WO2023103655A1 - 一种混凝土用玄武岩纤维的简易离散方法 - Google Patents

一种混凝土用玄武岩纤维的简易离散方法 Download PDF

Info

Publication number
WO2023103655A1
WO2023103655A1 PCT/CN2022/129168 CN2022129168W WO2023103655A1 WO 2023103655 A1 WO2023103655 A1 WO 2023103655A1 CN 2022129168 W CN2022129168 W CN 2022129168W WO 2023103655 A1 WO2023103655 A1 WO 2023103655A1
Authority
WO
WIPO (PCT)
Prior art keywords
basalt fiber
basalt
concrete
fiber
fibers
Prior art date
Application number
PCT/CN2022/129168
Other languages
English (en)
French (fr)
Inventor
张安
陈豪
陈建申
王长勇
邹俊
朱江
王江
蒋靖
孙建明
石珂
张家均
雷灿
高智
岑健
邓如丽
雷春梅
杨德斌
张亮
方相
窦维骏
Original Assignee
中铁八局集团第七工程有限公司
中铁八局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁八局集团第七工程有限公司, 中铁八局集团有限公司 filed Critical 中铁八局集团第七工程有限公司
Publication of WO2023103655A1 publication Critical patent/WO2023103655A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of building materials, in particular to a simple discrete method of basalt fibers for concrete.
  • Basalt fiber is made of natural basalt rock melted and drawn in a kiln.
  • the color of pure natural basalt fiber is generally brown with metallic luster.
  • It is a new type of inorganic environmental protection green high-performance fiber material. It is composed of silica, It is composed of oxides such as alumina, calcium oxide, magnesium oxide, iron oxide and titanium dioxide. Its own density, composition, and bulk density are not much different from cement, and it has natural alkali resistance; natural compatibility with silicate, good dispersion when mixed with cement concrete, strong binding force, and reduces the degree of high stress concentration in cracks , the expansion of cracks is restrained, and the coefficient of thermal expansion and contraction is consistent with that of concrete, and it has good freeze-thaw resistance.
  • basalt fiber The surface of basalt fiber is smooth, the stability is relatively good, and the flexibility is also relatively good. It can be used as a toughening material for cement-based composite materials. Adding basalt fiber to concrete can increase the toughness of the material and enhance the performance of concrete. However, the basalt fibers just shipped from the factory are in a bundled state, and cannot be directly added to the concrete mixer for mixing, otherwise the basalt fibers will be unevenly dispersed in the concrete, causing the fibers to agglomerate in the concrete, which greatly limits the mechanical properties and durability of concrete. sexual enhancement.
  • the potential energy of the fiber is mainly changed by chemical reagents, and then separated by mechanical energy, which involves many disciplines such as chemistry, mechanics, electrothermal, etc.
  • the process is complicated and cumbersome, and the degree of promotion is not high.
  • the technical problem to be solved by the present invention is to provide a simple discrete method of basalt fiber for concrete.
  • a simple discrete method for basalt fibers for concrete specifically comprising the following steps:
  • Step S1 Impurities are removed, and the two ends of the basalt fiber are changed from bundled to split;
  • Step S2 drying the basalt fiber after impurity removal to constant weight, and cooling to room temperature;
  • Step S3 put the basalt fiber obtained in step S2 into a stirring pot and stir, so that the two ends of the basalt fiber are charged with static electricity;
  • Step S4 Centrifuge the basalt fibers with static electricity at both ends to make the basalt fibers discrete.
  • Described step S1 specifically refers to:
  • Step S11 put the basalt fiber into the boiling box and boil for 3 hours; wherein before putting the basalt fiber in, the temperature of the water in the boiling box is 100°C, and a surfactant is added;
  • Step S12 Take out the basalt fibers in the boiling tank and cool to room temperature.
  • Step S2 specifically includes the following steps:
  • Step S21 Put the basalt fiber obtained in step S12 into a drying oven and bake to constant weight; wherein, the temperature in the drying oven is 105°C ⁇ 5°C;
  • Step S22 cooling to room temperature.
  • the step S3 specifically refers to:
  • the basalt fiber is put into a slurry mixing pot equipped with steel balls for stirring; the stirring time is 20 minutes, and the rotation speed is 60-130r/min.
  • the diameter of the steel ball is 4-6mm, and the weight ratio of the steel ball to the basalt fiber is 1.5-1.06:1-1.1.
  • the step S4 specifically refers to:
  • the basalt fiber into the centrifugal extractor, under the combined action of the basalt fiber's own gravity, centrifugal force and electrostatic repulsive force, the basalt fiber will be discharged through the extraction tube of the centrifugal extractor to obtain the discrete basalt fiber.
  • the present invention does not use chemical reagents to change the potential energy of the fibers when the basalt fibers are discrete, thereby effectively avoiding the influence of chemical reagents on human health during the discrete process; pollute;
  • the present invention uses the same-sex electrostatic fibers to be distributed discretely under the action of centrifugal force, and finally to eliminate static electricity to obtain discrete fibers.
  • the present invention has no pollution to the fibers and the environment;
  • the invention is easy to operate.
  • a simple discrete method of basalt fiber for concrete adopts the fiber produced by Sichuan Donglanxing Basalt Fiber Co., Ltd., and the volume content in concrete is generally about 0.2%. According to the density of the fiber 2.65g/cm 3 The laboratory stirs 40 liters/pan, and the number of stirring ten pans is calculated, so a total of 1.06kg of fiber is required.
  • Step S1 Impurities are removed, and the two ends of the basalt fiber are changed from bundled to split;
  • Step S11 put the basalt fiber into the boiling box and boil for 3 hours; wherein before putting the basalt fiber, the temperature of the water in the boiling box is 100°C, and a surfactant is added, wherein the surfactant is 5g;
  • Step S12 Take out the basalt fiber in the boiling tank and cool to room temperature
  • the basalt fibers are cleaned in boiling water, and the bundled fibers are split in rolling boiling water.
  • Step S2 drying the basalt fiber after impurity removal to constant weight, and cooling to room temperature;
  • Step S21 Put the basalt fiber obtained in step S12 into a drying oven and bake to constant weight; wherein, the temperature in the drying oven is 105°C ⁇ 5°C;
  • Step S22 cooling to room temperature.
  • Step S3 put the basalt fiber obtained in step S2 into a stirring pot and stir, so that the two ends of the basalt fiber are charged with static electricity;
  • the basalt fiber is put into a slurry mixing pot equipped with steel balls for stirring; the stirring time is 20 minutes, and the rotation speed is 60-130r/min.
  • the diameter of the steel ball is 5 mm, and the steel ball weighs 1.5 kg.
  • Step S4 Centrifuge the basalt fibers with static electricity at both ends to make the basalt fibers discrete.
  • the step S4 specifically refers to:
  • Theoretical mix ratio of concrete mix 40L of concrete with the ratio under laboratory conditions, mix the concrete according to the feeding sequence of fiber concrete, and stir for 3 minutes.
  • the average value m0 of untreated fiber mass is 3.4g, and the theoretical mass percentage W is 25.7%.
  • the average value m1 of fiber mass after treatment was 5.1 g, and the theoretical mass percentage W was 38.5%.
  • the present invention is not limited to the foregoing specific embodiments.
  • the present invention extends to any new feature or any new combination disclosed in this specification, and any new method or process step or any new combination disclosed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及混凝土工程技术领域,具体公开了一种混凝土用玄武岩纤维的简易离散方法,具体包括以下步骤:步骤S1:杂质去除,并使得玄武岩纤维的两端由集束状变成开叉状;步骤S2:将杂质去除后的玄武岩纤维烘干至恒重,并冷却至室温;步骤S3:将步骤S2所得到的的玄武岩纤维放入搅拌锅中进行搅拌,使得玄武岩纤维的两端带上静电;骤S4:当两端带有静电的玄武岩纤维进行离心处理,使得玄武岩纤维离散。本发明在进行玄武岩纤维离散时,不再使用化学试剂来改变纤维的势能,从而有效的避免在离散过程中化学试剂对于人体健康的影响;同时避免了化学试剂所造成化学污染。

Description

一种混凝土用玄武岩纤维的简易离散方法 技术领域
本发明涉及建筑材料技术领域,更具体地讲,涉及一种混凝土用玄武岩纤维的简易离散方法。
背景技术
玄武岩纤维是由天然的玄武岩石通过窑炉熔化拉制而成,纯天然玄武岩纤维的颜色一般为褐色,有金属光泽,是一种新型无机环保绿色高性能纤维材料,它是由二氧化硅、氧化铝、氧化钙、氧化镁、氧化铁和二氧化钛等氧化物组成。自身密度、成份、容重均与水泥相差不大,具有天生的耐碱性;与硅酸盐的天然相容性,和水泥混凝土混合时分散性好,结合力强,降低裂缝高等应力集中的程度,约束了裂缝的扩展,且热胀冷缩系数与混凝土一致,同时具有较好抗冻融性。
玄武岩纤维表面光滑,稳定性比较好,同时柔韧性也较优良,可作为增韧材料应用于水泥基复合材料。将玄武岩纤维加入到混凝土中,能够增加材料的韧性,增强混凝土的性能。然而刚出厂的玄武岩纤维为束集状态,不能直接加入混凝土搅拌机中拌合,否则会导致玄武岩纤维在混凝土中分散不均,使得纤维在混凝土内凝聚成团,极大地限制了混凝土力学性能和耐久性的提升。
目前,有关玄武岩短切纤维的分散,很多研究者将重点放在分散剂的开发上,通过调配不同的分散溶液,对玄武岩短切纤维进行分散。杜强(一种玄武岩短切纤维分散剂及其应用方法:中国,CN201410717190.9[P])制 备了一种玄武岩短切纤维用分散剂,该分散剂能够使无机纤维表面迅速湿润、表面势能降低且固体质点间的势能上升到足够高,从而达到分散、稳定无机纤维的效果,通过实施例的检测,测得其纤维含量差异稳定,确实有良好的分散效果。
但采用分散剂进行分散同时也存在以下的问题:
1.主要通过化学试剂改变纤维的势能,再通过机械能使之分离,其中涉及化学、力学、电热学等多种学科,过程复杂繁琐,推广程度不高。
2.使用化学试剂种类繁多,比如4-氨基-1,2-邻苯二酚盐酸盐溶液、三羟甲基氨基甲烷溶液和氯乙酸钠溶液等多达5种高分子有机化学试剂,对纤维有化学污染,且对试验人员难免造成伤害,安全风险大。
3.为了使玄武岩纤维分散成本花费过高,最后处理完后化学废液的处置更加增加成本,对企业造成繁重的成本负担;对环境污染严重。
发明内容
本发明所要解决的技术问题是,提供一种混凝土用玄武岩纤维的简易离散方法。
本发明解决技术问题所采用的解决方案是:
一种混凝土用玄武岩纤维的简易离散方法,具体包括以下步骤:
步骤S1:杂质去除,并使得玄武岩纤维的两端由集束状变成开叉状;
步骤S2:将杂质去除后的玄武岩纤维烘干至恒重,并冷却至室温;
步骤S3:将步骤S2所得到的的玄武岩纤维放入搅拌锅中进行搅拌,使得玄武岩纤维的两端带上静电;
步骤S4:当两端带有静电的玄武岩纤维进行离心处理,使得玄武岩纤维离散。
在一些可能的实施方式中,
所述步骤S1具体是指:
步骤S11:将玄武岩纤维放入沸煮箱内沸煮3h;其中在放入玄武岩纤维前,沸煮箱内水的温度为100℃,且添加有表面活性剂;
步骤S12:将沸煮箱内的玄武岩纤维捞出,冷却至室温。
在一些可能的实施方式中,
步骤S2具体包括以下步骤:
步骤S21:将步骤S12中所获得的玄武岩纤维放入干燥箱内,烘至恒重;其中,干燥箱内的温度为105℃±5℃;
步骤S22:冷却至室温。
在一些可能的实施方式中,
所述步骤S3具体是指:
将玄武岩纤维放入装有钢珠的净浆搅拌锅中进行搅拌;其中,搅拌的时间为20min,转速为60-130r/min。
在一些可能的实施方式中,
所述钢珠的直径为4-6mm,所述钢珠与玄武岩纤维的重量比为1.5-1.06:1-1.1。
在一些可能的实施方式中,
在净浆搅拌锅中进行玄武岩纤维搅拌时,先慢速搅拌5分钟,再快速搅拌15分钟;其中慢速为60-65r/min;快速为120-130r/min。
在一些可能的实施方式中,
所述步骤S4具体是指:
将玄武纤维放入离心抽提仪中,玄武岩纤维在自身重力、离心力和静电的同性排斥力的共同作用下,玄武岩纤维将通过离心抽提仪的抽提管排出,获得离散后的玄武岩纤维。
与现有技术相比,本发明的有益效果:
本发明相比现有技术,在进行玄武岩纤维离散时,不再使用化学试剂来改变纤维的势能,从而有效的避免在离散过程中化学试剂对于人体健康的影响;同时避免了化学试剂所造成化学污染;
相比采用化学试剂进行离散,本发明通过是带同性静电的纤维在离心力作用,离散分布,最后再消除静电处理,得到离散的纤维,本发明对纤维和环境均无污染;
本发明操作简单。
具体实施方式
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。本申请所提及的"第一"、"第二"以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,"一个"或者"一"等类似词语也不表示 数量限制,而是表示存在至少一个。在本申请实施中,“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个定位柱是指两个或两个以上的定位柱。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面对本发明进行详细说明。
实施例1:
一种混凝土用玄武岩纤维的简易离散方法,本实施例采用四川东蓝星玄武岩纤维有限公司生产的纤维,在混凝土中的体积掺量一般在0.2%左右,根据纤维的密度2.65g/cm 3按试验室搅拌40升/盘,搅拌十盘数量计算,因此共需1.06kg纤维,
具体包括以下步骤:
步骤S1:杂质去除,并使得玄武岩纤维的两端由集束状变成开叉状;
具体是指:
步骤S11:将玄武岩纤维放入沸煮箱内沸煮3h;其中在放入玄武岩纤维前,沸煮箱内水的温度为100℃,且添加有表面活性剂,其中表面活性剂为5g;
步骤S12:将沸煮箱内的玄武岩纤维捞出,冷却至室温;
通过上述步骤使得玄武岩纤维再沸水中处理干净,并且使束状的纤维在滚动的沸水中开叉。
步骤S2:将杂质去除后的玄武岩纤维烘干至恒重,并冷却至室温;
具体包括以下步骤:
步骤S21:将步骤S12中所获得的玄武岩纤维放入干燥箱内,烘至恒重;其中,干燥箱内的温度为105℃±5℃;
步骤S22:冷却至室温。
步骤S3:将步骤S2所得到的的玄武岩纤维放入搅拌锅中进行搅拌,使得玄武岩纤维的两端带上静电;
具体是指:
将玄武岩纤维放入装有钢珠的净浆搅拌锅中进行搅拌;其中,搅拌的时间为20min,转速为60-130r/min。
所述钢珠的直径为5mm,所述钢珠1.5kg。
在净浆搅拌锅中进行玄武岩纤维搅拌时,先慢速搅拌5分钟,再快速搅拌15分钟;其中慢速为62r/min;快速为125r/min。
步骤S4:当两端带有静电的玄武岩纤维进行离心处理,使得玄武岩纤维离散。
所述步骤S4具体是指:
将搅拌完成后的纤维和钢球,过5mm的圆孔筛,将玄武纤维放入离心抽提仪中,玄武岩纤维在自身重力、离心力和静电的同性排斥力的共同作用下,玄武岩纤维将通过离心抽提仪的抽提管排出,获得离散后的玄武岩纤维。
为了验证实施例1的可行性:
搅拌40L混凝土,按体积掺量0.2%计算,称取处理过的纤维1060g,再 称取没处理过的纤维作为对比组。
混凝土理论配合比,在试验室条件下搅拌40L该配比的混凝土,按照纤维混凝土的投料顺序搅拌混凝土,搅拌3min。
搅拌好的混凝土倒出后,手动拌合均匀。
将混凝土过4.75mm方孔筛,将筛出砂浆装入3个5L的试样筒中。
分别将3个试样筒内砂浆冲洗干净,整个过程应该防止纤维散失。
最后将细骨料和纤维放入鼓风干燥箱烘至恒重。
过筛后称取筛网中纤维的质量,取平均值m。
得到的试验结果如下:
理论上每5L混凝土中纤维质量M为13.25g
未处理过的纤维质量平均值m0为3.4g,占理论质量百分率W为25.7%。
处理过后的纤维质量平均值m1为5.1g、占理论质量百分率W为38.5%。
重复性试验不确定度
应用本发明对处理后纤维混凝土中纤维占理论质量的百分比的进行重复性试验,10次试验后的W据见下表:(单位%)
W 38.5 37.3 37.8 35.5 37.7 36.7 36.5 37.2 36.1 37.2
按A类不确定度评定:平均值
Figure PCTCN2022129168-appb-000001
标准方差
Figure PCTCN2022129168-appb-000002
读数引入的标准不确定度
Figure PCTCN2022129168-appb-000003
电子天平引入的标准不确定度查检定报告U(Rn)=0.08%;
得出合成不确定度
Figure PCTCN2022129168-appb-000004
扩展不确定度U=Uc*k=0.56%<2.0%,其中:包含因子k取=2;
置信概率在P=(0.95-0.99)之间
因此,该技术方案可信。
通过以上玄武岩纤维质量占理论质量的百分比(提高12.8%的百分比)可以得出结论,通过本发明方法离散处理后的纤维用于混凝土中比未处理过的纤维更加均匀分布在混凝土,本发明方法有效。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (7)

  1. 一种混凝土用玄武岩纤维的简易离散方法,其特征在于,具体包括以下步骤:
    步骤S1:杂质去除,并使得玄武岩纤维的两端由集束状变成开叉状;
    步骤S2:将杂质去除后的玄武岩纤维烘干至恒重,并冷却至室温;
    步骤S3:将步骤S2所得到的的玄武岩纤维放入搅拌锅中进行搅拌,使得玄武岩纤维的两端带上静电;
    步骤S4:当两端带有静电的玄武岩纤维进行离心处理,使得玄武岩纤维离散。
  2. 根据权利要求1所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,所述步骤S1具体是指:
    步骤S11:将玄武岩纤维放入沸煮箱内沸煮3h;其中在放入玄武岩纤维前,沸煮箱内水的温度为100℃,且添加有表面活性剂;
    步骤S12:将沸煮箱内的玄武岩纤维捞出,冷却至室温。
  3. 根据权利要求2所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,步骤S2具体包括以下步骤:
    步骤S21:将步骤S12中所获得的玄武岩纤维放入干燥箱内,烘至恒重;其中,干燥箱内的温度为105℃±5℃;
    步骤S22:冷却至室温。
  4. 根据权利要求3所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,所述步骤S3具体是指:
    将玄武岩纤维放入装有钢珠的净浆搅拌锅中进行搅拌;其中,搅拌的 时间为20min,转速为60-130r/min。
  5. 根据权利要求4所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,所述钢珠的直径为4-6mm,所述钢珠与玄武岩纤维的重量比为1.5-1.06:1-1.1。
  6. 根据权利要求4所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,在净浆搅拌锅中进行玄武岩纤维搅拌时,先慢速搅拌5分钟,再快速搅拌15分钟;其中慢速为60-65r/min;快速为120-130r/min。
  7. 根据权利要求4所述的一种混凝土用玄武岩纤维的简易离散方法,其特征在于,所述步骤S4具体是指:
    将玄武纤维放入离心抽提仪中,玄武岩纤维在自身重力、离心力和静电的同性排斥力的共同作用下,玄武岩纤维将通过离心抽提仪的抽提管排出,获得离散后的玄武岩纤维。
PCT/CN2022/129168 2021-12-08 2022-11-02 一种混凝土用玄武岩纤维的简易离散方法 WO2023103655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111491242.1A CN114213048B (zh) 2021-12-08 2021-12-08 一种混凝土用玄武岩纤维的简易离散方法
CN202111491242.1 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023103655A1 true WO2023103655A1 (zh) 2023-06-15

Family

ID=80700232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129168 WO2023103655A1 (zh) 2021-12-08 2022-11-02 一种混凝土用玄武岩纤维的简易离散方法

Country Status (2)

Country Link
CN (1) CN114213048B (zh)
WO (1) WO2023103655A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213048B (zh) * 2021-12-08 2022-08-09 中铁八局集团第七工程有限公司 一种混凝土用玄武岩纤维的简易离散方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022401A1 (fr) * 1996-11-19 1998-05-28 Domanov, Gennady Panteleimonovich Procede de fabrication de fibres de basalte et dispositif prevu a cet effet
CN102887585A (zh) * 2012-10-17 2013-01-23 艾特克控股集团有限公司 一种水质净化用玄武岩纤维载体表面改性的方法
CN106393436A (zh) * 2016-10-12 2017-02-15 上海建工集团股份有限公司 纤维材料高效分散装置及分散方法
CN106673474A (zh) * 2017-01-13 2017-05-17 昆明理工大学 一种发泡混凝土用玄武岩短切纤维的分散方法
CN114213048A (zh) * 2021-12-08 2022-03-22 中铁八局集团第七工程有限公司 一种混凝土用玄武岩纤维的简易离散方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865975B (zh) * 2017-04-13 2018-08-14 肖菁 一种玄武岩纤维颗粒及其制备方法和应用
CN110609041B (zh) * 2019-10-21 2021-10-08 四川谦宜复合材料有限公司 一种玄武岩纤维湿法短切原丝的水分散性检测方法
KR102278214B1 (ko) * 2020-11-04 2021-07-19 송지연 유황폴리머 수분산액을 함유한 초조강형 시멘트 콘크리트 조성물 및 이를 이용한 도로포장 보수 시공방법
CN112569821A (zh) * 2020-11-22 2021-03-30 扬州大学 一种玄武岩纤维分散装置及纤维沥青胶浆制备方法
CN113651551A (zh) * 2021-08-20 2021-11-16 北京工业大学 一种泡沫混凝土玄武岩短切纤维分散剂及其应用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022401A1 (fr) * 1996-11-19 1998-05-28 Domanov, Gennady Panteleimonovich Procede de fabrication de fibres de basalte et dispositif prevu a cet effet
CN102887585A (zh) * 2012-10-17 2013-01-23 艾特克控股集团有限公司 一种水质净化用玄武岩纤维载体表面改性的方法
CN106393436A (zh) * 2016-10-12 2017-02-15 上海建工集团股份有限公司 纤维材料高效分散装置及分散方法
CN106673474A (zh) * 2017-01-13 2017-05-17 昆明理工大学 一种发泡混凝土用玄武岩短切纤维的分散方法
CN114213048A (zh) * 2021-12-08 2022-03-22 中铁八局集团第七工程有限公司 一种混凝土用玄武岩纤维的简易离散方法

Also Published As

Publication number Publication date
CN114213048A (zh) 2022-03-22
CN114213048B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023103655A1 (zh) 一种混凝土用玄武岩纤维的简易离散方法
US10577282B2 (en) Cement composition and manufacturing method for cement cured body using same
CN108585689A (zh) 一种螺旋钢纤维超高性能混凝土及制备方法
CN108585679A (zh) 一种低收缩绿色uhpc及其制备方法
CN110304878B (zh) 一种高导热高韧性大体积混凝土及其制备方法
WO2015002472A1 (ko) 보통콘크리트에 공기를 혼입하고 소산하는 과정을 통해 고성능 콘크리트를 제조하는 고성능 콘크리트 제조장치 및 이의 제조방법
CN107082602B (zh) 不发火混凝土及其制备方法
CN114180989B (zh) 一种自制轻骨料、轻质超高强混凝土及制备方法
CN115974477B (zh) 一种含稀土抛光粉废料的超高性能混凝土及其制备方法
CN109626866B (zh) 一种粉煤灰及其制备方法、混凝土
JP6619215B2 (ja) 橋梁ウェブ部材及びその製造方法
JP2017095920A (ja) トンネル用セグメント及びその製造方法
JP6949568B2 (ja) 防爆用パネル及びその製造方法
CN113321456B (zh) 一种抗裂混凝土及其制备方法
CN114105566B (zh) 一种使用改性陶瓷抛光粉制备的自密实混凝土及其制备方法
CN108821697A (zh) 一种保水硅凝胶内养护混凝土及其制备方法
JP6495102B2 (ja) 耐震壁ブロック及びその製造方法
CN110372300A (zh) 使玄武岩纤维分散均匀的纤维混凝土制备方法
JP2017095316A (ja) 機械部品及びその製造方法
JP6516567B2 (ja) 定盤及びその製造方法
CN115745498B (zh) 低粘度大流态超高性能混凝土及其制备方法
CN113998978B (zh) 一种轻质导电发热保温材料及其制备方法
CN113754336B (zh) 一种矿料回收粉复合掺合料及其在混凝土中的应用
CN114262105B (zh) 混凝土废水循环利用处理方法及含有该废水的混凝土
CN117865572A (zh) 一种耐高温混凝土的制备方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903079

Country of ref document: EP

Kind code of ref document: A1