WO2023103188A1 - 车辆控制方法、控制器、系统、装置及存储介质 - Google Patents

车辆控制方法、控制器、系统、装置及存储介质 Download PDF

Info

Publication number
WO2023103188A1
WO2023103188A1 PCT/CN2022/078942 CN2022078942W WO2023103188A1 WO 2023103188 A1 WO2023103188 A1 WO 2023103188A1 CN 2022078942 W CN2022078942 W CN 2022078942W WO 2023103188 A1 WO2023103188 A1 WO 2023103188A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
data
rotation angle
front wheel
steering wheel
Prior art date
Application number
PCT/CN2022/078942
Other languages
English (en)
French (fr)
Inventor
沈雪峰
孙飞
任强
董光阳
冯绍晰
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Publication of WO2023103188A1 publication Critical patent/WO2023103188A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling

Definitions

  • the present application relates to the technical field of automatic driving, for example, to a vehicle control method, controller, system, device and storage medium.
  • the present application provides a vehicle control method, a controller, a system, a device and a storage medium, so as to realize fast and stable control of the vehicle for driving while reducing cost consumption.
  • the present application provides a vehicle control method, including:
  • the motor position encoder data of the electric steering wheel and the vehicle size data obtain the front wheel angle information of the vehicle;
  • Target control information Generate target control information based on the target rotation angle information, and send the target control information to the electric steering wheel, so that the electric steering wheel can rotate based on the target control information.
  • the present application also provides an integrated controller, the controller comprising:
  • the mobile communication signal receiver is configured to receive the differential information sent by the base station or the server, and send the differential information to the GNSS module;
  • a GNSS module configured to obtain positioning data based on the differential information
  • IMU module set to obtain IMU data
  • the central processing unit is configured to obtain attitude angle data based on the positioning data and the IMU data; obtain vehicle front wheel angle information based on the IMU data, motor position encoder data and vehicle size data of the electric steering wheel; The positioning data, the attitude angle data, the vehicle size data, the vehicle front wheel angle information and the planned path data, obtain the target angle information of the vehicle front wheels; generate target control information based on the target angle information, and convert the Target control information is sent to the electric steering wheel, so that the electric steering wheel rotates based on the target control information.
  • the present application also provides an automatic driving system for agricultural machinery, including the above-mentioned integrated controller, handle and electric steering wheel; wherein,
  • the handle is set to at least one of the following: the automatic driving state is turned on and off based on the user operation, and the planned path data set by the user is sent to the central processing unit of the integrated controller;
  • the electric steering wheel is configured to receive the target control information sent by the central processing unit, and rotate based on the received target control information to drive the front wheels of the vehicle to rotate.
  • the present application also provides a vehicle control device, which includes:
  • the data acquisition module is configured to obtain the positioning data output by the global navigation satellite system GNSS module and the IMU data output by the inertial measurement unit IMU module, and obtain attitude angle data based on the positioning data and the IMU data;
  • the vehicle front wheel angle determination module is configured to obtain the vehicle front wheel angle information based on the IMU data, the motor position encoder data of the electric steering wheel and the vehicle size data;
  • a target rotation angle determination module configured to obtain target rotation angle information of the front wheels of the vehicle based on the positioning data, the attitude angle data, the vehicle size data, the vehicle front wheel rotation angle information, and the planned path data;
  • the steering wheel control module is configured to generate target control information based on the target rotation angle information, and send the target control information to the electric steering wheel, so that the electric steering wheel can rotate based on the target control information.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and the above-mentioned vehicle control method is realized when the program is executed by a processor.
  • FIG. 1 is a flow chart of a vehicle control method provided in Embodiment 1 of the present application.
  • FIG. 2 is a schematic diagram of an electric steering wheel calibration provided in Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a handle button provided in Embodiment 1 of the present application.
  • FIG. 4 is a flow chart of a vehicle control method provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic diagram of obtaining vehicle front wheel angle information provided in Embodiment 2 of the present application.
  • FIG. 6 is a flow chart of a vehicle control method provided in Embodiment 3 of the present application.
  • FIG. 7 is a schematic diagram of obtaining vehicle front wheel angle information provided by Embodiment 3 of the present application.
  • FIG. 8 is a schematic structural diagram of an integrated controller provided in Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural diagram of an agricultural machinery automatic driving system provided in Embodiment 5 of the present application.
  • Fig. 10 is an operation flowchart of an agricultural machinery automatic driving system provided in Embodiment 5 of the present application.
  • FIG. 11 is a schematic structural diagram of a vehicle control device provided in Embodiment 6 of the present application.
  • Figure 1 is a flow chart of a vehicle control method provided in Embodiment 1 of the present application. This embodiment is applicable to the situation of controlling the automatic driving of the vehicle.
  • the method can be executed by the vehicle control device in the embodiment of the present application.
  • the device can Realized by means of software and/or hardware, as shown in Figure 1, the method includes:
  • GNSS global navigation satellite system
  • IMU inertial measurement unit
  • GNSS generally refers to all satellite navigation systems, with omnipotent, global, all-weather, continuous and real-time navigation, positioning and timing functions.
  • the GNSS module supports both GNSS positioning and GNSS orientation.
  • GNSS orientation can determine the direction of the geometric vector formed by two points in space in a given coordinate system.
  • the positioning data output by GNSS can be received by using the GNSS receiving antenna.
  • the positioning data includes position positioning information and orientation information.
  • the GNSS module also supports real-time differential positioning (Real-Time Kinematic, RTK), satellite-based augmentation system (Satellite-Based Augmentation System, SBAS), differential global positioning system (Differential Global Position System, DGPS) and precise point positioning technology (Precise Point Positioning, PPP) and other enhanced modes.
  • the IMU can be set up to detect and measure acceleration and rotational motion.
  • the IMU can collect and output IMU data, and the IMU data includes the rotational angular velocity of the vehicle body and the acceleration of the vehicle body.
  • Attitude angle data is calculated based on GNSS positioning data and IMU data.
  • the attitude angle data includes heading angle, pitch angle and roll angle, etc.
  • the spatial rotation of the body coordinate system relative to the geographic coordinate system can be expressed in the order of heading angle, pitch angle and roll angle.
  • the motor position encoder data of the electric steering wheel indicates the current rotational position of the electric steering wheel.
  • the vehicle size data includes the distance between the front and rear axles of the vehicle body, the height of the rear wheel axle, the wheelbase of the front wheels, the distance between the antenna and the center axis, the position of the antenna relative to the center axis, the distance between the antenna and the rear axle, the position of the antenna relative to the rear axle, the height of the antenna and the working width wait.
  • Vehicle dimensional data can be used to build vehicle kinematics models and data corrections.
  • FIG. 2 is a schematic diagram of an electric steering wheel calibration provided in Embodiment 1 of the present application, as shown in FIG. 2 .
  • the process of calibrating the electric steering wheel is described in steps 1-6. Among them, the calibration process requires an open and flat hard ground about 100 meters long and 10 meters wide.
  • the two circles are the path of the vehicle, "540 degrees” means that turning the electric steering wheel makes the vehicle turn 540 degrees, and "10 meters” means that the vehicle moves forward 10 meters after turning 540 degrees.
  • Step 1 Set the AB line.
  • the distance between AB and AB should be greater than 70 meters.
  • Step 2 After setting the AB line, turn around manually, park the vehicle at point B, and head towards point A.
  • Step 3 Keep the speed of 2Km/h and drive forward at a constant speed, and automatically drive to point A.
  • Step 4 Manually turn around, park the vehicle at point A, with the front of the car facing point B.
  • Step 5 Keep driving at a constant speed of 2Km/h, and drive to point B automatically.
  • FIG. 3 is a schematic diagram of a handle button provided in Embodiment 1 of the present application.
  • the handle includes at least three buttons.
  • the AUTO button controls the on and off of the automatic driving state.
  • the button "A" and button “B” on the handle control the straight-line path planning operation of two points A and B.
  • installation offset calibration can be performed on the terminal equipment, and installation offset calibration can eliminate related installation errors.
  • the identification of the actuator system can be established, that is, the functional relationship between the rotation angle of the steering wheel and the rotation angle of the front wheels of the vehicle can be established.
  • the motor position encoder data of the electric steering wheel and the vehicle size data the front wheel angle information of the vehicle is obtained.
  • the front wheel rotation angle information of the vehicle is information such as the current rotation angle angle and the rotation angle direction of the front wheel of the vehicle.
  • the planned route data can be obtained in the form of webpage access through WIFI, Bluetooth or mobile communication data link.
  • the planned route data can be imported through the mobile phone, or the planned route data can be obtained by the user operating the handle buttons.
  • the target rotation angle information of the front wheels of the vehicle includes angle information and direction information that the front wheels of the vehicle should turn at the next moment.
  • S140 Generate target control information based on the target rotation angle information, and send the target control information to the electric steering wheel, so that the electric steering wheel rotates based on the target control information.
  • the target rotation angle information is the angle information at which the steering wheel controls the front wheels of the vehicle to turn.
  • the target control information can be generated according to the target rotation angle information.
  • target control information is generated based on the target corner information, including steps A1-A2:
  • Step A1 Obtain the function relationship between the preset steering wheel rotation angle and the front wheel rotation angle of the vehicle.
  • the front wheels of the vehicle can be controlled to turn.
  • Step A2 Determine the target steering wheel rotation angle corresponding to the target rotation angle information based on the functional relationship, and generate target control information based on the target steering wheel rotation angle.
  • the target rotation angle information includes information on the angle at which the front wheels of the vehicle should turn and information on the direction in which the front wheels of the vehicle should turn.
  • the target steering wheel turning angle is the angle at which the electric steering wheel should turn.
  • the target control information includes the target steering wheel rotation angle. After the target steering wheel rotation angle is obtained, target control information is generated, and the electric steering wheel is controlled to rotate based on the target control information.
  • the vehicle By making the electric steering wheel rotate based on the target control information through the above steps, the vehicle can be accurately and quickly controlled to drive according to the path planning information, and the automatic driving of the vehicle can be realized.
  • the technical scheme of the present embodiment obtains the attitude angle data based on the positioning data and the IMU data by obtaining the positioning data output by the global navigation satellite system GNSS module and the IMU data output by the inertial measurement unit IMU module; based on the IMU data, the motor position of the electric steering wheel Encoder data and vehicle size data to obtain the vehicle front wheel angle information; based on positioning data, attitude angle data, vehicle size data, vehicle front wheel angle information and planning path data, to obtain the target angle information of the electric steering wheel; based on the target angle information to generate
  • the target control information is to send the target control information to the electric steering wheel, so that the electric steering wheel can rotate based on the target control information.
  • the technical solution of this embodiment can obtain GNSS positioning data accurate to the centimeter level, and can set vehicle parameters, calibration and design path planning data through the mobile terminal. After setting, it can be separated from the terminal to carry out automatic driving of the vehicle; Fixed-point navigation line control and turning on and off the automatic driving function; easy to install and maintain, greatly reducing the consumption cost; reducing the hardware damage rate of the automatic driving system, and can quickly and stably control the driving state of the vehicle.
  • the embodiment of the present application can obtain accurate and reliable navigation pose information, and can quickly and stably control the driving state of the vehicle when the environmental road conditions are complex. There is no need to use traditional displays and angle sensors, and it is easy to install and maintain hardware facilities, greatly reducing cost consumption.
  • FIG. 4 is a flow chart of a vehicle control method provided in Embodiment 2 of the present application. This embodiment refines the method for obtaining the vehicle front wheel angle information based on the foregoing embodiments. As shown in Figure 4, the method of this embodiment includes:
  • the motor position encoder data of the electric steering wheel includes data such as the rotation position, rotation angle and rotation speed of the current electric steering wheel.
  • the vehicle speed information includes the speed and direction information of the current vehicle travel.
  • the motor position encoder data of the electric steering wheel can be obtained through the motor position encoder. After the vehicle is started, the vehicle speed information can be determined through the real-time output data of the GNSS module.
  • IMU data can be obtained, and the IMU data includes the rotational angular velocity of the vehicle body.
  • the forward and reverse states of the vehicle can be judged by using the average value information of historical IMU data. If the average value information is positive, the vehicle is in the forward state; if the average value information is negative, the vehicle is in the reverse state.
  • vehicle size data may be acquired, and the vehicle size data includes distances between front and rear axles of the vehicle body.
  • S220 Determine the front wheel observation angle based on the vehicle speed information, the angular velocity of the vehicle body, and the distance between the front and rear axles of the vehicle body.
  • the observation angle of the front wheels can be determined through the following formula:
  • L is the front and rear axle distance of the car body
  • V gnss is the vehicle speed information
  • W is the observation angle of the front wheel.
  • the observation angle of the front wheels can be calculated through the vehicle speed information, the angular velocity of the vehicle body and the distance between the front and rear axles of the vehicle body.
  • the vehicle front wheel rotation angle information is obtained based on the motor position encoder data and the front wheel observation angle.
  • obtaining the vehicle front wheel angle information includes step B1-step B2:
  • Step B1 Determine the vehicle front wheel angular velocity based on the motor position encoder data.
  • the angular velocity of the front wheels of the vehicle is determined based on the motor position encoder data, including step B11-step B13:
  • Step B11 Perform dead zone correction on the motor position encoder data based on the imported dead zone value.
  • the motor position encoder data includes data such as the rotation position, rotation angle and rotation speed of the current electric steering wheel. During the process of the motor position encoder generating the above data, the motor position encoder will generate a control signal dead zone. Deadband correction can be performed on the motor position encoder data based on the deadband value.
  • the dead zone value can be obtained by importing terminal devices, such as mobile phones, tablets and laptops. By adjusting the dead zone value, the dead zone correction can be performed on the motor position encoder data.
  • Step B12 Determine the position increment of the electric steering wheel according to the corrected motor position encoder data, and determine the angular velocity of the electric steering wheel according to the position increment and the sampling period.
  • the position increment of the electric steering wheel is the position movement amount of the electric steering wheel at the current moment relative to the previous moment.
  • Step B13 Determine the angular velocity of the front wheels of the vehicle according to the angular velocity of the electric steering wheel and the preset functional relationship between the steering wheel rotation angle and the vehicle front wheel rotation angle.
  • the method for determining the angular velocity of the front wheels of the vehicle through the above steps can be applied to determine the angular velocity of the front wheels of the wheel-steered tractor to meet the operation requirements of the wheel-steered tractor.
  • the target vehicle front wheel rotation angle can be determined by using the preset functional relationship between the rotation angle of the electric steering wheel and the vehicle front wheel rotation angle. According to the angular velocity of the electric steering wheel and the functional relationship, the angular velocity of the front wheels of the vehicle can be determined.
  • Step B2 Use the filter model to obtain the vehicle front wheel angle information according to the vehicle front wheel angular velocity and the front wheel observation angle.
  • the filter model may be a Kalman filter. Kalman filtering can use the linear system state equation to optimally estimate the system state through the input and output observation data of the system.
  • a Kalman filter model may be constructed according to an angle tracking algorithm. The vehicle front wheel angular velocity and front wheel observation angle are input into the Kalman filter model, and the Kalman filter operation is performed to output the vehicle front wheel angle information in real time.
  • the accurate front wheel angle information of the vehicle can be output in real time.
  • FIG. 5 is a schematic diagram of obtaining information on the front wheel rotation angle of a vehicle provided by an embodiment of the present application, as shown in FIG. 5 .
  • the observation angle of the front wheels is obtained according to the distance between the front and rear axles of the car body, the vehicle speed information and the angular velocity of the car body; the dead zone correction is performed on the data of the motor position encoder; the information of the front wheel rotation angle of the vehicle is obtained through the filter model.
  • the technical solution of this embodiment obtains the motor position encoder data of the electric steering wheel, the vehicle speed information, the vehicle body angular velocity determined according to the IMU data, and the distance between the front and rear axles of the vehicle body; The distance is used to determine the front wheel observation angle; based on the motor position encoder data and the front wheel observation angle, the front wheel rotation angle information of the vehicle is obtained.
  • the forward and reverse judging algorithm can be used to distinguish the forward or reverse state of the vehicle, and the method suitable for determining the angular velocity of the front wheel of the wheel-steered tractor can meet the operation requirements of the wheel-steered tractor. This makes the technical solution of this embodiment easy to popularize and use.
  • FIG. 6 is a flow chart of a vehicle control method provided in Embodiment 3 of the present application. This embodiment refines the method for obtaining the vehicle front wheel angle information based on the foregoing embodiments. As shown in Figure 6, the method of this embodiment includes the following steps:
  • S320 Determine the front wheel observation angle based on the vehicle speed information, the angular velocity of the vehicle body, and the distance between the front and rear axles of the vehicle body.
  • the vehicle front wheel angle information is obtained, including step C1-step C2:
  • Step C1 Compensate the median value in the motor position encoder data according to the front wheel observation angle and the preset functional relationship between the steering wheel rotation angle and the vehicle front wheel rotation angle.
  • the steering wheel rotation angle corresponding to the front wheel observation angle can be obtained. Then use the steering wheel rotation angle to perform median compensation on the motor position encoder data, and detect whether there is a deviation between the median value in the motor position encoder data and the steering wheel rotation angle. The median value is compensated.
  • Step C2 Obtain the vehicle front wheel rotation angle information based on the compensated motor position encoder data and the preset functional relationship between the steering wheel rotation angle and the vehicle front wheel rotation angle.
  • the vehicle front wheel rotation angle can be calculated.
  • vehicle front wheel rotation angle information includes the vehicle front wheel rotation angle and the vehicle front wheel rotation direction.
  • the method for determining the rotation angle information of the front wheels of the vehicle through the above steps can be applied to determine the rotation angle information of the front wheels of the rice transplanter to meet the operation requirements of the rice transplanter.
  • FIG. 7 is a schematic diagram of obtaining vehicle front wheel rotation angle information provided by Embodiment 3 of the present application, as shown in FIG. 7 .
  • the observation angle of the front wheel is obtained; the median compensation is performed on the data of the motor position encoder; and the information of the front wheel rotation angle of the vehicle is obtained.
  • the technical solution of this embodiment obtains the motor position encoder data of the electric steering wheel, the vehicle speed information, the vehicle body angular velocity determined according to the IMU data, and the distance between the front and rear axles of the vehicle body; The distance is used to determine the front wheel observation angle; based on the motor position encoder data and the front wheel observation angle, the front wheel rotation angle information of the vehicle is obtained.
  • the operation requirement of the rice transplanter is met by the method suitable for determining the information of the front wheel rotation angle of the rice transplanter. This makes the technical solution of this embodiment easy to popularize and use.
  • FIG. 8 is a schematic structural diagram of an integrated controller provided in Embodiment 4 of the present application. As shown in Figure 8, the integrated controller includes:
  • the mobile communication signal receiver is configured to receive differential information sent by the base station or server, and sends the differential information to the GNSS module; the GNSS module is configured to obtain positioning data based on the differential information; the IMU module is configured to obtain IMU data; The central processing unit is configured to obtain attitude angle data based on the positioning data and the IMU data; obtain vehicle front wheel angle information based on the IMU data, motor position encoder data and vehicle size data of the electric steering wheel; The positioning data, the attitude angle data, the vehicle size data, the vehicle front wheel angle information and the planned path data, obtain the target angle information of the vehicle front wheels; generate target control information based on the target angle information, and convert the Target control information is sent to the electric steering wheel, so that the electric steering wheel rotates based on the target control information.
  • the central processing unit is configured to obtain the front wheel angle information of the vehicle based on the IMU data, the motor position encoder data of the electric steering wheel and the vehicle size data in the following manner:
  • the central processing unit is configured to obtain vehicle front wheel rotation angle information based on the motor position encoder data and the front wheel observation angle in the following manner:
  • the central processing unit is configured to determine the vehicle front wheel angular velocity based on the motor position encoder data in the following manner:
  • the central processing unit is configured to obtain vehicle front wheel rotation angle information based on the motor position encoder data and the front wheel observation angle in the following manner:
  • the median value in the motor position encoder data is compensated; based on the compensated motor position encoder data and The function relationship between the preset steering wheel rotation angle and the front wheel rotation angle of the vehicle is used to obtain the front wheel rotation angle information of the vehicle.
  • the central processing unit is also configured to determine the viewing angle of the front wheels using the following formula:
  • W is the observation angle of the front wheel
  • L is the distance between the front and rear axles of the car body
  • V gnss is the vehicle speed information
  • the integrated controller can be connected with an independent GNSS antenna to realize dual-antenna directional attitude measurement.
  • the dual antennas can be the dual antennas of the GNSS module, and the dual antennas are on one line, and the directional data measurement includes heading angle and pitch angle.
  • FIG. 9 is a schematic structural diagram of an automatic driving system for agricultural machinery provided in Embodiment 5 of the present application, as shown in FIG. 9 .
  • the system includes integrated controls, joysticks and an electric steering wheel.
  • the handle is configured to turn on and off the automatic driving state based on user operations, and/or send the planned path data set by the user to the central processing unit of the integrated controller; the electric steering wheel is configured to receive The target control information sent by the central processing unit is rotated based on the received target control information to drive the front wheels of the vehicle to rotate.
  • the handle and the electric steering wheel are connected through a Controller Area Network (CAN).
  • CAN Controller Area Network
  • the system also includes:
  • the mobile terminal communicates with the integrated controller and is configured to perform at least one operation of path planning, vehicle calibration, parameter setting, parameter adjustment, and automatic driving on or off in the form of webpage access.
  • Mobile terminals can be devices such as mobile phones, tablets, and notebook computers.
  • the automatic driving system of agricultural machinery can set vehicle parameters, perform mechanical calibration, set navigation lines, and turn on and off automatic driving through the application software or webpage on the mobile phone.
  • the mobile phone can be connected to the integrated controller through any method such as Bluetooth, WIFI and mobile network.
  • the electric steering wheel includes a steering drive motor module, a fixed frame module, a clamp module, a sleeve module and a steering wheel ring module.
  • the fixing frame module can be installed at a fixed position at the bottom of the steering drive motor, and fastened on the steering rod through a supporting fixture.
  • FIG. 10 is an operation flowchart of an automatic driving system for agricultural machinery provided in Embodiment 5 of the present application, as shown in FIG. 10 .
  • the vehicle front wheel angle information is obtained from the size information and the motor position encoder data; the target control information is generated based on the actuator system identification parameters, the corrected positioning data and attitude angle data, the vehicle size information, the vehicle front wheel angle information and the planned path data, Realize the automatic driving of the vehicle.
  • the identification parameters determine the target steering wheel rotation angle, generate target control information based on the target steering wheel rotation angle, and send the target control information to the electric steering wheel, so that the electric steering wheel rotates based on the target control information.
  • FIG 11 is a schematic structural diagram of a vehicle control device provided in Embodiment 6 of the present application. This embodiment can be applied to the situation of controlling the automatic driving of a vehicle.
  • the device can be implemented in the form of software and/or hardware, and the device can be integrated in any
  • the vehicle control device includes:
  • the data acquisition module 610 is configured to obtain the positioning data output by the global navigation satellite system GNSS module and the IMU data output by the inertial measurement unit IMU module, and obtain attitude angle data based on the positioning data and the IMU data;
  • the vehicle front wheel angle determination module 620 configured to obtain vehicle front wheel rotation angle information based on the IMU data, the motor position encoder data of the electric steering wheel, and vehicle size data;
  • the target rotation angle determination module 630 configured to obtain the vehicle front wheel rotation angle information based on the positioning data, the attitude angle data, The vehicle size data, the vehicle front wheel rotation angle information and the planned route data are used to obtain target rotation angle information of the vehicle front wheels;
  • the steering wheel control module 640 is configured to generate target control information based on the target rotation angle information, and control the target Information is sent to the electric steering wheel, so that the electric steering wheel is turned based on the target control information.
  • the vehicle front wheel angle determination module 620 includes:
  • the first determination unit set to obtain the motor position encoder data of the electric steering wheel, vehicle speed information, the vehicle body angular velocity determined according to the IMU data, and the distance between the front and rear axles of the vehicle body;
  • the second determination unit set to be based on the vehicle speed Information, the angular velocity of the vehicle body and the distance between the front and rear axles of the vehicle body to determine the observation angle of the front wheels;
  • the information acquisition unit for the rotation angle of the front wheels of the vehicle set to obtain the vehicle angle based on the motor position encoder data and the observation angle of the front wheels Front wheel angle information.
  • the vehicle front wheel angle information acquisition unit includes:
  • the vehicle front wheel angular velocity subunit configured to determine the vehicle front wheel angular velocity based on the motor position encoder data; the first rotation angle determination subunit is configured to adopt a filter model, according to the vehicle front wheel angular velocity and the front wheel observation Angle, to obtain the vehicle front wheel angle information.
  • the vehicle front wheel angular velocity subunit is set to:
  • the vehicle front wheel angle information acquisition unit includes:
  • the median compensation subunit is configured to compensate the median value in the motor position encoder data according to the front wheel observation angle and the preset functional relationship between the steering wheel rotation angle and the vehicle front wheel rotation angle; the second The rotation angle determination subunit is configured to obtain the vehicle front wheel rotation angle information based on the compensated motor position encoder data and the preset functional relationship between the steering wheel rotation angle and the vehicle front wheel rotation angle.
  • the second determination unit is set to: determine the front wheel observation angle by using the following formula:
  • L is the front and rear axle distance of the car body
  • V gnss is the vehicle speed information
  • the steering wheel control module 640 is set to:
  • the above-mentioned products can execute the vehicle control method provided by any embodiment of the present application, and have corresponding functional modules and effects for executing the method.
  • Embodiment 7 of the present application provides a computer-readable storage medium, on which a computer program is stored.
  • the vehicle control method provided in all the application embodiments of the present application is realized: obtaining the GNSS module of the global navigation satellite system
  • the output positioning data and the IMU data output by the inertial measurement unit IMU module obtain attitude angle data based on the positioning data and the IMU data; based on the IMU data, the motor position encoder data and the vehicle size data of the electric steering wheel, obtain Front wheel angle information of the vehicle; based on the positioning data, the attitude angle data, the vehicle size data, the front wheel angle information of the vehicle and the planned path data, obtain the target angle information of the front wheels of the vehicle; based on the target angle
  • the information generates target control information, and the target control information is sent to the electric steering wheel, so that the electric steering wheel turns based on the target control information.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof.
  • Examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more conductors, portable computer disks, hard disks, random access memory (Random Access Memory, RAM), read-only memory (Read- Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable Read-Only Memory, EPROM or flash memory), optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage components, magnetic storage devices, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • the program code contained on the computer readable medium can be transmitted by any appropriate medium, including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program codes for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer ( For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆控制方法、装置、设备及存储介质,该车辆控制方法包括:获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于定位数据和IMU数据获得姿态角数据(S110);基于IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息(S120);基于定位数据、姿态角数据、车辆尺寸数据、车辆前轮转角信息以及规划路径数据,获得所述车辆前轮的目标转角信息(S130);基于目标转角信息生成目标控制信息,将目标控制信息发送给电动方向盘,以使电动方向盘基于目标控制信息进行转动(S140)。

Description

车辆控制方法、控制器、系统、装置及存储介质
本申请要求在2021年12月06日提交中国专利局、申请号为202111477499.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,例如涉及一种车辆控制方法、控制器、系统、装置及存储介质。
背景技术
农机自动驾驶作为精准农业的一项核心关键技术,其广泛应用于耕作、播种、施肥、喷药、收货等农业生产过程。经典的农机自动驾驶关键技术包括导航位姿信息获取、导航路径规划和导航控制等。导航位姿信息的准确、可靠获取是路径规划与车体控制的前提条件;优化的导航路径可有效减少资源浪费,如减少重复、遗漏作业,减少地头转弯路径等;快速、稳定的导航控制能够应对农田复杂路面环境,实现对导航路径的准确跟踪。
农机自动驾驶方案都需要在车辆中安装显示器和角度传感器,安装线束多且复杂,由于农田作业环节复杂,经常会存在线束被挂断的情况,同时系统部件较多,成本也较高。
发明内容
本申请提供一种车辆控制方法、控制器、系统、装置及存储介质,以实现快速、稳定地控制车辆进行行驶,同时降低成本消耗。
本申请提供了一种车辆控制方法,包括:
获取全球导航卫星系统(Global Navigation Satellite System,GNSS)模块输出的定位数据和惯性测量单元(Inertial Measurement Unit,IMU)模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;
基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;
基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;
基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所 述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
本申请还提供了一种一体化控制器,所述控制器包括:
移动通信信号接收器,设置为接收基站或者服务器发送的差分信息,将所述差分信息发送给GNSS模块;
GNSS模块,设置为基于所述差分信息获得定位数据;
IMU模块,设置为获得IMU数据;
中央处理器,设置为基于所述定位数据和所述IMU数据获得姿态角数据;基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
本申请还提供了一种农机自动驾驶系统,包括上述的一体化控制器、手柄和电动方向盘;其中,
所述手柄设置为以下至少之一:基于用户操作进行自动驾驶状态的开启和关闭,将用户设置的规划路径数据发送给所述一体化控制器的中央处理器;
所述电动方向盘设置为接收所述中央处理器发送的目标控制信息,基于接收的所述目标控制信息进行转动,以带动车辆前轮转动。
本申请还提供了一种车辆控制装置,该装置包括:
数据获取模块,设置为获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;
车辆前轮转角确定模块,设置为基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;
目标转角确定模块,设置为基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;
方向盘控制模块,设置为基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的车辆控制方法。
附图说明
图1为本申请实施例一提供的一种车辆控制方法的流程图;
图2为本申请实施例一提供的一种电动方向盘校准的示意图;
图3为本申请实施例一提供的一种手柄按键示意图;
图4为本申请实施例二提供的一种车辆控制方法的流程图;
图5为本申请实施例二提供的一种获得车辆前轮转角信息的示意图;
图6为本申请实施例三提供的一种车辆控制方法的流程图;
图7为本申请实施例三提供的一种获得车辆前轮转角信息的示意图;
图8为本申请实施例四提供的一种一体化控制器的结构示意图;
图9为本申请实施例五提供的一种农机自动驾驶系统的结构示意图;
图10为本申请实施例五提供的一种农机自动驾驶系统的作业流程图;
图11为本申请实施例六提供的一种车辆控制装置结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
相似的标号和字母在下面的附图中表示类似项,因此,一旦一项在一个附图中被定义,则在随后的附图中不需要对其进行定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一
图1为本申请实施例一提供的一种车辆控制方法的流程图,本实施例可适用于控制车辆自动驾驶的情况,该方法可以由本申请实施例中的车辆控制装置来执行,该装置可采用软件和/或硬件的方式实现,如图1所示,该方法包括:
S110,获取全球导航卫星系统(GNSS)模块输出的定位数据和惯性测量单元(IMU)模块输出的IMU数据,基于定位数据和IMU数据获得姿态角数据。
GNSS泛指所有的卫星导航系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时功能。本申请实施例中,GNSS模块既支持GNSS定位,也支持GNSS定向。GNSS定向可以确定空间两点形成的几何矢量在给定坐标系下的指向。利用GNSS接收天线可以接收GNSS输出的定位数据。其中,定位数据包括位置定位信息和定向信息。GNSS模块还支持实时差分定位(Real -Time Kinematic,RTK)、星基增强系统(Satellite-Based Augmentation System,SBAS)、差分全球定位系统(Differential Global Position System,DGPS)以及精密单点定位技术(Precise Point Positioning,PPP)等增强模式。IMU可以设置为检测和测量加速度与旋转运动状态。本申请实施例中,IMU可以采集并输出IMU数据,IMU数据包括车体转动角速度、车体加速度。基于GNSS定位数据和IMU数据计算出姿态角数据。其中,姿态角数据包括航向角、俯仰角和横滚角等。通常可以按航向角、俯仰角和横滚角的顺序来表示机体坐标系相对地理坐标系的空间转动。
S120,基于IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息。
电动方向盘的电机位置编码器数据表示当前电动方向盘的转动位置。车辆尺寸数据包括车体前后轴距离、后轮轴高度、前轮轴距、天线至中轴线间距、天线相对中轴的位置、天线至后轴间距、天线相对后轴的位置、天线高度和作业幅宽等。车辆尺寸数据可以用于建立车辆运动学模型和数据修正。
可以通过手机、平板等终端设备录入车辆尺寸信息,并对电动方向盘进行校准。图2为本申请实施例一提供的一种电动方向盘校准的示意图,如图2所示。对电动方向盘进行校准的过程如步骤1-步骤6所述。其中,校准过程需要约长100米,宽10米的空旷、平整的硬质地面。图2中,两个圆形为车辆行驶的路径,“540度”指转动电动方向盘使得车辆转动540度,“10米”指车辆转动540度后,再向前行驶10米。
步骤1、设置AB线,AB两点间的距离应大于70米。
步骤2、设定完AB线后,手动调头,将车辆停在B处,车头朝向A点。
步骤3、保持2Km/h的速度匀速向前行驶,自动驾驶到A点。
步骤4、手动调头,将车辆停在A点处,车头朝向B点。
步骤5、保持2Km/h的速度匀速向前行驶,自动驾驶到B点。
步骤6、完成校准。图3为本申请实施例一提供的一种手柄按键示意图,如图3所示,手柄中包含至少三个按键。在实际作业过程中,AUTO按键控制自动驾驶状态的开启和关闭。手柄上的按键“A”和按键“B”,控制A、B两点的直线路径规划操作。对电动方向盘进行校准后,可以在终端设备上进行安装偏移校准,安装偏移校准可以消除相关安装误差。通过上述步骤对电动方向盘进行校准,可以建立执行机构系统辨识,即建立方向盘转动角度与车辆前轮转动角度的函数关系。
根据IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获 得车辆前轮转角信息。其中,车辆前轮转角信息是当前车辆前轮的转角角度、转角方向等信息。
S130,基于定位数据、姿态角数据、车辆尺寸数据、车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息。
规划路径数据可以通过WIFI、蓝牙或者移动通信数据链,以网页访问的形式得到。可以通过手机导入规划路径数据,也可以通过用户操作手柄按键得到规划路径数据。将定位数据、姿态角数据、车辆尺寸数据、车辆前轮转角信息以及规划路径数据,输入车辆运动学模型,获得模型输出的车辆前轮的目标转角信息。其中,车辆前轮的目标转角信息包括车辆前轮在下一时刻应该转动的角度信息和方向信息。
S140,基于目标转角信息生成目标控制信息,将目标控制信息发送给电动方向盘,以使电动方向盘基于目标控制信息进行转动。
目标转角信息是方向盘控制车辆前轮应该转动的角度信息。根据目标转角信息可以生成目标控制信息。本方案实施例中,可选的,基于目标转角信息生成目标控制信息,包括步骤A1-A2:
步骤A1:获取预先设置的方向盘转动角度与车辆前轮转动角度的函数关系。
通过转动电动方向盘,可以控制车辆前轮转动。电动方向盘转动的角度与前轮转动角度存在着一定的函数关系,并且该函数关系可以通过前述对电动方向盘的校准过程获得。已知电动方向盘的转动角度就可以得到车辆前轮转动的角度,已知车辆前轮转动的角度也可以得到电动方向盘的转动角度。
步骤A2:基于函数关系确定目标转角信息对应的目标方向盘转动角度,基于目标方向盘转动角度生成目标控制信息。
目标转角信息包括车辆前轮应该转动的角度信息和车辆前轮应该转动的方向信息。目标方向盘转动角度是电动方向盘应该转动的角度。如步骤A1所述,得知车辆前轮应该转动的角度信息后,基于预设的函数关系,可以得到电动方向盘的转动角度即目标方向盘转动角度。其中,目标控制信息包括目标方向盘转动角度。得到目标方向盘转动角度后,生成目标控制信息,控制电动方向盘基于目标控制信息进行转动。
通过上述步骤使电动方向盘基于目标控制信息进行转动,可以精确、快速控制车辆按照路径规划信息行驶,实现车辆的自动驾驶。
本实施例的技术方案,通过获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于定位数据和IMU数据获得姿态角数据;基于IMU数据、电动方向盘的电机位置编码器数据以及车辆尺 寸数据,获得车辆前轮转角信息;基于定位数据、姿态角数据、车辆尺寸数据、车辆前轮转角信息以及规划路径数据,获得电动方向盘的目标转角信息;基于目标转角信息生成目标控制信息,将目标控制信息发送给电动方向盘,以使电动方向盘基于目标控制信息进行转动。本实施例的技术方案,可以获取到精确到厘米级的GNSS定位数据,可以通过移动终端设置车辆参数、校准以及设计路径规划数据,设置完后可脱离终端进行车辆自动驾驶;通过手柄按键能实现定点导航线控制以及开启和关闭自动驾驶功能;易于安装和维护,极大降低了消耗成本;减少了自动驾驶系统的硬件损坏率,能快速、稳定地对车辆的行驶状态进行控制。本申请实施例可以获取到精准、可靠的导航位姿信息,当环境路面情况复杂时,能快速、稳定的对车辆的行驶状态进行控制。不需要使用传统显示器以及角度传感器,易于硬件设施的安装和维护,极大降低了成本消耗。
实施例二
图4为本申请实施例二提供的一种车辆控制方法的流程图,本实施例以上述实施例为基础对获得车辆前轮转角信息的方法进行细化。如图4所示,本实施例的方法包括:
S210,获取电动方向盘的电机位置编码器数据、车辆速度信息、根据IMU数据确定的车体角速度和车体前后轴距离。
电动方向盘的电机位置编码器数据包括当前电动方向盘的转动位置、转动角度和转动速度等数据。车辆速度信息包括当前车辆行驶的速度和方向信息。电动方向盘的电机位置编码器数据可以通过电机位置编码器得到。在车辆启动后,车辆速度信息可以通过GNSS模块实时输出的数据确定。在S110中,可以获取到IMU数据,IMU数据包括车体转动角速度。当车辆速度增加达到预设的阈值时,利用历史IMU数据均值信息可以判定车辆前进和倒车状态,均值信息为正,则车辆处于前进状态,均值信息为负,则车辆处于为倒车状态。在S120中,可以获取车辆尺寸数据,车辆尺寸数据包括车体前后轴距离。
S220,基于车辆速度信息、车体角速度和车体前后轴距离,确定前轮观测角度。
本方案实施例中,可选的,根据车辆速度信息、车体角速度和车体前后轴距离,确定前轮观测角度,可通过如下公式:
Figure PCTCN2022078942-appb-000001
其中,L为车体前后轴距离,V gnss为车辆速度信息,
Figure PCTCN2022078942-appb-000002
为车体角速度,W为 前轮观测角度。
通过车辆速度信息、车体角速度和车体前后轴距离,可以计算出前轮观测角度,计算方法简单,计算所需数据易于获取,并且能够提高车辆自动驾驶数据的精确度。
S230,基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息。
在计算出前轮观测角度后,基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息。本方案实施例中,可选的,获得车辆前轮转角信息包括步骤B1-步骤B2:
步骤B1:基于电机位置编码器数据确定车辆前轮角速度。
本方案实施例中,可选的,基于电机位置编码器数据确定车辆前轮角速度,包括步骤B11-步骤B13:
步骤B11:基于导入的死区值对电机位置编码器数据进行死区修正。
电机位置编码器数据包括当前电动方向盘的转动位置、转动角度和转动速度等数据。电机位置编码器在产生上述数据的过程中,电机位置编码器会产生控制信号死区。可以基于死区值对电机位置编码器数据进行死区修正。其中死区值可以通过终端设备导入得到,如手机、平板和笔记本电脑等。通过调整死区值,可以对电机位置编码器数据进行死区修正。
步骤B12:根据修正后的电机位置编码器数据确定电动方向盘的位置增量,根据位置增量和采样周期,确定电动方向盘的角速度。
电动方向盘的位置增量是电动方向盘当前时刻相对于前一时刻的位置移动量。电机位置编码器会按照一定的频率对电动方向盘的转向角度进行采样,采样周期是采样时间间隔。根据位置增量和采样周期,可以确定电动方向盘的角速度。示例的,电动方向盘的位置增量为S,采样周期为t,则角速度=S/t。
步骤B13:根据电动方向盘的角速度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,确定车辆前轮角速度。
通过上述步骤确定车辆前轮角速度的方法,可适用于确定轮式转向拖拉机的前轮角速度,满足轮式转向拖拉机的作业需求。
如S140所述,利用预先设置的电动方向盘的转动角度和车辆前轮转动角度之间的函数关系,可以确定目标车辆前轮转动角度。根据电动方向盘的角速度和函数关系,可以确定车辆前轮角速度。
步骤B2:采用滤波器模型,根据车辆前轮角速度和前轮观测角度,获得车辆前轮转角信息。
滤波器模型可以是卡尔曼滤波。卡尔曼滤波可以利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。本方案实施例中,可以根据角度跟踪算法构建卡尔曼滤波器模型。将车辆前轮角速度和前轮观测角度输入卡尔曼滤波模型,进行卡尔曼滤波器运算,从而实时输出车辆前轮转角信息。
通过上述步骤确定车辆前轮转角信息,建立卡尔曼滤波模型,可以实时输出精确的车辆前轮转角信息。
图5为本申请实施例提供的一种获得车辆前轮转角信息的示意图,如图5所示。根据车体前后轴距离、车辆速度信息和车体角速度得到前轮观测角度;对电机位置编码器数据进行死区修正;通过滤波器模型,得到车辆前轮转角信息。
本实施例的技术方案,通过获取电动方向盘的电机位置编码器数据、车辆速度信息、根据IMU数据确定的车体角速度和车体前后轴距离;基于车辆速度信息、车体角速度和车体前后轴距离,确定前轮观测角度;基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息。可以利用前进倒车判断算法,对车辆的前进或倒车状态进行区分,通过适用于确定轮式转向拖拉机的前轮角速度的方法,满足轮式转向拖拉机的作业需求。使得本实施例的技术方案便于推广和使用。
实施例三
图6为本申请实施例三提供的一种车辆控制方法的流程图,本实施例以上述实施例为基础对获得车辆前轮转角信息的方法进行细化。如图6所示,本实施例的方法包括如下步骤:
S310,获取电动方向盘的电机位置编码器数据、车辆速度信息、根据IMU数据确定的车体角速度和车体前后轴距离。
S320,基于车辆速度信息、车体角速度和车体前后轴距离,确定前轮观测角度。
S330,基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息。
本方案实施例中,可选的,基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息,包括步骤C1-步骤C2:
步骤C1:根据前轮观测角度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,对电机位置编码器数据中的中位值进行补偿。
首先根据方向盘转动角度与车辆前轮转动角度的函数关系,可以得到前轮观测角度对应的方向盘转动角度。然后利用该方向盘转动角度对电机位置编码器数据进行中位补偿,检测电机位置编码器数据中的中位值与该方向盘转动角度是否有偏差,如果存在偏差,则对电机位置编码器数据中的中位值进行补偿。
步骤C2:基于补偿后的电机位置编码器数据以及预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,获得车辆前轮转角信息。
利用预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,可以计算出车辆前轮转动角度。获得车辆前轮转角信息。其中,车辆前轮转角信息包括车辆前轮转动角度和车辆前轮转动方向。
通过上述步骤确定车辆前轮转角信息的方法,可适用于确定插秧机的前轮转角信息,满足插秧机的作业需求。
图7为本申请实施例三提供的一种获得车辆前轮转角信息的示意图,如图7所示。根据车体前后轴距离、车辆速度信息和车体角速度得到前轮观测角度;对电机位置编码器数据进行中位补偿;得到车辆前轮转角信息。
本实施例的技术方案,通过获取电动方向盘的电机位置编码器数据、车辆速度信息、根据IMU数据确定的车体角速度和车体前后轴距离;基于车辆速度信息、车体角速度和车体前后轴距离,确定前轮观测角度;基于电机位置编码器数据和前轮观测角度,获得车辆前轮转角信息。通过适用于确定插秧机的前轮转角信息的方法,满足插秧机的作业需求。使得本实施例的技术方案便于推广和使用。
实施例四
图8为本申请实施例四提供的一种一体化控制器的结构示意图。如图8所示,所述一体化控制器包括:
移动通信信号接收器,设置为接收基站或者服务器发送的差分信息,将所述差分信息发送给GNSS模块;GNSS模块,设置为基于所述差分信息获得定位数据;IMU模块,设置为获得IMU数据;中央处理器,设置为基于所述定位数据和所述IMU数据获得姿态角数据;基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
可选的,中央处理器设置为通过如下方式基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息:
获取电动方向盘的电机位置编码器数据、车辆速度信息、根据所述IMU数据确定的车体角速度和车体前后轴距离;基于所述车辆速度信息、所述车体角速度和所述车体前后轴距离,确定前轮观测角度;基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息。
所述中央处理器设置为通过如下方式基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息:
基于所述电机位置编码器数据确定车辆前轮角速度;采用滤波器模型,根据所述车辆前轮角速度和所述前轮观测角度,获得车辆前轮转角信息。
所述中央处理器设置为通过如下方式基于所述电机位置编码器数据确定车辆前轮角速度:
基于导入的死区值对所述电机位置编码器数据进行死区修正;根据修正后的电机位置编码器数据确定所述电动方向盘的位置增量,根据所述位置增量和采样周期,确定所述电动方向盘的角速度;根据所述电动方向盘的角速度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,确定车辆前轮角速度。
可选的,所述中央处理器设置为通过如下方式基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息:
根据所述前轮观测角度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,对所述电机位置编码器数据中的中位值进行补偿;基于补偿后的电机位置编码器数据以及预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,获得车辆前轮转角信息。
中央处理器还设置为采用如下公式确定前轮观测角度:
Figure PCTCN2022078942-appb-000003
其中,W为前轮观测角度,L为车体前后轴距离,V gnss为车辆速度信息,
Figure PCTCN2022078942-appb-000004
为车体角速度。
一体化控制器可以外接独立的GNSS天线,实现双天线定向测姿。其中双天线可以是GNSS模块的双天线,并且双天线在一条线路上,定向测资包括航向角和俯仰角。
实施例五
图9为本申请实施例五提供的一种农机自动驾驶系统的结构示意图,如图9所示。该系统包括一体化控制器、手柄和电动方向盘。
所述手柄设置为,基于用户操作进行自动驾驶状态的开启和关闭,和/或,将用户设置的规划路径数据发送给所述一体化控制器的中央处理器;所述电动方向盘设置为,接收所述中央处理器发送的目标控制信息,基于接收的所述目标控制信息进行转动,以带动车辆前轮转动。其中,所述手柄和电动方向盘通过控制器局域网络(Controller Area Network,CAN)连接。
可选的,所述系统还包括:
移动终端,与所述一体化控制器通信连接,设置为通过网页访问的形式进行路径规划、车辆校准、参数设置、参数调整和开启或关闭自动驾驶中的至少一项操作。
移动终端可以是手机,平板和笔记本电脑等设备。以手机为例,农机自动驾驶系统可以通过手机上的应用软件或者网页,设置车辆参数、进行机械校准、设定导航线、开启和关闭自动驾驶。其中,手机可以通过蓝牙、WIFI和移动网络等任意一种方式连接一体化控制器。
电动方向盘包括转向驱动电机模块,固定架模块,夹具模块,套筒模块和方向盘圈模块几个部分。其中,固定架模块可以安装在转向驱动电机底部的固定位置,并通过配套夹具紧固在转向杆上。
图10为本申请实施例五提供的一种农机自动驾驶系统的作业流程图,如图10所示。获取GNSS模块输出的定位数据、IMU数据和电机位置编码器数据;基于定位数据和IMU数据获得姿态角数据;基于安装偏移校准数据对定位数据和姿态角数据进行校准修正;基于IMU数据、车辆尺寸信息和电机位置编码器数据得到车辆前轮转角信息;基于执行机构系统辨识参数、修正后的定位数据和姿态角数据、车辆尺寸信息、车辆前轮转角信息以及规划路径数据生成目标控制信息,实现对车辆的自动驾驶。将修正后的定位数据和姿态角数据、车辆尺寸信息、车辆前轮转角信息以及规划路径数据输入车辆运动学模型,得到模型输出的车辆前轮的目标转角信息;根据目标转角信息和执行机构系统辨识参数确定目标方向盘转动角度,基于所述目标方向盘转动角度生成目标控制信息,将目标控制信息发送给电动方向盘,以使电动方向盘基于目标控制信息进行转动。上述产品可执行本申请任意实施例所提供的车辆控制方法,具备执行方法相应的功能模块和效果。
实施例六
图11为本申请实施例六提供的一种车辆控制装置结构示意图,本实施例可适用于控制车辆自动驾驶的情况,该装置可采用软件和/或硬件的方式实现,该装置可集成在任何提供车辆控制方法的功能的设备中,如图11所示,所述车辆控制的装置包括:
数据获取模块610,设置为获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;车辆前轮转角确定模块620,设置为基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;目标转角确定模块630,设置为基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;方向盘控制模块640,设置为基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
可选的,所述车辆前轮转角确定模块620,包括:
第一确定单元:设置为获取电动方向盘的电机位置编码器数据、车辆速度信息、根据所述IMU数据确定的车体角速度和车体前后轴距离;第二确定单元:设置为基于所述车辆速度信息、所述车体角速度和所述车体前后轴距离,确定前轮观测角度;车辆前轮转角信息获取单元:设置为基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息。
可选的,所述车辆前轮转角信息获取单元,包括:
车辆前轮角速度子单元:设置为基于所述电机位置编码器数据确定车辆前轮角速度;第一转角确定子单元,设置为采用滤波器模型,根据所述车辆前轮角速度和所述前轮观测角度,获得车辆前轮转角信息。
可选的,车辆前轮角速度子单元,设置为:
基于导入的死区值对所述电机位置编码器数据进行死区修正;根据修正后的电机位置编码器数据确定所述电动方向盘的位置增量,根据所述位置增量和采样周期,确定所述电动方向盘的角速度;根据所述电动方向盘的角速度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,确定车辆前轮角速度。
可选的,所述车辆前轮转角信息获取单元,包括:
中位补偿子单元,设置为根据所述前轮观测角度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,对所述电机位置编码器数据中的中位值 进行补偿;第二转角确定子单元,设置为基于补偿后的电机位置编码器数据以及预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,获得车辆前轮转角信息。
可选的,所述第二确定单元,设置为:采用如下公式确定前轮观测角度:
Figure PCTCN2022078942-appb-000005
其中,L为车体前后轴距离,V gnss为车辆速度信息,
Figure PCTCN2022078942-appb-000006
为车体角速度。
可选的,方向盘控制模块640,设置为:
获取预先设置的方向盘转动角度与车辆前轮转动角度的函数关系;基于所述函数关系确定所述目标转角信息对应的目标方向盘转动角度,基于所述目标方向盘转动角度生成目标控制信息。
上述产品可执行本申请任意实施例所提供的车辆控制方法,具备执行方法相应的功能模块和效果。
实施例七
本申请实施例七提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请所有申请实施例提供的车辆控制方法:获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得车辆前轮的目标转角信息;基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、 光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (17)

  1. 一种车辆控制方法,包括:
    获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;
    基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;
    基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得所述车辆前轮的目标转角信息;
    基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
  2. 根据权利要求1所述的方法,其中,所述基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息,包括:
    获取所述电动方向盘的电机位置编码器数据、车辆速度信息、根据所述IMU数据确定的车体角速度和所述车辆尺寸数据中的车体前后轴距离;
    基于所述车辆速度信息、所述车体角速度和所述车体前后轴距离,确定前轮观测角度;
    基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息。
  3. 根据权利要求2所述的方法,其中,所述基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息,包括:
    基于所述电机位置编码器数据确定车辆前轮角速度;
    采用滤波器模型,根据所述车辆前轮角速度和所述前轮观测角度,获得所述车辆前轮转角信息。
  4. 根据权利要求3所述的方法,其中,所述基于所述电机位置编码器数据确定车辆前轮角速度,包括:
    基于导入的死区值对所述电机位置编码器数据进行死区修正;
    根据修正后的电机位置编码器数据确定所述电动方向盘的位置增量,根据所述位置增量和采样周期,确定所述电动方向盘的角速度;
    根据所述电动方向盘的角速度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,确定所述车辆前轮角速度。
  5. 根据权利要求2所述的方法,其中,所述基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息,包括:
    根据所述前轮观测角度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,对所述电机位置编码器数据中的中位值进行补偿;
    基于补偿后的电机位置编码器数据以及所述预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,获得所述车辆前轮转角信息。
  6. 根据权利要求2所述的方法,其中,采用如下公式确定所述前轮观测角度:
    Figure PCTCN2022078942-appb-100001
    其中,W为所述前轮观测角度,L为所述车体前后轴距离,V gnss为所述车辆速度信息,
    Figure PCTCN2022078942-appb-100002
    为所述车体角速度。
  7. 根据权利要求1所述的方法,其中,所述基于所述目标转角信息生成目标控制信息,包括:
    获取预先设置的方向盘转动角度与车辆前轮转动角度的函数关系;
    基于所述函数关系确定所述目标转角信息对应的目标方向盘转动角度,基于所述目标方向盘转动角度生成所述目标控制信息。
  8. 一种一体化控制器,包括:
    移动通信信号接收器,设置为接收基站或者服务器发送的差分信息,将所述差分信息发送给全球导航卫星系统GNSS模块;
    所述GNSS模块,设置为基于所述差分信息获得定位数据;
    惯性测量单元IMU模块,设置为获得IMU数据;
    中央处理器,设置为基于所述定位数据和所述IMU数据获得姿态角数据;基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得所述车辆前轮的目标转角信息;基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
  9. 根据权利要求8所述的控制器,其中,所述中央处理器设置为通过如下方式基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息:
    获取所述电动方向盘的电机位置编码器数据、车辆速度信息、根据所述IMU数据确定的车体角速度和所述车辆尺寸数据中的车体前后轴距离;
    基于所述车辆速度信息、所述车体角速度和所述车体前后轴距离,确定前轮观测角度;
    基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息。
  10. 根据权利要求9所述的控制器,其中,所述中央处理器设置为通过如下方式基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息:
    基于所述电机位置编码器数据确定车辆前轮角速度;
    采用滤波器模型,根据所述车辆前轮角速度和所述前轮观测角度,获得所述车辆前轮转角信息。
  11. 根据权利要求10所述的控制器,其中,所述中央处理器设置为通过如下方式基于所述电机位置编码器数据确定车辆前轮角速度:
    基于导入的死区值对所述电机位置编码器数据进行死区修正;
    根据修正后的电机位置编码器数据确定所述电动方向盘的位置增量,根据所述位置增量和采样周期,确定所述电动方向盘的角速度;
    根据所述电动方向盘的角速度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,确定车辆前轮角速度。
  12. 根据权利要求9所述的控制器,其中,所述中央处理器设置为通过如下方式基于所述电机位置编码器数据和所述前轮观测角度,获得车辆前轮转角信息:
    根据所述前轮观测角度和预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,对所述电机位置编码器数据中的中位值进行补偿;
    基于补偿后的电机位置编码器数据以及所述预先设置的方向盘转动角度与车辆前轮转动角度的函数关系,获得所述车辆前轮转角信息。
  13. 根据权利要求9所述的控制器,其中,所述中央处理器设置为采用如下公式确定所述前轮观测角度:
    Figure PCTCN2022078942-appb-100003
    其中,W为所述前轮观测角度,L为所述车体前后轴距离,V gnss为所述车辆速度信息,
    Figure PCTCN2022078942-appb-100004
    为所述车体角速度。
  14. 一种农机自动驾驶系统,包括如权利要求8-13中任一项所述的一体化 控制器、手柄和电动方向盘;其中,
    所述手柄设置为以下至少之一:基于用户操作进行自动驾驶状态的开启和关闭,将用户设置的规划路径数据发送给所述一体化控制器的中央处理器;
    所述电动方向盘设置为,接收所述中央处理器发送的目标控制信息,基于接收的所述目标控制信息进行转动,以带动车辆前轮转动。
  15. 根据权利要求14所述的系统,还包括:
    移动终端,与所述一体化控制器通信连接,设置为通过网页访问的形式进行路径规划、车辆校准、参数设置和参数调整中的至少一项操作。
  16. 一种车辆控制装置,包括:
    数据获取模块,设置为获取全球导航卫星系统GNSS模块输出的定位数据和惯性测量单元IMU模块输出的IMU数据,基于所述定位数据和所述IMU数据获得姿态角数据;
    车辆前轮转角确定模块,设置为基于所述IMU数据、电动方向盘的电机位置编码器数据以及车辆尺寸数据,获得车辆前轮转角信息;
    目标转角确定模块,设置为基于所述定位数据、所述姿态角数据、所述车辆尺寸数据、所述车辆前轮转角信息以及规划路径数据,获得所述车辆前轮的目标转角信息;
    方向盘控制模块,设置为基于所述目标转角信息生成目标控制信息,将所述目标控制信息发送给所述电动方向盘,以使所述电动方向盘基于所述目标控制信息进行转动。
  17. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-7中任一项所述的车辆控制方法。
PCT/CN2022/078942 2021-12-06 2022-03-03 车辆控制方法、控制器、系统、装置及存储介质 WO2023103188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111477499.1A CN114162139B (zh) 2021-12-06 2021-12-06 一种车辆控制方法、控制器、系统、装置及存储介质
CN202111477499.1 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023103188A1 true WO2023103188A1 (zh) 2023-06-15

Family

ID=80483351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078942 WO2023103188A1 (zh) 2021-12-06 2022-03-03 车辆控制方法、控制器、系统、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114162139B (zh)
WO (1) WO2023103188A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180113473A1 (en) * 2003-03-20 2018-04-26 Agjunction Llc Gnss and optical guidance and machine control
CN108657269A (zh) * 2018-04-04 2018-10-16 南京天辰礼达电子科技有限公司 一种农业机械方向盘电机驱动自动驾驶设备及方法
CN110530361A (zh) * 2019-08-26 2019-12-03 青岛农业大学 一种基于农业机械双天线gnss自动导航系统的转向角度估计器
CN111216708A (zh) * 2020-01-13 2020-06-02 上海华测导航技术股份有限公司 车辆导航引导系统及车辆
CN112977603A (zh) * 2021-02-20 2021-06-18 黑龙江惠达科技发展有限公司 一种电机控制的方法和装置
CN113126136A (zh) * 2019-12-31 2021-07-16 上海司南卫星导航技术股份有限公司 基于电机方向盘的无前轮传感器自动驾驶系统
US20210291833A1 (en) * 2020-06-29 2021-09-23 Beijing Baidu Netcom Science And Technology Co., Ltd. Method and apparatus for controlling cruise of vehicle, electronic device, and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063241B (zh) * 2017-03-16 2023-08-25 上海联适导航技术股份有限公司 基于双gnss天线及单轴mems陀螺的前轮测角系统
CN108663036B (zh) * 2018-04-04 2021-11-02 南京天辰礼达电子科技有限公司 一种车辆前轮转动跟踪的方法
CN112014122B (zh) * 2020-07-21 2022-10-28 无锡卡尔曼导航技术有限公司 一种车轮转角测量装置及运行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180113473A1 (en) * 2003-03-20 2018-04-26 Agjunction Llc Gnss and optical guidance and machine control
CN108657269A (zh) * 2018-04-04 2018-10-16 南京天辰礼达电子科技有限公司 一种农业机械方向盘电机驱动自动驾驶设备及方法
CN110530361A (zh) * 2019-08-26 2019-12-03 青岛农业大学 一种基于农业机械双天线gnss自动导航系统的转向角度估计器
CN113126136A (zh) * 2019-12-31 2021-07-16 上海司南卫星导航技术股份有限公司 基于电机方向盘的无前轮传感器自动驾驶系统
CN111216708A (zh) * 2020-01-13 2020-06-02 上海华测导航技术股份有限公司 车辆导航引导系统及车辆
US20210291833A1 (en) * 2020-06-29 2021-09-23 Beijing Baidu Netcom Science And Technology Co., Ltd. Method and apparatus for controlling cruise of vehicle, electronic device, and storage medium
CN112977603A (zh) * 2021-02-20 2021-06-18 黑龙江惠达科技发展有限公司 一种电机控制的方法和装置

Also Published As

Publication number Publication date
CN114162139B (zh) 2024-03-26
CN114162139A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
US20240241518A1 (en) 3-d image system for vehicle control
WO2022007437A1 (zh) 传感器安装偏差角的标定方法、组合定位系统和车辆
CN107315345B (zh) 基于双天线gnss和预瞄追踪模型的农机自动导航控制方法
EP2285643B1 (en) Methods and system for automatic user-configurable steering parameter control
US10782384B2 (en) Localization methods and systems for autonomous systems
AU2020203993A1 (en) Apparatus and methods for vehicle steering to follow a curved path
US20140266877A1 (en) Precision accuracy global navigation satellite system (gnss) with smart devices
CN106229680B (zh) 对运动中的卫星天线进行实时对星的装置的应用方法
US20210165111A1 (en) Method for determining the position of a vehicle
CN112382844B (zh) 一种低轨卫星通信系统的天线伺服电机控制方法和系统
CN111949030A (zh) 一种农机定位方法、农机车辆和存储介质
CN113295174A (zh) 一种车道级定位的方法、相关装置、设备以及存储介质
US10908300B2 (en) Navigation method, navigation device and navigation system
CN108572380A (zh) 一种基于卫星导航和视觉导航的导航方法及其应用
CN110824524B (zh) 一种基于机载Ka波段的卫星视频传输系统
CN113419265B (zh) 一种基于多传感器融合的定位方法、装置与电子设备
WO2023103188A1 (zh) 车辆控制方法、控制器、系统、装置及存储介质
TWM617479U (zh) 車輛自動定位管理系統
CN115451919B (zh) 一种智能型无人测绘装置及方法
WO2022018964A1 (ja) 情報処理装置、情報処理方法およびプログラム
CN111897370B (zh) 基于航姿仪的动态天线跟星参数校正方法
KR100491168B1 (ko) 기하학적으로 구속된 다중 gps를 이용한 위치 및 자세측정 장치
TWI720923B (zh) 定位系統以及定位方法
CN114758001B (zh) 基于pnt的轮胎吊自动行走方法
JP7105659B2 (ja) 画像情報合成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902632

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024011211

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022902632

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022902632

Country of ref document: EP

Effective date: 20240708

ENP Entry into the national phase

Ref document number: 112024011211

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240604