる。このことでも、ロータ20全体の剛性の向上に貢献する。
Also, as shown in FIG. 2, each magnet housing hole 24 has a configuration in which the first and second magnet through holes 31 and 32 are mixed in the axial direction in consideration of the rotation of the rotor core 22 . That is, since each magnet housing hole 24 has a zigzag shape in the axial direction, and the inner surface thereof is uneven, each permanent magnet 23 enters the uneven portion of the inner surface of each magnet housing hole 24 during the molding stage. Therefore, the connection between each permanent magnet 23 and the rotor core 22 becomes strong. This also contributes to increasing the rigidity of the rotor 20 as a whole. Since the tapered portions 31e, 31f, 32d, and 32e of the first and second magnet through holes 31 and 32 also have different protruding amounts, the corresponding V-shaped folded shape of the permanent magnets 23 is formed. The tapered portion 23c at the inner corner of the shaft also has an uneven shape in the axial direction. Also in this portion, the connection between each permanent magnet 23 and the rotor core 22 becomes strong. Further, since the reinforcing bridge portion 22c, the outer peripheral bridge portions 22d and 22e, and the interpolar bridge portion 22f shown in FIGS. 23 enters. Therefore, the connection between each permanent magnet 23 and the rotor core 22 is strong at this portion as well. This also contributes to improving the rigidity of the rotor 20 as a whole.
また以下には、ロータ20の各永久磁石23の形状及び配置について各種比較検討した結果を示す。
先ずは、隣接極の各永久磁石23の直線部23aの合計幅W1,W2の比較検討の結果を示す。合計幅W1は、極間ブリッジ部22f(又は極間ブリッジ片33)の無い部位の隣接極同士で結合している直線部23aの合計である。合計幅W2は、極間ブリッジ部22f(又は極間ブリッジ片33)の有る部位の自身の幅も含む隣接極の直線部23a同士の合計である。図7は本案の構成である。同極の永久磁石23の直線部23aは同幅の設定である。極間ブリッジ部22fが介在する分、合計幅W2が合計幅W1よりも大である(W1<W2)。これに対し、図8は比較例1の構成、図9は比較例2の構成である。比較例1及び比較例2は、極間ブリッジ部22fの有る部位の直線部23aを幅狭としている。比較例1については、合計幅W2と合計幅W1とが同じ設定(W1=W2)である。比較例2については、合計幅W1が合計幅W2よりも大となる設定である(W1>W2)。 In addition, the results of various comparative studies on the shape and arrangement of thepermanent magnets 23 of the rotor 20 are shown below.
First, the results of comparative examination of the total widths W1 and W2 of thelinear portions 23a of the permanent magnets 23 of the adjacent poles will be shown. The total width W1 is the sum of the linear portions 23a that connect the adjacent poles of the portion without the inter-electrode bridge portion 22f (or the inter-electrode bridge piece 33). The total width W2 is the sum of the straight portions 23a of adjacent poles including the width of the portion where the interpolar bridge portion 22f (or the interpolar bridge piece 33) is present. FIG. 7 shows the configuration of the present proposal. The linear portions 23a of the permanent magnets 23 having the same polarity are set to have the same width. The total width W2 is greater than the total width W1 (W1<W2) due to the presence of the inter-electrode bridge portion 22f. On the other hand, FIG. 8 shows the configuration of Comparative Example 1, and FIG. 9 shows the configuration of Comparative Example 2. As shown in FIG. In Comparative Examples 1 and 2, the width of the linear portion 23a at the portion where the inter-electrode bridge portion 22f is provided is narrowed. In Comparative Example 1, the total width W2 and the total width W1 are set to be the same (W1=W2). Comparative Example 2 is set such that the total width W1 is larger than the total width W2 (W1>W2).
先ずは、隣接極の各永久磁石23の直線部23aの合計幅W1,W2の比較検討の結果を示す。合計幅W1は、極間ブリッジ部22f(又は極間ブリッジ片33)の無い部位の隣接極同士で結合している直線部23aの合計である。合計幅W2は、極間ブリッジ部22f(又は極間ブリッジ片33)の有る部位の自身の幅も含む隣接極の直線部23a同士の合計である。図7は本案の構成である。同極の永久磁石23の直線部23aは同幅の設定である。極間ブリッジ部22fが介在する分、合計幅W2が合計幅W1よりも大である(W1<W2)。これに対し、図8は比較例1の構成、図9は比較例2の構成である。比較例1及び比較例2は、極間ブリッジ部22fの有る部位の直線部23aを幅狭としている。比較例1については、合計幅W2と合計幅W1とが同じ設定(W1=W2)である。比較例2については、合計幅W1が合計幅W2よりも大となる設定である(W1>W2)。 In addition, the results of various comparative studies on the shape and arrangement of the
First, the results of comparative examination of the total widths W1 and W2 of the
図10には、回転電機Mのトルク変動が示されている。同図10では、無通電時のコギングトルクの大きさが現れている。合計幅W1,W2を「W1<W2」に設定した本案では、回転電機Mのコギングトルクが最も抑えられていることがわかる。これに対し、合計幅W1,W2を「W1>W2」に設定した比較例2では、本案と比べてコギングトルクが若干増大する。合計幅W1,W2を「W1=W2」に設定した比較例1では、比較例2と比べてコギングトルクが若干増大した。
FIG. 10 shows torque fluctuations of the rotating electric machine M. FIG. 10 shows the magnitude of the cogging torque when no current is supplied. It can be seen that the cogging torque of the rotary electric machine M is most suppressed in the present invention in which the total widths W1 and W2 are set to "W1<W2". On the other hand, in Comparative Example 2 in which the total widths W1 and W2 are set to "W1>W2", the cogging torque is slightly increased as compared with the present invention. In Comparative Example 1 in which the total widths W1 and W2 were set to "W1=W2", the cogging torque was slightly increased compared to Comparative Example 2.
図11についても、回転電機Mのトルク変動が示されている。同図11では、通電時のトルクリップルの大きさが現れている。合計幅W1,W2を「W1<W2」に設定した本案では、回転電機Mにて大きいトルクが得られ、かつトルクリップルが十分に抑えられていることがわかる。これに対し、合計幅W1,W2を「W1=W2」に設定した比較例1では、本案よりも若干大きいトルクが得られるものの、トルクリップルが若干増大する。また、合計幅W1,W2を「W1>W2」に設定した比較例2では、本案と比べてトルクが若干小さくなるとともにトルクリップルも若干増大する。なお、比較例1,2のいずれにおける結果も十分に許容できるものであるため、比較例1,2の設定を採用してもよい。
FIG. 11 also shows the torque fluctuations of the rotating electric machine M. FIG. 11 shows the magnitude of the torque ripple during energization. It can be seen that in the present invention in which the total widths W1 and W2 are set to "W1<W2", a large torque is obtained in the rotary electric machine M and the torque ripple is sufficiently suppressed. On the other hand, in Comparative Example 1 in which the total widths W1 and W2 are set to "W1=W2", a slightly larger torque than the present invention is obtained, but the torque ripple is slightly increased. Further, in Comparative Example 2 in which the total widths W1 and W2 are set to "W1>W2", the torque is slightly decreased and the torque ripple is slightly increased as compared with the present invention. Since the results of both Comparative Examples 1 and 2 are sufficiently acceptable, the settings of Comparative Examples 1 and 2 may be adopted.
次いで、各磁石収容孔24を構成する第1及び第2磁石用貫通孔31,32の各テーパ状部31e,31f,32d,32eの有無及び形状について各種比較検討した。すなわち、各永久磁石23の角部のテーパ状部23cの有無及び形状についての各種比較検討である。
Next, various comparisons were made on the presence and shape of the tapered portions 31e, 31f, 32d, and 32e of the first and second magnet through holes 31 and 32 constituting each magnet housing hole 24. In other words, various comparisons and examinations were made on the presence and shape of the tapered portions 23c at the corners of the permanent magnets 23. FIG.
図12には、回転電機Mのトルクリップル率が示されている。各永久磁石23の角部にテーパ状部23cを設けた本案では、テーパ状部を設けない比較例(図示略)と比べてリップル率が抑えられている。なお、テーパ状部を設けない比較例についても十分に許容できるものであるため、テーパ状部を設けない構成を採用してもよい。
FIG. 12 shows the torque ripple rate of the rotating electric machine M. In the present proposal in which the tapered portions 23c are provided at the corners of the permanent magnets 23, the ripple rate is suppressed as compared with the comparative example (not shown) in which the tapered portions are not provided. Since the comparative example without the tapered portion is also sufficiently acceptable, a configuration without the tapered portion may be employed.
図13についても、回転電機Mのトルクリップル率が示されている。各永久磁石23の角部に設けたテーパ状部23cの大きさ(図13中ではテーパ量と記載)を軸方向に同じか異ならせるかの比較検討の結果である。各永久磁石23の角部に設けたテーパ状部23cの大きさを軸方向に異ならせた本案では、テーパ状部の大きさを軸方向に同じとした比較例(図示略)と比べてリップル率が抑えられている。なお、テーパ状部の大きさを軸方向に同じとした比較例についても十分に許容できるものであるため、テーパ状部の大きさを軸方向に同じとする構成を採用してもよい。
FIG. 13 also shows the torque ripple rate of the rotating electric machine M. This is the result of comparison and examination as to whether the sizes of the tapered portions 23c provided at the corners of the permanent magnets 23 (referred to as taper amounts in FIG. 13) are the same or different in the axial direction. In the present invention, in which the sizes of the tapered portions 23c provided at the corners of the permanent magnets 23 are different in the axial direction, ripples are less than in the comparative example (not shown) in which the sizes of the tapered portions are the same in the axial direction. rate is reduced. A comparative example in which the size of the tapered portion is the same in the axial direction is also sufficiently acceptable, so a configuration in which the size of the tapered portion is the same in the axial direction may be adopted.
[本実施形態の効果]
本実施形態の効果について説明する。
(1)磁石収容孔24及び永久磁石23にて囲まれる外側コア部25は、ロータコア22の周囲部位に対して、一対の外周ブリッジ部22d,22e及び補強ブリッジ部22cの3箇所の支持態様により支持される。個々のコアシート30においては、1つの外側コア部25を構成するにあたり、外周ブリッジ片31c及び補強ブリッジ片31dの2つで支持される外側コア部分34aと、外周ブリッジ片32cの1つのみで支持される外側コア部分34bとを混在させている。そして、複数枚のコアシート30を積層してロータコア22を作製すると、本実施形態では外周ブリッジ部22d,22e及び補強ブリッジ部22cの3箇所による外側コア部25の支持態様が成立する構成である。複数箇所のブリッジ部22d,22e,22cにて支持される外側コア部25の支持剛性は十分に高くなるため、ロータ20の遠心力強度の確保を図ることができる。また一方で、1つの外周ブリッジ片32cにて支持される外側コア部分34b等を混在させたことで、外側コア部25を支持するブリッジ部22d,22e,22cを構成する個々のブリッジ片31c,32c,31dが適度に間引かれた構成となる。そのため、各ブリッジ部22d,22e,22cにおいて懸念される漏れ磁束の低減も図ることができる。 [Effect of this embodiment]
Effects of the present embodiment will be described.
(1) Theouter core portion 25 surrounded by the magnet housing hole 24 and the permanent magnets 23 is supported with respect to the peripheral portion of the rotor core 22 by three support modes of the pair of outer peripheral bridge portions 22d and 22e and the reinforcing bridge portion 22c. Supported. In each core sheet 30, in forming one outer core portion 25, only one outer core portion 34a supported by two outer peripheral bridge pieces 31c and reinforcing bridge pieces 31d and one outer peripheral bridge piece 32c are used. It is intermingled with the supported outer core portion 34b. When the rotor core 22 is produced by stacking a plurality of core sheets 30, the outer core portion 25 is supported by the outer peripheral bridge portions 22d and 22e and the reinforcing bridge portion 22c. . Since the support rigidity of the outer core portion 25 supported by the bridge portions 22d, 22e, and 22c at a plurality of locations is sufficiently high, the strength of the centrifugal force of the rotor 20 can be ensured. On the other hand, by mixing the outer core portion 34b and the like supported by one outer peripheral bridge piece 32c, the individual bridge pieces 31c, 22d, 22e, and 22c that support the outer core portion 25 are formed. 32c and 31d are moderately thinned out. Therefore, it is possible to reduce leakage magnetic flux that is a concern in each of the bridge portions 22d, 22e, and 22c.
本実施形態の効果について説明する。
(1)磁石収容孔24及び永久磁石23にて囲まれる外側コア部25は、ロータコア22の周囲部位に対して、一対の外周ブリッジ部22d,22e及び補強ブリッジ部22cの3箇所の支持態様により支持される。個々のコアシート30においては、1つの外側コア部25を構成するにあたり、外周ブリッジ片31c及び補強ブリッジ片31dの2つで支持される外側コア部分34aと、外周ブリッジ片32cの1つのみで支持される外側コア部分34bとを混在させている。そして、複数枚のコアシート30を積層してロータコア22を作製すると、本実施形態では外周ブリッジ部22d,22e及び補強ブリッジ部22cの3箇所による外側コア部25の支持態様が成立する構成である。複数箇所のブリッジ部22d,22e,22cにて支持される外側コア部25の支持剛性は十分に高くなるため、ロータ20の遠心力強度の確保を図ることができる。また一方で、1つの外周ブリッジ片32cにて支持される外側コア部分34b等を混在させたことで、外側コア部25を支持するブリッジ部22d,22e,22cを構成する個々のブリッジ片31c,32c,31dが適度に間引かれた構成となる。そのため、各ブリッジ部22d,22e,22cにおいて懸念される漏れ磁束の低減も図ることができる。 [Effect of this embodiment]
Effects of the present embodiment will be described.
(1) The
なお、外周ブリッジ部22d及び外周ブリッジ部22eは、第1ブリッジ部及び第2ブリッジ部に相当する。補強ブリッジ部22cは、第3ブリッジ部に相当する。外周ブリッジ片31c及び外周ブリッジ片32cは、第1ブリッジ片及び第2ブリッジ片に相当する。補強ブリッジ片31dは、第3ブリッジ片に相当する。
The outer peripheral bridge portion 22d and the outer peripheral bridge portion 22e correspond to the first bridge portion and the second bridge portion. The reinforcing bridge portion 22c corresponds to a third bridge portion. The peripheral bridge piece 31c and the peripheral bridge piece 32c correspond to the first bridge piece and the second bridge piece. The reinforcing bridge piece 31d corresponds to a third bridge piece.
(2)コアシート30は、外周ブリッジ片31c及び補強ブリッジ片31dを有する第1磁石用貫通孔31と、外周ブリッジ片32cを有する第2磁石用貫通孔32とが周方向に交互に配置されて1枚に混在して設けられる。ロータコア22は、コアシート30の所定枚数毎、本実施形態では1枚毎に第1及び第2磁石用貫通孔31,32の混在する磁石収容孔24となるようにコアシート30を回転させて積層する構成である。つまり、本実施形態のロータコア22は1種類のコアシート30にて構成することが可能なため、簡易な対応にて実現することができる。
(2) In the core sheet 30, the first magnet through holes 31 having the outer peripheral bridge pieces 31c and the reinforcing bridge pieces 31d and the second magnet through holes 32 having the outer peripheral bridge pieces 32c are alternately arranged in the circumferential direction. are provided in a mixed manner on one sheet. The rotor core 22 rotates the core sheet 30 so that each predetermined number of core sheets 30 (in this embodiment, each sheet) has a magnet containing hole 24 in which the first and second magnet through holes 31 and 32 are mixed. It is a laminated structure. That is, since the rotor core 22 of the present embodiment can be configured with one type of core sheet 30, it can be realized with a simple response.
(3)ロータコア22は、コアシート30を同数枚毎、本実施形態では1枚毎に回転させて積層される。これにより、ロータコア22を用いるロータ20の回転バランスの向上等が期待できる。
(3) The rotor core 22 is laminated by rotating the same number of core sheets 30, in this embodiment, one sheet at a time. As a result, improvement in rotational balance of the rotor 20 using the rotor core 22 can be expected.
(4)ロータコア22は、隣接する磁極部26の磁石収容孔24間に極間ブリッジ部22fを有する。コアシート30は、隣接する一方側の第1及び第2磁石用貫通孔31,32間に極間ブリッジ片33を有するとともに、隣接する他方側では極間ブリッジ片33を無くして第1及び第2磁石用貫通孔31,32を互いに結合する構成をなしている。このような構成において、極間ブリッジ片33の有る部位に限り、外周ブリッジ片31c,32cが設けられる。つまり、極間ブリッジ片33と外周ブリッジ片31c,32cとは互いに連結し互いに支持し合う関係であるため、合理的な構成である。
(4) The rotor core 22 has inter-polar bridge portions 22 f between the magnet housing holes 24 of the adjacent magnetic pole portions 26 . The core sheet 30 has interpolar bridge pieces 33 between the adjacent first and second magnet through holes 31 and 32 on one side, and eliminates the interpolar bridge pieces 33 on the adjacent other side to form the first and second magnet through holes 31 and 32 . The two magnet through holes 31 and 32 are connected to each other. In such a configuration, the outer peripheral bridge pieces 31c and 32c are provided only at a portion where the inter-electrode bridge piece 33 is present. In other words, the interpolar bridge piece 33 and the outer peripheral bridge pieces 31c and 32c are connected to each other and support each other, so this is a rational configuration.
なお、極間ブリッジ部22fは、第4ブリッジ部に相当する。極間ブリッジ片33は、第4ブリッジ片に相当する。
(5)極間ブリッジ部22fの無い部位で互いに結合する隣接の永久磁石23の直線部23aの合計幅W1と、極間ブリッジ部22fの有る部位で極間ブリッジ部22fを含む直線部23aの合計幅W2とが異なるように設定される。本実施形態では特に、合計幅W2が合計幅W1よりも大きい設定である。回転電機Mのコギングトルク及びトルクリップルをともに十分に抑える効果が期待できる。 Note that theinter-electrode bridge portion 22f corresponds to a fourth bridge portion. The inter-electrode bridge piece 33 corresponds to a fourth bridge piece.
(5) The total width W1 of thelinear portions 23a of the adjacent permanent magnets 23 that are coupled to each other at the portion without the interpolar bridge portion 22f, and the total width W1 of the linear portion 23a including the interpolar bridge portion 22f at the portion with the interpolar bridge portion 22f. It is set to be different from the total width W2. Especially in this embodiment, the total width W2 is set to be larger than the total width W1. The effect of sufficiently suppressing both the cogging torque and torque ripple of the rotary electric machine M can be expected.
(5)極間ブリッジ部22fの無い部位で互いに結合する隣接の永久磁石23の直線部23aの合計幅W1と、極間ブリッジ部22fの有る部位で極間ブリッジ部22fを含む直線部23aの合計幅W2とが異なるように設定される。本実施形態では特に、合計幅W2が合計幅W1よりも大きい設定である。回転電機Mのコギングトルク及びトルクリップルをともに十分に抑える効果が期待できる。 Note that the
(5) The total width W1 of the
なお、隣接の永久磁石23の直線部23aは、隣接の永久磁石の並設部位に相当する。合計幅W1は、第1合計幅に相当する。合計幅W2は、第2合計幅に相当する。
(6)永久磁石23は、ロータコア22の外周側端部の角部にテーパ状部23cが設けられる。本実施形態では特に、一対の直線部23aそれぞれの角部に設けられるテーパ状部23cの互いの大きさが異なる設定である。このことでも、回転電機Mのトルクリップルを十分に抑える効果が期待できる。 Thelinear portion 23a of the adjacent permanent magnets 23 corresponds to the side-by-side portion of the adjacent permanent magnets. The total width W1 corresponds to the first total width. The total width W2 corresponds to the second total width.
(6) Thepermanent magnet 23 is provided with a tapered portion 23c at the corner of the outer peripheral side end of the rotor core 22 . Especially in this embodiment, the sizes of the tapered portions 23c provided at the respective corners of the pair of linear portions 23a are set to be different from each other. With this as well, the effect of sufficiently suppressing the torque ripple of the rotary electric machine M can be expected.
(6)永久磁石23は、ロータコア22の外周側端部の角部にテーパ状部23cが設けられる。本実施形態では特に、一対の直線部23aそれぞれの角部に設けられるテーパ状部23cの互いの大きさが異なる設定である。このことでも、回転電機Mのトルクリップルを十分に抑える効果が期待できる。 The
(6) The
(7)第1磁石用貫通孔31は、磁極部26の磁極中心線Lsに対して周方向一方側にオフセットした位置に配置され、第2磁石用貫通孔32は、磁極中心線Lsに対して周方向他方側にオフセットした位置に配置される。第1及び第2磁石用貫通孔31,32は、それぞれ磁極中心線Lsに対してV字の折返し形状が非対称に構成される。そして、磁石収容孔24は、第1及び第2磁石用貫通孔31,32が混在することで、内側面が凹凸状をなして構成される。したがって、本実施形態のように磁石収容孔24への射出成形により作製される永久磁石23は、自身の一部が磁石収容孔24の内側面の凹凸部分に入り込むため、互いの結合は強固となる。永久磁石23のロータコア22との結合が強固となることで、ロータ20全体の剛性の向上に貢献できる。
(7) The first magnet through-hole 31 is arranged at a position offset to one side in the circumferential direction with respect to the magnetic pole center line Ls of the magnetic pole portion 26, and the second magnet through-hole 32 is arranged with respect to the magnetic pole center line Ls. is offset to the other side in the circumferential direction. The first and second magnet through- holes 31 and 32 are formed in a V-shaped folded shape asymmetrically with respect to the magnetic pole center line Ls. The magnet housing hole 24 is configured such that the first and second magnet through- holes 31 and 32 are intermingled, so that the inner surface thereof is uneven. Therefore, the permanent magnets 23 manufactured by injection molding into the magnet housing holes 24 as in the present embodiment partly enter into the irregularities on the inner surface of the magnet housing holes 24, so that they are strongly coupled to each other. Become. The stronger coupling between the permanent magnets 23 and the rotor core 22 contributes to an improvement in the rigidity of the rotor 20 as a whole.
[変更例]
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 [Change example]
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 [Change example]
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
・上記の各種比較例は変更例でもあり、各種比較例のように適宜変更してもよい。また、上記実施形態及び各種比較例を適宜組み合わせて実施してもよい。
・磁石収容孔24、第1及び第2磁石用貫通孔31,32の形状は一例であり、適宜変更してもよい。この場合、磁石収容孔24への射出成形により作製される永久磁石23の形状についても変更となる。 - The various comparative examples described above are also modified examples, and may be modified as appropriate. Also, the above-described embodiment and various comparative examples may be combined as appropriate.
- The shape of themagnet housing hole 24 and the first and second magnet through holes 31 and 32 is an example, and may be changed as appropriate. In this case, the shape of the permanent magnet 23 produced by injection molding into the magnet housing hole 24 is also changed.
・磁石収容孔24、第1及び第2磁石用貫通孔31,32の形状は一例であり、適宜変更してもよい。この場合、磁石収容孔24への射出成形により作製される永久磁石23の形状についても変更となる。 - The various comparative examples described above are also modified examples, and may be modified as appropriate. Also, the above-described embodiment and various comparative examples may be combined as appropriate.
- The shape of the
ちなみに上記実施形態では、隣接の磁極部26の永久磁石23の主たる形状を磁極境界線Ldに対して対称に構成している。永久磁石23の主たる形状とは、磁石収容孔24の各ブリッジ部22c,22d,22eに係る部位や各テーパ状部23cを除いたおおよその形状である。これを図14に示すように、隣接の磁極部26の永久磁石23の主たる形状を異ならせて磁極境界線Ldに対して非対称に構成してもよい。同図14では、一例として、第2態様A2の磁極部26の永久磁石23における一対の直線部23aの幅が互いに同じ幅W3に設定される。第1態様A1の磁極部26の永久磁石23における各直線部23aの幅がそれぞれ異なる幅W4,W5に設定される。永久磁石23の主たる形状の変更として、永久磁石23の幅を異ならせた例である。
Incidentally, in the above embodiment, the main shape of the permanent magnets 23 of the adjacent magnetic pole portions 26 is configured symmetrically with respect to the magnetic pole boundary line Ld. The main shape of the permanent magnet 23 is an approximate shape excluding the portions related to the bridge portions 22c, 22d, and 22e of the magnet housing hole 24 and the tapered portions 23c. As shown in FIG. 14, the main shape of the permanent magnets 23 of the adjacent magnetic pole portions 26 may be varied to be asymmetric with respect to the magnetic pole boundary line Ld. In FIG. 14, as an example, the widths of the pair of linear portions 23a in the permanent magnet 23 of the magnetic pole portion 26 of the second mode A2 are set to the same width W3. The widths of the linear portions 23a of the permanent magnets 23 of the magnetic pole portions 26 of the first mode A1 are set to different widths W4 and W5. This is an example in which the width of the permanent magnet 23 is changed as a main change in the shape of the permanent magnet 23 .
図15及び図16には、回転電機Mのコギングトルクとトルクリップル率とのそれぞれが示されている。隣接の磁極部26の永久磁石23の主たる形状を磁極境界線Ldに対して対称とした上記実施形態より、非対称とした図14に示す変更例の方がより一層コギングトルクとリップル率との両方が抑えられる。なお、対称としてもコギングトルクとリップル率とについて十分に許容できるものであるため、上記実施形態では対称とする態様が採用されている。変更例のように非対称の態様を採用することもできる。
15 and 16 show the cogging torque and torque ripple rate of the rotating electric machine M, respectively. Compared to the above-described embodiment in which the main shape of the permanent magnet 23 of the adjacent magnetic pole portion 26 is symmetrical with respect to the magnetic pole boundary line Ld, the modification shown in FIG. is suppressed. Since the cogging torque and the ripple rate are sufficiently permissible even with symmetry, the symmetric mode is adopted in the above-described embodiment. An asymmetrical aspect can also be adopted as in the modified example.
・1つの外側コア部25を外周ブリッジ部22d,22e及び補強ブリッジ部22cの3箇所にて支持したが、これらのうち1つを省略した2箇所、若しくはこれら以外にブリッジ部を追加した4箇所以上の複数箇所の支持態様としてもよい。また、外周ブリッジ部22d,22e、補強ブリッジ部22c及び極間ブリッジ部22f、さらには個々の外周ブリッジ片31c,32c、補強ブリッジ片31d及び極間ブリッジ片33それぞれの形状、配置、有無、組み合わせ等、適宜変更してもよい。
- One outer core portion 25 is supported at three locations, that is, the outer peripheral bridge portions 22d and 22e and the reinforcing bridge portion 22c, but one of these is omitted at two locations, or another bridge portion is added at four locations. It is good also as a support mode of the above multiple places. In addition, the shape, arrangement, presence/absence, and combination of the outer peripheral bridge portions 22d and 22e, the reinforcing bridge portion 22c and the interpolar bridge portion 22f, and the individual outer peripheral bridge pieces 31c and 32c, the reinforcing bridge piece 31d and the interpolar bridge piece 33, respectively. etc., may be changed as appropriate.
・ロータコア22はコアシート30を1枚毎に回転させて積層する構成であったが、2枚以上の所定枚数毎に回転させて積層させてもよい。この場合、同数枚毎であっても異なる枚数毎であってもよい。
· Although the rotor core 22 is configured such that the core sheets 30 are rotated one by one to be laminated, the core sheets 30 may be rotated and laminated by a predetermined number of sheets of two or more. In this case, it may be every same number of sheets or every different number of sheets.
・ロータコア22は1種類のコアシート30を複数枚積層する構成であったが、複数種類のコアシート(図示略)を積層する構成であってもよい。この場合、コアシートを回転させて積層させても、回転させずに積層させてもよい。
· Although the rotor core 22 has a configuration in which a plurality of core sheets 30 of one type are laminated, it may have a configuration in which a plurality of types of core sheets (not shown) are laminated. In this case, the core sheets may be laminated while being rotated, or may be laminated without being rotated.
・個々の磁極部26毎の外周面26aの曲率をロータコア22の外周面22aを一様な円周とした場合の曲率より大きくし、ロータコア22の外周面22aを波状に構成したが、ロータコア22の外周面22aを例えば一般的な一様な円周としてもよい。
The curvature of the outer peripheral surface 26a of each magnetic pole portion 26 is made larger than the curvature when the outer peripheral surface 22a of the rotor core 22 is a uniform circumference, and the outer peripheral surface 22a of the rotor core 22 is configured in a wavy shape. may be, for example, a generally uniform circumference.
・磁石収容孔24に永久磁石23となる磁石材料を充填して永久磁石23を作製する態様としたが、予め作製した永久磁石23を磁石収容孔24に挿入する態様であってもよい。
·Although the permanent magnets 23 are produced by filling the magnet housing holes 24 with the magnet material that will become the permanent magnets 23, the permanent magnets 23 that have been produced in advance may be inserted into the magnet housing holes 24.
・ロータ20の磁極数、すなわち永久磁石23及び磁石収容孔24の個数を適宜変更してもよい。また、ステータ10の磁極数を適宜変更してもよい。
・上記以外、回転電機Mの構成を適宜変更してもよい。 - The number of magnetic poles of therotor 20, that is, the number of the permanent magnets 23 and the magnet housing holes 24 may be changed as appropriate. Also, the number of magnetic poles of the stator 10 may be changed as appropriate.
- In addition to the above, the configuration of the rotary electric machine M may be changed as appropriate.
・上記以外、回転電機Mの構成を適宜変更してもよい。 - The number of magnetic poles of the
- In addition to the above, the configuration of the rotary electric machine M may be changed as appropriate.
・本明細書における記述「A及びBの少なくとも一つ」は、「Aのみ、または、Bのみ、または、AとBの両方」を意味するものとして理解されたい。
・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 - The statement "at least one of A and B" in this specification should be understood to mean "only A, or only B, or both A and B."
- Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 - The statement "at least one of A and B" in this specification should be understood to mean "only A, or only B, or both A and B."
- Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
Claims (12)
- 積層された複数枚のコアシート(30)を含み、径方向内側に凸の折返し形状をなす磁石収容孔(24)を有するロータコア(22)と、
前記ロータコアの磁石収容孔に埋め込まれる永久磁石(23)と
を備えるロータ(20)であって、
前記ロータは複数の磁極部(26)を含んでおり、
前記複数の磁極部の各々は、前記ロータコアの径方向内側に位置する前記永久磁石と、前記永久磁石よりも径方向外側に位置する前記ロータコアの一部位である外側コア部(25)とを含んでおり、
前記ロータコアの外側コア部は、個々の前記コアシートの外側コア部分(34a,34b)の積層により構成されるとともに、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部(24c)の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部(22d,22e,22c)にて前記ロータコアの周囲部位に対して支持されており、
前記一方側の径方向外側端部の前記ブリッジ部(22e)を構成する前記コアシートの1つのブリッジ片(32c)にて支持される前記外側コア部分(34b)が少なくとも混在するようにし、複数枚の前記コアシートを積層状態とすることで前記複数箇所のブリッジ部による前記外側コア部の支持態様が成立するように構成されている、ロータ。 a rotor core (22) including a plurality of laminated core sheets (30) and having a magnet accommodation hole (24) having a folded shape convex radially inward;
A rotor (20) comprising permanent magnets (23) embedded in magnet housing holes of the rotor core,
the rotor includes a plurality of magnetic pole pieces (26);
Each of the plurality of magnetic pole portions includes the permanent magnet located radially inside the rotor core, and an outer core portion (25) that is a portion of the rotor core located radially outside the permanent magnet. and
The outer core portion of the rotor core is formed by laminating the outer core portions (34a, 34b) of the individual core sheets, and a pair of radially outer end portions (24c) of the folded magnet accommodating holes are formed. The rotor core is supported by a plurality of bridge portions (22d, 22e, 22c) including bridge portions located on at least one side of the rotor core,
At least the outer core portion (34b) supported by one bridge piece (32c) of the core sheet forming the bridge portion (22e) of the one radially outer end is mixed, and a plurality of The rotor is configured such that the outer core portion is supported by the plurality of bridge portions by stacking the core sheets. - 前記ロータコアの外側コア部は、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部にそれぞれ設けられる第1及び第2ブリッジ部(22d,22e)と、前記磁石収容孔の途中位置において孔を横断するように設けられる第3ブリッジ部(22c)との少なくとも3箇所にて前記ロータコアの周囲部位に対して支持されており、
前記第1~第3ブリッジ部を構成する前記コアシートの第1~第3ブリッジ片(31c,32c,31d)のうち1つ又は2つのブリッジ片にて支持される個々の前記外側コア部分が混在するようにし、複数枚の前記コアシートを積層状態とすることで少なくとも前記第1~第3ブリッジ部の3箇所による前記外側コア部の支持態様が成立するように構成されている、請求項1に記載のロータ。 The outer core portion of the rotor core includes first and second bridge portions (22d, 22e) respectively provided at a pair of radially outer end portions of the magnet accommodation holes having the folded shape, and midway positions of the magnet accommodation holes. is supported with respect to the peripheral portion of the rotor core at at least three points including the third bridge portion (22c) provided so as to cross the hole in the
each of the outer core portions supported by one or two of the first to third bridge pieces (31c, 32c, 31d) of the core sheet constituting the first to third bridge portions; A plurality of the core sheets are mixed so that a plurality of the core sheets are laminated so that the outer core portion is supported by at least three portions of the first to third bridge portions. 1. The rotor according to claim 1. - 前記コアシートは、前記第1~第3ブリッジ片のうち2つのブリッジ片(31c,31d)を有する第1磁石用貫通孔(31)と、前記第1磁石用貫通孔に無い残りの1つのブリッジ片(32c)を有する第2磁石用貫通孔(32)とが周方向に交互に配置されて1枚に混在して設けられており、
前記ロータコアは、同一構成の前記コアシートを複数枚用い、前記コアシートの所定枚数毎に前記第1及び第2磁石用貫通孔の混在する前記磁石収容孔となるように前記コアシートを回転させて積層されている、請求項2に記載のロータ。 The core sheet includes a first magnet through hole (31) having two bridge pieces (31c, 31d) out of the first to third bridge pieces, and a remaining one hole not in the first magnet through hole (31). second magnet through-holes (32) having bridge pieces (32c) are arranged alternately in the circumferential direction and provided in one sheet,
The rotor core uses a plurality of core sheets having the same configuration, and the core sheets are rotated so that each predetermined number of core sheets has a magnet containing hole in which the through holes for the first and second magnets are mixed. 3. A rotor according to claim 2, wherein the rotor is laminated with - 前記ロータコアは、前記コアシートを同数枚毎に回転させて積層されている、請求項3に記載のロータ。 The rotor according to claim 3, wherein the rotor core is laminated by rotating the same number of core sheets.
- 前記ロータコアは、隣接する前記磁極部の前記磁石収容孔間に第4ブリッジ部(22f)を有するものであって、
前記コアシートは、隣接する一方側の前記第1及び第2磁石用貫通孔間に前記第4ブリッジ部を構成するための第4ブリッジ片(33)を有するとともに、隣接する他方側の前記第1及び第2磁石用貫通孔間には前記第4ブリッジ片を無くして前記第1及び第2磁石用貫通孔を互いに結合するように構成されるものであり、
前記第4ブリッジ片の有る部位に限り、前記第1及び第2ブリッジ片が設けられている、請求項3又は請求項4に記載のロータ。 The rotor core has a fourth bridge portion (22f) between the magnet housing holes of the adjacent magnetic pole portions,
The core sheet has a fourth bridge piece (33) for forming the fourth bridge portion between the first and second magnet through holes on one side, and the fourth bridge piece (33) on the other side. The fourth bridge piece is removed between the first and second magnet through-holes, and the first and second magnet through-holes are connected to each other,
5. The rotor according to claim 3, wherein said first and second bridge pieces are provided only at a portion where said fourth bridge piece is provided. - 隣接する前記永久磁石で隣接の並設部位(23a)同士の合計幅(W1,W2)について、前記第4ブリッジ部の無い部位で互いに結合する前記並設部位の第1合計幅(W1)と、前記第4ブリッジ部の有る部位で前記第4ブリッジ部を含む前記並設部位の第2合計幅(W2)とが異なるように設定されている、請求項5に記載のロータ。 With respect to the total width (W1, W2) of the adjacent juxtaposed portions (23a) of the adjacent permanent magnets, the first total width (W1) of the juxtaposed portions coupled to each other at the portion without the fourth bridge portion 6. The rotor according to claim 5, wherein the second total width (W2) of the juxtaposed portion including the fourth bridge portion is set to be different at the portion where the fourth bridge portion is present.
- 前記第4ブリッジ部の有る部位の前記第2合計幅は、前記第4ブリッジ部の無い部位の前記第1合計幅よりも大きくなるように設定されている、請求項6に記載のロータ。 The rotor according to claim 6, wherein the second total width of the portion with the fourth bridge portion is set to be larger than the first total width of the portion without the fourth bridge portion.
- 前記第1磁石用貫通孔は、前記磁極部の磁極中心線(Ls)に対して周方向一方側にオフセットした位置に配置され、前記第2磁石用貫通孔は、前記磁極中心線に対して周方向他方側にオフセットした位置に配置され、前記第1及び第2磁石用貫通孔がそれぞれ前記磁極中心線に対して前記折返し形状が非対称に構成されており、
前記磁石収容孔は、前記第1及び第2磁石用貫通孔が混在することで、内側面が凹凸状をなしている、請求項3~請求項7のいずれか一項に記載のロータ。 The first magnet through-hole is arranged at a position offset to one side in the circumferential direction with respect to the magnetic pole center line (Ls) of the magnetic pole portion, and the second magnet through-hole is arranged with respect to the magnetic pole center line. arranged at a position offset to the other side in the circumferential direction, and the folded shapes of the first and second magnet through holes are configured asymmetrically with respect to the magnetic pole center line,
8. The rotor according to any one of claims 3 to 7, wherein the magnet containing hole has an uneven inner surface due to a mixture of the first and second magnet through holes. - 前記永久磁石は、前記ロータコアの外周側端部の角部にテーパ状部(23c)が設けられている、請求項1~請求項8のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 8, wherein said permanent magnets are provided with tapered portions (23c) at the corners of the outer peripheral side end of said rotor core.
- 前記永久磁石は、前記折返し形状をなす前記ロータコアの外周側端部それぞれの角部にテーパ状部(23c)が設けられており、互いの大きさが異なるように設定されている、請求項9に記載のロータ。 10. The permanent magnets are provided with tapered portions (23c) at respective corners of the outer peripheral side end portions of the folded rotor core, and are set to have different sizes. rotor described in .
- 前記永久磁石は、自身の主たる形状が隣接の前記磁極部の磁極境界線(Ld)に対して非対称に構成されている、請求項1~請求項10のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 10, wherein the permanent magnet has its main shape asymmetrical with respect to the magnetic pole boundary line (Ld) of the adjacent magnetic pole portion.
- 積層された複数枚のコアシート(30)を含み、径方向内側に凸の折返し形状をなす磁石収容孔(24)を有するロータコア(22)と、前記ロータコアの磁石収容孔に埋め込まれる永久磁石(23)とを備えるロータ(20)と、
前記ロータに対して回転磁界を付与するステータ(10)と、
を備えた回転電機(M)であって、
前記回転電機のロータは複数の磁極部(26)を含んでおり、
前記複数の磁極部(26)の各々は前記ロータコアの径方向内側に位置する前記永久磁石と、前記永久磁石よりも径方向外側に位置する前記ロータコアの一部位である外側コア部(25)とを含んでおり、
前記ロータコアの外側コア部は、個々の前記コアシートの外側コア部分(34a,34b)の積層により構成されるとともに、前記折返し形状をなす前記磁石収容孔の一対の径方向外側端部(24c)の少なくとも一方側に位置するブリッジ部を含む複数箇所のブリッジ部(22d,22e,22c)にて前記ロータコアの周囲部位に対して支持されており、
前記一方側の径方向外側端部の前記ブリッジ部(22e)を構成する前記コアシートの1つのブリッジ片(32c)にて支持される前記外側コア部分(34b)が少なくとも混在するようにし、複数枚の前記コアシートを積層状態とすることで前記複数箇所のブリッジ部による前記外側コア部の支持態様が成立するように構成されている、回転電機。 A rotor core (22) including a plurality of laminated core sheets (30) and having a magnet housing hole (24) with a radially inwardly convex folded shape; permanent magnets embedded in the magnet housing holes of the rotor core ( 23), a rotor (20) comprising
a stator (10) for applying a rotating magnetic field to the rotor;
A rotating electrical machine (M) comprising
The rotor of the rotating electric machine includes a plurality of magnetic pole portions (26),
Each of the plurality of magnetic pole portions (26) includes the permanent magnet positioned radially inside the rotor core, and an outer core portion (25) which is a part of the rotor core positioned radially outside the permanent magnet. contains
The outer core portion of the rotor core is formed by laminating the outer core portions (34a, 34b) of the individual core sheets, and a pair of radially outer end portions (24c) of the folded magnet accommodating holes are formed. The rotor core is supported by a plurality of bridge portions (22d, 22e, 22c) including bridge portions located on at least one side of the rotor core,
At least the outer core portion (34b) supported by one bridge piece (32c) of the core sheet forming the bridge portion (22e) of the one radially outer end is mixed, and a plurality of A rotary electric machine, wherein the outer core portion is supported by the plurality of bridge portions by stacking the core sheets.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022005880.3T DE112022005880T5 (en) | 2021-12-09 | 2022-08-29 | rotor and rotating electrical machine |
CN202280079564.1A CN118339744A (en) | 2021-12-09 | 2022-08-29 | Rotor and rotating electrical machine |
US18/739,077 US20240333053A1 (en) | 2021-12-09 | 2024-06-10 | Rotor and rotating electric machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-200266 | 2021-12-09 | ||
JP2021200266A JP2023085938A (en) | 2021-12-09 | 2021-12-09 | Rotor and rotating electrical machine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/739,077 Continuation US20240333053A1 (en) | 2021-12-09 | 2024-06-10 | Rotor and rotating electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023105859A1 true WO2023105859A1 (en) | 2023-06-15 |
Family
ID=86730132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032322 WO2023105859A1 (en) | 2021-12-09 | 2022-08-29 | Rotor and rotating electric machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240333053A1 (en) |
JP (1) | JP2023085938A (en) |
CN (1) | CN118339744A (en) |
DE (1) | DE112022005880T5 (en) |
WO (1) | WO2023105859A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006109683A (en) * | 2004-10-08 | 2006-04-20 | Asmo Co Ltd | Rotary electric machine |
JP2013090386A (en) * | 2011-10-14 | 2013-05-13 | Toyota Boshoku Corp | Method of manufacturing core for dynamo-electric machine, and core plate punching device |
JP2015065764A (en) * | 2013-09-25 | 2015-04-09 | 株式会社ジェイテクト | Magnet embedded type rotor |
JP2018085779A (en) * | 2016-11-21 | 2018-05-31 | パナソニックIpマネジメント株式会社 | Motor element, motor, and device |
JP2019041483A (en) * | 2017-08-24 | 2019-03-14 | 愛三工業株式会社 | Rotor core |
-
2021
- 2021-12-09 JP JP2021200266A patent/JP2023085938A/en active Pending
-
2022
- 2022-08-29 CN CN202280079564.1A patent/CN118339744A/en active Pending
- 2022-08-29 DE DE112022005880.3T patent/DE112022005880T5/en active Pending
- 2022-08-29 WO PCT/JP2022/032322 patent/WO2023105859A1/en active Application Filing
-
2024
- 2024-06-10 US US18/739,077 patent/US20240333053A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006109683A (en) * | 2004-10-08 | 2006-04-20 | Asmo Co Ltd | Rotary electric machine |
JP2013090386A (en) * | 2011-10-14 | 2013-05-13 | Toyota Boshoku Corp | Method of manufacturing core for dynamo-electric machine, and core plate punching device |
JP2015065764A (en) * | 2013-09-25 | 2015-04-09 | 株式会社ジェイテクト | Magnet embedded type rotor |
JP2018085779A (en) * | 2016-11-21 | 2018-05-31 | パナソニックIpマネジメント株式会社 | Motor element, motor, and device |
JP2019041483A (en) * | 2017-08-24 | 2019-03-14 | 愛三工業株式会社 | Rotor core |
Also Published As
Publication number | Publication date |
---|---|
JP2023085938A (en) | 2023-06-21 |
CN118339744A (en) | 2024-07-12 |
DE112022005880T5 (en) | 2024-10-02 |
US20240333053A1 (en) | 2024-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1990895B1 (en) | Stress distributing permanent magnet rotor geometry for electric machines | |
US7233089B2 (en) | Permanent magnet rotating electric machine | |
JP4466681B2 (en) | Rotating electric machine rotor and rotating electric machine | |
US7276832B2 (en) | Permanent magnet rotary motor | |
US10404146B2 (en) | Rotary electric machine | |
JP6591692B2 (en) | Rotating electric machine | |
JP5347588B2 (en) | Embedded magnet motor | |
WO2018037529A1 (en) | Rotary electric machine | |
JP7293371B2 (en) | Rotor of rotary electric machine | |
JP2009118629A (en) | Ac motor | |
JP5067365B2 (en) | motor | |
JP2004215442A (en) | Permanent magnet embedded synchronous motor | |
CN112653267A (en) | Motor with asymmetric rotor core | |
US20230299628A1 (en) | Rotor and rotating electric machine | |
WO2023105859A1 (en) | Rotor and rotating electric machine | |
JP2000166135A (en) | Brushless motor | |
WO2018070430A1 (en) | Synchronous reluctance rotary electric machine | |
WO2022255481A1 (en) | Rotor and dynamo-electric machine | |
WO2022239851A1 (en) | Rotor and rotary electric machine | |
JP2015029381A (en) | Rotor and motor | |
WO2023100338A1 (en) | Rotating electric machine | |
WO2024057837A1 (en) | Rotary electric machine core and rotary electric machine | |
CN116458032A (en) | Rotor and rotating electrical machine | |
JP2022084509A (en) | Rotor and rotary electric machine | |
JP6481546B2 (en) | motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22903794 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280079564.1 Country of ref document: CN |