WO2023105585A1 - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
WO2023105585A1
WO2023105585A1 PCT/JP2021/044757 JP2021044757W WO2023105585A1 WO 2023105585 A1 WO2023105585 A1 WO 2023105585A1 JP 2021044757 W JP2021044757 W JP 2021044757W WO 2023105585 A1 WO2023105585 A1 WO 2023105585A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
protective layer
optical waveguide
layer
waveguide
Prior art date
Application number
PCT/JP2021/044757
Other languages
French (fr)
Japanese (ja)
Inventor
泰彰 橋詰
義弘 小木曽
常祐 尾崎
光映 石川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/044757 priority Critical patent/WO2023105585A1/en
Publication of WO2023105585A1 publication Critical patent/WO2023105585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells

Definitions

  • the present invention relates to an optical modulator.
  • the multilevel optical modulator incorporates in parallel and in multiple stages optical modulators (MZMs) configured by Mach-Zehnder interference type optical waveguides (MZM optical waveguides) and capable of zero-chirp driving.
  • MZMs optical modulators
  • the MZ optical waveguide is configured to split an optical input into two arm waveguides, change the phase, combine the waves, and output interference.
  • the multilevel optical modulator can add independent signals to the amplitude and phase of light.
  • the IQ optical modulator is a typical polarization multiplexing optical modulator that is currently spreading to communication networks.
  • the IQ optical modulator has a so-called nested structure in which each arm of a parent MZM is composed of child MZMs.
  • the MZM (Quad-parallel MZM) is an optical modulator having two sub-MZMs arranged in parallel corresponding to each of the X and Y polarization channels, for a total of four sub-MZMs. Two arms of each child MZM are provided with traveling-wave electrodes to which RF-modulated electrical signals for modulating the optical signal propagating in the optical waveguide are input.
  • each polarization channel one such pair of child MZMs corresponds to the I channel and the other to the Q channel.
  • an electro-optical effect is generated by inputting an RF modulated electric signal to one end of a modulation electrode provided along an arm optical waveguide of the child MZM. It modulates the phases of two optical signals propagating in the optical waveguide.
  • Such configurations are known, for example, from US Pat.
  • FIG. 1 is a top view illustrating a known polarization multiplexed IQ optical modulator 100.
  • FIG. A polarization multiplexing IQ optical modulator 100 is formed on a semiconductor substrate 21 (FIG. 2).
  • the polarization multiplexing IQ optical modulator 100 has an MZM 101X for the X polarization channel and an MZM 101Y for the Y polarization channel.
  • MZM 101X has MZM 101XI for I channel and MZM 101XQ for Q channel.
  • the MZM 101Y has an I-channel MZM 101YI and a Q-channel MZM 101YQ.
  • An input optical waveguide 102 is formed on one side of a cleaved semiconductor substrate (hereinafter referred to as a “semiconductor chip”), passes between MZMs 101X and 101Y, and is connected to an optical demultiplexer 103 .
  • the output of optical demultiplexer 103 is connected to optical demultiplexers 104X and 104Y.
  • the output of optical demultiplexer 104X is connected to MZMs 101XI and 101XQ, and the output of optical demultiplexer 104Y is connected to MZMs 101YI and 101YQ.
  • the MZM101X and MZM101Y have the same configuration, and the MZM101XI and MZM101XQ, and the MZM101YI and MZM101YQ have the same configuration formed line-symmetrically with each other. Therefore, only the MZM101XI will be described below.
  • the MZM 101XI for the X polarization channel is provided together with the phase adjuster 106XI between the optical demultiplexer 104X and the optical multiplexer 105X that multiplexes the optical signals demultiplexed by the optical demultiplexer 104X. .
  • the MZM 101XI also includes MZ optical waveguides 109XIa, 109XIb, 111XIa, 111XIb, phase adjusters 110XIa, 110XIb, and traveling wave electrodes 112 between the optical demultiplexer 107XI and the optical multiplexer 108XI.
  • the traveling wave electrode 112 is connected to an RF signal line (not shown) to receive an RF modulation signal.
  • FIG. 2 is a cross-sectional view of the MZ optical waveguide 109XIa along arrows A and A' in FIG.
  • the z direction indicated by the x, y, and z coordinates shown in FIG. 2 is the height h direction
  • the x direction is the width W direction.
  • the side with the larger z-axis coordinate value is defined as “above” or “above” the relatively smaller side.
  • the IQ optical modulator 100 includes a semiconductor substrate 21, lower clad layers 22 and 23 formed on the upper surface of the semiconductor substrate 21, a core layer 24 formed on the upper surface of the lower clad layer 23, and formed on the upper surface of the core layer 24. It has upper clad layers 25 and 26 .
  • the oxide film 27 covers the side surfaces of the lower clad layers 22 , 23 , the core layer 24 , the upper clad layers 25 , 26 and the upper surface of the upper clad layer 26 .
  • a benzocyclobutene (BCB) layer 28 is formed on the oxide film 27 .
  • a configuration in which the BCB layer 28 covers the optical waveguide is described in Non-Patent Document 1, for example.
  • the semiconductor substrate 21 is a SI (Semi-Insulating)-InP substrate
  • the lower clad layer 22 is an n-type InP lower clad layer
  • the lower clad layer 23 is a non-doped InP lower clad layer
  • the core layer 24 is a non-doped multiple quantum A multi-quantum well (MQW) core layer
  • upper clad layers 25 and 26 are non-doped InP upper clad layers.
  • both the upper cladding layers 25 and 26 are non-doped InP upper cladding layers. be layered.
  • Such a structure is formed by laminating the lower clad layers 22 and 23, the core layer 24, the upper clad layer 25, and the p-type InP upper clad layer on the semiconductor substrate 21 and patterning them by exposure and etching. In patterning, the p-type InP upper cladding layer is removed leaving only the areas where phase modulation is to be applied. The removed p-type InP upper cladding layer is replaced with the non-doped InP upper cladding layer 26 by regrowing the non-doped InP cladding layer in the removed portion.
  • the configuration shown in FIG. 2 forms a high mesa structure above the lower clad layer 22 and realizes an optical waveguide structure that confines light in the xy plane.
  • the high mesa structure has a width W of about 2 ⁇ m and a height of about h4 ⁇ m.
  • the oxide film 27 serves as a protective layer for protecting the high mesa structure.
  • the BCB layer 28 is a protective layer intended for planarization and protection of the optical waveguide.
  • the film thickness of the BCB layer 28 is about 0.3 ⁇ m on the upper surface of the high mesa structure.
  • An electrode for applying an electric field is formed so as to contact the p-type InP clad layer by partially removing the BCB layer and the SiO2 layer above the p-type InP clad layer.
  • the optical waveguide has a refractive index applied to the light guided in the high mesa structure by covering the high mesa structure with a BCB layer 28 as shown in FIG. is strongly affected by the stress of This is described, for example, in Non-Patent Document 2. That is, BCB has a coefficient of thermal expansion of about 42 ppm/° C., whereas InP has a coefficient of thermal expansion of about 4.5 ppm/° C. It has a thermal expansion coefficient about one order of magnitude larger than that of InP.
  • BCB has a coefficient of thermal expansion of about 42 ppm/° C.
  • InP has a coefficient of thermal expansion of about 4.5 ppm/° C. It has a thermal expansion coefficient about one order of magnitude larger than that of InP.
  • InP In the manufacturing process of the IQ optical modulator 100, inside the high mesa structure made of InP covered with the BCB layer 28, extremely large stress is generated due to the difference in thermal expansion coefficient between InP and BCB.
  • the optical waveguide undergoe
  • BCB is known to be unstable as a material compared to InP, and to bond with the surrounding atmosphere and internal components and deteriorate over a long period of time. Due to the alteration of the BCB, the internal stress of the BCB layer 28 changes, and the equivalent refractive index in the high mesa structure changes over time via the photoelastic effect.
  • the present disclosure has been made in view of the above points, and relates to an optical modulator that relieves the stress applied to the optical waveguide from the protective layer and suppresses changes in the refractive index of the optical waveguide, thereby having stable characteristics.
  • an optical modulator includes an optical waveguide formed on a semiconductor substrate and having an optical waveguide layer in which a lower clad layer, a core layer, and an upper clad layer are laminated in this order; a first optical demultiplexer that demultiplexes an optical signal propagating through an optical waveguide; and a protective layer that covers the optical waveguide and the first optical demultiplexer, wherein the optical waveguide is connected to the first optical demultiplexer.
  • the protective layer in the range including the folded portion has a region thinner than the protective layer overlying the first optical demultiplexer.
  • FIG. 1 is a top view illustrating a known polarization multiplexed IQ optical modulator
  • FIG. 2 is a cross-sectional view of the MZ optical waveguide in FIG. 1
  • FIG. It is a top view for explaining an optical modulator of one embodiment of the present invention.
  • 4 is a diagram for explaining the delay section and the folding section shown in FIG. 3, and is an enlarged view of a part of the MZM
  • FIG. 4 is a cross-sectional view of the MZ optical waveguide in FIG. 3
  • FIG. FIG. 4 is a diagram showing changes in phase difference occurring in the optical modulator of the present embodiment in comparison with changes in phase difference in a known IQ optical modulator;
  • FIG. 3 is a top view for explaining the optical modulator 4 of one embodiment of the invention.
  • 4 is an enlarged view of the protective layer non-formation region Rd shown in FIG. 3
  • FIG. 5 is a cross-sectional view of the incourse portion 409XIa along arrows B and B' in FIG.
  • the top and bottom are determined along the z-axis of the x, y, and z coordinates shown in FIGS. ”.
  • the x-direction is the width direction of the optical modulator, and the y-direction is the length direction.
  • This embodiment will be described with an example in which the optical modulator 4 is a polarization multiplexed IQ optical modulator. However, this embodiment is not limited to such a configuration.
  • This embodiment is a Mach-Zehnder interferometric circuit, a portion where a difference occurs in the length of two arm waveguides (hereinafter also referred to as a “waveguide length difference”) such as a folded portion, and the waveguide length It can be applied to a circuit having a section in the interferometer with a structure in which a portion of one of the two waveguides separates from the other due to the delay in order to cancel (compensate) the difference.
  • the optical modulator 4 is formed on a semiconductor substrate 51 to constitute a semiconductor chip.
  • the optical modulator 4 includes a Mach-Zehnder interferometer (hereinafter referred to as "MZM").
  • the optical modulator 4 has an MZM401X for the X polarization channel and an MZM401Y for the Y polarization channel.
  • MZMs 401X and 401Y have I-channel MZMs 401XI and 401XQ for optical modulation using IQ quadrature modulation.
  • MZM401Y has MZM40YI and 401YQ.
  • a configuration in which an MZM contains further MZMs is also called a "nested structure".
  • the MZMs 401XI, 401XQ, 401YI, and 401YQ are arranged parallel to each other in the x-axis direction indicated by the x, y, and z coordinates in the drawing.
  • the MZMs 401X and 401Y are arranged axisymmetrically, the MZMs 401XI and 401XQ are arranged axisymmetrically, and the MZMs 401YI and 401YQ are arranged axisymmetrically.
  • the optical modulator 4 also has an input optical waveguide 402 and output optical waveguides 416X and 416Y, and receives an optical signal from the input optical waveguide 402 and outputs from the output optical waveguides 416X and 416Y.
  • the MZM401XI is configured to process the optical signal of the I channel of the X polarization channel.
  • the MZM401XQ is configured to process an optical signal of the Q channel of the X polarization channel.
  • the MZM401YI is configured to process an optical signal of the I channel of the Y polarization channel.
  • the MZM401YQ is configured to process an optical signal of the Q channel of the Y polarization channel.
  • the MZM401XI is formed on the upper surface of a semiconductor substrate 51, and has an optical waveguide layer in which lower clad layers 52 and 53, a core layer 54, and upper clad layers 55 and 56 are laminated in this order; An oxide film 57 and a BCB layer 58, which are protective layers covering the optical waveguide, are included.
  • the MZM401XI has an optical demultiplexer 407XI, and the optical waveguides of the MZM401XI include a first optical waveguide and a second optical waveguide for propagating the optical signal demultiplexed by the optical demultiplexer 407XI. Including wave path.
  • the oxide film 57 and the BCB layer 58, which are protective layers, are also formed above the optical demultiplexer 407XI.
  • the first optical waveguide includes incourse portions 409XIa, 411XIa, 412XIa, 413XIa, 414XIa, and 415XIa.
  • the second optical waveguide includes outcourse portions 409XIb, 411XIb, 412XIb, 413XIb, 414XIb, 415XIb.
  • a portion where the distance between the first optical waveguide and the second optical waveguide is different and the optical path length of the second optical waveguide is longer than that of the first optical waveguide is defined as a delay portion Rb.
  • a portion where the interval between the first optical waveguide and the second optical waveguide is constant and the extending direction changes is referred to as a folded portion Ra.
  • the folded portion shown in the present embodiment changes its extending direction by 90 degrees
  • this embodiment is not limited to changing the extending direction of the folded portion by 90 degrees.
  • the extending direction may be changed by .
  • the protective layer in the area including the delay portion Rb and the turn-around portion Ra has a region thinner than the protective layer overlying the optical demultiplexer 407XI.
  • This embodiment will explain an example in which this region is a protective layer non-formation region Rd in which at least a portion of the protective layer is not formed.
  • Such an example corresponds to an example in which at least a portion of the protective layer has a thickness of "0".
  • the above configuration corresponds to the first optical modulation unit of this embodiment, and the optical demultiplexer 407XI corresponds to the first optical demultiplexing section of this embodiment.
  • the IQ optical modulator 4 a high-speed RF modulated signal is input from the -y direction in the drawing, and a driver such as an amplifier is arranged on the -y direction side.
  • a driver such as an amplifier
  • the IQ optical modulator 4 has a structure in which the MZM optical waveguide is folded back from the input side toward the input side, and input and output of optical signals are performed on the y-direction side of the semiconductor chip.
  • the MZM 401XI includes a phase modulator 406XI, an optical multiplexer 408XI, phase modulators 410XIa and 410XIb, and a traveling wave electrode 422.
  • the MZM 401XQ includes a phase modulator 406XQ, an optical demultiplexer 407XQ, an optical multiplexer 408XQ, phase modulators 410XQa and 410XQb, and a traveling wave electrode 422.
  • the MZM waveguide of MZM 401XQ includes a delay section including an incourse section 409XQa and an outcourse section 409XQb, and a folded section including an incourse section 411XQa and an outcourse section 411XQb.
  • the MZM 401YI includes a phase modulator 406YI, an optical demultiplexer 407YI, an optical multiplexer 408YI, phase modulators 410YIa and 410YIb, and a traveling wave electrode 422.
  • the MZM waveguide of MZM 401YI includes a delay portion including an incourse portion 409YIa and an outcourse portion 409YIb, and a folded portion including an incourse portion 411YIa and an outcourse portion 411YIb.
  • the MZM 401YQ includes a phase modulator 406YQ, an optical demultiplexer 407YQ, an optical multiplexer 408YQ, phase modulators 410YQa and 410YQb, and a traveling wave electrode 422.
  • the MZM waveguide of MZM 401YQ includes a delay section including an incourse section 409YQa and an outcourse section 409YQb, and a folded section including an incourse section 411YQa and an outcourse section 411YQb.
  • MZM401XQ, MZM401YI and MZM401YQ each correspond to the first optical modulation unit of this embodiment, like MZM401XI.
  • the MZM401X includes an optical demultiplexer 404X that demultiplexes and inputs an optical signal propagating through the input optical waveguide 402 (one optical waveguide) to each of the MZM401XI and MZM401XQ, and the MZM401XI and MZM401XQ from the MZM401XI and MZM401XQ It includes an optical multiplexer 405X that multiplexes the output optical signals, and an output optical waveguide 416X that outputs the optical signal multiplexed by the optical multiplexer 405X.
  • Such a configuration corresponds to the second optical modulation unit of this embodiment, and the optical demultiplexer 404X corresponds to the second optical demultiplexer.
  • the optical modulator 4 includes MZMs 401X and 401Y, and an optical demultiplexer 403 that demultiplexes and inputs the optical signal before being demultiplexed by the optical demultiplexer 404X to each of the MZMs 401X and 401Y.
  • the optical demultiplexer 403 corresponds to a third optical demultiplexer.
  • the first optical modulator is a single optical modulator
  • the second optical modulator is an IQ optical modulator
  • the optical modulator 4 is a polarization multiplexed IQ optical modulator.
  • the input optical waveguide 402 inputs an optical signal from the y direction toward the -y direction in the semiconductor chip.
  • An optical demultiplexer 403 is provided on the input optical waveguide 402, and optical demultiplexers 404X and 404Y are further formed at two outputs of the optical demultiplexer 403.
  • the MZM 401XI inputs one of the optical signals demultiplexed by the optical demultiplexer 404X.
  • Phase modulator 406XI adjusts the phase of the optical signal input to MZM401XI.
  • the optical demultiplexer 407XI demultiplexes the phase-adjusted optical signal.
  • the phase modulators 410XIa and 410XIb respectively modulate the phases of the demultiplexed optical signals.
  • the in-course portion 409XIa propagates the optical signal phase-modulated by the phase modulator 410XIa
  • the out-course portion 409Ib propagates the optical signal phase-modulated by the phase modulator 410XIb.
  • the in-course portion 411XIa propagates the optical signal that has passed through the in-course portion 409Ia
  • the out-course portion 411XIb propagates the optical signal that has passed through the out-course portion 409Ib.
  • the optical multiplexer 408XI multiplexes the optical signals that have passed through the in-course portion 411XIa and the out-course portion 411XIb, and outputs them toward the output optical waveguide 416X.
  • An optical multiplexer 405X is provided between the optical multiplexer 408XI and the output optical waveguide 416X.
  • the optical multiplexer 405X multiplexes the optical signal output toward the output optical waveguide 416X with the optical signal output from the MZM 401XQ, and outputs the combined optical signal to the output optical waveguide 416X.
  • the MZM optical waveguide of the MZM 401XI includes a delay portion Rb including an in-course portion 409XIa and an out-course portion 409XIb, a straight portion including an in-course portion 412XIa and an out-course portion 412XIb, an in-course portion 413XIa and an out-course portion 412XIa.
  • both the incourse portion 409XIa and the outcourse portion 409XIb extend along the y-axis direction in FIG.
  • the interval between is different.
  • the incourse portion 409XIa moves away from the outcourse portion 409XIb in the -y direction from the y direction, so the interval between the incourse portion 409XIa and the outcourse portion 409XIb is continuously widened. After passing through the peak, this interval narrows because the in course portion 409XIa approaches the out course portion 409XIb.
  • the in-course portion 412XIa and the out-course portion 412XIb extend along the y-axis
  • the in-course portion 414XIa and the out-course portion 414XIb extend along the x-axis
  • the in-course portion 411XIa and the out-course portion 411XIa extend along the x-axis
  • 411XIb extends along the y-axis.
  • the extension direction of the incourse portion 413XIa, the outcourse portion 413XIb, the incourse portion 415XIa, and the outcourse portion 415XIb changes in the tangential direction of the partial circle with a central angle of 90 degrees.
  • the in course portions 412XIa, 413XIa, 414XIa, 415XIa and 411XIa and the out course portions 412XIb, 413XIb, 414XIb, 415XIb and 411XIb are close to each other, and the intervals therebetween are constant.
  • This embodiment differs from a known polarization multiplexing IQ modulator in that the BCB layer in the region (protective layer non-formed region Rd) including the delay portion Rb and the folded portion Ra is eliminated.
  • the formation of the protective layer non-formation region Rd and the effect of forming the protective layer non-formation region Rd will be described below.
  • the IQ optical modulator 4 includes a semiconductor substrate 51, lower clad layers 52 and 53 formed on the upper surface of the semiconductor substrate 51, a core layer 54 formed on the upper surface of the lower clad layer 53, a core layer It has upper clad layers 55 and 56 formed on the upper surface of 54 .
  • the oxide film 57 covers the side surfaces of the lower clad layers 52 and 53 , the core layer 54 , the upper clad layers 55 and 56 and the upper surface of the upper clad layer 56 .
  • the semiconductor substrate 51 is a SI (Semi-Insulating)-InP substrate
  • the lower clad layer 52 is an n-type InP lower clad layer
  • the lower clad layer 53 is a non-doped InP lower clad layer
  • the core layer 54 is a non-doped multiple layer.
  • a quantum well (MQW: Multi-quantum Well) core layer and upper clad layers 55 and 56 are non-doped InP upper clad layers.
  • both of the upper cladding layers 55 and 56 are non-doped InP upper cladding layers, as in the known configuration, but the RF modulated electric signal is Only the upper clad layer at the portion where the phase modulation is performed by the p-type InP upper clad layer.
  • Such a structure is formed by laminating the lower clad layers 52 and 53, the core layer 54, the upper clad layer 55, and the p-type InP upper clad layer on the semiconductor substrate 51 and patterning them by exposure and etching. In patterning, the p-type InP upper cladding layer is removed leaving only the areas where phase modulation is to be applied. The removed p-type InP upper cladding layer is replaced with the non-doped InP upper cladding layer 56 by regrowing the non-doped InP cladding layer in the removed portion.
  • the BCB film is selectively removed from the protective layer non-formation region Rd.
  • a protective layer non-formation region Rd is formed in which at least a portion of the protective layer is not formed.
  • most of the BCB is removed, but the BCB layer 58 remains slightly on the bottom of both sides of the high mesa structure, that is, on the upper surface of the oxide film 57 covering the lower clad layer 52. .
  • the protective layer non-formation region Rd of the present embodiment it is sufficient if the protective layer covering the upper clad layers 55 and 56 and the core layer 54 is not formed (non-formation), and the oxidation that covers the lower clad layer 52 is sufficient.
  • a case where a protective layer is formed on the upper surface of the film 57 is allowed.
  • the oxide film 57 constitutes a part of the protective layer together with the BCB layer 58, but it is sufficient that at least a part of the protective layer is not formed, and the oxide film 57 consists of the core layer 54 and the lower clad. Layers 52, 53 and upper cladding layer 55 are allowed to be covered.
  • the present inventors consider the effect of stress due to BCB on MWQ, which is the core layer, as a problem, and the effect of stress relaxation is obtained when the difference ⁇ S between the top surface S1 of the BCB layer and the bottom surface S2 of the MQW is smaller than about 1 ⁇ m. I have found that it is sufficient. For this reason, in the present embodiment, the protective layer in the protective layer non-formation region should be thinner than the other portions such as the optical demultiplexer 407XI as long as the stress relaxation effect is exhibited.
  • the removal of the BCB in the protective layer non-formation region Rd can be achieved by a known photolithography process and etching.
  • the two arm waveguides of the MZM optical waveguide must have the same physical length (arm waveguide length).
  • the optical modulator 4 needs to fold the MZM optical waveguide, and the folding causes a difference ( ⁇ L) in the length of the arm waveguides.
  • the MZM optical waveguide of the optical modulator 4 is provided with a delay portion Rb, and the in-course portion 409XIa passing through the inside of the two MZM optical waveguides is curved in the -x direction in FIG. Therefore, the length of the in course portion 409XIa is increased.
  • the folded portion Ra is configured by serially connecting a straight portion, a 90-degree bent portion, a straight portion, a 90-degree bent portion, and a straight portion for the purpose of changing the propagation direction of an optical signal by 180 degrees.
  • the in course portion 409XIa and the out course portion 409XIb receive different stresses from the BCB since the BCB layer covering the mesa structure has a different volume. That is, the problem is that the refractive index of the optical waveguide changes due to the stress change associated with the deterioration of the BCB layer.
  • the stress from the BCB layer depends on the amount (volume) of the BCB layer. If the optical waveguides are close to each other, the volume of the BCB layer is small, and if the optical waveguides are far apart, the volume of the BCB layer is large.
  • the stress change due to the deterioration of the BCB is also different between the in course portion 409XIa and the out course portion 409XIb.
  • the change in stress causes a photoelastic effect, resulting in a difference in equivalent refraction change
  • the phase difference between the in course portion 409XIa and the out course portion 409XIb changes over time
  • the optical path length obtained by dividing the phase difference by the wave number (2 ⁇ / ⁇ ) The difference also changes with time.
  • FIG. 6 is a diagram showing changes in the phase difference generated in the optical modulator 4 of this embodiment in comparison with changes in the phase difference of the known IQ optical modulator 100 described above.
  • the experiment whose results are shown in FIG. 6 was left for 2000 hours while the temperature of the chipped modulator was kept at 50 degrees.
  • the horizontal axis of FIG. 6 indicates the standing time, and the vertical axis indicates the change in the phase difference.
  • the plot ⁇ in FIG. 6 indicates the result of the known IQ optical modulator 100, and the x indicates the result of the optical modulator 4 of this embodiment. According to FIG.
  • the phase difference between the MZ optical waveguides 109XIa and 109XIb in the IQ optical modulator 100 increases to 0.09 rad, 0.25 rad, 0.41 rad, and 0.58 rad according to the standing time.
  • the optical modulator 4 of the present embodiment in which the BCB in the protective layer non-formation region Rd is removed has a phase difference of about 0.1 rad even after 2000 hours, and the phase difference is more stable than the known IQ optical modulator 100. It is clear that the performance is excellent. Such a point is the time-dependent change in the stress from the BCB applied to the pair of (two) optical waveguides arranged in the protective layer non-formation region Rd by removing the BCB in the protective layer non-formation region Rd.
  • the stress change caused by the BCB is reduced by removing the BCB layer in the protective layer non-formation region Rd. It is thought that the temporal variations of the equivalent refractive indices of the two arm waveguides became equal, and the change in the phase difference between the two arm waveguides was suppressed.
  • the BCB is not removed from the entire area of the folded portion. For this reason, although it is not possible to completely eliminate the temporal change in the phase difference between the two arm waveguides, it is clear that a sufficient suppression effect can be obtained.
  • the present disclosure is not limited to the embodiments described above.
  • the delay portion and the folded portion are formed as an integrated protective layer non-formation region, but there may be a plurality of protective layer non-formed regions, and a wider range including the delay portion and the folded portion may be used. or a minimum area including the delay portion and the folding portion.
  • the folded portion is not limited to including the straight portion and the bent portion as in the present embodiment, and may refer to only the bent portion.
  • the protective layer non-formation region is not limited to being removed after the protective layer is formed on the entire surface of the semiconductor chip, and the protective layer may be formed in advance on the region excluding the protective layer non-formation region.
  • Optical modulator 51 Semiconductor substrates 52, 53 Lower clad layer 54 Core layers 55, 56 Upper clad layer 57 Oxide film 58 BCB layer 401X, 401XI, 401XQ, 401Y, 401YI, 401YQ MZM 402 Input optical waveguides 403, 404X, 404Y, 407XI, 407XQ, 407YI, 407YQ Optical demultiplexers 405X, 408XI, 408XQ, 408YI, 408YQ Optical multiplexers 406XI, 406XQ, 406YI, 406YQ Phase modulators 409Ia, 409XIa, 4 09XQa, 409YIa , 409YQa, 411XIa, 411XQa, 411YIa, 411YQa, 412XIa, 413XIa, 414XIa, 415XIa in-course section 409Ib, 409

Abstract

This optical modulator includes: an optical wave guide that is formed on a semiconductor substrate and includes an optical waveguide layer in which a lower cladding layer, a core layer, and an upper cladding layer are layered in this order; an optical demultiplexer (407XI) that demultiplexes an optical signal propagated through the optical waveguide; and a protective layer covering the optical waveguide and the optical demultiplexer. The optical waveguide includes an inside course section (409XIa) and an outside course section (409XIb) for propagating the optical signals demultiplexed by the optical demultiplexer, a delay section in which the interval between the inside course section and the outside course section varies and the length of the inside course section is longer than that of the outside course section, and a folded section in which the interval between the inside course section and the outside course section is constant and the direction of extension changes. The protective layer in the area including the delay section and the folded section comprises an MZM (401X1) having a protective layer non-formation area Rd in which the thickness is thinner than that of the protective layer above the optical demultiplexer.

Description

光変調器optical modulator
 本発明は、光変調器に関する。 The present invention relates to an optical modulator.
 光通信システムの大容量化に伴い、高度な光変調方式に対応した高速の光変調器が求められている。特に、デジタルコヒーレント技術を用いた多値光変調器は、100Gbpsを超える大容量トランシーバの実現に大きな役割を果たしている。多値光変調器には、マッハツェンダ干渉型の光導波路(MZM光導波路)で構成された、ゼロチャープ駆動が可能な光変調器(MZM)が並列、かつ多段に内蔵されている。MZ光導波路は、光入力を2つのアーム導波路に分波し、位相を変化させた後に合波して干渉出力する構成である。多値光変調器は、このような構成により、光の振幅及び位相に、それぞれ独立の信号を付加することができる。 With the increasing capacity of optical communication systems, there is a demand for high-speed optical modulators that support advanced optical modulation methods. In particular, multilevel optical modulators using digital coherent technology play a major role in realizing large-capacity transceivers exceeding 100 Gbps. The multilevel optical modulator incorporates in parallel and in multiple stages optical modulators (MZMs) configured by Mach-Zehnder interference type optical waveguides (MZM optical waveguides) and capable of zero-chirp driving. The MZ optical waveguide is configured to split an optical input into two arm waveguides, change the phase, combine the waves, and output interference. With such a configuration, the multilevel optical modulator can add independent signals to the amplitude and phase of light.
 IQ光変調器は、現在、通信網への普及が進んでいる代表的な偏波多重型の光変調器である。IQ光変調器は、親MZMの各アームのそれぞれが子MZMで構成された、いわゆる入れ子構造を有する。MZM(Quad-parallel MZM)は、X、Yの偏波チャネルのそれぞれに対応して子MZMが2つ並列に設けられ、計4つの子MZMを有する光変調器である。各々の子MZMの2つのアームには、光導波路内を伝搬する光信号に変調動作を行うためのRF変調電気信号が入力される進行波型電極が設けられている。各偏波チャネルにおいて、このような対をなす2つの子MZMの一方がIチャネル、他方がQチャネルにあたる。このような偏波多重型のIQ光変調器は、子MZMのアーム光導波路に沿って設けられた変調電極の一端にRF変調電気信号を入力することにより、電気光学効果を生じさせて子MZMの光導波路内を伝搬する2つの光信号の位相を変調している。このような構成は、例えば、特許文献1、2により公知である。 The IQ optical modulator is a typical polarization multiplexing optical modulator that is currently spreading to communication networks. The IQ optical modulator has a so-called nested structure in which each arm of a parent MZM is composed of child MZMs. The MZM (Quad-parallel MZM) is an optical modulator having two sub-MZMs arranged in parallel corresponding to each of the X and Y polarization channels, for a total of four sub-MZMs. Two arms of each child MZM are provided with traveling-wave electrodes to which RF-modulated electrical signals for modulating the optical signal propagating in the optical waveguide are input. In each polarization channel, one such pair of child MZMs corresponds to the I channel and the other to the Q channel. In such a polarization multiplexed IQ optical modulator, an electro-optical effect is generated by inputting an RF modulated electric signal to one end of a modulation electrode provided along an arm optical waveguide of the child MZM. It modulates the phases of two optical signals propagating in the optical waveguide. Such configurations are known, for example, from US Pat.
 図1は、公知の偏波多重型のIQ光変調器100を例示する上面図である。偏波多重IQ光変調器100は、半導体基板21上に形成される(図2)。そして、偏波多重IQ光変調器100は、X偏波チャネル用のMZM101Xと、Y偏波チャネル用のMZM101Yと、を有している。MZM101Xは、Iチャネル用のMZM101XIと、Qチャネル用のMZM101XQと、を有している。MZM101Yは、Iチャネル用のMZM101YIと、Qチャネル用のMZM101YQと、を有している。入力光導波路102は、へき開された半導体基板(以下、「半導体チップ」と記す)の一方の辺の側に形成され、MZM101X、101Yの間を通り、光分波器103に接続される。光分波器103の出力は、光分波器104X、104Yと接続される。光分波器104Xの出力はMZM101XI、101XQと接続され、光分波器104Yの出力はMZM101YI、101YQと接続される。MZM101XとMZM101Yとは同様の構成を有し、MZM101XIとMZM101XQ、MZM101YIとMZM101YQとは互いに線対称形成された同様の構成を有している。このため、以下、MZM101XIについてのみ説明する。 FIG. 1 is a top view illustrating a known polarization multiplexed IQ optical modulator 100. FIG. A polarization multiplexing IQ optical modulator 100 is formed on a semiconductor substrate 21 (FIG. 2). The polarization multiplexing IQ optical modulator 100 has an MZM 101X for the X polarization channel and an MZM 101Y for the Y polarization channel. MZM 101X has MZM 101XI for I channel and MZM 101XQ for Q channel. The MZM 101Y has an I-channel MZM 101YI and a Q-channel MZM 101YQ. An input optical waveguide 102 is formed on one side of a cleaved semiconductor substrate (hereinafter referred to as a “semiconductor chip”), passes between MZMs 101X and 101Y, and is connected to an optical demultiplexer 103 . The output of optical demultiplexer 103 is connected to optical demultiplexers 104X and 104Y. The output of optical demultiplexer 104X is connected to MZMs 101XI and 101XQ, and the output of optical demultiplexer 104Y is connected to MZMs 101YI and 101YQ. The MZM101X and MZM101Y have the same configuration, and the MZM101XI and MZM101XQ, and the MZM101YI and MZM101YQ have the same configuration formed line-symmetrically with each other. Therefore, only the MZM101XI will be described below.
 X偏波チャネル用のMZM101XIは、位相調整器106XIと共に、光分波器104Xと、光分波器104Xによって分波された光信号を合波する光合波器105Xとの間に設けられている。また、MZM101XIは、光分波器107XIと光合波器108XIとの間に、MZ光導波路109XIa、109XIb、111XIa、111XIb、位相調整器110XIa、110XIb及び進行波電極112を備えている。進行波電極112は、不図示のRF信号線と接続されて、RF変調信号の供給を受ける。 The MZM 101XI for the X polarization channel is provided together with the phase adjuster 106XI between the optical demultiplexer 104X and the optical multiplexer 105X that multiplexes the optical signals demultiplexed by the optical demultiplexer 104X. . The MZM 101XI also includes MZ optical waveguides 109XIa, 109XIb, 111XIa, 111XIb, phase adjusters 110XIa, 110XIb, and traveling wave electrodes 112 between the optical demultiplexer 107XI and the optical multiplexer 108XI. The traveling wave electrode 112 is connected to an RF signal line (not shown) to receive an RF modulation signal.
 図2は、図1中の矢線A、A´に沿うMZ光導波路109XIaの断面図である。図2においては、図2中に示すx、y、z座標に示すz方向を高さhの方向、x方向を幅Wの方向とする。そして、z軸の座標の値が大きい側を、相対的に小さい側よりも「上」、あるいは「上方」とする。IQ光変調器100は、半導体基板21、半導体基板21の上面に形成された下部クラッド層22、23、下部クラッド層23の上面に形成されるコア層24、コア層24の上面に形成される上部クラッド層25、26を有している。酸化膜27は、下部クラッド層22、23、コア層24,上部クラッド層25、26の側面と、上部クラッド層26の上面とを覆っている。酸化膜27上にはベンゾシクロブテン(BCB:Benzocyclobutene)層28が形成されている。BCB層28によって光導波路を覆う構成は、例えば、非特許文献1に記載されている。 FIG. 2 is a cross-sectional view of the MZ optical waveguide 109XIa along arrows A and A' in FIG. In FIG. 2, the z direction indicated by the x, y, and z coordinates shown in FIG. 2 is the height h direction, and the x direction is the width W direction. Then, the side with the larger z-axis coordinate value is defined as “above” or “above” the relatively smaller side. The IQ optical modulator 100 includes a semiconductor substrate 21, lower clad layers 22 and 23 formed on the upper surface of the semiconductor substrate 21, a core layer 24 formed on the upper surface of the lower clad layer 23, and formed on the upper surface of the core layer 24. It has upper clad layers 25 and 26 . The oxide film 27 covers the side surfaces of the lower clad layers 22 , 23 , the core layer 24 , the upper clad layers 25 , 26 and the upper surface of the upper clad layer 26 . A benzocyclobutene (BCB) layer 28 is formed on the oxide film 27 . A configuration in which the BCB layer 28 covers the optical waveguide is described in Non-Patent Document 1, for example.
 上記構成において、例えば、半導体基板21はSI(Semi-Insulating)-InP基板、下部クラッド層22はn型InP下部クラッド層、下部クラッド層23はノンドープInP下部クラッド層、コア層24はノンドープ多重量子井戸(MQW:Multi-quantum Well)コア層、上部クラッド層25、26はノンドープInP上部クラッド層である。図2は、上部クラッド層25、26のいずれもがノンドープInP上部クラッド層であるが、MZ光導波路109XIbは、RF変調電気信号により位相変調を施す箇所の上部クラッド層のみがp型InP上部クラッド層になる。このような構成は、半導体基板21上に下部クラッド層22、23、コア層24、上部クラッド層25、p型InP上部クラッド層を積層し、露光及びエッチングによってパターニングすることによって形成される。パターニングにおいて、p型InP上部クラッド層は位相変調を施す箇所のみを残して除去される。除去されたp型InP上部クラッド層は、除去された箇所にノンドープInPクラッド層を再成長することによってノンドープInP上部クラッド層26に置き換えられる。 In the above configuration, for example, the semiconductor substrate 21 is a SI (Semi-Insulating)-InP substrate, the lower clad layer 22 is an n-type InP lower clad layer, the lower clad layer 23 is a non-doped InP lower clad layer, and the core layer 24 is a non-doped multiple quantum A multi-quantum well (MQW) core layer and upper clad layers 25 and 26 are non-doped InP upper clad layers. In FIG. 2, both the upper cladding layers 25 and 26 are non-doped InP upper cladding layers. be layered. Such a structure is formed by laminating the lower clad layers 22 and 23, the core layer 24, the upper clad layer 25, and the p-type InP upper clad layer on the semiconductor substrate 21 and patterning them by exposure and etching. In patterning, the p-type InP upper cladding layer is removed leaving only the areas where phase modulation is to be applied. The removed p-type InP upper cladding layer is replaced with the non-doped InP upper cladding layer 26 by regrowing the non-doped InP cladding layer in the removed portion.
 図2に示す構成は、下部クラッド層22よりも上部においてハイメサ構造を形成し、x-y平面に光を閉じ込める光導波構造を実現する。ハイメサ構造の幅Wは2μm程度、高さはh4μm程度である。なお、酸化膜27は、ハイメサ構造を保護する保護層となる。BCB層28は、平坦化及び光導波路の保護を目的とした保護層である。BCB層28の膜厚は、ハイメサ構造の上面で0.3μm程度である。電界を印加するための電極は、p型InPクラッド層の上部のBCB層及びSiO2層を一部除去することにより、p型InPクラッド層へコンタクトできるように形成されている。 The configuration shown in FIG. 2 forms a high mesa structure above the lower clad layer 22 and realizes an optical waveguide structure that confines light in the xy plane. The high mesa structure has a width W of about 2 μm and a height of about h4 μm. The oxide film 27 serves as a protective layer for protecting the high mesa structure. The BCB layer 28 is a protective layer intended for planarization and protection of the optical waveguide. The film thickness of the BCB layer 28 is about 0.3 μm on the upper surface of the high mesa structure. An electrode for applying an electric field is formed so as to contact the p-type InP clad layer by partially removing the BCB layer and the SiO2 layer above the p-type InP clad layer.
国際公開WO/2018/174083号公報International publication WO/2018/174083 国際公開WO/2021/049004号公報International publication WO/2021/049004
 しかしながら、公知の光変調器において、光導波路は、図2に示すように、BCB層28がハイメサ構造を覆うことによりハイメサ構造に導波する光に適用される屈折率、つまり等価屈折率はBCBの応力に強く影響をうける。このことは、例えば、非特許文献2に記載されている。すなわち、BCBの熱膨張係数が約42ppm/℃であるのに対し、InPの熱膨張係数は約4.5ppm/℃であり、BCB層28は下部クラッド層22、23、上部クラッド層25、26となるInPよりも一桁程度大きな熱膨張係数を有している。IQ光変調器100の作製工程において、BCB層28に覆われたInPからなるハイメサ構造内部においては、InPとBCBの熱膨張係数差によって極めて大きな応力が発生する。その結果、光導波路は、BCB層28からの応力により、光弾性効果を介した応力起因の屈折率変化が加わる。 However, in the known optical modulator, the optical waveguide has a refractive index applied to the light guided in the high mesa structure by covering the high mesa structure with a BCB layer 28 as shown in FIG. is strongly affected by the stress of This is described, for example, in Non-Patent Document 2. That is, BCB has a coefficient of thermal expansion of about 42 ppm/° C., whereas InP has a coefficient of thermal expansion of about 4.5 ppm/° C. It has a thermal expansion coefficient about one order of magnitude larger than that of InP. In the manufacturing process of the IQ optical modulator 100, inside the high mesa structure made of InP covered with the BCB layer 28, extremely large stress is generated due to the difference in thermal expansion coefficient between InP and BCB. As a result, the optical waveguide undergoes a stress-induced refractive index change via the photoelastic effect due to the stress from the BCB layer 28 .
 さらに、BCBは、InPに比べ材料として不安定であり、周囲の雰囲気や内部の成分と結合し、長期間をかけて変質することが知られている。BCBの変質により、BCB層28の内部応力が変化し、光弾性効果を介してハイメサ構造における等価屈折率が経時的に変化する。 Furthermore, BCB is known to be unstable as a material compared to InP, and to bond with the surrounding atmosphere and internal components and deteriorate over a long period of time. Due to the alteration of the BCB, the internal stress of the BCB layer 28 changes, and the equivalent refractive index in the high mesa structure changes over time via the photoelastic effect.
 本開示は、上記の点に鑑みてなされたものであり、保護層から光導波路に加わる応力を緩和し、光導波路の屈折率の変化を抑制して安定な特性を有する光変調器に関する。 The present disclosure has been made in view of the above points, and relates to an optical modulator that relieves the stress applied to the optical waveguide from the protective layer and suppresses changes in the refractive index of the optical waveguide, thereby having stable characteristics.
 上記目的を達成するために本開示の一形態の光変調器は、半導体基板上に形成され、下部クラッド層、コア層及び上部クラッド層の順に積層された光導波層を有する光導波路と、前記光導波路を伝搬する光信号を分波する第1の光分波器と、前記光導波路及び前記第1の光分波器を覆う保護層と、を含み、前記光導波路は、前記第1の光分波器によって分波した光信号を伝搬する第1の光導波路及び第2の光導波路を含み、前記第1の光導波路と前記第2の光導波路との間隔が相違し、かつ、前記第1の光導波路の光路長よりも前記第2の光導波路の光路長が長い遅延部と、前記間隔が一定であって、かつ、延出方向が変化する折り返し部とを含み、前記遅延部及び前記折り返し部を含む範囲の前記保護層は、前記第1の光分波器の上にある前記保護層よりも厚さが薄い領域を有する、第1の光変調ユニットを備える。 In order to achieve the above object, an optical modulator according to one embodiment of the present disclosure includes an optical waveguide formed on a semiconductor substrate and having an optical waveguide layer in which a lower clad layer, a core layer, and an upper clad layer are laminated in this order; a first optical demultiplexer that demultiplexes an optical signal propagating through an optical waveguide; and a protective layer that covers the optical waveguide and the first optical demultiplexer, wherein the optical waveguide is connected to the first optical demultiplexer. including a first optical waveguide and a second optical waveguide for propagating an optical signal demultiplexed by an optical demultiplexer, the distance between the first optical waveguide and the second optical waveguide being different, and a delay section in which the optical path length of the second optical waveguide is longer than the optical path length of the first optical waveguide; and the protective layer in the range including the folded portion has a region thinner than the protective layer overlying the first optical demultiplexer.
 以上の形態によれば、保護層から光導波路に加わる応力を緩和し、光導波路の屈折率の変化を抑制して安定な特性を有する光変調器を提供することができる。 According to the above configuration, it is possible to provide an optical modulator having stable characteristics by relieving the stress applied from the protective layer to the optical waveguide and suppressing changes in the refractive index of the optical waveguide.
公知の偏波多重型のIQ光変調器を例示する上面図である。1 is a top view illustrating a known polarization multiplexed IQ optical modulator; FIG. 図1中のMZ光導波路の断面図である。2 is a cross-sectional view of the MZ optical waveguide in FIG. 1; FIG. 本発明の一実施形態の光変調器を説明するための上面図である。It is a top view for explaining an optical modulator of one embodiment of the present invention. 図3に示す遅延部と折り返し部とを説明するための図であって、MZMの一部を拡大した拡大図である。4 is a diagram for explaining the delay section and the folding section shown in FIG. 3, and is an enlarged view of a part of the MZM; FIG. 図3中のMZ光導波路の断面図である。4 is a cross-sectional view of the MZ optical waveguide in FIG. 3; FIG. 本実施形態の光変調器において発生する位相差の変化を、公知のIQ光変調器の位相差の変化と比較して示した図である。FIG. 4 is a diagram showing changes in phase difference occurring in the optical modulator of the present embodiment in comparison with changes in phase difference in a known IQ optical modulator;
 以下、本開示の一実施形態を説明する。図3は、本発明の一実施形態の光変調器4を説明するための上面図である。図4は、図3中に示す保護層非形成領域Rdの拡大図、図5は、図3中の矢線B、B´に沿うインコース部409XIaの断面図である。本実施形態においては、図3、図5中に示すx、y、z座標のz軸に沿って上下を決定し、z軸の数値の大きい側を小さい側よりも「上」、あるいは「上方」とする。x方向は光変調器の幅方向であり、y方向は長さ方向である。 An embodiment of the present disclosure will be described below. FIG. 3 is a top view for explaining the optical modulator 4 of one embodiment of the invention. 4 is an enlarged view of the protective layer non-formation region Rd shown in FIG. 3, and FIG. 5 is a cross-sectional view of the incourse portion 409XIa along arrows B and B' in FIG. In this embodiment, the top and bottom are determined along the z-axis of the x, y, and z coordinates shown in FIGS. ”. The x-direction is the width direction of the optical modulator, and the y-direction is the length direction.
 本実施形態は、光変調器4を偏波多重型のIQ光変調器とした例を挙げて説明する。ただし、本実施形態は、このような構成に限定されるものではない。本実施形態は、マッハツェンダ干渉回路であって、折り返し部のような二本のアーム導波路の長さ(以下、「導波路長差」とも記す)に差が発生する部分と、その導波路長差を相殺(補償)すべく、二本の導波路のうち一方の一部が遅延のために他方から離れる構造を持つ部分を干渉計内に有した回路に適用することができる。 This embodiment will be described with an example in which the optical modulator 4 is a polarization multiplexed IQ optical modulator. However, this embodiment is not limited to such a configuration. This embodiment is a Mach-Zehnder interferometric circuit, a portion where a difference occurs in the length of two arm waveguides (hereinafter also referred to as a “waveguide length difference”) such as a folded portion, and the waveguide length It can be applied to a circuit having a section in the interferometer with a structure in which a portion of one of the two waveguides separates from the other due to the delay in order to cancel (compensate) the difference.
 図3に示すように、光変調器4は、半導体基板51に形成されて半導体チップを構成する。図3に示すように、光変調器4は、マッハツェンダ干渉回路(以下、「MZM」と記す)を含んでいる。光変調器4は、X偏波チャネル用のMZM401Xと、Y偏波チャネル用のMZM401Yとを有している。MZM401X、401Yは、IQ直交変調を利用して光変調するため、Iチャネル用のMZM401XI、401XQを有している。MZM401Yは、MZM40YI、401YQを有している。MZMがさらにMZMを含む構成は、「入れ子構造」とも呼ばれている。 As shown in FIG. 3, the optical modulator 4 is formed on a semiconductor substrate 51 to constitute a semiconductor chip. As shown in FIG. 3, the optical modulator 4 includes a Mach-Zehnder interferometer (hereinafter referred to as "MZM"). The optical modulator 4 has an MZM401X for the X polarization channel and an MZM401Y for the Y polarization channel. MZMs 401X and 401Y have I-channel MZMs 401XI and 401XQ for optical modulation using IQ quadrature modulation. MZM401Y has MZM40YI and 401YQ. A configuration in which an MZM contains further MZMs is also called a "nested structure".
 図3に示すように、MZM401XI、401XQ、401YI、401YQは、図中のx、y、z座標に示すx軸方向に互いに並列に配置されている。MZM401X、401Yは線対称に配置され、MZM401XI、401XQは線対称に配置され、MZM401YI、401YQは線対称に配置されている。また、光変調器4は、入力光導波路402、出力光導波路416X、416Yを有し、入力光導波路402から光信号を入力し、出力光導波路416X、416Yから出力する。MZM401XIは、X偏波チャネルのIチャネルの光信号を処理する構成である。MZM401XQは、X偏波チャネルのQチャネルの光信号を処理する構成である。MZM401YIは、Y偏波チャネルのIチャネルの光信号を処理する構成である。MZM401YQは、Y偏波チャネルのQチャネルの光信号を処理する構成である。 As shown in FIG. 3, the MZMs 401XI, 401XQ, 401YI, and 401YQ are arranged parallel to each other in the x-axis direction indicated by the x, y, and z coordinates in the drawing. The MZMs 401X and 401Y are arranged axisymmetrically, the MZMs 401XI and 401XQ are arranged axisymmetrically, and the MZMs 401YI and 401YQ are arranged axisymmetrically. The optical modulator 4 also has an input optical waveguide 402 and output optical waveguides 416X and 416Y, and receives an optical signal from the input optical waveguide 402 and outputs from the output optical waveguides 416X and 416Y. The MZM401XI is configured to process the optical signal of the I channel of the X polarization channel. The MZM401XQ is configured to process an optical signal of the Q channel of the X polarization channel. The MZM401YI is configured to process an optical signal of the I channel of the Y polarization channel. The MZM401YQ is configured to process an optical signal of the Q channel of the Y polarization channel.
 図5に示すように、MZM401XIは、半導体基板51の上面に形成され、下部クラッド層52、53、コア層54、上部クラッド層55、56の順に積層された光導波層を有する光導波路と、光導波路を覆う保護層である酸化膜57及びBCB層58と、を含む。また、図3に示すように、MZM401XIは光分波器407XIを有し、MZM401XIの光導波路は、光分波器407XIによって分波した光信号を伝搬する第1の光導波路及び第2の光導波路を含む。保護層である酸化膜57及びBCB層58は、光分波器407XIの上層にも形成されている。 As shown in FIG. 5, the MZM401XI is formed on the upper surface of a semiconductor substrate 51, and has an optical waveguide layer in which lower clad layers 52 and 53, a core layer 54, and upper clad layers 55 and 56 are laminated in this order; An oxide film 57 and a BCB layer 58, which are protective layers covering the optical waveguide, are included. Also, as shown in FIG. 3, the MZM401XI has an optical demultiplexer 407XI, and the optical waveguides of the MZM401XI include a first optical waveguide and a second optical waveguide for propagating the optical signal demultiplexed by the optical demultiplexer 407XI. Including wave path. The oxide film 57 and the BCB layer 58, which are protective layers, are also formed above the optical demultiplexer 407XI.
 図4に示すように、第1の光導波路は、インコース部409XIa、411XIa、412XIa、413XIa、414XIa、415XIaを含む。第2の光導波路は、アウトコース部409XIb、411XIb、412XIb、413XIb、414XIb、415XIbを含む。第1の光導波路と第2の光導波路との間隔が相違し、かつ、第1の光導波路の光路長よりも第2の光導波路の光路長が長い部分を遅延部Rbとする。また、第1の光導波路と第2の光導波路との間隔が一定であって、かつ、延出方向が変化する部分を折り返し部Raとする。なお、本実施形態で示した折り返し部は延出方向が90度変化しているが、本実施形態は、折り返し部が延出方向を90度変化させることに限定されず、さらに鋭角、または鈍角で延出方向が変化するものであってもよい。MZM401XIは、遅延部Rb及び折り返し部Raを含む範囲の保護層は、光分波器407XIの上にある保護層よりも厚さが薄い領域を有している。本実施形態は、この領域を、保護層の少なくとも一部が形成されていない保護層非形成領域Rdである例について説明する。このような例は、保護層の少なくとも一部の厚さが「0」である例に当たる。また、以上の構成は本実施形態の第1の光変調ユニットに相当し、光分波器407XIは本実施形態の第1の光分波部に相当する。 As shown in FIG. 4, the first optical waveguide includes incourse portions 409XIa, 411XIa, 412XIa, 413XIa, 414XIa, and 415XIa. The second optical waveguide includes outcourse portions 409XIb, 411XIb, 412XIb, 413XIb, 414XIb, 415XIb. A portion where the distance between the first optical waveguide and the second optical waveguide is different and the optical path length of the second optical waveguide is longer than that of the first optical waveguide is defined as a delay portion Rb. Further, a portion where the interval between the first optical waveguide and the second optical waveguide is constant and the extending direction changes is referred to as a folded portion Ra. In addition, although the folded portion shown in the present embodiment changes its extending direction by 90 degrees, this embodiment is not limited to changing the extending direction of the folded portion by 90 degrees. The extending direction may be changed by . In the MZM 401XI, the protective layer in the area including the delay portion Rb and the turn-around portion Ra has a region thinner than the protective layer overlying the optical demultiplexer 407XI. This embodiment will explain an example in which this region is a protective layer non-formation region Rd in which at least a portion of the protective layer is not formed. Such an example corresponds to an example in which at least a portion of the protective layer has a thickness of "0". The above configuration corresponds to the first optical modulation unit of this embodiment, and the optical demultiplexer 407XI corresponds to the first optical demultiplexing section of this embodiment.
 IQ光変調器4においては、高速なRF変調信号を図中の-y方向から入力し、-y方向の側に増幅器等のドライバが配置される。光信号の入出力には、半導体チップの端面にレンズを近接して配置する必要があり、半導体チップの-y方向の側では光信号の入出力は行えない。このため、IQ光変調器4においては、MZM光導波路を、入力側から、入力側に向けて折り返す構造を有し、光信号の入力及び出力を、半導体チップのy方向の側で行っている。 In the IQ optical modulator 4, a high-speed RF modulated signal is input from the -y direction in the drawing, and a driver such as an amplifier is arranged on the -y direction side. For the input/output of optical signals, it is necessary to arrange a lens close to the end surface of the semiconductor chip, and the input/output of optical signals cannot be performed on the -y direction side of the semiconductor chip. For this reason, the IQ optical modulator 4 has a structure in which the MZM optical waveguide is folded back from the input side toward the input side, and input and output of optical signals are performed on the y-direction side of the semiconductor chip. .
 さらに、MZM401XIは、位相変調器406XI、光合波器408XI、位相変調器410XIa、410XIb及び進行波電極422を含んでいる。 Furthermore, the MZM 401XI includes a phase modulator 406XI, an optical multiplexer 408XI, phase modulators 410XIa and 410XIb, and a traveling wave electrode 422.
 MZM401XQは、位相変調器406XQ、光分波器407XQ、光合波器408XQ、位相変調器410XQa、410XQb及び進行波電極422を含んでいる。MZM401XQのMZM導波路は、インコース部409XQaとアウトコース部409XQbとを含む遅延部と、インコース部411XQa、アウトコース部411XQbを含む折返し部と、を含んでいる。 The MZM 401XQ includes a phase modulator 406XQ, an optical demultiplexer 407XQ, an optical multiplexer 408XQ, phase modulators 410XQa and 410XQb, and a traveling wave electrode 422. The MZM waveguide of MZM 401XQ includes a delay section including an incourse section 409XQa and an outcourse section 409XQb, and a folded section including an incourse section 411XQa and an outcourse section 411XQb.
 MZM401YIは、位相変調器406YI、光分波器407YI、光合波器408YI、位相変調器410YIa、410YIb及び進行波電極422を含んでいる。MZM401YIのMZM導波路は、インコース部409YIaとアウトコース部409YIbとを含む遅延部と、インコース部411YIa、アウトコース部411YIbを含む折返し部と、を含んでいる。 The MZM 401YI includes a phase modulator 406YI, an optical demultiplexer 407YI, an optical multiplexer 408YI, phase modulators 410YIa and 410YIb, and a traveling wave electrode 422. The MZM waveguide of MZM 401YI includes a delay portion including an incourse portion 409YIa and an outcourse portion 409YIb, and a folded portion including an incourse portion 411YIa and an outcourse portion 411YIb.
 MZM401YQは、位相変調器406YQ、光分波器407YQ、光合波器408YQ、位相変調器410YQa、410YQb及び進行波電極422を含んでいる。MZM401YQのMZM導波路は、インコース部409YQaとアウトコース部409YQbとを含む遅延部と、インコース部411YQa、アウトコース部411YQbを含む折返し部と、を含んでいる。 The MZM 401YQ includes a phase modulator 406YQ, an optical demultiplexer 407YQ, an optical multiplexer 408YQ, phase modulators 410YQa and 410YQb, and a traveling wave electrode 422. The MZM waveguide of MZM 401YQ includes a delay section including an incourse section 409YQa and an outcourse section 409YQb, and a folded section including an incourse section 411YQa and an outcourse section 411YQb.
 以上の構成において、MZM401XQ、MZM401YI及びMZM401YQは、MZM401XIと同様に、各々本実施形態の第1の光変調ユニットに相当する。また、MZM401Xは、MZM401XI及びMZM401XQと、MZM401XI及びMZM401XQの各々に、入力光導波路402(1つの光導波路)を伝搬する光信号を分波して入力する光分波器404Xと、MZM401XI及びMZM401XQから出力された光信号を合波する光合波器405Xと、光合波器405Xによって合波された光信号を出力する出力光導波路416Xと、を含む。このような構成は、本実施形態の第2の光変調ユニットに相当し、光分波器404Xが第2の光分波器に相当する。さらに、光変調器4は、MZM401X、401Yと、MZM401X、401Yの各々に、光分波器404Xに分波される以前の光信号を分波して入力する光分波器403と、を含む。光分波器403は、第3の光分波器に相当する。第1の光変調器は光変調器単体であり、第2の光変調器はIQ光変調器、光変調器4は偏波多重型のIQ光変調器である。 In the above configuration, MZM401XQ, MZM401YI and MZM401YQ each correspond to the first optical modulation unit of this embodiment, like MZM401XI. In addition, the MZM401X includes an optical demultiplexer 404X that demultiplexes and inputs an optical signal propagating through the input optical waveguide 402 (one optical waveguide) to each of the MZM401XI and MZM401XQ, and the MZM401XI and MZM401XQ from the MZM401XI and MZM401XQ It includes an optical multiplexer 405X that multiplexes the output optical signals, and an output optical waveguide 416X that outputs the optical signal multiplexed by the optical multiplexer 405X. Such a configuration corresponds to the second optical modulation unit of this embodiment, and the optical demultiplexer 404X corresponds to the second optical demultiplexer. Furthermore, the optical modulator 4 includes MZMs 401X and 401Y, and an optical demultiplexer 403 that demultiplexes and inputs the optical signal before being demultiplexed by the optical demultiplexer 404X to each of the MZMs 401X and 401Y. . The optical demultiplexer 403 corresponds to a third optical demultiplexer. The first optical modulator is a single optical modulator, the second optical modulator is an IQ optical modulator, and the optical modulator 4 is a polarization multiplexed IQ optical modulator.
 次に、本実施形態の光変調器の動作を説明する。ただし、上記の構成のうち、符号中の数字が同じ構成は同様の機能を有し、同様に動作する。このため、本実施形態では、MZM401XIの機能及び動作を説明し、他のMZMの重複する説明に代える。入力光導波路402は、半導体チップにおいて、図中のy方向から-y方向に向かって光信号を入力する。入力光導波路402上には光分波器403が設けられ、光分波器403の二つの出力にはさらに光分波器404X、404Yが形成されている。MZM401XIは、光分波器404Xによって分波された光信号の一方を入力する。位相変調器406XIは、MZM401XIに入力された光信号の位相を調整する。 Next, the operation of the optical modulator of this embodiment will be described. However, among the above configurations, those having the same reference numerals have similar functions and operate in the same manner. Therefore, in the present embodiment, the functions and operations of the MZM401XI will be described to replace redundant descriptions of other MZMs. The input optical waveguide 402 inputs an optical signal from the y direction toward the -y direction in the semiconductor chip. An optical demultiplexer 403 is provided on the input optical waveguide 402, and optical demultiplexers 404X and 404Y are further formed at two outputs of the optical demultiplexer 403. FIG. The MZM 401XI inputs one of the optical signals demultiplexed by the optical demultiplexer 404X. Phase modulator 406XI adjusts the phase of the optical signal input to MZM401XI.
 光分波器407XIは、位相が調整された光信号を分波する。位相変調器410XIa、410XIbは、分波後の光信号の位相をそれぞれ変調する。MZM導波路のうち、インコース部409XIaは、位相変調器410XIaによって位相変調された光信号を伝搬し、アウトコース部409Ibは、位相変調器410XIbによって位相変調された光信号を伝搬する。インコース部411XIaは、インコース部409Iaを通った光信号を伝搬し、アウトコース部411XIbは、アウトコース部409Ibを通った光信号を伝搬する。光合波器408XIは、インコース部411XIa、アウトコース部411XIbを通った光信号を合波し、出力光導波路416Xに向けて出力する。 The optical demultiplexer 407XI demultiplexes the phase-adjusted optical signal. The phase modulators 410XIa and 410XIb respectively modulate the phases of the demultiplexed optical signals. In the MZM waveguide, the in-course portion 409XIa propagates the optical signal phase-modulated by the phase modulator 410XIa, and the out-course portion 409Ib propagates the optical signal phase-modulated by the phase modulator 410XIb. The in-course portion 411XIa propagates the optical signal that has passed through the in-course portion 409Ia, and the out-course portion 411XIb propagates the optical signal that has passed through the out-course portion 409Ib. The optical multiplexer 408XI multiplexes the optical signals that have passed through the in-course portion 411XIa and the out-course portion 411XIb, and outputs them toward the output optical waveguide 416X.
 光合波器408XIと出力光導波路416Xとの間には光合波器405Xが設けられている。光合波器405Xは、出力光導波路416Xに向けて出力された光信号をMZM401XQから出力される光信号と合波して出力光導波路416Xに出力する。 An optical multiplexer 405X is provided between the optical multiplexer 408XI and the output optical waveguide 416X. The optical multiplexer 405X multiplexes the optical signal output toward the output optical waveguide 416X with the optical signal output from the MZM 401XQ, and outputs the combined optical signal to the output optical waveguide 416X.
 図4に示すように、MZM401XIのMZM光導波路は、インコース部409XIa、アウトコース部409XIbを含む遅延部Rbと、インコース部412XIa、アウトコース部412XIbを含む直線部、インコース部413XIa、アウトコース部413XIbを含む90度曲げ部、インコース部414XIa、アウトコース部414XIbを含む直線部、インコース部415XIa、アウトコース部415XIbを含む90度曲げ部、インコース部411XIa、アウトコース部411XIbを含む直線部を有する折り返し部Raを含む。 As shown in FIG. 4, the MZM optical waveguide of the MZM 401XI includes a delay portion Rb including an in-course portion 409XIa and an out-course portion 409XIb, a straight portion including an in-course portion 412XIa and an out-course portion 412XIb, an in-course portion 413XIa and an out-course portion 412XIa. A 90-degree bend including a course portion 413XIb, an in-course portion 414XIa, a straight portion including an out-course portion 414XIb, an in-course portion 415XIa, a 90-degree bend including an out-course portion 415XIb, an in-course portion 411XIa, and an out-course portion 411XIb. It includes a folded portion Ra having a straight portion including.
 上記の構成において、遅延部Rbは、インコース部409XIa、アウトコース部409XIbがいずれも図3中のy軸方向に沿って延出し、y軸方向に沿ってインコース部409XIaとアウトコース部409XIbとの間隔が相違する。図4に示す例では、y方向から-y方向に向かってインコース部409XIaがアウトコース部409XIbから離れるため、インコース部409XIaとアウトコース部409XIbとの間隔が連続的に広くなる。そして、この間隔は、ピークを経た後にインコース部409XIaがアウトコース部409XIbに近づくために狭くなる。折り返し部Raにおいては、インコース部412XIa、アウトコース部412XIbはy軸に沿って延出し、インコース部414XIa、アウトコース部414XIbはx軸に沿って延出し、インコース部411XIa、アウトコース部411XIbはy軸に沿って延出する。インコース部413XIa、アウトコース部413XIb及び、インコース部415XIa、アウトコース部415XIbの延出方向は中心角が90度の部分円の接線方向に変化する。この間、インコース部412XIa、413XIa、414XIa、415XIa、411XIaと、アウトコース部412XIb、413XIb、414XIb、415XIb、411XIbは互いに近接し、その間隔は一定である。 In the above configuration, in the delay portion Rb, both the incourse portion 409XIa and the outcourse portion 409XIb extend along the y-axis direction in FIG. The interval between is different. In the example shown in FIG. 4, the incourse portion 409XIa moves away from the outcourse portion 409XIb in the -y direction from the y direction, so the interval between the incourse portion 409XIa and the outcourse portion 409XIb is continuously widened. After passing through the peak, this interval narrows because the in course portion 409XIa approaches the out course portion 409XIb. In the folded portion Ra, the in-course portion 412XIa and the out-course portion 412XIb extend along the y-axis, the in-course portion 414XIa and the out-course portion 414XIb extend along the x-axis, and the in-course portion 411XIa and the out-course portion 411XIa extend along the x-axis. 411XIb extends along the y-axis. The extension direction of the incourse portion 413XIa, the outcourse portion 413XIb, the incourse portion 415XIa, and the outcourse portion 415XIb changes in the tangential direction of the partial circle with a central angle of 90 degrees. During this time, the in course portions 412XIa, 413XIa, 414XIa, 415XIa and 411XIa and the out course portions 412XIb, 413XIb, 414XIb, 415XIb and 411XIb are close to each other, and the intervals therebetween are constant.
 本実施形態は、遅延部Rbと折り返し部Raを含む領域(保護層非形成領域Rd)のBCB層を削除した点が公知の偏波多重型のIQ変調器と相違する。以下、保護層非形成領域Rdの形成及び、保護層非形成領域Rd形成の効果について説明する。 This embodiment differs from a known polarization multiplexing IQ modulator in that the BCB layer in the region (protective layer non-formed region Rd) including the delay portion Rb and the folded portion Ra is eliminated. The formation of the protective layer non-formation region Rd and the effect of forming the protective layer non-formation region Rd will be described below.
 図5に示すように、IQ光変調器4は、半導体基板51、半導体基板51の上面に形成された下部クラッド層52、53、下部クラッド層53の上面に形成されるコア層54、コア層54の上面に形成される上部クラッド層55、56を有している。酸化膜57は、下部クラッド層52、53、コア層54、上部クラッド層55、56の側面と、上部クラッド層56の上面とを覆っている。本実施形態において、例えば、半導体基板51はSI(Semi-Insulating)-InP基板、下部クラッド層52はn型InP下部クラッド層、下部クラッド層53はノンドープInP下部クラッド層、コア層54はノンドープ多重量子井戸(MQW:Multi-quantum Well)コア層、上部クラッド層55、56はノンドープInP上部クラッド層である。 As shown in FIG. 5, the IQ optical modulator 4 includes a semiconductor substrate 51, lower clad layers 52 and 53 formed on the upper surface of the semiconductor substrate 51, a core layer 54 formed on the upper surface of the lower clad layer 53, a core layer It has upper clad layers 55 and 56 formed on the upper surface of 54 . The oxide film 57 covers the side surfaces of the lower clad layers 52 and 53 , the core layer 54 , the upper clad layers 55 and 56 and the upper surface of the upper clad layer 56 . In the present embodiment, for example, the semiconductor substrate 51 is a SI (Semi-Insulating)-InP substrate, the lower clad layer 52 is an n-type InP lower clad layer, the lower clad layer 53 is a non-doped InP lower clad layer, and the core layer 54 is a non-doped multiple layer. A quantum well (MQW: Multi-quantum Well) core layer and upper clad layers 55 and 56 are non-doped InP upper clad layers.
 なお、本実施形態は、公知の構成と同様に、上部クラッド層55、56のいずれもがノンドープInP上部クラッド層であるが、進行波電極422と並走した導波路のうち、RF変調電気信号により位相変調を施す箇所の上部クラッド層のみがp型InP上部クラッド層になる。このような構成は、半導体基板51上に下部クラッド層52、53、コア層54、上部クラッド層55、p型InP上部クラッド層を積層し、露光及びエッチングによってパターニングすることによって形成される。パターニングにおいて、p型InP上部クラッド層は位相変調を施す箇所のみを残して除去される。除去されたp型InP上部クラッド層は、除去された箇所にノンドープInPクラッド層を再成長することによってノンドープInP上部クラッド層56に置き換えられる。 In this embodiment, both of the upper cladding layers 55 and 56 are non-doped InP upper cladding layers, as in the known configuration, but the RF modulated electric signal is Only the upper clad layer at the portion where the phase modulation is performed by the p-type InP upper clad layer. Such a structure is formed by laminating the lower clad layers 52 and 53, the core layer 54, the upper clad layer 55, and the p-type InP upper clad layer on the semiconductor substrate 51 and patterning them by exposure and etching. In patterning, the p-type InP upper cladding layer is removed leaving only the areas where phase modulation is to be applied. The removed p-type InP upper cladding layer is replaced with the non-doped InP upper cladding layer 56 by regrowing the non-doped InP cladding layer in the removed portion.
 本実施形態は、図2に示した公知の構成と同様に、上部クラッド層の上面にBCB膜を形成した後、保護層非形成領域RdのBCB膜を選択的に除去している。これにより、保護層の少なくとも一部が形成されていない保護層非形成領域Rdが形成される。ここで、図5に示すように、BCBはほぼ除去されているが、ハイメサ構造の両脇の底部、すなわち下部クラッド層52を覆う酸化膜57の上面にはBCB層58がわずかに残っている。本実施形態の保護層非形成領域Rdにおいては、上部クラッド層55、56と、コア層54を覆う保護層が形成されていない状態(非形成)であればよく、下部クラッド層52を覆う酸化膜57の上面に保護層が形成されている場合を許容する。また、本実施形態は、BCB層58と共に酸化膜57が保護層の一部を構成するが、保護層の少なくとも一部が非形成であればよく、酸化膜57がコア層54と、下部クラッド層52、53、上部クラッド層55とを覆うことを許容する。 In this embodiment, similarly to the known configuration shown in FIG. 2, after forming a BCB film on the upper surface of the upper clad layer, the BCB film is selectively removed from the protective layer non-formation region Rd. As a result, a protective layer non-formation region Rd is formed in which at least a portion of the protective layer is not formed. Here, as shown in FIG. 5, most of the BCB is removed, but the BCB layer 58 remains slightly on the bottom of both sides of the high mesa structure, that is, on the upper surface of the oxide film 57 covering the lower clad layer 52. . In the protective layer non-formation region Rd of the present embodiment, it is sufficient if the protective layer covering the upper clad layers 55 and 56 and the core layer 54 is not formed (non-formation), and the oxidation that covers the lower clad layer 52 is sufficient. A case where a protective layer is formed on the upper surface of the film 57 is allowed. In this embodiment, the oxide film 57 constitutes a part of the protective layer together with the BCB layer 58, but it is sufficient that at least a part of the protective layer is not formed, and the oxide film 57 consists of the core layer 54 and the lower clad. Layers 52, 53 and upper cladding layer 55 are allowed to be covered.
 本発明者らは、BCBによる応力がコア層であるMWQに与える影響を問題としており、BCB層の上面S1とMQWの底面S2との差分ΔSが1um程度よりも小さい場合に応力緩和の効果を十分得られることを見出した。このため、本実施形態において、保護層非形成領域の保護層は、応力緩和の効果を発揮する範囲において光分波器407XIといった他の箇所よりも薄ければよい。なお、保護層非形成領域RdにおけるBCBの除去は、公知のフォトリソグラフィ工程と、エッチングとによって実現することができる。 The present inventors consider the effect of stress due to BCB on MWQ, which is the core layer, as a problem, and the effect of stress relaxation is obtained when the difference ΔS between the top surface S1 of the BCB layer and the bottom surface S2 of the MQW is smaller than about 1 μm. I have found that it is sufficient. For this reason, in the present embodiment, the protective layer in the protective layer non-formation region should be thinner than the other portions such as the optical demultiplexer 407XI as long as the stress relaxation effect is exhibited. The removal of the BCB in the protective layer non-formation region Rd can be achieved by a known photolithography process and etching.
 次に、保護層非形成領域RdのBCBを除去する効果について、図4を用いて説明する。MZM光導波路の二本のアーム導波路は、位相を安定させる観点から、物理的な長さ(アーム導波路長)を等しくする必要がある。しかしながら、前述のように、光変調器4はMZM光導波路を折り返す必要があり、折り返すことによってアーム導波路の長さに相違(ΔL)が生じる。これを解消するため、光変調器4のMZM光導波路には、遅延部Rbを設けて二本のMZM光導波路のうちの内側を通るインコース部409XIaを図3中の-x方向に湾曲させて、インコース部409XIaの長さを長くしている。折り返し部Raは、光信号の伝搬方向を180度変えることを目的として、直線部、90度曲げ部、直線部、90度曲げ部、直線部を直列に接続して構成されている。 Next, the effect of removing the BCB in the protective layer non-formation region Rd will be described with reference to FIG. From the viewpoint of stabilizing the phase, the two arm waveguides of the MZM optical waveguide must have the same physical length (arm waveguide length). However, as described above, the optical modulator 4 needs to fold the MZM optical waveguide, and the folding causes a difference (ΔL) in the length of the arm waveguides. In order to solve this problem, the MZM optical waveguide of the optical modulator 4 is provided with a delay portion Rb, and the in-course portion 409XIa passing through the inside of the two MZM optical waveguides is curved in the -x direction in FIG. Therefore, the length of the in course portion 409XIa is increased. The folded portion Ra is configured by serially connecting a straight portion, a 90-degree bent portion, a straight portion, a 90-degree bent portion, and a straight portion for the purpose of changing the propagation direction of an optical signal by 180 degrees.
 第1の実施形態では、湾曲してアウトコース部409XIbから離れるインコース部409XIaの周囲には他の光導波路がなく、アウトコース部409XIbの比較的近傍にはMZM401XQのアウトコース部409XQbが存在する。したがって、インコース部409XIaとアウトコース部409XIbとは、メサ構造を覆うBCB層の体積が異なることから、BCBから異なる応力を受けることになる。すなわち、BCB層の変質に伴う応力変化により光導波路の屈折率が変化することが問題となる。BCB層からの応力は、BCB層の量(体積)に依存する。光導波路が近接していればBCB層の体積が少なく、光導波路の間隔が遠ければBCB層の体積は大きくなる。 In the first embodiment, there is no other optical waveguide around the incourse portion 409XIa that curves away from the outcourse portion 409XIb, and the outcourse portion 409XQb of the MZM 401XQ exists relatively near the outcourse portion 409XIb. . Therefore, the in course portion 409XIa and the out course portion 409XIb receive different stresses from the BCB since the BCB layer covering the mesa structure has a different volume. That is, the problem is that the refractive index of the optical waveguide changes due to the stress change associated with the deterioration of the BCB layer. The stress from the BCB layer depends on the amount (volume) of the BCB layer. If the optical waveguides are close to each other, the volume of the BCB layer is small, and if the optical waveguides are far apart, the volume of the BCB layer is large.
 さらに、インコース部409XIaとアウトコース部409XIbの上層にBCBを形成した場合、インコース部409XIaとアウトコース部409XIbにおいて、BCBの変質による応力変化も相違する。応力の変化は、光弾性効果を生じて等価屈折変化が異なることとなり、インコース部409XIaとアウトコース部409XIbの位相差が経時変化し、位相差を波数(2π/λ)で除算した光路長差も経時変化してしまう。 Furthermore, when the BCB is formed on the upper layer of the in course portion 409XIa and the out course portion 409XIb, the stress change due to the deterioration of the BCB is also different between the in course portion 409XIa and the out course portion 409XIb. The change in stress causes a photoelastic effect, resulting in a difference in equivalent refraction change, the phase difference between the in course portion 409XIa and the out course portion 409XIb changes over time, and the optical path length obtained by dividing the phase difference by the wave number (2π/λ) The difference also changes with time.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 図6は、本実施形態の光変調器4において発生する位相差の変化を、上記した公知のIQ光変調器100の位相差の変化と比較して示した図である。図6に結果を示す実験は、チップ化された変調器の温度を50度に保ちながら2000時間放置して行った。図6の横軸は放置時間を示し、縦軸は位相差の変化を示している。図6中のプロット●は公知のIQ光変調器100、×は本実施形態の光変調器4の結果を示す。図6によれば、IQ光変調器100におけるMZ光導波路109XIa、109XIbの位相差は、放置時間にしたがって0.09rad、0.25rad、0.41rad、0.58radと大きくなっている。一方、保護層非形成領域RdのBCBを削除した本実施形態の光変調器4は、2000時間後も位相差が0.1rad程度であり、公知のIQ光変調器100よりも位相差の安定性に優れることが明らかである。このような点は、保護層非形成領域RdにおいてBCBを除去することにより、保護層非形成領域Rdに配置された一対(二本)の光導波路に加わる、BCBからの応力の経時的な変化の相違が低減されためであると考察される。言い換えれば、本実施形態は、保護層非形成領域RdのBCB層を除去することにより、BCBを起因とする応力変化が低減されたことにより、保護層非形成領域Rdに配置されている光導波路の等価屈折率の経時変動が等しくなり、二本のアーム導波路の位相差の変化が抑制されたと考えられる。 FIG. 6 is a diagram showing changes in the phase difference generated in the optical modulator 4 of this embodiment in comparison with changes in the phase difference of the known IQ optical modulator 100 described above. The experiment whose results are shown in FIG. 6 was left for 2000 hours while the temperature of the chipped modulator was kept at 50 degrees. The horizontal axis of FIG. 6 indicates the standing time, and the vertical axis indicates the change in the phase difference. The plot ● in FIG. 6 indicates the result of the known IQ optical modulator 100, and the x indicates the result of the optical modulator 4 of this embodiment. According to FIG. 6, the phase difference between the MZ optical waveguides 109XIa and 109XIb in the IQ optical modulator 100 increases to 0.09 rad, 0.25 rad, 0.41 rad, and 0.58 rad according to the standing time. On the other hand, the optical modulator 4 of the present embodiment in which the BCB in the protective layer non-formation region Rd is removed has a phase difference of about 0.1 rad even after 2000 hours, and the phase difference is more stable than the known IQ optical modulator 100. It is clear that the performance is excellent. Such a point is the time-dependent change in the stress from the BCB applied to the pair of (two) optical waveguides arranged in the protective layer non-formation region Rd by removing the BCB in the protective layer non-formation region Rd. It is considered that this is because the difference in is reduced. In other words, in the present embodiment, the stress change caused by the BCB is reduced by removing the BCB layer in the protective layer non-formation region Rd. It is thought that the temporal variations of the equivalent refractive indices of the two arm waveguides became equal, and the change in the phase difference between the two arm waveguides was suppressed.
 なお、以上説明した本実施形態は、高周波配線等がパターン化されているため、折り返し部の全領域でBCBを除去することは行っていない。このため、完全に、二本のアーム導波路の位相差の経時変化をゼロにすることはできないが、充分な抑制の効果が得られることが明らかである。 In addition, in the embodiment described above, since the high-frequency wiring and the like are patterned, the BCB is not removed from the entire area of the folded portion. For this reason, although it is not possible to completely eliminate the temporal change in the phase difference between the two arm waveguides, it is clear that a sufficient suppression effect can be obtained.
 なお、本開示は、以上説明した実施形態に限定されるものではない。例えば、本実施形態は、遅延部及び折り返し部を一体的な保護層非形成領域としたが、保護層非形成領域は、複数あってもよいし、遅延部及び折り返し部を含む、さらに広い範囲の領域、または遅延部及び折り返し部を含む最小限の領域であってもよい。折り返し部は、本実施形態のように直線部と曲げ部とを含むものに限定されず、曲げ部だけを指してもよい。さらに、保護層非形成領域は、保護層を半導体チップの全面に形成した後に削除することに限定されず、予め保護層非形成領域を除く領域に保護層を成膜するようにしてもよい。 It should be noted that the present disclosure is not limited to the embodiments described above. For example, in the present embodiment, the delay portion and the folded portion are formed as an integrated protective layer non-formation region, but there may be a plurality of protective layer non-formed regions, and a wider range including the delay portion and the folded portion may be used. or a minimum area including the delay portion and the folding portion. The folded portion is not limited to including the straight portion and the bent portion as in the present embodiment, and may refer to only the bent portion. Furthermore, the protective layer non-formation region is not limited to being removed after the protective layer is formed on the entire surface of the semiconductor chip, and the protective layer may be formed in advance on the region excluding the protective layer non-formation region.
4 光変調器
51 半導体基板
52、53 下部クラッド層
54 コア層
55、56 上部クラッド層
57 酸化膜
58 BCB層
401X、401XI、401XQ、401Y、401YI、401YQ MZM
402 入力光導波路
403、404X、404Y、407XI、407XQ、407YI、407YQ 光分波器
405X、408XI、408XQ、408YI、408YQ 光合波器
406XI、406XQ、406YI、406YQ 位相変調器
409Ia、409XIa、409XQa、409YIa、409YQa、411XIa、411XQa、411YIa、411YQa、412XIa、413XIa、414XIa、415XIa インコース部
409Ib、409XIb、409XQb、409YIb、409YQb、411XIb、411XQb、411YIb、411YQb、412XIb、413XIb、414XIb、415XIb アウトコース部
410XIa、410XIb、410XQa、410XQb、410YIa、410YIb、410YQa、410YQb 位相変調器
416X、416Y 出力光導波路
422 進行波電極
4 Optical modulator 51 Semiconductor substrates 52, 53 Lower clad layer 54 Core layers 55, 56 Upper clad layer 57 Oxide film 58 BCB layer 401X, 401XI, 401XQ, 401Y, 401YI, 401YQ MZM
402 Input optical waveguides 403, 404X, 404Y, 407XI, 407XQ, 407YI, 407YQ Optical demultiplexers 405X, 408XI, 408XQ, 408YI, 408YQ Optical multiplexers 406XI, 406XQ, 406YI, 406YQ Phase modulators 409Ia, 409XIa, 4 09XQa, 409YIa , 409YQa, 411XIa, 411XQa, 411YIa, 411YQa, 412XIa, 413XIa, 414XIa, 415XIa in-course section 409Ib, 409XIb, 409XQb, 409YIb, 409YQb, 411XIb, 411XQb, 411YIb, 411YQb, 412XIb, 413XIb, 414XIb, 415XIb Out course section 410XIa , 410XIb, 410XQa, 410XQb, 410YIa, 410YIb, 410YQa, 410YQb phase modulators 416X, 416Y output optical waveguides 422 traveling wave electrodes

Claims (5)

  1.  半導体基板上に形成され、下部クラッド層、コア層及び上部クラッド層の順に積層された光導波層を有する光導波路と、
     前記光導波路を伝搬する光信号を分波する第1の光分波器と、
     前記光導波路及び前記第1の光分波器を覆う保護層と、を含み、
     前記光導波路は、前記第1の光分波器によって分波した光信号を伝搬する第1の光導波路及び第2の光導波路を含み、前記第1の光導波路と前記第2の光導波路との間隔が相違し、かつ、前記第1の光導波路の光路長よりも前記第2の光導波路の光路長が長い遅延部と、前記間隔が一定であって、かつ、延出方向が変化する折り返し部とを含み、
     前記遅延部及び前記折り返し部を含む範囲の前記保護層は、前記第1の光分波器の上にある前記保護層よりも厚さが薄い領域を有する、第1の光変調ユニットを備える、光変調器。
    an optical waveguide formed on a semiconductor substrate and having an optical waveguide layer in which a lower clad layer, a core layer and an upper clad layer are laminated in this order;
    a first optical demultiplexer for demultiplexing an optical signal propagating through the optical waveguide;
    a protective layer covering the optical waveguide and the first optical demultiplexer;
    The optical waveguide includes a first optical waveguide and a second optical waveguide that propagate an optical signal demultiplexed by the first optical demultiplexer, and the first optical waveguide and the second optical waveguide and a delay portion in which the optical path length of the second optical waveguide is longer than the optical path length of the first optical waveguide, and the interval is constant and the extension direction changes. and a folded portion,
    a first optical modulation unit, wherein the protective layer in the range including the delay section and the folding section has a region thinner than the protective layer overlying the first optical demultiplexer; optical modulator.
  2.  前記保護層の前記厚さが薄い領域は、前記保護層が形成されていない保護層非形成領域である、請求項1に記載の光変調器。 2. The optical modulator according to claim 1, wherein the thin area of the protective layer is a protective layer non-formed area where the protective layer is not formed.
  3.  2つの前記第1の光変調ユニットと、
     2つの前記第1の光変調ユニットの各々に、1つの前記光導波路を伝搬する光信号を分波して入力する第2の光分波器と、
     2つの前記第1の光変調ユニットから出力された光信号を合波する光合波器と、
     前記光合波器によって合波された光信号を出力する出力光導波路と、を含む第2の光変調ユニットを含む、請求項1または2に記載の光変調器。
    two said first optical modulation units;
    a second optical demultiplexer that demultiplexes and inputs an optical signal propagating through one of the optical waveguides to each of the two first optical modulation units;
    an optical multiplexer for multiplexing the optical signals output from the two first optical modulation units;
    3. The optical modulator according to claim 1, comprising a second optical modulation unit including an output optical waveguide for outputting the optical signal multiplexed by said optical multiplexer.
  4.  2つの前記第2の光変調ユニットと、
     2つの前記第2の光変調ユニットの各々に、前記第2の光分波器に分波される以前の光信号を分波して入力する第3の光分波器と、を含む、請求項3に記載の光変調器。
    two said second optical modulation units;
    and a third optical demultiplexer for demultiplexing and inputting an optical signal before being demultiplexed by the second optical demultiplexer to each of the two second optical modulation units. Item 4. The optical modulator according to item 3.
  5.  前記保護層は、ベンゾシクロブテン(Benzocyclobutene)を含む、請求項1から4のいずれか一項に記載の光変調器。 The optical modulator according to any one of claims 1 to 4, wherein the protective layer contains Benzocyclobutene.
PCT/JP2021/044757 2021-12-06 2021-12-06 Optical modulator WO2023105585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044757 WO2023105585A1 (en) 2021-12-06 2021-12-06 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044757 WO2023105585A1 (en) 2021-12-06 2021-12-06 Optical modulator

Publications (1)

Publication Number Publication Date
WO2023105585A1 true WO2023105585A1 (en) 2023-06-15

Family

ID=86729827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044757 WO2023105585A1 (en) 2021-12-06 2021-12-06 Optical modulator

Country Status (1)

Country Link
WO (1) WO2023105585A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163876A (en) * 2011-02-09 2012-08-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical modulator
US20170285437A1 (en) * 2016-03-29 2017-10-05 Acacia Communications, Inc. Silicon modulators and related apparatus and methods
JP2018097199A (en) * 2016-12-14 2018-06-21 住友電気工業株式会社 Semiconductor element and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163876A (en) * 2011-02-09 2012-08-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical modulator
US20170285437A1 (en) * 2016-03-29 2017-10-05 Acacia Communications, Inc. Silicon modulators and related apparatus and methods
JP2018097199A (en) * 2016-12-14 2018-06-21 住友電気工業株式会社 Semiconductor element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6839661B2 (en) Optical devices, their manufacturing methods, and optical modulators
US9615152B2 (en) Optical element and light receiving device
JP5877727B2 (en) Semiconductor optical modulator and optical module
JP5515927B2 (en) Semiconductor optical device
JP2019152732A (en) Light modulator and optical transceiver module using the same
JP5082560B2 (en) Optical modulator, light source device, and driving method of optical modulator
US7916981B2 (en) Optical modulator
JP6107869B2 (en) Light modulator
US11402581B2 (en) Mode converter
WO2010016295A1 (en) Variable-wavelength optical transmitter
US20190011800A1 (en) Semiconductor optical modulator
WO2014157456A1 (en) Optical modulator
US9547132B2 (en) Optical element, light transmitting device, and light receiving device
JP2017219562A (en) Optical circuit device, optical transceiver using the same, and optical semiconductor element
US11333909B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP2013137360A (en) Optical multiplexing/demultiplexing element and mach-zehnder optical modulator
WO2023105585A1 (en) Optical modulator
JP6530631B2 (en) Optical waveguide device
US20100202722A1 (en) Optical modulator
JP5667514B2 (en) Phase shifter on semiconductor substrate, polarization separator and polarization synthesizer using the same
US11442329B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP2017207588A (en) Semiconductor optical modulation element
JP5727296B2 (en) Phase shifter on semiconductor substrate and polarization separator and polarization multiplexer using the same
JP5349781B2 (en) Optical modulator and manufacturing method thereof
JP2019008256A (en) Interferometer waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967091

Country of ref document: EP

Kind code of ref document: A1