WO2023105794A1 - Conveyance robot and component mounting system - Google Patents

Conveyance robot and component mounting system Download PDF

Info

Publication number
WO2023105794A1
WO2023105794A1 PCT/JP2021/045670 JP2021045670W WO2023105794A1 WO 2023105794 A1 WO2023105794 A1 WO 2023105794A1 JP 2021045670 W JP2021045670 W JP 2021045670W WO 2023105794 A1 WO2023105794 A1 WO 2023105794A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
transport robot
section
transfer
conveyor
Prior art date
Application number
PCT/JP2021/045670
Other languages
French (fr)
Japanese (ja)
Inventor
尚也 藤井
勉 柳田
義徳 岡本
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/045670 priority Critical patent/WO2023105794A1/en
Publication of WO2023105794A1 publication Critical patent/WO2023105794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a transport robot used in a manufacturing line for a component-mounted board in which components are mounted (mounted) on a board such as a printed wiring board, and a component mounting system equipped with this transport robot.
  • a production line for manufacturing a component-mounted board in which components are mounted (mounted) on a board such as a printed wiring board is well known.
  • a manufacturing line includes a plurality of component mounters arranged in a line adjacent to each other.
  • a board is transported along a manufacturing line, and a process of mounting components on the board is performed by each component mounting apparatus.
  • the component mounting apparatus includes a mounting head and a component supply device such as a tape feeder, and the component supplied by the component supply device is sucked and held by the mounting head and mounted on the substrate.
  • Patent Literature 1 discloses a component mounting system that uses a self-propelled cart (transport robot) equipped with a tape feeder to automatically and collectively replace the tape feeder before and after changing the product type. disclosed.
  • a component mounting apparatus may be equipped with a tray feeder that supplies components in a state of arranging them on a tray.
  • the tray feeder includes a rack (magazine) in which a plurality of trays on which parts are placed are stored in a plurality of vertical stages, an elevating mechanism for raising and lowering the rack, and a drawer mechanism for taking the tray in and out of the rack.
  • the rack is arranged at a predetermined height position by the elevating mechanism, and the tray is pulled out from the rack by the drawer mechanism. Then, the components on the drawn out tray are sucked and held by the mounting head.
  • a tray feeder is a relatively large parts supply device, and it is difficult to replace it by mounting it on a self-propelled trolley as in Patent Document 1. Therefore, at present, workers manually perform replenishment of parts consumed by the tray feeder and replacement of parts accompanying the changeover of the type of production board. Therefore, a transfer robot capable of automating parts replenishment work and parts replacement work for the tray feeder is desired, but Patent Documents 1 and 2 do not disclose such technology.
  • the present invention relates to a transport robot that contributes to automating part replenishment work and part replacement work for a component mounting apparatus equipped with a component feeder (tray feeder) that supplies components arranged on a tray. and a component mounting system equipped with this transport robot.
  • a component feeder tilt feeder
  • a transport robot includes a component supply section having a rack accommodating a plurality of trays, and the component supply section of a component mounting apparatus that picks up components accommodated in the trays and mounts them on a board.
  • the component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction.
  • the robot includes a running unit equipped with running wheels that runs along the floor surface, and a running unit provided on the running unit so as to be able to support the rack. and a transfer section for transferring the rack to and from the rack support section.
  • FIG. 1 is a block diagram showing the component mounting system of the present invention.
  • FIG. 2 is a plan view of a component mounting device provided in the component mounting system.
  • FIG. 3 is a side view of the component mounting apparatus;
  • FIG. 4 is a side view of the tray housing portion (housing) showing the rack loading/unloading area.
  • FIG. 5 is a plan view of a transfer robot (first embodiment) provided in the component mounting system.
  • FIG. 6 is a side view of the transfer robot.
  • FIG. 7 is a front view of the transfer robot.
  • FIG. 8 is a block diagram showing the control system of the transfer robot.
  • FIG. 9 is an explanatory view schematically showing the rack transport operation by the transport robot.
  • FIG. 9 is an explanatory view schematically showing the rack transport operation by the transport robot.
  • FIG. 10 is a side view (partial cross-sectional view) showing the tray feeder and the transport robot during rack delivery.
  • FIG. 11 is an operation explanatory diagram (plan view) when positioning the transport robot.
  • FIG. 12 is a plan view of the transfer robot according to the second embodiment.
  • FIG. 13 is a side view of the transfer robot.
  • FIG. 14 is an explanatory view schematically showing part of the rack transport operation by the transport robot.
  • FIG. 15 is a plan view of the transfer robot according to the third embodiment.
  • FIG. 16 is an explanatory view schematically showing part of the rack transport operation by the transport robot.
  • FIG. 1 is a block diagram showing a component mounting system 100 according to the invention.
  • the component mounting system 100 is a system for producing component-mounted boards in which electronic components (hereinafter referred to as “components”) are mounted on a board P such as a printed wiring board.
  • the component mounting system 100 includes a production line PL, a storage device 6 , a transport robot 7 and a management device 8 .
  • the production line PL is arranged in the production area A1, and the storage device 6 is arranged in the preparation area A2.
  • the production area A1 is an area where component-mounted boards are produced
  • the preparation area A2 is a working area for consumables such as parts used in the production of component-mounted boards and equipment that is replaced due to changes in production types. This is an area prepared by the
  • the production line PL includes a printer 1, a print inspection device 2, a component mounting device 3, a visual inspection device 4, and a reflow device 5, and these devices 1 to 5 are arranged in that order in the X direction in a row. It is connected and configured. In this example, a plurality of component mounting apparatuses 3 are continuously arranged between the print inspection apparatus 2 and the appearance inspection apparatus 4 .
  • the printing device 1 executes processing for printing cream solder on the component mounting locations on the board P
  • the print inspection device 2 executes processing for inspecting the printed state of the cream solder printed on the board P.
  • the component mounting apparatus 3 performs a process of mounting (mounting) a component on a predetermined mounting position of the board P on which cream solder is printed. Execute the process to check. Further, the reflow device 5 heats the substrate P to melt the solder and join the component to the substrate P. As shown in FIG. In this production line PL, while the board P is being transported in the X direction, the printing device 1, the printing inspection device 2, the component mounting device 3, the visual inspection device 4, and the reflow device 5 perform the above-described processes. A component mounting board is produced.
  • the storage device 6 includes a first storage device 6A in which replenishment parts and equipment prepared by workers are kept on standby, and a second storage device in which used equipment and the like collected from the production line PL are returned.
  • the transport robot 7 is a self-propelled transport robot such as an AGV (Automatic Guides Vehicle) or AMR (Autonomous Mobile Robot) that moves between the component mounting device 3 and the storage device 6 along the production line PL. While moving along the route indicated by the arrow in FIG. , etc. are transported from the component mounting apparatus 3 to the second storage apparatus 6B.
  • AGV Automatic Guides Vehicle
  • AMR Automatic Mobile Robot
  • the management device 8 is composed of, for example, a personal computer communicably connected to the devices 1 to 5 of the production line PL, the storage device 6 and the transport robot 7.
  • the management device 8 comprehensively manages the production of component-mounted boards in the component mounting system 100 by controlling the devices 1 to 5 of the production line PL, the storage device 6, and the transfer robot 7 based on the production plan. .
  • FIG. 2 and 3 show the component mounting apparatus 3 provided in the component mounting system 100.
  • FIG. FIG. 2 is a schematic plan view
  • FIG. 3 is a side view schematic view of the component mounting apparatus 3 .
  • a plurality of component mounting apparatuses 3 provided in the component mounting system 100 have the same basic configuration.
  • the component mounting apparatus 3 includes a base 31, a conveyor 32, a component supply area 33, a head unit 36, and an imaging section 38.
  • the base 31 is a mounting base for various devices provided in the component mounting apparatus 3 .
  • the conveyor 32 is a transport line for the substrate P installed on the base 31 so as to extend in the X direction, and is composed of a pair of belt-type conveyors.
  • the conveyor 32 carries the board P from outside the machine to a predetermined work position, and carries the board P out of the machine from the work position after the mounting work.
  • the position of the substrate P shown in FIG. 2 is the working position.
  • the component supply area 33 is an area in which a component supply device for supplying mounted components is arranged, and is provided on both sides of the conveyor 32 in the Y direction.
  • a plurality of tape feeders 34F are installed along the conveyor 32 in the component supply area 33 on the Y2 side.
  • the tape feeder 34F is a type of component supply device that supplies components while feeding out a tape containing components (small surface mount components) at regular intervals.
  • a plurality of tape feeders 34F and tray feeders 35F are arranged side by side along the conveyor 32 in the component supply area 33 on the Y1 side.
  • a plurality of tape feeders 34F are arranged on the X1 side, and a tray feeder 35F is arranged on the X2 side.
  • the tray feeder 35 ⁇ /b>F is a component supply device of the type that supplies package components such as QFP (Quad Flat Package) and BGA (Ball Grid array) placed on a tray 52 .
  • the tray 52 is a dish-shaped container that is rectangular in plan view and has an upward opening. The configuration of the tray feeder 35F will be described later.
  • the head unit 36 is provided so as to be movable in the X direction and the Y direction within a certain area by a head unit drive mechanism 37 .
  • the head unit 36 has a plurality of mounting heads 36a. By supplying and shutting off the negative pressure for sucking the component to each mounting head 36a, the component is sucked and held and released for each mounting head 36a.
  • the image capturing unit 38 captures an image of the component sucked and held by each mounting head 36a of the head unit 36 from below in order to recognize the sucked and held state of the component.
  • the imaging unit 38 includes a camera and an illumination device.
  • the imaging units 38 are arranged on the base 31 and on both sides of the conveyor 32 in the Y direction.
  • the mounting head 36a picks up components from the tape feeder 34F or the tray feeder 35F. and a component mounting process in which the component is transported onto the board P and mounted (mounted). A predetermined number of components are mounted on the board P by repeating these processes. After the component suction process and before the component mounting process, the state of the component being picked up and held by the mounting head 36a is image-recognized based on the image acquired by the imaging unit 38, and the position of the head unit 36 and the like is corrected according to the recognition result. done. As a result, the mounting precision of the components on the board P is ensured.
  • the tray feeder 35 ⁇ /b>F is, as described above, a type of component supply device that supplies package components such as QFPs placed on the tray 52 .
  • the tray feeder 35F includes a tray storage section 40A that stores a plurality of trays 52, a tray transfer mechanism section 40B that takes the trays 52 in and out of the tray storage section 40A, and a tray feeder 35F. 52 to a predetermined component supply position.
  • the tray storage section 40A, the tray transfer mechanism section 40B, and the tray pull-out mechanism section 40C are arranged in this order from the Y1 side along the Y direction.
  • the tray storage section 40A and the tray transfer mechanism section 40B have a rectangular parallelepiped housing 42 that is elongated in the vertical direction and is common to them.
  • the Y1 side in the housing 42 is a tray storage section 40A, and the tray transfer mechanism section 40B is provided adjacent to the Y2 side of the tray storage section 40A.
  • the upper part of the tray storage part 40A is a tray storage area 42A, and the lower part is a rack loading/unloading area 42B for loading and unloading the rack 50 from the outside with respect to the tray storage part 40A.
  • a rack 50 is a box-shaped container for collectively transporting a plurality of trays 52 .
  • the tray 52 is transported from the first storage device 6A by the transport robot 7 in a state accommodated in the rack 50, and is transferred from the transport robot 7 to the tray storage section 40A in the rack loading/unloading area 42B, as will be described later.
  • the tray 52 is held on a pallet 51 which is a dish-shaped member that is rectangular in plan view and is housed in the rack 50 via the pallet 51 .
  • the rack 50 is a hollow rectangular parallelepiped box-shaped container penetrating in the horizontal direction (Y direction).
  • a plurality of grooves 501 arranged in the Z direction are formed on inner side surfaces facing each other inside the rack 50 .
  • the plurality of trays 52 are accommodated in the rack 50 in a state in which they are arranged parallel to each other in the Z direction and can be taken in and out along the grooves 501 together with the pallets 51.
  • FIG. 4 is a schematic side view of the tray housing portion 40A (housing 42) showing the rack loading/unloading area 42B (schematic view viewed from the Y1 side).
  • a tray storage unit 43 having the same structure as the rack 50 is arranged in the tray storage area 42A.
  • the tray 52 in the rack 50 transferred to the tray storage section 40A in the rack loading/unloading area 42B is pulled out from the rack 50 and transferred to the tray storage unit 43 by the tray transfer mechanism section 40B, where it is stored. .
  • the tray transfer mechanism section 40B includes a tray transfer unit 44 having a slide mechanism for sliding the tray 52 together with the pallet 51 in the horizontal direction (Y direction), and a tray transfer unit 44 (not shown) for moving the tray transfer unit 44 in the Z direction. and a drive mechanism.
  • the tray transfer mechanism section 40B moves the tray transfer unit 44 in the Z direction between a position corresponding to the tray storage area 42A and a position corresponding to the rack loading/unloading area 42B. Then, the tray 52 is pulled out from the rack 50 arranged in the rack insertion/removal area 42B, and the tray 52 is transported to the tray storage area 42A and stored in the tray storage unit 43.
  • the tray transfer mechanism section 40B draws out an empty tray 52 stored in the tray storage unit 43, conveys it to the rack loading/unloading area 42B, and stores the tray 52 in the rack 50.
  • the tray transfer mechanism section 40B has a function of exchanging the tray 52 between the tray storage unit 43 and the rack 50 arranged in the rack loading/unloading area 42B. Further, the tray transfer mechanism section 40B arranges the tray 52 pulled out from the tray storage unit 43 at a predetermined tray pull-out position with respect to the tray pull-out mechanism section 40C.
  • the tray pull-out mechanism 40C includes a pair of guide rails 47, 47 installed on the base 31 and extending in the Y direction, and a pull-out head (not shown) disposed between them. including.
  • the drawer head is configured to be movable in the Y direction and to lock the pallet 51 .
  • This pull-out head locks the pallet 51 arranged at the tray pull-out position by the tray transfer unit 44 and moves in the Y2 direction, whereby the tray 52 is moved from the tray transfer unit 44 together with the pallet 51 to the component supply position ( 2).
  • the drawer head moves in the Y1 direction, and then the tray 52 is returned from the component supply position to the tray transfer unit 44 by releasing the locked state of the pallet 51 .
  • a rack doorway 421 is provided on the Y1 side wall of the housing 42 at a position corresponding to the rack loading/unloading area 42B.
  • the rack doorway 421 can be opened and closed by a sliding door 422 driven by an actuator (not shown), and is closed by this door 422 except when the rack 50 is replaced.
  • a roller conveyor 45 (corresponding to the "rack support section" of the present invention) is arranged in the rack loading/unloading area 42B.
  • the roller conveyor 45 is a direct-acting conveyor capable of horizontally conveying in the Y direction while supporting the rack 50 .
  • the roller conveyor 45 includes a pair of frames 452, 452 arranged at a predetermined interval in the X direction, and a plurality of rollers 451 arranged therebetween.
  • one or more rollers 451 are drive rollers driven by a motor (not shown), and the rollers 451 other than the drive rollers are driven rollers (free rollers).
  • the rack 50 is transferred between the roller conveyor 45 and the transfer robot 7 , and the tray 52 is moved in and out of the rack 50 supported on the roller conveyor 45 by the tray transfer unit 44 .
  • the transport robot 7 transports replenishment parts and replacement equipment from the first storage device 6A to the component mounting device 3, and transports used equipment and the like from the component mounting device 3 to the second storage device. Transport to 6B.
  • the transport robot 7 transports the rack 50 containing the replenishment parts from the first storage device 6A to the component mounting device 3 and supplies it to the tray feeder 35F.
  • the rack 50 containing the tray 52 is recovered from the tray feeder 35F and transported to the second storage device 6B. Therefore, the transport robot 7 is configured to transfer the rack 50 to and from the tray feeder 35F.
  • FIG. 5 to 7 show the transport robot 7, with FIG. 5 being a plan view, FIG. 6 being a side view, and FIG. 7 being a front view showing the transport robot 7, respectively.
  • the transport robot 7 includes a rectangular parallelepiped vehicle body 10 having running wheels 11, a conveyor base portion 13 fixed on the vehicle body 10, and a roller conveyor 12 arranged thereon.
  • the longitudinal direction of the transport robot 7 is the longitudinal direction of the transport robot 7, and the short side direction thereof is the width direction of the transport robot.
  • the vehicle body 10 is the traveling base of the transport robot 7.
  • the vehicle body 10 includes driving wheels 11a and driven wheels (free rollers) 11b as running wheels.
  • the driving wheels 11a are provided at the central portion of the vehicle body 10 in the front-rear direction and on both sides in the width direction, and the driven wheels 11b are provided at the four corners of the lower portion of the vehicle body 10, respectively.
  • a Mecanum wheel (registered trademark) driven by a traveling motor 111 shown in FIG. 8) is applied as the drive wheel 11a
  • an omni wheel registered trademark
  • the transport robot 7 travels along the floor by driving the drive wheels 11a. In this case, by individually controlling the rotational direction and rotational speed of each drive wheel 11a, the transfer robot 7 can travel in any direction and turn on the spot.
  • the conveyor base portion 13 is a roughly plate-shaped member narrower than the vehicle body 10 and rectangular in plan view, and provided on the upper portion of the vehicle body 10 .
  • a roller conveyor 12 is provided on the upper surface of the conveyor base portion 13 .
  • the roller conveyor 12 (corresponding to the "transfer section" of the present invention) includes a first conveyor 12A (“first transfer section”) and a first conveyor 12A (“first transfer section”), each capable of transferring the rack 50 to and from the tray feeder 35F. 2 conveyor 12B (“second transfer unit”).
  • the first conveyor 12A and the second conveyor 12B are direct-acting roller conveyors capable of horizontally conveying the rack 50 .
  • the first conveyor 12 ⁇ /b>A and the second conveyor 12 ⁇ /b>B are arranged back-to-back in a row so that the directions in which the racks 50 are moved are both in the front-rear direction of the transport robot 7 .
  • the side on which the first conveyor 12A is arranged is the front side of the transfer robot 7, and the side on which the second conveyor 12B is arranged is the rear side of the transfer robot 7 for convenience.
  • the first conveyor 12A includes a pair of frames 14, 14 erected at both ends in the width direction of the conveyor base portion 13, and a plurality of rollers 15 arranged therebetween.
  • the height of the conveying surface of the first conveyor 12A is set to be the same as the height of the conveying surface of the roller conveyor 45 of the tray feeder 35F (see FIG. 10).
  • the inner width Wc (FIG. 7) of the frames 14, 14 is set slightly larger than the width Wr of the rack 50 indicated by the virtual line in FIG. is set slightly larger than
  • one or more rollers 15 are drive rollers driven by a roller motor 151 (shown in FIG. 8), and the rollers 15 other than the drive rollers are driven rollers (free rollers). Laura).
  • the first conveyor 12A is configured to support the rack 50 by the rollers 15 and to move the rack 50 in the front-rear direction of the transport robot 7 while guiding the rack 50 by the frames 14 and 14 as the driving rollers rotate.
  • Tapered guide portions 14a, 14a are provided on opposing surfaces of the front end portions of the frames 14, 14, respectively.
  • the first conveyor 12A is provided with a rack detection sensor 18 (shown in FIG. 8) such as a photoelectric sensor for detecting the presence or absence of the rack 50. Based on the detection of the rack 50 by the rack detection sensor 18, the operation of the drive roller is controlled.
  • a rack detection sensor 18 shown in FIG. 8
  • the operation of the drive roller is controlled.
  • the second conveyor 12B has the same basic configuration as the first conveyor 12A described above, and is provided symmetrically with respect to the first conveyor 12A. That is, as described above, they are provided back to back with respect to the first conveyor 12A. Accordingly, the tapered guide portions 14a, 14a are provided on the facing surfaces of the rear end portions of the frames 14, 14, respectively.
  • robot-side positioning portions 16A and 16B for positioning the transfer robot 7 with respect to the tray feeder 35F.
  • the robot-side positioning portions 16A and 16B are block-shaped members having groove-shaped contact surfaces 161 that are V-shaped (wedge-shaped) in plan view.
  • the front and rear robot-side positioning portions 16A and 16B have the same shape.
  • the robot-side positioning unit 16A located on the front side of the vehicle body 10 (transport robot 7), that is, on the side of the first conveyor 12A is appropriately referred to as the first robot-side positioning unit 16A, and the rear side, that is, the second conveyor 12B.
  • the robot-side positioning section 16B located on the side is called a second robot-side positioning section 16B.
  • a running sensor 17 is provided at each diagonal corner of the vehicle body 10 .
  • the traveling sensor 17 is, for example, LiDAR (Light Detection And Ranging), and the traveling operation of the transport robot 7 is controlled by detection of a target or an obstacle by the traveling sensor 17 .
  • LiDAR Light Detection And Ranging
  • the transport robot 7 has a configuration that is rotationally symmetrical in a plan view by arranging the roller conveyor 12, the robot-side positioning units 16A and 16B, and the traveling sensor 17 with respect to the vehicle body 10. .
  • FIG. 8 is a block diagram showing the control system of the transport robot 7.
  • the transport robot 7 has a robot control section 20 that controls its operation.
  • the transport robot 7 is equipped with a communication module 21 capable of wireless communication with the management device 8 , and the robot control unit 20 controls the operation of the transport robot 7 based on commands sent from the management device 8 . do.
  • the traveling motor 111, the roller motor 151, and the sensors 17 and 18 are electrically connected to the robot control unit 20, and the robot control unit 20 controls the traveling motor 111 based on the information acquired by the traveling sensor 17. , and controls the driving of the roller motor 151 based on the information acquired by the rack detection sensor 18 .
  • a battery (not shown) is mounted on the vehicle body 10, and the traveling motor 111, the roller motor 151, etc. are powered by the battery.
  • FIG. 9 is an explanatory diagram schematically showing the operation of transporting the rack 50 by the transport robot 7
  • FIG. 10 is a side view (partial cross-sectional view) showing the tray feeder 35F and the transport robot 7 when the rack 50 is delivered.
  • FIG. 11 is an operation explanatory diagram (plan view) for positioning the transport robot 7. As shown in FIG. In addition, in FIG. 9, the configurations of the transport robot 7 and the tray feeder 35F are simplified.
  • the transport robot 7 first receives the rack 50 containing parts for replenishment (hereinafter referred to as "replenishment rack 50a" as appropriate) from the first storage device 6A, and travels along the production line PL. For example, as shown in FIG. 9A, the transport robot 7 travels along the production line PL with the rack 50 mounted on the second conveyor 12B, with the first conveyor 12A leading. Then, it stops when it travels to the position of the tray feeder 35F of the component mounting apparatus 3 to which components are to be replenished, more specifically, to the position of the housing 42 of the tray housing portion 40A.
  • the transport robot 7 rotates 90 degrees on the spot so that the first conveyor 12A faces the rack entrance 421 of the housing 42 (tray storage section 40A), and then, as shown in FIGS. ), it moves forward in the Y2 direction and stops while being positioned on the housing 42 .
  • a feeder-side positioning section 46 corresponding to the robot-side positioning sections 16A and 16B is provided below the rack entrance 421 of the housing 42.
  • the feeder-side positioning portion 46 is a block-shaped member having a triangular (wedge-shaped) mountain-shaped contact surface 461 in a plan view corresponding to the contact surface 161 of the robot-side positioning portions 16A and 16B.
  • the transfer robot 7 is positioned with respect to the housing 42 as shown in FIGS. 10 and 11(b). That is, the transport robot 7 is positioned such that the first conveyor 12A and the roller conveyor 45 are aligned in the Y direction through the rack doorway 421 .
  • Markers 423 are provided on both sides of the rack doorway 421 of the housing 42 in the X direction.
  • the stop position of the transport robot 7 is controlled based on detection of the marker 423 by the traveling sensor 17 .
  • the travel motor 111 is controlled so that an electromagnetic brake (motor brake) works. Thereby, the positioning state of the transport robot 7 is maintained.
  • used rack 50b racks 50 containing empty trays 52 (hereinafter referred to as "used rack 50b") is arranged (the state indicated by the two-dot chain line in FIG. 10).
  • the door 422 of the housing 42 operates to open the rack doorway 421, and the roller conveyor 45 of the tray storage section 40A and the first conveyor 12A of the transport robot 7 operate. That is, the drive roller rotates.
  • the used rack 50b is transferred from the tray feeder 35F (roller conveyor 45) to the transport robot 7 (first conveyor 12A). (recovered).
  • the rack detection sensor 18 detects the rack 50
  • the first conveyor 12A stops.
  • the transport robot 7 retreats once in the Y1 direction to release the positioning state with respect to the housing 42, as shown in FIG. 9(d).
  • the second conveyor 12B on which the supply rack 50a is mounted turns 180° on the spot so as to face the rack doorway 421. - ⁇ Thereafter, as shown in FIG. 9(e), it advances in the Y2 direction and stops while being positioned with respect to the housing 42. Then, as shown in FIG. In this case, the transfer robot 7 is positioned in the housing 42 by the contact of the second robot-side positioning portion 16B with the feeder-side positioning portion 46, and the positioning state is maintained by the above-described electromagnetic brake (motor brake). be.
  • electromagnetic brake motor brake
  • the roller conveyor 45 of the tray storage section 40A and the second conveyor 12B of the transport robot 7 operate.
  • the supply rack 50a is transferred from the transport robot 7 (second conveyor 12B) to the tray feeder 35F (roller conveyor 45).
  • the drive roller is stopped.
  • the transport robot 7 retreats in the Y1 direction to release the positioning state, as shown in FIG. 9(f). Turn another 90°.
  • the second conveyor 12B runs along the production line PL.
  • the transport robot 7 returns from the production area A1 to the preparation area A2 along the route indicated by the arrow in FIG. 1, and delivers the collected used rack 50b to the second storage device 6B.
  • a series of operations for transporting the rack 50 by the transport robot 7 is completed.
  • the transport robot 7 loads the replenishment rack 50a on the second conveyor 12B and the used rack 50b on the first conveyor 12A, but the reverse is of course possible. Further, the transport robot 7 may be run on either side of the first conveyor 12A or the second conveyor 12B, and can be changed as appropriate. This point also applies to the transport robot 7A of the second embodiment, which will be described later.
  • the transport robot 7 parts are supplied by exchanging the supply rack 50a and the used rack 50b, as described above. Therefore, compared with the case where parts are supplied to the tray feeder 35F, for example, in units of trays, the working time for supplying parts is significantly shortened. In other words, for example, when replacing the used tray 52 together with the pallet 51, replacement work is required by the number of pallets 51, and if the number of pallets is large, the work takes a long time.
  • the transport robot 7 even when replacing the same number of trays 52 (pallets), it is sufficient to replace the used rack 50b with the replenishment rack 50a. is completed. Therefore, according to the transport robot 7, it is possible to increase the speed of parts replenishment work for the tray feeder 35F.
  • the transport robot 7 includes the first conveyor 12A and the second conveyor 12B as described above, and the single transport robot 7 continuously replaces the used rack 50b and the supply rack 50a. can be done systematically. Therefore, in this respect as well, there is an advantage that it is possible to speed up the parts replenishment work for the tray feeder 35F.
  • the first conveyor 12A and the second conveyor 12B have the same configuration, and have rotationally symmetric configurations in plan view as described above.
  • the conveyor for delivering racks there are few restrictions on the running direction when running along the production line PL and the conveyor for delivering racks. Therefore, there is also the advantage that it is possible to flexibly cope with the transport of the racks 50 (replenishment rack 50a, used rack 50b) according to the occasional situation of each component mounting device (tray feeder 35F) in the production line PL.
  • the transport robot 7 since the transport robot 7 is equipped with mecanum wheels and omni wheels as running wheels, it has a very high degree of freedom in the running direction. Therefore, when positioning with respect to the tray feeder 35F, the contact surfaces 461 of the feeder-side positioning portions 46 and the contact surfaces 161 of the robot-side positioning portions 16A and 16B are aligned simply by moving the transport robot 7 forward. , the transport robot 7 can be repositioned without difficulty. Therefore, there is an advantage that the transfer robot 7 can be accurately positioned with respect to the tray feeder 35F, and that the transfer of the rack 50 between the tray feeder 35F and the transfer robot 7 can be performed stably and reliably. .
  • FIG. A basic configuration of the transport robot 7A according to the second embodiment is common to that of the transport robot 7 of the first embodiment. Therefore, the same reference numerals are given to the parts that are common to the first embodiment, and the description is omitted or simplified, and mainly the differences from the first embodiment will be described in detail. The same applies to a transfer robot 7B according to a third embodiment, which will be described later.
  • FIG. 12 is a plan view of the transfer robot 7A according to the second embodiment
  • FIG. 13 is a side view of the transfer robot 7A.
  • the conveyor base portion 13 (corresponding to the "table portion” of the present invention) is attached to the vehicle body 10 via the spindle 13a. It is rotatably supported and configured to rotate together with the roller conveyor 12 by the driving force of a rotation motor (not shown).
  • the turning motor is electrically connected to the robot control section 20 , and the turning operation of the roller conveyor 12 with respect to the vehicle body 10 is controlled by the robot control section 20 .
  • FIG. 14 is an explanatory view schematically showing part of the operation of transporting the rack 50 by the transport robot 7A.
  • the operation up to collecting the used rack 50b from the tray feeder 35F is performed by the transport robot 7 of the first embodiment shown in FIGS. Same as action. That is, the transport robot 7A travels along the production line PL with the first conveyor 12A side as the head, with the supply rack 50a received from the first storage device 6A mounted on the second conveyor 12B. After that, the transport robot 7A rotates so that the first conveyor 12A faces the rack entrance 421 of the housing 42 (tray storage section 40A), and then moves forward in the Y2 direction. It stops while positioned with respect to the body 42 . In this state, as shown in FIG. 14A, the used rack 50b is delivered (collected) from the tray feeder 35F to the transport robot 7A.
  • the roller conveyor 12 rotates 180 degrees with the conveyor base 13 while maintaining the positioning state by the positioning units 16A and 46, as shown in FIG. 14(b). swivel driven.
  • the second conveyor 12B on which the supply rack 50a is mounted is arranged so as to face the rack doorway 421. As shown in FIG.
  • roller conveyor 45 of the tray storage section 40A and the second conveyor 12B of the transfer robot 7A are operated, so that the tray feeder 35F ( The supply rack 50a is delivered to the roller conveyor 45).
  • the transfer robot 7A retreats in the Y2 direction to release the positioning, as shown in FIG. do.
  • the second conveyor 12B runs along the production line PL.
  • the roller conveyor 12 is configured to be rotatable with respect to the vehicle body 10.
  • the transport robot 7A after collecting the used rack 50b from the tray feeder 35F, while maintaining the positioning state by the positioning units 16A and 46, the second transport robot 7A on which the supply rack 50a is mounted is mounted.
  • the conveyor 12B can be opposed to the rack doorway 421 (FIG. 14(b)). Therefore, the operation shown in FIGS. 9(d) and 9(e) in the transport robot 7 of the first embodiment, that is, cancels the positioning state of the transport robot 7 by the positioning units 16A and 46 and rotates the transport robot 7.
  • the operation of positioning the transport robot 7 with respect to the housing 42 again by the positioning units 16B and 46 becomes unnecessary. Therefore, according to the transfer robot 7A of the second embodiment, the parts replenishment work for the tray feeder 35F can be made more efficient because this operation is unnecessary.
  • FIG. 15 is a plan view of the transfer robot 7B according to the third embodiment.
  • the first conveyor 12A and the second conveyor 12B are arranged back-to-back in a row so that the transport direction of the racks 50 is both the front-rear direction of the transport robot 7.
  • the first conveyor 12A and the second conveyor 12B move in the front-rear direction of the transport robot 7B so that the transport direction of the rack 50 is both the width direction of the transport robot 7B. are arranged side-by-side with each other along the
  • a first robot-side positioning portion 16A is provided on one side surface (upper side surface in FIG. 15) of the vehicle body 10 at a position corresponding to the first conveyor 12A.
  • a second robot-side positioning section 16B is provided at a position corresponding to the second conveyor 12B.
  • the transport robot 7B according to the third embodiment transports the rack 50 as shown in FIG. 16A and 16B are explanatory diagrams schematically showing part of the transportation operation of the rack 50 by the transportation robot 7B.
  • the transport robot 7B first receives the supply rack 50a from the first storage device 6A, and as shown in FIG. It runs along the production line PL as the head. Then, when the first conveyor 12A reaches the position facing the tray housing portion 40A of the tray feeder 35F, more specifically, when it reaches the position facing the rack entrance 421 of the housing 42, it stops once and moves in the Y2 direction as it is. . Thereby, the transport robot 7B is positioned with respect to the housing 42 . That is, when the first robot-side positioning portion 16A comes into contact with the feeder-side positioning portion 46, the first conveyor 12A and the roller conveyor 45 move in the Y direction through the rack doorway 421 as shown in FIG. 16(b). The conveying robot 7B is positioned in a state of being lined up. In this state, the used rack 50b is transferred from the tray feeder 35F (roller conveyor 45) to the transport robot 7B (first conveyor 12A).
  • the transport robot 7B moves in the Y1 direction to release the positioning state, and then moves in the X2 direction, as shown in FIG. 16(c). Then, when the second conveyor 12B reaches a position facing the rack doorway 421 of the housing 42, it temporarily stops and moves in the Y2 direction as it is. Thereby, the transport robot 7B is positioned with respect to the housing 42 . That is, when the second robot-side positioning portion 16B abuts on the feeder-side positioning portion 46, as shown in FIG. 45 are aligned in the Y direction, the transport robot 7B is positioned. In this state, the supply rack 50a is transferred from the transport robot 7B (second conveyor 12B) to the tray feeder 35F (roller conveyor 45).
  • the transfer robot 7B moves in the Y1 direction to release the positioning state with respect to the housing 42, and then travels in the X2 direction to travel along the production line PL.
  • the first conveyor 12A and the second conveyor 12B are arranged side by side in the front-rear direction of the transport robot 7B.
  • this transport robot 7B it is possible to transfer the used rack 50b and the supply rack 50a only by moving in the Y direction at the time of positioning while traveling in the X direction. In other words, the operation of turning the entire transport robot 7 as in the first embodiment is not required. Therefore, according to the transfer robot 7B for the third embodiment liquid, the efficiency of the parts replenishment work for the tray feeder 35F can be improved accordingly.
  • this transport robot 7B it is arranged with respect to the tray feeder 35F so that its longitudinal direction is always parallel to the X direction. Therefore, compared with the transport robots 7 and 7A of the first and second embodiments, which need to be arranged so that the longitudinal direction is orthogonal to the X direction (the Y direction) during the transfer operation of the rack 50, the tray Less space is required on the Y1 side of feeder 35F. Therefore, it can be said that the transport robot 7B of the third embodiment has a convenient configuration when a plurality of production lines PL are provided adjacent to each other at relatively narrow intervals.
  • the robot-side positioning portions 16A and 16B are provided only on one side surface (upper side surface in FIG. 15) of the vehicle body 10. Similar robot-side positioning portions 16A and 16B may also be provided on the lower side surface of the . According to this configuration, even when the tray feeder 35F is arranged on either the left or the right side with respect to the traveling direction of the transport robot 7B, the above-described transport operation of the rack 50 can be performed. It becomes possible.
  • the transport robot 7 dedicated to collecting racks and the transport robot 7 dedicated to supplying racks may be provided.
  • the transport robot 7 dedicated to collecting racks moves used racks from two component mounting apparatuses 3 (tray feeders 35F) to the first conveyor 12A and the second conveyor 12B while traveling along the production line PL. Receive 50b.
  • the transport robot 7 dedicated to supplying racks runs behind the transport robot 7 dedicated to collection while the first conveyor 12A and the second conveyor 12B are loaded with the supply racks 50a. supplies the supply rack 50a to the tray feeder 35F from which the used rack 50b has been recovered.
  • the transport robot 7 according to the first embodiment includes two roller conveyors (first conveyor 12A and second conveyor 12B), but the number of roller conveyors may be one. In this case, different transport robots 7 may supply the supply rack 50a and collect the used rack 50b to the tray feeder 35F.
  • the transport robots 7, 7A, 7B are provided with roller conveyors (12A, 12B) as the "transfer section" of the present invention.
  • the "transfer section” is not limited to the roller conveyor.
  • it may be a ball conveyor provided with a plurality of rollable balls (spheres) or a wheel conveyor provided with a plurality of rotatable donut-shaped wheels (rotating bodies). In this case, thrust can be applied to the rack 50 by rotationally driving the ball or wheel.
  • the "delivery unit” may be a conveyor configured by appropriately combining rollers, balls, and wheels.
  • one or more rollers 15 among the plurality of rollers 15 are driving rollers, and the rack 50 is moved by the rotation of the driving rollers. That is, thrust is applied to the rack 50 by the rotation of the drive roller.
  • the plurality of rollers 15 are all driven rollers (free rollers), and a mechanism (thrust applying mechanism) for applying a thrust to the rack 50 is separately provided, thereby forming the "transfer section" of the present invention.
  • a thrust applying mechanism that presses the rack 50 by operating a motor or an air cylinder may be provided. The same applies when the above ball conveyor or wheel conveyor is applied.
  • the tray feeder 35F of the embodiment includes a roller conveyor 45 as the "rack support" of the present invention. It is not limited to 45. It may be a ball conveyor or a wheel conveyor as described above. Alternatively, the conveyor may be configured by appropriately combining rollers, balls, and wheels.
  • one or more rollers 451 among the plurality of rollers 451 of the roller conveyor 45 are driving rollers, and the rack 50 is moved by the rotation of the driving rollers.
  • all of the plurality of rollers 451 may be driven rollers (free rollers), and another mechanism for applying thrust to the rack 50 may be provided. The same applies when the above ball conveyor or wheel conveyor is applied.
  • the present invention is summarized as follows for the embodiments described above.
  • a transport robot includes a component supply unit having a rack accommodating a plurality of trays, and the component supply unit ( A self-propelled transport robot capable of transferring the rack to and from a tray feeder, wherein the component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction.
  • the transport robot includes a traveling section equipped with traveling wheels that travels along the floor surface, and a traveling section that is provided in the traveling section so as to support the rack and moves the rack in the horizontal direction. and a transfer section that transfers the rack to and from the rack support section by moving the rack.
  • this transport robot it is possible to support the rack and run by itself, and to transfer the rack to and from the component supply unit (tray feeder). Therefore, it can contribute to the automation of the parts supply work for the parts supply unit.
  • the component supply unit such as a rack-by-rack basis
  • the transfer section is, for example, a roller conveyor provided with a plurality of rollers, including at least one drive roller capable of applying thrust to the rack when the rack is transferred.
  • the rack can be smoothly moved by the rotation of the drive roller while the rack is supported on the rollers. Therefore, it contributes to smooth delivery of racks between the transport robot and the component supply unit.
  • the transport robot further includes a positioning unit that positions the transport robot with respect to the component supply unit.
  • the transfer section includes a guide section that guides the rack when the rack is transferred.
  • the transfer section includes a first transfer section and a second transfer section, each of which is capable of transferring the rack to and from the rack support section.
  • a supply rack is supported only at the first delivery section and travels, first receiving used racks from the parts supply section to the second delivery section, and then the supply rack is transferred from the first delivery section to the second delivery section. It can be handed over to the supply department. In this case, it is possible to continuously perform the work of collecting the used racks and the work of delivering the replenishment racks to the parts supply section with a single transport robot.
  • the transport robot includes a table section that supports the first transfer section and the second transfer section and is rotatable with respect to the traveling section, and the first transfer section and the second transfer section are:
  • the racks may be arranged on the table in a row, back to back, in the same direction as the direction in which the racks are moved.
  • the first transfer section and the second transfer section may be arranged side by side in a direction perpendicular to the direction in which the rack is moved.
  • the running wheels are preferably mecanum wheels and/or omni wheels.
  • the degree of freedom in the traveling direction of the transport robot is increased. Therefore, it becomes possible to achieve positioning of the transport robot with respect to the component supply section, etc., with the minimum required movement.
  • a component mounting system comprises a component supply section having a rack accommodating a plurality of trays, a component mounting apparatus for picking up components accommodated in the trays and mounting them on a board, and the component supply section. and a self-propelled transport robot capable of delivering the rack, wherein the component supply unit includes a rack support unit that supports the rack so that it can be taken in and out in a horizontal direction,
  • the transport robot includes a traveling part provided with traveling wheels that travels along the floor surface, and a traveling part provided on the traveling part so as to be capable of supporting the rack and moving the rack in a horizontal direction. and a transfer section for transferring the rack to and from the rack support section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Assembly (AREA)

Abstract

With respect to a component mounting device that is provided with a component feed unit having a rack where a plurality of trays are stored and that takes out components stored in the trays and mounts the components on substrates, this conveyance robot performs rack delivery to the component feed unit. The conveyance robot comprises: a traveling unit equipped with traveling wheels for traveling along a floor surface; and a delivery unit which is provided to the traveling unit so as to be capable of supporting the rack and which performs rack delivery with respect to a rack support part by moving the rack in the horizontal direction.

Description

搬送ロボット及び部品実装システムTransfer robot and component mounting system
 本発明は、プリント配線板等の基板に部品が実装(搭載)された部品実装基板の製造ラインにおいて用いられる搬送ロボット、及びこの搬送ロボットを備えた部品実装システムに関する。 The present invention relates to a transport robot used in a manufacturing line for a component-mounted board in which components are mounted (mounted) on a board such as a printed wiring board, and a component mounting system equipped with this transport robot.
 プリント配線板等の基板に部品が実装(搭載)された部品実装基板を製造する製造ラインが周知である。製造ラインは、隣接して一列に配列された複数の部品実装装置を含む。基板は、製造ラインに沿って搬送され、当該基板に対して部品を実装する処理が各部品実装装置で実行される。部品実装装置には、実装ヘッドと、テープフィーダ等の部品供給装置が備えられており、部品供給装置が供給する部品を実装ヘッドが吸着保持して基板上に実装する。 A production line for manufacturing a component-mounted board in which components are mounted (mounted) on a board such as a printed wiring board is well known. A manufacturing line includes a plurality of component mounters arranged in a line adjacent to each other. A board is transported along a manufacturing line, and a process of mounting components on the board is performed by each component mounting apparatus. The component mounting apparatus includes a mounting head and a component supply device such as a tape feeder, and the component supplied by the component supply device is sucked and held by the mounting head and mounted on the substrate.
 この種の製造ラインでは、部品実装装置で消費される部品の補給や、生産基板の品種切替えに伴う部品供給装置の交換が必要となる。この作業は、従来、作業者が行っていたが、近年は無人の搬送ロボットが担うケースが増えている。例えば、特許文献1には、テープフィーダが搭載された自走式の台車(搬送ロボット)を用いて、品種切替え前後のテープフィーダの交換を一括して自動で行うことが可能な部品実装システムが開示されている。 In this type of production line, it is necessary to replenish the parts consumed by the component mounting equipment, and to replace the component supply equipment when changing the type of production board. Conventionally, this work was done by workers, but in recent years, the number of unmanned transport robots has increased. For example, Patent Literature 1 discloses a component mounting system that uses a self-propelled cart (transport robot) equipped with a tape feeder to automatically and collectively replace the tape feeder before and after changing the product type. disclosed.
 ところで、部品実装装置には、例えば特許文献2に開示されるように、部品をトレイ上に並べた状態で供給するトレイフィーダが備えられる場合がある。トレイフィーダは、部品が載置された複数のトレイが上下複数段に収納されたラック(マガジン)と、ラックを昇降させる昇降機構と、ラックに対してトレイを出し入れする引き出し機構とを含む。このトレイフィーダでは、昇降機構により所定高さ位置にラックが配置され、引き出し機構によってトレイがラックから引き出される。そして、引き出されたトレイ上の部品が実装ヘッドにより吸着保持される。 By the way, as disclosed in Patent Document 2, for example, a component mounting apparatus may be equipped with a tray feeder that supplies components in a state of arranging them on a tray. The tray feeder includes a rack (magazine) in which a plurality of trays on which parts are placed are stored in a plurality of vertical stages, an elevating mechanism for raising and lowering the rack, and a drawer mechanism for taking the tray in and out of the rack. In this tray feeder, the rack is arranged at a predetermined height position by the elevating mechanism, and the tray is pulled out from the rack by the drawer mechanism. Then, the components on the drawn out tray are sucked and held by the mounting head.
 トレイフィーダは比較的大型の部品供給装置であり、特許文献1のように自走式の台車に搭載して交換することは困難である。そのため、トレイフィーダで消費される部品の補給や、生産基板の品種切替えに伴う部品の交換は、作業者が手作業で行っているのが現状である。そのため、トレイフィーダに対して部品補給作業や部品交換作業を自動化できる搬送ロボットが望まれるが、特許文献1、2には、そのような技術の開示は見られない。 A tray feeder is a relatively large parts supply device, and it is difficult to replace it by mounting it on a self-propelled trolley as in Patent Document 1. Therefore, at present, workers manually perform replenishment of parts consumed by the tray feeder and replacement of parts accompanying the changeover of the type of production board. Therefore, a transfer robot capable of automating parts replenishment work and parts replacement work for the tray feeder is desired, but Patent Documents 1 and 2 do not disclose such technology.
特開2018-50002号公報Japanese Patent Application Laid-Open No. 2018-50002 特開2017-199816号公報JP 2017-199816 A
 本発明は、部品をトレイ上に並べた状態で供給するタイプの部品供給装置(トレイフィーダ)を備えた部品実装装置の前記部品供給装置に対する部品補給作業や部品交換作業の自動化に寄与する搬送ロボット、及びこの搬送ロボットを備えた部品実装システムを提供することを目的とする。 The present invention relates to a transport robot that contributes to automating part replenishment work and part replacement work for a component mounting apparatus equipped with a component feeder (tray feeder) that supplies components arranged on a tray. and a component mounting system equipped with this transport robot.
 本発明の一局面に係る搬送ロボットは、複数のトレイが収納されたラックを有する部品供給部を備え、前記トレイに収容された部品を取り出して基板に実装する部品実装装置の前記部品供給部に対して、前記ラックの受け渡しを行うことが可能な自走式の搬送ロボットであって、前記部品供給部は、前記ラックを水平方向に出し入れ可能に支持するラック支持部を備えており、当該搬送ロボットは、床面に沿って走行する、走行輪を備えた走行部と、前記ラックを支持することが可能なように前記走行部に設けられ、かつ前記ラックを水平方向に移動させることにより、前記ラック支持部との間で前記ラックの受け渡しを行う受け渡し部とを備えている、ことを特徴とする。 A transport robot according to one aspect of the present invention includes a component supply section having a rack accommodating a plurality of trays, and the component supply section of a component mounting apparatus that picks up components accommodated in the trays and mounts them on a board. On the other hand, in the self-propelled transport robot capable of transferring the rack, the component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction. The robot includes a running unit equipped with running wheels that runs along the floor surface, and a running unit provided on the running unit so as to be able to support the rack. and a transfer section for transferring the rack to and from the rack support section.
図1は、本発明の部品実装システムを示すブロック図である。FIG. 1 is a block diagram showing the component mounting system of the present invention. 図2は、前記部品実装システムに備えられる部品実装装置の平面図である。FIG. 2 is a plan view of a component mounting device provided in the component mounting system. 図3は、前記部品実装装置の側面図である。FIG. 3 is a side view of the component mounting apparatus; 図4は、ラック出し入れ領域を示すトレイ収納部(筐体)の側面図である。FIG. 4 is a side view of the tray housing portion (housing) showing the rack loading/unloading area. 図5は、前記部品実装システムに備えられる搬送ロボット(第1実施形態)の平面図である。FIG. 5 is a plan view of a transfer robot (first embodiment) provided in the component mounting system. 図6は、前記搬送ロボットの側面図である。FIG. 6 is a side view of the transfer robot. 図7は、前記搬送ロボットの正面図である。FIG. 7 is a front view of the transfer robot. 図8は、前記搬送ロボットの制御系を示すブロック図である。FIG. 8 is a block diagram showing the control system of the transfer robot. 図9は、前記搬送ロボットによるラック搬送動作を模式的に示した説明図である。FIG. 9 is an explanatory view schematically showing the rack transport operation by the transport robot. 図10は、ラック受け渡し時のトレイフィーダ及び搬送ロボットを示す側面図(一部断面図)である。FIG. 10 is a side view (partial cross-sectional view) showing the tray feeder and the transport robot during rack delivery. 図11は、搬送ロボットの位置決め時の動作説明図(平面図)である。FIG. 11 is an operation explanatory diagram (plan view) when positioning the transport robot. 図12は、第2実施形態に係る搬送ロボットの平面図である。FIG. 12 is a plan view of the transfer robot according to the second embodiment. 図13は、前記搬送ロボットの側面図である。FIG. 13 is a side view of the transfer robot. 図14は、前記搬送ロボットによるラック搬送動作の一部を模式的に示した説明図である。FIG. 14 is an explanatory view schematically showing part of the rack transport operation by the transport robot. 図15は、第3実施形態に係る搬送ロボットの平面図である。FIG. 15 is a plan view of the transfer robot according to the third embodiment. 図16は、前記搬送ロボットによるラック搬送動作の一部を模式的に示した説明図である。FIG. 16 is an explanatory view schematically showing part of the rack transport operation by the transport robot.
 以下、添付図面を参照しながら本発明の好ましい実施形態について詳述する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
 [部品実装システムの構成]
 図1は、本発明に係る部品実装システム100を示すブロック図である。部品実装システム100は、プリント配線基板等の基板P上に電子部品(以下、「部品」と称する)が搭載された部品実装基板を生産するシステムである。部品実装システム100は、生産ラインPLと、保管装置6と、搬送ロボット7と、管理装置8とを備える。
[Configuration of component mounting system]
FIG. 1 is a block diagram showing a component mounting system 100 according to the invention. The component mounting system 100 is a system for producing component-mounted boards in which electronic components (hereinafter referred to as “components”) are mounted on a board P such as a printed wiring board. The component mounting system 100 includes a production line PL, a storage device 6 , a transport robot 7 and a management device 8 .
 生産ラインPLは、生産エリアA1に配置されており、保管装置6は、準備エリアA2に配置されている。生産エリアA1は、部品実装基板の生産が行われるエリアであり、準備エリアA2は、部品実装基板の生産に使用される部品等の消耗品や、生産品種の変更に伴い交換される機器を作業者が準備するエリアである。 The production line PL is arranged in the production area A1, and the storage device 6 is arranged in the preparation area A2. The production area A1 is an area where component-mounted boards are produced, and the preparation area A2 is a working area for consumables such as parts used in the production of component-mounted boards and equipment that is replaced due to changes in production types. This is an area prepared by the
 生産ラインPLは、印刷装置1と、印刷検査装置2と、部品実装装置3と、外観検査装置4と、リフロー装置5とを含み、これらの装置1~5がX方向にその順番で一列に連結されて構成されている。当例では、印刷検査装置2と外観検査装置4との間に、複数台の部品実装装置3が連続して配置されている。 The production line PL includes a printer 1, a print inspection device 2, a component mounting device 3, a visual inspection device 4, and a reflow device 5, and these devices 1 to 5 are arranged in that order in the X direction in a row. It is connected and configured. In this example, a plurality of component mounting apparatuses 3 are continuously arranged between the print inspection apparatus 2 and the appearance inspection apparatus 4 .
 印刷装置1は、基板P上の部品搭載箇所にクリーム半田を印刷する処理を実行し、印刷検査装置2は、基板P上に印刷されたクリーム半田の印刷状態を検査する処理を実行する。部品実装装置3は、クリーム半田が印刷された基板Pの所定の実装位置に部品を実装(搭載)する処理を実行し、外観検査装置4は、基板P上に実装された部品の実装状態を検査する処理を実行する。また、リフロー装置5は、基板Pを加熱することにより半田を溶融させて部品を基板Pに接合する処理を実行する。この生産ラインPLでは、基板PがX方向に搬送されながら、印刷装置1、印刷検査装置2、部品実装装置3、外観検査装置4及びリフロー装置5において既述の各処理が実行されることにより部品実装基板が生産される。 The printing device 1 executes processing for printing cream solder on the component mounting locations on the board P, and the print inspection device 2 executes processing for inspecting the printed state of the cream solder printed on the board P. The component mounting apparatus 3 performs a process of mounting (mounting) a component on a predetermined mounting position of the board P on which cream solder is printed. Execute the process to check. Further, the reflow device 5 heats the substrate P to melt the solder and join the component to the substrate P. As shown in FIG. In this production line PL, while the board P is being transported in the X direction, the printing device 1, the printing inspection device 2, the component mounting device 3, the visual inspection device 4, and the reflow device 5 perform the above-described processes. A component mounting board is produced.
 保管装置6は、作業者が準備した補給用の部品や機器を待機させる第1保管装置6Aと、生産ラインPLから回収された使用済みの機器等が返却される第2保管装置とを含む。 The storage device 6 includes a first storage device 6A in which replenishment parts and equipment prepared by workers are kept on standby, and a second storage device in which used equipment and the like collected from the production line PL are returned.
 搬送ロボット7は、部品実装装置3と保管装置6との間を生産ラインPLに沿って移動するAGV(Automatic Guides Vehicle)又はAMR(Autonomous Mobile Robot)等の自走式の搬送ロボットである。搬送ロボット7は、図1中に矢印で示すルートに沿って移動しながら、補給用の部品や交換用の機器を第1保管装置6Aから部品実装装置3に搬送(供給)するとともに、使用済みの機器等を部品実装装置3から第2保管装置6Bに搬送する。なお、部品実装システム100には、複数台の搬送ロボット7が備えられているが、図1では、便宜上、1台の搬送ロボット7のみ図示している。 The transport robot 7 is a self-propelled transport robot such as an AGV (Automatic Guides Vehicle) or AMR (Autonomous Mobile Robot) that moves between the component mounting device 3 and the storage device 6 along the production line PL. While moving along the route indicated by the arrow in FIG. , etc. are transported from the component mounting apparatus 3 to the second storage apparatus 6B. Although the component mounting system 100 is provided with a plurality of transport robots 7, only one transport robot 7 is shown in FIG. 1 for the sake of convenience.
 管理装置8は、生産ラインPLの各装置1~5、保管装置6及び搬送ロボット7と通信可能に接続された例えばパーソナルコンピュータによって構成されている。管理装置8は、生産計画に基づいて、生産ラインPLの各装置1~5、保管装置6及び搬送ロボット7を制御することにより、部品実装システム100における部品実装基板の生産を統括的に管理する。 The management device 8 is composed of, for example, a personal computer communicably connected to the devices 1 to 5 of the production line PL, the storage device 6 and the transport robot 7. The management device 8 comprehensively manages the production of component-mounted boards in the component mounting system 100 by controlling the devices 1 to 5 of the production line PL, the storage device 6, and the transfer robot 7 based on the production plan. .
 [部品実装装置3の構成]
 図2及び図3は、部品実装システム100に備えられる部品実装装置3を示している。図2は平面視の模式図で、図3は側面視の模式図で各々部品実装装置3を示している。部品実装システム100に備えられる複数の部品実装装置3の基本的な構成は同じである。
[Configuration of Component Mounting Apparatus 3]
2 and 3 show the component mounting apparatus 3 provided in the component mounting system 100. FIG. FIG. 2 is a schematic plan view, and FIG. 3 is a side view schematic view of the component mounting apparatus 3 . A plurality of component mounting apparatuses 3 provided in the component mounting system 100 have the same basic configuration.
 部品実装装置3は、基台31と、コンベア32と、部品供給エリア33と、ヘッドユニット36と、撮像部38とを含む。基台31は、部品実装装置3が備える各種機器の搭載ベースである。コンベア32は、基台31上にX方向に延びるように設置された、基板Pの搬送ラインであり、一対のベルト式コンベアで構成されている。コンベア32は、機外から所定の作業位置に基板Pを搬入し、実装作業後に基板Pを作業位置から機外へ搬出する。図2中に示す基板Pの位置が作業位置である。 The component mounting apparatus 3 includes a base 31, a conveyor 32, a component supply area 33, a head unit 36, and an imaging section 38. The base 31 is a mounting base for various devices provided in the component mounting apparatus 3 . The conveyor 32 is a transport line for the substrate P installed on the base 31 so as to extend in the X direction, and is composed of a pair of belt-type conveyors. The conveyor 32 carries the board P from outside the machine to a predetermined work position, and carries the board P out of the machine from the work position after the mounting work. The position of the substrate P shown in FIG. 2 is the working position.
 部品供給エリア33は、実装部品を供給するための部品供給装置が配置されるエリアであり、Y方向においてコンベア32の両側に各々設けられている。Y2側の部品供給エリア33には、複数のテープフィーダ34Fがコンベア32に沿って設置されている。テープフィーダ34Fは、一定間隔で部品(小型の表面実装部品)が収納されたテープを繰り出しながら部品を供給するタイプの部品供給装置である。 The component supply area 33 is an area in which a component supply device for supplying mounted components is arranged, and is provided on both sides of the conveyor 32 in the Y direction. A plurality of tape feeders 34F are installed along the conveyor 32 in the component supply area 33 on the Y2 side. The tape feeder 34F is a type of component supply device that supplies components while feeding out a tape containing components (small surface mount components) at regular intervals.
 Y1側の部品供給エリア33には、複数のテープフィーダ34Fと、トレイフィーダ35Fとがコンベア32に沿って横並びに配置されている。複数のテープフィーダ34FはX1側に、トレイフィーダ35FはX2側に各々配置されている。トレイフィーダ35Fは、QFP(Quad Flat Package)やBGA(Ball Grid array)等のパッケージ部品をトレイ52上に載置した状態で供給するタイプの部品供給装置である。トレイ52とは、上向きに開口した平面視長方形の皿形容器である。トレイフィーダ35Fの構成については後述する。 A plurality of tape feeders 34F and tray feeders 35F are arranged side by side along the conveyor 32 in the component supply area 33 on the Y1 side. A plurality of tape feeders 34F are arranged on the X1 side, and a tray feeder 35F is arranged on the X2 side. The tray feeder 35</b>F is a component supply device of the type that supplies package components such as QFP (Quad Flat Package) and BGA (Ball Grid array) placed on a tray 52 . The tray 52 is a dish-shaped container that is rectangular in plan view and has an upward opening. The configuration of the tray feeder 35F will be described later.
 ヘッドユニット36は、ヘッドユニット駆動機構37により一定の領域内でX方向及びY方向に移動可能に設けられている。ヘッドユニット36は複数の実装ヘッド36aを備えている。各実装ヘッド36aに対して部品吸着用の負圧の供給及びその遮断が行われることにより、部品の吸着保持及びその解除が実装ヘッド36a毎に行われる。 The head unit 36 is provided so as to be movable in the X direction and the Y direction within a certain area by a head unit drive mechanism 37 . The head unit 36 has a plurality of mounting heads 36a. By supplying and shutting off the negative pressure for sucking the component to each mounting head 36a, the component is sucked and held and released for each mounting head 36a.
 撮像部38は、部品の吸着保持状態を認識するためにヘッドユニット36の各実装ヘッド36aに吸着保持された部品をその下側から撮像する。撮像部38は、カメラ及び照明装置を備える。撮像部38は、基台31上であってコンベア32のY方向両側に各々配置されている。 The image capturing unit 38 captures an image of the component sucked and held by each mounting head 36a of the head unit 36 from below in order to recognize the sucked and held state of the component. The imaging unit 38 includes a camera and an illumination device. The imaging units 38 are arranged on the base 31 and on both sides of the conveyor 32 in the Y direction.
 既述の部品実装装置3では、ヘッドユニット36が部品供給エリア33と作業位置に配置された基板Pとの間を移動しながら、実装ヘッド36aによりテープフィーダ34F又はトレイフィーダ35Fから部品を吸着して取り出す部品吸着処理と、当該部品を基板P上に搬送して実装(搭載)する部品実装処理とが実行される。これらの処理が繰り返されることにより、基板P上に所定数の部品が実装される。なお、部品吸着処理後、部品実装処理前には、撮像部38が取得した画像に基づき実装ヘッド36aによる部品の吸着保持状態が画像認識され、その結果に応じてヘッドユニット36等の位置補正が行われる。これにより、基板Pに対する部品の実装精度が確保される。 In the component mounting apparatus 3 described above, while the head unit 36 moves between the component supply area 33 and the substrate P arranged at the working position, the mounting head 36a picks up components from the tape feeder 34F or the tray feeder 35F. and a component mounting process in which the component is transported onto the board P and mounted (mounted). A predetermined number of components are mounted on the board P by repeating these processes. After the component suction process and before the component mounting process, the state of the component being picked up and held by the mounting head 36a is image-recognized based on the image acquired by the imaging unit 38, and the position of the head unit 36 and the like is corrected according to the recognition result. done. As a result, the mounting precision of the components on the board P is ensured.
 [トレイフィーダ35Fの構成]
 トレイフィーダ35Fは、既述の通り、QFP等のパッケージ部品をトレイ52上に載置した状態で供給するタイプの部品供給装置である。
[Configuration of Tray Feeder 35F]
The tray feeder 35</b>F is, as described above, a type of component supply device that supplies package components such as QFPs placed on the tray 52 .
 図2及び図3に示すように、トレイフィーダ35Fは、複数のトレイ52が収納されるトレイ収納部40Aと、トレイ収納部40Aに対してトレイ52を出し入れするトレイ移載機構部40Bと、トレイ52を所定の部品供給位置に引き出すトレイ引出機構部40Cとを備えている。これらトレイ収納部40A、トレイ移載機構部40B及びトレイ引出機構部40Cは、Y方向に沿ってY1側からこの順番で配列されている。 As shown in FIGS. 2 and 3, the tray feeder 35F includes a tray storage section 40A that stores a plurality of trays 52, a tray transfer mechanism section 40B that takes the trays 52 in and out of the tray storage section 40A, and a tray feeder 35F. 52 to a predetermined component supply position. The tray storage section 40A, the tray transfer mechanism section 40B, and the tray pull-out mechanism section 40C are arranged in this order from the Y1 side along the Y direction.
 トレイ収納部40A及びトレイ移載機構部40Bは、これらに共通する上下方向に細長い直方体形状の筐体42を有している。筐体42内のY1側がトレイ収納部40Aとされ、トレイ収納部40AのY2側に隣接してトレイ移載機構部40Bが設けれている。 The tray storage section 40A and the tray transfer mechanism section 40B have a rectangular parallelepiped housing 42 that is elongated in the vertical direction and is common to them. The Y1 side in the housing 42 is a tray storage section 40A, and the tray transfer mechanism section 40B is provided adjacent to the Y2 side of the tray storage section 40A.
 トレイ収納部40Aは、その上部がトレイ保管領域42Aであり、下部がトレイ収納部40Aに対してラック50を外部から出し入れするラック出し入れ領域42Bである。ラック50とは、複数のトレイ52をまとめて搬送するための箱形容器である。トレイ52は、このラック50に収容された状態で搬送ロボット7により第1保管装置6Aから搬送され、後述するように、ラック出し入れ領域42Bにおいて搬送ロボット7からトレイ収納部40Aに受け渡される。 The upper part of the tray storage part 40A is a tray storage area 42A, and the lower part is a rack loading/unloading area 42B for loading and unloading the rack 50 from the outside with respect to the tray storage part 40A. A rack 50 is a box-shaped container for collectively transporting a plurality of trays 52 . The tray 52 is transported from the first storage device 6A by the transport robot 7 in a state accommodated in the rack 50, and is transferred from the transport robot 7 to the tray storage section 40A in the rack loading/unloading area 42B, as will be described later.
 トレイ52は、それよりも大きい平面視長方形の皿形部材であるパレット51上に保持され、当該パレット51を介してラック50内に収容されている。詳しくは、図4に示すように、ラック50は、水平方向(Y方向)に貫通する中空かつ直方体形状の箱形容器である。ラック50内部の互いに対向する内側面には、各々、Z方向に並ぶ複数の溝部501が形成されている。パレット51の両端が各々溝部501に挿入されることにより、複数のトレイ52が、互いに平行にZ方向に並んだ状態で、かつパレット51と共に溝部501に沿って出し入れ可能にラック50に収容されている。なお、図4は、ラック出し入れ領域42Bの部分を示すトレイ収納部40A(筐体42)の側面視の模式図(Y1側から視た模式図)である。 The tray 52 is held on a pallet 51 which is a dish-shaped member that is rectangular in plan view and is housed in the rack 50 via the pallet 51 . More specifically, as shown in FIG. 4, the rack 50 is a hollow rectangular parallelepiped box-shaped container penetrating in the horizontal direction (Y direction). A plurality of grooves 501 arranged in the Z direction are formed on inner side surfaces facing each other inside the rack 50 . By inserting both ends of the pallet 51 into the grooves 501, the plurality of trays 52 are accommodated in the rack 50 in a state in which they are arranged parallel to each other in the Z direction and can be taken in and out along the grooves 501 together with the pallets 51. there is FIG. 4 is a schematic side view of the tray housing portion 40A (housing 42) showing the rack loading/unloading area 42B (schematic view viewed from the Y1 side).
 トレイ保管領域42Aには、ラック50と同等の構造を有するトレイ保管ユニット43が配置されている。ラック出し入れ領域42Bにおいてトレイ収納部40Aに受け渡されたラック50内のトレイ52は、トレイ移載機構部40Bにより、ラック50から引き出されてトレイ保管ユニット43に移載され、ここで保管される。 A tray storage unit 43 having the same structure as the rack 50 is arranged in the tray storage area 42A. The tray 52 in the rack 50 transferred to the tray storage section 40A in the rack loading/unloading area 42B is pulled out from the rack 50 and transferred to the tray storage unit 43 by the tray transfer mechanism section 40B, where it is stored. .
 トレイ移載機構部40Bは、トレイ52をパレット51と共に水平方向(Y方向)にスライドさせるスライド機構を備えたトレイ移載ユニット44と、このトレイ移載ユニット44をZ方向に移動させる図外の駆動機構とを備えている。トレイ移載機構部40Bは、トレイ保管領域42Aに対応する位置とラック出し入れ領域42Bに対応する位置とに亘ってトレイ移載ユニット44をZ方向に移動させる。そして、ラック出し入れ領域42Bに配置されたラック50からトレイ52を引出し、当該トレイ52をトレイ保管領域42Aに搬送して、トレイ保管ユニット43内に収容する。また、トレイ移載機構部40Bは、トレイ保管ユニット43内に保管されている空のトレイ52を引出してラック出し入れ領域42Bまで搬送し、当該トレイ52をラック50に収容する。つまり、トレイ移載機構部40Bは、トレイ保管ユニット43と、ラック出し入れ領域42Bに配置されたラック50との間でトレイ52の入れ替えを行う機能を有する。また、トレイ移載機構部40Bは、トレイ保管ユニット43から引き出したトレイ52を、トレイ引出機構部40Cに対する所定のトレイ引出位置に配置する。 The tray transfer mechanism section 40B includes a tray transfer unit 44 having a slide mechanism for sliding the tray 52 together with the pallet 51 in the horizontal direction (Y direction), and a tray transfer unit 44 (not shown) for moving the tray transfer unit 44 in the Z direction. and a drive mechanism. The tray transfer mechanism section 40B moves the tray transfer unit 44 in the Z direction between a position corresponding to the tray storage area 42A and a position corresponding to the rack loading/unloading area 42B. Then, the tray 52 is pulled out from the rack 50 arranged in the rack insertion/removal area 42B, and the tray 52 is transported to the tray storage area 42A and stored in the tray storage unit 43. FIG. Further, the tray transfer mechanism section 40B draws out an empty tray 52 stored in the tray storage unit 43, conveys it to the rack loading/unloading area 42B, and stores the tray 52 in the rack 50. FIG. That is, the tray transfer mechanism section 40B has a function of exchanging the tray 52 between the tray storage unit 43 and the rack 50 arranged in the rack loading/unloading area 42B. Further, the tray transfer mechanism section 40B arranges the tray 52 pulled out from the tray storage unit 43 at a predetermined tray pull-out position with respect to the tray pull-out mechanism section 40C.
 トレイ引出機構部40Cは、図2及び図3に示すように、基台31上に設置されたY方向に延びる一対のガイドレール47、47と、それらの間に配置される図外の引出ヘッドとを含む。引出しヘッドは、Y方向に移動可能でかつ前記パレット51を係止可能に構成されている。この引出しヘッドが、トレイ移載ユニット44により前記トレイ引出位置に配置されたパレット51を係止してY2方向に移動することにより、トレイ52がパレット51と共にトレイ移載ユニット44から部品供給位置(図2に示す位置)に引出される。逆に、引出ヘッドがY1方向に移動し、その後、パレット51の係止状態を解除することにより、部品供給位置からトレイ移載ユニット44にトレイ52が戻される。 As shown in FIGS. 2 and 3, the tray pull-out mechanism 40C includes a pair of guide rails 47, 47 installed on the base 31 and extending in the Y direction, and a pull-out head (not shown) disposed between them. including. The drawer head is configured to be movable in the Y direction and to lock the pallet 51 . This pull-out head locks the pallet 51 arranged at the tray pull-out position by the tray transfer unit 44 and moves in the Y2 direction, whereby the tray 52 is moved from the tray transfer unit 44 together with the pallet 51 to the component supply position ( 2). Conversely, the drawer head moves in the Y1 direction, and then the tray 52 is returned from the component supply position to the tray transfer unit 44 by releasing the locked state of the pallet 51 .
 図4、図10及び図11(a)に示すように、筐体42のY1側の側壁であってラック出し入れ領域42Bに対応する位置には、ラック出入口421が設けられている。ラック出入口421は、図外のアクチュエータにより駆動されるスライド式の扉体422により開閉可能となっており、ラック50の入れ替え時以外は、この扉体422により閉じられている。 As shown in FIGS. 4, 10 and 11(a), a rack doorway 421 is provided on the Y1 side wall of the housing 42 at a position corresponding to the rack loading/unloading area 42B. The rack doorway 421 can be opened and closed by a sliding door 422 driven by an actuator (not shown), and is closed by this door 422 except when the rack 50 is replaced.
 ラック出し入れ領域42Bには、ローラコンベア45(本発明の「ラック支持部」に相当する)が配置されている。ローラコンベア45は、ラック50を支持しつつY方向へ水平搬送可能な直動タイプのコンベアである。ローラコンベア45は、X方向に所定間隔を隔てて配置された一対のフレーム452、452と、それらの間に配置される複数のローラ451とを備える。複数のローラ451のうち、一乃至複数のローラ451は、図外のモータにより駆動される駆動ローラであり、駆動ローラ以外のローラ451は、従動ローラ(フリーローラ)である。つまり、このローラコンベア45と搬送ロボット7との間でラック50の受け渡しが行われ、ローラコンベア45上に支持されたラック50に対して前記トレイ移載ユニット44によるトレイ52の出し入れが行われる。 A roller conveyor 45 (corresponding to the "rack support section" of the present invention) is arranged in the rack loading/unloading area 42B. The roller conveyor 45 is a direct-acting conveyor capable of horizontally conveying in the Y direction while supporting the rack 50 . The roller conveyor 45 includes a pair of frames 452, 452 arranged at a predetermined interval in the X direction, and a plurality of rollers 451 arranged therebetween. Among the plurality of rollers 451, one or more rollers 451 are drive rollers driven by a motor (not shown), and the rollers 451 other than the drive rollers are driven rollers (free rollers). In other words, the rack 50 is transferred between the roller conveyor 45 and the transfer robot 7 , and the tray 52 is moved in and out of the rack 50 supported on the roller conveyor 45 by the tray transfer unit 44 .
 [搬送ロボット7(第1実施形態)の構成]
 搬送ロボット7は、既述の通り、補給用の部品や交換用の機器を第1保管装置6Aから部品実装装置3に搬送するとともに、使用済みの機器等を部品実装装置3から第2保管装置6Bに搬送する。当例では、搬送ロボット7は、補給部品が収納された前記ラック50を第1保管装置6Aから部品実装装置3に搬送してトレイフィーダ35Fに供給するとともに、使用済みのラック50、つまり空のトレイ52が収容されたラック50をトレイフィーダ35Fから回収して第2保管装置6Bに搬送する。そのため、搬送ロボット7は、トレイフィーダ35Fとの間でラック50の受け渡しを行える構成を備えている。
[Configuration of transport robot 7 (first embodiment)]
As described above, the transport robot 7 transports replenishment parts and replacement equipment from the first storage device 6A to the component mounting device 3, and transports used equipment and the like from the component mounting device 3 to the second storage device. Transport to 6B. In this example, the transport robot 7 transports the rack 50 containing the replenishment parts from the first storage device 6A to the component mounting device 3 and supplies it to the tray feeder 35F. The rack 50 containing the tray 52 is recovered from the tray feeder 35F and transported to the second storage device 6B. Therefore, the transport robot 7 is configured to transfer the rack 50 to and from the tray feeder 35F.
 図5~図7は、搬送ロボット7を示しており、図5は平面図で、図6は側面図で、図7は正面図で各々搬送ロボット7を示している。 5 to 7 show the transport robot 7, with FIG. 5 being a plan view, FIG. 6 being a side view, and FIG. 7 being a front view showing the transport robot 7, respectively.
 搬送ロボット7は、走行輪11を備えた直方体形状の車体10と、この車体10上に固定されたコンベアベース部13と、その上に配置されたローラコンベア12とを備える。搬送ロボット7は、車体10の長手方向が搬送ロボット7の前後方向であり、短辺方向が搬送ロボットの幅方向である。 The transport robot 7 includes a rectangular parallelepiped vehicle body 10 having running wheels 11, a conveyor base portion 13 fixed on the vehicle body 10, and a roller conveyor 12 arranged thereon. The longitudinal direction of the transport robot 7 is the longitudinal direction of the transport robot 7, and the short side direction thereof is the width direction of the transport robot.
 車体10は、搬送ロボット7の走行ベースである。車体10は、走行輪として、駆動輪11aと従動輪(フリーローラ)11bとを備える。駆動輪11aは車体10の前後方向中央部であってかつ幅方向両側部に備えられ、従動輪11bは、車体10の下部の四隅に各々備えられている。駆動輪11aとしては、走行モータ111(図8に示す)により駆動される例えばメカナムホイール(登録商標)が適用され、従動輪11bとしては、例えばオムニホイール(登録商標)が適用される。 The vehicle body 10 is the traveling base of the transport robot 7. The vehicle body 10 includes driving wheels 11a and driven wheels (free rollers) 11b as running wheels. The driving wheels 11a are provided at the central portion of the vehicle body 10 in the front-rear direction and on both sides in the width direction, and the driven wheels 11b are provided at the four corners of the lower portion of the vehicle body 10, respectively. For example, a Mecanum wheel (registered trademark) driven by a traveling motor 111 (shown in FIG. 8) is applied as the drive wheel 11a, and an omni wheel (registered trademark) is applied as the driven wheel 11b.
 搬送ロボット7は、駆動輪11aの駆動により床面に沿って走行する。この場合、各駆動輪11aの回転方向及び回転速度が個別に制御されることにより、搬送ロボット7は、任意の方向へ走行するとともにその場で旋回することが可能に構成となっている。 The transport robot 7 travels along the floor by driving the drive wheels 11a. In this case, by individually controlling the rotational direction and rotational speed of each drive wheel 11a, the transfer robot 7 can travel in any direction and turn on the spot.
 コンベアベース部13は、車体10よりも狭幅の平面視長方形の概略プレート状の部材であり、車体10の上部に備えられている。このコンベアベース部13の上面にローラコンベア12が備えられている。ローラコンベア12(本発明の「受け渡し部」に相当する)は、各々が前記トレイフィーダ35Fとの間で前記ラック50の受け渡しが可能な、第1コンベア12A(「第1受け渡し部」)及び第2コンベア12B(「第2受け渡し部」)を含む。第1コンベア12A及び第2コンベア12Bは、ラック50を水平搬送可能な直動タイプのローラコンベアである。第1コンベア12A及び第2コンベア12Bは、ラック50を移動させる方向が共に搬送ロボット7の前後方向となるように、背中合わせに一列に並んだ状態で配置されている。なお、以下の説明では、便宜上、第1コンベア12Aが配置されている側を搬送ロボット7の前側、第2コンベア12Bが配置されている側を搬送ロボット7の後側とする。 The conveyor base portion 13 is a roughly plate-shaped member narrower than the vehicle body 10 and rectangular in plan view, and provided on the upper portion of the vehicle body 10 . A roller conveyor 12 is provided on the upper surface of the conveyor base portion 13 . The roller conveyor 12 (corresponding to the "transfer section" of the present invention) includes a first conveyor 12A ("first transfer section") and a first conveyor 12A ("first transfer section"), each capable of transferring the rack 50 to and from the tray feeder 35F. 2 conveyor 12B (“second transfer unit”). The first conveyor 12A and the second conveyor 12B are direct-acting roller conveyors capable of horizontally conveying the rack 50 . The first conveyor 12</b>A and the second conveyor 12</b>B are arranged back-to-back in a row so that the directions in which the racks 50 are moved are both in the front-rear direction of the transport robot 7 . In the following description, the side on which the first conveyor 12A is arranged is the front side of the transfer robot 7, and the side on which the second conveyor 12B is arranged is the rear side of the transfer robot 7 for convenience.
 第1コンベア12Aは、コンベアベース部13の幅方向両端に立設された一対のフレーム14、14と、それらの間に配置される複数のローラ15とを備える。第1コンベア12Aの搬送面の高さは、トレイフィーダ35Fの前記ローラコンベア45の搬送面の高さと同じになるように設定されている(図10参照)。 The first conveyor 12A includes a pair of frames 14, 14 erected at both ends in the width direction of the conveyor base portion 13, and a plurality of rollers 15 arranged therebetween. The height of the conveying surface of the first conveyor 12A is set to be the same as the height of the conveying surface of the roller conveyor 45 of the tray feeder 35F (see FIG. 10).
 フレーム14、14の内幅Wc(図7)は、図5中に仮想線で示すラック50の幅Wrよりも若干大きく設定されており、第1コンベア12Aの奥行きDcは、ラック50の奥行きDrよりも若干大きく設定されている。 The inner width Wc (FIG. 7) of the frames 14, 14 is set slightly larger than the width Wr of the rack 50 indicated by the virtual line in FIG. is set slightly larger than
 第1コンベア12Aの複数のローラ15のうち、一乃至複数のローラ15は、ローラモータ151(図8に示す)により駆動される駆動ローラであり、駆動ローラ以外のローラ15は、従動ローラ(フリーローラ)である。 Among the plurality of rollers 15 of the first conveyor 12A, one or more rollers 15 are drive rollers driven by a roller motor 151 (shown in FIG. 8), and the rollers 15 other than the drive rollers are driven rollers (free rollers). Laura).
 つまり、第1コンベア12Aは、各ローラ15によりラック50を支持し、駆動ローラの回転に伴いラック50をフレーム14、14により案内しながら搬送ロボット7の前後方向に移動させるように構成されている。なお、各フレーム14、14の前端部分の対向面には、テーパ状のガイド部14a、14aが設けられている。トレイフィーダ35Fから第1コンベア12Aにラック50を受け入れる際には、これらガイド部14aによってラック50が両フレーム14、14の中央に案内される。 That is, the first conveyor 12A is configured to support the rack 50 by the rollers 15 and to move the rack 50 in the front-rear direction of the transport robot 7 while guiding the rack 50 by the frames 14 and 14 as the driving rollers rotate. . Tapered guide portions 14a, 14a are provided on opposing surfaces of the front end portions of the frames 14, 14, respectively. When receiving the rack 50 from the tray feeder 35F to the first conveyor 12A, the rack 50 is guided to the center of both frames 14, 14 by these guide portions 14a.
 また、第1コンベア12Aには、ラック50の有無を検知すするための光電センサ等のラック検知センサ18(図8に示す)が備えられている。このラック検知センサ18によるラック50の検知に基づき、前記駆動ローラの作動が制御される。 Also, the first conveyor 12A is provided with a rack detection sensor 18 (shown in FIG. 8) such as a photoelectric sensor for detecting the presence or absence of the rack 50. Based on the detection of the rack 50 by the rack detection sensor 18, the operation of the drive roller is controlled.
 第2コンベア12Bは、既述の第1コンベア12Aと基本的な構成は同一で、第1コンベア12Aに対して前後対称に設けられている。つまり、既述の通り、第1コンベア12Aに対して背中合わせに設けられている。従って、テーパ状のガイド部14a、14aは、各フレーム14、14の後端部分の対向面に設けられている。 The second conveyor 12B has the same basic configuration as the first conveyor 12A described above, and is provided symmetrically with respect to the first conveyor 12A. That is, as described above, they are provided back to back with respect to the first conveyor 12A. Accordingly, the tapered guide portions 14a, 14a are provided on the facing surfaces of the rear end portions of the frames 14, 14, respectively.
 前記車体10の前端面及び後端面には、搬送ロボット7をトレイフィーダ35Fに対して位置決めするためのロボット側位置決め部16A,16Bが設けられている。ロボット側位置決め部16A,16Bは、平面視V字型(楔型)の溝型の当接面161を備えたブロック状の部材からなる。前後のロボット側位置決め部16A、16Bは同一形状である。以下の説明では、適宜、車体10(搬送ロボット7)の前側、すなわち第1コンベア12A側に位置するロボット側位置決め部16Aを第1ロボット側位置決め部16Aと称し、後側、すなわち第2コンベア12B側に位置するロボット側位置決め部16Bを第2ロボット側位置決め部16Bと称する。 On the front end surface and the rear end surface of the vehicle body 10, there are provided robot- side positioning portions 16A and 16B for positioning the transfer robot 7 with respect to the tray feeder 35F. The robot- side positioning portions 16A and 16B are block-shaped members having groove-shaped contact surfaces 161 that are V-shaped (wedge-shaped) in plan view. The front and rear robot- side positioning portions 16A and 16B have the same shape. In the following description, the robot-side positioning unit 16A located on the front side of the vehicle body 10 (transport robot 7), that is, on the side of the first conveyor 12A, is appropriately referred to as the first robot-side positioning unit 16A, and the rear side, that is, the second conveyor 12B. The robot-side positioning section 16B located on the side is called a second robot-side positioning section 16B.
 平面視において、車体10の対角線上の角部には、各々、走行用センサ17が設けられている。走行用センサ17は、例えばLiDAR(Light Detection And Ranging)であり、搬送ロボット7は、当該走行用センサ17による目標物や障害物の検知により走行動作が制御される。 In a plan view, a running sensor 17 is provided at each diagonal corner of the vehicle body 10 . The traveling sensor 17 is, for example, LiDAR (Light Detection And Ranging), and the traveling operation of the transport robot 7 is controlled by detection of a target or an obstacle by the traveling sensor 17 .
 搬送ロボット7は、既述のように、車体10に対してローラコンベア12、ロボット側位置決め部16A,16B及び走行用センサ17が配置されることにより、平面視において回転対称な構成となっている。 As described above, the transport robot 7 has a configuration that is rotationally symmetrical in a plan view by arranging the roller conveyor 12, the robot- side positioning units 16A and 16B, and the traveling sensor 17 with respect to the vehicle body 10. .
 図8は、搬送ロボット7の制御系を示すブロック図である。搬送ロボット7は、その動作を制御するロボット制御部20を備えている。搬送ロボット7には、管理装置8との間で無線通信が可能な通信モジュール21が搭載されており、ロボット制御部20は、管理装置8から送信される指令に基づき搬送ロボット7の動作を制御する。すなわち、ロボット制御部20には、前記走行モータ111、ローラモータ151及びセンサ17、18が電気的に接続されており、ロボット制御部20は、走行用センサ17が取得する情報に基づき走行モータ111の駆動を制御するとともに、前記ラック検知センサ18が取得する情報に基づきローラモータ151の駆動を制御する。なお、車体10には、図外のバッテリが搭載されており、前記走行モータ111及びローラモータ151等は当該バッテリからの電力供給を受けて作動する。 FIG. 8 is a block diagram showing the control system of the transport robot 7. As shown in FIG. The transport robot 7 has a robot control section 20 that controls its operation. The transport robot 7 is equipped with a communication module 21 capable of wireless communication with the management device 8 , and the robot control unit 20 controls the operation of the transport robot 7 based on commands sent from the management device 8 . do. Specifically, the traveling motor 111, the roller motor 151, and the sensors 17 and 18 are electrically connected to the robot control unit 20, and the robot control unit 20 controls the traveling motor 111 based on the information acquired by the traveling sensor 17. , and controls the driving of the roller motor 151 based on the information acquired by the rack detection sensor 18 . A battery (not shown) is mounted on the vehicle body 10, and the traveling motor 111, the roller motor 151, etc. are powered by the battery.
 [搬送ロボット7によるラック50の搬送動作]
 次に、ロボット制御部20の制御に基づく搬送ロボット7によるラック50の搬送動作について図9~図11を参照しながら詳細に説明する。図9は、搬送ロボット7によるラック50の搬送動作を模式的に示した説明図であり、図10は、ラック50受け渡し時のトレイフィーダ35F及び搬送ロボット7を示す側面図(一部断面図)である。また、図11は、搬送ロボット7の位置決めの際の動作説明図(平面図)である。なお、図9では、搬送ロボット7やトレイフィーダ35Fの構成を簡略化している。
[Conveying operation of rack 50 by conveying robot 7]
Next, the transport operation of the rack 50 by the transport robot 7 based on the control of the robot control section 20 will be described in detail with reference to FIGS. 9 to 11. FIG. FIG. 9 is an explanatory diagram schematically showing the operation of transporting the rack 50 by the transport robot 7, and FIG. 10 is a side view (partial cross-sectional view) showing the tray feeder 35F and the transport robot 7 when the rack 50 is delivered. is. FIG. 11 is an operation explanatory diagram (plan view) for positioning the transport robot 7. As shown in FIG. In addition, in FIG. 9, the configurations of the transport robot 7 and the tray feeder 35F are simplified.
 搬送ロボット7は、まず、補給用の部品が収容されたラック50(以下、適宜「補給用ラック50a」と称する)を第1保管装置6Aから受け取り、生産ラインPLに沿って走行する。例えば、図9(a)に示すように、搬送ロボット7は、ラック50を第2コンベア12Bに搭載した状態で、第1コンベア12A側を先頭にして生産ラインPLに沿って走行する。そして、部品補給の対象である部品実装装置3のトレイフィーダ35Fの位置、詳しくはトレイ収納部40Aの筐体42の位置まで走行すると停止する。 The transport robot 7 first receives the rack 50 containing parts for replenishment (hereinafter referred to as "replenishment rack 50a" as appropriate) from the first storage device 6A, and travels along the production line PL. For example, as shown in FIG. 9A, the transport robot 7 travels along the production line PL with the rack 50 mounted on the second conveyor 12B, with the first conveyor 12A leading. Then, it stops when it travels to the position of the tray feeder 35F of the component mounting apparatus 3 to which components are to be replenished, more specifically, to the position of the housing 42 of the tray housing portion 40A.
 搬送ロボット7は、次に、第1コンベア12Aが、筐体42(トレイ収納部40A)のラック出入口421に対向するようにその場で90°旋回し、その後、図9(b)、(c)に示すように、Y2方向に前進して筐体42に位置決めされた状態で停止する。 Next, the transport robot 7 rotates 90 degrees on the spot so that the first conveyor 12A faces the rack entrance 421 of the housing 42 (tray storage section 40A), and then, as shown in FIGS. ), it moves forward in the Y2 direction and stops while being positioned on the housing 42 .
 詳しくは、図11(a)に示すように、筐体42のラック出入口421の下方には、ロボット側位置決め部16A、16Bに対応するフィーダ側位置決め部46が設けられている。フィーダ側位置決め部46は、ロボット側位置決め部16A、16Bの当接面161に対応する平面視三角形(楔型)の山型の当接面461を備えたブロック状の部材である。第1コンベア12Aが筐体42に対向する状態で搬送ロボット7がY2方向へ前進すると、第1ロボット側位置決め部16Aとフィーダ側位置決め部46とが互いに当接し、それらの当接面161、461同士が互いに合致するように搬送ロボット7の位置が修正される。これにより、図10及び図11(b)に示すように、筐体42に対して搬送ロボット7が位置決めされる。つまり、第1コンベア12Aと前記ローラコンベア45とがラック出入口421を介してY方向に並んだ状態に、搬送ロボット7が位置決めされる。 Specifically, as shown in FIG. 11(a), below the rack entrance 421 of the housing 42, a feeder-side positioning section 46 corresponding to the robot- side positioning sections 16A and 16B is provided. The feeder-side positioning portion 46 is a block-shaped member having a triangular (wedge-shaped) mountain-shaped contact surface 461 in a plan view corresponding to the contact surface 161 of the robot- side positioning portions 16A and 16B. When the transport robot 7 advances in the Y2 direction while the first conveyor 12A faces the housing 42, the first robot-side positioning section 16A and the feeder-side positioning section 46 come into contact with each other. The positions of the transport robots 7 are corrected so that they match each other. As a result, the transfer robot 7 is positioned with respect to the housing 42 as shown in FIGS. 10 and 11(b). That is, the transport robot 7 is positioned such that the first conveyor 12A and the roller conveyor 45 are aligned in the Y direction through the rack doorway 421 .
 なお、筐体42のラック出入口421のX方向両側には各々マーカー423が設けられている。搬送ロボット7の位置決めに際しては、走行用センサ17による当該マーカー423の検知に基づき搬送ロボット7の停止位置が制御される。そして、搬送ロボット7の停止中は、電磁ブレーキ(モータブレーキ)が働くように走行モータ111が制御される。これにより搬送ロボット7の位置決め状態が維持される。 Markers 423 are provided on both sides of the rack doorway 421 of the housing 42 in the X direction. When positioning the transport robot 7 , the stop position of the transport robot 7 is controlled based on detection of the marker 423 by the traveling sensor 17 . While the transfer robot 7 is stopped, the travel motor 111 is controlled so that an electromagnetic brake (motor brake) works. Thereby, the positioning state of the transport robot 7 is maintained.
 一方、トレイフィーダ35Fのローラコンベア45上には、トレイ移載ユニット44によるトレイ52の入れ替えが完了したラック50、つまり空のトレイ52が収容された使用済みのラック50(以下、適宜「使用済ラック50b」と称す)が配置されている(図10中に二点鎖線で示す状態)。 On the other hand, on the roller conveyor 45 of the tray feeder 35F, there are used racks 50 containing empty trays 52 (hereinafter referred to as "used rack 50b") is arranged (the state indicated by the two-dot chain line in FIG. 10).
 搬送ロボット7の位置決めが完了すると、筐体42の扉体422が作動してラック出入口421が開き、さらにトレイ収納部40Aのローラコンベア45及び搬送ロボット7の第1コンベア12Aが各々作動する。すなわち駆動ローラが回転する。これにより、図9(c)、図10及び図11(c)に示すように、トレイフィーダ35F(ローラコンベア45)から搬送ロボット7(第1コンベア12A)に、使用済ラック50bが受け渡される(回収される)。この際、搬送ロボット7において、前記ラック検知センサ18がラック50を検知すると第1コンベア12Aが停止する。 When the positioning of the transport robot 7 is completed, the door 422 of the housing 42 operates to open the rack doorway 421, and the roller conveyor 45 of the tray storage section 40A and the first conveyor 12A of the transport robot 7 operate. That is, the drive roller rotates. As a result, as shown in FIGS. 9(c), 10 and 11(c), the used rack 50b is transferred from the tray feeder 35F (roller conveyor 45) to the transport robot 7 (first conveyor 12A). (recovered). At this time, in the transport robot 7, when the rack detection sensor 18 detects the rack 50, the first conveyor 12A stops.
 搬送ロボット7への使用済ラック50bの受け渡しが完了すると、搬送ロボット7は、図9(d)に示すように、Y1方向に一旦後退して筐体42との位置決め状態を解除し、さらに、補給用ラック50aが搭載された第2コンベア12Bがラック出入口421に対向するようにその場で180°旋回する。その後、図9(e)に示すように、Y2方向に前進し、筐体42に対して位置決めされた状態で停止する。この場合には、第2ロボット側位置決め部16Bがフィーダ側位置決め部46に当接することによって搬送ロボット7が筐体42に位置決めされ、当該位置決め状態が既述の電磁ブレーキ(モータブレーキ)によって維持される。 When the delivery of the used rack 50b to the transport robot 7 is completed, the transport robot 7 retreats once in the Y1 direction to release the positioning state with respect to the housing 42, as shown in FIG. 9(d). The second conveyor 12B on which the supply rack 50a is mounted turns 180° on the spot so as to face the rack doorway 421. - 特許庁Thereafter, as shown in FIG. 9(e), it advances in the Y2 direction and stops while being positioned with respect to the housing 42. Then, as shown in FIG. In this case, the transfer robot 7 is positioned in the housing 42 by the contact of the second robot-side positioning portion 16B with the feeder-side positioning portion 46, and the positioning state is maintained by the above-described electromagnetic brake (motor brake). be.
 搬送ロボット7の位置決めが完了すると、トレイ収納部40Aのローラコンベア45及び搬送ロボット7の第2コンベア12Bが作動する。これにより、図9(e)に示すように、搬送ロボット7(第2コンベア12B)からトレイフィーダ35F(ローラコンベア45)へ補給用ラック50aが受け渡される。この場合、第1コンベア12Aからローラコンベア45に補給用ラック50aが移動し、ラック検知センサ18がラック50を検知し無くなると駆動ローラが停止される。 When the positioning of the transport robot 7 is completed, the roller conveyor 45 of the tray storage section 40A and the second conveyor 12B of the transport robot 7 operate. As a result, as shown in FIG. 9E, the supply rack 50a is transferred from the transport robot 7 (second conveyor 12B) to the tray feeder 35F (roller conveyor 45). In this case, when the supply rack 50a moves from the first conveyor 12A to the roller conveyor 45 and the rack detection sensor 18 no longer detects the rack 50, the drive roller is stopped.
 既述のようにして補給用ラック50aと使用済ラック50bとの交換が完了すると、搬送ロボット7は、図9(f)に示すように、Y1方向に後退して前記位置決め状態を解除し、さらに90°旋回する。そして、使用済ラック50bを第1コンベア12Aに搭載した状態で、第2コンベア12B側を先頭として生産ラインPLに沿って走行する。その後、搬送ロボット7は、図1中の矢印に示すルートに沿って生産エリアA1から準備エリアA2に戻り、回収した使用済ラック50bを第2保管装置6Bに受け渡す。これにより、搬送ロボット7による一連のラック50の搬送動作が終了する。 When the replacement of the supply rack 50a and the used rack 50b is completed as described above, the transport robot 7 retreats in the Y1 direction to release the positioning state, as shown in FIG. 9(f). Turn another 90°. With the used rack 50b mounted on the first conveyor 12A, the second conveyor 12B runs along the production line PL. After that, the transport robot 7 returns from the production area A1 to the preparation area A2 along the route indicated by the arrow in FIG. 1, and delivers the collected used rack 50b to the second storage device 6B. As a result, a series of operations for transporting the rack 50 by the transport robot 7 is completed.
 なお、既述の説明では、搬送ロボット7は、第2コンベア12Bに補給用ラック50aを搭載し、第1コンベア12Aに使用済ラック50bを搭載するが、勿論、逆でもよい。また、搬送ロボット7は、第1コンベア12A及び第2コンベア12Bの何れの側を先頭にして走行させてもよく、適宜変更可能である。この点は、後述する第2実施形態の搬送ロボット7Aについても同じである。 In the above description, the transport robot 7 loads the replenishment rack 50a on the second conveyor 12B and the used rack 50b on the first conveyor 12A, but the reverse is of course possible. Further, the transport robot 7 may be run on either side of the first conveyor 12A or the second conveyor 12B, and can be changed as appropriate. This point also applies to the transport robot 7A of the second embodiment, which will be described later.
 [作用効果]
 以上説明した搬送ロボット7によれば、トレイフィーダ35Fへの補給用ラック50aの供給、及びトレイフィーダ35Fからの使用済ラック50bの回収を自動で行うことが可能となる。そのため、トレイフィーダ35Fに対する部品補給作業を従来のように手作業で行う必要が無くなり、トレイフィーダ35Fに対する部品補給作業の効率化が図られる。
[Effect]
According to the transport robot 7 described above, it is possible to automatically supply the supply rack 50a to the tray feeder 35F and recover the used rack 50b from the tray feeder 35F. Therefore, it is not necessary to manually supply parts to the tray feeder 35F as in the conventional art, and the efficiency of parts supply to the tray feeder 35F can be improved.
 特に、上記搬送ロボット7では、既述のように、補給用ラック50aと使用済ラック50bとを交換することにより部品の供給が行われる。そのため、トレイフィーダ35Fに対して、例えばトレイ単位で部品補給を行う場合に比べると部品補給の作業時間が格段に短縮される。つまり、例えば使用済のトレイ52をパレット51ごと交換する場合には、パレット51の数だけ交換作業が必要となり、パレット数が多い場合には作業時間が長期化する。しかし、上記搬送ロボット7によれば、同じ数のトレイ52(パレット)を交換する場合であっても、使用済ラック50bと補給用ラック50aとを交換するだけで済むため、短時間で部品補給が完了する。従って、上記搬送ロボット7によると、トレイフィーダ35Fに対する部品補給作業の高速化を図ることができる。 In particular, in the transport robot 7, parts are supplied by exchanging the supply rack 50a and the used rack 50b, as described above. Therefore, compared with the case where parts are supplied to the tray feeder 35F, for example, in units of trays, the working time for supplying parts is significantly shortened. In other words, for example, when replacing the used tray 52 together with the pallet 51, replacement work is required by the number of pallets 51, and if the number of pallets is large, the work takes a long time. However, according to the transport robot 7, even when replacing the same number of trays 52 (pallets), it is sufficient to replace the used rack 50b with the replenishment rack 50a. is completed. Therefore, according to the transport robot 7, it is possible to increase the speed of parts replenishment work for the tray feeder 35F.
 また、このようにトレイフィーダ35Fに対する部品補給作業の高速化が図られる結果、搬送ロボット7の走行ルートを、当該作業中の搬送ロボット7が長時間塞ぐことが抑制される。従って、例えば部品補給作業中の搬送ロボット7によって後続する搬送ロボット7が長期的に待機状態に置かれること、ひいては他の部品実装装置3(トレイフィーダ35F)の部品補給が間に合わなくなるといったトラブルを抑制ないし防止することが可能になる。 In addition, as a result of speeding up the parts replenishment work for the tray feeder 35F in this way, it is suppressed that the travel route of the transport robot 7 is blocked for a long time by the transport robot 7 during the work. Therefore, for example, it is possible to prevent troubles such as the following transport robot 7 being placed in a standby state for a long period of time by the transport robot 7 which is in the process of supplying components, and eventually the component replenishment of another component mounting apparatus 3 (tray feeder 35F) being delayed. or can be prevented.
 なお、実施形態のトレイフィーダ35Fでは、部品補給時には、補給用ラック50aと使用済ラック50bとの交換が必須作業となる。この点、上記搬送ロボット7は、既述の通り、第1コンベア12Aと第2コンベア12Bとを備えており、使用済ラック50bと補給用ラック50aの交換作業を1台の搬送ロボット7で連続的に行うことが可能である。そのため、この点でもトレイフィーダ35Fに対する部品補給作業の高速化を図ることが可能になるという利点がある。 It should be noted that, in the tray feeder 35F of the embodiment, replacement of the supply rack 50a and the used rack 50b is an essential task when parts are supplied. In this regard, the transport robot 7 includes the first conveyor 12A and the second conveyor 12B as described above, and the single transport robot 7 continuously replaces the used rack 50b and the supply rack 50a. can be done systematically. Therefore, in this respect as well, there is an advantage that it is possible to speed up the parts replenishment work for the tray feeder 35F.
 また、実施形態の搬送ロボット7において、第1コンベア12Aと第2コンベア12Bとは同一の構成であり、また、既述の通り平面視において回転対称な構成を有している。つまり、生産ラインPLに沿って走行する際の走行方向や、ラック受け渡しを行うコンベアについての制約が少ない。そのため、生産ラインPLにおける各部品実装装置(トレイフィーダ35F)の時々の状況に応じたラック50(補給用ラック50a、使用済ラック50b)の搬送に臨機応変に対応できるとう利点もある。 In addition, in the transport robot 7 of the embodiment, the first conveyor 12A and the second conveyor 12B have the same configuration, and have rotationally symmetric configurations in plan view as described above. In other words, there are few restrictions on the running direction when running along the production line PL and the conveyor for delivering racks. Therefore, there is also the advantage that it is possible to flexibly cope with the transport of the racks 50 (replenishment rack 50a, used rack 50b) according to the occasional situation of each component mounting device (tray feeder 35F) in the production line PL.
 また、搬送ロボット7は、走行輪としてメカナムホイールやオムニホイールを備えているため、走行方向の自由度が非常に高い。そのため、トレイフィーダ35Fに対する位置決めの際には、搬送ロボット7を前進させるだけで、フィーダ側位置決め部46の当接面461とロボット側位置決め部16A、16Bの当接面161とが合致するように、難なく搬送ロボット7を位置修正することができる。よって、トレイフィーダ35Fに対して精度良く搬送ロボット7を位置決めすること、ひいては、トレイフィーダ35Fと搬送ロボット7との間のラック50の受け渡しを安定的にかつ確実に行うことができるという利点がある。 In addition, since the transport robot 7 is equipped with mecanum wheels and omni wheels as running wheels, it has a very high degree of freedom in the running direction. Therefore, when positioning with respect to the tray feeder 35F, the contact surfaces 461 of the feeder-side positioning portions 46 and the contact surfaces 161 of the robot- side positioning portions 16A and 16B are aligned simply by moving the transport robot 7 forward. , the transport robot 7 can be repositioned without difficulty. Therefore, there is an advantage that the transfer robot 7 can be accurately positioned with respect to the tray feeder 35F, and that the transfer of the rack 50 between the tray feeder 35F and the transfer robot 7 can be performed stably and reliably. .
 [搬送ロボットの第2実施形態]
 次に搬送ロボットの第2実施形態について、図12、図13を用いて説明する。第2実施形態に係る搬送ロボット7Aの基本的な構成は、第1実施形態の搬送ロボット7と共通する。そのため、第1実施形態と共通する部分については同一符号を付して説明を省略又は簡略し、主に第1実施形態との相違について詳述する。後述する第3実施形態に係る搬送ロボット7Bについても同様である。
[Second Embodiment of Transport Robot]
Next, a second embodiment of the transport robot will be described with reference to FIGS. 12 and 13. FIG. A basic configuration of the transport robot 7A according to the second embodiment is common to that of the transport robot 7 of the first embodiment. Therefore, the same reference numerals are given to the parts that are common to the first embodiment, and the description is omitted or simplified, and mainly the differences from the first embodiment will be described in detail. The same applies to a transfer robot 7B according to a third embodiment, which will be described later.
 図12は、第2実施形態に係る搬送ロボット7Aの平面図であり、図13は、搬送ロボット7Aの側面図である。図12及び図13に示すように、第2実施形態に係る搬送ロボット7Aでは、コンベアベース部13(本発明の「テーブル部」に相当する)が、車体10に対して支軸13aを介して旋回可能に支持されており、図外の旋回モータの駆動力によってローラコンベア12と共に旋回するように構成されている。旋回モータはロボット制御部20に電気的に接続されており、車体10に対するローラコンベア12の旋回動作がロボット制御部20により制御される。 FIG. 12 is a plan view of the transfer robot 7A according to the second embodiment, and FIG. 13 is a side view of the transfer robot 7A. As shown in FIGS. 12 and 13, in the transport robot 7A according to the second embodiment, the conveyor base portion 13 (corresponding to the "table portion" of the present invention) is attached to the vehicle body 10 via the spindle 13a. It is rotatably supported and configured to rotate together with the roller conveyor 12 by the driving force of a rotation motor (not shown). The turning motor is electrically connected to the robot control section 20 , and the turning operation of the roller conveyor 12 with respect to the vehicle body 10 is controlled by the robot control section 20 .
 図14は、搬送ロボット7Aによるラック50の搬送動作の一部を模式的に示した説明図である。搬送ロボット7Aによるラック50の搬送動作のうち、使用済ラック50bをトレイフィーダ35Fから回収するまでの動作は、図9(a)、(b)に図示した、第1実施形態の搬送ロボット7による動作と同じである。すなわち、搬送ロボット7Aは、第1保管装置6Aから受け取った補給用ラック50aを第2コンベア12Bに搭載した状態で、第1コンベア12A側を先頭として生産ラインPLに沿って走行する。その後、搬送ロボット7Aは、筐体42(トレイ収納部40A)のラック出入口421に第1コンベア12Aが対向するように旋回した後、さらにY2方向に前進して、前記位置決め部16A、46により筐体42に対して位置決めされた状態で停止する。この状態で、図14(a)に示すように、トレイフィーダ35Fから搬送ロボット7Aに、使用済ラック50bが受け渡される(回収される)。 FIG. 14 is an explanatory view schematically showing part of the operation of transporting the rack 50 by the transport robot 7A. Among the operations of transporting the rack 50 by the transport robot 7A, the operation up to collecting the used rack 50b from the tray feeder 35F is performed by the transport robot 7 of the first embodiment shown in FIGS. Same as action. That is, the transport robot 7A travels along the production line PL with the first conveyor 12A side as the head, with the supply rack 50a received from the first storage device 6A mounted on the second conveyor 12B. After that, the transport robot 7A rotates so that the first conveyor 12A faces the rack entrance 421 of the housing 42 (tray storage section 40A), and then moves forward in the Y2 direction. It stops while positioned with respect to the body 42 . In this state, as shown in FIG. 14A, the used rack 50b is delivered (collected) from the tray feeder 35F to the transport robot 7A.
 搬送ロボット7Aへの使用済ラック50bの受け渡しが完了すると、図14(b)に示すように、位置決め部16A、46による位置決め状態を維持したままで、ローラコンベア12がコンベアベース部13と共に180°旋回駆動される。これにより、補給用ラック50aが搭載された第2コンベア12Bがラック出入口421に対向するように配置される。 When the delivery of the used rack 50b to the transport robot 7A is completed, the roller conveyor 12 rotates 180 degrees with the conveyor base 13 while maintaining the positioning state by the positioning units 16A and 46, as shown in FIG. 14(b). swivel driven. As a result, the second conveyor 12B on which the supply rack 50a is mounted is arranged so as to face the rack doorway 421. As shown in FIG.
 その後、トレイ収納部40Aのローラコンベア45及び搬送ロボット7Aの第2コンベア12Bが作動することにより、図14(c)に示すように、搬送ロボット7A(第2コンベア12B)からからトレイフィーダ35F(ローラコンベア45)へ補給用ラック50aが受け渡される。 After that, the roller conveyor 45 of the tray storage section 40A and the second conveyor 12B of the transfer robot 7A are operated, so that the tray feeder 35F ( The supply rack 50a is delivered to the roller conveyor 45).
 このようにして補給用ラック50aと使用済ラック50bとの交換が完了すると、搬送ロボット7Aは、図14(d)に示すようにY2方向に後退して前記位置決めを解除し、さらに90°旋回する。そして、使用済ラック50bを第1コンベア12Aに搭載した状態で、第2コンベア12B側を先頭として生産ラインPLに沿って走行する。 When the replacement of the supply rack 50a and the used rack 50b is completed in this way, the transfer robot 7A retreats in the Y2 direction to release the positioning, as shown in FIG. do. With the used rack 50b mounted on the first conveyor 12A, the second conveyor 12B runs along the production line PL.
 以上のように、第2実施形態の搬送ロボット7Aでは、ローラコンベア12が車体10に対して旋回可能に構成されている。この搬送ロボット7Aによれば、既述の通り、トレイフィーダ35Fから使用済ラック50bを回収した後、位置決め部16A、46による位置決め状態を維持したままで、補給用ラック50aが搭載された第2コンベア12Bをラック出入口421に対向させることができる(図14(b))。そのため、第1実施形態の搬送ロボット7における図9(d)、(e)に示すような動作、すなわち、位置決め部16A、46による搬送ロボット7の位置決め状態を解除して搬送ロボット7を旋回させ、その後、位置決め部16B、46により搬送ロボット7を筐体42に対して再度位置決めするという動作が不要となる。従って、当該動作が不要となる分、第2実施形態の搬送ロボット7Aによれば、より一層、トレイフィーダ35Fに対する部品補給作業の効率化が図られる。 As described above, in the transfer robot 7A of the second embodiment, the roller conveyor 12 is configured to be rotatable with respect to the vehicle body 10. According to the transport robot 7A, as described above, after collecting the used rack 50b from the tray feeder 35F, while maintaining the positioning state by the positioning units 16A and 46, the second transport robot 7A on which the supply rack 50a is mounted is mounted. The conveyor 12B can be opposed to the rack doorway 421 (FIG. 14(b)). Therefore, the operation shown in FIGS. 9(d) and 9(e) in the transport robot 7 of the first embodiment, that is, cancels the positioning state of the transport robot 7 by the positioning units 16A and 46 and rotates the transport robot 7. After that, the operation of positioning the transport robot 7 with respect to the housing 42 again by the positioning units 16B and 46 becomes unnecessary. Therefore, according to the transfer robot 7A of the second embodiment, the parts replenishment work for the tray feeder 35F can be made more efficient because this operation is unnecessary.
 [搬送ロボットの第3実施形態]
 次に搬送ロボットの第3実施形態について図15を用いて説明する。図15は、第3実施形態に係る搬送ロボット7Bの平面図である。
[Third Embodiment of Transport Robot]
Next, a transport robot according to a third embodiment will be described with reference to FIG. FIG. 15 is a plan view of the transfer robot 7B according to the third embodiment.
 第1実施形態の搬送ロボット7では、第1コンベア12A及び第2コンベア12Bは、ラック50の搬送方向が共に搬送ロボット7の前後方向となるように互いに背中合わせに一列に配置されていた。これに対して、第3実施形態の搬送ロボット7Bでは、第1コンベア12A及び第2コンベア12Bは、ラック50の搬送方向が共に搬送ロボット7Bの幅方向となるように、搬送ロボット7Bの前後方向に沿って互いに横並びに配置されている。 In the transport robot 7 of the first embodiment, the first conveyor 12A and the second conveyor 12B are arranged back-to-back in a row so that the transport direction of the racks 50 is both the front-rear direction of the transport robot 7. On the other hand, in the transport robot 7B of the third embodiment, the first conveyor 12A and the second conveyor 12B move in the front-rear direction of the transport robot 7B so that the transport direction of the rack 50 is both the width direction of the transport robot 7B. are arranged side-by-side with each other along the
 また、第3実施形態の搬送ロボット7Bでは、車体10の一方側の側面(図15では上側の側面)であって、第1コンベア12Aに対応する位置に第1ロボット側位置決め部16Aが設けられるとともに、第2コンベア12Bに対応する位置に第2ロボット側位置決め部16Bが設けられている。 Further, in the transport robot 7B of the third embodiment, a first robot-side positioning portion 16A is provided on one side surface (upper side surface in FIG. 15) of the vehicle body 10 at a position corresponding to the first conveyor 12A. In addition, a second robot-side positioning section 16B is provided at a position corresponding to the second conveyor 12B.
 第3実施形態に係る搬送ロボット7Bでは、図16に示すようにしてラック50が搬送される。図16は、搬送ロボット7Bによるラック50の搬送動作の一部を模式的に示した説明図である。 The transport robot 7B according to the third embodiment transports the rack 50 as shown in FIG. 16A and 16B are explanatory diagrams schematically showing part of the transportation operation of the rack 50 by the transportation robot 7B.
 搬送ロボット7Bは、まず、補給用ラック50aを第1保管装置6Aから受け取り、図16(a)に示すように、当該ラック50を第2コンベア12Bに搭載した状態で、第1コンベア12A側を先頭として生産ラインPLに沿って走行する。そして、第1コンベア12Aが、トレイフィーダ35Fのトレイ収納部40Aに対向する位置に到達すると、詳しくは筐体42のラック出入口421に対向する位置に到達すると一旦停止し、そのままY2方向に移動する。これにより搬送ロボット7Bが筐体42に対して位置決めされる。すなわち、第1ロボット側位置決め部16Aがフィーダ側位置決め部46に当接することにより、図16(b)に示すように、第1コンベア12Aと前記ローラコンベア45とがラック出入口421を介してY方向に並んだ状態に、搬送ロボット7Bが位置決めされる。そしてこの状態で、トレイフィーダ35F(ローラコンベア45)から搬送ロボット7B(第1コンベア12A)に使用済ラック50bが受け渡される。 The transport robot 7B first receives the supply rack 50a from the first storage device 6A, and as shown in FIG. It runs along the production line PL as the head. Then, when the first conveyor 12A reaches the position facing the tray housing portion 40A of the tray feeder 35F, more specifically, when it reaches the position facing the rack entrance 421 of the housing 42, it stops once and moves in the Y2 direction as it is. . Thereby, the transport robot 7B is positioned with respect to the housing 42 . That is, when the first robot-side positioning portion 16A comes into contact with the feeder-side positioning portion 46, the first conveyor 12A and the roller conveyor 45 move in the Y direction through the rack doorway 421 as shown in FIG. 16(b). The conveying robot 7B is positioned in a state of being lined up. In this state, the used rack 50b is transferred from the tray feeder 35F (roller conveyor 45) to the transport robot 7B (first conveyor 12A).
 使用済ラック50bの受け渡しが完了すると、搬送ロボット7Bは、図16(c)に示すように、Y1方向に移動して位置決め状態を解除し、その後、X2方向に移動する。そして、第2コンベア12Bが筐体42のラック出入口421に対向する位置に到達すると一旦停止し、そのままY2方向に移動する。これにより搬送ロボット7Bが筐体42に対して位置決めされる。すなわち、第2ロボット側位置決め部16Bがフィーダ側位置決め部46に当接することにより、図16(d)に示すように、ラック出入口421を介して第2コンベア12Bとトレイ収納部40Aの前記ローラコンベア45とがY方向に並んだ状態に、搬送ロボット7Bが位置決めされる。そしてこの状態で、搬送ロボット7B(第2コンベア12B)からトレイフィーダ35F(ローラコンベア45)へ補給用ラック50aが受け渡される。 When the delivery of the used rack 50b is completed, the transport robot 7B moves in the Y1 direction to release the positioning state, and then moves in the X2 direction, as shown in FIG. 16(c). Then, when the second conveyor 12B reaches a position facing the rack doorway 421 of the housing 42, it temporarily stops and moves in the Y2 direction as it is. Thereby, the transport robot 7B is positioned with respect to the housing 42 . That is, when the second robot-side positioning portion 16B abuts on the feeder-side positioning portion 46, as shown in FIG. 45 are aligned in the Y direction, the transport robot 7B is positioned. In this state, the supply rack 50a is transferred from the transport robot 7B (second conveyor 12B) to the tray feeder 35F (roller conveyor 45).
 補給用ラック50aの受け渡しが完了すると、搬送ロボット7Bは、Y1方向に移動して筐体42に対する位置決め状態を解除し、その後、X2方向に走行することにより、生産ラインPLに沿って走行する。 When the transfer of the supply rack 50a is completed, the transfer robot 7B moves in the Y1 direction to release the positioning state with respect to the housing 42, and then travels in the X2 direction to travel along the production line PL.
 以上のように、第3実施形態の搬送ロボット7Bでは、第1コンベア12A及び第2コンベア12Bが搬送ロボット7Bの前後方向に互いに横並びに配置されている。この搬送ロボット7Bによれば、X方向に走行しながら位置決め時にY方向に移動するだけで、使用済ラック50b及び補給用ラック50aの受け渡しを行うことが可能となる。つまり、第1実施形態のような、搬送ロボット7の全体を旋回させる動作が不要となる。従って、その分、第3実施液体の搬送ロボット7Bによれば、トレイフィーダ35Fに対する部品補給作業の効率化を図ることができる。 As described above, in the transport robot 7B of the third embodiment, the first conveyor 12A and the second conveyor 12B are arranged side by side in the front-rear direction of the transport robot 7B. According to this transport robot 7B, it is possible to transfer the used rack 50b and the supply rack 50a only by moving in the Y direction at the time of positioning while traveling in the X direction. In other words, the operation of turning the entire transport robot 7 as in the first embodiment is not required. Therefore, according to the transfer robot 7B for the third embodiment liquid, the efficiency of the parts replenishment work for the tray feeder 35F can be improved accordingly.
 また、この搬送ロボット7Bによれば、常にその長手方向がX方向と平行となるようにトレイフィーダ35Fに対して配置される。そのため、ラック50の受け渡し作業中、長手方向がX方向と直交するように(Y方向となるように)配置する必要がある第1、第2実施形態の搬送ロボット7、7Aと比較すると、トレイフィーダ35FのY1側に要求されるスペースが少ない。そのため、第3実施形態の搬送ロボット7Bは、複数の生産ラインPLが比較的狭い間隔で隣接して設けられるような場合に都合がよい構成と言える。 Also, according to this transport robot 7B, it is arranged with respect to the tray feeder 35F so that its longitudinal direction is always parallel to the X direction. Therefore, compared with the transport robots 7 and 7A of the first and second embodiments, which need to be arranged so that the longitudinal direction is orthogonal to the X direction (the Y direction) during the transfer operation of the rack 50, the tray Less space is required on the Y1 side of feeder 35F. Therefore, it can be said that the transport robot 7B of the third embodiment has a convenient configuration when a plurality of production lines PL are provided adjacent to each other at relatively narrow intervals.
 なお、図15に示す搬送ロボット7Bでは、車体10の一方側の側面(図15では上側の側面)にのみ、ロボット側位置決め部16A、16Bが設けられているが、他方側の側面(図15の下側の側面)についても、同様のロボット側位置決め部16A、16Bが設けられていてもよい。この構成によれば、搬送ロボット7Bの進行方向に対してして左右何れの側にトレイフィーダ35Fが配置されている場合であっても、既述したようなラック50の搬送動作を行うことが可能となる。 In the transfer robot 7B shown in FIG. 15, the robot- side positioning portions 16A and 16B are provided only on one side surface (upper side surface in FIG. 15) of the vehicle body 10. Similar robot- side positioning portions 16A and 16B may also be provided on the lower side surface of the . According to this configuration, even when the tray feeder 35F is arranged on either the left or the right side with respect to the traveling direction of the transport robot 7B, the above-described transport operation of the rack 50 can be performed. It becomes possible.
 [変形例]
 以上説明した搬送ロボット7、7A,7Bや、これらを備える部品実装システム100は、本発明に係る搬送ロボット及び部品実装システムの好ましい実施形態の一例であって、これらの具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、以下のような構成も本発明に属する。
[Modification]
The transport robots 7, 7A, and 7B described above and the component mounting system 100 including these are examples of preferred embodiments of the transport robot and the component mounting system according to the present invention, and their specific configurations are the same as those of the present invention. Modifications can be made as appropriate without departing from the scope of the invention. For example, the following configuration also belongs to the present invention.
 (1)実施形態の部品実装システム100では、トレイフィーダ35Fに対する補給用ラック50aと使用済ラック50bとの交換を1台の搬送ロボット7(7A、7B)が行っているが、異なる搬送ロボット7が行う構成でもよい。すなわち、運用上、ラック回収専用の搬送ロボット7と、ラック供給専用の搬送ロボット7を設けてもよい。この場合には、例えば、ラック回収専用の搬送ロボット7は、生産ラインPLを走行しながら2台の部品実装装置3(トレイフィーダ35F)から各々第1コンベア12A及び第2コンベア12Bに使用済ラック50bを受け取る。一方、ラック供給専用の搬送ロボット7は、第1コンベア12A及び第2コンベア12Bに各々補給用ラック50aを搭載した状態で、回収専用の搬送ロボット7の後を走行し、回収専用の搬送ロボット7により使用済ラック50bが回収されたトレイフィーダ35Fに対して補給用ラック50aを供給する。 (1) In the component mounting system 100 of the embodiment, one transport robot 7 (7A, 7B) exchanges the supply rack 50a and the used rack 50b for the tray feeder 35F. may be configured by That is, in terms of operation, the transport robot 7 dedicated to collecting racks and the transport robot 7 dedicated to supplying racks may be provided. In this case, for example, the transport robot 7 dedicated to collecting racks moves used racks from two component mounting apparatuses 3 (tray feeders 35F) to the first conveyor 12A and the second conveyor 12B while traveling along the production line PL. Receive 50b. On the other hand, the transport robot 7 dedicated to supplying racks runs behind the transport robot 7 dedicated to collection while the first conveyor 12A and the second conveyor 12B are loaded with the supply racks 50a. supplies the supply rack 50a to the tray feeder 35F from which the used rack 50b has been recovered.
 (2)第1実施形態に係る搬送ロボット7は、2つのローラコンベア(第1コンベア12A及び第2コンベア12B)を備えているが、ローラコンベアの数は1つであってもよい。この場合には、トレイフィーダ35Fに対して、補給用ラック50aの供給と使用済ラック50bの回収とを異なる搬送ロボット7が行うようにすればよい。 (2) The transport robot 7 according to the first embodiment includes two roller conveyors (first conveyor 12A and second conveyor 12B), but the number of roller conveyors may be one. In this case, different transport robots 7 may supply the supply rack 50a and collect the used rack 50b to the tray feeder 35F.
 (3)実施形態では、搬送ロボット7、7A,7Bは、本発明の「受け渡し部」としてローラコンベア(12A、12B)を備えている。しかし、ラック50を水平方向に移動させることにより、トレイフィーダ35F(ローラコンベア45)との間でラック50の受け渡しを行うことが可能であれば、「受け渡し部」は、ローラコンベアには限定されない。例えば、転動可能な複数のボール(球体)を備えたボールコンベアや、回転可能なドーナッツ状の複数のホイール(回転体)を備えたホイールコンベアであってもよい。この場合、ボールやホイールを回転駆動することで、ラック50に推力を与えることができる。また、「受け渡し部」は、ローラ、ボール及びホイールを適宜組合せて構成されるコンベアであってもよい。 (3) In the embodiment, the transport robots 7, 7A, 7B are provided with roller conveyors (12A, 12B) as the "transfer section" of the present invention. However, if the rack 50 can be transferred to and from the tray feeder 35F (roller conveyor 45) by moving the rack 50 in the horizontal direction, the "transfer section" is not limited to the roller conveyor. . For example, it may be a ball conveyor provided with a plurality of rollable balls (spheres) or a wheel conveyor provided with a plurality of rotatable donut-shaped wheels (rotating bodies). In this case, thrust can be applied to the rack 50 by rotationally driving the ball or wheel. Also, the "delivery unit" may be a conveyor configured by appropriately combining rollers, balls, and wheels.
 (4)実施形態の第1コンベア12A及び第2コンベア12Bでは、複数のローラ15のうち、一乃至複数のローラ15が駆動ローラとされ、当該駆動ローラの回転によりラック50を移動させる。つまり、駆動ローラの回転によりラック50に推力が付与される。しかし、複数のローラ15は全て従動ローラ(フリーローラ)とされ、ラック50に推力を付与するための機構(推力付与機構)が別に設けられることによって、本発明の「受け渡し部」が構成されていてもよい。例えば、モータやエアシリンダの作動によりラック50を押圧するような推力付与機構を設けるようにしてもよい。上記ボールコンベアやホイールコンベアが適用される場合も同じである。 (4) In the first conveyor 12A and the second conveyor 12B of the embodiment, one or more rollers 15 among the plurality of rollers 15 are driving rollers, and the rack 50 is moved by the rotation of the driving rollers. That is, thrust is applied to the rack 50 by the rotation of the drive roller. However, the plurality of rollers 15 are all driven rollers (free rollers), and a mechanism (thrust applying mechanism) for applying a thrust to the rack 50 is separately provided, thereby forming the "transfer section" of the present invention. may For example, a thrust applying mechanism that presses the rack 50 by operating a motor or an air cylinder may be provided. The same applies when the above ball conveyor or wheel conveyor is applied.
 (5)実施形態のトレイフィーダ35Fは、本発明の「ラック支持部」としてローラコンベア45を備えているが、ラック50を水平方向に出し入れ可能に支持できれば、「ラック支持部」は、ローラコンベア45には限定されない。既述のボールコンベアやホイールコンベアであってもよい。また、ローラ、ボール及びホイールを適宜組合せて構成されるコンベアであってもよい。 (5) The tray feeder 35F of the embodiment includes a roller conveyor 45 as the "rack support" of the present invention. It is not limited to 45. It may be a ball conveyor or a wheel conveyor as described above. Alternatively, the conveyor may be configured by appropriately combining rollers, balls, and wheels.
 (6)実施形態のトレイフィーダ35Fでは、ローラコンベア45の複数のローラ451のうち、一乃至複数のローラ451が駆動ローラとされ、当該駆動ローラの回転によりラック50を移動させる。しかし、複数のローラ451は全て従動ローラ(フリーローラ)とされ、ラック50に推力を付与するための別の機構が設けられていてもよい。上記ボールコンベアやホイールコンベアが適用される場合も同じである。 (6) In the tray feeder 35F of the embodiment, one or more rollers 451 among the plurality of rollers 451 of the roller conveyor 45 are driving rollers, and the rack 50 is moved by the rotation of the driving rollers. However, all of the plurality of rollers 451 may be driven rollers (free rollers), and another mechanism for applying thrust to the rack 50 may be provided. The same applies when the above ball conveyor or wheel conveyor is applied.
 以上説明した実施形態について本発明をまとめると以下の通りである。 The present invention is summarized as follows for the embodiments described above.
 本発明の一局面に係る搬送ロボットは、複数のトレイが収納されたラックを有する部品供給部を備え、前記トレイに収容された部品を取り出して基板に実装する部品実装装置の前記部品供給部(トレイフィーダ)に対して、前記ラックの受け渡しを行うことが可能な自走式の搬送ロボットであって、前記部品供給部は、前記ラックを水平方向に出し入れ可能に支持するラック支持部を備えており、当該搬送ロボットは、床面に沿って走行する、走行輪を備えた走行部と、前記ラックを支持することが可能なように前記走行部に設けられ、かつ前記ラックを水平方向に移動させることにより、前記ラック支持部との間で前記ラックの受け渡しを行う受け渡し部とを備えている。 A transport robot according to one aspect of the present invention includes a component supply unit having a rack accommodating a plurality of trays, and the component supply unit ( A self-propelled transport robot capable of transferring the rack to and from a tray feeder, wherein the component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction. The transport robot includes a traveling section equipped with traveling wheels that travels along the floor surface, and a traveling section that is provided in the traveling section so as to support the rack and moves the rack in the horizontal direction. and a transfer section that transfers the rack to and from the rack support section by moving the rack.
 この搬送ロボットによれば、ラックを支持して自走するとともに、部品供給部(トレイフィーダ)との間で当該ラックの受け渡しを行うことが可能となる。そのため、当該部品供給部に対する部品補給作業の自動化に寄与し得る。特に、部品供給部にて対してラック単位で部品補給を行うことが可能なため、上記部品供給部に対する部品補給作業の効率化が図られる。 According to this transport robot, it is possible to support the rack and run by itself, and to transfer the rack to and from the component supply unit (tray feeder). Therefore, it can contribute to the automation of the parts supply work for the parts supply unit. In particular, since it is possible to supply parts to the parts supplying section on a rack-by-rack basis, it is possible to improve the efficiency of the parts supplying operation to the parts supplying section.
 上記の搬送ロボットにおいて、前記受け渡し部は、例えば、前記ラックの受け渡しの際に当該ラックに推力を付与することが可能な少なくとも一つの駆動ローラを含む、複数のローラを備えたローラコンベアからなる。 In the transfer robot described above, the transfer section is, for example, a roller conveyor provided with a plurality of rollers, including at least one drive roller capable of applying thrust to the rack when the rack is transferred.
 この搬送ロボットの構成によれば、ローラ上にラックを支持した状態で、駆動ローラの回転により円滑にラックを移動させることができる。そのため、搬送ロボットと部品供給部との間のラックの受け渡しの円滑化に寄与する。 According to the configuration of this transport robot, the rack can be smoothly moved by the rotation of the drive roller while the rack is supported on the rollers. Therefore, it contributes to smooth delivery of racks between the transport robot and the component supply unit.
 上記の搬送ロボットは、前記部品供給部に対して当該搬送ロボットを位置決めする位置決め部をさらに備えているのが好適である。 It is preferable that the transport robot further includes a positioning unit that positions the transport robot with respect to the component supply unit.
 この構成によれば、部品供給部に対する搬送ロボットの位置ずれが抑制ないし防止される。そのため、部品供給部と搬送ロボットとの間のラックの受け渡しの安定性や確実性が向上する。 According to this configuration, misalignment of the transport robot with respect to the component supply unit is suppressed or prevented. Therefore, the stability and reliability of delivery of racks between the component supply unit and the transport robot are improved.
 上記の搬送ロボットにおいて、前記受け渡し部は、前記ラックの受け渡しの際に、当該ラックを案内するガイド部を備えているのが好適である。 In the transport robot described above, it is preferable that the transfer section includes a guide section that guides the rack when the rack is transferred.
 この構成によれば、ラック受け渡しの際のラックの位置ずれを抑制ないし防止して、ラックの受け渡しをより円滑に行うことが可能となる。 According to this configuration, it is possible to suppress or prevent the positional deviation of the rack during rack delivery, and to perform the delivery of the rack more smoothly.
 上記の搬送ロボットにおいて、前記受け渡し部は、各々が前記ラック支持部との間で前記ラックの受け渡しが可能な第1受け渡し部及び第2受け渡し部を含むのが好適である。 In the transport robot described above, it is preferable that the transfer section includes a first transfer section and a second transfer section, each of which is capable of transferring the rack to and from the rack support section.
 この構成によれば、部品供給部に対する部品補給作業をより効率的に行うことが可能となる。例えば、第1受け渡し部にのみ補給用のラックを支持して走行し、まず、部品供給部から第2受け渡し部に使用済みのラックを受け取り、その後、補給用のラックを第1受け渡し部から部品供給部に受け渡すことができる。この場合には、1台の搬送ロボットで、使用済みラックの回収作業と補給用ラックの受け渡し作業を部品供給部に対して連続して行うことが可能となる。 According to this configuration, it is possible to more efficiently perform the parts replenishment work for the parts supply unit. For example, a supply rack is supported only at the first delivery section and travels, first receiving used racks from the parts supply section to the second delivery section, and then the supply rack is transferred from the first delivery section to the second delivery section. It can be handed over to the supply department. In this case, it is possible to continuously perform the work of collecting the used racks and the work of delivering the replenishment racks to the parts supply section with a single transport robot.
 この場合、搬送ロボットは、前記第1受け渡し部及び前記第2受け渡し部を支持し、かつ前記走行部に対して旋回可能なテーブル部を備え、前記第1受け渡し部及び前記第2受け渡し部は、前記ラックを移動させる方向と同方向に、互いに背中合わせに一列に並んだ状態で前記テーブル上に配置されている構成でもよい。 In this case, the transport robot includes a table section that supports the first transfer section and the second transfer section and is rotatable with respect to the traveling section, and the first transfer section and the second transfer section are: The racks may be arranged on the table in a row, back to back, in the same direction as the direction in which the racks are moved.
 この構成によれば、部品供給部に対向する位置に搬送ロボットを配置した状態で、テーブルのみを旋回させることで、第1受け渡し部が部品供給部に対向する状態と、第2受け渡し部が部品供給部に対向する状態とを切り替えることが可能となる。そのため、既述のような、使用済みラックの回収作業と補給用ラックの受け渡し作業を、走行部を停止させた状態で速やかに行うことが可能となる。 According to this configuration, by rotating only the table in a state in which the transport robot is arranged at a position facing the component supply unit, the state in which the first transfer unit faces the component supply unit and the state in which the second transfer unit faces the component supply unit. It is possible to switch between the state of facing the supply unit and the state of facing the supply unit. Therefore, it is possible to quickly perform the work of collecting the used racks and the work of delivering the replenishment racks as described above, while the traveling portion is stopped.
 なお、前記送ロボットにおいては、前記第1受け渡し部及び前記第2受け渡し部は、前記ラックを移動させる方向と直交する方向に互いに横並びに配置されていてもよい。 In addition, in the transfer robot, the first transfer section and the second transfer section may be arranged side by side in a direction perpendicular to the direction in which the rack is moved.
 この構成によれば、前記第1受け渡し部と前記第2受け渡し部との並び方向に搬送ロボットを移動させながら、既述のような、使用済みラックの回収作業と補給用ラックの受け渡し作業を行うことが可能となる。 According to this configuration, while the transfer robot is moved in the direction in which the first transfer section and the second transfer section are aligned, the used rack collection work and the replenishment rack transfer work are performed as described above. becomes possible.
 上記の搬送ロボットにおいて、前記走行輪は、メカナムホイール及び/又はオムニホイールからなるのが好適である。 In the transport robot described above, the running wheels are preferably mecanum wheels and/or omni wheels.
 この構成によれば、搬送ロボットの走行方向の自由度が高くなる。そのため、部品供給部に対する搬送ロボットの位置決め等を、必要最小限の移動で達成することが可能となる。 According to this configuration, the degree of freedom in the traveling direction of the transport robot is increased. Therefore, it becomes possible to achieve positioning of the transport robot with respect to the component supply section, etc., with the minimum required movement.
 一方、本発明に係る部品実装システムは、複数のトレイが収納されたラックを有する部品供給部を備え、前記トレイに収容された部品を取り出して基板に実装する部品実装装置と、前記部品供給部に対して、前記ラックの受け渡しを行うことが可能な自走式の搬送ロボットと、を含み、前記部品供給部は、前記ラックを水平方向に出し入れ可能に支持するラック支持部を備えており、前記搬送ロボットは、床面に沿って走行する、走行輪を備えた走行部と、前記ラックを支持することが可能なように前記走行部に設けられ、かつ前記ラックを水平方向に移動させることにより、前記ラック支持部との間で前記ラックの受け渡しを行う受け渡し部とを備えている。 On the other hand, a component mounting system according to the present invention comprises a component supply section having a rack accommodating a plurality of trays, a component mounting apparatus for picking up components accommodated in the trays and mounting them on a board, and the component supply section. and a self-propelled transport robot capable of delivering the rack, wherein the component supply unit includes a rack support unit that supports the rack so that it can be taken in and out in a horizontal direction, The transport robot includes a traveling part provided with traveling wheels that travels along the floor surface, and a traveling part provided on the traveling part so as to be capable of supporting the rack and moving the rack in a horizontal direction. and a transfer section for transferring the rack to and from the rack support section.
 この部品実装ステムによれば、既述の搬送ロボットを備えているので、部品供給部に対する部品補給作業の自動化を図りながら、効率良く部品実装基板を生産することが可能となる。 According to this component mounting system, since it is equipped with the above-mentioned transfer robot, it is possible to efficiently produce component mounting boards while automating the component replenishment work for the component supply unit.

Claims (9)

  1.  複数のトレイが収納されたラックを有する部品供給部を備え、前記トレイに収容された部品を取り出して基板に実装する部品実装装置の前記部品供給部に対して、前記ラックの受け渡しを行うことが可能な自走式の搬送ロボットであって、
     前記部品供給部は、前記ラックを水平方向に出し入れ可能に支持するラック支持部を備えており、
     当該搬送ロボットは、
      床面に沿って走行する、走行輪を備えた走行部と、
      前記ラックを支持することが可能なように前記走行部に設けられ、かつ前記ラックを水平方向に移動させることにより、前記ラック支持部との間で前記ラックの受け渡しを行う受け渡し部とを備えている、ことを特徴とする搬送ロボット。
    A component mounting apparatus having a component supply unit having a rack in which a plurality of trays are accommodated, and delivering the rack to the component supply unit of a component mounting apparatus that takes out the components accommodated in the trays and mounts them on a board. A self-propelled transfer robot capable of
    The component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction,
    The transport robot is
    a running part having running wheels that runs along the floor surface;
    a transfer section provided in the traveling section so as to support the rack, and transferring the rack to and from the rack support section by moving the rack in a horizontal direction; A transport robot characterized by:
  2.  請求項1に記載の搬送ロボットにおいて、
     前記受け渡し部は、前記ラックの受け渡しの際に当該ラックに推力を付与することが可能な少なくとも一つの駆動ローラを含む、複数のローラを備えたローラコンベアからなる、ことを特徴とする搬送ロボット。
    The transport robot according to claim 1,
    The transport robot, wherein the transfer unit comprises a roller conveyor provided with a plurality of rollers, including at least one drive roller capable of applying a thrust force to the rack when the rack is transferred.
  3.  請求項1又は2に記載の搬送ロボットにおいて、
     前記部品供給部に対して当該搬送ロボットを位置決めする位置決め部をさらに備えている、ことを特徴とする搬送ロボット。
    The transport robot according to claim 1 or 2,
    A transport robot, further comprising a positioning unit that positions the transport robot with respect to the component supply unit.
  4.  請求項1乃至3の何れか一項に記載の搬送ロボットにおいて、
     前記受け渡し部は、前記ラックの受け渡しの際に、当該ラックを案内するガイド部を備えている、ことを特徴とする搬送ロボット。
    The transport robot according to any one of claims 1 to 3,
    The transport robot, wherein the transfer section includes a guide section for guiding the rack when the rack is transferred.
  5.  請求項1乃至4の何れか一項に記載の搬送ロボットにおいて、
     前記受け渡し部は、各々が前記ラック支持部との間で前記ラックの受け渡しが可能な第1受け渡し部及び第2受け渡し部を含む、ことを特徴とする搬送ロボット。
    The transport robot according to any one of claims 1 to 4,
    The transport robot, wherein the transfer section includes a first transfer section and a second transfer section, each of which is capable of transferring the rack to and from the rack support section.
  6.  請求項5に記載の搬送ロボットにおいて、
     前記第1受け渡し部及び前記第2受け渡し部を支持し、かつ前記走行部に対して旋回可能なテーブル部を備え、
     前記第1受け渡し部及び前記第2受け渡し部は、前記ラックを移動させる方向と同方向に、互いに背中合わせに一列に並んだ状態で前記テーブル上に配置されている、ことを特徴とする搬送ロボット。
    In the transport robot according to claim 5,
    a table portion that supports the first transfer portion and the second transfer portion and is turnable with respect to the travel portion;
    The transfer robot is characterized in that the first transfer section and the second transfer section are arranged on the table in a row back-to-back in the same direction as the direction in which the rack is moved.
  7.  請求項5に記載の搬送ロボットにおいて、
     前記第1受け渡し部及び前記第2受け渡し部は、前記ラックを移動させる方向と直交する方向に互いに横並びに配置されている、ことを特徴とする搬送ロボット。
    In the transport robot according to claim 5,
    The transport robot, wherein the first transfer section and the second transfer section are arranged side by side in a direction orthogonal to a direction in which the rack is moved.
  8.  請求項1乃至7の何れか一項に記載の搬送ロボットにおいて、
     前記走行輪は、メカナムホイール及び/又はオムニホイールからなる、ことを特徴とする搬送ロボット。
    The transport robot according to any one of claims 1 to 7,
    The transport robot, wherein the running wheels are composed of mecanum wheels and/or omni wheels.
  9.  複数のトレイが収納されたラックを有する部品供給部を備え、前記トレイに収容された部品を取り出して基板に実装する部品実装装置と、
     前記部品供給部に対して、前記ラックの受け渡しを行うことが可能な自走式の搬送ロボットと、を含み、
     前記部品供給部は、前記ラックを水平方向に出し入れ可能に支持するラック支持部を備えており、
     前記搬送ロボットは、床面に沿って走行する、走行輪を備えた走行部と、前記ラックを支持することが可能なように前記走行部に設けられ、かつ前記ラックを水平方向に移動させることにより、前記ラック支持部との間で前記ラックの受け渡しを行う受け渡し部とを備えている、ことを特徴とする部品実装システム。
    a component mounting apparatus comprising a component supply section having a rack containing a plurality of trays, and for taking out components contained in the trays and mounting them on a substrate;
    a self-propelled transport robot capable of delivering the rack to the component supply unit;
    The component supply unit includes a rack support unit that supports the rack so that the rack can be taken in and out in a horizontal direction,
    The transport robot includes a traveling part provided with traveling wheels that travels along the floor surface, and a traveling part provided on the traveling part so as to be capable of supporting the rack and moving the rack in a horizontal direction. and a delivery section for delivering the rack to and from the rack support section.
PCT/JP2021/045670 2021-12-10 2021-12-10 Conveyance robot and component mounting system WO2023105794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045670 WO2023105794A1 (en) 2021-12-10 2021-12-10 Conveyance robot and component mounting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045670 WO2023105794A1 (en) 2021-12-10 2021-12-10 Conveyance robot and component mounting system

Publications (1)

Publication Number Publication Date
WO2023105794A1 true WO2023105794A1 (en) 2023-06-15

Family

ID=86729992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045670 WO2023105794A1 (en) 2021-12-10 2021-12-10 Conveyance robot and component mounting system

Country Status (1)

Country Link
WO (1) WO2023105794A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558403A (en) * 1991-08-30 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd Automated warehouse equipment
JP2009001131A (en) * 2007-06-21 2009-01-08 Tcm Corp Loading space device of carrying truck
JP2013003855A (en) * 2011-06-16 2013-01-07 Murata Mach Ltd Conveyance vehicle system
JP2019029499A (en) * 2017-07-28 2019-02-21 ヤマハ発動機株式会社 Component supply device and component mounting device
JP2019156596A (en) * 2018-03-14 2019-09-19 株式会社リコー Traveling body, conveyance system, and traveling body controlling method
JP2019189463A (en) * 2019-08-08 2019-10-31 株式会社日立製作所 Receiving and shipping support system, receiving and shipping support method, and unmanned carrier
WO2021144866A1 (en) * 2020-01-14 2021-07-22 株式会社Fuji Article transport system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558403A (en) * 1991-08-30 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd Automated warehouse equipment
JP2009001131A (en) * 2007-06-21 2009-01-08 Tcm Corp Loading space device of carrying truck
JP2013003855A (en) * 2011-06-16 2013-01-07 Murata Mach Ltd Conveyance vehicle system
JP2019029499A (en) * 2017-07-28 2019-02-21 ヤマハ発動機株式会社 Component supply device and component mounting device
JP2019156596A (en) * 2018-03-14 2019-09-19 株式会社リコー Traveling body, conveyance system, and traveling body controlling method
JP2019189463A (en) * 2019-08-08 2019-10-31 株式会社日立製作所 Receiving and shipping support system, receiving and shipping support method, and unmanned carrier
WO2021144866A1 (en) * 2020-01-14 2021-07-22 株式会社Fuji Article transport system

Similar Documents

Publication Publication Date Title
JP4523217B2 (en) Plate member conveying and holding apparatus and method, and component mounting apparatus
KR100276523B1 (en) Component mounting apparatus
CN106068074A (en) Base board delivery device and electronic component mounting apparatus
CN103298326B (en) Electronic component supply device and electronic component installation apparatus
JP2007287877A (en) Transfer system
JP2010089835A (en) Storing container for substrate
WO2023105794A1 (en) Conveyance robot and component mounting system
CN218143671U (en) Cargo handling equipment and double-box robot
JP7130826B2 (en) loading assembly
JP5548947B2 (en) Electronic component mounting machine and electronic component mounting method
JP2023029563A (en) Tray-type component feeding device
CN115724109A (en) Box taking device, carrying robot, container carrying method and storage logistics system
JP7351008B2 (en) Board manufacturing system, autonomous vehicle and board manufacturing method
JP4322863B2 (en) Parts supply device
JP3660470B2 (en) Component supply device for electronic component mounting device
WO2023100298A1 (en) Work robot and component mounting system
JP2007182277A (en) Stacker crane and article storing facility
JP4667113B2 (en) Electronic component mounting device
JP4194857B2 (en) Electronic component mounting device
CN220702557U (en) PCB bores target drone loading attachment
WO2021240638A1 (en) Substrate manufacturing system, autonomous travel cart, and substrate manufacturing method
KR100477375B1 (en) Flat reciprocating parking device
JP7008835B2 (en) Parts supply equipment
CN109436790B (en) Electricity core feeding system
CN220519622U (en) Feed equipment and rigging machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566065

Country of ref document: JP

Kind code of ref document: A