WO2023103765A1 - 一种局部调光的热负载均衡的方法、装置及投影设备 - Google Patents

一种局部调光的热负载均衡的方法、装置及投影设备 Download PDF

Info

Publication number
WO2023103765A1
WO2023103765A1 PCT/CN2022/133424 CN2022133424W WO2023103765A1 WO 2023103765 A1 WO2023103765 A1 WO 2023103765A1 CN 2022133424 W CN2022133424 W CN 2022133424W WO 2023103765 A1 WO2023103765 A1 WO 2023103765A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial light
light modulator
output power
image
preset
Prior art date
Application number
PCT/CN2022/133424
Other languages
English (en)
French (fr)
Inventor
弓殷强
高飞
赵鹏
康瑞
方元戎
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2023103765A1 publication Critical patent/WO2023103765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Definitions

  • the present application relates to the technical field of projection display, and more specifically, to a method, device and projection equipment for thermal load balancing of local dimming.
  • the solution to improve the dynamic contrast of the equipment is to modulate through two or more spatial light modulators in series to reduce the brightness of the dark field and improve the dynamic contrast of the equipment.
  • the spatial light modulator is usually smaller than the projection screen, there is a problem that the thermal effect of the device is obvious due to the large luminous flux of the spatial light modulator during projection, thereby restricting the projection performance of the projection device.
  • the present application proposes a method, device and projection equipment for thermal load balancing of local dimming, so as to improve the above problems.
  • an embodiment of the present application provides a method for thermal load balancing of local dimming, which is applied to a projection device including a first spatial light modulator and a second spatial light modulator, and the method includes: obtaining the When the projection device is locally dimmed, the first display image displayed by the first spatial light modulator based on a preset image; obtain the first heat load of the first spatial light modulator according to the first display image; if the The first heat load is higher than the first heat resistance capability of the first spatial light modulator, adjusting the output power of the first spatial light modulator; according to the adjusted output power of the first spatial light modulator, Obtaining a first target image for display on the first spatial light modulator after the output power is adjusted; obtaining a target image for display on the second spatial light modulator according to the preset image and the first target image The second target image.
  • the embodiment of the present application also provides a thermal load balancing device for local dimming, which includes: an initial image acquisition module, a thermal load acquisition module, a thermal load balancing module, a first target image acquisition module, and a second Two target image acquisition modules.
  • An initial image acquisition module configured to acquire a first display image displayed by the first spatial light modulator based on a preset image when the projection device is locally dimmed; a thermal load acquisition module, configured to obtain a first display image based on the first display Image acquisition of a first thermal load of the first spatial light modulator; a thermal load equalization module, configured to adjust the The output power of the first spatial light modulator; the first target image acquisition module, configured to obtain the adjusted output power according to the adjusted output power of the first spatial light modulator and use it on the first spatial light modulator A displayed first target image; a second target image acquiring module, configured to acquire a second target image for display on the second spatial light modulator according to the preset image and the first target image.
  • an embodiment of the present application further provides a projection device, including: a first spatial light modulator, a second spatial light modulator, a display, one or more processors, a memory, and one or more application programs.
  • the first spatial light modulator and the second spatial light modulator are connected in series for local dimming; the display is used for displaying preset images; the one or more application programs are stored in the memory and The one or more programs are configured to be executed by the one or more processors, and the one or more programs are configured to be executed to implement the method as described in the first aspect above.
  • the embodiment of the present application also provides a computer-readable storage medium, where program code is stored in the computer-readable storage medium, and the program code can be invoked by a processor to execute the above-mentioned first aspect. method.
  • the technical solution proposed by the invention of this application is applied to a projection device including a first spatial light modulator and a second spatial light modulator. It is assumed that the first display image of the image is displayed; the first thermal load of the first spatial light modulator is obtained according to the first display image; if the first thermal load is higher than the first thermal load of the first spatial light modulator A heat resistance, adjusting the output power of the first spatial light modulator; according to the adjusted output power of the first spatial light modulator, the adjusted output power is obtained for display on the first spatial light modulator the first target image; obtaining a second target image for display on the second spatial light modulator according to the preset image and the first target image.
  • the thermal effect of the spatial light modulator obviously restricts the projection performance of the projection device.
  • FIG. 1 shows a schematic flowchart of a method for thermal load balancing of local dimming proposed by an embodiment of the present application
  • Fig. 2 shows a schematic flow chart of obtaining a preset output power value and the preset light source reduction ratio value of a method for local dimming thermal load balancing proposed by an embodiment of the present application;
  • FIG. 3 shows a schematic structural diagram of a thermal load balancing device for local dimming proposed by an embodiment of the present application
  • FIG. 4 shows a structural block diagram of a projection device proposed by an embodiment of the present application
  • FIG. 5 shows a structural block diagram of a computer-readable storage medium proposed by an embodiment of the present application.
  • high dynamic contrast ratio is one of the main pursuits of the new generation of display devices.
  • One of the connotations of high dynamic contrast ratio is that the dark field of the display device needs to be low enough, and the display bit depth must be high enough.
  • the control algorithm of the local dimming has many objectives, such as reducing the brightness of the local illumination light as much as possible to reduce the dark field. Therefore, it is very common to achieve high dynamic contrast by reducing the dark field brightness through local dimming.
  • the scheme to reduce the dark field brightness and improve the dynamic contrast ratio of the device can be modulated by two or more spatial light modulators (SLM) in series.
  • SLM spatial light modulators
  • the illumination light passes through the first SLM, it becomes a Local Dimming illumination light, which can effectively reduce the illumination light in the dark field.
  • the illumination The reduction of the light brightness can improve the brightness of the dark field, and at the same time, the equivalent bit depth of the display device can be effectively improved when the dual-chip spatial light modulator is used to achieve high dynamic contrast.
  • local dimming is realized by multiple LED lamp beads. Because the luminous flux density is not high, the thermal effect is not obvious.
  • the SLM is usually smaller than the projection screen, the luminous flux of the SLM is large, especially the first SLM, which usually bears a lot of heat.
  • the non-image light of 3LCD and LCOS is almost completely absorbed by the panel or polarizer; although DMD emits most of the energy of non-image light, it still has a phenomenon of high dark field temperature load that cannot be ignored.
  • the heat dissipation capability of the equipment is usually the key factor affecting the performance of the equipment system.
  • the spatial light modulator may eventually be overheated and damaged. , which in turn affects the performance of the entire set of projection equipment. Therefore, when the spatial light modulator is used to locally adjust the light of the projection device, there is a problem that the projection performance of the projection device is restricted due to the obvious thermal effect of the spatial light modulator.
  • the embodiments of the present application provide a method for thermal load balancing of local dimming.
  • the first spatial light modulator based on the preset image display the first display image; obtain the first thermal load of the first spatial light modulator according to the first display image; if the first thermal load is higher than the first heat resistance capability of the first spatial light modulator, adjust the first spatial light modulator the output power of the first spatial light modulator; according to the adjusted output power of the first spatial light modulator, obtain the first target image for displaying on the first spatial light modulator after the output power is adjusted; according to the preset image and The first target image is used to obtain the second target image displayed on the second spatial light modulator, thereby effectively balancing the thermal load of the spatial light modulator for local dimming
  • an embodiment of the present application provides a thermal load balancing method for local dimming, which is applied to a projection device including a first spatial light modulator and a second spatial light modulator.
  • the method may include steps S110 to S150.
  • Step S110 acquiring a first display image displayed by the first spatial light modulator based on a preset image when the projection device is locally dimmed.
  • the projection device may include a first spatial light modulator, a second spatial light modulator, a light source, and a display screen.
  • the local dimming of the projection device may be that when the illumination light emitted by the light source is incident on the first spatial light modulator, the first spatial light modulator modulates the illumination light into a specially distributed illumination light for local illumination, so that The illumination brightness of the dark field can be effectively reduced, and at the same time, the first spatial light modulator transfers the illumination light of local illumination to the second spatial light modulator, and the second spatial light modulator modulates the first spatial light modulator once.
  • the illuminating light is modulated again, and the brightness of the illuminating light decreases after two modulations, which increases the brightness of the dark field of the projection device, thereby improving the dynamic contrast of the projection device.
  • the spatial light modulator may be a transmissive spatial light modulator, a reflective spatial light modulator, or a liquid crystal spatial light modulator, and is used to apply a local dimming thermal
  • the types of the first spatial light modulator and the second spatial light modulator in the load balancing method may be the same or different.
  • the first spatial light modulator is an LCD (liquid crystal display) panel
  • the second spatial light modulator is an RGB LCD (RGB liquid crystal screen) or RGBW LCD (RGBW liquid crystal screen) panel
  • the light modulators are all DMDs (Digital Micromirror).
  • LCD liquid crystal display
  • LCOS reflective liquid crystal display
  • DMD digital micromirror
  • the preset image is the image displayed on the screen of the desired projection device, and the preset image may be obtained from an associated electronic device or cloud through wireless communication technology, or may be obtained from an associated electronic device or cloud through SPI (serial communication interface).
  • the local dimming is achieved under the condition of ensuring that the screen of the projection device displays the preset image, that is, the spatial light modulation of the local dimming of the projection device and the balance of the local dimming of the projection device When there is no thermal load on the controller, the images displayed on the screen of the projection device are all the preset images.
  • the preset image is displayed on the screen of the projection device, and the first display based on the preset image is displayed on the first spatial light modulator.
  • the image displayed on the second spatial light modulator is a second display image based on the preset image, and the first display image and the second display image are an initial solution for local dimming.
  • the manner of obtaining the first display image may be to collect the image displayed on the first spatial light modulator through a camera, and the method of obtaining the second display image may be to collect the image displayed on the second spatial light modulator through a camera. displayed image.
  • Step S120 Obtain a first heat load of the first spatial light modulator according to the first display image.
  • the first output power of the first spatial light modulator is to convert the brightness and color displayed by the first display image into energy, thereby obtaining the first output power of the first spatial light modulator.
  • obtaining the first thermal load of the first spatial light modulator according to the first display image may be obtaining the thermal load of the spatial light modulator according to the absorbed power calculation formula of the spatial light modulator, Wherein, the formula for calculating the absorbed power is:
  • H represents the absorbed power of the spatial light modulator
  • W in represents the incident power of the illumination light
  • W out represents the output power of the spatial light modulator
  • represents the transmittance of the spatial light modulator
  • a represents the spatial light modulator absorption rate.
  • represents the ratio of the output power of the white field of the spatial light modulator to the incident power when the illumination light is a certain incident power
  • a represents the absorptivity of the spatial light modulator, that is, when the spatial light modulator completely displays black
  • the ratio of the energy increase of heat absorption when all white is displayed and the output energy of the white field of the spatial light modulator compared to the increase of the output energy of the black field of the spatial light modulator.
  • (1- ⁇ )W in represents the energy that does not pass through the spatial light modulator
  • a( ⁇ W in ⁇ W out ) represents the energy that a part of the light from the light source is incident on the spatial light modulator but does not exit.
  • the incident power of the illumination light emitted by the light source of the projection device, the first output power of the first spatial light modulator, the first absorption rate and the first transmittance are calculated by using the absorbed power calculation formula to obtain the first The first thermal load of the spatial light modulator, wherein the formula for calculating the absorbed power is:
  • H 1 (1- ⁇ 1 )W in +a 1 ( ⁇ 1 W in -W out,1 ),
  • H 1 represents the first thermal load of the first spatial light modulator
  • ⁇ 1 represents the first transmittance of the first spatial light modulator
  • a 1 represents the first absorption rate of the first spatial light modulator
  • W out ,1 represents the first output power of the first spatial light modulator.
  • the first spatial light modulator is of a different type from the second spatial light modulator, and the second heat resistance capability of the second spatial light modulator is smaller than the first thermal capability of the first spatial light modulator heat resistance capability
  • the way to obtain the second heat load may be the incident power of the illumination light emitted by the light source of the projection device, the second outgoing power of the second spatial light modulator, the second The absorption rate and the second transmittance are calculated to obtain the second heat load of the second spatial light modulator, wherein the formula for calculating the absorbed power is:
  • H 2 (1- ⁇ 2 )W out,1 +a 2 ( ⁇ 2 W out,1 -W out,2 ),
  • H 2 is the second thermal load of the second spatial light modulator
  • ⁇ 2 is the second transmittance of the second spatial light modulator
  • a 2 is the second transmittance of the second spatial light modulator.
  • Two absorptivity w 2 is the second heat resistance capability of the second spatial light modulator
  • W 0 is the maximum output power of the light source
  • W out 2 is the second output power of the second spatial light modulator .
  • the second heat resistance capability of the second spatial light modulator is the maximum power that the spatial light modulator can absorb. If the second heat load is higher than the second thermal load of the second spatial light modulator Two heat resistance. In order to prevent the second spatial light modulator from being burned due to excessive thermal load, it is necessary to adjust the thermal load on the second spatial light modulator, specifically, it may be to adjust the brightness of the light source incident on the first spatial light modulator, so that The heat loads of both the first spatial light modulator and the second spatial light modulator are reduced, and components of the projection device can be prevented from being burned out.
  • Step S130 If the first heat load is higher than the first heat resistance capability of the first spatial light modulator, adjust the output power of the first spatial light modulator.
  • the thermal load on the first spatial light modulator In order to prevent the first spatial light modulator from being burned due to excessive thermal load, it is necessary to adjust the thermal load on the first spatial light modulator, and to adjust the thermal load on the first spatial light modulator may be to adjust the incident light into the first space
  • the brightness of the light source on the light modulator may also be to increase the output power of the first spatial light modulator.
  • the energy of the entire projection device will be reduced; if the output power of the first spatial light modulator is increased, the first spatial light modulator will not be allowed to The light modulator blocks too much light, makes it show more white and less black, and diverts the light to the second SLM, which transfers the heat load from the first SLM to the second On the second spatial light modulator, the heat load of the spatial light modulator during local dimming of the projection device is balanced, and the brightness of the projection device is improved at the same time.
  • the embodiments of the present application are applied to spatial light modulators with high absorption rate, 3LCD and LCOS.
  • 3LCD is a system that divides the input white light into red, green and blue three-color light.
  • a panel is placed before the light splitting to modulate the white light, so that the red, green and blue three-color light after the light splitting will be modulated, and the panel placed before the light splitting
  • the panel with the highest thermal load on the RGB panels red panel, green panel, blue panel
  • the second spatial light modulator by obtaining the first thermal load on the first spatial light modulator, Judging whether the first heat load is higher than the first heat resistance capability of the spatial light modulator, if it is higher, the output power of the first spatial light modulator or the light source incident on the first spatial light modulator can be reduced brightness, and balance the thermal load of the 3LCD's local dimming system.
  • the Increasing the output power of the first spatial light modulator may also be reducing the brightness of the light source incident on the first spatial light modulator, or increasing the output power of the first spatial light modulator and adjusting the incident the brightness of the light source to the first spatial light modulator.
  • adjusting the output power of the first spatial light modulator is not unlimited, because the first spatial light modulator itself absorbs heat, and part of the heat is no matter what image the first spatial light modulator displays, the first spatial light modulator The modulators will all absorb, therefore, the thermal load of the first spatial light modulator that can be reduced by changing the image displayed by the first spatial light modulator is limited if the first thermal load of the first spatial light modulator is far from Above the first heat resistance capability of the first spatial light modulator, it is necessary to reduce the first thermal load of the first spatial light modulator by reducing the brightness of the light source incident on the first spatial light modulator, but reducing the incident
  • the brightness of the light source to the first spatial modulator is not unlimited, and the brightness of the light source should ensure the projection capability of the projection device, that is, ensure that a preset image is displayed on the screen of the projection device.
  • the adjusting the output power of the first spatial light modulator may be adjusting the color of the first display image displayed by the first spatial light modulator based on the preset image according to a preset output power value or Brightness, to adjust the output power of the first spatial light modulator, and then transfer a part of the first heat load of the first spatial light modulator to the second spatial light modulator, so as to locally adjust the light of the projection device , the heat load on the spatial light modulator is balanced; the adjustment of the brightness of the light source incident on the first spatial light modulator may be to reduce the voltage or current of the projection device according to the preset light source reduction ratio value and adjust the incident light source to the first spatial light modulator Brightness of the light source of the first spatial light modulator.
  • the preset output power value and the preset light source reduction ratio value can be obtained through the process from step S132 to step S136.
  • Step S132 Obtain the first display image displayed by the first spatial light modulator based on the preset image and the first display image displayed by the second spatial light modulator based on the preset image when the projection device is locally dimmed. Two display images.
  • a manner of acquiring a first display image displayed by the first spatial light modulator based on a preset image and a second display image displayed by the second spatial light modulator based on the preset image when the projection device is locally dimmed It can be collected by a camera.
  • Step S134 Determine the first output power of the first spatial light modulator and the second output power of the second spatial light modulator according to the first display image and the second display image.
  • determining the first output power of the first spatial light modulator and the second output power of the second spatial light modulator may be the The brightness and color displayed in the first display image are converted into energy, thereby obtaining the first output power of the first spatial light modulator, and the brightness and color displayed in the second display image are converted into energy, thereby obtaining the obtained
  • the second outgoing power of the second spatial light modulator is described above.
  • Step S136 According to the first transmittance, the first absorptivity, the first heat resistance and the first output power of the first spatial light modulator and the second transmittance of the second spatial light modulator, The second absorption rate, the second heat resistance capability, the second output power, and the maximum output power of the light source are used to obtain the preset output power value and the preset light source reduction ratio value.
  • the first transmittance, the first absorptivity, the first heat resistance, the first outgoing power and the maximum output power of the light source of the first spatial light modulator are brought into the first spatial light modulator
  • the absorption power calculation formula obtains the first inequality
  • the first inequality, the second inequality, the third inequality that the preset light source reduction ratio value is greater than 0 and less than or equal to 1
  • the Solve the target inequality group composed of the fourth inequality whose preset output power value is greater than 0 and less than or equal to the energy not emitted by the first spatial light modulator, and obtain the value range of the preset output power value and the reduction of the preset light source The value range of the scale value.
  • the target inequality group includes:
  • ⁇ 1 is the first transmittance of the first spatial light modulator
  • ⁇ 2 is the second transmittance of the second spatial light modulator
  • a 1 is the transmittance of the first spatial light modulator
  • the first absorption rate a 2 is the second absorption rate of the second spatial light modulator
  • w 1 is the first heat resistance capability of the first spatial light modulator
  • w 2 is the second spatial light modulator
  • W 0 is the maximum output power of the light source
  • W out,1 is the first output power of the first spatial light modulator
  • W out,2 is the second spatial light modulator
  • the second output power of , k is the reduction ratio value of the preset light source
  • ⁇ W is the preset output power value.
  • the first inequality indicates that the first thermal load of the first spatial light modulator is less than or equal to the first heat resistance capability of the first spatial light modulator;
  • the second inequality indicates that the second thermal load of the second spatial light modulator The load is less than or equal to the heat resistance capability of the second spatial light modulator;
  • the third inequality indicates that the preset light source reduction ratio value is greater than 0 and less than or equal to 1;
  • the fourth inequality indicates that the preset output power value is greater than 0 and less than Or equal to the energy not emitted by the first spatial light modulator.
  • the preset output power value and the preset light source reduction ratio value may be obtained according to the process from step S132 to step S136, pre-stored in the storage unit of the projection device, or obtained from an associated obtained from the cloud or electronic device, or obtained from an associated electronic device through SPI (serial communication interface).
  • Step S140 According to the adjusted output power of the first spatial light modulator, obtain a first target image for displaying on the first spatial light modulator after the output power is adjusted.
  • the first target image for displaying on the first spatial light modulator after the output power is adjusted is obtained, specifically, it may be increasing the output power of the first spatial light modulator by ⁇ W, and increasing the adjusted output power value of the first spatial light modulator, the first output power, the first absorption rate, the first display image, and the maximum value of the light source
  • the output power is brought into the first target calculation formula to obtain the first target image for display on the first spatial light modulator after the output power is adjusted, wherein the first target calculation formula includes:
  • I 1 is the first display image displayed by the first spatial light modulator based on a preset image
  • I 1 ' is the first target image displayed on the first spatial light modulator after adjusting the output power
  • ⁇ W is the adjusted output power value of the first spatial light modulator
  • W out,1 is the first outgoing power of the first spatial light modulator
  • ⁇ 1 is the first absorption power of the first spatial light modulator rate
  • W 0 is the maximum input power of the light source.
  • Step S150 Obtain a second target image for display on the second spatial light modulator according to the preset image and the first target image.
  • the obtaining the second target image for display on the second spatial light modulator according to the preset image and the first target image may be based on the first display
  • the first display image displayed by the first spatial light modulator based on a preset image and the second The second display image displayed by the two spatial light modulators based on the preset image; according to the first display image and the second display image, a transfer relationship from the first display image to the second display image is obtained; according to The transfer relationship, the first target image and the preset image are used to obtain a second target image displayed on the second spatial light modulator.
  • the transfer relationship may be based on the first pixel in the first display image and the second pixel in the second display image to obtain a transfer relation expression between the first pixel and the second pixel :
  • I 1 is the first display image
  • I 21 is a distribution image of the output light of the first spatial light modulator on the second spatial light modulator.
  • the obtaining the second target image for display on the second spatial light modulator according to the transfer relationship, the first target image and the preset image may be to use the transfer relationship formula to Calculate the first target image to obtain a distribution image of the output light of the first spatial light modulator on the second spatial light modulator after adjusting the output power of the first spatial light modulator, the
  • the transfer relation is:
  • I 21 ′ is the distribution image of the output light of the first spatial light modulator on the second spatial light modulator after adjusting the output power of the first spatial light modulator
  • I 1 ′ is the distribution image of the output light of the first spatial light modulator. Describe the first target image.
  • I 21 ' is the distribution image of the output light of the first spatial light modulator on the second spatial light modulator after the output power of the first spatial light modulator is adjusted
  • I 2 ' is The second target image
  • I 0 is the preset image
  • the first spatial light modulator when the local dimming of the projection device is realized by using the dual-chip spatial light modulator to achieve high dynamic contrast, when the local dimming of the projection device is obtained, the first spatial light modulator based on the preset image displaying a first display image; obtaining a first thermal load of the first spatial light modulator according to the first display image; if the first thermal load is higher than the first tolerance of the first spatial light modulator thermal capability, adjusting the output power of the first spatial light modulator; according to the adjusted output power of the first spatial light modulator, obtaining the adjusted output power for displaying on the first spatial light modulator A target image; obtaining a second target image for display on the second spatial light modulator according to the preset image and the first target image.
  • the thermal load of the projection device is balanced when the projection device is locally dimmed, so as to enhance the picture quality of the projection device, avoid thermal effects from significantly restricting the system performance of the projection device, and further improve the projection capability of the projection device.
  • the device 300 includes: an initial image acquisition module 310 , a thermal load acquisition module 320 , a thermal load balancing module 330 , a first A target image acquisition module 340 and a second target image acquisition module 350 .
  • the initial image acquisition module 310 is configured to acquire the first display image displayed by the first spatial light modulator based on a preset image when the projection device is locally dimmed;
  • the thermal load acquisition module 320 is configured to obtain the first display image based on the preset image The first display image obtains the first heat load of the first spatial light modulator;
  • the heat load balancing module 330 is configured to if the first heat load is higher than the first heat resistance of the first spatial light modulator Ability to adjust the output power of the first spatial light modulator;
  • the first target image acquisition module 340 is configured to obtain the adjusted output power according to the adjusted output power of the first spatial light modulator and use it in the first spatial light modulator A first target image displayed on a spatial light modulator;
  • a second target image acquisition module 350 configured to obtain a target image for display on the second spatial light modulator according to the preset image and the first target image The second target image.
  • the initial image acquisition module 310 includes a camera, and when the projection device is locally dimmed, the camera acquires the first display image displayed by the first spatial light modulator based on the preset image and the second spatial light modulation
  • the second display image displayed by the controller based on the preset image, and at the same time according to the first display image and the second display image, obtains a transfer relation from the first display image to the second display image:
  • I 1 is the first display image
  • I 21 is a distribution image of the output light of the first spatial light modulator on the second spatial light modulator.
  • the thermal load obtaining module 320 obtains the first output power of the first spatial light modulator according to the color and brightness of the first display image obtained by the camera, and obtains the second output power of the first spatial light modulator according to the color and brightness of the second display image.
  • the second output power of the spatial light modulator bringing the first transmittance, the first absorptivity, the first output power of the first spatial light modulator and the maximum output power of the light source into the first spatial light modulation Calculate the absorbed power calculation formula of the first spatial light modulator to obtain the first heat load of the first spatial light modulator, wherein the absorbed power calculation formula of the first spatial light modulator includes:
  • H 1 (1- ⁇ 1 )W in +a 1 ( ⁇ 1 W in -W out,1 ),
  • H 1 represents the first thermal load of the first spatial light modulator
  • ⁇ 1 represents the first transmittance of the first spatial light modulator
  • a 1 represents the first absorption rate of the first spatial light modulator
  • W out ,1 represents the first output power of the first spatial light modulator.
  • the thermal load balancing module 330 when the first thermal load of the first spatial light modulator is higher than the first heat resistance capability of the first spatial light modulator, according to the pre-stored thermal load balancing module
  • the preset output power value adjusts the output power of the first spatial light modulator.
  • the first target image acquisition module 340 obtains the first target image for display on the first spatial light modulator after the output power is adjusted; specifically , taking the adjusted output power value of the first spatial light modulator, the first outgoing power, the first absorption rate, the first displayed image, and the maximum output power of the light source into the first target calculation formula to obtain the adjusted output power Then used for the first target image displayed on the first spatial light modulator, the calculation formula of the first target is:
  • I 1 is the first display image displayed by the first spatial light modulator based on a preset image
  • I 1 ' is the first target image displayed on the first spatial light modulator after the output power is adjusted
  • ⁇ W is the adjusted output power value of the first spatial light modulator
  • W out, 1 is the first output power of the first spatial light modulator
  • ⁇ 1 is the first output power of the first spatial light modulator Absorption rate
  • W 0 is the maximum input power of the light source.
  • the second target image acquisition unit 350 calculates the first target image by using the transfer relation, and obtains the output power of the first spatial light modulator after adjusting the output power of the first spatial light modulator.
  • the distribution image of the output light on the second spatial light modulator, the transfer relation is:
  • I 21 ′ is the distribution image of the output light of the first spatial light modulator on the second spatial light modulator after adjusting the output power of the first spatial light modulator
  • I 1 ′ is the distribution image of the output light of the first spatial light modulator. Describe the first target image.
  • I 21 ′ is the distribution image of the output light of the first spatial light modulator on the second spatial light modulator after adjusting the output power of the first spatial light modulator
  • I 2 ′ is the The second target image
  • I 0 is the preset image.
  • the projection device 400 includes: a first spatial light modulator 410, a second spatial light modulator 420, a display 430, and one or more processors 440, memory 450, and one or more application programs.
  • the first spatial light modulator 410 and the second spatial light modulator 420 are connected in series for local dimming of the projection device 400;
  • the display 430 is used for displaying images;
  • one or more application programs are stored in the memory In 450 and configured to be executed by the one or more processors 440, the one or more programs are configured to execute the aforementioned method for local dimming thermal load balancing.
  • the projection device 400 further includes a light source for incident light to the first spatial light modulator 410 and the second spatial light modulator 420 .
  • some embodiments of the present invention include a computer-readable storage medium 500 including program code 510 for executing steps in the method embodiments of the present application.
  • one or more processors in a display or an image data processor upstream of the display can implement a local dimming thermal The method of load balancing.
  • the present invention may also be provided in the form of a program product.
  • the program product may comprise any medium carrying a computer readable set of signals comprising instructions which, when executed by a data processor, cause the data processor to perform the method of the invention.
  • Program products according to the present invention may be in any of a variety of forms.
  • the program product may include, for example, non-transitory physical media such as magnetic data storage media (including floppy disks, hard drives), optical data storage media (including CD, ROM, DVD), electronic data storage media (including ROM, flash ROM) etc.
  • the computer readable signal on the program product may optionally be compressed or encrypted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本申请实施例公开了一种局部调光的热负载均衡的方法、装置、投影设备。该方法包括:获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;根据所述第一显示图像获得所述第一空间光调制器的第一热负载;若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。通过采用本申请的上述方法,可以有效均衡投影设备局部调光时空间光调制器上的热负载。

Description

一种局部调光的热负载均衡的方法、装置及投影设备 技术领域
本申请涉及投影显示技术领域,更具体地,涉及一种局部调光的热负载均衡的方法、装置及投影设备。
背景技术
目前,高动态对比度是新一代显示设备的主要追求之一。对投影显示设备而言,提高设备动态对比度的方案是通过两片或多片空间光调制器串联进行调制,以降低暗场亮度提高设备的动态对比度。但是,由于空间光调制器相较于投影画面通常较小,因此在投影时存在由于空间光调制器的光通量很大导致设备的热效应明显从而制约投影设备的投影性能的问题。
发明内容
本申请提出了一种局部调光的热负载均衡的方法、装置及投影设备,以改善上述问题。
第一方面,本申请实施例提供了一种局部调光的热负载均衡的方法,应用于包括第一空间光调制器和第二空间光调制器的投影设备,该方法包括:获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;根据所述第一显示图像获得所述第一空间光调制器的第一热负载;若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;根据所述预 设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
第二方面,本申请实施例还提供了一种局部调光的热负载均衡的装置,该装置包括:初始图像获取模块、热负载获取模块、热负载均衡模块、第一目标图像获取模块以及第二目标图像获取模块。初始图像获取模块,用于获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;热负载获取模块,用于根据所述第一显示图像获得所述第一空间光调制器的第一热负载;热负载均匀模块,用于若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;第一目标图像获取模块,用于根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;第二目标图像获取模块,用于根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
第三方面,本申请实施例还提供了一种投影设备,包括:第一空间光调制器、第二空间光调制器、显示器、一个或多个处理器、存储器以及一个或多个应用程序。其中,所述第一空间光调制器和第二空间光调制器串联,用于局部调光;显示器,用于显示预设图像;所述一个或多个应用程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置执行以实现如上述第一方面所述的方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,所述程序代码可被处理器调用执行如上述第一方面所述的方法。
本申请发明提出的技术方案,应用于包括第一空间光调制器和第二空间光调制器的投影设备,通过获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;根据所述第一显示图像获得所述第一空间光调制器的第一热负载;若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;根据调整的所述第一空间光调制器的输出功 率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。因此,采用本申请的上述方法,通过提高对投影设备局部调光的第一空间光调制器的输出功率,有效均衡投影设备局部调光时空间光调制器上的热负载,以在实现投影设备的高动态对比度的同时避免投影设备因为空间光调制器的热效应明显制约投影设备的投影性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一实施例提出的一种局部调光的热负载均衡的方法的流程示意图;
图2示出了获取本申请一实施例提出的一种局部调光的热负载均衡的方法的预设输出功率值和所述预设光源降低比例值的流程示意图;
图3示出了本申请一实施例提出的一种局部调光的热负载均衡装置的结构示意图;
图4示出了本申请一实施例提出的一种投影设备的结构框图;
图5示出了本申请一实施例提出的一种计算机可读存储介质的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有 作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前,高动态对比度(HDR)是新一代显示设备的主要追求之一,高动态对比度的内涵之一就是对显示设备的暗场需要足够低,且显示位深要足够高。现有技术中,局部调光的控制算法具有诸多目标,例如将局部照明光的亮度尽量压低,以降低暗场。因此,通过局部调光降低暗场亮度实现高动态对比度的方式十分普遍。对于投影显示而言,降低暗场亮度,提高设备的动态对比度的方案可以是通过两片或多片空间光调制器(SLM)串联进行调制。当照明光经过第一片SLM后,成为了一个局部照明(Local Dimming)的照明光,这就可以有效的降低暗场的照明光,在第二片SLM的调制能力不变的前提下,照明光亮度的下降就可以提高暗场的亮度,同时利用双片空间光调制器实现高动态对比度时还可以有效的提高显示设备的等效位深。在显示器和电视领域,局部调光是通过多颗LED灯珠实现的,由于其光通量密度不高,热效应不明显。但是,对于投影显示而言,由于SLM相较于投影画面通常较小,因此SLM的光通量很大,尤其是第一片SLM,通常会承受很大的热量。例如,3LCD和LCOS的非图像光几乎全部被面板或偏光板所吸收;DMD尽管将大部分非图像光的能量出射,但依然有不可忽略的暗场温度负载较高的现象。而设备的散热能力通常是影响设备系统性能的关键因素,在利用空间光调制器局部调光的投影设备,若空间光调制器上的热量难以散出,最后可能会导致空间光调制器过热损坏,进而影响整套投影设备的性能。因此,在利用空间光调制器对投影设备局部调光时,存在因为空间光调制器热效应明显导致投影设备的投影性能受到制约的问题。
因此,为了缓解上述问题,本申请实施例提供了一种局部调光的热负载均衡的方法。采用本申请的上述方法,通过双片式空间光调制器局部调光在实现投影设备的高动态对比度的基础上,获取对投影设备局部调光时,第一空间光调制器基于预设图像显示的第一显示图像;根据第一显示图像获得第一空间光调制器的第一热负载;若第一热负载高于第一空间光调制器的第一耐热能力,调整第一空间光调制 器的输出功率;根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像,从而有效均衡对投影设备局部调光的空间光调制器的热负载,增强投影设备显示画面的质量,提高投影设备的投影性能。
下面将结合附图具体描述本申请的各实施例。
请参阅图1,本申请一实施例提供了一种局部调光的热负载均衡的方法,应用于包括第一空间光调制器和第二空间光调制器的投影设备。所述方法可以包括步骤S110至步骤S150。
步骤S110:获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像。
在本申请实施例中,投影设备可以包括第一空间光调制器、第二空间光调制器、光源以及显示屏幕。对投影设备的局部调光可以是,在光源发出的照明光入射到第一空间光调制器上时,第一空间光调制器将照明光调制成一个特别分布的局部照明的照明光,这样就可以有效降低暗场的照明光亮度,同时第一空间光调制器将局部照明的照明光转移到第二空间光调制器上,第二空间光调制器将第一空间光调制器调制了一次的照明光再做一次调制,经过两次调制使得照明光的亮度下降,提高了投影设备的暗场亮度,从而提高投影设备的动态对比度。
具体地,空间光调制器可以是透射式空间光调制器、反射式空间光或者液晶空间光调制器等类型的空间光调制器,用于应用本申请实施例提供的一种局部调光的热负载均衡的方法的第一空间光调制器和第二空间光调制器的类型可以相同也可以不同。如,第一空间光调制器为LCD(液晶显示器)面板,第二空间光调制器为RGB LCD(RGB液晶屏)或RGBW LCD(RGBW液晶屏)面板;第一空间光调制器和第二空间光调制器都为DMD(数字微镜)。其中,LCD,LCOS(反射式液晶显示屏),会吸收某些特定偏振的大部分的热量,这样热负载就会完全叠加在LCD或LCOS上;DMD数字微镜,将不需要的光反射出DMD, 虽然并不会把非图像光吸收,但吸热也会有所提高。因此,在利用3LCD、LCOS以及DMD对投影设备局部调光时,存在热效应明显导致投影设备的投影性能受到制约的问题。
所述预设图像是期望投影设备的屏幕上显示的图像,所述预设图像可以是通过无线通信技术从相关联的电子设备或云端获得的,还可以是通过SPI(串口通信接口)从相关联的设备获得的;所述局部调光是在保证投影设备的屏幕显示所述预设图像的条件下完成的,即在对投影设备局部调光以及均衡对投影设备局部调光的空间光调制器的热负载时,投影设备的屏幕上显示的图像都为所述预设图像。
其中,对所述投影设备局部调光时,所述投影设备的屏幕上显示的是所述预设图像,所述第一空间光调制器上显示的是基于所述预设图像的第一显示图像,所述第二空间光调制器上显示的是基于所述预设图像的第二显示图像,所述第一显示图像和所述第二显示图像即为局部调光时的初始解。获取所述第一显示图像的方式可以是通过摄像头采集所述第一空间光调制器上显示的图像,获取所述第二显示图像的方式可以是通过摄像头采集所述第二空间光调制器上显示的图像。
步骤S120:根据所述第一显示图像获得所述第一空间光调制器的第一热负载。
在本申请实施例中,获取摄像头采集到的对投影设备局部调光时第一空间光调制器基于预设图像显示的第一显示图像后,可以根据第一空间光调制器反射的图像来获得第一空间光调制器的第一出射功率,即将所述第一显示图像显示的亮度和颜色换算成能量,由此获得所述第一空间光调制器的第一出射功率。
在本申请实施例中,根据所述第一显示图像获得所述第一空间光调制器的第一热负载,可以是根据空间光调制器的吸收功率计算式获得空间光调制器的热负载,其中,所述吸收功率计算式为:
H=(1-η)W in+a(ηW in-W out),
其中,用H表示空间光调制器的吸收功率;W in表示照明光的入射功率;W out代表空间光调制器的出射功率;η表示空间光调制器的透过率;a表示空间光调制器的吸收率。具体地,η表示照明光为某 一入射功率时,空间光调制器白场的出射功率与入射功率的比值;a表示空间光调制器的吸收率,即空间光调制器全部显示黑色时吸热的能量相比全部显示白色时吸热的能量的增量与空间光调制器白场的输出能量相比空间光调制器黑场的输出能量的增量的比值。(1-η)W in表示没有透过空间光调制器的能量;a(ηW in-W out)表示光源的光线入射到空间光调制器上的有一部分入射了但是没有出射的能量。
利用吸收功率计算式对所述投影设备的光源发出的照明光的入射功率、所述第一空间光调制器的第一出射功率、第一吸收率以及第一透过率进行计算,获得第一空间光调制器的第一热负载,其中,所述吸收功率计算式为:
H 1=(1-η 1)W in+a 11W in-W out,1),
其中,H 1表示第一空间光调制器的第一热负载;η 1表示第一空间光调制器的第一透过率;a 1表示第一空间光调制器的第一吸收率;W out,1表示第一空间光调制器的第一出射功率。
在一些实施方式中,若第一空间光调制器与第二空间光调制器不同类型,且所述第二空间光调制器的第二耐热能力小于所述第一空间光调制器的第一耐热能力,获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像以及所述第二空间光调制器基于预设图像显示的第二显示图像;根据所述第一显示图像获得所述第一空间光调制器的第一热负载,以及根据所述第二显示图像获得所述第二空间光调制器的第二热负载;若所述第二热负载高于所述第二空间光调制器的第二耐热能力,可以调整入射到第一空间光调制器上的光源的亮度。
其中,获得所述第二热负载的方式,可以是利用吸收功率计算式对所述投影设备的光源发出的照明光的入射功率、所述第二空间光调制器的第二出射功率、第二吸收率以及第二透过率进行计算,获得第二空间光调制器的第二热负载,其中,所述吸收功率计算式为:
H 2=(1-η 2)W out,1+a 22W out,1-W out,2),
其中,H 2是所述第二空间光调制器的第二热负载,η 2是所述第 二空间光调制器的第二透过率,a 2是所述第二空间光调制器的第二吸收率,w 2所述第二空间光调制器的第二耐热能力,W 0为所述光源的最大输出功率,W out,2是所述第二空间光调制器的第二出射功率。
在本申请实施例中,第二空间光调制器的第二耐热能力为该空间光调制器可以吸收的最大功率,若所述第二热负载高于所述第二空间光调制器的第二耐热。为防止第二空间光调制器因为热负载过高被烧毁,需要调整第二空间光调制器上的热负载,具体地,可以是调整入射到第一空间光调制器上的光源的亮度,这样使得第一空间光调制器和第二空间光调制器的热负载都降低,可以避免投影设备的元器件被烧坏。
步骤S130:若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率。
在本申请实施例中,第一空间光调制器的第一耐热能力为该空间光调制器可以吸收的最大功率,若所述第一热负载高于所述第一空间光调制器的第一耐热能力,即H 1>w 1,其中,H 1=(1-η 1)W in+a 11W in-W out,1),w 1表示第一空间光调制器的第一耐热能力。为防止第一空间光调制器因为热负载过高被烧毁,需要调整第一空间光调制器上的热负载,而调整第一空间光调制器上的热负载,可以是调整入射到第一空间光调制器上的光源的亮度,也可以是提高所述第一空间光调制器的输出功率。
具体地,若调整入射到第一空间光调制器上的光源的亮度,则会使整个投影设备的能量都降低;若将所述第一空间光调制器输出功率提高,即不让第一空间光调制器挡住太多的光线,让它多显示一些白色,少显示一些黑色,将光线转移到第二空间光调制器上,这样就可以将第一空间光调制器上的热负载转嫁到第二空间光调制器上,均衡投影设备局部调光时空间光调制器的热负载,同时提高投影设备的亮度。
示例性的,本申请实施例应用于吸收率较高的空间光调制器,3LCD和LCOS。其中,3LCD和LCOS的非图像光几乎全部被面板或偏光板所吸收,因此吸收率较高。3LCD是对输入的白光分成红绿蓝三 色光的系统,在分光前放置一个面板,对白光进行调制,这样分光后的红绿蓝的三色光都会接收到调制,通过将在分光前放置的面板作为第一空间光调制器,RGB面板(红色面板、绿色面板、蓝色面板)上热负载最高的面板作为第二空间光调制器,通过获取第一空间光调制器上的第一热负载,判断所述第一热负载是否高于该空间光调制器的第一耐热能力,若高于可以通过降低第一空间光调制器的输出功率或降低入射到第一空间光调制器上的光源的亮度,均衡3LCD的局部调光系统的热负载。
在一些实施方式中,若所述第一热负载高于所述第一空间光调制器的第一耐热能力,以使所述投影设备局部调整光时的热负载均衡,可以是将所述第一空间光调制器的输出功率提高,也可以是将入射到所述第一空间光调制器的光源的亮度降低,还可以是将所述第一空间光调制器的输出功率提高以及调整入射到所述第一空间光调制器的光源的亮度。其中,调整第一空间光调制器的输出功率不是无限制的,因为第一空间光调制器自身吸热,有一部分热量是不管第一空间光调制器显示的是什么图像,该第一空间光调制器都会吸收的,因此,通过改变第一空间光调制器显示的图像来降低的第一空间光调制器的热负载是有限的,若所述第一空间光调制器的第一热负载远高于所述第一空间光调制器的第一耐热能力,就需要通过降低入射到第一空间光调制器的光源的亮度来降低第一空间光调制器的第一热负载,不过降低入射到第一空间调制器上的光源的亮度也不是无限的,该光源的亮度应保证所述投影设备的投影能力,即保证投影设备的屏幕上显示预设图像。
具体地,所述调整所述第一空间光调制器的输出功率,可以是根据预设输出功率值调整所述第一空间光调制器基于所述预设图像显示的第一显示图像的颜色或亮度,以调整将所述第一空间光调制器的输出功率,进而将所述第一空间光调制器的第一热负载转嫁一部分到第二空间光调制器上,以使投影设备局部调光时,空间光调制器上的热负载均衡;所述调整入射到所述第一空间光调制器的光源的亮度,可以是根据预设光源降低比例值降低投影设备的电压或者电流调整 入射到所述第一空间光调制器的光源的亮度。
请参阅图2,在本申请实施例中,所述预设输出功率值和所述预设光源降低比例值可以通过步骤S132至步骤S136的过程获得。
步骤S132:获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像以及所述第二空间光调制器基于所述预设图像显示的第二显示图像。
具体地,获取对投影设备局部调光时第一空间光调制器基于预设图像显示的第一显示图像以及所述第二空间光调制器基于所述预设图像显示的第二显示图像的方式可以是利用摄像头采集。
步骤S134:根据所述第一显示图像和第二显示图像,确定所述第一空间光调制器的第一出射功率和所述第二空间光调制器的第二出射功率。
具体的,根据所述第一显示图像和第二显示图像,确定所述第一空间光调制器的第一出射功率和所述第二空间光调制器的第二出射功率,可以是将所述第一显示图像显示的亮度和颜色换算成能量,由此获得所述第一空间光调制器的第一出射功率,将所述第二显示图像显示的亮度和颜色换算成能量,由此获得所述第二空间光调制器的第二出射功率。
步骤S136:根据所述第一空间光调制器的第一透过率、第一吸收率、第一耐热能力以及第一出射功率和所述第二空间光调制器的第二透过率、第二吸收率、第二耐热能力以及第二出射功率和所述光源的最大输出功率,获得所述预设输出功率值和所述预设光源降低比例值。
具体的,将所述第一空间光调制器的第一透过率、第一吸收率、第一耐热能力以及第一出射功率和所述光源的最大输出功率带入第一空间光调制器的吸收功率计算式获得第一不等式;将所述第二空间光调制器的第二透过率、第二吸收率、第二耐热能力以及第二出射功率和所述光源的最大输出功率带入第二空间光调制器的吸收功率计算式获得第二不等式;对所述第一不等式、第二不等式、所述预设光源降低比例值大于0小于或等于1的第三不等式,以及所述预设输出 功率值大于0小于或等于第一空间光调制器未出射的能量的第四不等式组成的目标不等式组求解,得到所述预设输出功率值的取值范围和所述预设光源降低比例值的取值范围。其中,所述目标不等式组包括:
Figure PCTCN2022133424-appb-000001
其中,η 1是所述第一空间光调制器的第一透过率,η 2是所述第二空间光调制器的第二透过率,a 1是所述第一空间光调制器的第一吸收率,a 2是所述第二空间光调制器的第二吸收率,w 1是所述第一空间光调制器的第一耐热能力,w 2所述第二空间光调制器的第二耐热能力,W 0为所述光源的最大输出功率,W out,1是所述第一空间光调制器的第一出射功率,W out,2是所述第二空间光调制器的第二出射功率,k为所述预设光源降低比例值,ΔW为所述预设输出功率值。
具体地,第一不等式,表示第一空间光调制器的第一热负载小于或等于第一空间光调制器的第一耐热能力;第二不等式,表示第二空间光调制器的第二热负载小于或等于第二空间光调制器的耐热能力;第三不等式,表示所述预设光源降低比例值大于0小于或等于1;第四不等式,表示所述预设输出功率值大于0小于或等于第一空间光调制器未出射的能量。对所述第一等式、第二不等式、第三不等式以及第四不等式组成的不等式组求解,获得所述预设光源降低比例值k的取值范围和预设输出功率值ΔW的取值范围,根据所述预设输出功率值取值范围取尽可能大的预设输出功率值ΔW,基于所述第一空间光调制器的第一出射功率W out,1将所述第一空间光调制器的输出功率提高ΔW,使得所述第一空间光调制器的第一出射功率为(W out,1+ΔW)的大小,或者根据所述预设输出功率值取值范围取尽可能大的预设输出功率值ΔW,基于所述第一空间光调制器的第一出射功率将所述第一空间光调制器的输出功率提高ΔW,以及根据所述预设光源降低比 例值取值范围取尽可能小的预设光源降低比例值k,基于所述光源的最大输出功率W 0将所述光源的亮度降低为kW 0的大小。
所述预设输出功率值以及所述预设光源降低比例值,可以是根据步骤S132至步骤S136的过程获得的,预先存储在所述投影设备的存储单元的,或者通过无线通信技术从相关联的云端或电子设备获得的,或者通过SPI(串口通信接口)从相关联的电子设备获得的。
步骤S140:根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像。
在本申请实施例中,根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,具体地,可以是将所述第一空间光调制器的输出功率提高ΔW,将所述第一空间光调制器的调整输出功率值、第一出射功率、第一吸收率、第一显示图像以及所述光源的最大输出功率带入第一目标计算公式,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,其中,所述第一目标计算式包括:
Figure PCTCN2022133424-appb-000002
其中,I 1为所述第一空间光调制器基于预设图像显示的第一显示图像;I 1'为调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;ΔW为所述第一空间光调制器的调整输出功率值;W out,1为所述第一空间光调制器的第一出射功率;η 1为所述第一空间光调制器的第一吸收率;W 0为所述光源的最大输入功率。
步骤S150:根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
在本申请实施例中,所述根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像,可以是在根据所述第一显示图像获得所述第一空间光调制器的第一热负载之前,获取对所述投影设备局部调光时,所述第一空间光调制器基于预 设图像显示的第一显示图像以及所述第二空间光调制器基于所述预设图像显示的第二显示图像;根据所述第一显示图像以及第二显示图像,获得所述第一显示图像到所述第二显示图像的传递关系;根据所述传递关系、第一目标图像以及预设图像,获得用于所述第二空间光调制器上显示的第二目标图像。
具体地,所述传递关系可以是根据所述第一显示图像中的第一像素与所述第二显示图像中的第二像素,获得所述第一像素与所述第二像素的传递关系式:
I 21=T(I 1),
其中,I 1为所述第一显示图像,I 21为所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像。
所述根据所述传递关系、所述第一目标图像以及所述预设图像,获得用于所述第二空间光调制器上显示的第二目标图像,可以是利用所述传递关系式对所述第一目标图像进行计算,获得调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,所述传递关系式为:
I 21'=T(I 1'),
其中,I 21'为调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 1'为所述第一目标图像。
利用第二目标计算式对所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像和所述预设图像进行计算,获得用于所述第二空间光调制器上显示的第二目标图像,其中,所述第二目标计算式为:
I 2'=I 0/I 21',
其中,I 21'为调整了所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 2'为所述第二目标图像,I 0为所述预设图像。
本发明的技术方案,通过在利用双片式空间光调制器局部调光实 现投影设备高动态对比度时,获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;根据所述第一显示图像获得所述第一空间光调制器的第一热负载;若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。因此,采用本申请的上述方法,在投影设备局部调光时使得投影设备的热负载均衡,以增强投影设备的画面质量,避免热效应明显制约投影设备的系统性能,进而提高投影设备的投影能力。
请参阅图3,本申请另一实施例提供了一种局部调光的热负载均衡的装置,该装置300包括:初始图像获取模块310、热负载获取模块320、热负载均衡模块330、第一目标图像获取模块340以及第二目标图像获取模块350。其中,初始图像获取模块310,用于获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;热负载获取模块320,用于根据所述第一显示图像获得所述第一空间光调制器的第一热负载;热负载均衡模块330,用于若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;第一目标图像获取模块340,用于根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;第二目标图像获取模块350,用于根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
作为一种实施方式,所述初始图像获取模块310包括摄像头,在投影设备局部调光时,所述摄像头获取第一空间光调制器基于预设图像显示的第一显示图像以及第二空间光调制器基于预设图像显示的第二显示图像,同时根据所述第一显示图像和第二显示图像,获得所述第一显示图像到所述第二显示图像的传递关系式:
I 21=T(I 1),
其中,I 1为所述第一显示图像,I 21为所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像。
所述热负载获取模块320,根据摄像头获取的所述第一显示图像的颜色和亮度获得第一空间光调制器的第一出射功率,以及根据所述第二显示图像的颜色和亮度获得第二空间光调制器的第二出射功率;将所述第一空间光调制器的第一透过率、第一吸收率以及第一出射功率和所述光源的最大输出功率带入第一空间光调制器的吸收功率计算式进行计算,获得第一空间光调制器的第一热负载,其中,所述第一空间光调制器的吸收功率计算式包括:
H 1=(1-η 1)W in+a 11W in-W out,1),
其中,H 1表示第一空间光调制器的第一热负载;η 1表示第一空间光调制器的第一透过率;a 1表示第一空间光调制器的第一吸收率;W out,1表示第一空间光调制器的第一出射功率。
所述热负载均衡模块330,在所述第一空间光调制器的第一热负载高于该第一空间光调制器的第一耐热能力时,根据预先存储在所述热负载均衡模块的预设输出功率值调整所述第一空间光调制器的输出功率。
所述第一目标图像获取模块340,根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;具体地,将所述第一空间光调制器的调整输出功率值、第一出射功率、第一吸收率、第一显示图像以及所述光源的最大输出功率带入第一目标计算公式,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,所述第一目标计算公式为:
Figure PCTCN2022133424-appb-000003
其中,I 1为所述第一空间光调制器基于预设图像显示的第一显示图像;I 1'为调整了输出功率后用于在该第一空间光调制器上显示的第一目标图像;ΔW为所述第一空间光调制器的调整输出功率值;W out,1为 所述第一空间光调制器的第一出射功率;η 1为所述第一空间光调制器的第一吸收率;W 0为所述光源的最大输入功率。
所述第二目标图像获取单元350,利用所述传递关系式对所述第一目标图像进行计算,获得调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,所述传递关系式为:
I 21'=T(I 1'),
其中,I 21'为调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 1'为所述第一目标图像。
利用第二目标计算式对所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像和所述预设图像进行计算,获得用于所述第二空间光调制器上显示的第二目标图像,其中,所述第二目标计算式为:
I 2'=I 0/I 21',
其中,I 21'为调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 2'为所述第二目标图像,I 0为所述预设图像。
请参阅图4,本申请另一实施例提供了一种投影设备,所述投影设备400包括:第一空间光调制器410、第二空间光调制器420、显示器430、一个或多个处理器440、存储器450以及一个或多个应用程序。其中,第一空间光调器410和第二空间光调制器420串联,用于对所述投影设备400局部调光;显示器430用于显示图像;一个或多个应用程序被存储在所述存储器450中并被配置为由所述一个或多个处理器440执行,所述一个或多个程序配置用于执行所述的一种局部调光的热负载均衡的方法。
在一些实施方式中,所述投影设备400还包括光源,所述光源用于向所述第一空间光调制器410和所述第二空间光调制器420入射光线。
请参阅图5,本发明的某些实施例包括计算机可读存储介质500,其包括用于执行根据本申请方法实施例中各步骤的程序代码510。例如,在显示器中的一个或多个处理器或显示器上游的图像数据处理器可以通过执行处理器可访问的程序存储器中的软件指令来实现本申请一实施例提供的一种局部调光的热负载均衡的方法。本发明也可以以程序产品形式提供。程序产品可以包括承载计算机可读信号集的任何介质,该计算机可读信号集包括当被数据处理器执行时使得数据处理器执行本发明的方法的指令。根据本发明的程序产品可以是多种形式中的任意形式。程序产品可以包括例如非临时性的物理介质,诸如磁性数据存储介质(包括软盘、硬盘驱动器)、光数据存储介质(包括CD、ROM、DVD)、电子数据存储介质(包括ROM、快闪ROM)等等。在程序产品上的计算机可读信号可以可选地被压缩或加密。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种局部调光的热负载均衡的方法,其特征在于,应用于包括第一空间光调制器和第二空间光调制器的投影设备,所述方法包括:
    获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;
    根据所述第一显示图像获得所述第一空间光调制器的第一热负载;
    若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;
    根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;
    根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
  2. 根据权利要求1所述的方法,其特征在于,所述投影设备还包括光源,若所述第一热负载高于所述第一空间光调制器的第一耐热能力,所述方法还包括:
    调整入射到所述第一空间光调制器的光源的亮度;
    所述根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,包括:
    根据调整的所述第一空间光调制器的输出功率和调整入射到所述第一空间光调制器的光源的亮度,获得调整所述第一空间光调制器的输出功率和调整入射到所述第一空间光调制器的光源的亮度后,用于在该第一空间光调制器上显示的第一目标图像。
  3. 根据权利要求2所述的方法,其特征在于,所述若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率,包括:
    若所述第一热负载高于所述第一空间光调制器的第一耐热能力,根据预设输出功率值调整所述第一空间光调制器的输出功率;
    所述调整入射到所述第一空间光调制器的光源的亮度,包括:
    根据预设光源降低比例值调整入射到所述第一空间光调制器的光源的亮度。
  4. 根据权利要求3所述的方法,其特征在于,所述预设输出功率值和所述预设光源降低比例值通过以下方式获得:
    获取对所述投影设备局部调光时,所述第一空间光调制器基于所述预设图像显示的第一显示图像以及所述第二空间光调制器基于所述预设图像显示的第二显示图像;
    根据所述第一显示图像和第二显示图像,确定所述第一空间光调制器的第一出射功率和所述第二空间光调制器的第二出射功率;
    根据所述第一空间光调制器的第一透过率、第一吸收率、第一耐热能力以及第一出射功率和所述第二空间光调制器的第二透过率、第二吸收率、第二耐热能力以及第二出射功率和所述光源的最大输出功率,获得所述预设输出功率值和所述预设光源降低比例值。
  5. 根据权利要求4所述的方法,其特征在于,根据所述第一空间光调制器的第一透过率、第一吸收率、第一耐热能力以及第一出射功率和所述第二空间光调制器的第二透过率、第二吸收率、第二耐热能力以及第二出射功率和所述光源的最大输出功率,获得所述预设输出功率值和所述预设光源降低比例值,包括:
    将所述第一空间光调制器的第一透过率、第一吸收率、第一耐热能力以及第一出射功率和所述第二空间光调制器的第二透过率、第二吸收率、第二耐热能力以及第二出射功率和所述光源的最大输出功率带入空间光调制器的吸收功率计算式进行计算,得到所述预设输出功率值和所述预设光源降低比例值,其中,所述吸收功率计算式包括:
    Figure PCTCN2022133424-appb-100001
    其中,η 1是所述第一空间光调制器的第一透过率,η 2是所述第二 空间光调制器的第二透过率,a 1是所述第一空间光调制器的第一吸收率,a 2是所述第二空间光调制器的第二吸收率,w 1是所述第一空间光调制器的第一耐热能力,w 2所述第二空间光调制器的第二耐热能力,W 0为所述光源的最大输出功率,W out,1是所述第一空间光调制器的第一出射功率,W out,2是所述第二空间光调制器的第二出射功率,k为所述预设光源降低比例值,ΔW为所述预设输出功率值。
  6. 根据权利要求1所述的方法,其特征在于,所述根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,包括;
    将所述第一空间光调制器的调整输出功率值、第一出射功率、第一吸收率、所述第一显示图像以及所述光源的最大输出功率带入第一目标计算公式,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像,其中,所述第一目标计算式包括:
    Figure PCTCN2022133424-appb-100002
    其中,I 1为所述第一空间光调制器基于预设图像显示的第一显示图像;I 1'为调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;ΔW为所述第一空间光调制器的调整输出功率值;W out,1为所述第一空间光调制器的第一出射功率;η 1为所述第一空间光调制器的第一吸收率;W 0为所述光源的最大输入功率。
  7. 根据权利要求1所述方法,其特征在于,根据所述第一显示图像获取所述第一空间光调制器的第一热负载之前,所述方法还包括;
    获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像以及所述第二空间光调制器基于所述预设图像显示的第二显示图像;
    根据所述第一显示图像以及第二显示图像,获得所述第一显示图像到所述第二显示图像的传递关系;
    所述根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像,包括:
    根据所述传递关系、所述第一目标图像以及所述预设图像,获得用于所述第二空间光调制器上显示的第二目标图像。
  8. 根据权利要求7所述方法,其特征在于,所述根据所述第一显示图像以及第二显示图像,获得所述第一显示图像到所述第二显示图像的传递关系,包括:
    根据所述第一显示图像中的第一像素与所述第二显示图像中的第二像素,获得所述第一像素与所述第二像素的传递关系式:
    I 21=T(I 1),
    其中,I 1为所述第一显示图像,I 21为所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像。
  9. 根据权利要求8所述方法,其特征在于,所述根据所述传递关系、所述第一目标图像以及所述预设图像,获得用于所述第二空间光调制器上显示的第二目标图像,包括:
    利用所述传递关系式对所述第一目标图像进行计算,获得调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,所述传递关系式为:
    I 21'=T(I 1'),
    其中,I 21'为调整所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 1'为所述第一目标图像;
    利用第二目标计算式对所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像和所述预设图像进行计算,获得用于所述第二空间光调制器上显示的第二目标图像,其中,所述第二目标计算式为:
    I 2'=I 0/I 21',
    其中,I 21'为调整了所述第一空间光调制器的输出功率后,所述第一空间光调制器的输出光在所述第二空间光调制器上的分布图像,I 2'为所述第二目标图像,I 0为所述预设图像。
  10. 一种局部调光的热负载均衡的装置,包括:
    初始图像获取模块,用于获取对所述投影设备局部调光时,所述第一空间光调制器基于预设图像显示的第一显示图像;
    热负载获取模块,用于根据所述第一显示图像获得所述第一空间光调制器的第一热负载;
    热负载均衡模块,用于若所述第一热负载高于所述第一空间光调制器的第一耐热能力,调整所述第一空间光调制器的输出功率;
    第一目标图像获取模块,用于根据调整的所述第一空间光调制器的输出功率,获得调整输出功率后用于在该第一空间光调制器上显示的第一目标图像;
    第二目标图像获取模块,用于根据所述预设图像以及所述第一目标图像获得用于所述第二空间光调制器上显示的第二目标图像。
  11. 一种投影设备,其特征在于,包括:
    第一空间光调制器和第二空间光调制器,所述第一空间光调制器和第二空间光调制器串联用于局部调光;
    显示器,用于显示预设图像;
    一个或多个处理器;
    存储器;
    一个或多个应用程序,其中所述一个或多个应用程序被存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序配置用于执行如权利要求1-9任一项所述的方法。
  12. 根据权利要求11所述的一种投影设备,其特征在于,所述投影设备还包括光源,所述光源用于向所述第一空间光调制器和第二空间光调制器入射光线。
  13. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质中存储有程序代码,所述程序代码可被处理器调用执行如权利要求1-9任一项所述的方法。
PCT/CN2022/133424 2021-12-09 2022-11-22 一种局部调光的热负载均衡的方法、装置及投影设备 WO2023103765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111500585.XA CN116260946A (zh) 2021-12-09 2021-12-09 一种局部调光的热负载均衡的方法、装置及投影设备
CN202111500585.X 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023103765A1 true WO2023103765A1 (zh) 2023-06-15

Family

ID=86679756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133424 WO2023103765A1 (zh) 2021-12-09 2022-11-22 一种局部调光的热负载均衡的方法、装置及投影设备

Country Status (2)

Country Link
CN (1) CN116260946A (zh)
WO (1) WO2023103765A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050179854A1 (en) * 2004-02-18 2005-08-18 Nec Corporation Drive unit and driving method of liquid crystal panel, and liquid crystal projector using the same
CN106200236A (zh) * 2011-03-14 2016-12-07 杜比实验室特许公司 投影仪和方法
CN107580779A (zh) * 2015-05-06 2018-01-12 杜比实验室特许公司 图像投影中的热补偿

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050179854A1 (en) * 2004-02-18 2005-08-18 Nec Corporation Drive unit and driving method of liquid crystal panel, and liquid crystal projector using the same
CN106200236A (zh) * 2011-03-14 2016-12-07 杜比实验室特许公司 投影仪和方法
CN107580779A (zh) * 2015-05-06 2018-01-12 杜比实验室特许公司 图像投影中的热补偿

Also Published As

Publication number Publication date
CN116260946A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
Seetzen et al. High dynamic range display systems
EP2238504B1 (en) Display with two binary spatial light modulators
US7453475B2 (en) Optical display device, program for controlling the optical display device, and method of controlling the optical display device
US7855725B2 (en) Method of controlling backlight module, backlight controller and display device using the same
JPH0566501A (ja) 投射型液晶表示装置
TWI285863B (en) Apparatus and method for enhancing image contrast
CN101282416B (zh) 投影显示方法
JP2006235157A (ja) 画像表示装置、画像表示方法、およびプログラム
JP2008203292A (ja) 画像表示装置、及び画像表示方法
US20090027575A1 (en) Display apparatus
US8400393B2 (en) Method of controlling backlight module, backlight controller and display device using the same
JP2007292823A (ja) 投影装置
US7663705B2 (en) Light propagation characteristic control apparatus, optical display apparatus, light propagation characteristic control program, optical display apparatus control program, light propagation characteristic control method and optical display apparatus control method
US9361819B2 (en) Image display device and method of controlling the same
JP2003177374A (ja) 投射型表示装置及び表示装置とその駆動方法
JP2012103642A (ja) 投写型映像表示装置
WO2023103765A1 (zh) 一种局部调光的热负载均衡的方法、装置及投影设备
CN104796650A (zh) 节能lpd激光投影电视系统及其控制方法
JP2009058656A (ja) 画像表示装置
JP2011150222A (ja) 画像表示装置
JP2006003586A (ja) 映像表示装置および映像表示方法ならびにそのプログラム
WO2020088163A1 (zh) 投影系统及投影控制方法
TW200306121A (en) Projection device having a mode selection unit
WO2020157843A1 (ja) 色度調整方法及びプロジェクタ
US11336874B2 (en) Image display method and apparatus, and projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903188

Country of ref document: EP

Kind code of ref document: A1