WO2023103771A1 - 医用光学示踪系统 - Google Patents

医用光学示踪系统 Download PDF

Info

Publication number
WO2023103771A1
WO2023103771A1 PCT/CN2022/133680 CN2022133680W WO2023103771A1 WO 2023103771 A1 WO2023103771 A1 WO 2023103771A1 CN 2022133680 W CN2022133680 W CN 2022133680W WO 2023103771 A1 WO2023103771 A1 WO 2023103771A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
medical
catheter
tracer
Prior art date
Application number
PCT/CN2022/133680
Other languages
English (en)
French (fr)
Inventor
周星
Original Assignee
周星
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周星 filed Critical 周星
Publication of WO2023103771A1 publication Critical patent/WO2023103771A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/3941Photoluminescent markers

Definitions

  • the invention relates to a medical tracer system, in particular to a medical optical tracer system.
  • tumor tissues can be found in very small volumes, such as lung nodules, uterine fibroids, esophageal tumors, and liver tumors. Due to the small size of these tumor tissues, such as pulmonary nodules, it is difficult to accurately identify them during laparoscopic resection. Therefore, it is necessary to mark the tumor tissues that need to be removed to facilitate surgical resection under laparoscope.
  • the existing technology is still unable to mark the blood vessels, ureters, fallopian tubes, vas deferens, trachea, etc. hidden in the tissue with visible light, which is not convenient for identification under laparoscopic surgery. Therefore, it is necessary to develop a visible light marking technology and device under a laparoscope, so as to identify blood vessels, ureters, fallopian tubes, vas deferens, trachea and other lumens and solid tumors under a laparoscope.
  • the invention discloses a technology for marking blood vessels, ureters, fallopian tubes, vas deferens, trachea and other lumens based on visible light technology, as well as a marking technology and device for solid tumors.
  • the purpose of the present invention is to solve the problem that blood vessels, tissues, organs or small-sized tumors cannot be accurately marked under the laparoscope in existing clinical operations. , accurately identify blood vessels, tissues or organs that need to be protected during clinical operations, effectively avoid accidental injuries during operations, or effectively calibrate small-sized tumors, so as to facilitate the effective implementation of clinical operations.
  • the medical optical tracer system of the present invention is characterized in that: the medical optical tracer system 500 includes a light source 1 and an optical tracer carrier 2;
  • the optical trace carrier 2 contains a light-guiding material
  • the light emitted by the light source 1 is transmitted through the optical trace carrier 2, and the optical trace carrier 2 is optically traced.
  • the light source 1 and the optical tracer carrier 2 can be traced by directly conducting the light emitted by the light source 1 through the light guide material of the optical tracer carrier 2 through direct contact.
  • the light source 1 can also pass the light emitted by the light source 1 through the energy carrier in the optical tracer 2 in a non-contact manner, such as the light-storing self-luminous body 21-1 for storage, and then pass through the energy carrier. Energy conversion emits light for tracing.
  • the light emitting end 11 - 1 of the light source 1 can also be packaged as a whole with the optical trace carrier 2 , and be directly arranged at the position where trace is required.
  • the light source 1 is an LED light source 11, and/or a medical cold light source 12, and/or natural light.
  • the light source 1 can be various light sources capable of emitting light, and the light emitted by the light source 1 can be traced after being transmitted through the optical trace carrier 1 .
  • the LED light source 11 has the characteristics of small size, high luminous efficiency, and strong light source directivity. Especially in terms of safety, LED light sources have incomparable advantages over ordinary light sources.
  • the LED light source is a low-voltage DC power supply, and the power supply voltage only needs to be 6 to 24V; secondly, no mercury is added to the LED light source, which will not cause poisoning or other harm to the human body; more importantly, the LED light source is a cold light source, which will not cause harm to the human body during work. Severe heat, safe to touch, will not cause unexpected high temperature burns to the human body.
  • the medical cold light source 12 is a commonly used light source in the existing operation process, and the light source 1 can be placed behind, which is easy to obtain in the operating room and does not require additional equipment.
  • the color of light emitted by the light source 1 can be set according to background color or penetration requirements. Through the setting of the light, in the clinical operation, the doctor can directly see the position of the optical tracer 2 through the tissue with the naked eye, and then accurately identify the blood vessels, tissues or organs that need to be protected during the clinical operation, effectively avoiding Accidental injury during surgery.
  • the light emitted by the light source 1 can be differentiated according to the background color in the body cavity or the tissue to be penetrated. When it is necessary to penetrate the tissue, red and yellow are the best, followed by purple and white. When it is necessary to display vascular tissue , the light is preferably green.
  • the light source 1 is a flashing type of light emitting.
  • the light source 1 can also be set in the form of intermittent lighting, flashing, etc. as required.
  • the intensity of light emitted by the light source 1 can be set.
  • the intensity of the light emitted by the light source 1 can also be adjusted as required to adapt to different clinical environments.
  • the illuminance of the light emitted by the light source 1 is usually in the range of 5,000 lux to 150,000 lux.
  • the light source 1 includes a control system 13, the control system 13 includes a wavelength adjustment mechanism 13-1 and a light intensity adjustment mechanism 13-2, and the wavelength adjustment mechanism 13-1 can adjust the color of the emitted light by adjusting the wavelength , the light intensity adjusting mechanism 13-2 can adjust the illuminance of the emitted light.
  • the LED light source 11 is arranged inside the body and/or outside the body. Since the volume of the light-emitting end 11-1 of the LED light source 11 can be very small, the LED light source 11 can not only be installed outside the body, and transmit light to the human body through the optical tracer carrier 2, but also can be directly installed In the human body, the optical tracking carrier 2 is coated on the outside and placed directly on the part that needs to be tracked.
  • the light source 1 and the optical trace carrier 2 are connected in a non-contact or contact manner.
  • the light source 1 can be connected to the optical tracer carrier 2 through the light guide joint 26 to provide a light source, and can also illuminate the optical tracer carrier 2 without contact, such as the light-storing self-luminous tracer carrier 21
  • the tracking of the optical tracking carrier 2 is realized through the storage and conversion of light energy.
  • the LED light source 11 is contact-connected to the optical trace carrier 2 , and the LED light source 11 is arranged in the optical trace carrier 2 .
  • the optical tracer carrier 2 is directly wrapped on the outside of the LED light source 11, and the LED light source 11 and the optical tracer carrier 2 are put into the human body together to trace lumens, organs, tumors and the like.
  • the optical tracer 2 is a light-storage self-luminous tracer 21 .
  • Self-luminous materials refer to materials that can absorb energy in a certain way and convert it into non-equilibrium light radiation. The process of converting the energy absorbed inside the material into non-equilibrium light radiation is the luminescence process.
  • light-storing self-luminescent materials can continue to emit light for more than 12 hours in a dark environment after a few minutes or tens of minutes under the action of external light, which can meet the tracing needs of most operations.
  • the light-storing self-illuminating tracer carrier 21 can directly absorb the energy of the light in the operating room, so that various external lights can form the light source 1, and there is no need to directly connect the light source 1, and the use process is very simple.
  • the light-storage self-luminous tracer carrier 21 includes a light-storage self-illuminator 21-1 and a protection carrier 21-2.
  • the protective carrier 21-2 is made of a transparent light-guiding material, and the light-storing self-luminous body 21-1 is closed and arranged in the protective carrier 21-2.
  • the light-storing self-luminous body 21-1 can absorb external energy and convert it into light.
  • the protective carrier 21-2 is made of transparent medical materials, which can be directly in contact with tissues.
  • the light energy converted from the light-storing self-illuminating body 21-1 effectively passes through for effective tracing, and at the same time ensures clinical Biosafety used.
  • the light-storing self-illuminating body 21-1 can be arranged in different positions and designed in different shapes, and can perform fixed-point tracking or overall tracking as required.
  • the optical trace carrier 2 is a light guiding fiber 22 .
  • the light-guiding optical fiber 22 has a good light-guiding effect, and guides the light to different positions as required, and can be switched on or off as required, which is very convenient for clinical use.
  • the optical trace carrier 2 contains at least one light guiding fiber 22 .
  • the end and/or side of the light guiding fiber 22 can emit light.
  • the light guiding fiber 22 can emit light not only at the end, but also at the side, and the light guiding fiber 22 can be lighted as a whole.
  • the optical trace carrier 2 is a combination of multiple light guiding fibers 22 .
  • the optical trace carrier 2 can be composed of a single light-guiding optical fiber 22, or can be a combination of multiple light-guiding optical fibers 22, such as forming an optical fiber bundle, weaving into a mesh, and arranging different lengths. .
  • the light guiding fiber 22 has a smooth surface.
  • the light outlet 22-2 of the light guiding fiber 22 is located at the far end of the light guiding fiber 22, which can Realize fixed-point tracing.
  • the light guiding fiber 22 has a non-smooth surface 22-1.
  • the non-smooth surface 22-1 is a non-smooth surface 22-11 capable of forming reflection and/or scattering.
  • the non-smooth surface 22-1 can realize the overall light emission of the non-smooth surface 22-1 through the reflection and/or scattering of light, so as to achieve the effect of overall tracking.
  • the light-guiding optical fiber 22 is intermittently provided with a light outlet 22-2.
  • Each of the light outlets 22-2 provided intermittently has a light transmission surface 22-21 and a reflection surface 22-22, the light is transmitted through the transmission surface 22-21, and when it reaches the reflection surface 22-22, The light is reflected and emitted from the light outlet 22-2 to form a tracer point, and a plurality of the light outlets 22-2 can form a chain tracer strip.
  • the light outlet 22 - 2 is a non-axial light outlet 22 - 21 , which is arranged on the side of the light guide fiber 22 along the length direction of the light guide fiber 22 .
  • the light guide fiber 22 can be lighted as a whole along the length direction of the light guide fiber 22 to realize the light guide fiber 22 overall tracer.
  • the light outlets 22 - 2 can mark the length dimension of the light guiding optical fiber 22 .
  • the regular arrangement of the distribution density of the light outlets 22 - 2 leads to different intensities of scattered light, and the length dimension of the light guiding optical fiber 22 is marked.
  • the emitted light is stronger and the visual effect is brighter; when the light outlets 22-2 are arranged scattered, the emitted light is weaker and the visual effect is darker.
  • a combination of light and shade can form a visual effect similar to a ruler, and at the same time of tracing, it can also achieve the effect of size marking.
  • the light-guiding optical fiber 22 is braided into a net shape, and light outlets 22-2 are scattered in different positions.
  • the light-guiding optical fiber 22 is braided into a net shape, and the length of each of the light-guiding optical fibers 22 can be set to be different, and the light outlets 22-2 of the light-guiding optical fiber 22 are also different thereupon, scattered and distributed, which can be To realize the overall tracking in the three-dimensional space, since the light outlet 22-1 does not need to be arranged in the middle of each light-guiding optical fiber 22, the light transmission effect is better, and the visual effect of a single tracking point is very bright.
  • the shape of mesh weaving can have good support, especially suitable for the support and tracking of large cavities, such as bladder and uterus.
  • the optical tracer carrier 2 can be placed in various positions that need to be traced in clinical applications, such as ureter, vas deferens, fallopian tube, etc., and can also be placed in uterine fibroids, lung tumors (especially Pulmonary nodules), liver tumors and other solid tumors can also be placed in blood vessels, especially by utilizing the characteristics of the light-guiding optical fiber 2 that can emit light from the side to realize overall tracking, it can be used for various lumens, blood vessels, solid tumors, etc. To identify.
  • the medical optical tracking system 500 has a coating 3 on its surface.
  • the coating 3 is an anticoagulation coating, and/or a hydrophilic coating, and/or a hydrophobic coating.
  • the coating 3 can be designed with different properties according to the needs, such as when the light guiding fiber 22 needs to enter the blood vessel, the coating 3 can be designed as an anticoagulation coating, when the light guiding fiber 22 needs When entering various cavities, the coating 3 can be designed as a hydrophilic coating or a hydrophobic coating as required.
  • the optical trace carrier 2 includes a delivery part 23 .
  • the delivery part 23 can deliver the working part 2 - 1 of the optical fiber tracking carrier 2 to blood vessels, cavities, tumor operation sites and other sites that need to be tracked as required.
  • the delivery part 23 is movably arranged on the optical trace carrier 2 . In clinical applications, the delivery part 23 can be removed from the optical tracking carrier 2 or move relative to the optical tracking carrier 2 as required.
  • the medical optical tracing system 500 also includes a developing mechanism 4 .
  • the developing mechanism 4 is made of metal and has a heat conduction function.
  • the heat conduction function of the developing mechanism 4 can prevent accidental damage caused by excessive temperature of the part of the medical optical tracing system 500 entering the human body, and the temperature is usually controlled below 37°C.
  • the developing mechanism 4 is a developing line 41 , and/or a developing ring 42 , and/or a developing block 43 .
  • the applicant here only exemplifies the above-mentioned several developing methods. In practical applications, those skilled in the art can design different developing methods according to needs. The applicant does not give examples here, but they do not deviate from the scope of the application protected range.
  • the developing mechanism 4 performs developing under X-ray, and/or MRI, and/or B-ultrasound.
  • the development mechanism 4 can provide development prompts in X-ray, magnetic navigation, or B-ultrasound scenarios, and the development mechanism 4 facilitates the insertion of the optical tracking carrier 2 under the condition of visibility or navigation, especially Suitable for implantation of important blood vessels, solid tumors, etc.
  • the medical optical tracking system 500 also includes a protective sleeve 5 .
  • the optical trace carrier 2 , the developing mechanism 4 and the like can be arranged in the protective sleeve 5 .
  • the coating 3 can be provided on the outside of the protective sleeve 5 as required.
  • the protective sleeve 5 is made of transparent material, and the optical trace carrier 2 is arranged in the protective sleeve 5 .
  • the protective sleeve 5 is made of medical transparent material, while protecting the optical trace carrier 2 , the transparent material can still ensure the trace effect of the optical trace carrier 2 .
  • the optical trace carrier 2 contains a channel 24 inside.
  • the channel 24 can be used as a surgical instrument channel, a body fluid drainage channel, etc. as required.
  • the optical tracer carrier 2 is made of flexible medical materials, and can move along the cavities such as blood vessels, ureters, esophagus, trachea, fallopian tubes, and vas deferens.
  • the optical trace carrier 2 has good flexibility and can move along the blood vessel or cavity, therefore, the optical trace carrier 2 can be placed in different positions as required.
  • the optical trace carrier 2 includes a shaping mechanism 25 .
  • the shaping mechanism 25 can shape the optical tracer carrier 2 , such as into various shapes such as circle, arc, and ball as required, so as to meet different traceability requirements.
  • the shaping mechanism 25 is a shape memory shaping mechanism 25-1.
  • the shape-memory shaping mechanism 25-1 has a simple structure such as a line or a strip at room temperature, so that it can be easily inserted. After entering the human body, it returns to the set shape under the action of body temperature.
  • the shape-memory shaping mechanism 25-1 is made by weaving shape-memory metal wires, and/or carving shape-memory metal tubes or sheets.
  • the shape-memory shaping mechanism 25-1 can be braided into a desired shape by shape-memory metal wires, or can be directly carved into a desired shape by using a shape-memory alloy tube or a shape-memory alloy sheet.
  • the medical catheter with a tracking device of the present invention includes the medical optical tracking system 500 .
  • the medical catheter 900 with a tracer device includes a catheter 900-1, an interface 900-2 and a medical optical tracer system 500;
  • the catheter 900-1 is made of soft elastic medical material, and the distal end 900-11 is provided with a working opening 900-11-1;
  • the medical catheter 900 with a tracer device includes at least one interface 900-2, and the interface 900-2 is arranged at the proximal end 900-12 of the catheter 900-1;
  • the optical tracking carrier 2 of the medical optical tracking system 500 is set on the catheter 900-1 to mark the location of the catheter 900-1.
  • the medical catheter 900 with a tracking device includes a developing mechanism 4 .
  • the developing mechanism 4 is arranged on the catheter 900-1, and the developing mechanism 4 can provide developing prompts in scenarios such as X-ray, magnetic navigation, or B-ultrasound, so as to facilitate the insertion of the catheter 900-1.
  • the developing mechanism 4 can be made of metal materials, and can also have a heat conduction function to prevent the temperature in the body from being too high due to the LED light source 11, and the temperature usually needs to be controlled within 37°C.
  • the optical tracking carrier 2 is arranged on the catheter 900-1, and the optical tracking carrier 2 can perform partial or overall tracking on the catheter 900-1 as required.
  • the catheter 900-1 is made of transparent material and constitutes the optical tracer carrier 2.
  • the light source of the medical optical tracer system 500 is an LED light source 11, and the light-emitting end 11-1 of the LED light source 11 is set on the In the wall of the catheter 900-1, the catheter 900-1 is traced.
  • the LED light source 11 includes a light-emitting end 11-1 with a small volume. Usually, the size of the light-emitting end 11-1 is controlled below 2 mm, such as an LED lamp with a package size between 0.2 mm and 0.5 mm.
  • the light-emitting end 11 -1 can be directly arranged in the tube wall of the catheter 900-1, connected with the power source through the circuit system 11-2, and emit light in the tube wall of the catheter 900-1.
  • the light-emitting end 11-1 of the LED light source 11 is arranged at the distal end 900-11 of the catheter 900-1 to track the distal end 900-11 of the catheter 900-1.
  • the light-emitting ends 11-1 of the LED light sources 11 are dispersedly arranged in the tube wall of the catheter 1 to form LED light strips or LED light nets, and trace the catheter 900-1 as a whole.
  • the light-emitting end 11-1 can be set at any position of the catheter 900-1 as required. When it is set at the distal end, it can track the distal end 900-11 of the catheter 900-1. When the middle part of the catheter 900-1 is used, the middle part of the catheter 900-1 can be traced locally.
  • the circuit system 11-2 uses a flexible circuit board 11-21, the light emitting end 11-1 can be dispersed It can be arranged at any position of the flexible circuit board 11-21, so as to track a certain part or the whole of the catheter 900-1.
  • the optical trace carrier 2 of the medical optical tracer system 500 is a light guide fiber 22; the near end of the light guide fiber 22 is connected with a light guide joint 26, and the light guide fiber 22 is along the guide tube 900-1. It is set in the length direction to trace the catheter 900-1.
  • the light guiding fiber 22 has a smooth surface, and the light outlet 22-2 is arranged on the distal end of the catheter 1 to track the distal end 900-11 of the catheter 900-1.
  • the light guiding fiber 22 has a non-smooth surface 22-1, and a light outlet 22-2 is provided on the side, and traces the guide tube 900-1 as a whole.
  • the light-guiding optical fiber 22 can perform fixed-point tracing on the distal end 900-11 of the catheter 900-1, and can also linearly trace the catheter 900-1 along the length direction through the light outlet 22-2 on the side. Tracking can also trace the catheter 900-1 as a whole by weaving the light-guiding optical fiber 22 into a mesh, and through the mesh-like weaving, the elastic support force of the light-guiding optical fiber 22 can also be used , to support the tube wall of the tube 900-1.
  • the outer surface of the catheter 900-1 may also be provided with the coating 3, such as a hydrophilic coating, as required.
  • the medical catheter 900 with a tracer device is a medical gastric tube 901 , or a medical urinary catheter 902 , or a medical vas deferens, or a medical fallopian tube, or a medical trachea.
  • the applicant here only lists several use scenarios of the above-mentioned medical catheter 900 with a tracking device. In practical applications, the medical catheter 900 with a tracking device can be configured into structures required by different application scenarios according to clinical needs.
  • the medical catheter 900 with a tracer device is a medical gastric tube 901; the medical gastric tube 901 includes a catheter 900-1, an interface 900-2 and a medical optical tracer system 500, and the distal end of the catheter 900-1
  • the end 900-11 is provided with a working opening 900-11-1; the medical optical tracking system 500 tracks the catheter 900-1.
  • the medical stomach tube 901 enters the stomach through the esophagus and is an artificial transmission channel for food, and the interface 900-2 can be connected with a food injection device.
  • the medical optical tracking system 500 only needs to monitor the Local tracking of the distal end.
  • the technique of setting the light-emitting end 11-1 of the LED light source 11 individually or collectively at the distal end of the catheter 900-1 for tracking can be used Scheme, also can adopt described light-guiding fiber 22 with smooth surface, can be single described light-guiding fiber 22 or the light-guiding beam that many described light-guiding fibers 22 form, utilize the light exit port 22-1 of end to The distal end of the catheter 900-1 is traced, or the light-guiding optical fiber 22 is arranged circumferentially along the side wall of the catheter 900-1 to form an aperture at the distal end of the catheter 900-1. The distal end of the catheter 900-1 is locally tracked.
  • the light-emitting ends 11-1 of the LED light source 11 can be scattered and distributed in the tube wall of the catheter 900-1 to form a light guide belt or guide tube.
  • the optical network traces the catheter 900-1 as a whole or in a large area. It is also possible to arrange the light-guiding optical fiber 22 with a non-smooth surface 22-1 in the tube wall of the catheter 900-1 along the length direction to form a light-guiding belt, and trace the catheter 900-1 along the length direction,
  • the light-guiding optical fiber 22 can also be braided into a net shape, and a certain section or the whole of the catheter 900-1 can be traced in a ring shape.
  • the medical catheter 900 with a tracer device is a medical catheter 902; the medical catheter 902 includes a catheter 900-1, an interface 900-2 and a medical optical tracing system 500, and the distal end of the catheter 900-1
  • the end 900-11 is provided with a working opening 900-11-1; the medical optical tracking system 500 tracks the catheter 900-1.
  • the medical optical tracking system 500 can perform fixed-point tracking on the medical urinary catheter 902 , and can also perform large-scale or overall tracking on the medical urinary catheter 902 .
  • the light-emitting end 11-1 of the LED light source 11 can be individually or collectively arranged on the catheter 900-1.
  • the technical solution for tracing at the far end can also use the light-guiding optical fiber 22 with a smooth surface, which can be a single light-guiding optical fiber 22 or a light-guiding beam composed of multiple light-guiding optical fibers 22.
  • the light outlet 22-1 traces the distal end of the catheter 900-1, or the light guiding optical fiber 22 is arranged in a circumferential shape along the side wall of the catheter 900-1, and the catheter 900-1
  • the distal end of the catheter 900-1 forms an aperture for local tracking of the distal end of the catheter 900-1.
  • the light-emitting end 11-1 of the LED light source 11 can be scattered and distributed on the tube wall of the catheter 900-1
  • a light guide belt or a light guide net is formed inside to track the guide tube 900-1 as a whole or in a large area.
  • the light-guiding optical fiber 22 with a non-smooth surface 22-1 in the tube wall of the catheter 900-1 along the length direction to form a light-guiding belt, and trace the catheter 900-1 along the length direction,
  • the light-guiding optical fiber 22 may also be woven into a net shape to trace the periphery of the balloon 900-13 as a whole.
  • the medical catheter 902 is a double-lumen catheter 902-1; the distal end 900-11 of the catheter 900-1 of the dual-lumen catheter 902-1 is provided with a balloon 900-13; the catheter 900 -1 is provided with two lumens 1-1, and each lumen 1-1 is provided with one interface 900-2; one of the lumens 1-1 constitutes a catheterization lumen 900-14 , the distal end of the catheterization cavity 900-14 is provided with the working opening 900-11-1, and the interface 900-2 provided at the proximal end constitutes a drainage port 900-21; the other one of the cavity 1 -1 forms a water injection cavity 900-15, the distal end of the water injection cavity 900-15 is connected to the balloon 900-13, and the interface 900-2 connected to the proximal end forms a water injection port 900-22.
  • the medical catheter 902 used in the operation usually needs to be provided with the balloon 900-13, from the water injection port 900-22 to the balloon through the water injection chamber 15. Injecting water into 900-13 can form a water bag to ensure the effective fixation of the medical catheter 902 in the bladder and prevent slippage.
  • the medical catheter 902 is a three-lumen catheter 902-2; the distal end 900-11 of the catheter 900-1 of the three-lumen catheter 902-2 is provided with a balloon 900-13; the catheter 900 -1 is provided with three lumens 1-1, and each lumen 1-1 is provided with one interface 900-2; wherein the first lumen 1-1 constitutes a catheterization lumen 900- 14.
  • the distal end of the catheterization cavity 900-14 is provided with the working opening 900-11-1, and the interface 900-2 provided at the proximal end constitutes a drainage port 900-21;
  • the second cavity 1-1 forms a water injection cavity 900-15, the distal end of the water injection cavity 900-15 is connected to the balloon 900-13, and the interface 900-2 connected to the proximal end forms a water injection port 900-22;
  • the third The lumen 1-1 constitutes an infusion flushing chamber 900-16, and the distal end of the infusion flushing chamber 900-16 is provided with a flushing port 900-16-1 and a blocking valve 900-16-2, and the infusion flushing chamber
  • the interface 900-2 connected to the proximal end of 900-16 constitutes a flushing injection port 900-23.
  • the medical catheter 902 can be configured as the three-lumen catheter 902-2.
  • the proximal end of the infusion flushing cavity 900-16 is provided with the flushing injection port 900-23, the distal flushing port 900-16-1 communicates with the body cavity, and the flushing port 900-16-1 is provided with a
  • the blocking valve 900-16-2 when the drug is injected through the flushing injection port 900-23, under the action of pressure, the blocking valve 900-16-2 is opened, and the drug enters the body cavity. , under the action of body cavity pressure, the blocking valve 900-16-2 is automatically closed to prevent body fluid from entering the infusion flushing cavity 900-16 from the flushing port 900-16-1.
  • the solid tumor tracking device of the present invention includes the medical optical tracking system 500 .
  • the solid tumor tracking device 910 includes a developing mechanism 4 .
  • the developing mechanism 4 may be the anti-displacement mechanism 910-1 made of metal material to form the developing mechanism 4, or it may be a separate developing mechanism 4, and the developing mechanism 4 can be used in X-ray, Or in the state of MRI or B-ultrasound, mark the position of the optical tracking carrier 2 .
  • the solid tumor tracking device 910 includes an anti-displacement mechanism 910-1 and the medical optical tracing system 500; the optical tracing carrier 2 of the medical optical tracing system 500 is set on the anti-displacement mechanism 910- 1, trace the anti-displacement mechanism 910-1.
  • the anti-displacement mechanism 910-1 can be fixed on the solid tumor that needs to be calibrated, so as to prevent the solid tumor tracking device 910 from moving with the movement of the human body, such as lung breathing movement, intestinal peristalsis, gastric peristalsis, etc. shift.
  • a medical puncture needle is used to puncture a solid tumor to be identified, and then the anti-displacement mechanism 910-1 is delivered to the position of the solid tumor and fixed on the solid tumor
  • the optical trace carrier 2 is set on the anti-displacement mechanism 910-1, and the anti-displacement mechanism 910-1 is positioned.
  • the anti-displacement mechanism 910-1 has a hook-shaped structure, and/or a trumpet-shaped structure, and/or a dumbbell-shaped structure, and/or a coil spring-shaped structure, and/or a spike-shaped structure.
  • the applicant here only exemplifies the manners of the anti-displacement mechanism 910-1 with the above-mentioned several structures. In practical applications, those skilled in the art can design the anti-displacement mechanism 910-1 with different structures as required 1. The applicant does not give examples one by one here, but they all do not depart from the protection scope of the present application.
  • the anti-displacement mechanism 910-1 has a hook structure, and the anti-displacement mechanism 910-1 includes at least one positioning hook 910-11. Usually, the anti-displacement mechanism 910-1 includes 2 or 3 positioning hooks 910-11 to better prevent the anti-displacement mechanism 910-1 from moving with the human body, such as the breathing of the lungs. Displacement occurs due to movement, intestinal peristalsis, etc.
  • the optical tracer carrier 2 is a light guide fiber 22, the proximal end of the light guide fiber 22 is connected with a light guide joint 26, and the far end of the light guide fiber 22 is connected and fixed on the anti-displacement mechanism 910- 1, the light outlet 22-2 of the light guide fiber 22 is set on the anti-displacement mechanism 910-1, and traces the anti-displacement mechanism 910-1.
  • the light guiding fiber 22 can be directly wound, connected and fixed on the anti-displacement mechanism 910-1, especially on the positioning hook 910-11, and the light outlet 22 of the light guiding fiber 22 can be used to The light emitted by -2 performs optical tracking on the anti-displacement mechanism 910-1.
  • the light guiding fiber 22 has a non-smooth surface 22-1, and the side of the light guiding fiber 22 is provided with a light outlet 22-2, and the light guiding fiber 22 is an overall display of the anti-displacement mechanism 910-1. trace.
  • the light guiding fiber 22 is made of flexible medical materials, and is connected and fixed on the anti-displacement mechanism 910-1. When the anti-displacement mechanism 910-1 is deformed, the light guiding fiber 22 follows the The anti-displacement mechanism 910-1 is deformed.
  • the light guiding fiber 22 can be lighted as a whole, winding the light guiding fiber 22 on the anti-displacement mechanism 910-1, especially on the positioning hook 910-11, can follow the The anti-displacement mechanism 910-1 is deformed together, especially when the anti-displacement mechanism 910-1 is made of shape memory alloy, as the shape of the anti-displacement mechanism 910-1 changes, the guide The shape of the optical fiber 22 also changes accordingly to ensure the tracking effect of the anti-displacement mechanism 910-1.
  • the solid tumor tracking device 910 includes an anti-displacement mechanism 910-1, a delivery mechanism 910-2, and the medical optical tracking system 500; the optical tracking carrier 2 of the medical optical tracking system 500 is set on the On the anti-displacement mechanism 910-1, the anti-displacement mechanism 910-1 is traced.
  • the delivery mechanism 910-2 includes a delivery sheath 910-21 and a push mechanism 910-22, the anti-displacement mechanism 910-1 is set in the delivery sheath 910-21, and the push mechanism 910-22 can push the The anti-displacement mechanism 910-1 is pushed out of the delivery sheath 910-21.
  • the pushing mechanism 910-22 can be fixedly connected with the anti-displacement mechanism 910-1, and stay in the body together after the anti-displacement mechanism 910-1 is pushed out from the delivery sheath 910-21;
  • the mechanism 910-22 can also be detachably connected with the anti-displacement mechanism 910-1, after the anti-displacement mechanism 910-1 is pushed out from the delivery sheath 910-21, and the anti-displacement mechanism 910 - 1 Disconnect, and only place the anti-displacement mechanism 910-1 on the solid tumor.
  • the delivery mechanism 910-2 delivers the anti-displacement mechanism 910-1 to the position of the solid tumor under X-ray or MRI conditions, and fixes it on the solid tumor.
  • the carrier 2 is arranged on the anti-displacement mechanism 910-1. By positioning the anti-displacement mechanism 910-1, the position of the solid tumor can be visually observed with the naked eye under the guidance of the light during the operation.
  • the light source 1 of the medical optical tracer system 500 is an LED light source 11, the optical tracer carrier 2 is made of a transparent material, and the light-emitting end 11-1 of the LED light source 11 is set on the optical tracer carrier 2 , set on the anti-displacement mechanism 910-1 together with the optical tracking carrier 2, and track the anti-displacement mechanism 910-1.
  • the light-emitting end 11-1 of the LED light source 11 can be packaged with the optical trace carrier 2 as a whole, and they are jointly arranged on the anti-displacement mechanism 910-1.
  • the light emitted by the light-emitting end 11-1 is displayed after being transmitted through the light-guiding material of the optical tracer carrier 2, for clinically identifying the location of the solid tumor.
  • the LED light source 11 includes a light-emitting terminal 11-1, a circuit system 11-2, a drive board 11-3, and a power supply 11-4; the light-emitting terminal 11-1 passes through the circuit system 11-2 and the drive board 11 -3 and the power supply 11-4 are connected, and under the control of the driving board 11-3, the power supply 11-4 supplies power to the light emitting terminal 11-1 through the circuit system 11-2, and the light emitting The end 11-1 emits light; the driving board 11-3 and the power supply 11-4 are arranged outside the body, and the light emitting end 11-1 is arranged inside the body to trace the anti-displacement mechanism 910-1.
  • the circuit system 11-2 is a flexible circuit board 11-21, and the light emitting ends 11-1 of the LED light source 11 are dispersedly arranged on the flexible circuit board 11-21 and packaged in the optical tracer carrier 2, It constitutes an LED light strip, or an LED light net, or an LED light ball, and is arranged on the anti-displacement mechanism 910-1 to track the anti-displacement mechanism 910-1.
  • the LED light source 11 can be packaged with a single light-emitting terminal 11-1 for fixed-point tracking. It is also possible to use a flexible circuit board 11-21 for the circuit system 11-2, and the light-emitting ends 11-1 are dispersedly arranged at any position of the flexible circuit board 11-21, thereby forming a light-emitting strip, and the light-emitting strip Winding on the anti-displacement mechanism 910-1, or packaging multiple LED light sources 11 together with the optical tracer carrier 2 into a net shape, spherical shape, etc., the anti-displacement mechanism 910-1 Carry out overall tracing.
  • the light-emitting end 11-1 of the LED light source 11 is arranged on the anti-displacement mechanism 910-1, and the outside is coated with the optical tracer carrier 2 made of transparent material, and the light emitted by the light-emitting end 11-1
  • the anti-displacement mechanism 910-1 is traced.
  • the light-emitting ends 11-1 are dispersedly arranged on the anti-displacement mechanism 910-1, and track the anti-displacement mechanism 910-1 as a whole.
  • the light-emitting end 11-1 can be directly arranged on the anti-displacement mechanism 910-1, and then the optical tracer carrier 2 made of transparent material is coated on the outside, so that the light-emitting end 11-1 can be completely It fits the outer contour of the anti-displacement mechanism 910-1 accurately, and traces any shape of the anti-displacement mechanism 910-1.
  • the light-emitting end 11-1 is arranged symmetrically, and the outside covers the optical tracer carrier 2, and the internal support of the light-emitting end 11-1 and the circuit system 11-2 and the light-emitting end 11-1 Its own volume can constitute the anti-displacement mechanism 910-1, and the medical optical tracking system 500 can simultaneously have the tracking function and the positioning function of the anti-displacement mechanism 910-1.
  • the circuit system 11-2 is a flexible circuit board 11-21, the optical trace carrier 2 is made of soft transparent material, the light-emitting terminal 11-1, the flexible circuit board 11-21 and the developing The mechanism 4 is set together in the optical trace carrier 2 and on the anti-displacement mechanism 910-1.
  • the anti-displacement mechanism 910-1 is deformed, the light emitting end 11-1, The flexible circuit board 11 - 21 , the developing mechanism 4 and the optical trace carrier 2 are deformed together with the anti-displacement mechanism 910 - 1 .
  • the anti-displacement mechanism 910-1 is made of shape memory alloy, as the shape of the anti-displacement mechanism 910-1 changes, the shape of the flexible circuit board 11-21 also changes accordingly. , to ensure the tracking effect on the anti-displacement mechanism 910-1.
  • the blood vessel tracing device of the present invention includes the medical optical tracing system 500 .
  • the medical optical tracking system 500 can track the blood vessel tracking device 920 as a whole. In clinical use, under the action of the medical optical tracking system 500, when approaching the blood vessel to be traced, the light emitted by the light source 1 can be seen through the tissue through the blood vessel, and the light emitted by the light source 1 The illuminance of the light ensures that the traced blood vessels are clearly visible when the distance from the blood vessel wall is about 0-30mm.
  • the blood vessel tracing device 920 includes a developing mechanism 4 .
  • the developing mechanism 4 can provide developing prompts in scenarios such as X-ray, magnetic navigation, or B-ultrasound, so as to facilitate the insertion of the catheter 900-1.
  • the developing mechanism 4 can be made of metal materials, and can also have a heat conduction function to prevent the temperature in the body from being too high due to the LED light source 11, and the temperature usually needs to be controlled within 37°C.
  • the blood vessel tracking device 920 includes a coating 3, which is an anticoagulant coating.
  • the blood vessel tracking device 920 includes a delivery end 920-1, a guide wire 920-2, a protective sleeve 5 and the medical optical tracking system 500; the medical optical tracking system 500 and the guide wire 920-2 Set in the protective sleeve 5, the protective sleeve 5 has a coating 3 outside, and the coating 3 is an anticoagulation coating; the guide wire 920-2 is made of metal material, and under X-ray It can be developed to form a developing mechanism 4 and has a heat conduction function; the delivery end 920-1 can deliver the blood vessel tracing device 920 to the position where blood vessel tracing is required.
  • the blood vessel tracing device 920 contains a guide wire 920-2, under X-rays, the blood vessel tracing device 920 can be directly visualized, and the guide wire 920-2 is made of a metal material with a certain The strength can be delivered conveniently, therefore, the blood vessel tracing device 920 does not need to be additionally operated with a separate medical guide wire.
  • the coating 3 is an anticoagulant coating, which can ensure that the blood vessel tracking device 920 can safely stay in the blood vessel that needs to be tracked during the operation.
  • the guide wire 920-2 also has the function of heat conduction, which can prevent the temperature in the body from being too high due to the LED light source 11, and usually the temperature needs to be controlled within 37°C.
  • the guide wire 920 - 2 is made of a shape memory alloy, and shapes the distal end of the blood vessel tracing device 920 to form the shaping mechanism 25 .
  • the guide wire 920-2 can shape the distal end of the blood vessel tracing device 920 as required to adapt to the curvature of the blood vessel, making the delivery process more convenient.
  • the medical optical tracing system 500 is provided with a channel 24, and the channel 24 constitutes a guide wire operation hole 920-3.
  • a separate medical guide wire can be inserted into the guide wire operation hole 920-3 to cooperate with the delivery operation, and the medical optical tracking system 500 has a simple structure.
  • the side wall of the optical tracer carrier 2 is made of a transparent material, and a light guide fiber 22 is arranged inside the side wall.
  • the light guide fiber 22 has a non-smooth surface 22-1, and a light outlet 22-1 is arranged on the side along the length direction. 2.
  • the outer surface of the optical trace carrier 2 is provided with a coating 3, and the coating 3 is an anticoagulation coating; Under the action of the light, the light guide fiber 22 can emit light as a whole to trace the blood vessels.
  • the light guiding fiber 22 is simple in structure and small in size, and is suitable for tracing small blood vessels.
  • the light source 1 is a medical cold light source 12 .
  • the medical cold light source 12 will not increase the temperature of the optical tracing carrier 2 placed in the body, and the blood vessel tracing process is safer.
  • the side wall of the optical trace carrier 2 is made of transparent material
  • the light source 1 is an LED light source 11
  • the light-emitting ends 11-1 of the LED light source 11 are scattered in the side wall of the optical trace carrier 2, Constitute LED light strips or LED light nets to trace blood vessels.
  • the LED light source 11 directly traces blood vessels, and has a good lighting effect, and has a very good effect on tracing large blood vessels.
  • the blood vessel tracing device 920 In clinical use, under the X-ray environment, using vascular interventional therapy technology, the blood vessel tracing device 920 is placed in the position to be traced, and the power is turned on. Under the action of the light source 1, the optical fiber tracing The carrier 2 functions to emit visible light to trace blood vessels. During the operation, when approaching the traced blood vessel, the light emitted by the light source 1 can be seen through the tissue through the blood vessel. The illuminance of the light emitted by the light source 1 is guaranteed to be about 0-30mm away from the blood vessel wall, The traced blood vessels are clearly visible.
  • the medical optical tracer system of the present invention includes a light source 1 and an optical tracer carrier 2 .
  • the optical trace carrier 2 contains light-guiding material. After the light emitted by the light source 1 is transmitted through the optical trace carrier 2, the optical trace carrier 2 is optically traced.
  • the light source 1 can also use the miniature LED light source 11, and the light-emitting end 11-1 of the LED light source 11 is directly arranged with the optical tracer carrier 2 as a whole and put into the human body for optical trace.
  • the medical optical tracking system of the present invention can be set in the medical catheter 900 with a tracking device, or the solid tumor tracking device 910, or the blood vessel tracking device 920 as required.
  • the setting of different color light sources can accurately identify blood vessels, lumens, tissues or organs that need to be protected during clinical operations, effectively avoid accidental injuries during operations, or effectively calibrate small-sized tumors, so as to facilitate the effective implementation of clinical operations.
  • Fig. 1 is a schematic structural view of a non-smooth surface light-guiding fiber with an irregular light outlet.
  • Figure 1-1 is an enlarged view of A1 in Figure 1.
  • Figure 1-2 is an enlarged view of A2 in Figure 1.
  • FIG. 1 is A-A sectional views of FIG. 1 .
  • 1-4 are cross-sectional views of light-guiding optical fibers with channels.
  • Fig. 2 is a schematic structural view of a non-smooth surface light-guiding fiber with a ring-shaped light outlet.
  • Figure 2-1 is an enlarged view of B1 in Figure 2.
  • Figure 2-2 is an enlarged view of B2 in Figure 2.
  • Fig. 3 is a schematic structural view of a non-smooth surface light-guiding fiber with a spiral light outlet.
  • Figure 3-1 is an enlarged view of C1 in Figure 3.
  • Figure 3-2 is an enlarged view of C2 in Figure 3.
  • Fig. 4 is a structural schematic diagram of the optical fiber mechanism in which the developing line and the optical fiber are arranged in the protective sleeve.
  • Fig. 4-1 is a D-D sectional view of Fig. 4 .
  • Figure 4-2 is a cross-sectional view of an optical fiber mechanism containing multiple light-guiding optical fibers.
  • Fig. 5 is a schematic structural view of an optical fiber mechanism including a developing block.
  • Figure 5-1 is an enlarged view of E1 in Figure 5.
  • Fig. 6 is a schematic structural view of an optical fiber mechanism including a developing ring.
  • Figure 6-1 is an enlarged view of F1 in Figure 6.
  • Fig. 7 is a structural schematic diagram of an optical fiber mechanism including a shaping mechanism.
  • Fig. 8 is a schematic diagram of a joint of a coated fiber optic mechanism.
  • Fig. 8-1 is a G-G sectional view of Fig. 8 .
  • Fig. 9 is a medical optical tracing system of the present invention containing a medical cold light source.
  • Fig. 10 is a schematic diagram of the structure of an optical trace carrier containing an optically self-luminescent trace carrier.
  • Fig. 10-1 is a H-H sectional view of Fig. 10 .
  • Fig. 11 is a schematic structural diagram of an optical trace carrier built into the light-emitting end of the LED light source.
  • Fig. 11-1 is a sectional view of I-I in Fig. 11 .
  • Fig. 11-2 is a J-J sectional view of Fig. 11 .
  • Figure 11-3 is an enlarged view of I1 in Figure 11-1.
  • Fig. 12 is a schematic structural view of an optical trace carrier built into the light-emitting end of an LED light source with a developing line.
  • Fig. 12-1 is a K-K sectional view of Fig. 12 .
  • Fig. 12-2 is an L-L sectional view of Fig. 12 .
  • Figure 12-3 is an enlarged view of K1 in Figure 12-1.
  • Fig. 13 is the medical optical tracer system of the present invention containing LED light source.
  • Fig. 14 is a schematic structural view of a blood vessel tracing device containing a developing wire.
  • Fig. 14-1 is a cross-sectional view of M-M in Fig. 14 .
  • Fig. 14-2 is a cross-sectional view of a blood vessel tracing device with a guide wire operation hole.
  • Figure 15 is an optical tracer carrier in which optical fibers are woven into a mesh.
  • Fig. 16 is a schematic diagram of the working principle of the blood vessel tracing device placed in the blood vessel.
  • Fig. 17 is a schematic perspective view of the three-dimensional structure of a medical gastric tube with a visible light tracing device of the present invention.
  • Fig. 17-1 is an N-N sectional view of Fig. 17 .
  • Figure 17-2 is an enlarged view of N1 in Figure 17.
  • Fig. 17-3 is a schematic structural diagram of Fig. 17 after connecting the LED light source.
  • Figure 17-4 is a schematic structural diagram of Figure 17 after the cold light source is connected.
  • Fig. 17-5 is a structural schematic diagram of a medical gastric tube containing a light-guiding optical fiber with a non-smooth surface.
  • Figure 17-6 is an enlarged view of N2 in Figure 17-5.
  • Figure 17-7 is an enlarged view of N3 in Figure 17-6.
  • Fig. 17-8 is a schematic structural view of a medical gastric tube with an LED light-emitting end at the end.
  • Figure 17-9 is an enlarged view of N4 in Figure 17-8.
  • Figure 17-10 is a schematic structural diagram of Figure 17-5 after connecting the LED light source.
  • 17-11 are structural schematic diagrams of a medical gastric tube provided with an LED light-emitting end as a whole.
  • Figure 17-12 is an enlarged view of N5 in Figure 17-11.
  • 17-13 are structural schematic diagrams of a medical stomach tube with a hydrophilic coating.
  • 17-14 are structural schematic diagrams of a medical gastric tube containing a light-storage self-luminescence tracer carrier.
  • Figure 17-15 is an enlarged view of N6 in Figure 17-14.
  • Fig. 18 is a schematic diagram of the structure of the 18-cavity medical catheter when the balloon is inflated.
  • Fig. 18-1 is a schematic diagram of the structure of the balloon in Fig. 18 when it is deflated.
  • Figure 18-2 is the front view of Figure 18.
  • Fig. 18-3 is an O-O sectional view of Fig. 18-2.
  • Figure 18-4 is an enlarged view of O1 in Figure 18-3.
  • Figure 18-5 is a schematic structural diagram of Figure 18 when the LDE light source is connected.
  • Fig. 18-6 is a schematic structural view of a 2-cavity medical urinary catheter with an LED light-emitting end inside the tube wall.
  • Figure 18-7 is an enlarged view of O2 in Figure 18-6.
  • Fig. 19 is a schematic diagram of the structure of the 19-cavity medical catheter when the balloon is inflated.
  • Figure 19-1 is the front view of Figure 19.
  • Fig. 19-2 is a P-P sectional view of Fig. 19 .
  • Fig. 19-3 is a Q-Q sectional view of Fig. 19-1.
  • Figure 19-4 is an enlarged view of P1 in Figure 19-2.
  • Fig. 19-5 is a schematic structural diagram of Fig. 19 when the LED light source is connected.
  • Fig. 20 is a schematic structural view of a 3-cavity medical catheter connected to an LED light source when the optical fiber is woven into a mesh.
  • Figure 20-1 is an enlarged view of Q1 in Figure 20.
  • Fig. 21 is a structural schematic diagram of a 3-cavity medical catheter when the optical fiber is braided into a mesh.
  • Fig. 21-1 is a R-R sectional view of Fig. 21 .
  • Fig. 22 is a schematic structural view of a medical catheter with a shaping mechanism.
  • Fig. 23 is a working principle diagram when the medical catheter is inserted into the bladder.
  • Fig. 24 is a working principle diagram when the medical catheter is inserted into the ureter.
  • Fig. 25 is a three-dimensional schematic diagram of the positioning hook of the solid tumor tracking device of the present invention received in the delivery sheath.
  • Fig. 25-1 is an S-S sectional view of Fig. 25 .
  • Figure 25-2 is an enlarged view of S1 in Figure 25.
  • Fig. 26 is a schematic structural view of the positioning hook in Fig. 25 when it is pushed out.
  • Fig. 26-1 is a T-T sectional view of Fig. 26 .
  • Figure 26-2 is an enlarged view of T1 in Figure 26.
  • Figure 26-3 is an enlarged view of T2 in Figure 26-2.
  • Figure 26-4 is an exploded view of Figure 26.
  • Fig. 27 is a structural schematic diagram of the light-emitting end of the LED light source being arranged on the positioning hook.
  • Figure 27-1 is an enlarged view of U1 in Figure 27.
  • Fig. 28 is a schematic diagram of the structure of the solid tumor tracking device of the present invention with an interrupted open sleeve.
  • Figure 28-1 is an enlarged view of V1 in Figure 28.
  • Fig. 29 is a schematic diagram of the structure of a multiple solid tumor tracking device.
  • Figure 29-1 is an exploded view of Figure 29.
  • Fig. 30 is a schematic structural view of the solid tumor tracking device of the present invention with a spherical anti-displacement mechanism.
  • Fig. 30-1 is a W-W sectional view of Fig. 30 .
  • Figure 30-2 is an enlarged view of W1 in Figure 30-1.
  • Fig. 31 is a schematic structural view of the solid tumor tracking device of the present invention with a dumbbell-shaped anti-displacement mechanism.
  • Figure 31-1 is an enlarged view of X1 in Figure 31.
  • Fig. 31-2 is a cross-sectional view of Fig. 31 .
  • Figure 31-3 is an enlarged view of X2 in Figure 31-2.
  • Figure 31-4 is a schematic structural view of a coated dumbbell-shaped anti-displacement mechanism.
  • Fig. 32 is a schematic structural view of the solid tumor tracking device of the present invention with a helical anti-displacement mechanism.
  • Fig. 32-1 is an enlarged view of Y1 in Fig. 32 .
  • Fig. 33 is a schematic structural view of the solid tumor tracking device of the present invention including a helical type and a dumbbell type anti-displacement mechanism.
  • Figure 33-1 is an enlarged view of Z1 in Figure 33.
  • Fig. 34 is a schematic structural view of the solid tumor tracking device of the present invention including LED light sources.
  • Fig. 34-1 is a schematic structural view of the delivery mechanism in Fig. 34 after it has been removed.
  • Fig. 35 is a schematic structural diagram of a solid tumor tracking device of the present invention containing a medical cold light source.
  • Fig. 36 is a schematic structural diagram of a solid tumor tracking device of the present invention containing a light-storing self-luminescent tracking carrier.
  • Figure 36-1 is an enlarged view of AA1 in Figure 36.
  • Fig. 37 is a diagram of the working principle of the solid tumor tracking device of the present invention when it is inserted into a pulmonary nodule.
  • Fig. 37-1 is a working principle diagram of Fig. 37 after removing the delivery mechanism and connecting the light-guiding optical fiber to the light source.
  • 500 is the medical optical tracer system of the present invention
  • 900 is the medical catheter with tracer device of the present invention
  • 901 is the medical stomach tube
  • 902 is the medical urinary catheter
  • 910 is the solid tumor tracer device of the present invention
  • 920 is The blood vessel tracing device of the present invention.
  • 1 is a light source
  • 2 is an optical tracer carrier
  • 3 is a coating
  • 4 is a developing mechanism
  • 5 is a protective sleeve.
  • 11 is the LED light source
  • 12 is the medical cold light source
  • 13 is the control system
  • 11-1 is the light-emitting terminal
  • 11-2 is the circuit system
  • 11-3 is the drive board
  • 11-4 is the power supply
  • 13-1 is the wavelength adjustment mechanism
  • 13-2 is a light intensity adjustment mechanism
  • 11-21 is a flexible circuit board.
  • 21 is the light-storage self-luminescence tracing carrier
  • 22 is the light-guiding optical fiber
  • 23 is the delivery part
  • 24 is the channel
  • 25 is the shaping mechanism
  • 26 is the light-guiding joint
  • 21-1 is the light-storage self-luminescence body
  • 21-2 is a protective carrier
  • 22-1 is a non-smooth surface
  • 22-2 is a light outlet
  • 23-1 is a delivery handle
  • 25-1 is a shape memory shaping mechanism
  • 22-11 is capable of forming reflection, And/or non-smooth surface of scattering
  • 22-21 is a conducting surface
  • 22-22 is a reflecting surface.
  • 41 is a developing line
  • 42 is a developing ring
  • 43 is a developing block.
  • 1-1 is the cavity
  • 900-1 is the catheter
  • 900-2 is the interface
  • 900-3 is the working channel
  • 902-1 is the double-lumen catheter
  • 902-2 is the three-lumen catheter
  • 900-11 is the The distal end
  • 900-12 is the proximal end
  • 900-13 is the balloon
  • 900-14 is the catheterization cavity
  • 900-15 is the water injection cavity
  • 900-16 is the infusion flushing cavity
  • 900-21 is the drainage port
  • 900- 22 is the water injection port
  • 900-23 is the flushing injection port
  • 900-11-1 is the working opening
  • 900-16-1 is the flushing port
  • 900-16-2 is the blocking valve
  • 900-22-2 is the closing valve .
  • 910-1 is an anti-displacement mechanism
  • 910-2 is a delivery mechanism
  • 910-11 is a positioning hook
  • 910-21 is a delivery sheath
  • 910-22 is a pushing mechanism.
  • 920-1 is the delivery end
  • 920-2 is the guide wire
  • 920-3 is the operation hole of the guide wire.
  • Embodiment 1 Medical optical tracer system of the present invention
  • the medical optical tracking system of this embodiment includes a light source 1 and an optical tracking carrier 2 .
  • the optical tracer carrier 2 contains a light-guiding material, and the light emitted by the light source 1 is conducted through the optical tracer carrier 2 and optically traces the optical tracer carrier 2 .
  • the light source 1 is an LED light source 11, and/or a medical cold light source 12, and/or natural light.
  • the light source 1 can be various light sources capable of emitting light, and the light emitted by the light source 1 can be traced after being transmitted through the optical trace carrier 1 .
  • the LED light source 11 compared with ordinary lighting sources, the LED light source 11 has the characteristics of small size, high luminous efficiency, and strong light source directivity. Especially in terms of safety, LED light sources have incomparable advantages over ordinary light sources.
  • the LED light source is a low-voltage DC power supply, and the power supply voltage only needs to be 6 to 24V; secondly, no mercury is added to the LED light source, which will not cause poisoning or other harm to the human body; more importantly, the LED light source is a cold light source, which will not cause harm to the human body during work. Severe heat, safe to touch, will not cause unexpected high temperature burns to the human body.
  • the medical cold light source 12 is a commonly used light source in the existing operation process, and the light source 1 can be placed behind, which is easy to obtain in the operating room and does not require additional equipment, and the medical cold light source 12 is not easy to cause internal body temperature rise, refer to Figure 9.
  • the color of light emitted by the light source 1 can be set according to background color or penetration requirements.
  • the doctor can directly see the position of the optical tracer 2 through the tissue with the naked eye, and then accurately identify the blood vessels, tissues or organs that need to be protected during the clinical operation, effectively avoiding Accidental injury during surgery.
  • the light emitted by the light source 1 can be differentiated according to the background color in the body cavity or the tissue to be penetrated. When it is necessary to penetrate the tissue, red and yellow are the best, followed by purple and white. When it is necessary to display vascular tissue , the light is preferably green.
  • the light source 1 can also be set in the form of intermittent lighting, flashing, etc. as required, and the intensity of the light emitted by the light source 1 can also be adjusted as required to adapt to different clinical environments.
  • the illuminance of the light emitted by the light source 1 can reach 300,000 lux, preferably ranging from 5,000 lux to 150,000 lux.
  • the light source 1 includes a control system 13
  • the control system 13 includes a wavelength adjustment mechanism 13-1 and a light intensity adjustment mechanism 13-2
  • the wavelength adjustment mechanism 13-1 can adjust the wavelength
  • the light intensity adjustment mechanism 13-2 can adjust the illuminance of the emitted light.
  • the LED light source 11 can be arranged inside the body, or outside the body. Since the volume of the light-emitting end 11-1 of the LED light source 11 can be very small, usually the size of the light-emitting end 11-1 is controlled below 2 mm, such as an LED lamp with a package size between 0.2 mm and 0.5 mm. Therefore, the The above-mentioned LED light source 11 can not only be installed outside the body, and conduct light transmission into the human body through the optical tracer carrier 2, but also can be directly installed in the human body, coated with the optical tracer carrier 2, and directly arranged in the place where tracer is required. For the location, refer to Figure 11 to Figure 12-3.
  • the light source 1 can be connected to the optical trace carrier 2 through the light guide connector 26 to provide a light source, and the LED light source 11 can also be arranged in the optical trace carrier 2 .
  • the optical tracer carrier 2 is directly wrapped on the outside of the LED light source 11, and the LED light source 11 and the optical tracer carrier 2 are put into the human body together to trace lumens, organs, tumors and the like.
  • the optical trace carrier 2 is a light guiding fiber 22 .
  • the light-guiding optical fiber 22 has a good light-guiding effect, and guides the light to different positions as required, and can be switched on or off as required, which is very convenient for clinical use.
  • the optical trace carrier 2 contains at least one light guiding fiber 22 .
  • the end and/or side of the light guiding fiber 22 can emit light.
  • the light guiding fiber 22 can emit light not only at the end, but also at the side, and the light guiding fiber 22 can be lighted as a whole.
  • the optical trace carrier 2 is a combination of multiple light guiding fibers 22 .
  • the optical tracer carrier 2 can be made of a single light-guiding optical fiber 22 (refer to Fig. 1, Fig. 2 and Fig. 3), and also can be a combination of multiple light-guiding optical fibers 22, such as forming an optical fiber bundle, braiding There are many ways to form a network, arrange in different lengths, etc., refer to Figure 15 for reference.
  • the light guiding fiber 22 has a smooth surface.
  • the light outlet 22-2 of the light guiding fiber 22 is located at the far end of the light guiding fiber 22, which can Realize fixed-point tracing.
  • the light guiding fiber 22 has a non-smooth surface 22-1.
  • the non-smooth surface 22-1 is a non-smooth surface 22-11 capable of forming reflection and/or scattering.
  • the non-smooth surface 22-1 can realize the overall light emission of the non-smooth surface 22-1 through the reflection and/or scattering of light, so as to achieve the effect of overall tracking.
  • the light-guiding optical fiber 22 is intermittently provided with a light outlet 22-2.
  • Each of the light outlets 22-2 provided intermittently has a light transmission surface 22-21 and a reflection surface 22-22, the light is transmitted through the transmission surface 22-21, and when it reaches the reflection surface 22-22, The light is reflected and emitted from the light outlet 22-2 to form a tracer point, and a plurality of the light outlets 22-2 can form a chain tracer strip, as shown in FIG. 1 .
  • the light outlet 22 - 2 is a non-axial light outlet 22 - 21 , which is arranged on the side of the light guide fiber 22 along the length direction of the light guide fiber 22 .
  • the light guide fiber 22 can be lighted as a whole along the length direction of the light guide fiber 22 to realize the light guide fiber 22 overall tracer.
  • the non-axial light outlets 22-21 can be dot-shaped intermittent light outlets manufactured by molding, refer to Figures 1 to 1-4, or can be ring-shaped light outlets through integral injection molding or wire cutting Or spiral light outlet, refer to Figure 2 to Figure 3-2.
  • the light outlets 22 - 2 can mark the length dimension of the light guiding optical fiber 22 .
  • the regular arrangement of the distribution density of the light outlets 22 - 2 leads to different intensities of scattered light, and the length dimension of the light guiding optical fiber 22 is marked.
  • the emitted light is stronger and the visual effect is brighter; when the light outlets 22-2 are arranged scattered, the emitted light is weaker and the visual effect is darker.
  • a combination of light and shade can form a visual effect similar to a scale, and can also achieve the effect of size marking while tracing. Refer to the picture**.
  • the light-guiding optical fiber 22 can also be woven into a net shape, and the light outlets 22-2 are scattered in different positions.
  • the light-guiding optical fiber 22 is braided into a net shape, and the length of each of the light-guiding optical fibers 22 can be set to be different, and the light outlets 22-2 of the light-guiding optical fiber 22 are also different thereupon, scattered and distributed, which can be To realize the overall tracking in the three-dimensional space, since the light outlet 22-1 does not need to be arranged in the middle of each light-guiding optical fiber 22, the light transmission effect is better, and the visual effect of a single tracking point is very bright.
  • the shape of mesh weaving can have good support, which is especially suitable for the support and tracking of large cavities, such as bladder and uterus.
  • the light source can also be connected with the optical trace carrier 2 in a non-contact manner, by irradiating the optical trace carrier 2, such as the light-storing self-luminous trace carrier 21, by The storage and conversion of light energy realizes the tracking of the optical tracking carrier 2 .
  • the optical tracer 2 is a light-storage self-luminous tracer 21 .
  • Self-luminous materials refer to materials that can absorb energy in a certain way and convert it into non-equilibrium light radiation. The process of converting the energy absorbed inside the material into non-equilibrium light radiation is the luminescence process.
  • light-storing self-luminescent materials can continue to emit light for more than 12 hours in a dark environment after a few minutes or tens of minutes under the action of external light, which can meet the tracing needs of most operations.
  • the light-storing self-illuminating tracer carrier 21 can directly absorb the energy of the light in the operating room, so that various external lights can form the light source 1, and there is no need to directly connect the light source 1, and the use process is very simple.
  • the light-storage self-luminous tracer carrier 21 includes a light-storage self-illuminator 21-1 and a protection carrier 21-2.
  • the protective carrier 21-2 is made of a transparent light-guiding material, and the light-storing self-luminous body 21-1 is closed and arranged in the protective carrier 21-2.
  • the light-storing self-luminous body 21-1 can absorb external energy and convert it into light.
  • the protective carrier 21-2 is made of transparent medical materials, which can be directly in contact with tissues.
  • the light energy converted from the light-storing self-illuminating body 21-1 effectively passes through for effective tracing, and at the same time ensures clinical Biosafety used.
  • the light-storing self-illuminating body 21-1 can be arranged in different positions and designed in different shapes, and can perform fixed-point tracking or overall tracking as required.
  • the surface of the medical optical tracking system 500 also includes a coating 3 .
  • the coating 3 is an anticoagulation coating, and/or a hydrophilic coating, and/or a hydrophobic coating.
  • the coating 3 can be designed with different properties according to the needs, such as when the optical tracking carrier 2 needs to enter the blood vessel, the coating 3 can be designed as an anticoagulation coating, when the optical tracking carrier 2 When it is necessary to enter various cavities, the coating 3 can be designed as a hydrophilic coating or a hydrophobic coating as required.
  • the optical trace carrier 2 includes a delivery part 23 .
  • the delivery part 23 can deliver the working part 2-1 of the optical fiber tracking carrier 2 to blood vessels, cavities, tumor operation sites and other parts that need to be traced as needed.
  • the delivery part 23 includes a delivery handle 23-1.
  • the delivery part 23 is movably arranged on the optical tracking carrier 2 .
  • the delivery part 23 can be removed from the optical tracking carrier 2 or move relative to the optical tracking carrier 2 as required.
  • the medical optical tracing system 500 also includes a developing mechanism 4 .
  • the developing mechanism 4 is made of metal and has a heat conduction function.
  • the heat conduction function of the developing mechanism 4 can prevent accidental damage caused by excessive temperature of the part of the medical optical tracing system 500 entering the human body, and the temperature is usually controlled below 37°C.
  • the developing mechanism 4 is a developing line 41 , and/or a developing ring 42 , and/or a developing block 43 .
  • the applicant here only exemplifies the above-mentioned several developing methods. In practical applications, those skilled in the art can design different developing methods according to needs. The applicant does not give examples here, but they do not deviate from the scope of the application protected range.
  • the developing mechanism 4 can develop under X-ray, and/or MRI, and/or B-ultrasound.
  • the development mechanism 4 can provide development prompts in X-ray, magnetic navigation, or B-ultrasound scenarios, and the development mechanism 4 facilitates the insertion of the optical tracking carrier 2 under the condition of visibility or navigation, especially Suitable for implantation of important blood vessels, solid tumors, etc.
  • the medical optical tracking system 500 also includes a protective sleeve 5 .
  • the optical trace carrier 2 , the developing mechanism 4 and the like can be arranged in the protective sleeve 5 .
  • the coating 3 can be provided on the outside of the protective sleeve 5 as required.
  • the protective sleeve 5 is made of transparent material, and the optical trace carrier 2 is arranged in the protective sleeve 5 .
  • the protective sleeve 5 is made of medical transparent material, while protecting the optical trace carrier 2 , the transparent material can still ensure the trace effect of the optical trace carrier 2 .
  • the optical trace carrier 2 contains a channel 24 inside.
  • the channel 24 can be used as a surgical instrument channel, a body fluid drainage channel, etc. as required.
  • the optical tracer carrier 2 is made of flexible medical materials and can move along the cavities of blood vessels, ureters, esophagus, trachea, fallopian tubes, and vas deferens.
  • the optical trace carrier 2 has good flexibility and can move along the blood vessel or cavity, therefore, the optical trace carrier 2 can be placed in different positions as required.
  • the optical trace carrier 2 includes a shaping mechanism 25 .
  • the shaping mechanism 25 can shape the optical tracer carrier 2 , such as into various shapes such as circle, arc, and ball as required, so as to meet different traceability requirements.
  • the shaping mechanism 25 is a shape memory shaping mechanism 25-1.
  • the shape-memory shaping mechanism 25-1 has a simple structure such as a line or a strip at room temperature, so that it can be easily inserted. After entering the human body, it returns to the set shape under the action of body temperature.
  • the shape-memory shaping mechanism 25-1 is braided by shape-memory metal wires, and/or carved from shape-memory metal tubes or sheets.
  • the shape-memory shaping mechanism 25-1 can be braided into a desired shape by shape-memory metal wires, or can be directly carved into a desired shape by using a shape-memory alloy tube or a shape-memory alloy sheet.
  • the optical tracer carrier 2 of the medical optical tracer system of this embodiment can be placed in various positions that need to be traced in clinical applications, such as ureters, vas deferens, fallopian tubes, etc.
  • solid tumors such as uterine fibroids, lung tumors (especially lung nodules), liver tumors, etc.
  • it can also be placed in blood vessels, especially by utilizing the characteristics of the light-guiding optical fiber 2 that can emit light from the side to realize overall tracing, it is suitable for various Lumens, blood vessels, solid tumors, etc. are identified.
  • the optical tracer 2 can be optically traced after the optical tracer 2 transmits the light emitted by the light source 1 .
  • the optical tracer 2 can accurately identify blood vessels, lumens, tissues or organs that need to be protected during clinical operations, effectively avoid accidental injuries during operations, or effectively calibrate small-sized tumors , in order to facilitate the effective implementation of clinical operations.
  • Embodiment 2 Blood vessel tracing device of the present invention
  • this embodiment discloses a blood vessel visible light calibration technique and device.
  • the blood vessel tracing device of this embodiment includes the medical optical tracing system 500 described in Embodiment 1.
  • the blood vessel tracking device 920 includes a delivery end 920 - 1 , a guide wire 920 - 2 , a protective sleeve 5 and the medical optical tracking system 500 .
  • the light source 1 of the medical optical tracer system 500 adopts a medical cold light source 12, and the medical cold light source 12 can better prevent the temperature rise of the optical tracer carrier 2 arranged in the body, and the blood vessel The tracing process is much safer.
  • the light source 1 includes a control system 13, the control system 13 includes a wavelength adjustment mechanism 13-1 and a light intensity adjustment mechanism 13-2, and the wavelength adjustment mechanism 13-1 can adjust the color of the emitted light by adjusting the wavelength , the light intensity adjusting mechanism 13-2 can adjust the illuminance of the emitted light.
  • the color of light emitted by the light source 1 can be set according to background color or penetration requirements. Through the setting of the light, in the clinical operation, the doctor can directly see the position of the optical tracer carrier 2 through the tissue with the naked eye, and then accurately identify the blood vessels that need to be protected during the clinical operation, effectively avoiding accidents during the operation. accidental damage.
  • the light emitted by the light source 1 can be differentiated according to the background color in the body cavity or the tissue to be penetrated. When it is necessary to penetrate the tissue, red and yellow are the best, followed by purple and white. When it is necessary to display vascular tissue , the light is preferably green.
  • the light source 1 can also be set in the form of intermittent lighting, flashing, etc. as required, and the intensity of the light emitted by the light source 1 can also be adjusted as required to adapt to different clinical environments.
  • the illuminance of the light emitted by the light source 1 can reach 300,000 lux, preferably ranging from 5,000 lux to 150,000 lux.
  • the medical optical trace carrier 2 is a combination of multiple light guiding fibers 22 .
  • the light guide fiber 22 has a non-smooth surface 22-1, and a light outlet 22-2 is provided on the side along the length direction.
  • the proximal end of the light guide fiber 22 is connected to a light guide connector 26.
  • the side of the light guiding fiber 22 can emit scattered light to realize the tracking of the light guiding fiber 22 along the length direction.
  • the protective sleeve 5 is made of transparent material, and the light guiding fiber 22 and the guide wire 920 - 2 are arranged in the protective sleeve 5 .
  • the guide wire 920-2 is made of metal material, which can be developed under X-rays, and constitutes the developing mechanism 4. It also has a heat conduction function to prevent the temperature of the part where the working part 2-1 of the light guiding optical fiber 22 enters the human body from being too high In case of accidental injury, the temperature is usually controlled below 37°C.
  • the guide wire 920 - 2 can be made of a shape memory alloy to shape the distal end of the blood vessel tracing device 920 to form the shaping mechanism 25 .
  • the guide wire 920-2 can shape the distal end of the blood vessel tracing device 920 as required to adapt to the curvature of the blood vessel, making the delivery process more convenient.
  • the light guiding optical fiber 22 is also deformed accordingly, so as to ensure the tracking effect of the blood vessel tracking device 920 .
  • the radial artery puncture is performed first, the arterial sheath is fixed, and then the medical super-smooth guide wire is sent into the angiography catheter, the catheter is inserted into the arterial sheath, and then the super-smooth guide wire is inserted under the X-ray environment, and the guide wire is inserted into the angiography catheter.
  • the wire After the wire is delivered to the working site, fix the guide wire, then send the contrast catheter along the guide wire to the working site, then remove the ultra-smooth guide wire, insert the blood vessel tracing device of this embodiment along the contrast catheter to the working site, and then remove it Angiography catheter, stay the blood vessel tracing device 920 in the blood vessel to be traced, turn on the light source 1, and the blood vessel tracing device 920 can trace the blood vessel by visible light technology.
  • the light emitted by the light source 1 can be seen through the tissue through the blood vessel.
  • the illuminance of the light emitted by the light source 1 is guaranteed to be about 0-30mm away from the blood vessel wall, The traced blood vessels are clearly visible.
  • the blood vessel tracing device 920 can also be designed without the structure of the guide wire 920-2.
  • the medical optical tracing system 500 is provided with a channel 24, and the channel 24 constitutes a guide wire operation hole 920-3.
  • a separate medical guide wire can be inserted into the guide wire operation hole 920-3 to cooperate with the delivery operation.
  • the side wall of the optical tracing carrier 2 is made of a transparent material, and a light-guiding fiber 22 and a developing line 41 are arranged in the side wall, and the light-guiding fiber 22 has a non-smooth surface 22-1.
  • the optical tracer carrier can also place the light-emitting end of the LED light source 11 directly into the human body for traceability.
  • the optical trace carrier 2 is made of a transparent material to form the protective sleeve 5, and the coating 3 is provided on the outside, and the coating 3 is an anti-coagulation coating.
  • the light source 1 is an LED light source 11, and the LED light source 11 adopts the flexible circuit board 11-21 as the power supply connected to the circuit system 11-2, and the light emitting ends 11-1 of the LED light source 11 are dispersedly arranged on the on the flexible circuit board 11-21, and then encapsulated in the optical tracer carrier 2 together with the developing mechanism 4, the LED light source 11 traces the blood vessel directly in the blood vessel, and the lighting effect is better. For large blood vessels The tracer has very good effect.
  • the medical optical tracking system 500 can track the blood vessel tracking device 920 as a whole.
  • the light emitted by the light source 1 can be seen through the tissue through the blood vessel, and the light emitted by the light source 1
  • the illuminance of the light ensures that the traced blood vessels are clearly visible when the distance from the blood vessel wall is about 0-30mm, and the closer to the blood vessel, the stronger the light, and the more obvious the prompting effect, which can effectively trace blood vessels during surgery and remind medical staff , protect important blood vessels, prevent accidental damage to blood vessels during surgery, and are very convenient and safe for clinical use.
  • Embodiment 3 Medical catheter with tracer device of the present invention
  • this embodiment discloses a medical catheter visible light calibration technology and device.
  • the medical catheter with a tracer device in this embodiment includes the medical optical tracer system described in Embodiment 1.
  • the medical catheter 900 with a tracer device includes a catheter 900 - 1 , an interface 900 - 2 and a medical optical tracer system 500 .
  • the catheter 900-1 is made of soft elastic medical material, has a working channel 900-3 inside, and a working opening 900-11-1 at the distal end 900-11.
  • the medical catheter 900 with a tracking device includes a developing mechanism 4 .
  • the developing mechanism 4 is arranged on the catheter 900-1, and the developing mechanism 4 can provide developing prompts in scenarios such as X-ray, magnetic navigation, or B-ultrasound, so as to facilitate the insertion of the catheter 900-1.
  • the developing mechanism 4 can be made of metal materials, and can also have a heat conduction function to prevent the temperature in the body from being too high due to the LED light source 11, and the temperature usually needs to be controlled within 37°C.
  • the medical catheter 900 with a tracer device includes at least one interface 900-2, and the interface 900-2 is arranged at the proximal end 900-12 of the catheter 900-1.
  • the optical tracer 2 of the medical optical tracer system 500 is set on the catheter 900-1 to identify the location of the catheter 900-1.
  • the optical tracking carrier 2 is arranged on the catheter 900-1, and the optical tracking carrier 2 can perform partial or overall tracking on the catheter 900-1 as required.
  • the light source 1 is an LED light source 11, including a light emitting end 11-1 and a circuit system 11-2.
  • the color of light emitted by the light source 1 can be set according to background color or penetration requirements.
  • the light source 1 includes a control system 13, and the control system 13 includes a wavelength adjustment mechanism 13-1 and a light intensity adjustment mechanism 13-2, and the wavelength adjustment mechanism 13-1 can be adjusted by wavelength To adjust the color of the emitted light, the light intensity adjustment mechanism 13-2 can adjust the illuminance of the emitted light.
  • the doctor can directly see the position of the optical tracer 2 through the tissue with the naked eye, and then accurately identify the blood vessels, tissues or organs that need to be protected during the clinical operation, effectively avoiding Accidental injury during surgery.
  • the light emitted by the light source 1 can be differentiated according to the background color in the body cavity or the tissue to be penetrated. When it is necessary to penetrate the tissue, red and yellow are the best, followed by purple and white. When it is necessary to display vascular tissue , the light is preferably green.
  • the light source 1 can also be set in the form of intermittent lighting, flashing, etc. as required, and the intensity of the light emitted by the light source 1 can also be adjusted as required to adapt to different clinical environments.
  • the illuminance of light emitted by the light source 1 is usually 5,000 lux to 150,000 lux.
  • the LED light source 11 can be arranged outside the body, and connected to the optical trace carrier 2 through the light guide connector 26 to trace the optical trace carrier 2 .
  • the LED light source 11 can also be designed with a miniature light-emitting end, and the light-emitting end 11-1 is arranged on the catheter 900-1, and enters the human body along with the catheter 900-1 for tracing.
  • the size of the light-emitting terminal 11-1 is controlled below 2 mm, such as packaging an LED lamp with a size between 0.2 mm and 0.5 mm, and the conduit 900-1 is made of a transparent material , constituting the optical trace carrier 2 .
  • the light source 1 of the medical optical tracer system 500 is an LED light source 11, and the light-emitting end 11-1 of the LED light source 11 is set in the tube wall of the catheter 900-1 to trace the catheter 900-1. .
  • the LED light source 11 includes a light-emitting end 11-1 with a small volume, so that the light-emitting end 11-1 can be directly installed in the tube wall of the catheter 900-1, and connected to the power supply through the circuit system 11-2. Light is emitted inside the tube wall of the tube 900-1.
  • the light-emitting end 11-1 can also be arranged at any position of the catheter 900-1 as required, so as to realize partial or overall tracking of the catheter 900-1.
  • the distal end 900 of the catheter 900-1 can be -11 for local fixed-point tracing.
  • the light-emitting terminals 11-1 can be distributed on any of the flexible circuit boards 11-21.
  • the flexible circuit board 11-21 is arranged in the pipe wall of the catheter 1, and an LED light strip or LED light network can be formed to trace the catheter 900-1 as a whole.
  • the optical tracer carrier 2 of the medical optical tracer system 500 is a light-guiding optical fiber 22;
  • the end is connected with a light-guiding joint 26, and the light-guiding optical fiber 22 is arranged along the length direction of the catheter 900-1 to track the catheter 900-1.
  • the light outlet 22-2 is set to the distal end of the catheter 1, that is, to the distal end of the catheter 900-1 900-11 traced.
  • the light outlet 22-2 provided on the side can emit scattered light to carry out the process on the guide tube 900-1 overall tracer.
  • the light-guiding optical fiber 22 can also trace the catheter 900-1 as a whole by weaving the light-guiding optical fiber 22 into a net shape, and through the net-like weaving, also The elastic supporting force of the light guiding optical fiber 22 can be used to support the tube wall of the catheter 900-1.
  • the outer surface of the catheter 900-1 can also be provided with the coating 3, such as a hydrophilic coating, as required.
  • the medical catheter 900 with a tracer device may be a medical gastric tube 901 , or a medical urinary catheter 902 , or a medical vas deferens, or a medical fallopian tube, or a medical trachea.
  • the applicant here only lists several use scenarios of the above-mentioned medical catheter 900 with a tracking device. In practical applications, the medical catheter 900 with a tracking device can be configured into structures required by different application scenarios according to clinical needs.
  • the medical catheter 900 can also be provided with a shaping mechanism 25, which can shape the catheter 900-1 to adapt to different lumens.
  • the medical catheter 900 with a tracer device is a medical gastric tube 901 .
  • the medical gastric tube 901 includes a catheter 900-1, an interface 900-2 and a medical optical tracing system 500, the distal end 900-11 of the catheter 900-1 is provided with a working opening 900-11-1;
  • the medical optical tracking system 500 tracks the catheter 900-1.
  • the medical stomach tube 901 enters the stomach through the esophagus and is an artificial transmission channel for food, and the interface 900-2 can be connected with a food injection device.
  • the medical optical tracking system 500 only needs to monitor the Local tracking of the distal end.
  • the light-emitting end 11-1 of the LED light source 11 can be arranged individually or collectively on the catheter 900-1
  • the technical solution for tracing at the far end can also use the light-guiding optical fiber 22 with a smooth surface, which can be a single light-guiding optical fiber 22 or a light-guiding beam composed of multiple light-guiding optical fibers 22 , trace the distal end of the catheter 900-1 by using the light exit port 22-1 at the end, or the light guiding optical fiber 22 is arranged in a circumferential shape along the side wall of the catheter 900-1, in the The distal end of the catheter 900-1 forms an aperture, and local tracking is performed on the distal end of the catheter 900-1.
  • the light-emitting end 11-1 of the LED light source 11 can be scattered and distributed on the tube 900-
  • a light guide strip or a light guide net is formed in the tube wall of the tube 1 to track the guide tube 900-1 as a whole or in a large area.
  • the light-guiding optical fiber 22 can also be braided into a net shape, and a certain section or the whole of the catheter 900-1 can be traced in a ring shape.
  • the medical catheter 900 with a tracer device is a medical urinary catheter 902 .
  • the medical catheter 902 includes a catheter 900-1, an interface 900-2 and a medical optical tracing system 500, the distal end 900-11 of the catheter 900-1 is provided with a working opening 900-11-1;
  • the optical tracking system 500 tracks the catheter 900-1.
  • the medical optical tracking system 500 can perform fixed-point tracking on the medical urinary catheter 902 , and can also perform large-scale or overall tracking on the medical urinary catheter 902 .
  • the light-emitting end 11-1 of the LED light source 11 can be individually or collectively arranged on the catheter 900-1.
  • the technical solution for tracing at the far end can also use the light-guiding optical fiber 22 with a smooth surface, which can be a single light-guiding optical fiber 22 or a light-guiding beam composed of multiple light-guiding optical fibers 22.
  • the light outlet 22-1 traces the distal end of the catheter 900-1, or the light guiding optical fiber 22 is arranged in a circumferential shape along the side wall of the catheter 900-1, and the catheter 900-1
  • the distal end of the catheter 900-1 forms an aperture for local tracking of the distal end of the catheter 900-1.
  • the light-emitting end 11-1 of the LED light source 11 can be scattered and distributed on the tube wall of the catheter 900-1
  • a light guide belt or a light guide net is formed inside to track the guide tube 900-1 as a whole or in a large area.
  • the light-guiding optical fiber 22 with a non-smooth surface 22-1 in the tube wall of the catheter 900-1 along the length direction to form a light-guiding belt, and trace the catheter 900-1 along the length direction,
  • the light-guiding optical fiber 22 may also be woven into a net shape to trace the periphery of the balloon 900-13 as a whole.
  • the medical catheter 902 is a double-lumen catheter 902-1.
  • the distal end 900-11 of the catheter 900-1 of the double lumen catheter 902-1 is provided with a balloon 900-13; the catheter 900-1 is provided with two lumens 1-1, each of which is Channel 1-1 is correspondingly provided with one said interface 900-2; one of said lumens 1-1 constitutes a catheterization chamber 900-14, and the distal end of said catheterization chamber 900-14 is provided with said working
  • the opening 900-11-1, the interface 900-2 provided at the proximal end constitutes a liquid discharge port 900-21; the other one of the channels 1-1 constitutes a water injection chamber 900-15, and the water injection chamber 900-15
  • the distal end is connected to the balloon 900-13, and the interface 900-2 connected to the proximal end constitutes a water injection port 900-22.
  • the medical catheter 902 used in the operation usually needs to be provided with the balloon 900-13, from the water injection port 900-22 to the balloon through the water injection chamber 15. Injecting water into 900-13 can form a water bag to ensure the effective fixation of the medical catheter 902 in the bladder and prevent slippage.
  • the medical catheter 902 is a three-lumen catheter 902-2.
  • the distal end 900-11 of the catheter 900-1 of the three-lumen catheter 902-2 is provided with a balloon 900-13; the catheter 900-1 is provided with three lumens 1-1, each of which is The channel 1-1 is correspondingly provided with one interface 900-2; wherein the first channel 1-1 constitutes a catheterization cavity 900-14, and the distal end of the catheterization cavity 900-14 is provided with the The working opening 900-11-1, the interface 900-2 provided at the proximal end forms the liquid discharge port 900-21; the second cavity 1-1 forms the water injection cavity 900-15, and the water injection cavity 900-15 The distal end is connected to the balloon 900-13, and the interface 900-2 connected to the proximal end constitutes the water injection port 900-22; the third lumen 1-1 constitutes the infusion flushing chamber 900-16.
  • the far end of the infusion flushing chamber 900-16 is provided with a flushing port 900-16-1 and a blocking valve 900-16-2, and the interface 900-2 connected to the proximal end of the infusion flushing chamber 900-16 constitutes a flushing injection port.
  • Medicine mouth 900-23 The far end of the infusion flushing chamber 900-16 is provided with a flushing port 900-16-1 and a blocking valve 900-16-2, and the interface 900-2 connected to the proximal end of the infusion flushing chamber 900-16 constitutes a flushing injection port.
  • Medicine mouth 900-23 is provided with a flushing port 900-16-1 and a blocking valve 900-16-2, and the interface 900-2 connected to the proximal end of the infusion flushing chamber 900-16 constitutes a flushing injection port.
  • the medical catheter 902 can be configured as the three-lumen catheter 902-2.
  • the proximal end of the infusion flushing cavity 900-16 is provided with the flushing injection port 900-23, the distal flushing port 900-16-1 communicates with the body cavity, and the flushing port 900-16-1 is provided with a
  • the blocking valve 900-16-2 when the drug is injected through the flushing injection port 900-23, under the action of pressure, the blocking valve 900-16-2 is opened, and the drug enters the body cavity. , under the action of body cavity pressure, the blocking valve 900-16-2 is automatically closed to prevent body fluid from entering the infusion flushing cavity 900-16 from the flushing port 900-16-1.
  • the medical staff inserts the medical catheter 902 into the bladder, injects physiological saline into the balloon 900-13 through the water injection port 900-22, and the balloon 900-13 inflates , the medical catheter 902 is fixed in the bladder.
  • the light source 1 is turned on, and the medical optical tracking system 500 tracks the catheter 900-1.
  • the catheter 900-1 is provided with a development line 41, and under X-ray, the medical catheter 902 is delivered to the position to be traced, and then Turn on the light source 1, and under the action of the medical optical tracing system 500, the ureter is marked by visible light, as shown in FIG. 24 .
  • the medical catheter with a tracer device in this embodiment contains the medical optical tracer system 500, which can be traced by visible light after entering the human body.
  • the light emitted by the light source 1 can be seen through the tissue through the lumen, and the illuminance of the light emitted by the light source 1 can be guaranteed to be clearly visible when the distance from the light source 1 is about 0-30mm from the tube wall, and the closer the The stronger the lumen light, the more obvious the prompting effect. It can effectively trace the blood vessels during the operation and remind the medical staff to protect the important lumen and prevent accidental injury during the operation. It is very convenient and safe for clinical use.
  • Embodiment 4 The solid tumor tracking device of the present invention
  • this embodiment discloses a visible light marking technology and device for solid tumors.
  • the solid tumor tracing device of this embodiment includes the medical optical tracing system described in Embodiment 1.
  • the solid tumor tracking device 910 includes an anti-displacement mechanism 910-1, a delivery mechanism 910-2, a developing mechanism 4, and the medical optical tracking system 500;
  • the optical tracking carrier 2 of the tracking system 500 is arranged on the anti-displacement mechanism 910-1 to track the anti-displacement mechanism 910-1.
  • the anti-displacement mechanism 910-1 is made of metal material, which constitutes the developing mechanism 4. Referring to Fig. 25-1 and Fig. 26, in practical applications, in order to enhance the developing effect, the Describe developing mechanism 4.
  • the anti-displacement mechanism 910-1 can be fixed on the solid tumor that needs to be calibrated, so as to prevent the solid tumor tracking device 910 from moving with the movement of the human body, such as lung breathing movement, intestinal peristalsis, gastric peristalsis, etc. shift.
  • the anti-displacement mechanism 910-1 is a hook-shaped structure (refer to FIG. 26 ), and/or a spherical structure (refer to FIG. 30 ), and/or a trumpet-shaped structure, and/or a dumbbell-shaped structure (refer to FIGS. 31 to 31 -4), and/or helical spring type structure (referring to Fig. 32 and Fig. 32-1), and/or nail-like structure.
  • the applicant here only exemplifies the manners of the anti-displacement mechanism 910-1 with the above-mentioned several structures.
  • the anti-displacement mechanism 910-1 can design the anti-displacement mechanism 910-1 with different structures as required
  • the combination of one or more structures, such as the combination of dumbbell type and helical spring type (referring to Fig. 33 and Fig. 33-1) the applicant does not give examples one by one here, but all do not depart from the scope of protection of the present application.
  • the outer surface of the anti-displacement mechanism 910-1 can also be provided with the coating 3 as required, refer to FIG. 31-4.
  • the anti-displacement mechanism 910-1 has a hook structure, and the anti-displacement mechanism 910-1 includes at least one positioning hook 910-11.
  • the anti-displacement mechanism 910-1 includes 2 or 3 positioning hooks 910-11 to better prevent the anti-displacement mechanism 910-1 from moving with the human body, such as the breathing of the lungs. Displacement occurs due to movement, intestinal peristalsis, etc.
  • the optical trace carrier 2 is a light-guiding fiber 22, the proximal end of the light-guiding fiber 22 is connected with a light-guiding connector 26, and the light-guiding fiber 22 The distal end is connected and fixed on the anti-displacement mechanism 910-1, the light outlet 22-2 of the light guide fiber 22 is arranged on the anti-displacement mechanism 910-1, and the anti-displacement mechanism 910 -1 for tracer,.
  • the light guiding fiber 22 has a non-smooth surface 22-1, the side of the light guiding fiber 22 is provided with a light outlet 22-2, and the light guiding fiber 22 is opposite to the The anti-displacement mechanism 910-1 performs overall tracking. Since the light guiding fiber 22 can be lighted as a whole, the light guiding fiber 22 can be wound on the anti-displacement mechanism 910-1, especially on the positioning hook 910-11, so that the The anti-displacement mechanism 910-1 performs overall tracking.
  • the light guide optical fiber 22 is made of flexible medical material, connected and fixed on the anti-displacement mechanism 910-1, when the anti-displacement mechanism 910-1 is deformed, the light guide The optical fiber 22 is deformed along with the anti-displacement mechanism 910-1.
  • the light guiding fiber 22 can be lighted as a whole, winding the light guiding fiber 22 on the anti-displacement mechanism 910-1, especially on the positioning hook 910-11, can follow the The anti-displacement mechanism 910-1 is deformed together, especially when the anti-displacement mechanism 910-1 is made of shape memory alloy, as the shape of the anti-displacement mechanism 910-1 changes, the guide The shape of the optical fiber 22 also changes accordingly to ensure the tracking effect of the anti-displacement mechanism 910-1.
  • the delivery mechanism 910-2 includes a delivery sheath 910-21 and a push mechanism 910-22, the anti-displacement mechanism 910-1 is set in the delivery sheath 910-21, and the push mechanism 910- 22 to push the anti-displacement mechanism 910-1 out of the delivery sheath 910-21, see FIG. 26 .
  • the pushing mechanism 910-22 can be fixedly connected with the anti-displacement mechanism 910-1, and stay in the body together after the anti-displacement mechanism 910-1 is pushed out from the delivery sheath 910-21;
  • the mechanism 910-22 can also be detachably connected with the anti-displacement mechanism 910-1, after the anti-displacement mechanism 910-1 is pushed out from the delivery sheath 910-21, and the anti-displacement mechanism 910 -1 Disconnect, and only place the anti-displacement mechanism 910-1 on the solid tumor, refer to Fig. 37 and Fig. 37-1.
  • the light source 1 of the medical optical tracing system 500 adopts a miniature LED light source 11
  • the size of the light-emitting end 11-1 is controlled below 2 mm, such as the package size is 0.2 mm.
  • the light-emitting end 11-1 can be arranged inside the body.
  • the optical trace carrier 2 is made of a transparent material, the light-emitting end 11-1 of the LED light source 11 can be packaged on the optical trace carrier 2, and is set together with the optical trace carrier 2 on the anti- On the displacement mechanism 910-1, the anti-displacement mechanism 910-1 is traced.
  • the light emitted from the light-emitting end 11-1 is displayed after being transmitted through the light-guiding material of the optical tracer carrier 2, for clinically identifying the position of a solid tumor.
  • the LED light source 11 includes a light-emitting terminal 11-1, a circuit system 11-2, a drive board 11-3, and a power supply 11-4; the light-emitting terminal 11-1 passes through the circuit system 11-2 and the drive board 11 -3 and the power supply 11-4 are connected, and under the control of the driving board 11-3, the power supply 11-4 supplies power to the light emitting terminal 11-1 through the circuit system 11-2, and the light emitting The end 11-1 emits light; the driving board 11-3 and the power supply 11-4 are arranged outside the body, and the light emitting end 11-1 is arranged inside the body to trace the anti-displacement mechanism 910-1.
  • the circuit system 11-2 is a flexible circuit board 11-21, and the light emitting ends 11-1 of the LED light source 11 are dispersedly arranged on the flexible circuit board 11-21 and packaged in the optical tracer carrier 2, It constitutes an LED light strip, or an LED light net, or an LED light ball, and is arranged on the anti-displacement mechanism 910-1 to track the anti-displacement mechanism 910-1.
  • the LED light source 11 can be packaged with a single light-emitting terminal 11-1 for fixed-point tracking.
  • the light-emitting ends 11-1 of the LED light source 11 are dispersedly arranged on the flexible circuit board 11-21, and are packaged together on the optical trace carrier 2, constitute an LED light strip, or an LED light net, or an LED light ball, which is arranged on the anti-displacement mechanism 910-1, and traces the entire anti-displacement mechanism 910-1.
  • the light-emitting end 11-1 of the LED light source 11 can also be directly arranged on the anti-displacement mechanism 910-1, and the optical trace carrier 2 made of transparent material is coated on the outside, and the light-emitting end 11-1 The emitted light traces the anti-displacement mechanism 910-1.
  • the light-emitting ends 11-1 are dispersedly arranged on the anti-displacement mechanism 910-1, and then the optical trace carrier 2 made of a transparent material is coated on the outside, so that the light-emitting ends 11-1 can be completely It fits the outer contour of the anti-displacement mechanism 910-1 accurately, and traces any shape of the anti-displacement mechanism 910-1.
  • the light-emitting end 11-1 is arranged symmetrically, and the outside covers the optical tracer carrier 2, and the internal support of the light-emitting end 11-1 and the circuit system 11-2 and the light-emitting end 11-1 Its own volume can constitute the anti-displacement mechanism 910-1, and the medical optical tracer system 500 can have both the tracing function and the positioning function of the anti-displacement mechanism 910-1, refer to Fig. 31 to Fig. 31-4.
  • the circuit system 11-2 is a flexible circuit board 11-21, the optical trace carrier 2 is made of soft transparent material, the light-emitting terminal 11-1, the flexible circuit board 11-21 and the developing The mechanism 4 is set together in the optical trace carrier 2 and on the anti-displacement mechanism 910-1.
  • the anti-displacement mechanism 910-1 is deformed, the light emitting end 11-1, The flexible circuit board 11 - 21 , the developing mechanism 4 and the optical trace carrier 2 are deformed together with the anti-displacement mechanism 910 - 1 .
  • the anti-displacement mechanism 910-1 is made of shape memory alloy, as the shape of the anti-displacement mechanism 910-1 changes, the shape of the flexible circuit board 11-21 also changes accordingly. , to ensure the tracking effect on the anti-displacement mechanism 910-1.
  • the anti-displacement mechanism 910-1 is set in the delivery sheath 910-21, and Under the X-ray state, the delivery sheath 910-21 is inserted into the position of the solid tumor, and then the anti-displacement mechanism 910-1 is pushed out by the pushing mechanism 910-22, and fixed on the lung tumor (especially the lung nodule). ), or liver tumors and other solid tumors, and then remove the delivery sheath 910-21, stay and fix the anti-displacement mechanism 910-1 on the solid tumor, and then connect the light-guiding optical fiber 22 to the On the light source 1, refer to Figure 37-1.
  • the light source 1 is turned on, and the optical tracer 2 traces the anti-displacement mechanism 910-1, so that under the guidance of light, the naked eye can see Visually observe the location of lung tumors (especially lung nodules), or solid tumors such as liver tumors.
  • the anti-displacement mechanism 910-1 can be delivered to the uterine fibroids and fixed on the uterine fibroids.
  • the light source 1 and the optical tracer 2 trace the anti-displacement mechanism 910-1, so that the position of the uterine fibroids can be visually observed with the naked eye under the guidance of the light.
  • the solid tumor tracking device in this implementation is designed with the medical optical tracking system 500, which can track solid tumors through visible light after entering the human body.
  • the light source 1 is turned on, and the optical tracking When the carrier traces the anti-displacement mechanism 910-1, the position of the solid tumor can be visually observed with the naked eye under the guidance of the light, making the clinical operation safer and more convenient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

医用光学示踪系统(500)含光源(1)和光学示踪载体(2)。光学示踪载体(2)含导光材料,如发光光纤(22)。光源(1)发出的光经光学示踪载体(2)进行传导后,对光学示踪载体(2)进行光学示踪。光源(1)采用医用冷光源(12),也可以采用LED光源(11),特别是可以将微型的LED光源(11)的发光端(11-1)直接和光学示踪载体(2)设置成一个整体置入人体内,进行光学示踪。医用光学示踪系统(500)可以根据需要制造成为可见光示踪医用导管(900)、或可见光示踪实体瘤示踪装置(910)、可见光示踪光纤(22)、或可见光示踪血管示踪装置(920),在临床手术中,用来示踪血管、食管、输尿管、尿道等腔管,或者示踪和标定实体瘤的位置,如子宫肌瘤、肺肿瘤,肝肿瘤等,提高手术的精准性,避免手术过程中的意外伤害。

Description

医用光学示踪系统 技术领域
本发明涉及一种医用示踪系统,特别是一种医用光学示踪系统。
背景技术
临床手术中,由于血管、输尿管、输卵管、气管等腔管通常被组织包裹,外科医生需要经过长期训练,熟悉解剖结构,才能准确分离血管、输尿管、输卵管、气管等腔管。即便是经验丰富的外科医生,有时也会发生误伤血管、或输尿管、或输卵管、或气管等腔管的意外,因此,需要一种能够在组织中准确标识血管、或输尿管、或输卵管、或气管等腔管的装置。
另外,随着医学影像设备分辨率的大幅提高,一些肿瘤组织在很小体积时就能被发现,如肺结节、子宫肌瘤、食道肿瘤、肝肿瘤等。由于这些肿瘤组织体积小,如肺结节,在腔镜下切除时,很难准确鉴别,因此,需要对需要切除的肿瘤组织进行标识,方便在腔镜下进行手术切除。
此外,做淋巴结清扫时,通常会紧贴血管进行,因此,也需要对血管的位置和范围进行标定,方便在腔镜下进行外科手术。
综上所述,现有技术尚不能对隐藏在组织中的血管、输尿管、输卵管、输精管、气管等进行可见光标识,不便于在腔镜下手术的识别。因此,需要开发一种在腔镜下可见光标识技术和装置,以便于在腔镜下进行识别血管、输尿管、输卵管、输精管、气管等腔管和实体瘤。
本发明公开了一种基于可见光技术的血管、输尿管、输卵管、输精管、气管等腔管的标识技术,以及实体瘤的标定技术和装置。
发明内容
本发明的目的在于解决现有临床手术中血管、组织、器官或小尺寸肿瘤在腔镜下无法准确标识的问题,通过采用光学示踪方式的设置,在临床手术中,通过不同颜色光源的设置,准确辨别临床手术中需要重点保护的血管、组织或器官,有效避免手术过程中的意外伤害,或对小尺寸肿瘤进行有效标定,以便于临床手术的有效实施。
本发明之医用光学示踪系统,其特征在于:所述医用光学示踪系统500含光源1和光学示踪载体2;
A、所述光学示踪载体2含导光材料;
B、所述光源1发出的光经所述光学示踪载体2进行传导,并对所述光学示踪载体2进行光学示踪。
所述光源1和所述光学示踪载体2可以通过直接接触的方式,将所述光源1发出的光经所述光学示踪载体2的导光材料直接传导进行示踪。所述光源1也可以通过非接触的方式,将所述光源1发出的光先经所述光学示踪载体2中的能量载体,如所述蓄光自发光体21-1进行存储后,再经能量转化发出光线进行示踪。所述光源1的发光端11-1还可以和所述光学示踪载体2封装成一个整体,直接设置在需要进行示踪的位置。
所述光源1是LED光源11、和/或医用冷光源12、和/或自然光。所述光源1可以是各种能发出光线的光源,所述光源1发出的光线可以经所述光学示踪载体1传导后进行示踪。所述LED光源11与普通照明光源相比,具有体积小、发光效率高、光源指向性强等特点,尤其是在安全性方面,LED光源有普通光源无法比拟的优势。首先LED光源是低压直流供电,供电电压只需6到24V;其次LED光源中不添加汞,不会对人体造成中毒等伤害;此外更重要的是LED光源是冷光源,在工作过程中不会严重发热,可以安全触摸,不会对人体造成意外的高温烫伤。所述医用冷光源12是现有手术过程中的常用光源,而且可以将所述光源1后置,手术室中容易获得,不需要额外的设备。
所述光源1发出的光线的颜色可以根据背景颜色或穿透要求进行设置。通过光线的设置,在临床手术中,医生可以直接通过肉眼透过组织看到所述光学示踪载体2所在的位置,进而准确辨别临床手术中,需要重点保护的血管、组织或器官,有效避免手术过程中的意外伤害。所述光源1发出的光线可以根据体腔内的背景颜色或需要穿透的组织进行差异化设置,当需要穿透组织时,红色和黄色为佳,紫色和白色次之,当需要显示血管组织时,光线以绿色为佳。
所述光源1是闪烁型发光。所述光源1还可以根据需要设置成间断点亮、闪烁等形式。
所述光源1发出的光线的强度可以进行设置。所述光源1发出的光线的强度也可以根据需要进行调整,以适应不同的临床环境。所述光源1发出的光线的照度通常在5千lux 至15万lux。
所述光源1含控制系统13,所述控制系统13含波长调节机构13-1和光强调节机构13-2,所述波长调节机构13-1能通过波长的调节来调节发出的光线的颜色,所述光强调节机构13-2,能调节发出的光线的照度。
所述LED光源11设置在体内、和/或体外。由于所述LED光源11的发光端11-1的体积可以非常小,因此,所述LED光源11不但能设置在体外,通过所述光学示踪载体2向人体内进行光线传导,而且可以直接设置在人体内,外部包覆所述光学示踪载体2,直接设置在需要示踪的部位。
所述光源1和所述光学示踪载体2非接触式连接或接触式连接。所述光源1可以通过所述导光接头26与所述光学示踪载体2进行连接以提供光源,也可以非接触的照射所述光学示踪载体2,如所述蓄光自发光示踪载体21,通过光能的存储、转化来实现对所述光学示踪载体2的示踪。
所述LED光源11和所述光学示踪载体2接触式连接,所述LED光源11设置在所述光学示踪载体2内。所述光学示踪载体2直接包裹在所述LED光源11的外部,将所述LED光源11和所述光学示踪载体2一起置入人体内,对腔管、器官、肿瘤等进行示踪。
所述光学示踪载体2是蓄光自发光示踪载体21。自发光材料是指能够以某种方式吸收能量,将其转化成非平衡光辐射的物质材料,材料内部吸收的能量转化为非平衡光辐射的过程就是发光过程。尤其是蓄光自发光材料在外界光照作用下几分钟或几十分钟之后,在黑暗的环境下可持续发光12小时以上,可以满足大多数手术时长的示踪需求。所述蓄光自发光示踪载体21可以直接吸收手术室中灯光的能量,使得各种外部光照都能构成所述光源1,不需要直接连接所述光源1,使用过程非常简单。
所述蓄光自发光示踪载体21含蓄光自发光体21-1和保护载体21-2。
所述保护载体21-2由透明导光材料制成,所述蓄光自发光体21-1封闭设置在所述保护载体21-2内。
所述蓄光自发光体21-1能吸收外部能量,并进行转化发光。所述保护载体21-2采用透明医用材料制成,可以直接和组织进行接触,所述蓄光自发光体21-1能量转化发出的光能有效透过进行有效示踪的同时,还保证了临床使用的生物安全性。所述蓄光自发光体21-1能设置在不同的位置,并设计成不同形状,根据需要进行定点示踪或进行整体示踪。
所述光学示踪载体2是导光光纤22。所述导光光纤22具有良好的导光效果,并根据需要将光线传导至各个不同的位置,而且可以根据需要接通或切断,临床使用非常方便。
所述光学示踪载体2至少含1根所述导光光纤22。
所述导光光纤22的端部、和/或侧面都能发光。所述导光光纤22不但端部能够发光, 而且侧面也能够发光,所述导光光纤22可以整体点亮发光。
所述光学示踪载体2是多根所述导光光纤22的组合。
所述光学示踪载体2可以由单根所述导光光纤22构成,也可以是多根所述导光光纤22的组合,如组成光纤束、编织成网状、不同长度排列等多种方式。
所述导光光纤22具有光滑的表面。当所述导光光纤22具有光滑的表面时,由于所述导光光纤22良好的导光性能,所述导光光纤22的出光口22-2位于所述导光光纤22的远端,可以实现定点示踪。
所述导光光纤22具有非光滑的表面22-1。
所述非光滑的表面22-1是能形成反射、和/或散射的非光滑表面22-11。所述非光滑的表面22-1经过光线的反射、和/或散射,可以实现所述非光滑的表面22-1的整体发光,达到整体示踪的效果。
所述导光光纤22上间断式设置有出光口22-2。间断式设置的每个所述出光口22-2具有光线的传导面22-21和反射面22-22,光线经所述传导面22-21进行传导,至所述反射面22-22时,光线发生反射,从所述出光口22-2射出,形成一个示踪点,多个所述出光口22-2可形成链状示踪带。
所述出光口22-2是非轴向出光口22-21,沿所述导光光纤22的长度方向设置在所述导光光纤22的侧面。所述出光口22-2沿所述导光光纤22的长度方向完整设置时,就可以沿所述导光光纤22的长度方向将所述导光光纤22整体点亮,实现所述导光光纤22的整体示踪。
通过所述出光口22-2的规律排列,所述出光口22-2可以对所述导光光纤22的长度尺寸进行标识。
通过所述出光口22-2的分布密度的规律排列,导致散射光的强度不同,对所述导光光纤22的长度尺寸进行标识。
当所述出光口22-2排列紧密时,发出的光线就更强,视觉效果更加明亮,当所述出光口22-2排列分散时,发出的光线就更弱,视觉效果比较暗,通过这种明暗结合的排列方式,就可以形成类似标尺的视觉效果,在示踪的同时,还能达到尺寸标识的效果。
所述导光光纤22编织成网状,不同位置散落状分布有出光口22-2。所述导光光纤22编织成网状,可以通过将每一根所述导光光纤22的长度设置成不同,所述导光光纤22的出光口22-2也随之不同,散落分布,可实现立体空间的整体示踪,由于每一根所述导光光纤22中间不需要设置所述出光口22-1,因此光线传导效果更好,单个示踪点的视觉效果非常明亮。也可以将侧面设置有所述出光口22-2,能整体点亮的所述导光光纤22编织成网状,实现整个腔体的全面积示踪。而且网状编织的形状可以具有良好的支撑性,尤其适合于大 腔体,如膀胱、子宫等的支撑和示踪。
所述光学示踪载体2可以在临床应用中,根据需要置入各种需要示踪的位置,如输尿管、输精管、输卵管等各种腔管中,也可以置入子宫肌瘤、肺肿瘤(尤其是肺结节)、肝肿瘤等实体瘤中,还可以置入血管中,尤其是利用所述导光光纤2能侧面发光实现整体示踪的特点,对各种腔管、血管、实体瘤等进行标识。
所述医用光学示踪系统500表面含涂层3。
所述涂层3是抗凝血涂层、和/或亲水涂层、和/或疏水涂层。
所述涂层3可以根据需要进行设计不同性质的涂层,如当所述导光光纤22需要进入血管时,所述涂层3可以设计成抗凝涂层,当所述导光光纤22需要进入各种腔体时,所述涂层3可以根据需要设计成亲水涂层或疏水涂层。
所述光学示踪载体2含递送部23。所述递送部23能将所述光纤示踪载体2的工作部2-1根据需要递送至血管、腔体、肿瘤手术部位等需要示踪的部位。
所述递送部23可活动地设置在所述光学示踪载体2上。临床应用中,所述递送部23可以根据需要从所述光学示踪载体2上移除,或相对所述光学示踪载体2发生运动。
所述医用光学示踪系统500还含显影机构4。
所述显影机构4由金属制造,具有导热功能。所述显影机构4的导热功能可以防止所述医用光学示踪系统500进入人体的部分温度过高导致的意外伤害,通常温度控制在37℃以下。
所述显影机构4是显影线41、和/或显影环42、和/或显影块43。申请人在此只举例说明了上述几种显影方式,实际应用中,本领域的技术人员可以根据需要设计出不同的显影方式,申请人在此不一一举例说明,但都不脱离本申请的保护范围。
所述显影机构4在X光下、和/或MRI下、和/或B超下进行显影。所述显影机构4在X光、磁导航、或B超等场景下能进行显影提示,所述显影机构4便于所述光学示踪载体2能在可视或导航的情况下被置入,尤其适合于重要血管、实体瘤等的置入。
所述医用光学示踪系统500还含保护套管5。所述光学示踪载体2、所述显影机构4等可设置在所述保护套管5内。所述保护套管5的外部可以根据需要设置所述涂层3。
所述保护套管5由透明材料制成,所述光学示踪载体2设置在所述保护套管5内。所述保护套管5由医用透明材料制成,对所述光学示踪载体2进行保护的同时,透明材质仍然能保证所述光学示踪载体2的示踪效果。
所述光学示踪载体2内部含通道24。所述通道24可以根据需要作为手术器械通道、体液引流通道等用途。
所述光学示踪载体2由柔顺的医用材料制成,能沿血管、输尿管、食道,气管,输卵 管,输精管等腔体运动。所述光学示踪载体2具有良好的柔顺性,可以沿血管或腔体运动,因此,所述光学示踪载体2可以根据需要放置入不同的位置。
所述光学示踪载体2含塑形机构25。所述塑形机构25可以对所述光学示踪载体2进行塑形,如根据需要塑造成圆形、弧形、球状等各种不同的形状,以适应不同的示踪需要。
所述塑形机构25是形状记忆塑形机构25-1。所述形状记忆塑形机构25-1在室温下呈线状、条状等简单结构,以便于置入,进入人体后,在体温作用下即恢复成设定的形状。
所述形状记忆塑形机构25-1由形状记忆金属丝编织制成、和/或形状记忆金属管或片雕刻制成。所述形状记忆塑形机构25-1可以是形状记忆金属丝编织成需要的形状,也可以利用形状记忆合金管或者形状记忆合金片直接雕刻成需要的形状。
本发明之带示踪装置的医用导管含所述医用光学示踪系统500。
所述带示踪装置的医用导管900含导管900-1、接口900-2和医用光学示踪系统500;
A、所述导管900-1由柔软的弹性医用材料制成,远端900-11设有工作开口900-11-1;
B、所述带示踪装置的医用导管900至少含1个所述接口900-2,所述接口900-2设置在所述导管900-1的近端900-12;
C、所述医用光学示踪系统500的光学示踪载体2,设置在所述导管900-1上,标识所述导管900-1所在的位置。
所述带示踪装置的医用导管900含显影机构4。所述显影机构4设置在所述导管900-1上,所述显影机构4在X光、磁导航、或B超等场景下能进行显影提示,便于所述导管900-1的置入。所述显影机构4可以用金属材料制成,同时可以具有导热功能,防止体内由于所述LED光源11导致温度过高,通常需要温度控制在37℃以内。
所述导管900-1上设置有所述光学示踪载体2,所述光学示踪载体2可以根据需要对所述导管900-1进行局部或整体示踪。
所述导管900-1由透明材料制成,构成所述光学示踪载体2,所述医用光学示踪系统500的光源是LED光源11,所述LED光源11的发光端11-1设置在所述导管900-1的管壁内,对所述导管900-1进行示踪。所述LED光源11含体积很小的发光端11-1,通常所述发光端11-1大小控制在2mm以下,如封装尺寸在0.2mm~0.5mm之间的LED灯,所述发光端11-1可以直接设置在所述导管900-1的管壁内,通过电路系统11-2和电源连接,在所述导管900-1的管壁内进行发光。
所述LED光源11的发光端11-1设置在所述导管900-1的远端900-11,对所述导管900-1的远端900-11进行示踪。
所述LED光源11的发光端11-1分散地设置在所述导管1的管壁内,形成LED灯带或LED灯网,对所述导管900-1进行整体示踪。
所述发光端11-1可以根据需要设置在所述导管900-1的任何位置,当设置在远端时,对所述导管900-1的远端900-11进行示踪,当设置在所述导管900-1的中部时,能对所述导管900-1的中部局部进行示踪,当所述电路系统11-2采用柔性电路板11-21时,所述发光端11-1可以分散地设置在所述柔性电路板11-21的任何位置,从而实现对所述导管900-1的某一部分或整体示踪。
所述医用光学示踪系统500的光学示踪载体2是导光光纤22;所述导光光纤22的近端连接有导光接头26,所述导光光纤22沿所述导管900-1的长度方向设置,对所述导管900-1进行示踪。
所述导光光纤22具有光滑的表面,出光口22-2设置对所述导管1的远端,对所述导管900-1的远端900-11进行示踪。
所述导光光纤22具有非光滑的表面22-1,侧面设有出光口22-2,对所述导管900-1进行整体示踪。
所述导光光纤22能进行对所述导管900-1的远端900-11进行定点示踪,也能通过侧面的出光口22-2,沿长度方向对所述导管900-1进行线状示踪,还能通过将所述导光光纤22编织成网状,对所述导管900-1进行整体示踪,而且通过网状的编织,还能利用所述导光光纤22的弹性支撑力,对所述导管900-1起到管壁支撑的作用。
所述导管900-1的外表面还可以根据需要设置所述涂层3,如亲水涂层。
所述带示踪装置的医用导管900是医用胃管901、或医用导尿管902、或医用输精管、或医用输卵管、或医用气管。申请人在此只列举了上述几种带示踪装置的医用导管900的使用场景,实际应用中,所述带示踪装置的医用导管900可以根据临床需要设置成不同应用场景所需要的结构。
所述带示踪装置的医用导管900是医用胃管901;所述医用胃管901含导管900-1、1个接口900-2和医用光学示踪系统500,所述导管900-1的远端900-11设有工作开口900-11-1;所述医用光学示踪系统500对所述导管900-1进行示踪。
所述医用胃管901是经食管进入胃内,是食物的人工传输通道,所述接口900-2可以外接食物注射装置。在临床手术中,可能只需要知道所述导管900-1的远端900-11的位置进行观察即可,这种情况下,所述医用光学示踪系统500只需要对所述医用胃管901的远端进行局部示踪。还有一些情况,如沿食管进行手术,为了防止食管被意外损伤,此时就需要以对所述医用胃管901进行整体示踪。
当需要对所述医用胃管901进行远端局部示踪时,可以采用将所述LED光源11的发光端11-1单个或集中设置在所述导管900-1的远端进行示踪的技术方案,也可以采用具有光滑表面的所述导光光纤22,可以是单根所述导光光纤22或多根所述导光光纤22组成的 导光束,利用端部的出光口22-1对所述导管900-1的远端进行示踪,或者是所述导光光纤22沿所述导管900-1的侧壁进行圆周状排列,在所述导管900-1的远端形成光圈,对所述导管900-1的远端进行局部示踪。
当需要对所述医用胃管901进行整体或大范围示踪时,可以将所述LED光源11的发光端11-1分散分布在所述导管900-1的管壁内形成导光带或导光网对所述导管900-1进行整体或大范围示踪。也可以将具有非光滑表面22-1的导光光纤22沿长度方向设置在所述导管900-1的管壁内,形成导光带,对所述导管900-1沿长度方向进行示踪,也可以将所述导光光纤22编织成网状,对所述导管900-1的某一段或整体进行环状整体示踪。
所述带示踪装置的医用导管900是医用导尿管902;所述医用导尿管902含导管900-1、接口900-2和医用光学示踪系统500,所述导管900-1的远端900-11设有工作开口900-11-1;所述医用光学示踪系统500对所述导管900-1进行示踪。
所述医用光学示踪系统500可以对所述医用导尿管902进行定点示踪,也可以对所述医用导尿管902进行大范围或整体示踪。
如当需要对所述医用导尿管902的工作端进行定点或小范围局部示踪时,可以采用将所述LED光源11的发光端11-1单个或集中设置在所述导管900-1的远端进行示踪的技术方案,也可以采用具有光滑表面的所述导光光纤22,可以是单根所述导光光纤22或多根所述导光光纤22组成的导光束,利用端部的出光口22-1对所述导管900-1的远端进行示踪,或者是所述导光光纤22沿所述导管900-1的侧壁进行圆周状排列,在所述导管900-1的远端形成光圈,对所述导管900-1的远端进行局部示踪。
如当需要对膀胱进行区域性的示踪或对所述导管900-1进行整体示踪时,可以将所述LED光源11的发光端11-1分散分布在所述导管900-1的管壁内形成导光带或导光网对所述导管900-1进行整体或大范围示踪。也可以将具有非光滑表面22-1的导光光纤22沿长度方向设置在所述导管900-1的管壁内,形成导光带,对所述导管900-1沿长度方向进行示踪,也可以将所述导光光纤22编织成网状,对所述球囊900-13的外围进行整体示踪。
所述医用导尿管902是双腔导尿管902-1;所述双腔导尿管902-1的导管900-1的远端900-11设有球囊900-13;所述导管900-1设有2个腔道1-1,每个所述腔道1-1相应设置有1个所述接口900-2;其中1个所述腔道1-1构成导尿腔900-14,所述导尿腔900-14的远端设置有所述工作开口900-11-1,近端设置的所述接口900-2构成排液口900-21;另1个所述腔道1-1构成注水腔900-15,所述注水腔900-15的远端和所述球囊900-13连接,近端连接的所述接口900-2构成注水口900-22。
为保证临床手术的时间要求,在手术中使用的所述医用导尿管902通常需要设置所述球囊900-13,从所述注水口900-22经所述注水腔15向所述球囊900-13内注水,可以形 成水囊,保证所述医用导尿管902在膀胱内的有效固定,防止滑脱。
所述医用导尿管902是三腔导尿管902-2;所述三腔导尿管902-2的导管900-1的远端900-11设有球囊900-13;所述导管900-1设有3个腔道1-1,每个所述腔道1-1相应设置有1个所述接口900-2;其中第1个所述腔道1-1构成导尿腔900-14,所述导尿腔900-14的远端设置有所述工作开口900-11-1,近端设置的所述接口900-2构成排液口900-21;第2个所述腔道1-1构成注水腔900-15,所述注水腔900-15的远端和所述球囊900-13连接,近端连接的所述接口900-2构成注水口900-22;第3个所述腔道1-1构成输液冲洗腔900-16,所述输液冲洗腔900-16的远端设置有冲洗口900-16-1和封堵阀900-16-2,所述输液冲洗腔900-16的近端连接的所述接口900-2构成冲洗注药口900-23。
为便于所述医用导尿管902留置期间的冲洗,尤其是药物冲洗和消毒,所述医用导尿管902可以设置成所述三腔导尿管902-2。所述输液冲洗腔900-16近端设有所述冲洗注药口900-23,远端的冲洗口900-16-1和体腔连通,在所述冲洗口900-16-1处设置有所述封堵阀900-16-2,当药物经所述冲洗注药口900-23注入时,在压力作用下,所述封堵阀900-16-2开启,药物进入体腔,当停止药物注射时,在体腔压力的作用下,所述封堵阀900-16-2自动关闭,防止体液从所述冲洗口900-16-1进入所述输液冲洗腔900-16内。
本发明之实体瘤示踪装置含所述医用光学示踪系统500。
所述实体瘤示踪装置910含显影机构4。所述显影机构4可以是金属材料制造的所述防移位机构910-1来构成所述显影机构4,也可以是单独设置的所述显影机构4,所述显影机构4能够在X光、或MRI、或B超状态下,对所述光学示踪载体2所在的位置进行标识。
所述实体瘤示踪装置910含防移位机构910-1和所述医用光学示踪系统500;所述医用光学示踪系统500的光学示踪载体2设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述防移位机构910-1可以固定在需要被标定的实体瘤上,以防止所述实体瘤示踪装置910随着人体运动,如肺部呼吸运动、肠道蠕动、胃部蠕动等而移位。
临床应用中,在X光、或MRI状态下,用医用穿刺针穿刺至需要标识的实体瘤处,然后将所述防移位机构910-1递送至实体瘤所在的位置,并固定在实体瘤上,所述光学示踪载体2设置在所述防移位机构910-1上,对所述防移位机构910-1进行定位,手术中,就能够在光线的指引下,肉眼直观地观察到实体瘤所在的位置。
所述防移位机构910-1呈钩状结构、和/或喇叭形结构、和/或哑铃型结构、和/或螺旋弹簧型结构、和/或钉状结构。申请人在此只举例说明了上述几种结构的所述防移位机构910-1的方式,实际应用中,本领域的技术人员可以根据需要设计出不同结构的所述防移位机构910-1,申请人在此不一一举例说明,但都不脱离本申请的保护范围。
所述防移位机构910-1呈钩状结构,所述防移位机构910-1至少含1个定位钩910-11。通常,所述防移位机构910-1含2个或3个所述定位钩910-11,以更好地防止所述防移位机构910-1随着人体的运动,如肺部的呼吸运动、肠道的蠕动等而发生移位。
所述光学示踪载体2是导光光纤22,所述导光光纤22的近端连接有导光接头26,所述导光光纤22的远端连接、固定在所述防移位机构910-1上,所述导光光纤22的出光口22-2设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述导光光纤22由于其柔顺性,可以直接缠绕、连接固定在所述防移位机构910-1,尤其是所述定位钩910-11上,利用所述导光光纤22的出光口22-2所发出的光线,对所述防移位机构910-1进行光学示踪。
所述导光光纤22具有非光滑的表面22-1,所述导光光纤22的侧面设有出光口22-2,所述导光光纤22对所述防移位机构910-1进行整体示踪。
所述导光光纤22由柔顺的医用材料制成,连接固定在所述防移位机构910-1上,当所述防移位机构910-1发生变形时,所述导光光纤22随着所述防移位机构910-1发生变形。由于所述导光光纤22能整体点亮,因此,将所述导光光纤22缠绕在所述防移位机构910-1上,尤其是所述定位钩910-11上,就可以随着所述防移位机构910-1一起发生变形,尤其是当所述防移位机构910-1采用形状记忆合金制造时,随着所述防移位机构910-1的形状发生变化,所述导光光纤22的形状也随之发生变化,保证对所述防移位机构910-1的示踪效果。
所述实体瘤示踪装置910含防移位机构910-1、递送机构910-2和所述医用光学示踪系统500;所述医用光学示踪系统500的光学示踪载体2设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述递送机构910-2含递送鞘910-21和推送机构910-22,所述防移位机构910-1设置在所述递送鞘910-21内,所述推送机构910-22能将所述防移位机构910-1从所述递送鞘910-21中推出。
所述推送机构910-22可以和所述防移位机构910-1固定连接,将所述防移位机构910-1从所述递送鞘910-21中推出后一起停留在体内;所述推送机构910-22也可以和所述防移位机构910-1可拆卸连接,将所述防移位机构910-1从所述递送鞘910-21中推出后,和所述防移位机构910-1解除连接,只将所述防移位机构910-1留置在实体瘤处。
临床应用中,所述递送机构910-2在X光、或MRI状态下,将所述防移位机构910-1递送至实体瘤所在的位置,并固定在实体瘤上,所述光学示踪载体2设置在所述防移位机构910-1上,对所述防移位机构910-1进行定位,手术中,就能够在光线的指引下,肉眼直观地观察到实体瘤所在的位置。
所述医用光学示踪系统500的光源1是LED光源11,所述光学示踪载体2由透明材料制成,所述LED光源11的发光端11-1设置在所述光学示踪载体2上,与所述光学示踪载体2一起设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
当所述光源1采用所述LED光源11时,所述LED光源11的发光端11-1可以和所述光学示踪载体2封装成一个整体,共同设置在所述防移位机构910-1需要示踪的位置,所述发光端11-1发出的光线经所述光学示踪载体2的导光材料传导后显示,供临床辨别实体瘤的位置。
所述LED光源11含发光端11-1、电路系统11-2、驱动板11-3和电源11-4;所述发光端11-1通过所述电路系统11-2和所述驱动板11-3及所述电源11-4连接,在所述驱动板11-3的控制下,所述电源11-4通过所述电路系统11-2对所述发光端11-1供电,所述发光端11-1发出光线;所述驱动板11-3及所述电源11-4设置在体外,所述发光端11-1设置在体内,对所述防移位机构910-1进行示踪。
所述电路系统11-2是柔性电路板11-21,所述LED光源11的发光端11-1分散设置在所述柔性电路板11-21上并封装在所述光学示踪载体2内,构成LED灯带、或LED灯网、或LED灯球,设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述LED光源11可以是采用单个所述发光端11-1封装后进行定点示踪。也可以是将所述电路系统11-2采用柔性电路板11-21,所述发光端11-1分散地设置在所述柔性电路板11-21的任何位置,从而形成发光带,将光带缠绕在所述防移位机构910-1上,或将多条所述LED光源11与所述光学示踪载体2一起封装成网状、球状等形状,对所述防移位机构910-1进行整体示踪。
所述LED光源11的发光端11-1设置在所述防移位机构910-1上,外部包覆透明材料制成的所述光学示踪载体2,所述发光端11-1发出的光线对所述防移位机构910-1进行示踪。
所述发光端11-1分散地设置在所述防移位机构910-1上,对所述防移位机构910-1进行整体示踪。
所述发光端11-1可以直接设置在所述防移位机构910-1上,然后外部包覆透明材料制成的所述光学示踪载体2,这样所述发光端11-1就可以完整地贴合所述防移位机构910-1的外部轮廓,对所述防移位机构910-1形状任何形状的示踪。
此外,所述发光端11-1对称设置,外部包覆所述光学示踪载体2,利用所述发光端11-1和所述电路系统11-2的内部支撑和所述发光端11-1的自身体积,可构成所述防移位机构910-1,所述医用光学示踪系统500可以同时兼具示踪功能和所述防移位机构910-1的定位功能。
所述电路系统11-2是柔性电路板11-21,所述光学示踪载体2由柔软的透明材料制成,所述发光端11-1、所述柔性电路板11-21和所述显影机构4一起设置在所述光学示踪载体2内,并设置在所述防移位机构910-1上,当所述防移位机构910-1发生变形时,所述发光端11-1、所述柔性电路板11-21、所述显影机构4和所述光学示踪载体2一起随着所述防移位机构910-1发生变形。尤其是当所述防移位机构910-1采用形状记忆合金制造时,随着所述防移位机构910-1的形状发生变化,所述柔性电路板11-21的形状也随之发生变化,保证对所述防移位机构910-1的示踪效果。
本发明之血管示踪装置含所述医用光学示踪系统500。
所述医用光学示踪系统500可以对所述血管示踪装置920进行整体示踪。临床使用时,在所述医用光学示踪系统500的作用下,在接近被示踪的血管时,就能透过组织见到所述光源1发出的光线透过血管,所述光源1发出的光线的照度保证在距离血管壁0-30mm左右时,被示踪的血管明显清晰可见。
所述血管示踪装置920含显影机构4。所述显影机构4在X光、磁导航、或B超等场景下能进行显影提示,便于所述导管900-1的置入。所述显影机构4可以用金属材料制成,同时可以具有导热功能,防止体内由于所述LED光源11导致温度过高,通常需要温度控制在37℃以内。
所述血管示踪装置920含涂层3,所述涂层3是抗凝涂层。
所述血管示踪装置920含递送端920-1、导丝920-2、保护套管5和所述医用光学示踪系统500;所述医用光学示踪系统500和所述导丝920-2设置在所述保护套管5内,所述保护套管5外有涂层3,所述涂层3是抗凝涂层;所述导丝920-2由金属材料制成,在X光下可显影,构成显影机构4,同时具有导热功能;所述递送端920-1能将所述血管示踪装置920递送至需要进行血管示踪的位置。
由于所述血管示踪装置920含导丝920-2,因此,在X光下,所述血管示踪装置920可以直接进行显影,而且所述导丝920-2由金属材料制成,具有一定的强度,可以方便地进行递送,因此,所述血管示踪装置920不需要额外再配合单独的医用导丝进行操作。所述涂层3采用抗凝涂层,可以保证手术期间所述血管示踪装置920能安全地停留在需要示踪的血管中。所述导丝920-2同时具有的导热功能,能防止体内由于所述LED光源11导致温度过高,通常需要将温度控制在37℃以内。
所述导丝920-2由形状记忆合金制造,对所述血管示踪装置920的远端进行塑形,构成塑形机构25。所述导丝920-2可以将所述血管示踪装置920的远端根据需要进行塑形,以适应血管的弧度,递送过程更加方便。
所述医用光学示踪系统500设有通道24,所述通道24构成导丝操作孔920-3。所述 导丝操作孔920-3中,可以插入单独的医用导丝配合进行递送操作,所述医用光学示踪系统500结构简单。
所述光学示踪载体2的侧壁采用透明材料制造,侧壁内设有导光光纤22,所述导光光纤22具有非光滑的表面22-1,沿长度方向侧面设有出光口22-2,所述光学示踪载体2的外表面设有涂层3,所述涂层3是抗凝涂层;所述导光光纤22的近端连接导光接头26,在所述光源1发出的光线的作用下,所述导光光纤22可整体发出光线,对血管进行示踪。所述导光光纤22结构简单,尺寸小,适合于尺寸较小的血管示踪。
所述光源1是医用冷光源12。所述医用冷光源12不会造成设置在体内的所述光学示踪载体2的温度升高,血管示踪过程更加安全。
所述光学示踪载体2的侧壁采用透明材料制造,所述光源1是LED光源11,所述LED光源11的发光端11-1分散设置在所述光学示踪载体2的侧壁内,构成LED灯带或LED灯网,对血管进行示踪。所述LED光源11直接对血管进行示踪,照明效果好,对于大血管的示踪具有非常好的效果。
临床使用时,在X光环境下,用血管介入治疗技术,将所述血管示踪装置920置入需要示踪的位置,接通电源,在所述光源1的作用下,所述光纤示踪载体2作用,发出可见光,对血管进行示踪。手术中,在接近被示踪的血管时,就能透过组织见到所述光源1发出的光线透过血管,所述光源1发出的光线的照度保证在距离血管壁0-30mm左右时,被示踪的血管都明显清晰可见。
本发明之医用光学示踪系统含光源1和光学示踪载体2。所述光学示踪载体2含导光材料。所述光源1发出的光经所述光学示踪载体2进行传导后,对所述光学示踪载体2进行光学示踪。所述光源1也可以采用微型的所述LED光源11,将所述LED光源11的发光端11-1直接和所述光学示踪载体2设置成一个整体置入人体内,进行光学示踪。本发明之医用光学示踪系统可以根据需要设置在所述带示踪装置的医用导管900、或所述实体瘤示踪装置910、或所述血管示踪装置920中,在临床手术中,通过不同颜色光源的设置,准确辨别临床手术中需要重点保护的血管、腔管、组织或器官,有效避免手术过程中的意外伤害,或对小尺寸肿瘤进行有效标定,以便于临床手术的有效实施。
附图说明
图1是不规则出光口的非光滑表面导光光纤的结构示意图。
图1-1是图1的A1处放大图。
图1-2是图1的A2处放大图。
图1-3是图1的A-A剖面图。
图1-4是带通道的导光光纤的截面图。
图2是环形出光口的非光滑表面导光光纤的结构示意图。
图2-1是图2的B1处放大图。
图2-2是图2的B2处放大图。
图3是螺旋形出光口的非光滑表面导光光纤的结构示意图。
图3-1是图3的C1处放大图。
图3-2是图3的C2处放大图。
图4是显影线和光纤设置在保护套管内的光纤机构的结构示意图。
图4-1是图4的D-D剖面图。
图4-2是含多根导光光纤的光纤机构的截面图。
图5是含显影块的光纤机构的结构示意图。
图5-1是图5的E1处放大图。
图6是含显影环的光纤机构的结构示意图。
图6-1是图6的F1处放大图。
图7是含塑形机构的光纤机构的结构示意图。
图8是含涂层的光纤机构的接头示意图。
图8-1是图8的G-G剖面图。
图9是含医用冷光源的本发明之医用光学示踪系统。
图10是含蓄光自发光示踪载体的光学示踪载体的结构示意图。
图10-1是图10的H-H剖面图。
图11是LED光源的发光端内置的光学示踪载体的结构示意图。
图11-1是图11的I-I剖面图。
图11-2是图11的J-J截面图。
图11-3是图11-1的I1处放大图。
图12是含显影线的LED光源的发光端内置的光学示踪载体的结构示意图。
图12-1是图12的K-K剖视图。
图12-2是图12的L-L截面图。
图12-3是图12-1的K1处放大图。
图13是含LED光源的本发明之医用光学示踪系统。
图14是含显影丝的血管示踪装置的结构示意图。
图14-1是图14的M-M剖面图。
图14-2是含导丝操作孔的血管示踪装置截面图。
图15是光纤编织成网状的光学示踪载体。
图16是血管示踪装置置入血管内的工作原理图。
图17是本发明之带可见光示踪装置的医用胃管的立体结构示意图。
图17-1是图17的N-N剖视图。
图17-2是图17的N1处放大图。
图17-3是图17连接LED光源后的结构示意图。
图17-4是图17连接冷光源后的结构示意图。
图17-5是含不光滑表面的导光光纤的医用胃管的结构示意图。
图17-6是图17-5的N2处放大图。
图17-7是图17-6的N3处放大图。
图17-8是端部设有LED发光端的医用胃管的结构示意图。
图17-9是图17-8的N4处放大图。
图17-10是图17-5连接LED光源后的结构示意图。
图17-11是整体设有LED发光端的医用胃管的结构示意图。
图17-12是图17-11的N5处放大图。
图17-13是含亲水涂层的医用胃管的结构示意图。
图17-14是含蓄光自发光示踪载体的医用胃管的结构示意图。
图17-15是图17-14的N6处放大图。
图18是18腔医用导尿管的球囊膨胀时的结构示意图。
图18-1是图18的球囊收缩时的结构示意图。
图18-2是图18的主视图。
图18-3是图18-2的O-O剖视图。
图18-4是图18-3的O1处放大图。
图18-5是图18连接LDE光源时的结构示意图。
图18-6是管壁内设有LED发光端的2腔医用导尿管的结构示意图。
图18-7是图18-6的O2处放大图。
图19是19腔医用导尿管的球囊膨胀时的结构示意图。
图19-1是图19的主视图。
图19-2是图19的P-P剖视图。
图19-3是图19-1的Q-Q剖视图。
图19-4是图19-2的P1处放大图。
图19-5是图19连接LED光源时的结构示意图。
图20是光纤编织成网状时的3腔医用导尿管连接LED光源时的结构示意图。
图20-1是图20的Q1处放大图。
图21是光纤编织成网状时的3腔医用导尿管的结构示意图。
图21-1是图21的R-R剖视图。
图22是含塑形机构的医用导管的结构示意图。
图23是医用导尿管插入膀胱时的工作原理图。
图24是医用导尿管插入输尿管时的工作原理图。
图25是本发明之实体瘤示踪装置的定位钩收在递送鞘内的立体结构示意图。
图25-1是图25的S-S剖视图。
图25-2是图25的S1处放大图。
图26是图25的定位钩推出时的结构示意图。
图26-1是图26的T-T剖视图。
图26-2是图26的T1处放大图。
图26-3是图26-2的T2处放大图。
图26-4是图26的爆炸图。
图27是LED光源的发光端设置在定位钩上的结构示意图。
图27-1是图27的U1处放大图。
图28是含间断式开口套管的本发明之实体瘤示踪装置的结构示意图。
图28-1是图28的V1处放大图。
图29是含多个实体瘤示踪装置的结构示意图。
图29-1是图29的爆炸图。
图30是含球形防移位机构的本发明之实体瘤示踪装置的结构示意图。
图30-1是图30的W-W剖视图。
图30-2是图30-1的W1处放大图。
图31是含哑铃型防移位机构的本发明之实体瘤示踪装置的结构示意图。
图31-1是图31的X1处放大图。
图31-2是图31的剖视图。
图31-3是图31-2的X2处放大图。
图31-4是含涂层的哑铃型防移位机构的结构示意图。
图32是含螺旋型防移位机构的本发明之实体瘤示踪装置的结构示意图。
图32-1是图32的Y1放大图。
图33是含螺旋型和哑铃型防移位机构的本发明之实体瘤示踪装置的结构示意图。
图33-1是图33的Z1处放大图。
图34是含LED光源的本发明之实体瘤示踪装置的结构示意图。
图34-1是图34的递送机构撤除后的结构示意图。
图35是含医用冷光源的本发明之实体瘤示踪装置的结构示意图。
图36是含蓄光自发光示踪载体的本发明之实体瘤示踪装置的结构示意图。
图36-1是图36的AA1处放大图。
图37是本发明之实体瘤示踪装置插入肺结节时的工作原理图。
图37-1是图37撤除递送机构导光光纤连接光源后的工作原理图。
上述图中:
500是本发明之医用光学示踪系统,900为本发明之带示踪装置的医用导管,901为医用胃管,902为医用导尿管,910为本发明之实体瘤示踪装置,920为本发明之血管示踪装置。
1为光源,2为光学示踪载体,3为涂层,4为显影机构,5为保护套管。
11为LED光源,12为医用冷光源,13为控制系统,11-1为发光端,11-2为电路系统,11-3为驱动板,11-4为电源,13-1为波长调节机构,13-2为光强调节机构,11-21为柔性电路板。
2-1为工作部,21为蓄光自发光示踪载体,22为导光光纤,23为递送部,24为通道,25为塑形机构,26为导光接头;21-1为蓄光自发光体,21-2为保护载体;22-1为非光滑的表面,22-2为出光口,23-1为递送手柄,25-1为形状记忆塑形机构;22-11为能形成反射、和/或散射的非光滑表面,22-21为传导面,22-22为反射面。
41为显影线,42为显影环,43为显影块。
1-1为腔道,900-1为导管,900-2为接口,900-3为工作通道,902-1为双腔导尿管,902-2为三腔导尿管;900-11为远端,900-12为近端,900-13为球囊,900-14为导尿腔,900-15为注水腔,900-16为输液冲洗腔,900-21为排液口,900-22为注水口,900-23为冲洗注药口,900-11-1为工作开口,900-16-1为冲洗口,900-16-2为封堵阀,900-22-2为封闭阀。
910-1为防移位机构,910-2为递送机构;910-11为定位钩,910-21为递送鞘,910-22为推送机构。
920-1为递送端,920-2为导丝,920-3为导丝操作孔。
具体实施方式
实施例1:本发明之医用光学示踪系统
参考图1至图13,本实施例之医用光学示踪系统含光源1和光学示踪载体2。
所述光学示踪载体2含导光材料,所述光源1发出的光经所述光学示踪载体2进行传导,并对所述光学示踪载体2进行光学示踪。
所述光源1是LED光源11、和/或医用冷光源12、和/或自然光。所述光源1可以是各种能发出光线的光源,所述光源1发出的光线可以经所述光学示踪载体1传导后进行示踪。参考图11,所述LED光源11与普通照明光源相比,具有体积小、发光效率高、光源指向性强等特点,尤其是在安全性方面,LED光源有普通光源无法比拟的优势。首先LED光源是低压直流供电,供电电压只需6到24V;其次LED光源中不添加汞,不会对人体造成中毒等伤害;此外更重要的是LED光源是冷光源,在工作过程中不会严重发热,可以安全触摸,不会对人体造成意外的高温烫伤。所述医用冷光源12是现有手术过程中的常用光源,而且可以将所述光源1后置,手术室中容易获得,不需要额外的设备,而且所述医用冷光源12不容易造成体内温度的升高,参考图9。
所述光源1发出的光线的颜色可以根据背景颜色或穿透要求进行设置。
通过光线的设置,在临床手术中,医生可以直接通过肉眼透过组织看到所述光学示踪载体2所在的位置,进而准确辨别临床手术中,需要重点保护的血管、组织或器官,有效避免手术过程中的意外伤害。所述光源1发出的光线可以根据体腔内的背景颜色或需要穿透的组织进行差异化设置,当需要穿透组织时,红色和黄色为佳,紫色和白色次之,当需要显示血管组织时,光线以绿色为佳。
所述光源1还可以根据需要设置成间断点亮、闪烁等形式,所述光源1发出的光线的强度也可以根据需要进行调整,以适应不同的临床环境。所述光源1发出的光线的照度可达30万lux,较佳范围在5千lux至15万lux。
参考图9和图13,所述光源1含控制系统13,所述控制系统13含波长调节机构13-1和光强调节机构13-2,所述波长调节机构13-1能通过波长的调节来调节发出的光线的颜色,所述光强调节机构13-2,能调节发出的光线的照度。
所述LED光源11可以设置在体内,也可以设置在体外。由于所述LED光源11的发光端11-1的体积可以非常小,通常所述发光端11-1大小控制在2mm以下,如封装尺寸在0.2mm~0.5mm之间的LED灯,因此,所述LED光源11不但能设置在体外,通过所述光学示踪载体2向人体内进行光线传导,而且可以直接设置在人体内,外部包覆所述光学示踪载体2,直接设置在需要示踪的部位,参考图11至图12-3。
本实施例中,所述光源1可以通过所述导光接头26与所述光学示踪载体2进行连接以提供光源,所述LED光源11也可以设置在所述光学示踪载体2内。所述光学示踪载体2 直接包裹在所述LED光源11的外部,将所述LED光源11和所述光学示踪载体2一起置入人体内,对腔管、器官、肿瘤等进行示踪。
参考图1至图3-2,所述光学示踪载体2是导光光纤22。所述导光光纤22具有良好的导光效果,并根据需要将光线传导至各个不同的位置,而且可以根据需要接通或切断,临床使用非常方便。
所述光学示踪载体2至少含1根所述导光光纤22。
所述导光光纤22的端部、和/或侧面都能发光。所述导光光纤22不但端部能够发光,而且侧面也能够发光,所述导光光纤22可以整体点亮发光。
所述光学示踪载体2是多根所述导光光纤22的组合。
所述光学示踪载体2可以由单根所述导光光纤22构成(参考图1、图2和图3),也可以是多根所述导光光纤22的组合,如组成光纤束、编织成网状、不同长度排列等多种方式,参考图参考图15。
所述导光光纤22具有光滑的表面。当所述导光光纤22具有光滑的表面时,由于所述导光光纤22良好的导光性能,所述导光光纤22的出光口22-2位于所述导光光纤22的远端,可以实现定点示踪。
所述导光光纤22具有非光滑的表面22-1。
所述非光滑的表面22-1是能形成反射、和/或散射的非光滑表面22-11。所述非光滑的表面22-1经过光线的反射、和/或散射,可以实现所述非光滑的表面22-1的整体发光,达到整体示踪的效果。
所述导光光纤22上间断式设置有出光口22-2。间断式设置的每个所述出光口22-2具有光线的传导面22-21和反射面22-22,光线经所述传导面22-21进行传导,至所述反射面22-22时,光线发生反射,从所述出光口22-2射出,形成一个示踪点,多个所述出光口22-2可形成链状示踪带,参考图1。
所述出光口22-2是非轴向出光口22-21,沿所述导光光纤22的长度方向设置在所述导光光纤22的侧面。所述出光口22-2沿所述导光光纤22的长度方向完整设置时,就可以沿所述导光光纤22的长度方向将所述导光光纤22整体点亮,实现所述导光光纤22的整体示踪。
所述非轴向出光口22-21可以是采用模压的方式制造的点状的断续的出光口,参考图1至图1-4,也可以是通过整体注塑或线切割的环状出光口或螺旋状出光口,参考图2至图3-2。
通过所述出光口22-2的规律排列,所述出光口22-2可以对所述导光光纤22的长度尺寸进行标识。
通过所述出光口22-2的分布密度的规律排列,导致散射光的强度不同,对所述导光光纤22的长度尺寸进行标识。
当所述出光口22-2排列紧密时,发出的光线就更强,视觉效果更加明亮,当所述出光口22-2排列分散时,发出的光线就更弱,视觉效果比较暗,通过这种明暗结合的排列方式,就可以形成类似标尺的视觉效果,在示踪的同时,还能达到尺寸标识的效果,参考图**。
参考图,所述导光光纤22还可以编织成网状,不同位置散落状分布有出光口22-2。所述导光光纤22编织成网状,可以通过将每一根所述导光光纤22的长度设置成不同,所述导光光纤22的出光口22-2也随之不同,散落分布,可实现立体空间的整体示踪,由于每一根所述导光光纤22中间不需要设置所述出光口22-1,因此光线传导效果更好,单个示踪点的视觉效果非常明亮。也可以将侧面设置有所述出光口22-2,能整体点亮的所述导光光纤22编织成网状,实现整个腔体的全面积示踪。而且网状编织的形状可以具有良好的支撑性,尤其适合于大腔体,如膀胱、子宫等的支撑和示踪。
参考图10和图10-1,所述光源还可以非接触的方式与所述光学示踪载体2连接,通过照射所述光学示踪载体2,如所述蓄光自发光示踪载体21,通过光能的存储、转化来实现对所述光学示踪载体2的示踪。所述光学示踪载体2是蓄光自发光示踪载体21。自发光材料是指能够以某种方式吸收能量,将其转化成非平衡光辐射的物质材料,材料内部吸收的能量转化为非平衡光辐射的过程就是发光过程。尤其是蓄光自发光材料在外界光照作用下几分钟或几十分钟之后,在黑暗的环境下可持续发光12小时以上,可以满足大多数手术时长的示踪需求。所述蓄光自发光示踪载体21可以直接吸收手术室中灯光的能量,使得各种外部光照都能构成所述光源1,不需要直接连接所述光源1,使用过程非常简单。
通常,所述蓄光自发光示踪载体21含蓄光自发光体21-1和保护载体21-2。所述保护载体21-2由透明导光材料制成,所述蓄光自发光体21-1封闭设置在所述保护载体21-2内。
所述蓄光自发光体21-1能吸收外部能量,并进行转化发光。所述保护载体21-2采用透明医用材料制成,可以直接和组织进行接触,所述蓄光自发光体21-1能量转化发出的光能有效透过进行有效示踪的同时,还保证了临床使用的生物安全性。所述蓄光自发光体21-1能设置在不同的位置,并设计成不同形状,根据需要进行定点示踪或进行整体示踪。
参考图8和图8-1,所述医用光学示踪系统500表面还含涂层3。
所述涂层3是抗凝血涂层、和/或亲水涂层、和/或疏水涂层。
所述涂层3可以根据需要进行设计不同性质的涂层,如当所述光学示踪载体2需要进入血管时,所述涂层3可以设计成抗凝涂层,当所述光学示踪载体2需要进入各种腔体时,所述涂层3可以根据需要设计成亲水涂层或疏水涂层。
参考图1和图15,所述光学示踪载体2含递送部23。所述递送部23能将所述光纤示 踪载体2的工作部2-1根据需要递送至血管、腔体、肿瘤手术部位等需要示踪的部位。所述递送部23含递送手柄23-1。
参考图37和图37-1,所述递送部23可活动地设置在所述光学示踪载体2上。临床应用中,所述递送部23可以根据需要从所述光学示踪载体2上移除,或相对所述光学示踪载体2发生运动。
所述医用光学示踪系统500还含显影机构4。
所述显影机构4由金属制造,具有导热功能。所述显影机构4的导热功能可以防止所述医用光学示踪系统500进入人体的部分温度过高导致的意外伤害,通常温度控制在37℃以下。
参考图4至图6-1,所述显影机构4是显影线41、和/或显影环42、和/或显影块43。申请人在此只举例说明了上述几种显影方式,实际应用中,本领域的技术人员可以根据需要设计出不同的显影方式,申请人在此不一一举例说明,但都不脱离本申请的保护范围。
所述显影机构4可以在X光下、和/或MRI下、和/或B超下进行显影。所述显影机构4在X光、磁导航、或B超等场景下能进行显影提示,所述显影机构4便于所述光学示踪载体2能在可视或导航的情况下被置入,尤其适合于重要血管、实体瘤等的置入。
参考图4至图4-2,所述医用光学示踪系统500还含保护套管5。所述光学示踪载体2、所述显影机构4等可设置在所述保护套管5内。所述保护套管5的外部可以根据需要设置所述涂层3。
所述保护套管5由透明材料制成,所述光学示踪载体2设置在所述保护套管5内。所述保护套管5由医用透明材料制成,对所述光学示踪载体2进行保护的同时,透明材质仍然能保证所述光学示踪载体2的示踪效果。
参考图1-4,所述光学示踪载体2内部含通道24。所述通道24可以根据需要作为手术器械通道、体液引流通道等用途。
所述光学示踪载体2由柔顺的医用材料制成,能沿血管、输尿管、食道,气管,输卵管,输精管等腔体运动。所述光学示踪载体2具有良好的柔顺性,可以沿血管或腔体运动,因此,所述光学示踪载体2可以根据需要放置入不同的位置。
参考图7,所述光学示踪载体2含塑形机构25。所述塑形机构25可以对所述光学示踪载体2进行塑形,如根据需要塑造成圆形、弧形、球状等各种不同的形状,以适应不同的示踪需要。
所述塑形机构25是形状记忆塑形机构25-1。所述形状记忆塑形机构25-1在室温下呈线状、条状等简单结构,以便于置入,进入人体后,在体温作用下即恢复成设定的形状。
所述形状记忆塑形机构25-1由形状记忆金属丝编织制成、和/或形状记忆金属管或片雕 刻制成。所述形状记忆塑形机构25-1可以是形状记忆金属丝编织成需要的形状,也可以利用形状记忆合金管或者形状记忆合金片直接雕刻成需要的形状。
本实施例之医用光学示踪系统的光学示踪载体2可以在临床应用中,根据需要置入各种需要示踪的位置,如输尿管、输精管、输卵管等各种腔管中,也可以置入子宫肌瘤、肺肿瘤(尤其是肺结节)、肝肿瘤等实体瘤中,还可以置入血管中,尤其是利用所述导光光纤2能侧面发光实现整体示踪的特点,对各种腔管、血管、实体瘤等进行标识。
本实施例之医用光学示踪系统,通过所述光学示踪载体2对所述光源1发出的光线进行传导后,可以对所述光学示踪载体2进行光学示踪。通过不同颜色光源的设置,所述光学示踪载体2能准确标识临床手术中需要重点保护的血管、腔管、组织或器官,有效避免手术过程中的意外伤害,或对小尺寸肿瘤进行有效标定,以便于临床手术的有效实施。
实施例2:本发明之血管示踪装置
参考图14,本实施例中公开了一种血管可见光标定技术及装置。本实施例之血管示踪装置含实施例1所述之医用光学示踪系统500。
参考图14和图14-1,所述血管示踪装置920含递送端920-1、导丝920-2、保护套管5和所述医用光学示踪系统500。
本实施例中,所述医用光学示踪系统500的光源1采用医用冷光源12,所述医用冷光源12可以更好地防止设置在体内的所述光学示踪载体2的温度升高,血管示踪过程更加安全。
所述光源1含控制系统13,所述控制系统13含波长调节机构13-1和光强调节机构13-2,所述波长调节机构13-1能通过波长的调节来调节发出的光线的颜色,所述光强调节机构13-2,能调节发出的光线的照度。
所述光源1发出的光线的颜色可以根据背景颜色或穿透要求进行设置。通过光线的设置,在临床手术中,医生可以直接通过肉眼透过组织看到所述光学示踪载体2所在的位置,进而准确辨别临床手术中,需要重点保护的血管,有效避免手术过程中的意外伤害。所述光源1发出的光线可以根据体腔内的背景颜色或需要穿透的组织进行差异化设置,当需要穿透组织时,红色和黄色为佳,紫色和白色次之,当需要显示血管组织时,光线以绿色为佳。
所述光源1还可以根据需要设置成间断点亮、闪烁等形式,所述光源1发出的光线的强度也可以根据需要进行调整,以适应不同的临床环境。所述光源1发出的光线的照度可达30万lux,较佳范围在5千lux至15万lux。
参考图14-1,本实施例中,所述医用光学示踪载体2是多根所述导光光纤22的组合。所述导光光纤22具有非光滑的表面22-1,沿长度方向侧面设有出光口22-2,所述导光光 纤22的近端连接导光接头26,在所述光源1的作用下,所述导光光纤22的侧面能发出散射光,实现所述导光光纤22沿长度方向的示踪。
所述保护套管5由透明材料制成,所述导光光纤22和所述导丝920-2设置在所述保护套管5内。所述保护套管5外有涂层3,所述涂层3是抗凝涂层。
所述导丝920-2由金属材料制成,在X光下可显影,构成显影机构4,同时具有导热功能,防止所述导光光纤22的工作部2-1进入人体的部分温度过高导致的意外伤害,通常温度控制在37℃以下。
参考图7,所述导丝920-2可以由形状记忆合金制造,对所述血管示踪装置920的远端进行塑形,构成塑形机构25。所述导丝920-2可以将所述血管示踪装置920的远端根据需要进行塑形,以适应血管的弧度,递送过程更加方便。在所述导丝920-2塑形的过程中,所述导光光纤22也随之发生变形,保证所述血管示踪装置920的示踪效果。
参考图16,临床使用时,先行桡动脉穿刺术,固定动脉鞘,然后将医用超滑导丝送入造影导管,将导管置入动脉鞘,然后在X光环境下进超滑导丝,导丝递送至工作部位后,固定导丝,然后沿着导丝送入造影导管至工作部位,然后撤除超滑导丝,沿造影导管置入本实施例之血管示踪装置至工作部位,然后撤除造影导管,将所述血管示踪装置920停留在需要示踪的血管内,开启所述光源1,所述血管示踪装置920即可通过可见光技术对血管进行示踪。手术中,在接近被示踪的血管时,就能透过组织见到所述光源1发出的光线透过血管,所述光源1发出的光线的照度保证在距离血管壁0-30mm左右时,被示踪的血管都明显清晰可见。
此外,所述血管示踪装置920还可以设计成不带所述导丝920-2的结构。
参考图14-2,所述医用光学示踪系统500,设有通道24,所述通道24构成导丝操作孔920-3。所述导丝操作孔920-3中,可以插入单独的医用导丝配合进行递送操作。
所述光学示踪载体2的侧壁采用透明材料制造,侧壁内设有导光光纤22和显影线41,,所述导光光纤22具有非光滑的表面22-1,沿长度方向侧面设有出光口22-2,所述光学示踪载体2的外表面设有涂层3,所述涂层3是抗凝涂层;所述导光光纤22的近端连接导光接头26,在所述光源1发出的光线的作用下,所述导光光纤22可整体发出光线,对血管进行示踪。
所述光学示踪载体除了前述导光光纤22的设计外,还可以将所述LED光源11的发光端直接置入人体内进行示踪。
参考图14-1,所述光学示踪载体2采用透明材料制造,构成所述保护套管5,外部设有所述涂层3,所述涂层3是抗凝涂层。
所述光源1是LED光源11,所述LED光源11采用所述柔性电路板11-21作为所述电 路系统11-2连接电源,所述LED光源11的发光端11-1分散设置在所述柔性电路板11-21上,然后和所述显影机构4一起封装在所述光学示踪载体2内,所述LED光源11直接在血管内对血管进行示踪,照明效果更好,对于大血管的示踪具有非常好的效果。
本实施例中,所述医用光学示踪系统500可以对所述血管示踪装置920进行整体示踪。临床使用时,在所述医用光学示踪系统500的作用下,在接近被示踪的血管时,就能透过组织见到所述光源1发出的光线透过血管,所述光源1发出的光线的照度保证在距离血管壁0-30mm左右时,被示踪的血管明显清晰可见,而且越接近血管光线越强,提示效果越明显,可以在手术中有效地进行血管示踪并提示医护人员,保护重要血管,防止手术中意外伤害血管,临床使用非常方便、安全。
实施例3:本发明之带示踪装置的医用导管
参考图17至图24,本实施例中公开了一种医用导管可见光标定技术及装置,本实施例之带示踪装置的医用导管含实施例1所述医用光学示踪系统。
参考图17至图17-3,所述带示踪装置的医用导管900含导管900-1、接口900-2和医用光学示踪系统500。
所述导管900-1由柔软的弹性医用材料制成,内部设有工作通道900-3,远端900-11设有工作开口900-11-1。
所述带示踪装置的医用导管900含显影机构4。所述显影机构4设置在所述导管900-1上,所述显影机构4在X光、磁导航、或B超等场景下能进行显影提示,便于所述导管900-1的置入。所述显影机构4可以用金属材料制成,同时可以具有导热功能,防止体内由于所述LED光源11导致温度过高,通常需要温度控制在37℃以内。
所述带示踪装置的医用导管900至少含1个所述接口900-2,所述接口900-2设置在所述导管900-1的近端900-12。
所述医用光学示踪系统500的光学示踪载体2,设置在所述导管900-1上,标识所述导管900-1所在的位置。
所述导管900-1上设置有所述光学示踪载体2,所述光学示踪载体2可以根据需要对所述导管900-1进行局部或整体示踪。
本实施例中,所述光源1是LED光源11,含发光端11-1和电路系统11-2。所述光源1发出的光线的颜色可以根据背景颜色或穿透要求进行设置。
参考图17-4,所述光源1含控制系统13,所述控制系统13含波长调节机构13-1和光强调节机构13-2,所述波长调节机构13-1能通过波长的调节来调节发出的光线的颜色,所述光强调节机构13-2,能调节发出的光线的照度。
通过光线的设置,在临床手术中,医生可以直接通过肉眼透过组织看到所述光学示踪 载体2所在的位置,进而准确辨别临床手术中,需要重点保护的血管、组织或器官,有效避免手术过程中的意外伤害。所述光源1发出的光线可以根据体腔内的背景颜色或需要穿透的组织进行差异化设置,当需要穿透组织时,红色和黄色为佳,紫色和白色次之,当需要显示血管组织时,光线以绿色为佳。
所述光源1还可以根据需要设置成间断点亮、闪烁等形式,所述光源1发出的光线的强度也可以根据需要进行调整,以适应不同的临床环境。所述光源1发出的光线的照度通常在5千lux至15万lux。
所述LED光源11可以设置在体外,经过所述导光接头26和所述光学示踪载体2连接,对所述光学示踪载体2进行示踪。所述LED光源11也可以采用微型发光端设计,所述发光端11-1设置在所述导管900-1上,随所述导管900-1进入人体内进行示踪。
当采用微型发光端设计时,通常所述发光端11-1大小控制在2mm以下,如封装尺寸在0.2mm~0.5mm之间的LED灯,所述所述导管900-1由透明材料制成,构成所述光学示踪载体2。所述医用光学示踪系统500的光源1是LED光源11,所述LED光源11的发光端11-1设置在所述导管900-1的管壁内,对所述导管900-1进行示踪。所述LED光源11含体积很小的发光端11-1,使得所述发光端11-1可以直接设置在所述导管900-1的管壁内,通过电路系统11-2和电源连接,在所述导管900-1的管壁内进行发光。
所述发光端11-1还可以根据需要设置在所述导管900-1的任何位置,实现对所述导管900-1的局部或整体示踪。
参考图17-8和17-9,当所述LED光源11的发光端11-1设置在所述导管900-1的远端900-11时,可对所述导管900-1的远端900-11进行局部定点示踪。
参考图17-11和图17-12,当所述电路系统11-2采用柔性电路板11-21时,所述发光端11-1可以分散地设置在所述柔性电路板11-21的任何位置,将所述柔性电路板11-21设置在所述导管1的管壁内,就可形成LED灯带或LED灯网,对所述导管900-1进行整体示踪。
参考图17-1至图17-7,当所述LED光源11设置在体外时,所述医用光学示踪系统500的光学示踪载体2是导光光纤22;所述导光光纤22的近端连接有导光接头26,所述导光光纤22沿所述导管900-1的长度方向设置,对所述导管900-1进行示踪。
参考图17-1和图17-2,当所述导光光纤22具有光滑的表面时,出光口22-2设置对所述导管1的远端,即对所述导管900-1的远端900-11进行示踪。
参考图17-5至图17-7,当所述导光光纤22具有非光滑的表面22-1时,侧面设置的出光口22-2,可发出散射光,对所述导管900-1进行整体示踪。
参考图20至图21-1,所述导光光纤22还能通过将所述导光光纤22编织成网状,对 所述导管900-1进行整体示踪,而且通过网状的编织,还能利用所述导光光纤22的弹性支撑力,对所述导管900-1起到管壁支撑的作用。
参考图17-13,所述导管900-1的外表面还可以根据需要设置所述涂层3,如亲水涂层。
所述带示踪装置的医用导管900可以是医用胃管901、或医用导尿管902、或医用输精管、或医用输卵管、或医用气管。申请人在此只列举了上述几种带示踪装置的医用导管900的使用场景,实际应用中,所述带示踪装置的医用导管900可以根据临床需要设置成不同应用场景所需要的结构。
参考图22,所述医用导管900还可以设有塑形机构25,所述塑形机构25可以对所述导管900-1进行塑形,以适应不同的腔管。
参考图17至图17-15,所述带示踪装置的医用导管900是医用胃管901。
所述医用胃管901含导管900-1、1个接口900-2和医用光学示踪系统500,所述导管900-1的远端900-11设有工作开口900-11-1;所述医用光学示踪系统500对所述导管900-1进行示踪。
所述医用胃管901是经食管进入胃内,是食物的人工传输通道,所述接口900-2可以外接食物注射装置。在临床手术中,可能只需要知道所述导管900-1的远端900-11的位置进行观察即可,这种情况下,所述医用光学示踪系统500只需要对所述医用胃管901的远端进行局部示踪。还有一些情况,如沿食管进行手术,为了防止食管被意外损伤,此时就需要以对所述医用胃管901进行整体示踪。
参考图17-8和图17-9,当需要对所述医用胃管901进行远端局部示踪时,可以采用将所述LED光源11的发光端11-1单个或集中设置在所述导管900-1的远端进行示踪的技术方案,也可以采用具有光滑表面的所述导光光纤22,可以是单根所述导光光纤22或多根所述导光光纤22组成的导光束,利用端部的出光口22-1对所述导管900-1的远端进行示踪,或者是所述导光光纤22沿所述导管900-1的侧壁进行圆周状排列,在所述导管900-1的远端形成光圈,对所述导管900-1的远端进行局部示踪。
参考图17-11和图17-12,当需要对所述医用胃管901进行整体或大范围示踪时,可以将所述LED光源11的发光端11-1分散分布在所述导管900-1的管壁内形成导光带或导光网对所述导管900-1进行整体或大范围示踪。也可以将具有非光滑表面22-1的导光光纤22沿长度方向设置在所述导管900-1的管壁内,形成导光带,对所述导管900-1沿长度方向进行示踪,也可以将所述导光光纤22编织成网状,对所述导管900-1的某一段或整体进行环状整体示踪。
所述带示踪装置的医用导管900是医用导尿管902。
所述医用导尿管902含导管900-1、接口900-2和医用光学示踪系统500,所述导管 900-1的远端900-11设有工作开口900-11-1;所述医用光学示踪系统500对所述导管900-1进行示踪。
所述医用光学示踪系统500可以对所述医用导尿管902进行定点示踪,也可以对所述医用导尿管902进行大范围或整体示踪。
如当需要对所述医用导尿管902的工作端进行定点或小范围局部示踪时,可以采用将所述LED光源11的发光端11-1单个或集中设置在所述导管900-1的远端进行示踪的技术方案,也可以采用具有光滑表面的所述导光光纤22,可以是单根所述导光光纤22或多根所述导光光纤22组成的导光束,利用端部的出光口22-1对所述导管900-1的远端进行示踪,或者是所述导光光纤22沿所述导管900-1的侧壁进行圆周状排列,在所述导管900-1的远端形成光圈,对所述导管900-1的远端进行局部示踪。
如当需要对膀胱进行区域性的示踪或对所述导管900-1进行整体示踪时,可以将所述LED光源11的发光端11-1分散分布在所述导管900-1的管壁内形成导光带或导光网对所述导管900-1进行整体或大范围示踪。也可以将具有非光滑表面22-1的导光光纤22沿长度方向设置在所述导管900-1的管壁内,形成导光带,对所述导管900-1沿长度方向进行示踪,也可以将所述导光光纤22编织成网状,对所述球囊900-13的外围进行整体示踪。
参考图18至图18-7,所述医用导尿管902是双腔导尿管902-1。
所述双腔导尿管902-1的导管900-1的远端900-11设有球囊900-13;所述导管900-1设有2个腔道1-1,每个所述腔道1-1相应设置有1个所述接口900-2;其中1个所述腔道1-1构成导尿腔900-14,所述导尿腔900-14的远端设置有所述工作开口900-11-1,近端设置的所述接口900-2构成排液口900-21;另1个所述腔道1-1构成注水腔900-15,所述注水腔900-15的远端和所述球囊900-13连接,近端连接的所述接口900-2构成注水口900-22。
为保证临床手术的时间要求,在手术中使用的所述医用导尿管902通常需要设置所述球囊900-13,从所述注水口900-22经所述注水腔15向所述球囊900-13内注水,可以形成水囊,保证所述医用导尿管902在膀胱内的有效固定,防止滑脱。
参考图19至图21-1,所述医用导尿管902是三腔导尿管902-2。
所述三腔导尿管902-2的导管900-1的远端900-11设有球囊900-13;所述导管900-1设有3个腔道1-1,每个所述腔道1-1相应设置有1个所述接口900-2;其中第1个所述腔道1-1构成导尿腔900-14,所述导尿腔900-14的远端设置有所述工作开口900-11-1,近端设置的所述接口900-2构成排液口900-21;第2个所述腔道1-1构成注水腔900-15,所述注水腔900-15的远端和所述球囊900-13连接,近端连接的所述接口900-2构成注水口900-22;第3个所述腔道1-1构成输液冲洗腔900-16,所述输液冲洗腔900-16的远端设 置有冲洗口900-16-1和封堵阀900-16-2,所述输液冲洗腔900-16的近端连接的所述接口900-2构成冲洗注药口900-23。
为便于所述医用导尿管902留置期间的冲洗,尤其是药物冲洗和消毒,所述医用导尿管902可以设置成所述三腔导尿管902-2。所述输液冲洗腔900-16近端设有所述冲洗注药口900-23,远端的冲洗口900-16-1和体腔连通,在所述冲洗口900-16-1处设置有所述封堵阀900-16-2,当药物经所述冲洗注药口900-23注入时,在压力作用下,所述封堵阀900-16-2开启,药物进入体腔,当停止药物注射时,在体腔压力的作用下,所述封堵阀900-16-2自动关闭,防止体液从所述冲洗口900-16-1进入所述输液冲洗腔900-16内。
参考图23,临床使用时,医护人员将所述医用导尿管902插入膀胱,向所述注水口900-22向所述球囊900-13内注入生理盐水,所述球囊900-13膨胀,所述医用导尿管902被固定在膀胱内。开启所述光源1,所述医用光学示踪系统500对所述导管900-1进行示踪。当需要将所述医用导尿管902插入输尿管内时,所述导管900-1上设有显影线41,在X光下,将所述医用导尿管902递送至需要示踪的位置,然后开启所述光源1,所述医用光学示踪系统500的作用下,输尿管被可视光进行标识,参考图24。
本实施例之带示踪装置的医用导管由于含所述医用光学示踪系统500,可以在进入人体后,通过可见光进行示踪,临床手术中,当靠近被示踪的腔管时,就能透过组织见到所述光源1发出的光线透过腔管,所述光源1发出的光线的照度保证在距离管壁0-30mm左右时,被示踪的腔管明显清晰可见,而且越接近腔管光线越强,提示效果越明显,可以在手术中有效地进行血管示踪并提示医护人员,保护重要腔管,防止手术中意外伤害,临床使用非常方便、安全。
实施例4:本发明之实体瘤示踪装置
参考图25,本实施例中公开了一种实体瘤的可见光标定技术及装置,本实施例之实体瘤示踪装置含实施例1所述医用光学示踪系统。
参考图25至图29-1,所述实体瘤示踪装置910含防移位机构910-1、递送机构910-2、显影机构4和所述医用光学示踪系统500;所述医用光学示踪系统500的光学示踪载体2设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
本实施例中,所述防移位机构910-1由金属材料制成,构成所述显影机构4,参考图25-1和图26,实际应用中,为增强显影效果,可以再单独设置所述显影机构4。
所述防移位机构910-1可以固定在需要被标定的实体瘤上,以防止所述实体瘤示踪装置910随着人体运动,如肺部呼吸运动、肠道蠕动、胃部蠕动等而移位。
所述防移位机构910-1呈钩状结构(参考图26)、和/或球形结构(参考图30)、和/或喇叭形结构、和/或哑铃型结构(参考图31至图31-4)、和/或螺旋弹簧型结构(参考图32 和图32-1)、和/或钉状结构。申请人在此只举例说明了上述几种结构的所述防移位机构910-1的方式,实际应用中,本领域的技术人员可以根据需要设计出不同结构的所述防移位机构910-1或多种结构的组合,如哑铃型和螺旋弹簧型的组合(参考图33和图33-1),申请人在此不一一举例说明,但都不脱离本申请的保护范围。所述防移位机构910-1外表面还可以根据需要设置所述涂层3,参考图31-4。
参考图26,所述防移位机构910-1呈钩状结构,所述防移位机构910-1至少含1个定位钩910-11。通常,所述防移位机构910-1含2个或3个所述定位钩910-11,以更好地防止所述防移位机构910-1随着人体的运动,如肺部的呼吸运动、肠道的蠕动等而发生移位。
参考图25-1至图29,本实施例中,所述光学示踪载体2是导光光纤22,所述导光光纤22的近端连接有导光接头26,所述导光光纤22的远端连接、固定在所述防移位机构910-1上,所述导光光纤22的出光口22-2设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪,。
参考图26-1至图26-3,所述导光光纤22具有非光滑的表面22-1,所述导光光纤22的侧面设有出光口22-2,所述导光光纤22对所述防移位机构910-1进行整体示踪。由于所述导光光纤22能整体点亮,因此,将所述导光光纤22缠绕在所述防移位机构910-1上,尤其是所述定位钩910-11上,就可以对所述防移位机构910-1进行整体示踪。
参考图26,所述导光光纤22由柔顺的医用材料制成,连接固定在所述防移位机构910-1上,当所述防移位机构910-1发生变形时,所述导光光纤22随着所述防移位机构910-1发生变形。由于所述导光光纤22能整体点亮,因此,将所述导光光纤22缠绕在所述防移位机构910-1上,尤其是所述定位钩910-11上,就可以随着所述防移位机构910-1一起发生变形,尤其是当所述防移位机构910-1采用形状记忆合金制造时,随着所述防移位机构910-1的形状发生变化,所述导光光纤22的形状也随之发生变化,保证对所述防移位机构910-1的示踪效果。
参考图25,所述递送机构910-2含递送鞘910-21和推送机构910-22,所述防移位机构910-1设置在所述递送鞘910-21内,所述推送机构910-22能将所述防移位机构910-1从所述递送鞘910-21中推出,参考图26。
所述推送机构910-22可以和所述防移位机构910-1固定连接,将所述防移位机构910-1从所述递送鞘910-21中推出后一起停留在体内;所述推送机构910-22也可以和所述防移位机构910-1可拆卸连接,将所述防移位机构910-1从所述递送鞘910-21中推出后,和所述防移位机构910-1解除连接,只将所述防移位机构910-1留置在实体瘤处,参考图37和图37-1。
参考图27和图27-1,此外,当所述医用光学示踪系统500的光源1采用微型的LED 光源11时,通常所述发光端11-1大小控制在2mm以下,如封装尺寸在0.2mm~0.5mm之间的LED灯,,所述发光端11-1可以设置在体内。
所述光学示踪载体2由透明材料制成,所述LED光源11的发光端11-1可以封装在所述光学示踪载体2上,与所述光学示踪载体2一起设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述发光端11-1发出的光线经所述光学示踪载体2的导光材料传导后显示,供临床辨别实体瘤的位置。
所述LED光源11含发光端11-1、电路系统11-2、驱动板11-3和电源11-4;所述发光端11-1通过所述电路系统11-2和所述驱动板11-3及所述电源11-4连接,在所述驱动板11-3的控制下,所述电源11-4通过所述电路系统11-2对所述发光端11-1供电,所述发光端11-1发出光线;所述驱动板11-3及所述电源11-4设置在体外,所述发光端11-1设置在体内,对所述防移位机构910-1进行示踪。
所述电路系统11-2是柔性电路板11-21,所述LED光源11的发光端11-1分散设置在所述柔性电路板11-21上并封装在所述光学示踪载体2内,构成LED灯带、或LED灯网、或LED灯球,设置在所述防移位机构910-1上,对所述防移位机构910-1进行示踪。
所述LED光源11可以是采用单个所述发光端11-1封装后进行定点示踪。
当所述电路系统11-2采用柔性电路板11-21时,所述LED光源11的发光端11-1分散设置在所述柔性电路板11-21上,一起封装在所述光学示踪载体2内,构成LED灯带、或LED灯网、或LED灯球,设置在所述防移位机构910-1上,对所述防移位机构910-1进行整体示踪。
所述LED光源11的发光端11-1还可以直接设置在所述防移位机构910-1上,外部包覆透明材料制成的所述光学示踪载体2,所述发光端11-1发出的光线对所述防移位机构910-1进行示踪。
所述发光端11-1分散地设置在所述防移位机构910-1上,然后外部包覆透明材料制成的所述光学示踪载体2,这样所述发光端11-1就可以完整地贴合所述防移位机构910-1的外部轮廓,对所述防移位机构910-1形状任何形状的示踪。
此外,所述发光端11-1对称设置,外部包覆所述光学示踪载体2,利用所述发光端11-1和所述电路系统11-2的内部支撑和所述发光端11-1的自身体积,可构成所述防移位机构910-1,所述医用光学示踪系统500可以同时兼具示踪功能和所述防移位机构910-1的定位功能,参考图31至图31-4。
所述电路系统11-2是柔性电路板11-21,所述光学示踪载体2由柔软的透明材料制成,所述发光端11-1、所述柔性电路板11-21和所述显影机构4一起设置在所述光学示踪载体 2内,并设置在所述防移位机构910-1上,当所述防移位机构910-1发生变形时,所述发光端11-1、所述柔性电路板11-21、所述显影机构4和所述光学示踪载体2一起随着所述防移位机构910-1发生变形。尤其是当所述防移位机构910-1采用形状记忆合金制造时,随着所述防移位机构910-1的形状发生变化,所述柔性电路板11-21的形状也随之发生变化,保证对所述防移位机构910-1的示踪效果。
参考图37,临床应用时,当需要对肺肿瘤(尤其是肺结节)、或肝肿瘤等进行标定时,所述防移位机构910-1设置在所述递送鞘910-21内,在X光状态下,所述递送鞘910-21插入实体瘤所在的位置,然后用所述推送机构910-22将所述防移位机构910-1推出,固定在肺肿瘤(尤其是肺结节)、或肝肿瘤等实体瘤上,然后撤除所述递送鞘910-21,将所述防移位机构910-1停留、固定在实体瘤上,再将所述导光光纤22连接到所述光源1上,参考图37-1,手术时,接通所述光源1,所述光学示踪载体2对所述防移位机构910-1进行示踪,就能够在光线的指引下,肉眼直观地观察到肺肿瘤(尤其是肺结节)、或肝肿瘤等实体瘤所在的位置。
临床应用中,如需要对子宫肌瘤进行标定,可在B超引导下,将所述防移位机构910-1递送至子宫肌瘤处,固定在子宫肌瘤上,手术时,接通所述光源1,所述光学示踪载体2对所述防移位机构910-1进行示踪,就能够在光线的指引下,肉眼直观地观察到子宫肌瘤所在的位置。
本实施之实体瘤示踪装置由于设计有所述医用光学示踪系统500,可以在进入人体后,通过可见光进行实体瘤的示踪,手术时,接通所述光源1,所述光学示踪载体对所述防移位机构910-1进行示踪,就能够在光线的指引下,肉眼直观地观察到实体瘤所在的位置,临床手术更加安全、方便。
应该注意,本文中公开和说明的结构可以用其它效果相同的结构代替,同时本发明所介绍的实施例并非实现本发明的唯一结构。虽然本发明的优先实施例已在本文中予以介绍和说明,但本领域内的技术人员都清楚知道这些实施例不过是举例说明而已,本领域内的技术人员可以做出无数的变化、改进和代替,而不会脱离本发明,因此,应按照本发明所附的权利要求书的精神和范围来限定本发明的保护范围。

Claims (77)

  1. 医用光学示踪系统,其特征在于:所述医用光学示踪系统(500)含光源(1)和光学示踪载体(2);
    A、所述光学示踪载体(2)含导光材料;
    B、所述光源(1)发出的光经所述光学示踪载体(2)进行传导,并对所述光学示踪载体(2)进行光学示踪。
  2. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光源(1)是LED光源(11)、和/或医用冷光源(12)、和/或自然光。
  3. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光源(1)发出的光线的颜色可以根据背景颜色或穿透要求进行设置。
  4. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光源(1)是闪烁型发光。
  5. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光源(1)发出的光线的强度可以进行设置。
  6. 根据权利要求2所述医用光学示踪系统,其特征在于:所述LED光源(11)设置在体内、和/或体外。
  7. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光源(1)和所述光学示踪载体(2)非接触式连接或接触式连接。
  8. 根据权利要求7所述医用光学示踪系统,其特征在于:所述LED光源(11)和所述光学示踪载体(2)接触式连接,所述LED光源(11)设置在所述光学示踪载体(2)内。
  9. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)是蓄光自发光示踪载体(21)。
  10. 根据权利要求9所述医用光学示踪系统,其特征在于:所述蓄光自发光示踪载体(21)含蓄光自发光体(21-1)和保护载体(21-2)。
  11. 根据权利要求9所述医用光学示踪系统,其特征在于:所述保护载体(21-2)由透明导光材料制成,所述蓄光自发光体(21-1)封闭设置在所述保护载体(21-2)内。
  12. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)是导光光纤(22)。
  13. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)至少含1根所述导光光纤(22)。
  14. 根据权利要求1所述医用光学示踪系统,其特征在于:所述导光光纤(22)的端 部、和/或侧面都能发光。
  15. 根据权利要求13所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)是多根所述导光光纤(22)的组合。
  16. 根据权利要求12所述医用光学示踪系统,其特征在于:所述导光光纤(22)具有光滑的表面。
  17. 根据权利要求12所述医用光学示踪系统,其特征在于:所述导光光纤(22)具有非光滑的表面(22-1)。
  18. 根据权利要求17所述医用光学示踪系统,其特征在于:所述非光滑的表面(22-1)是能形成反射、和/或散射的非光滑表面(22-11)
  19. 根据权利要求12所述医用光学示踪系统,其特征在于:所述导光光纤(22)上间断式设置有出光口(22-2)。
  20. 根据权利要求19所述用于医用光学示踪的光纤机构,其特征在于:所述出光口(22-2)是非轴向出光口(22-21),沿所述导光光纤(22)的长度方向设置在所述导光光纤(22)的侧面。
  21. 根据权利要求20所述用于医用光学示踪的光纤机构,其特征在于:通过所述出光口(22-2)的规律排列,所述出光口(22-2)可以对所述导光光纤(22)的长度尺寸进行标识。
  22. 根据权利要求21所述用于医用光学示踪的光纤机构,其特征在于:通过所述出光口(22-2)的分布密度的规律排列,导致散射光的强度不同,对所述导光光纤(22)的长度尺寸进行标识。
  23. 根据权利要求12所述医用光学示踪系统,其特征在于:所述导光光纤(22)编织成网状,不同位置散落状分布有出光口(22-2)。
  24. 根据权利要求1所述医用光学示踪系统,其特征在于:所述医用光学示踪系统(500)表面含涂层(3)。
  25. 根据权利要求24所述用于医用光学示踪的光纤机构,其特征在于:所述涂层(3)是抗凝血涂层、和/或亲水涂层、和/或疏水涂层。
  26. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)含递送部(23)。
  27. 根据权利要求26所述医用光学示踪系统,其特征在于:所述递送部(23)可活动地设置在所述光学示踪载体(2)上。
  28. 根据权利要求1所述医用光学示踪系统,其特征在于:所述医用光学示踪系统(500)还含显影机构(4)。
  29. 根据权利要求28所述医用光学示踪系统,其特征在于:所述显影机构(4)由金属制造,具有导热功能。
  30. 根据权利要求28所述医用光学示踪系统,其特征在于:所述显影机构(4)是显影线(41)、和/或显影环(42)、和/或显影块(43)。
  31. 根据权利要求28所述医用光学示踪系统,其特征在于:所述显影机构(4)在X光下、和/或MRI下、和/或B超下进行显影。
  32. 根据权利要求1所述医用光学示踪系统,其特征在于:所述医用光学示踪系统(500)还含保护套管(5)。
  33. 根据权利要求32所述医用光学示踪系统,其特征在于:所述保护套管(5)由透明材料制成,所述光学示踪载体(2)设置在所述保护套管(5)内。
  34. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)内部含通道(24)。
  35. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)由柔顺的医用材料制成,能沿血管、输尿管、食道,气管,输卵管,输精管等腔体运动。
  36. 根据权利要求1所述医用光学示踪系统,其特征在于:所述光学示踪载体(2)含塑形机构(25)。
  37. 根据权利要求36所述医用光学示踪系统,其特征在于:所述塑形机构(25)是形状记忆塑形机构(25-1)。
  38. 根据权利要求37所述医用光学示踪系统,其特征在于:所述形状记忆塑形机构(25-1)由形状记忆金属丝编织制成、和/或形状记忆金属管或片雕刻制成。
  39. 带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)含权利要求1所述医用光学示踪系统(500)。
  40. 根据权利要求39所述带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)含导管(900-1)、接口(900-2)和医用光学示踪系统(500);
    A、所述导管(900-1)由柔软的弹性医用材料制成,内部设有工作通道(900-3);
    B、所述带示踪装置的医用导管(900)至少含1个所述接口(900-2),所述接口(900-2)设置在所述导管(900-1)的近端(900-12);
    C、所述医用光学示踪系统(500)的光学示踪载体(2),设置在所述导管(900-1)上,标识所述导管(900-1)所在的位置。
  41. 根据权利要求40所述带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)含显影机构(4)。
  42. 根据权利要求40所述带示踪装置的医用导管,其特征在于:所述导管(900-1) 由透明材料制成,构成所述光学示踪载体(2),所述医用光学示踪系统(500)的光源是LED光源(11),所述LED光源(11)的发光端(11-1)设置在所述导管(1)的管壁内,对所述导管(900-1)进行示踪。
  43. 根据权利要求42所述带示踪装置的医用导管,其特征在于:所述LED光源(11)的发光端(11-1)设置在所述导管(900-1)的远端,对所述导管(900-1)的远端进行示踪。
  44. 根据权利要求42所述带示踪装置的医用导管,其特征在于:所述LED光源(11)的发光端(11-1)分散地设置在所述导管(1)的管壁内,形成LED灯带或LED灯网,对所述导管(900-1)进行整体示踪。
  45. 根据权利要求40所述带示踪装置的医用导管,其特征在于:所述医用光学示踪系统(500)的光学示踪载体(2)是导光光纤(22);所述导光光纤(22)的近端连接有导光接头(26),所述导光光纤(22)沿所述导管(900-1)的长度方向设置,对所述导管(900-1)进行示踪。
  46. 根据权利要求45所述带示踪装置的医用导管,其特征在于:所述导光光纤(22)具有光滑的表面,出光口(22-2)设置对所述导管(900-1)的远端,对所述导管(900-1)的远端进行示踪。
  47. 根据权利要求45所述带示踪装置的医用导管,其特征在于:所述导光光纤(22)具有非光滑的表面(22-1),侧面设有出光口(22-2),对所述导管(900-1)进行整体示踪。
  48. 根据权利要求40所述带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)是医用胃管(901)、或医用导尿管(902)、或医用输精管、或医用输卵管、或医用气管。
  49. 根据权利要求48所述带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)是医用胃管(901);所述医用胃管(901)含导管(900-1)、1个接口(900-2)和医用光学示踪系统(500),所述导管(900-1)的远端(900-11)设有工作开口(900-11-1);所述医用光学示踪系统(500)对所述导管(900-1)进行示踪。
  50. 根据权利要求48所述带示踪装置的医用导管,其特征在于:所述带示踪装置的医用导管(900)是医用导尿管(902);所述医用导尿管(902)含导管(900-1)、接口(900-2)和医用光学示踪系统(500),所述导管(900-1)的远端(900-11)设有工作开口(900-11-1);所述医用光学示踪系统(500)对所述导管(900-1)进行示踪。
  51. 根据权利要求50所述带示踪装置的医用导管,其特征在于:所述医用导尿管(902)是双腔导尿管(902-1);所述双腔导尿管(902-1)的导管(900-1)的远端(900-11)设有球囊(900-13);所述导管(900-1)设有2个腔道(1-1),每个所述腔道(1-1)相应设 置有1个所述接口(900-2);其中1个所述腔道(1-1)构成导尿腔(900-14),所述导尿腔(900-14)的远端设置有所述工作开口(900-11-1),近端设置的所述接口(900-2)构成排液口(900-21);另1个所述腔道(1-1)构成注水腔(900-15),所述注水腔(900-15)的远端和所述球囊(900-13)连接,近端连接的所述接口(900-2)构成注水口(900-22)。
  52. 根据权利要求50所述带示踪装置的医用导管,其特征在于:所述医用导尿管(902)是三腔导尿管(902-2);所述三腔导尿管(902-2)的导管(900-1)的远端(900-11)设有球囊(900-13);所述导管(900-1)设有3个腔道(1-1),每个所述腔道(1-1)相应设置有1个所述接口(900-2);其中第1个所述腔道(1-1)构成导尿腔(900-14),所述导尿腔(900-14)的远端设置有所述工作开口(900-11-1),近端设置的所述接口(900-2)构成排液口(900-21);第2个所述腔道(1-1)构成注水腔(900-15),所述注水腔(900-15)的远端和所述球囊(900-13)连接,近端连接的所述接口(900-2)构成注水口(900-22);第3个所述腔道(1-1)构成输液冲洗腔(900-16),所述输液冲洗腔(900-16)的远端设置有冲洗口(900-16-1)和封堵阀(900-16-2),所述输液冲洗腔(900-16)的近端连接的所述接口(900-2)构成冲洗注药口(900-23)。
  53. 实体瘤示踪装置,其特征在于:所述实体瘤示踪装置(910)含权利要求1所述医用光学示踪系统(500)。
  54. 根据权利要求53所述实体瘤示踪装置,其特征在于:所述实体瘤示踪装置(910)含显影机构(4)。
  55. 根据权利要求53所述实体瘤示踪装置,其特征在于:所述实体瘤示踪装置(910)含防移位机构(910-1)和所述医用光学示踪系统(500);所述医用光学示踪系统(500)的光学示踪载体(2)设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行示踪。
  56. 根据权利要求55所述实体瘤示踪装置,其特征在于:所述防移位机构(910-1)呈钩状结构、和/或喇叭形结构、和/或哑铃型结构、和/或螺旋弹簧型结构、和/或钉状结构。
  57. 根据权利要求56所述实体瘤示踪装置,其特征在于:所述防移位机构(910-1)呈钩状结构,所述防移位机构(910-1)至少含1个定位钩(910-11)。
  58. 根据权利要求55所述实体瘤示踪装置,其特征在于:所述光学示踪载体(2)是导光光纤(22),所述导光光纤(22)的近端连接有导光接头(26),所述导光光纤(22)的远端连接、固定在所述防移位机构(910-1)上,所述导光光纤(22)的出光口(22-2)设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行示踪。
  59. 根据权利要求58所述实体瘤示踪装置,其特征在于:所述导光光纤(22)具有非光滑的表面(22-1),所述导光光纤(22)的侧面设有出光口(22-2),所述导光光纤(22) 对所述防移位机构(910-1)进行整体示踪。
  60. 根据权利要求59所述实体瘤示踪装置,其特征在于:所述导光光纤(22)由柔顺的医用材料制成,连接固定在所述防移位机构(910-1)上,当所述防移位机构(910-1)发生变形时,所述导光光纤(22)随着所述防移位机构(910-1)发生变形。
  61. 根据权利要求53所述实体瘤示踪装置,其特征在于:所述实体瘤示踪装置(910)含防移位机构(910-1)、递送机构(910-2)和所述医用光学示踪系统(500);所述医用光学示踪系统(500)的光学示踪载体(2)设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行示踪。
  62. 根据权利要求61所述实体瘤示踪装置,其特征在于:所述递送机构(910-2)含递送鞘(910-21)和推送机构(910-22),所述防移位机构(910-1)设置在所述递送鞘(910-21)内,所述推送机构(910-22)能将所述防移位机构(910-1)从所述递送鞘(910-21)中推出。
  63. 根据权利要求53所述实体瘤示踪装置,其特征在于:所述医用光学示踪系统(500)的光源(1)是LED光源(11),所述光学示踪载体(2)由透明材料制成,所述LED光源(11)的发光端(11-1)设置在所述光学示踪载体(2)上,与所述光学示踪载体(2)一起设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行示踪。
  64. 根据权利要求63所述实体瘤示踪装置,其特征在于:所述LED光源(11)含发光端(11-1)、电路系统(11-2)、驱动板(11-3)和电源(11-4);所述发光端(11-1)通过所述电路系统(11-2)和所述驱动板(11-3)及所述电源(11-4)连接,在所述驱动板(11-3)的控制下,所述电源(11-4)通过所述电路系统(11-2)对所述发光端(11-1)供电,所述发光端(11-1)发出光线;所述驱动板(11-3)及所述电源(11-4)设置在体外,所述发光端(11-1)设置在体内,对所述防移位机构(910-1)进行示踪。
  65. 根据权利要求64所述实体瘤示踪装置,其特征在于:所述电路系统(11-2)是柔性电路板(11-21),所述LED光源(11)的发光端(11-1)分散设置在所述柔性电路板(11-21)上并封装在所述光学示踪载体(2)内,构成LED灯带、或LED灯网、或LED灯球,设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行示踪。
  66. 根据权利要求64所述实体瘤示踪装置,其特征在于:所述LED光源(11)的发光端(11-1)设置在所述防移位机构(910-1)上,外部包覆透明材料制成的所述光学示踪载体(2),所述发光端(11-1)发出的光线对所述防移位机构(910-1)进行示踪。
  67. 根据权利要求66所述实体瘤示踪装置,其特征在于:所述发光端(11-1)分散地设置在所述防移位机构(910-1)上,对所述防移位机构(910-1)进行整体示踪。
  68. 根据权利要求63所述实体瘤示踪装置,其特征在于:所述电路系统(11-2)是柔 性电路板(11-21),所述光学示踪载体(2)由柔软的透明材料制成,所述发光端(11-1)、所述柔性电路板(11-21)和显影机构(4)一起设置在所述光学示踪载体(2)内,并设置在所述防移位机构(910-1)上,当所述防移位机构(910-1)发生变形时,所述发光端(11-1)、所述柔性电路板(11-21)、所述显影机构(4)和所述光学示踪载体(2)一起随着所述防移位机构(910-1)发生变形。
  69. 血管示踪装置,其特征在于:所述血管示踪装置(920)含权利要求1所述医用光学示踪系统(500)。
  70. 根据权利要求69述血管示踪装置,其特征在于:所述血管示踪装置(920)含显影机构(4)。
  71. 根据权利要求69述血管示踪装置,其特征在于:所述血管示踪装置(920)含涂层(3),所述涂层(3)是抗凝涂层。
  72. 根据权利要求69述血管示踪装置,其特征在于:所述血管示踪装置(920)含递送端(920-1)、导丝(920-2)、保护套管(5)和所述医用光学示踪系统(500);所述医用光学示踪系统(500)和所述导丝(920-2)设置在所述保护套管(5)内,所述保护套管(5)外有涂层(3),所述涂层(3)是抗凝涂层;所述导丝(920-2)由金属材料制成,在X光下可显影,构成显影机构(4),同时具有导热功能;所述递送端(920-1)能将所述血管示踪装置(920)递送至需要进行血管示踪的位置。
  73. 根据权利要求72述血管示踪装置,其特征在于:所述导丝(920-2)由形状记忆合金制造,对所述血管示踪装置(920)的远端进行塑形,构成塑形机构(25)。
  74. 根据权利要求69述血管示踪装置,其特征在于:所述医用光学示踪系统(500)设有通道(24),所述通道(24)构成导丝操作孔(920-3)。
  75. 根据权利要求74述血管示踪装置,其特征在于:所述光学示踪载体(2)的侧壁采用透明材料制造,侧壁内设有导光光纤(22),所述导光光纤(22)具有非光滑的表面(22-1),沿长度方向侧面设有出光口(22-2),所述光学示踪载体(2)的外表面设有涂层(3),所述涂层(3)是抗凝涂层;所述导光光纤(22)的近端连接导光接头(26),在所述光源(1)发出的光线的作用下,所述导光光纤(22)可整体发出光线,对血管进行示踪。
  76. 根据权利要求69述血管示踪装置,其特征在于:所述光源(1)是医用冷光源(12)。
  77. 根据权利要求69述血管示踪装置,其特征在于:所述光学示踪载体(2)的侧壁采用透明材料制造,所述光源(1)是LED光源(11),所述LED光源(11)的发光端(11-1)分散设置在所述光学示踪载体(2)的侧壁内,构成LED灯带或LED灯网,对血管进行示踪。
PCT/CN2022/133680 2021-12-10 2022-11-23 医用光学示踪系统 WO2023103771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111506551.1A CN116250939A (zh) 2021-12-10 2021-12-10 医用光学示踪系统
CN202111506551.1 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023103771A1 true WO2023103771A1 (zh) 2023-06-15

Family

ID=86681317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133680 WO2023103771A1 (zh) 2021-12-10 2022-11-23 医用光学示踪系统

Country Status (2)

Country Link
CN (1) CN116250939A (zh)
WO (1) WO2023103771A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567882A (en) * 1982-12-06 1986-02-04 Vanderbilt University Method for locating the illuminated tip of an endotracheal tube
US4898172A (en) * 1986-04-18 1990-02-06 Grable Richard J Optical light probe
US5131380A (en) * 1991-06-13 1992-07-21 Heller Richard M Softwall medical tube with fiberoptic light conductor therein and method of use
US5993382A (en) * 1996-11-27 1999-11-30 Horizon Medical Products, Inc. Lighted catheter device and method for use and manufacture thereof
WO1999064099A1 (en) * 1998-06-09 1999-12-16 Cardeon Corporation Cardiovascular catheter apparatus and catheter positioning method using tissue transillumination
CN202569152U (zh) * 2012-06-06 2012-12-05 马小鹏 发光定位导丝
US20150031987A1 (en) * 2013-07-24 2015-01-29 Cook Medical Technologies Llc Locating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567882A (en) * 1982-12-06 1986-02-04 Vanderbilt University Method for locating the illuminated tip of an endotracheal tube
US4898172A (en) * 1986-04-18 1990-02-06 Grable Richard J Optical light probe
US5131380A (en) * 1991-06-13 1992-07-21 Heller Richard M Softwall medical tube with fiberoptic light conductor therein and method of use
US5993382A (en) * 1996-11-27 1999-11-30 Horizon Medical Products, Inc. Lighted catheter device and method for use and manufacture thereof
WO1999064099A1 (en) * 1998-06-09 1999-12-16 Cardeon Corporation Cardiovascular catheter apparatus and catheter positioning method using tissue transillumination
CN202569152U (zh) * 2012-06-06 2012-12-05 马小鹏 发光定位导丝
US20150031987A1 (en) * 2013-07-24 2015-01-29 Cook Medical Technologies Llc Locating device

Also Published As

Publication number Publication date
CN116250939A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
US5906579A (en) Through-wall catheter steering and positioning
CN104768483B (zh) 通用举宫器和系统
CN101888811B (zh) 递送锚定装置到身体通道壁的方法和仪器
US7052456B2 (en) Airway products having LEDs
US6918871B2 (en) Method for accessing cavity
US20050065496A1 (en) Chemiluminescently illuminated suction appliances
CN104622520B (zh) 利于袖套胃切除术以及其他操作的设备和方法
WO1998006450A9 (en) Balloon catheter with visible or magnetic marker
US20070167967A1 (en) Medical procedure via natural orifice and puncture device
EP2895233A1 (en) Gastric bougie/dilator with integral lighted tip
JP2022516171A (ja) 徹照による管腔内でのチューブの位置決め
JP2020072920A (ja) 拡張バルーン用中心マーカ
JP7388133B2 (ja) 医療用マーカー
CN104918535A (zh) 锚定工作通道
KR20220133888A (ko) 체내강을 찾아내기 위한 디바이스
WO2002007632A1 (en) Illuminating devices for medical use
US20160000444A1 (en) Automatically operated endoscopic ligating instrument
US10973603B2 (en) Dilation system with illuminating orientation indicator features
US5624432A (en) Illuminating bougie and methods for diagnostic, therapeutic and surgical procedures
WO2023103771A1 (zh) 医用光学示踪系统
CN217660169U (zh) 带可见光示踪装置的医用导管
CN218391285U (zh) 医用光学示踪系统
WO2023103780A1 (zh) 带可见光示踪装置的医用导管
KR101163630B1 (ko) 수술위치 확인 발광체 캡슐
WO2023103772A1 (zh) 实体瘤示踪装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903194

Country of ref document: EP

Kind code of ref document: A1