WO2023104184A1 - 冲击地压巷道安全监测方法及装置 - Google Patents

冲击地压巷道安全监测方法及装置 Download PDF

Info

Publication number
WO2023104184A1
WO2023104184A1 PCT/CN2022/137909 CN2022137909W WO2023104184A1 WO 2023104184 A1 WO2023104184 A1 WO 2023104184A1 CN 2022137909 W CN2022137909 W CN 2022137909W WO 2023104184 A1 WO2023104184 A1 WO 2023104184A1
Authority
WO
WIPO (PCT)
Prior art keywords
roadway
support structure
instability
rock
deformation
Prior art date
Application number
PCT/CN2022/137909
Other languages
English (en)
French (fr)
Inventor
吴拥政
付玉凯
何杰
周鹏赫
孙卓越
郝登云
Original Assignee
天地科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天地科技股份有限公司 filed Critical 天地科技股份有限公司
Priority to AU2022407340A priority Critical patent/AU2022407340A1/en
Publication of WO2023104184A1 publication Critical patent/WO2023104184A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/303Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated only by free-falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the present application relates to the technical field of coal mining, in particular to a method and device for monitoring the safety of rock burst tunnels.
  • the number of occurrences of roadway rock burst accounts for about 85% of the total rock burst, and the mining roadway has the highest proportion in the roadway rock burst. Because the mining roadway is affected by the advanced mining stress, the impact energy and frequency of the mining roadway are usually Larger, and the surrounding rock damage is also more serious.
  • a rock burst accident occurred during the initial mining of the 1305 working face of Zhaolou Coal Mine of Shandong Yankuang Group. 14 were broken, 13 steel sheds fell within 40m from the working side of the auxiliary transportation lane, 38 single pillars were broken, and 12 anchor rods (cables) were broken, causing 3 workers to be injured.
  • rock burst prevention and control documents Due to the frequent occurrence of rock burst accidents in recent years, relevant departments and relevant coal enterprises have issued a number of rock burst prevention and control documents to further strengthen the prevention and control of rock burst disasters, emphasizing the strong support and protection of rock burst roadways, The joint support of anchor rod and anchor cable in individual mining areas has been changed to full anchor cable support. At the same time, "O" type sheds, anti-scour brackets, etc. have been added for auxiliary support. The continuous improvement of support strength has greatly increased the impact of rock burst.
  • the production cost of the mine and the treatment cost of the rock burst mine mining roadway are as high as 30,000 yuan per linear meter.
  • This application provides a method and device for rock burst roadway safety monitoring, which is used to solve the blindness in the design of the roadway support system in the prior art, and the roadway is prone to collapse, roof fall, and closure defects, so as to realize the reliability of the support system. Verification, as well as the optimization of the support design of the roadway, improve the safety of the roadway.
  • the application provides a safety monitoring method for rock burst roadway, including:
  • the safety level of the roadway is determined according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and supplementary measures for roadway safety are determined based on the safety level of the roadway.
  • the vibration velocity, strain and stress of the roadway surrounding rock during the monitored rock burst occurrence process are compared with the critical value of the instability of the roadway surrounding rock, Determining the stability of the roadway surrounding rock includes:
  • Vibration sensors, fiber grating multi-point displacement gauges and stress gauges are installed at a certain distance from the surrounding surface of the roadway to monitor the vibration field, deformation field and stress field of the roadway surrounding rock, and determine the vibration velocity of the roadway surrounding rock during rock burst , strain and stress;
  • the vibration velocity, strain and stress of the surrounding rock of the roadway are compared with the critical value of instability of the surrounding rock to determine the stability of the surrounding rock of the roadway.
  • the method also includes:
  • the critical value of the instability of the surrounding rock of the roadway includes the critical impact velocity of the instability of the surrounding rock of the roadway, the critical dynamic load of the instability of the surrounding rock of the roadway and the critical strain of the instability of the surrounding rock of the roadway.
  • determining the stability of the first support structure includes:
  • the stress of the first support structure and the deformation of the first support structure are compared with a critical value of instability of the first support structure to determine the stability of the first support structure.
  • the first support structure includes anchor rods and anchor cables, and the critical value of the instability of the first support structure includes the dynamic load breaking force of the anchor rod , The deformation of the dynamic load breaking of the anchor rod, the force of the dynamic load breaking of the anchor cable and the deformation of the dynamic load breaking of the anchor cable;
  • the method further includes:
  • the drop hammer impact of the first target direction and the first target speed is applied to the anchor rod and the anchor cable by the drop hammer impact testing machine, and the dynamic load breaking force of the anchor rod, the deformation amount of the anchor rod dynamic load breaking, and the dynamic load of the anchor cable are determined.
  • determining the stability of the second support structure includes:
  • the stress of the second support structure and the deformation of the second support structure are compared with the critical value of instability of the second support structure to determine the stability of the second support structure.
  • the second support structure includes a steel shed and an anti-scourrence support
  • the critical value of the instability of the second support structure includes the dynamic load fracture of the steel shed. force, the deformation of steel shed under dynamic load breaking, the force of anti-shock support and the deformation of anti-shock support;
  • the method further includes:
  • the force of the anti-shock support and the deformation of the anti-shock support are determined.
  • the roadway safety is determined according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure Level, and based on the level of roadway safety to determine roadway safety supplementary measures include:
  • the roadway safety level is the first level
  • the roadway safety supplementary measures are the first measures
  • the roadway safety level is determined to be the second level, and the roadway safety supplementary measures are as follows: second measure; or
  • the roadway safety level is the second level, and the roadway safety supplementary measures are the second measures;
  • the roadway safety level is the third level
  • the roadway safety supplementary measures are the third measures.
  • the present application also provides a rock burst roadway safety monitoring device, including:
  • the first monitoring module is used to compare the vibration velocity, strain and stress of the surrounding rock of the roadway during the occurrence of the monitored rock burst with the critical value of the instability of the surrounding rock of the roadway to determine the stability of the surrounding rock of the roadway;
  • the second monitoring module is used to compare the monitored force and deformation of the first support structure during the occurrence of rock burst with the critical value of the instability of the first support structure, and determine the first support structure stability; wherein, the first support structure is located on the roadway surface;
  • the third monitoring module is used to compare the monitored force and deformation of the second support structure during the occurrence of rock burst with the critical value of the instability of the second support structure, and determine the second support structure stability; wherein, the second support structure is located in the inner space of the roadway;
  • a safety determination module configured to determine the safety level of the roadway according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and determine the safety level of the roadway based on the safety level of the roadway Additional measures for roadway safety.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. The steps of the roadway safety monitoring method.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the steps of any method for monitoring rock burst roadway safety described above are implemented.
  • the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, the steps of any one of the methods for monitoring rock burst roadway safety described above are implemented.
  • the rock burst roadway safety monitoring method and device provided in this application, through the establishment of a three-level monitoring system for the roadway external surrounding rock, roadway surface layer and roadway internal space in the rock burst roadway, comprehensively capture the roadway surrounding rock,
  • the stress and deformation data of the primary support structure and the secondary support structure can realize the comprehensive evaluation of the stability of the roadway surrounding rock and support structure, so as to ensure the safe use of the rock burst roadway.
  • the comprehensive monitoring and evaluation results can also provide dynamic feedback to the roadway support design of rock burst, verify the reliability of the support system, and realize the dynamic optimization of the roadway support design.
  • Fig. 1 is a schematic flow chart of the rock burst roadway safety monitoring method provided by the present application
  • Figure 2 is a schematic diagram of the three-level detection provided by the present application.
  • Fig. 3 is a structural schematic diagram of the rock burst roadway safety monitoring device provided by the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • the rock burst roadway safety monitoring method includes: step 100 , step 101 , step 102 and step 103 .
  • Step 100 comparing the monitored vibration velocity, strain and stress of the surrounding rock of the roadway during the occurrence of rock burst with the critical value of instability of the surrounding rock of the roadway to determine the stability of the surrounding rock of the roadway.
  • the roadway safety detection is divided into three levels, as shown in Figure 2, the first level is the surrounding rock, the second level is the first support structure on the surface of the roadway, such as anchor rods and anchor cables, and the third level is the surrounding rock. It is the second supporting structure of the inner space of the roadway, such as steel shed and anti-scourrence support.
  • vibration sensors by setting vibration sensors, fiber grating multi-point displacement gauges and stress gauges at a certain distance from the surrounding surface of the roadway to monitor the vibration field, deformation field and stress field of the surrounding rock of the roadway, it is possible to determine the Rock vibration velocity, strain and stress;
  • the vibration velocity, strain and stress of the surrounding rock of the roadway are compared with the critical value of instability of the surrounding rock to determine the stability of the surrounding rock of the roadway.
  • the method before comparing the monitored force and deformation of the first support structure during the occurrence of rock burst with the critical value of instability of the first support structure, the method further includes:
  • the critical value of the instability of the surrounding rock of the roadway includes the critical impact velocity of the instability of the surrounding rock of the roadway, the critical dynamic load of the instability of the surrounding rock of the roadway and the critical strain of the instability of the surrounding rock of the roadway.
  • the Hopkinson compression bar test device can be used to apply three-dimensional stress to the standard sample.
  • the applied stress is the same as the field stress. It can be understood that the three-dimensional stress is applied to simulate the force on the surrounding rock in the field. Then, impact tests with different impact rates are carried out to determine the impact velocity, dynamic load and strain that lead to the critical instability of the surrounding rock.
  • Step 101 comparing the monitored force and deformation of the first support structure during the occurrence of rock burst with the critical value of the instability of the first support structure to determine the stability of the first support structure; Wherein, the first support structure is located on the surface layer of the roadway.
  • the force of the first support structure and the deformation of the first support structure during the occurrence of rock burst are detected;
  • the stress of the first support structure and the deformation of the first support structure are compared with a critical value of instability of the first support structure to determine the stability of the first support structure.
  • Monitoring devices such as dynamometers and displacement meters can be installed on the anchor rods and anchor cables on the surface of the roadway to monitor the stress and deformation of the anchor rods and anchor cables under static and dynamic loads.
  • the stability critical value is compared and judged to determine whether the anchor bolt and anchor cable support system is stable.
  • the first support structure includes anchor rods and anchor cables
  • the critical value of the instability of the first support structure includes the force of anchor rod dynamic load breaking, the deformation of anchor rod dynamic load breaking, the anchor The force of the dynamic load breaking of the cable and the deformation of the dynamic load breaking of the anchor cable;
  • the method further includes:
  • the drop hammer impact of the first target direction and the first target speed is applied to the anchor rod and the anchor cable by the drop hammer impact testing machine, and the dynamic load breaking force of the anchor rod, the deformation amount of the anchor rod dynamic load breaking, and the dynamic load of the anchor cable are determined.
  • Step 102 comparing the monitored force and deformation of the second support structure during the occurrence of rock burst with the critical value of instability of the second support structure to determine the stability of the second support structure; Wherein, the second supporting structure is located in the inner space of the roadway.
  • the force of the second support structure and the deformation of the second support structure during the occurrence of rock burst are detected;
  • the stress of the second support structure and the deformation of the second support structure are compared with the critical value of instability of the second support structure to determine the stability of the second support structure.
  • a dynamometer can be installed on the top of the steel shed and at the legs of the shed, and a displacement meter can also be installed at the corresponding position to monitor the static and dynamic load and deformation of the steel shed.
  • a dynamometer can be installed on the top beam of the anti-shock support, and a displacement meter can be installed on the column to monitor the force and deformation of the anti-shock support. The monitoring results are compared with the critical value of instability obtained from the experimental test to determine whether the support system of the steel shed and the anti-scouring bracket is stable.
  • each sensor in step 100-step 102 should adopt high-frequency response, the frequency response should not be lower than 5000HZ, and the collection frequency of the collection system should reach above 1000HZ, so as to ensure the The force and deformation data of the support structure during the whole process of rock burst were collected.
  • the second support structure includes a steel shed and an anti-scourrence bracket
  • the critical value of the instability of the second support structure includes the force of the dynamic load breaking of the steel shed, the deformation of the steel shed under dynamic load, The stress of the anti-shock support and the deformation of the anti-shock support;
  • the method further includes:
  • the force of the anti-shock support and the deformation of the anti-shock support are determined.
  • the original size test can be carried out on a 6500kN static-dynamic composite loading hydraulic impact testing machine to test the energy absorbed by the anti-scourrence bracket used in the roadway. During the test, the impact speed and direction should be as consistent as possible with the site. The force and deformation of the critical value of stent instability.
  • step 100 is not limited.
  • Step 103 Determine the safety level of the roadway according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and determine supplementary measures for roadway safety based on the safety level of the roadway .
  • the roadway safety level is the first level
  • the roadway safety supplementary measures are the first measures
  • the monitoring results of the roadway three-level monitoring system are far less than its critical value.
  • the corresponding first measure can be to optimize the support system and other anti-scouring means, and appropriately reduce the support strength. Realize the dynamic optimization support design of the roadway.
  • the roadway safety level is the second level, and the roadway safety supplement The measure is the second measure
  • the roadway safety level is the second level, and the roadway safety supplementary measures are the second measures;
  • the second measure can be to deal with the monitoring area exceeding the critical value. If the surrounding rock exceeds the critical value, grouting reinforcement shall be carried out; if the anchor rod or anchor cable support system exceeds the critical value, the anchor rod or anchor cable shall be reinforced; if the steel shed and anti-scourrence bracket exceed the critical value, it shall be replaced in time.
  • the roadway safety level is determined to be the third level, and the roadway safety supplementary measures are the third measures.
  • the safety level of the roadway is determined to be the third level.
  • the third measure can be to evacuate the staff in time, and it is necessary to re-assess the support system and other anti-scouring means to ensure the safety of the rock burst roadway.
  • the comprehensive monitoring and evaluation results can also provide dynamic feedback to the roadway support design of rock burst, verify the reliability of the support system, and realize the dynamic optimization of the roadway support design.
  • rock burst roadway safety monitoring device provided by the present application.
  • the rock burst roadway safety monitoring device described below and the rock burst roadway safety monitoring method described above can be referred to in correspondence.
  • the roadway safety monitoring device for rock burst includes a first monitoring module 310 , a second monitoring module 320 , a third monitoring module 330 and a safety determination module 340 .
  • the first monitoring module 310 is used to compare the monitored vibration velocity, strain and stress of the surrounding rock of the roadway during the occurrence of rock burst with the critical value of the instability of the surrounding rock of the roadway to determine the stability of the surrounding rock of the roadway ;
  • the second monitoring module 320 is used to compare the monitored force and deformation of the first support structure during the occurrence of rock burst with the critical value of the instability of the first support structure, and determine the first support structure Stability of the structure; wherein, the first support structure is located on the roadway surface;
  • the third monitoring module 330 is used to compare the monitored force and deformation of the second support structure during the occurrence of rock burst with the critical value of the instability of the second support structure, and determine the second support structure Stability of the structure; wherein, the second support structure is located in the inner space of the roadway;
  • a safety determination module 340 configured to determine the safety level of the roadway according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and based on the safety level of the roadway Identify supplementary measures for roadway safety.
  • the first monitoring module 310 is also used for:
  • Vibration sensors, fiber grating multi-point displacement gauges and stress gauges are installed at a certain distance from the surrounding surface of the roadway to monitor the vibration field, deformation field and stress field of the roadway surrounding rock, and determine the vibration velocity of the roadway surrounding rock during rock burst , strain and stress;
  • the vibration velocity, strain and stress of the surrounding rock of the roadway are compared with the critical value of instability of the surrounding rock to determine the stability of the surrounding rock of the roadway.
  • the device further includes a first critical value determination module, which is used to determine the relationship between the force and deformation of the first support structure and the instability of the first support structure during the occurrence of the monitored rock burst.
  • a first critical value determination module which is used to determine the relationship between the force and deformation of the first support structure and the instability of the first support structure during the occurrence of the monitored rock burst.
  • the critical value of the instability of the surrounding rock of the roadway includes the critical impact velocity of the instability of the surrounding rock of the roadway, the critical dynamic load of the instability of the surrounding rock of the roadway and the critical strain of the instability of the surrounding rock of the roadway.
  • the second monitoring module 320 is also used for:
  • the stress of the first support structure and the deformation of the first support structure are compared with a critical value of instability of the first support structure to determine the stability of the first support structure.
  • the first support structure includes anchor rods and anchor cables
  • the critical value of the instability of the first support structure includes the force of anchor rod dynamic load breaking, the deformation of anchor rod dynamic load breaking, the anchor The force of the dynamic load breaking of the cable and the deformation of the dynamic load breaking of the anchor cable;
  • the device also includes a second critical value determining module, which is used to compare the stress and deformation of the first support structure with the critical value of the instability of the first support structure during the monitored rock burst occurrence process
  • a second critical value determining module which is used to compare the stress and deformation of the first support structure with the critical value of the instability of the first support structure during the monitored rock burst occurrence process
  • the third monitoring module 330 is also used for:
  • the stress of the second support structure and the deformation of the second support structure are compared with the critical value of instability of the second support structure to determine the stability of the second support structure.
  • the second support structure includes a steel shed and an anti-scourrence bracket
  • the critical value of the instability of the second support structure includes the force of the dynamic load breaking of the steel shed, the deformation of the steel shed under dynamic load, The stress of the anti-shock support and the deformation of the anti-shock support;
  • the device also includes a third critical value determining module, which is used to compare the force and deformation of the second support structure with the critical value of instability of the second support structure during the monitored rock burst occurrence process Before, the drop hammer impact of the second target direction and the second target speed was applied to the steel shed by the drop hammer impact testing machine to determine the force of the dynamic load breaking of the steel shed and the deformation of the steel shed under dynamic load breaking;
  • the force of the anti-shock support and the deformation of the anti-shock support are determined.
  • the security determination module 340 is also used for:
  • the roadway safety level is the first level
  • the roadway safety supplementary measures are the first measures
  • the roadway safety level is determined to be the second level, and the roadway safety supplementary measures are as follows: second measure; or
  • the roadway safety level is the second level, and the roadway safety supplementary measures are the second measures;
  • the roadway safety level is the third level
  • the roadway safety supplementary measures are the third measures.
  • the rock burst roadway safety monitoring device provided by the present application can realize various processes realized by the method embodiment in FIG. 1 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 410, a communication interface (Communications Interface) 420, a memory (memory) 430 and a communication bus 440, Wherein, the processor 410 , the communication interface 420 , and the memory 430 communicate with each other through the communication bus 440 .
  • the processor 410 can invoke logic instructions in the memory 430 to execute a method for monitoring rock burst roadway safety, and the method includes:
  • the safety level of the roadway is determined according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and supplementary measures for roadway safety are determined based on the safety level of the roadway.
  • the above logic instructions in the memory 430 may be implemented in the form of software function units and be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product, the computer program product includes a computer program, the computer program can be stored on a non-transitory computer-readable storage medium, and when the computer program is executed by a processor, the computer can Implement the rock burst roadway safety monitoring method provided by each of the above methods, the method includes:
  • the safety level of the roadway is determined according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and supplementary measures for roadway safety are determined based on the safety level of the roadway.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods for monitoring rock burst roadway safety provided by the above-mentioned methods,
  • the method includes:
  • the safety level of the roadway is determined according to the stability of the surrounding rock, the stability of the first support structure and the stability of the second support structure, and supplementary measures for roadway safety are determined based on the safety level of the roadway.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

一种冲击地压巷道安全监测方法,包括将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与巷道围岩失稳的临界值比较,确定巷道围岩的稳定性(100);将监测到的冲击地压发生过程中位于巷道表层的第一支护结构的受力和形变与第一支护结构失稳的临界值比较,确定第一支护结构的稳定性(101);将监测到的冲击地压发生过程中位于巷道内部空间的第二支护结构的受力和形变与第二支护结构失稳的临界值比较,确定第二支护结构的稳定性(102);根据围岩、第一支护结构以及第二支护结构的稳定性确定巷道安全等级,并基于巷道安全等级确定巷道安全补充措施(103),综合评估巷道围岩及支护结构的稳定性,实现巷道支护设计的动态优化。还提供一种冲击地压巷道安全监测装置,以及可实现冲击地压巷道安全监测方法步骤的电子设备、非暂态计算机可读存储介质和计算机程序产品。

Description

冲击地压巷道安全监测方法及装置
相关申请的交叉引用
本申请要求于2021年12月10日提交的申请号为202111506218.0,发明名称为“冲击地压巷道安全监测方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及煤矿开采技术领域,尤其涉及一种冲击地压巷道安全监测方法及装置。
背景技术
巷道冲击地压发生的次数约占冲击地压总数85%,其中回采巷道在巷道冲击地压中的占比最高,由于回采巷道受超前采动应力的影响,回采巷道受到的冲击能量和频次通常更大,围岩破坏也较为严重。2015年7月29日,山东兖矿集团赵楼煤矿1305工作面初采时发生冲击地压事故,回风巷15~60m范围两帮移近量达3m,底鼓0.5~1m,单体支柱折断14根,辅运巷自工作面向外40m内13架钢棚掉落,单体支柱折断38根,锚杆(索)崩断12根,造成3名工人受伤。2017年11月11日,沈阳焦煤集团红阳三矿西三上采区702综采工作面回风巷发生冲击地压事故,工作面上出口向外0~214m范围巷道破坏严重,上帮煤体整体移动,底板底鼓严重,造成10人死亡;2019年6月9日,吉林龙煤集团龙家堡煤矿305工作面运输巷发生冲击地压事故,巷道破坏长度达220m,其中严重破坏段170m,防冲支架活柱弯折、压断,顶板严重下沉,两帮收缩,底板整体隆起,巷道断面接近闭合,造成9人死亡,12人受伤;2021年10月11日,陕煤集团彬长矿业公司胡家河矿402104工作面因冲击地压发生局部冒顶事故,造成4人死亡,4人重伤。
由于近年来冲击地压事故的频发,相关部门及相关煤炭企业出台多项冲击地压防控文件,进一步加强冲击地压灾害防控力度,重点强调冲击地压巷道要强支护和强防护,个别矿区锚杆与锚索联合支护改为全锚索支护, 同时又增设了“O”型棚、防冲支架等进行辅助支护,支护强度的不断提高,大大增加了冲击地压矿井的生产成本,冲击地压矿井回采巷道治理成本每延米高达3万元。即使实施了多种防冲手段,仍未达到预期防冲效果,这主要是由于重视防冲措施,但防冲措施的有效性未能得到监测评估,现有理论分析、数值计算等手段仍不能得出支护系统与冲击震源能量间的定量关系,导致冲击地压巷道支护系统设计具有很大的盲目性,支护设计仍以经验为主。最终,支护系统不适应冲击地压巷道冲击载荷和能量而失效,巷道出现坍塌、冒顶,甚至闭合。
发明内容
本申请提供一种冲击地压巷道安全监测方法及装置,用以解决现有技术中巷道支护系统设计具有盲目性,巷道易出现坍塌、冒顶、闭合的缺陷,实现对支护系统可靠性的验证,以及巷道的支护设计的优化,提高巷道的安全性。
本申请提供一种冲击地压巷道安全监测方法,包括:
将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
根据本申请提供的一种冲击地压巷道安全监测方法,所述将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性包括:
通过在距离巷道四周表面一定距离处设置震动传感器、光纤光栅多点 位移计和应力计,监测巷道围岩的震动场、变形场和应力场,确定冲击地压发生过程中巷道围岩的震动速度、应变和应力;
将所述巷道围岩的震动速度、应变和应力与围岩失稳的临界值进行比较,确定所述巷道围岩的稳定性。
根据本申请提供的一种冲击地压巷道安全监测方法,在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
对巷道围岩标准试样施加与巷道现场相同的三向应力;
对施加所述三向应力后的所述标准试样进行冲击测试,确定巷道围岩临界失稳的临界值;
所述巷道围岩失稳的临界值包括巷道围岩失稳的临界冲击速度、巷道围岩失稳的临界动载荷和巷道围岩失稳的临界应变。
根据本申请提供的一种冲击地压巷道安全监测方法,所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性包括:
通过在第一支护结构上设置测力计和位移计,检测冲击地压发生过程中第一支护结构的受力和第一支护结构的形变;
将所述第一支护结构的受力和第一支护结构的形变与所述第一支护结构失稳的临界值进行比较,确定所述第一支护结构的稳定性。
根据本申请提供的一种冲击地压巷道安全监测方法,所述第一支护结构包括锚杆和锚索,所述第一支护结构失稳的临界值包括锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量;
在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
通过落锤冲击试验机对锚杆和锚索施加第一目标方向和第一目标速度的落锤冲击,确定锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量。
根据本申请提供的一种冲击地压巷道安全监测方法,所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳 的临界值比较,确定所述第二支护结构的稳定性包括:
通过在第二支护结构上设置测力计和位移计,检测冲击地压发生过程中第二支护结构的受力和第二支护结构的形变;
将所述第二支护结构的受力和第二支护结构的形变与所述第二支护结构失稳的临界值进行比较,确定所述第二支护结构的稳定性。
根据本申请提供的一种冲击地压巷道安全监测方法,所述第二支护结构包括钢棚和防冲支架,所述第二支护结构失稳的临界值包括钢棚动载破断的受力、钢棚动载破断的形变量、防冲支架失稳的受力以及防冲支架失稳的形变量;
在所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较之前,所述方法还包括:
通过落锤冲击试验机对钢棚施加第二目标方向和第二目标速度的落锤冲击,确定钢棚动载破断的受力、钢棚动载破断的形变量;
通过测试防冲支架所吸收的能量,确定防冲支架失稳的受力和防冲支架失稳的形变量。
根据本申请提供的一种冲击地压巷道安全监测方法,所述根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施包括:
在所述巷道围岩稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第一等级,巷道安全补充措施为第一措施;或者,
在所述巷道围岩稳定、所述第一支护结构和所述第二支护结构中存在部分不稳定的支护结构的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
在所述巷道围岩不稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
在其他情况下,确定巷道安全等级为第三等级,巷道安全补充措施为第三措施。
本申请还提供一种冲击地压巷道安全监测装置,包括:
第一监测模块,用于将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
第二监测模块,用于将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
第三监测模块,用于将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
安全性确定模块,用于根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述冲击地压巷道安全监测方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述冲击地压巷道安全监测方法的步骤。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述冲击地压巷道安全监测方法的步骤。
本申请提供的冲击地压巷道安全监测方法及装置,通过在冲击地压巷道建立巷道外部围岩、巷道表层及巷道内部空间三层次监测体系,全方位捕捉冲击地压发生过程中巷道围岩、一级支护结构及被二级护结构的受力及变形等数据,可实现综合评估巷道围岩及支护结构的稳定性,从而保证冲击地压巷道的安全使用。同时,综合监测评估结果还可对冲击地压巷道支护设计进行动态反馈,验证支护系统的可靠性,实现巷道支护设计的动态优化。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的冲击地压巷道安全监测方法的流程示意图;
图2是本申请提供的三层次检测的示意图;
图3是本申请提供的冲击地压巷道安全监测装置的结构示意图;
图4是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供的冲击地压巷道安全监测方法包括:步骤100、步骤101、步骤102和步骤103。
步骤100、将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性。
需要说明的是,巷道安全检测分为三个层次,如图2所示,第一层次为围岩,第二层次为巷道表层的第一支护结构,例如锚杆、锚索,第三层次为巷道内部空间的第二支护结构,例如钢棚、防冲支架。
可选地,通过在距离巷道四周表面一定距离处设置震动传感器、光纤光栅多点位移计和应力计,监测巷道围岩的震动场、变形场和应力场,确定冲击地压发生过程中巷道围岩的震动速度、应变和应力;
将所述巷道围岩的震动速度、应变和应力与围岩失稳的临界值进行比较,确定所述巷道围岩的稳定性。
可选地,在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
对巷道围岩标准试样施加与巷道现场相同的三向应力;
对施加所述三向应力后的所述标准试样进行冲击测试,确定巷道围岩临界失稳的临界值;
所述巷道围岩失稳的临界值包括巷道围岩失稳的临界冲击速度、巷道围岩失稳的临界动载荷和巷道围岩失稳的临界应变。
可以采用霍普金森压杆试验装置,对标准试样进行三向应力施加,施加应力与现场应力相同,可以理解的是,施加三向应力是为了模拟围岩在现场的受力。然后进行不同冲击速率的冲击测试,确定出导致围岩临界失稳的冲击速度、动载荷及应变。
步骤101、将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层。
可选地,通过在第一支护结构上设置测力计和位移计,检测冲击地压发生过程中第一支护结构的受力和第一支护结构的形变;
将所述第一支护结构的受力和第一支护结构的形变与所述第一支护结构失稳的临界值进行比较,确定所述第一支护结构的稳定性。
可以在巷道表面锚杆和锚索尾部安装测力计、位移计等监测装置,监测锚杆和锚索在静载和动载下的受力和变形情况,监测结果通过与实验测试得到的失稳临界值进行对比判断,确定锚杆和锚索支护系统是否稳定。
可选地,所述第一支护结构包括锚杆和锚索,所述第一支护结构失稳的临界值包括锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量;
在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
通过落锤冲击试验机对锚杆和锚索施加第一目标方向和第一目标速度的落锤冲击,确定锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量。
可以理解的是,落锤冲击速度、方向等尽可能与现场保持一致。
步骤102、将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间。
可选地,通过在第二支护结构上设置测力计和位移计,检测冲击地压发生过程中第二支护结构的受力和第二支护结构的形变;
将所述第二支护结构的受力和第二支护结构的形变与所述第二支护结构失稳的临界值进行比较,确定所述第二支护结构的稳定性。
可以在钢棚顶部、棚腿处安装测力计,同时也在相应位置安装位移计,监测钢棚受动静载荷和变形量。可以在防冲支架顶梁上安装测力计,在立柱上安装位移计,监测防冲支架受力和变形。将监测结果通过与实验测试得到的失稳的临界值进行对比判断,确定钢棚和防冲支架支护系统是否稳定。
需要说明的是,由于冲击地压发生是瞬间的,因此,步骤100-步骤102的各传感器要采用高频响,频响不低于5000HZ,采集系统的采集频率要达到1000HZ以上,以保证能采集到冲击地压发生全过程支护结构的受力和变形数据。
可选地,所述第二支护结构包括钢棚和防冲支架,所述第二支护结构失稳的临界值包括钢棚动载破断的受力、钢棚动载破断的形变量、防冲支架失稳的受力以及防冲支架失稳的形变量;
在所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较之前,所述方法还包括:
通过落锤冲击试验机对钢棚施加第二目标方向和第二目标速度的落锤冲击,确定钢棚动载破断的受力、钢棚动载破断的形变量;
通过测试防冲支架所吸收的能量,确定防冲支架失稳的受力和防冲支架失稳的形变量。
可以理解的是,落锤冲击速度、方向等尽可能与现场保持一致。
可以采用6500kN静-动复合加载液压冲击试验机上开展原尺寸测试,测试巷道所采用防冲支架所吸收的能量,测试过程中冲击速度和方向尽可能与现场保持一致,测试完成后确定出防冲支架失稳临界值的受力和形变量。
需要说明的是,步骤100、步骤101和步骤102的先后顺序不限。
步骤103、根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级 确定巷道安全补充措施。
可选地,在所述巷道围岩稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第一等级,巷道安全补充措施为第一措施;
巷道安全等级为第一等级时,巷道三层次监测系统的监测结果远小于其临界值,此时对应的第一措施可以是对支护系统和其它防冲手段进行优化,适当降低支护强度,实现巷道的动态优化支护设计。
或者,在所述巷道围岩稳定、所述第一支护结构和所述第二支护结构中存在部分不稳定的支护结构的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;
或者,在所述巷道围岩不稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;
第二措施可以为对超过临界值的监测区域进行处理。如围岩超过临界值,要进行注浆加固;锚杆或锚索支护系统超过临界值要对锚杆或锚索进行补强;钢棚和防冲支架超过临界值要及时进行更换。
或者,在其他情况下,确定巷道安全等级为第三等级,巷道安全补充措施为第三措施。
例如,巷道围岩不稳定,且第一支护系统和第二支护系统存在不稳定的支护结构,确定巷道安全等级为第三等级。第三措施可以为及时撤出工作人员,需对支护系统及其他防冲手段重新进行论证评估,以确保冲击地压巷道的安全。
本申请实施例,通过在冲击地压巷道建立巷道外部围岩、巷道表层及巷道内部空间三层次监测体系,全方位捕捉冲击地压发生过程中巷道围岩、一级支护结构及被二级护结构的受力及变形等数据,可实现综合评估巷道围岩及支护结构的稳定性,从而保证冲击地压巷道的安全使用。同时,综合监测评估结果还可对冲击地压巷道支护设计进行动态反馈,验证支护系统的可靠性,实现巷道支护设计的动态优化。
下面对本申请提供的冲击地压巷道安全监测装置进行描述,下文描述的冲击地压巷道安全监测装置与上文描述的冲击地压巷道安全监测方法可 相互对应参照。
如图3所示,冲击地压巷道安全监测装置包括第一监测模块310、第二监测模块320、第三监测模块330和安全性确定模块340。
第一监测模块310,用于将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
第二监测模块320,用于将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
第三监测模块330,用于将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
安全性确定模块340,用于根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
可选地,第一监测模块310,还用于:
通过在距离巷道四周表面一定距离处设置震动传感器、光纤光栅多点位移计和应力计,监测巷道围岩的震动场、变形场和应力场,确定冲击地压发生过程中巷道围岩的震动速度、应变和应力;
将所述巷道围岩的震动速度、应变和应力与围岩失稳的临界值进行比较,确定所述巷道围岩的稳定性。
可选地,该装置还包括第一临界值确定模块,用于在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,对巷道围岩标准试样施加与巷道现场相同的三向应力;
对施加所述三向应力后的所述标准试样进行冲击测试,确定巷道围岩临界失稳的临界值;
所述巷道围岩失稳的临界值包括巷道围岩失稳的临界冲击速度、巷道围岩失稳的临界动载荷和巷道围岩失稳的临界应变。
可选地,第二监测模块320,还用于:
通过在第一支护结构上设置测力计和位移计,检测冲击地压发生过程 中第一支护结构的受力和第一支护结构的形变;
将所述第一支护结构的受力和第一支护结构的形变与所述第一支护结构失稳的临界值进行比较,确定所述第一支护结构的稳定性。
可选地,所述第一支护结构包括锚杆和锚索,所述第一支护结构失稳的临界值包括锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量;
该装置还包括第二临界值确定模块,用于在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,通过落锤冲击试验机对锚杆和锚索施加第一目标方向和第一目标速度的落锤冲击,确定锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量。
可选地,第三监测模块330,还用于:
通过在第二支护结构上设置测力计和位移计,检测冲击地压发生过程中第二支护结构的受力和第二支护结构的形变;
将所述第二支护结构的受力和第二支护结构的形变与所述第二支护结构失稳的临界值进行比较,确定所述第二支护结构的稳定性。
可选地,所述第二支护结构包括钢棚和防冲支架,所述第二支护结构失稳的临界值包括钢棚动载破断的受力、钢棚动载破断的形变量、防冲支架失稳的受力以及防冲支架失稳的形变量;
该装置还包括第三临界值确定模块,用于在所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较之前,通过落锤冲击试验机对钢棚施加第二目标方向和第二目标速度的落锤冲击,确定钢棚动载破断的受力、钢棚动载破断的形变量;
通过测试防冲支架所吸收的能量,确定防冲支架失稳的受力和防冲支架失稳的形变量。
安全性确定模块340,还用于:
在所述巷道围岩稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第一等级,巷道安全补充措施为第一措施;或者,
在所述巷道围岩稳定、所述第一支护结构和所述第二支护结构中存在 部分不稳定的支护结构的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
在所述巷道围岩不稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
在其他情况下,确定巷道安全等级为第三等级,巷道安全补充措施为第三措施。
本申请提供的冲击地压巷道安全监测装置能够实现图1的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)410、通信接口(Communications Interface)420、存储器(memory)430和通信总线440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑指令,以执行冲击地压巷道安全监测方法,该方法包括:
将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
此外,上述的存储器430中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算 机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的冲击地压巷道安全监测方法,该方法包括:
将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的冲击地压巷道安全监测方法,该方法包括:
将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种冲击地压巷道安全监测方法,包括:
    将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
    将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
    将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
    根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
  2. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,所述将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性包括:
    通过在距离巷道四周表面一定距离处设置震动传感器、光纤光栅多点位移计和应力计,监测巷道围岩的震动场、变形场和应力场,确定冲击地压发生过程中巷道围岩的震动速度、应变和应力;
    将所述巷道围岩的震动速度、应变和应力与围岩失稳的临界值进行比较,确定所述巷道围岩的稳定性。
  3. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
    对巷道围岩标准试样施加与巷道现场相同的三向应力;
    对施加所述三向应力后的所述标准试样进行冲击测试,确定巷道围岩临界失稳的临界值;
    所述巷道围岩失稳的临界值包括巷道围岩失稳的临界冲击速度、巷道围岩失稳的临界动载荷和巷道围岩失稳的临界应变。
  4. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,所述 将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性包括:
    通过在第一支护结构上设置测力计和位移计,检测冲击地压发生过程中第一支护结构的受力和第一支护结构的形变;
    将所述第一支护结构的受力和第一支护结构的形变与所述第一支护结构失稳的临界值进行比较,确定所述第一支护结构的稳定性。
  5. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,所述第一支护结构包括锚杆和锚索,所述第一支护结构失稳的临界值包括锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量;
    在所述将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较之前,所述方法还包括:
    通过落锤冲击试验机对锚杆和锚索施加第一目标方向和第一目标速度的落锤冲击,确定锚杆动载破断的受力、锚杆动载破断的形变量、锚索动载破断的受力以及锚索动载破断的形变量。
  6. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性包括:
    通过在第二支护结构上设置测力计和位移计,检测冲击地压发生过程中第二支护结构的受力和第二支护结构的形变;
    将所述第二支护结构的受力和第二支护结构的形变与所述第二支护结构失稳的临界值进行比较,确定所述第二支护结构的稳定性。
  7. 根据权利要求1所述的冲击地压巷道安全监测方法,其中,所述第二支护结构包括钢棚和防冲支架,所述第二支护结构失稳的临界值包括钢棚动载破断的受力、钢棚动载破断的形变量、防冲支架失稳的受力以及防冲支架失稳的形变量;
    在所述将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较之前,所述方法还包括:
    通过落锤冲击试验机对钢棚施加第二目标方向和第二目标速度的落锤冲击,确定钢棚动载破断的受力、钢棚动载破断的形变量;
    通过测试防冲支架所吸收的能量,确定防冲支架失稳的受力和防冲支架失稳的形变量。
  8. 根据权利要求1-7任一项所述的冲击地压巷道安全监测方法,其中,所述根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施包括:
    在所述巷道围岩稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第一等级,巷道安全补充措施为第一措施;或者,
    在所述巷道围岩稳定、所述第一支护结构和所述第二支护结构中存在部分不稳定的支护结构的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
    在所述巷道围岩不稳定、所述第一支护结构稳定且所述第二支护结构稳定的情况下,确定巷道安全等级为第二等级,巷道安全补充措施为第二措施;或者
    在其他情况下,确定巷道安全等级为第三等级,巷道安全补充措施为第三措施。
  9. 一种冲击地压巷道安全监测装置,包括:
    第一监测模块,用于将监测到的冲击地压发生过程中巷道围岩的震动速度、应变和应力与所述巷道围岩失稳的临界值比较,确定所述巷道围岩的稳定性;
    第二监测模块,用于将监测到的冲击地压发生过程中第一支护结构的受力和形变与所述第一支护结构失稳的临界值比较,确定所述第一支护结构的稳定性;其中,所述第一支护结构位于巷道表层;
    第三监测模块,用于将监测到的冲击地压发生过程中第二支护结构的受力和形变与所述第二支护结构失稳的临界值比较,确定所述第二支护结构的稳定性;其中,所述第二支护结构位于巷道内部空间;
    安全性确定模块,用于根据所述围岩的稳定性、所述第一支护结构的稳定性以及所述第二支护结构的稳定性确定巷道安全等级,并基于所述巷道安全等级确定巷道安全补充措施。
  10. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至8任一项所述冲击地压巷道安全监测方法的步骤。
  11. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述冲击地压巷道安全监测方法的步骤。
  12. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述冲击地压巷道安全监测方法的步骤。
PCT/CN2022/137909 2021-12-10 2022-12-09 冲击地压巷道安全监测方法及装置 WO2023104184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022407340A AU2022407340A1 (en) 2021-12-10 2022-12-09 Rock burst roadway safety monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111506218.0 2021-12-10
CN202111506218.0A CN114383717B (zh) 2021-12-10 2021-12-10 冲击地压巷道安全监测方法及装置

Publications (1)

Publication Number Publication Date
WO2023104184A1 true WO2023104184A1 (zh) 2023-06-15

Family

ID=81196196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137909 WO2023104184A1 (zh) 2021-12-10 2022-12-09 冲击地压巷道安全监测方法及装置

Country Status (3)

Country Link
CN (1) CN114383717B (zh)
AU (1) AU2022407340A1 (zh)
WO (1) WO2023104184A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735387A (zh) * 2023-08-08 2023-09-12 河海大学 复杂条件下洞室冲击动力响应试验装置及测试方法
CN117235461A (zh) * 2023-11-06 2023-12-15 中国矿业大学(北京) 巷道支护等级确定方法、装置、电子设备及存储介质
CN117780446A (zh) * 2024-02-26 2024-03-29 山东焱鑫矿用材料加工有限公司 针对煤矿支护的安全性能监测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383717B (zh) * 2021-12-10 2023-11-17 中煤科工开采研究院有限公司 冲击地压巷道安全监测方法及装置
CN116465741A (zh) * 2023-05-08 2023-07-21 中煤科工西安研究院(集团)有限公司 一种防水煤柱稳定性快速评价方法
CN116579668B (zh) * 2023-07-12 2023-09-26 中国矿业大学(北京) 切顶自成巷留巷效果测评方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337607A1 (de) * 1983-10-15 1985-05-09 Bergwerksverband Gmbh, 4300 Essen Verfahren zur gefahrensfrueherkennung bei gebirgsschlaggefaehrdung und vorrichtung zur durchfuehrung des verfahrens
US4581712A (en) * 1982-11-10 1986-04-08 Perry Huey J Roof pressure monitoring system
CN104374655A (zh) * 2014-11-30 2015-02-25 湖南科技大学 一种冲击扰动围岩试验设备
CN104454010A (zh) * 2014-12-10 2015-03-25 西安科技大学 一种深井巷道掘进施工动态综合监测预警系统与预警方法
CN104594949A (zh) * 2015-01-16 2015-05-06 湖南科技大学 一种锚杆支护巷道围岩的健康诊断方法
CN110779574A (zh) * 2019-10-30 2020-02-11 北京科技大学 一种煤岩动力灾害多系统多参量集成综合预警方法及系统
CN112067224A (zh) * 2020-09-18 2020-12-11 中煤科工开采研究院有限公司 落锤冲击模式下锚杆全程动载响应特征的检测方法
CN112431596A (zh) * 2020-11-26 2021-03-02 中煤科工开采研究院有限公司 冲击地压巷道三级防控方法
CN112963202A (zh) * 2021-02-05 2021-06-15 中煤科工开采研究院有限公司 冲击地压监测预警方法及系统
CN113756869A (zh) * 2021-08-16 2021-12-07 中煤科工开采研究院有限公司 一种冲击地压局部监测预警系统及方法
CN114383717A (zh) * 2021-12-10 2022-04-22 中煤科工开采研究院有限公司 冲击地压巷道安全监测方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233777B (zh) * 2013-05-17 2015-09-02 上海大屯能源股份有限公司 一种顶板安全矿压监测方法及装置
CN106339798A (zh) * 2016-08-20 2017-01-18 辽宁工程技术大学 一种基于模糊综合评判法的软岩斜井井筒支护体系稳定性评价方法
CN109556775A (zh) * 2018-11-08 2019-04-02 魏全德 一种监测冲击地压危险性的方法
CN109490086B (zh) * 2018-12-24 2021-03-02 山东科技大学 一种巷道围岩支护强度试验装置及强度确定方法
CN111472840B (zh) * 2020-04-07 2020-11-13 北京科技大学 一种采动围岩地压灾害智能预测方法及系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581712A (en) * 1982-11-10 1986-04-08 Perry Huey J Roof pressure monitoring system
DE3337607A1 (de) * 1983-10-15 1985-05-09 Bergwerksverband Gmbh, 4300 Essen Verfahren zur gefahrensfrueherkennung bei gebirgsschlaggefaehrdung und vorrichtung zur durchfuehrung des verfahrens
CN104374655A (zh) * 2014-11-30 2015-02-25 湖南科技大学 一种冲击扰动围岩试验设备
CN104454010A (zh) * 2014-12-10 2015-03-25 西安科技大学 一种深井巷道掘进施工动态综合监测预警系统与预警方法
CN104594949A (zh) * 2015-01-16 2015-05-06 湖南科技大学 一种锚杆支护巷道围岩的健康诊断方法
CN110779574A (zh) * 2019-10-30 2020-02-11 北京科技大学 一种煤岩动力灾害多系统多参量集成综合预警方法及系统
CN112067224A (zh) * 2020-09-18 2020-12-11 中煤科工开采研究院有限公司 落锤冲击模式下锚杆全程动载响应特征的检测方法
CN112431596A (zh) * 2020-11-26 2021-03-02 中煤科工开采研究院有限公司 冲击地压巷道三级防控方法
CN112963202A (zh) * 2021-02-05 2021-06-15 中煤科工开采研究院有限公司 冲击地压监测预警方法及系统
CN113756869A (zh) * 2021-08-16 2021-12-07 中煤科工开采研究院有限公司 一种冲击地压局部监测预警系统及方法
CN114383717A (zh) * 2021-12-10 2022-04-22 中煤科工开采研究院有限公司 冲击地压巷道安全监测方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116735387A (zh) * 2023-08-08 2023-09-12 河海大学 复杂条件下洞室冲击动力响应试验装置及测试方法
CN116735387B (zh) * 2023-08-08 2023-11-14 河海大学 复杂条件下洞室冲击动力响应试验装置及测试方法
CN117235461A (zh) * 2023-11-06 2023-12-15 中国矿业大学(北京) 巷道支护等级确定方法、装置、电子设备及存储介质
CN117235461B (zh) * 2023-11-06 2024-01-26 中国矿业大学(北京) 巷道支护等级确定方法、装置、电子设备及存储介质
CN117780446A (zh) * 2024-02-26 2024-03-29 山东焱鑫矿用材料加工有限公司 针对煤矿支护的安全性能监测方法及系统
CN117780446B (zh) * 2024-02-26 2024-05-28 山东焱鑫矿用材料加工有限公司 针对煤矿支护的安全性能监测方法及系统

Also Published As

Publication number Publication date
CN114383717B (zh) 2023-11-17
CN114383717A (zh) 2022-04-22
AU2022407340A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
WO2023104184A1 (zh) 冲击地压巷道安全监测方法及装置
Xiang et al. Experimental study on the dynamic behavior of T-shaped steel reinforced concrete columns under impact loading
Özkılıç et al. Mid-spliced end-plated replaceable links for eccentrically braced frames
CN104533443A (zh) 一种坚硬顶板矿井冲击地压灾害危险性预测分析方法
Culache et al. Robustness of beam-to-column end-plate moment connections with stainless steel bolts subjected to high rates of loading
CN110489926B (zh) 一种基于地层变形的海底隧道施工过程控制方法及系统
Main et al. Robustness of precast concrete frames: Experimental and computational studies
Sun et al. Numerical implementation of rock bolts with yield and fracture behaviour under tensile-shear load
Guo et al. Experimental and numerical assessment of scoured bridges with protective bonded steel plates against vessel impact
Li et al. Case study on the mining‐induced stress evolution of an extra‐thick coal seam under hard roof conditions
Xiong et al. Failure mechanism and 3D physical modeling test of coal face pyramid sliding in steeply inclined working face: a case study
Wang et al. An improved numerical simulation approach for the failure of rock bolts subjected to tensile load in deep roadway
Zhong et al. Seismic behavior of steel beam-column connection with assembled steel rod energy dissipaters
Wang et al. The influence of the inclination of lattice columns on the safety of combined tower crane
Li et al. Research on failure criteria and collapse height of roadway roof strata based on energy accumulation and dissipation characteristics
Shi et al. Experimental study and numerical analysis on impact resistance of civil air defense engineering shear wall
Zhou et al. Study on rock burst event disaster and prevention mechanisms of hard roof
Yang et al. Evolution of Mining‐Induced Stress in Downward Mining of Short‐Distance Multiseam
Broujerdian et al. A Parametric study on the progressive collapse potential of steel buildings under truck collision
Gu et al. Research of rock burst risk induced by mining and field case in anticlinal control area
Yang et al. Experimental Research and Theoretical Analysis of the Seismic Behavior of Prefabricated Semirigid Steel Frame with X‐Shaped Braces
Zhai et al. Research on Hydraulic Fracturing Pressure Relief Technology in the Deep High‐Stress Roadway for Surrounding Rock Control
Higuchi et al. Evaluation of the seismic performance of dual anchored sheet pile wall
Xu et al. Mechanism and control of cable breakage in a roadway with thick top coal in a rockburst mine
Laszlo et al. Local and global effects in steel buildings frames due to blast load

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022407340

Country of ref document: AU

Ref document number: AU2022407340

Country of ref document: AU