WO2023105436A1 - Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage - Google Patents

Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage Download PDF

Info

Publication number
WO2023105436A1
WO2023105436A1 PCT/IB2022/061877 IB2022061877W WO2023105436A1 WO 2023105436 A1 WO2023105436 A1 WO 2023105436A1 IB 2022061877 W IB2022061877 W IB 2022061877W WO 2023105436 A1 WO2023105436 A1 WO 2023105436A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal core
process according
manufacturing process
thickness
bath
Prior art date
Application number
PCT/IB2022/061877
Other languages
English (en)
Inventor
Emile De Rijk
Mathieu BILLOD
Philippe Blanc
Original Assignee
Swissto12 Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swissto12 Sa filed Critical Swissto12 Sa
Priority to IL313362A priority Critical patent/IL313362A/en
Priority to CN202280080431.6A priority patent/CN118355559A/zh
Priority to KR1020247020196A priority patent/KR20240118098A/ko
Priority to CA3239423A priority patent/CA3239423A1/fr
Priority to EP22822682.5A priority patent/EP4445446A1/fr
Publication of WO2023105436A1 publication Critical patent/WO2023105436A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method of manufacturing a waveguide device by additive manufacturing and by polishing and a waveguide manufactured according to this method.
  • Radiofrequency (RF) signals can propagate either in space or in waveguide devices. These waveguide devices are used to channel RF signals or to manipulate them in the spatial or frequency domain.
  • the present invention relates in particular to passive RF devices which make it possible to propagate and manipulate radio frequency signals without using components active electronics.
  • Passive waveguide devices can be divided into three distinct categories: • Devices based on guiding waves inside hollow metal channels, commonly referred to as waveguides.
  • the present invention relates in particular to the manufacture of waveguide devices according to the first category above, collectively referred to below as waveguide devices.
  • waveguide devices include waveguides as such, filters, antennas, polarizers, mode converters, etc. They can be used for signal routing, frequency filtering, separation or recombination of signals, transmission or reception of signals in or from free space, etc.
  • Conventional waveguides consist of hollow devices, the shape and proportions of which determine the propagation characteristics for a given wavelength of the electromagnetic signal.
  • Conventional waveguides used for radio frequency signals have internal openings of rectangular or circular section. They make it possible to propagate electromagnetic modes corresponding to different electromagnetic field distributions along their section.
  • US2012/0084968 proposes making waveguides by 3D printing.
  • a non-conductive plastic core is printed by an additive method and then covered with a metal plating by immersion.
  • the internal surfaces of the waveguide must in fact be electrically conductive in order to operate.
  • the use of a non-conductive core makes it possible on the one hand to reduce the weight and the cost of the device and, on the other hand, to implement 3D printing methods adapted to polymers or ceramics and to produce high-precision parts with low wall roughness.
  • the parts described in this document have complex shapes and comprise on the one hand a channel for the propagation of the wave, and on the other hand fixing holes on a foot of the waveguide, in order to fix it to a other element.
  • 3D printing techniques include 3D printing by selective laser melting (SLM). It is a selective powder bed fusion process in which a laser is used to fuse together fine particles of metal. Following the route determined by computer, it will melt the metal particles until they merge together. A powder spreading system will then apply a new layer of powder. The laser will draw the next stratum. These steps will follow one another until the total impression of the object.
  • SLM selective laser melting
  • SLM printing makes it possible to print a layer thickness varying from 0.02 mm to 0.10 mm on the Z axis
  • the resolution on the X and Y axes depends on the diameter of the laser beam of the machine.
  • Standard SLM machines work with 0.080mm and 0.1mm diameter lasers.
  • the weld pool around the laser beam for aluminum has a diameter of about 0.250mm.
  • at least 2 vectors are needed to manufacture a wall of the waveguide, hence a minimum thickness of 0.5 mm.
  • the metal parts obtained by this process can have, depending on the desired shape, layer thicknesses going well beyond the Z resolution of the machine which are imposed by the aforementioned constraints. This has a direct impact on the weight of the parts produced.
  • SLS selective laser sintering
  • PETRONILO MARTIN-IGLESIAS ET AL "Additive Manufacturing for RF Passive Hardware", 46TH EUROPEAN MICROWAVE CONFERENCE, 4-6 OCTOBER 2016, LONDON, UK, pages 1-174 discloses the use of a polishing process chemical in waveguide devices obtained by additive manufacturing.
  • CN106757039B discloses an aluminum oxide based chemical polishing liquid and a method of making the same. The use of this liquid for polishing RF components is not mentioned. In addition, this liquid seems intended to improve the aesthetic rendering of polished parts.
  • Document GB2575365A discloses a chemical polishing process for a titanium surface obtained by additive manufacturing. Use for RF devices is not disclosed.
  • An object of the present invention is therefore to provide an additive manufacturing process of the SLM type making it possible to produce a lighter waveguide device.
  • an object of the present invention is to allow the manufacture of a metal or plastic waveguide device which has a thickness of less than 0.5 mm on any portion of the device, and preferably less than 0.3mm, or even less than 0.2mm.
  • a method of manufacturing a waveguide device comprising a step consisting in producing, by additive manufacturing, a semi-finished metal or plastic core.
  • the semi-finished core has walls sides having outer and inner surfaces.
  • the inner surfaces define a waveguide channel.
  • the manufacturing method also comprises a step of chemical polishing of the metal core in order to reduce, preferably uniformly, the thickness of said side walls by an ablation thickness equal to at least twice a roughness of the core metal (2) before polishing, in order to obtain the waveguide device.
  • the ablation thickness is equal to at least 0.02 mm, preferably to at least 0.05 mm.
  • the ablation thickness is greater than an additive printing layer thickness.
  • the metal core is produced by additive manufacturing by laser powder bed fusion (SLM) in order to obtain a semi-finished metal core, and the ablation thickness is equal to at at least 1.5 times a powder grain size of said powder bed.
  • SLM laser powder bed fusion
  • the metal core is produced by additive manufacturing by laser powder bed fusion (SLM) in order to obtain a semi-finished metal core
  • the thickness of the laser spot used for fusion has a diameter between 0.03mm and 0.1mm and the ablation thickness is between 0.02mm and 0.06mm.
  • the core is metallic is produced by additive manufacturing by laser melting on a powder bed in order to obtain a semi-finished metallic core whose thickness of the side walls is equal to or less than 0. .5mm.
  • the internal waveguide opening of the semi-finished metal core has an oblong, hexagonal, pentagonal, ovoid, or circular cross-section.
  • the thickness of said side walls is less than 0.3 mm, or even less than 0.2 mm after the chemical polishing step.
  • the manufacturing method further comprises a step consisting in generating a digital model of the metal core.
  • the numerical model is calculated in order to optimize the shape of the semi-finished metal core according to the thickness to be removed by chemical polishing.
  • the chemical polishing step consists of immersing the semi-finished metal core in an acid bath.
  • the acid bath can comprise a mixture of two acids.
  • the acid bath may comprise orthophosphoric acid and sulfuric acid, in order to obtain, for example, a shine.
  • the chemical polishing step consists of immersing the semi-finished metal core in a basic bath, for example to perform a satin finish.
  • the basic bath may include a caustic solution and have a pH greater than 11.5.
  • a step of immersing the metal core in an acid deoxidation bath following immersion in said basic bath in order to remove the oxidized residues on the surface of the parts.
  • the method may include a step of immersing the metal core in an acid bath, for example a bath containing nitric acid and ammonium bi-fluoride, with a pH preferably less than 2.
  • the method may include a step of immersing the metal core in a heated acid bath with the application of ultrasound to clean it.
  • the density of the bath is in a range between 1.5 g/cm 3 and 2 g/cm 3 , preferably around 1.7 g/cm 3 .
  • the acid bath treatment temperature is between 70°C and 120°C.
  • the acid bath further comprises dissolved aluminum at a concentration of between 20 and 50 g/l, preferably between 25 and 45 g/l.
  • a waveguide device comprising a metal core having side walls having external and internal surfaces.
  • the inner surfaces define a waveguide channel.
  • the thickness of said side walls is less than 0.3 mm, or even less than 0.2 mm.
  • Figure 1 illustrates a perspective view of a waveguide device with an internal opening or channel, obtained by an SLM method according to one embodiment
  • Figure 2 illustrates a view similar to Figure 1 after a polishing step according to one embodiment
  • Figure 3 illustrates a schematic view of a portion of a waveguide device immersed in a polishing bath in order to level the microscopic roughness on the surface of the aluminum.
  • the waveguide device 1 comprises a metal core 2, for example aluminum, titanium, steel, invar or an alloy of these metals.
  • the core 2 is manufactured by additive manufacturing, preferably by stereolithography, by selective laser melting (“selective laser melting”), by “selective laser sintering” (SLS), by “binder jetting” or by energy deposition concentrated (“direct energy deposition (DED)”).
  • selective laser melting selective laser melting
  • SLS selective laser sintering
  • DED direct energy deposition
  • the thickness of the walls of the core is for example at least 0.5 mm.
  • the shape of the core can be determined by a computer file stored in a computer data carrier.
  • This core 2 delimits an internal opening 5 forming a channel intended for waveguiding.
  • the core 2 therefore has an internal surface 22 and an external surface 21 defining the internal opening 5 which is for example of cross section of oblong shape.
  • a chemical polishing bath 25 works by leveling the microscopic surface roughness of the material, for example aluminum 30, used to form the core. Polishing is a process that reduces the roughness Ra of the material and allows it to better reflect light (specularity). To do this, the peaks and valleys (or hollows) on the surface of the material are leveled, as can be seen in Figure 3. Polishing is carried out by soaking the parts in a bath, with permanent stirring.
  • the roughness Ra of the material or mean roughness or arithmetic mean roughness designates the mean difference between the peaks and valleys of the material at the scale of the particles (or grains) used for additive manufacturing.
  • the polishing step of the present invention aims, in addition to improving the specularity of the material, to reduce the thickness of the walls of the waveguide device. Such a reduction in the thickness of the walls is desirable mainly because it makes it possible to significantly reduce the weight of the device.
  • the thickness of the side walls of the device must be reduced by polishing an ablation thickness equal to at least twice the roughness of the material before the polishing step.
  • the roughness Ra before polishing varies depending on the material used for the additive manufacturing of the metal core, but is generally between 0.05 ⁇ m and 20 ⁇ m for the materials considered in the manufacture of the device, for example aluminum, titanium or stainless steel. steel or invar.
  • this ablation thickness is equal to at least 0.02 mm.
  • the ablation thickness is equal to at least 0.05 mm.
  • the thickness of the side walls of the metal core may be greater, it is typically less than 0.5 mm after polishing in order to reduce the weight of the device.
  • the ablation thickness represents a substantial proportion of the thickness of the walls before polishing.
  • the ablation thickness is greater than the thickness of the additive printing layers.
  • the thickness of an additive printing layer can vary according to the printing techniques and according to the type of part manufactured, but is generally between 0.03mm and 0.06mm.
  • the ablation thickness is greater than 1.5 times the size of the grains of the powder used. These grains have a diameter between 0.01 mm and 0.065 mm. Thus, the ablation thickness is between 0.015mm and 0.098mm. More specifically, the particle size distribution (Particle Size Distribution) is usually between 0.01 mm and 0.065 mm, with a factor D10, that is to say that a maximum of 10% of the grains of the batch of powder has a size less than 0.01 mm. In general, the ablation thickness is at least equal to the factor D10 of the batch of powder used for the manufacture.
  • SLM powder bed laser fusion
  • the thickness of the laser spot used to fuse the powder can be between 0.03 mm and 0.1 mm.
  • the ablation thickness is between 0.02mm and 0.06mm.
  • the bath can be constituted by a mixture of 2 acids. Additives make it possible to obtain a homogeneous polishing of the surface in terms of roughness and thickness. To allow a perfect smoothing of the aluminum surface, the chemical attack must be faster on the peaks than in the valleys.
  • the sulfuric acid reacts with the aluminum to form a thin film of aluminum oxide 40. This film is simultaneously dissolved by the orthophosphoric acid. These reactions occur faster at the peaks than at the valleys because the pool is very viscous and there is less movement and fluid agitation in the valleys than at the peaks.
  • the polishing can implement a basic mixture, for example to perform a satin finish.
  • the method includes immersing the semi-finished waveguide in a solution in the presence of salts of organic and inorganic acids, alkalis and polyfunctional organic hydroxyl compounds.
  • the solution may include, for example:
  • the pH of the solution is preferably greater than 11.5.
  • the part thus satin-brushed with the previous bath can be immersed in a deoxidation bath, in order to remove the oxidized residues on the surface of the parts. after satin-finishing, and to eliminate the layer of aluminum oxide on the surface of the parts.
  • the deoxidation bath can be an acid bath, for example a bath containing nitric acid, with a pH preferably below 2.
  • the part thus glazed can also be bleached by immersion in an acid bath, for example a bath containing nitric acid and ammonium bi-fluoride, with a pH preferably less than 2.
  • an acid bath for example a bath containing nitric acid and ammonium bi-fluoride, with a pH preferably less than 2.
  • This bleaching can in particular be applied to an aluminum or aluminum alloy waveguide.
  • the part thus glazed can also be immersed in an acid bath, for example concentrated at 10%, for example with a pH of less than 3, with the application of ultrasound to clean it.
  • the parts can be immersed in a solution with a temperature of 60 to 65°C, with ultrasound applied for a duration between 2 and 30 minutes, followed by a sequence of 30 min to 1 hour of soaking without ultrasound, with a temperature maintained at 60°C. These sequences must be repeated 5 times to obtain a good cleaning. After each ultrasonic sequence, the acidic solution is removed and replaced with fresh solution, allowing effective chemical and ultrasonic activity.
  • the bath therefore makes it possible to reduce the thickness of the walls 20 of the core 2 so that this thickness between the external surfaces 21 of the core 2 and the internal surfaces of the core 2 defining the internal opening (channel) 5 is reduced to 0.3 mm, or even less than 0.2 mm after the chemical polishing step.
  • the invention also relates to a waveguide device obtained according to one of the above embodiments and comprising a metal core 2 comprising side walls 20 having external 21 and internal 22 surfaces, the internal surfaces 22 defining an internal opening 5 of the waveguide, in which the thickness of said side walls 20 is less than 0.3 mm, or even less than 0.2 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Waveguides (AREA)

Abstract

L'invention porte sur un procédé de fabrication d'un dispositif à guide d'ondes (1) comportant une étape consistant à réaliser, par fabrication additive, une âme métallique (2) semi-finie comportant des parois latérales (20) possédant des surfaces externes (21) et internes (22), les surfaces internes (22) définissant une ouverture interne (5) de guide d'ondes. Le procédé de fabrication comporte un outre une étape de polissage chimique de l'âme métallique (2) afin de réduire l'épaisseur desdites parois latérales (20) d'une épaisseur d'ablation égale à au moins deux fois une rugosité (Ra) de l'âme métallique (2) avant polissage, afin d'obtenir le dispositif à guide d'ondes. L'invention comporte également sur un dispositif (1) à guide d'ondes obtenu selon le procédé susvisé.

Description

Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage
Domaine technique
[0001] La présente invention concerne un procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage et un guide d'onde fabriqué selon ce procédé.
Etat de la technique
[0002] Les signaux radiofréquence (RF) peuvent se propager soit dans un espace, soit dans des dispositifs guide d'ondes. Ces dispositifs guide d'ondes sont utilisés pour canaliser les signaux RF ou pour les manipuler dans le domaine spatial ou fréquentieL [0003] La présente invention concerne en particulier les dispositifs RF passifs qui permettent de propager et de manipuler des signaux radiofréquences sans utiliser de composants électroniques actifs. Les dispositifs à guides d'onde passifs peuvent être répartis en trois catégories distinctes : • Les dispositifs basés sur le guidage d'ondes à l'intérieur de canaux métalliques creux, couramment appelés guides d'ondes.
• Les dispositifs basés sur le guidage d'ondes à l'intérieur de substrats diélectriques. • Les dispositifs basés sur le guidage d'ondes au moyen d'ondes de surface sur des substrats métalliques tels que des circuits imprimés PCB, des microstrips, etc.
[0004] La présente invention concerne en particulier la fabrication de dispositifs à guide d'ondes selon la première catégorie ci-dessus, collectivement désignée par la suite comme dispositifs à guides d'ondes. Des exemples de tels dispositifs incluent des guides d'ondes en tant que tels, des filtres, des antennes, des polariseurs, des convertisseurs de mode, etc. Ils peuvent être utilisés pour le routage de signal, le filtrage fréquentiel, la séparation ou recombinaison de signaux, l'émission ou la réception de signaux dans ou depuis l'espace libre, etc.
[0005] Les guides d'ondes conventionnels sont constitués par des dispositifs creux, dont la forme et les proportions déterminent les caractéristiques de propagation pour une longueur d'onde donnée du signal électromagnétique. Les guides d'ondes classiques utilisés pour les signaux radiofréquence ont des ouvertures internes de section rectangulaire ou circulaire. Ils permettent de propager des modes électromagnétiques correspondant à différentes distributions de champ électromagnétique le long de leur section.
[0006] La fabrication de guides d'ondes avec des sections complexes est difficile et coûteuse. Afin d'y remédier, la demande de brevet
US2012/0084968 propose de réaliser des guides d'ondes par impression 3D. A cet effet, une âme en plastique non conducteur est imprimée par une méthode additive puis recouverte d'un placage métallique par immersion. Les surfaces internes du guide d'ondes doivent en effet être conductrices électriquement pour opérer. L'utilisation d'une âme non conductrice permet d'une part de réduire le poids et le coût du dispositif et, d'autre part, de mettre en œuvre des méthodes d'impression 3D adaptées aux polymères ou aux céramiques et permettant de produire des pièces de haute précision avec une faible rugosité de paroi. Les pièces décrites dans ce document ont des formes complexes et comprennent d'une part un canal pour la propagation de l'onde, et d'autre part des trous de fixation sur un pied du guide d'onde, afin de le fixer à un autre élément.
[0007] Différentes techniques d'impression 3D existent parmi lesquels l'impression 3D par fusion sélectif par laser (SLM). Il s'agit d'un procédé de fusion sélective sur lit de poudre dans lequel un laser est utilisé pour fusionner de fines particules de métal. Suivant le tracé déterminé par ordinateur, il va fondre les particules métalliques jusqu'à ce qu'elles fusionnent entre elles. Un système d'étalement de la poudre va ensuite appliquer une nouvelle couche de poudre. Le laser va dessiner la strate suivante. Ces étapes vont s'enchaîner jusqu'à l'impression totale de l'objet.
[0008] Bien que l'impression SLM permet d'imprimer une épaisseur de couche variant de 0,02mm à 0,10mm sur l'axe Z, la résolution sur les axes X et Y dépend du diamètre du faisceau du laser de la machine. Les machines SLM standards travaillent avec des lasers de diamètre 0,080mm et 0,1 mm. Le bain de fusion autour du faisceau laser pour de l'aluminium a un diamètre d'environ 0,250mm. Il faut idéalement 2 vecteurs au minimum pour fabriquer une paroi du guide d'ondes d'où une épaisseur minimale de 0,5mm.
[0009] Les pièces en métal obtenues par ce procédé peuvent avoir, selon la forme désirée, des épaisseurs de couches allant bien au-delà de la résolution en Z de la machine qui sont imposées par les contraintes susvisées. Cela a un impact direct sur le poids des pièces produites. [0010] L'impression 3D par frittage sélectif par laser (SLS) est aussi connue, notamment pour l'impression de plastique. Elle présente cependant les mêmes problèmes de résolution liée au diamètre du faisceau laser notamment.
[0011] Le document PETRONILO MARTIN-IGLESIAS ET AL: "Additive Manufacturing for RF Passive Hardware", 46TH EUROPEAN MICROWAVE CONFERENCE, 4-6 OCTOBER 2016, LONDON, UK, pages 1-174 divulgue l'utilisation d'un procédé de polissage chimique dans des dispositifs à guide d'ondes obtenus par fabrication additive. Cependant, ce document mentionne notamment que ce procédé de polissage chimique comporte de nombreux inconvénients tels que l'agrandissement des iris et son effet inhomogène, le fait qu'il n'est utilisé que pour des filtres à bande étroite, la lenteur ainsi que le déplacement du centre de fréquence ou encore la difficulté de prédire son effet.
[0012] Le document LORENTE J A ET AL: "Single part microwave 1-5,17 filters made from selective laser melting", MICROWAVE CONFERENCE, 2009. EUMC 2009. EUROPEAN, IEEE, PISCATAWAY, NJ, USA, 29 septembre 2009 (2009-09-29), pages 1421-1424 divulgue un procédé de polissage chimique, mais n'aborde ni la question de l'épaisseur des parois ni la question du poids des dispositifs polis.
[0013] Le document ALI USMAN ET AL: "Internai surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing", VACUUM, PERGAMON PRESS, GB, vol. 177, 22 avril 2020 (2020-04-22), divulgue également un procédé de polissage chimique de pièces produites par fusion laser sur lit de poudre. Cependant, les épaisseurs des parois des pièces envisagées sont relativement importantes (et donc lourdes) et ne correspondent pas au standard des pièces RF modernes obtenues par fabrication additive.
[0014] Le document CN106757039B divulgue un liquide de polissage chimique à base d'oxyde d'aluminium et une méthode de fabrication de celui-ci. L'utilisation de ce liquide dans le cadre du polissage de composants RF n'est pas mentionnée. De plus, ce liquide semble destiné à l'amélioration du rendu esthétique des pièces polies.
[0015] Le document GB2575365A divulgue un procédé de polissage chimique d'une surface en titane obtenue par fabrication additive. Une utilisation pour des dispositifs RF n'est pas divulguée.
Bref résumé de l'invention
[0016] Un but de la présente invention est par conséquent de proposer un procédé de fabrication additive du type SLM permettant de produire un dispositif à guide d'ondes plus léger.
[0017] En particulier, un but de la présente invention est de permettre la fabrication d'un dispositif à guide d'ondes métallique ou plastique qui présentent une épaisseur inférieure à 0,5mm sur n'importe quelle portion du dispositif, et de préférence inférieure à 0,3mm, voire inférieure à 0,2mm.
[0018] Selon l'invention, ces buts sont atteints notamment au moyen d'un procédé de fabrication d'un dispositif à guide d'ondes comportant une étape consistant à réaliser, par fabrication additive, une âme métallique ou plastique semi-finie. L'âme semi-finie comporte des parois latérales possédant des surfaces externes et internes. Les surfaces internes définissent un canal de guide d'ondes. Le procédé de fabrication comporte un outre une étape de polissage chimique de l'âme métallique afin de réduire, de préférence uniformément, l'épaisseur desdites parois latérales d'une épaisseur d'ablation égale à au moins deux fois une rugosité de l'âme métallique (2) avant polissage, afin d'obtenir le dispositif à guide d'ondes.
[0019]Dans une forme d'exécution, l'épaisseur d'ablation est égale à au moins 0,02mm, préférentiellement à au moins 0.05mm.
[0020]Dans une forme d'exécution, l'épaisseur d'ablation est supérieure à une épaisseur de couche d'impression additive.
[0021]Dans un mode de réalisation, l'âme métallique est réalisée par fabrication additive par fusion laser sur lit de poudre (SLM) afin d'obtenir une âme métallique semi-finie, et l'épaisseur d'ablation est égale à au moins 1,5 fois une taille de grains de poudre dudit lit de poudre.
[0022] Dans une forme d'exécution, l'âme métallique est réalisée par fabrication additive par fusion laser sur lit de poudre (SLM) afin d'obtenir une âme métallique semi-finie, l'épaisseur du spot laser utilisé pour la fusion possède un diamètre compris entre 0.03mm et 0.1mm et l'épaisseur d'ablation est comprise entre 0.02mm et 0.06mm.
[0023] Dans une forme d'exécution, l'âme est métallique est réalisée par fabrication additive par fusion laser sur lit de poudre afin d'obtenir une âme métallique semi-finie dont l'épaisseur des parois latérales est égale ou inférieure à 0,5mm. [0024] Dans une forme d'exécution, l'ouverture interne de guide d'ondes de l'âme métallique semi-finie comporte une section transversale de forme oblongue, hexagonale, pentagonale, ovoïde ou circulaire.
[0025] Dans une forme d'exécution, l'épaisseur desdites parois latérales est inférieure à 0,3mm, voire inférieure à 0,2mm après l'étape de polissage chimique.
[0026] Dans une forme d'exécution, le procédé de fabrication comporte en outre en étape consistant à générer un modèle numérique de l'âme métallique. Le modèle numérique est calculé afin d'optimiser la forme de l'âme métallique semi-finie en fonction de l'épaisseur à ôter par polissage chimique.
[0027] Dans une forme d'exécution, l'étape de polissage chimique consiste à immerger l'âme métallique semi-finie dans un bain acide. Le bain acide peut comporter un mélange de deux acides. Par exemple le bain acide peut comporter de l'acide orthophosphorique et de l'acide sulfurique, pour obtenir par exemple un brillantage.
[0028] Dans une forme d'exécution, l'étape de polissage chimique consiste à immerger l'âme métallique semi-finie dans un bain basique, pour effectuer par exemple un satinage. Le bain basique pourra comporter une solution caustique et avoir un pH supérieur à 11,5.
[0029] Dans une forme d'exécution, une étape d'immersion de l'âme métallique dans un bain acide de désoxydation à la suite de l'immersion dans ledit bain basique, afin de supprimer les résidus oxydés à la surface des pièces. [0030] Dans une forme d'exécution, le procédé pourra comporter une étape d'immersion de l'âme métallique dans un bain acide, par exemple un bain contenant de l'acide nitrique et du bi-fluorure d'ammonium, avec un pH de préférence inférieur à 2.
[0031] Dans une forme d'exécution, le procédé pourra comporter une étape d'immersion de l'âme métallique dans un bain d'acide chauffé avec application d'ultrasons pour la nettoyer.
[0032] Dans une forme d'exécution, la densité du bain se situe dans une plage comprise entre 1,5 g/cm3 et 2 g/cm3, de préférence aux environs de 1,7 g/cm3.
[0033] Dans une forme d'exécution, la température de traitement du bain acide se situe entre 70°C et 120°C.
[0034] Dans une forme d'exécution, le bain acide comporte en outre de l'aluminium dissous à une concentration comprise entre 20 et 50 g/l, de préférence entre 25 et 45 g/l.
[0035] Un autre aspect de l'invention porte sur un dispositif à guide d'ondes comportant une âme métallique comportant des parois latérales possédant des surfaces externes et internes. Les surfaces internes définissent un canal de guide d'ondes. L'épaisseur desdites parois latérales est inférieure à 0,3mm, voire inférieure à 0,2mm. Brève description des figures
[0036] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
• La figure 1 illustre une vue en perspective d'un dispositif à guide d'ondes avec une ouverture interne ou canal, obtenu par un procédé SLM selon une forme de réalisation ;
• La figure 2 illustre une vue similaire à la figure 1 après une étape de polissage selon une forme de réalisation ;
• La figure 3 illustre une vue schématique d'une portion d'un dispositif à guide d'ondes plongé dans une bain de brillantage afin de niveler la rugosité microscopique en surface de l'aluminium.
Exemple(s) de mode de réalisation de l'invention
[0037] Le dispositif à guide d'onde 1 selon les figures 1 et 2, comporte une âme en métal 2, par exemple en aluminium, titane, acier, l'invar ou un alliage de ces métaux.
[0038] L'âme 2 est fabriquée par fabrication additive, de préférence par stéréolithographie, par fusion laser sélective (« selective laser melting »), par « selective laser sintering » (SLS), par « binder jetting » ou par dépôt sous énergie concentrée (« direct energy deposition (DED) »). L'épaisseur des parois de l'âme est par exemple d'au moins 0,5 mm.
[0039] La forme de l'âme peut être déterminée par un fichier informatique stocké dans un support de données informatique. [0040] Cette âme 2 délimite une ouverture interne 5 formant un canal destiné au guidage d'ondes. L'âme 2 présente par conséquent une surface interne 22 et une surface externe 21 définissant l'ouverture interne 5 qui est par exemple de section transversale de forme oblongue.
[0041] Un bain 25 de polissage chimique fonctionne en nivelant la rugosité microscopique en surface du matériau, par exemple de l'aluminium 30, utilisé pour former l'âme. Le polissage est un process qui permet de diminuer la rugosité Ra du matériau et lui permet de mieux réfléchir la lumière (spécularité). Pour cela, on nivelle les pics et vallées (ou creux) à la surface de du matériau comme on peut le voir à la figure 3. Le polissage s'effectue par trempage des pièces dans un bain, sous agitation permanente.
[0042] La rugosité Ra du matériau ou rugosité moyenne ou rugosité moyenne arithmétique désigne l'écart moyen entre les pics et les creux du matériau à l'échelle des particules (ou grains) utilisées pour la fabrication additive.
[0043] Il est connu d'utiliser des étapes de polissage chimique ou électrochimique à des fins de réduire la rugosité du matériau. De manière surprenante, l'étape de polissage de la présente invention vise, en plus de d'améliorer la spécularité du matériau, à réduire l'épaisseur des parois du dispositif à guide d'ondes. Une telle réduction de l'épaisseur des parois est désirable principalement car elle permet de réduire significativement le poids du dispositif.
[0044] Afin de diminuer le poids du dispositif à guide d'ondes de manière significative, l'épaisseur des parois latérales du dispositif doit être réduite par polissage d'une épaisseur d'ablation égale à au moins deux fois la rugosité du matériau avant l'étape de polissage. La rugosité Ra avant polissage varie en fonction du matériau utilisé pour la fabrication additive de l'âme métallique, mais est généralement comprise entre 0.05pm et 20pm pour les matériaux considérés dans la fabrication du dispositif, par exemple l'aluminium, le titane ou l'acier ou l'invar.
[0045] Dans un mode de réalisation particulier, cette épaisseur d'ablation est égale à au moins 0,02mm. De manière préférentielle, l'épaisseur d'ablation est égale à au moins 0.05mm.
[0046] Bien que l'épaisseur des parois latérales de l'âme métallique puisse être plus importante, elle est typiquement inférieure à 0.5mm après polissage afin de réduire le poids du dispositif. Ainsi, l'épaisseur d'ablation représente une proportion substantielle de l'épaisseur des parois avant polissage.
[0047] Dans un mode de réalisation, l'épaisseur d'ablation est supérieure à l'épaisseur des couches d'impression additive. L'épaisseur d'une couche d'impression additive peut varier selon les techniques d'impression et selon le type de pièce fabriquée, mais est généralement comprise entre 0.03mm et 0.06mm.
[0048] Dans un mode de réalisation dans lequel l'impression est réalisée par fusion laser sur lit de poudre (SLM), l'épaisseur d'ablation est supérieure à 1,5 fois la taille des grains de la poudre utilisée. Ces grains ont un diamètre compris entre 0.01 mm et 0.065mm. Ainsi, l'épaisseur d'ablation est comprise entre 0.015mm et 0.098mm. [0049] Plus précisément, la distribution de la taille des particules (Particle Size Distribution) est habituellement comprise entre 0.01 mm et 0.065mm, avec un facteur D10, c'est-à-dire qu'un maximum de 10% des grains du lot de poudre possède une taille inférieure à 0.01 mm. De manière générale, l'épaisseur d'ablation est au moins égale au facteur D10 du lot de poudre utilisé pour la fabrication.
[0050] Lorsque l'impression est réalisée par fusion sur lit de poudre, le l'épaisseur du spot laser utilisé pour fusionner la poudre peut être compris entre 0.03mm et 0.1mm. Dans ce cas, l'épaisseur d'ablation est comprise entre 0.02mm et 0.06mm.
[0051] Le bain peut être constitué par un mélange de 2 acides. Des additifs permettent d'obtenir un polissage homogène de la surface en termes de rugosité et d'épaisseur. Pour permettre un parfait lissage de surface de l'aluminium, l'attaque chimique doit être plus rapide sur les pics que dans les vallées. Quand l'aluminium est plongé dans un bain composé des 2 acides précédemment cités, l'acide sulfurique réagit avec l'aluminium pour former un film mince d'oxyde d'aluminium 40. Ce film est simultanément dissous par l'acide orthophosphorique. Ces réactions se produisent plus rapidement au niveau des pics que des vallées parce que le bain est très visqueux et qu'il y a moins de mouvements et d'agitation des fluides dans les vallées que sur les pics.
[0052] Les paramètres principaux du bain de polissage sont les suivants : Bain constitué de deux acides (par exemple orthophosphorique et sulfurique) ; Densité du bain : 1,7 g/cm3 environ ; Températures de traitement : 80 - 110 °C ; Temps de trempage : 15 sec à 10 min ; Concentration en Alu dissous dans le bain (pour un meilleur démarrage et une bonne réactivité chimique) = de 25 à 45 g/L [0053] Dans un autre mode de réalisation, le polissage peut mettre en œuvre un mélange basique, pour effectuer par exemple un satinage. Le procédé comporte l'immersion du guide d'onde semi-fini dans une solution en la présence de sels d'acides organiques et inorganiques, d'alcalis et de composés hydroxyles organiques polyfonctionnels. La solution peut comporter par exemple :
- Solution caustique : 70-90 g/l
- Matière active de satinage : 5-10 g/l
- Aluminium dissous : 10 g/l
Le pH de la solution est de préférence supérieur à 11,5.
[0054] Dans le cas d'un guide d'onde en aluminium ou en alliage d'aluminium, la pièce ainsi satinée avec le bain précédent peut être immergée dans un bain de désoxydation, afin de supprimer les résidus oxydés à la surface des pièces après le satinage, et d'éliminer la couche d'oxyde d'aluminium à la surface des pièces. Le bain de désoxydation peut être un bain acide, par exemple un bain contenant de l'acide nitrique, avec un pH de préférence inférieur à 2.
[0055] La pièce ainsi satinée peut en outre être blanchie par immersion dans un bain acide, par exemple un bain contenant de l'acide nitrique et du bi-fluorure d'ammonium, avec un pH de préférence inférieur à 2. Ce blanchissage peut notamment être appliqué à un guide d'onde en aluminium ou en alliage d'aluminium.
[0056] La pièce ainsi satinée peut en outre être immergé dans un bain d'acide, par exemple concentré à 10%, par exemple avec un pH inférieur à 3, avec application d'ultrasons pour la nettoyer. Dans un mode opératoire, les pièces peuvent être plongées dans une solution avec une température de 60 à 65 °C, avec des ultrasons appliqués pendant une durée comprise entre 2 et 30 minutes, suivie d'une séquence de 30 min à 1 h00 de trempage sans ultrasons, avec une température maintenue à 60 °C. Ces séquences doivent être répétées 5 fois pour obtenir un bon nettoyage. Après chaque séquence d'ultrasons, la solution acide est éliminée et remplacée par une solution fraîche, permettant une activité chimique et ultrasonique efficace.
[0057] Le bain permet par conséquent de diminuer l'épaisseur des parois 20 de l'âme 2 de sorte à ce que cette épaisseur entre les surfaces externes 21 de l'âme 2 et les surfaces internes de l'âme 2 définissant l'ouverture interne (canal) 5 soit réduite à 0,3mm, voire inférieure à 0,2mm après l'étape de polissage chimique.
[0058] Ceci a pour avantage de réduire le poids des dispositifs à guide d'ondes.
[0059] L'invention concerne aussi un dispositif à guide d'ondes obtenu selon l'une des modes de réalisation ci-dessus et comportant une âme métallique 2 comportant des parois latérales 20 possédant des surfaces externes 21 et internes 22, les surfaces internes 22 définissant une ouverture interne 5 de guide d'ondes, dans lequel l'épaisseur desdites parois latérales 20 est inférieure à 0,3mm, voire inférieure à 0,2mm.

Claims

Revendications
1. Procédé de fabrication d'un dispositif à guide d'ondes (1) comportant une étape consistant à réaliser, par fabrication additive, une âme métallique (2) semi-finie comportant des parois latérales (20) possédant des surfaces externes (21) et internes (22), les surfaces internes (22) définissant une ouverture interne (5) de guide d'ondes, caractérisé en ce que le procédé de fabrication comporte un outre une étape de polissage chimique de l'âme métallique (2) afin de réduire l'épaisseur desdites parois latérales (20) d'une épaisseur d'ablation égale à au moins deux fois une rugosité (Ra) de l'âme métallique (2) avant polissage, afin d'obtenir le dispositif à guide d'ondes.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que ladite épaisseur d'ablation est égale à au moins 0,02mm.
3. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que ladite épaisseur d'ablation est égale à au moins 0,05mm.
4. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que ladite épaisseur d'ablation est supérieure à une épaisseur de couche d'impression additive.
5. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'âme métallique (2) est réalisée par fabrication additive par fusion laser sur lit de poudre (SLM), afin d'obtenir une âme métallique (2) semi-finie, ladite épaisseur d'ablation étant égale à au moins 1,5 fois une taille de grains de poudre dudit lit de poudre.
6. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'âme métallique (2) est réalisée par fabrication additive par fusion laser sur lit de poudre (SLM) afin d'obtenir une âme métallique (2) semi-finie, un spot laser ayant un diamètre compris entre 0.03mm et 0.1 mm et une épaisseur d'ablation étant comprise entre 0.02mm et 0.06mm.
7. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'âme métallique (2) est réalisée par fabrication additive par fusion laser sur lit de poudre (SLM) afin d'obtenir une âme métallique (2) semi-finie dont l'épaisseur des parois latérales (20) est égale ou inférieure à 0.5mm.
8. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'ouverture interne (5) de guide d'ondes de l'âme métallique (2) semi-finie comporte une section transversale de forme oblongue, pentagonale, hexagonale, ovoïde ou circulaire.
9. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur desdites parois latérales (20) est inférieure à 0,3mm, voire inférieure à 0,2mm après l'étape de polissage chimique.
10. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce qu'il comporte en outre en étape consistant à générer un modèle numérique de l'âme métallique (2), ledit modèle numérique étant calculé afin d'optimiser la forme de l'âme métallique semi-finie en fonction de l'épaisseur à ôter par polissage chimique. 17
11. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en que l'étape de polissage chimique comporte une immersion de l'âme métallique (2) semi-finie dans un bain acide.
12. Procédé de fabrication selon la revendication 11, ledit bain acide comportant un mélange de deux acides.
13. Procédé de fabrication selon la revendication 12, ledit bain acide comportant de l'acide orthophosphorique et de l'acide sulfurique.
14. Procédé de fabrication selon la revendication précédente, caractérisé en que la densité du bain se situe dans une plage comprise entre 1,5 g/cm3 et 2 g/cm3, de préférence aux environs de 1,7 g/cm3.
15. Procédé de fabrication selon l'une des revendications 11 à 14, caractérisé en ce que la température de traitement du bain acide se situe entre 70°C et 120°C.
16. Procédé de fabrication selon l'une des revendications 11 à 15, caractérisé en ce que le bain acide comporte en outre de l'aluminium dissous à une concentration comprise entre 20 et 50 g/l, de préférence entre 25 et 45 g/l.
17. Procédé de fabrication selon l'une des revendications 1 à 10, caractérisé en que l'étape de polissage chimique comporte une immersion de l'âme métallique (2) semi-finie dans un bain basique.
18. Procédé de fabrication selon la revendication 17, ledit bain basique comportant une solution caustique et ayant un pH supérieur à 11,5. 18
19. Procédé de fabrication selon l'une des revendications 17 ou 18, comprenant une étape d'immersion de l'âme métallique dans un bain acide de désoxydation à la suite de l'immersion dans ledit bain basique, afin de supprimer les résidus oxydés à la surface des pièces.
20. Procédé de fabrication selon l'une des revendications 17 à 19, comprenant une étape d'immersion de l'âme métallique dans un bain acide, par exemple un bain contenant de l'acide nitrique et du bi-fluorure d'ammonium, avec un pH de préférence inférieur à 2.
21. Procédé de fabrication selon l'une des revendications 11 à 20, comprenant une étape d'immersion de l'âme métallique dans un bain d'acide chauffé avec application d'ultrasons pour la nettoyer.
22. Dispositif (1) à guide d'ondes obtenu selon l'une des revendications précédentes, comportant une âme métallique (2) comportant des parois latérales (20) possédant des surfaces externes (21) et internes (22), les surfaces internes (22) définissant une ouverture interne (5) de guide d'ondes, caractérisé en ce que l'épaisseur desdites parois latérales (20) est inférieure à 0,3mm, voire inférieure à 0,2mm.
PCT/IB2022/061877 2021-12-08 2022-12-07 Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage WO2023105436A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IL313362A IL313362A (en) 2021-12-08 2022-12-07 Manufacturing process of a waveguide device using additive manufacturing and polishing
CN202280080431.6A CN118355559A (zh) 2021-12-08 2022-12-07 通过增材制造和抛光的波导器件的制造方法
KR1020247020196A KR20240118098A (ko) 2021-12-08 2022-12-07 적층 제조 및 연마에 의한 도파관 장치의 제조 공정
CA3239423A CA3239423A1 (fr) 2021-12-08 2022-12-07 Procede de fabrication d'un dispositif a guide d'ondes par fabrication additive et par polissage
EP22822682.5A EP4445446A1 (fr) 2021-12-08 2022-12-07 Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2113174 2021-12-08
FR2113174A FR3130080B1 (fr) 2021-12-08 2021-12-08 Procédé de fabrication d’un dispositif à guide d’ondes par fabrication additive et par polissage

Publications (1)

Publication Number Publication Date
WO2023105436A1 true WO2023105436A1 (fr) 2023-06-15

Family

ID=81326147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/061877 WO2023105436A1 (fr) 2021-12-08 2022-12-07 Procédé de fabrication d'un dispositif à guide d'ondes par fabrication additive et par polissage

Country Status (7)

Country Link
EP (1) EP4445446A1 (fr)
KR (1) KR20240118098A (fr)
CN (1) CN118355559A (fr)
CA (1) CA3239423A1 (fr)
FR (1) FR3130080B1 (fr)
IL (1) IL313362A (fr)
WO (1) WO2023105436A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120084968A1 (en) 2010-09-29 2012-04-12 Jayesh Nath Systems and methods for manufacturing passive waveguide components
CN106757039A (zh) 2017-02-23 2017-05-31 浙江大学 一种铝氧化抛光液及其制备方法
GB2575365A (en) 2018-07-05 2020-01-08 South West Metal Finishing Ltd Process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120084968A1 (en) 2010-09-29 2012-04-12 Jayesh Nath Systems and methods for manufacturing passive waveguide components
CN106757039A (zh) 2017-02-23 2017-05-31 浙江大学 一种铝氧化抛光液及其制备方法
CN106757039B (zh) * 2017-02-23 2019-03-26 浙江大学 一种铝氧化抛光液及其制备方法
GB2575365A (en) 2018-07-05 2020-01-08 South West Metal Finishing Ltd Process

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALI USMAN ET AL.: "VACUUM", vol. 177, 22 April 2020, PERGAMON PRESS, article "Internai surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing"
ALI USMAN ET AL: "Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing", VACUUM, PERGAMON PRESS, GB, vol. 177, 22 April 2020 (2020-04-22), XP086158599, ISSN: 0042-207X, [retrieved on 20200422], DOI: 10.1016/J.VACUUM.2020.109314 *
LORENTE J A ET AL.: "MICROWAVE CONFERENCE", 29 September 2009, IEEE, article "Single part microwave 1-5,17 filters made from selective laser melting", pages: 1421 - 1424
LORENTE J A ET AL: "Single part microwave filters made from selective laser melting", MICROWAVE CONFERENCE, 2009. EUMC 2009. EUROPEAN, IEEE, PISCATAWAY, NJ, USA, 29 September 2009 (2009-09-29), pages 1421 - 1424, XP031669976, ISBN: 978-1-4244-4748-0 *
PETRONILO MARTIN-IGLESIAS ET AL.: "Additive Manufacturing for RF Passive Hardware", 46TH EUROPEAN MICROWAVE CONFERENCE, 4 October 2016 (2016-10-04), pages 1 - 174, XP055532431
PETRONILO MARTIN-IGLESIAS ET AL: "Additive Manufacturing for RF Passive Hardware", 3 October 2016 (2016-10-03) - 6 October 2016 (2016-10-06), pages 1 - 174, XP055532431, Retrieved from the Internet <URL:https://intranet.birmingham.ac.uk/eps/documents/public/emuw2/WM03.pdf> [retrieved on 20181210] *
SKAIK TALAL ET AL: "3D Printed Microwave Components for Frequencies above 100 GHz", 2021 IEEE MTT-S INTERNATIONAL MICROWAVE FILTER WORKSHOP (IMFW), IEEE, 17 November 2021 (2021-11-17), pages 246 - 248, XP034055038, DOI: 10.1109/IMFW49589.2021.9642299 *

Also Published As

Publication number Publication date
CN118355559A (zh) 2024-07-16
FR3130080A1 (fr) 2023-06-09
IL313362A (en) 2024-08-01
CA3239423A1 (fr) 2023-06-15
EP4445446A1 (fr) 2024-10-16
KR20240118098A (ko) 2024-08-02
FR3130080B1 (fr) 2024-05-10

Similar Documents

Publication Publication Date Title
EP3465815B1 (fr) Guide d&#39;ondes comprenant une couche conductrice épaisse
EP3424103B1 (fr) Procédé de fabrication additive d&#39;un guide d&#39;onde ainsi que dispositifs à guide d&#39;onde fabriqués selon ce procédé
WO2023105436A1 (fr) Procédé de fabrication d&#39;un dispositif à guide d&#39;ondes par fabrication additive et par polissage
EP3953990A1 (fr) Dispositif à guide d&#39;ondes et procédé de fabrication de ce dispositif
EP3503283B1 (fr) Dispositif radiofréquence passif, et procédé de fabrication
EP3939115B1 (fr) Procédé de fabrication d&#39;un dispositif à guide d&#39;ondes par fabrication additive et électrodéposition, et produit semi-fini
WO2024189515A1 (fr) Procédé d&#39;adaptation de la réponse en fréquence d&#39;un dispositif radiofréquence
KR100960005B1 (ko) 알에프 장비의 도금 방법 및 이에 의해 제조된 알에프 장비
FR2751795A1 (fr) Cavite microlaser et microlaser a selection de mode, et procedes de fabrication
FR3111743A1 (fr) Dispositif à guide d’ondes flexible et procédé de fabrication d’un tel dispositif
EP0091352B1 (fr) Procédé de fabrication d&#39;un guide d&#39;onde pour émetteur-récepteur d&#39;ondes électro-magnétiques, et guide d&#39;onde obtenu par ce procédé
WO2021224074A1 (fr) Procede de fabrication d&#39;un guide d&#39;onde et guide d&#39;onde fabrique via le procede
EP0129453B1 (fr) Procédé de fabrication d&#39;une ligne coaxiale à grande résistance thermique
EP3693497B1 (fr) Revêtement anti-multipactor déposé sur composant métallique rf ou mw, procédé de réalisation par texturation laser d&#39;un tel revêtement
EP0018885A1 (fr) Procédé de fabrication de cavités hyperfréquences, noyaux utilisés dans ce procédé et cavités obtenues par ce procédé
EP3827473B1 (fr) Filtre à guide d&#39;ondes adapté pour un procédé de fabrication additive
FR2769376A1 (fr) Procede de fabrication d&#39;un dispositif a guide d&#39;ondes optique utilisant un systeme a plasma couple de maniere inductive
Bini et al. Electroforming procedures applied to the construction of 11.4 GHz linear accelerating structures: status report on SALAF activity
FR3095080A1 (fr) Dispositif radiofréquence passif comprenant des ouvertures axiales de fixation
FR3057677A1 (fr) Procede de fabrication d&#39;un guide d&#39;onde
EP0865097A1 (fr) Procédé et dispositif de fabrication en guides d&#39;ondes à fentes, notamment utilisables pour des longueurs d&#39;ondes millimétriques
FR3057675A1 (fr) Procede de fabrication d&#39;un guide d&#39;onde

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22822682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3239423

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2024532792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 313362

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20247020196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022822682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022822682

Country of ref document: EP

Effective date: 20240708