WO2023103072A1 - 车辆控制方法、电子设备及存储介质 - Google Patents

车辆控制方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2023103072A1
WO2023103072A1 PCT/CN2021/139612 CN2021139612W WO2023103072A1 WO 2023103072 A1 WO2023103072 A1 WO 2023103072A1 CN 2021139612 W CN2021139612 W CN 2021139612W WO 2023103072 A1 WO2023103072 A1 WO 2023103072A1
Authority
WO
WIPO (PCT)
Prior art keywords
tapping
vehicle
information
vibration
tap
Prior art date
Application number
PCT/CN2021/139612
Other languages
English (en)
French (fr)
Inventor
梁晨
Original Assignee
博泰车联网科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博泰车联网科技(上海)股份有限公司 filed Critical 博泰车联网科技(上海)股份有限公司
Publication of WO2023103072A1 publication Critical patent/WO2023103072A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel

Definitions

  • Embodiments of the present application relate to the technical field of vehicles, and more specifically, relate to a vehicle control method, electronic equipment, and a storage medium.
  • the command control or information interaction of the vehicle can be realized through natural speech recognition.
  • Embodiments of the present application provide a vehicle control method, an electronic device, and a storage medium that can at least partially solve the above-mentioned problems in the prior art.
  • the first aspect of the embodiment of the present application provides a vehicle control method, including: acquiring a first vibration signal detected by at least one first vibration sensor of the vehicle; determining knock information according to the first vibration signal; determining from the knock information The in-vehicle equipment to be controlled and the corresponding control instructions; and controlling the in-vehicle equipment according to the control instructions.
  • the second aspect of the embodiment of the present application provides a vehicle, including: at least one first vibration sensor for detecting a first vibration signal; a processor connected to the at least one first vibration sensor and configured to implement the above embodiment Mentioned vehicle control methods.
  • the third aspect of the embodiment of the present application provides an electronic device, including: at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores instructions that can be executed by the at least one processor, and the instruction Executed by at least one processor, so that the at least one processor can execute the vehicle control method mentioned in the above embodiments.
  • the fourth aspect of the embodiment of the present application provides a computer-readable storage medium storing a computer program.
  • the computer program is executed by a processor, the vehicle control method mentioned in the above embodiment is implemented.
  • the electronic equipment can control the in-vehicle equipment of the vehicle through the first vibration signal detected by the first vibration sensor, providing passengers with a new way of interaction, making The interaction between vehicles and passengers is more diversified. Compared with the method of controlling the vehicle through the operation interface of the terminal, the operation is more convenient.
  • determining the in-vehicle device to be controlled and the corresponding control instruction from the tap information includes: determining that the in-vehicle device is a vehicle in response to the tap information meeting a preset voice wake-up condition voice system of the vehicle, and the control command is a wake-up command of the voice system of the vehicle.
  • the control command is a wake-up command of the voice system of the vehicle.
  • determining the tapping information according to the first vibration signal includes: performing denoising processing on the first vibration signal, and determining the tapping information according to the processed first vibration signal.
  • the accuracy of the determined tap information can be improved through noise reduction processing.
  • the vehicle has a sensor array formed by a plurality of first vibration sensors; wherein, determining the tapping information according to the first vibration signal includes: according to the first vibration detected by the first vibration sensor in the sensor array The vibration signal determines the tapping information. Capturing tap information through a sensor array increases accuracy and robustness.
  • FIG. 1 is a schematic flow chart of a vehicle control method according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of the installation position of the first vibration sensor according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the installation position of the first vibration sensor according to another embodiment of the present application.
  • Fig. 4 is a schematic diagram of connection between a processor and a first vibration sensor according to an embodiment of the present application
  • Fig. 5 is a schematic diagram of connection between a processor and a first vibration sensor according to another embodiment of the present application.
  • Fig. 6 is a schematic diagram of the connection relationship among the processor, the first vibration sensor and the state detector according to one embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • first vibration sensor discussed in this application may also be referred to as a second vibration sensor
  • first vibration signal may also be referred to as a second vibration signal, and vice versa.
  • Fig. 1 is a schematic flowchart of a vehicle control method 1000 according to an embodiment of the present application.
  • the vehicle control method 1000 can be executed, for example, by an electronic device such as a vehicle-mounted terminal or a server communicatively connected with the vehicle controller, which is not limited here.
  • a vehicle control method 1000 provided in an embodiment of the present application may include, for example:
  • the electronic device can control the in-vehicle device of the vehicle through the first vibration signal detected by the first vibration sensor, providing a new interaction mode for the passenger, and making the interaction between the vehicle and the passenger more diversified. Compared with the method of controlling the vehicle through the operation interface of the terminal, the operation is more convenient.
  • the number of the first vibration sensor installed on the vehicle may be, for example, one, and the electronic equipment controls the in-vehicle equipment according to the vibration signal detected by the first vibration sensor.
  • the in-vehicle device mentioned in the embodiments of the present application may be, for example, hardware (such as a window, a front cover, etc.) or software (such as a voice system, etc.) installed on the vehicle, which is not limited in the present application.
  • the schematic diagram of the installation position of the first vibration sensor is shown in FIG. , improve vehicle safety by 20.
  • the first vibration sensor of the vehicle can also be installed, for example, under the surface of the car armrest box between the main driver's seat and the passenger seat, so that passengers in the vehicle can control the vibration in the car by knocking on the car armrest box. equipment.
  • the first vibration sensor of the vehicle can also be installed in various positions such as inside the steering wheel, on the door of the driver's seat, etc., and the present application does not limit this.
  • the vehicle has a plurality of first vibration sensors, which form a sensor array.
  • the electronic device acquires the first vibration signals detected by the first vibration sensors in the sensor array, and controls the vehicle based on the first vibration signals detected by the plurality of first vibration sensors.
  • the first vibration sensor can be respectively installed on the components of the vehicle that are expected to be controlled by tapping, such as the front cover, the rear cover, etc., so that passengers can realize the control by tapping the in-vehicle equipment. Control of in-vehicle equipment.
  • a plurality of first vibration sensors can be installed based on the structure of the vehicle, so that a sensor array formed by a plurality of first vibration sensors can detect vibrations in multiple areas of the vehicle, without the need for control by tapping. All the components of the vehicle are installed on the first vibration sensor, which reduces the cost.
  • the first vibration sensor 21 can be installed respectively at the front portion of the front cover of the vehicle 20, the rear cover, the roof, the rear portion of the roof, and 4 doors of the vehicle 20, so that Passengers control each door, front cover, rear cover and roof through the vehicle control method mentioned in the embodiments of the present application.
  • the number and installation positions of the first vibration sensors 21 in the sensor array can be adjusted as required, which is not limited by the present application.
  • appropriate redundancy may be considered when setting the position of the first vibration sensor.
  • 7 to 8 first vibration sensors can be arranged, so that when individual first vibration sensors break down, the implementation of the present application can be continued.
  • the vehicle control method mentioned in the manner improves the robustness of the vehicle control violation mentioned in the embodiments of the present application.
  • At least three first vibration sensors can be arranged near each first vibration sensor. When the first vibration sensor fails, the three nearby first vibration sensors can still effectively detect the vibration in this area.
  • the distance can be appropriately increased, and if adjacent first vibration sensors are installed on different materials, the distance can be appropriately shortened.
  • the first vibration signal detected by the first vibration sensor may be acquired through a processor of the vehicle.
  • the connection modes of the processor and the first vibration sensor include but not limited to mode 1 and mode 2.
  • FIG. 4 is a schematic diagram of connection between a processor 22 and the first vibration sensor 21 according to an embodiment of the present application.
  • the vehicle 20 is equipped with N first vibration sensors 21 , where N is a positive integer greater than 1.
  • the first vibration sensor 21 - 1 , the first vibration sensor 21 - 2 . . . the first vibration sensor 21 -N are respectively connected to the processor 22 .
  • Each first vibration sensor 21 transmits the first vibration signal detected by itself to the processor 22 respectively.
  • FIG. 5 is a schematic diagram of connection between a processor 22 and the first vibration sensor 21 according to an embodiment of the present application.
  • the processor 22 is connected in series with the first vibration sensor 21 .
  • the processor 22 sends an acquisition instruction to the first vibration sensor 21-1 that is communicatively connected to the output end of the processor 22, so that each first vibration sensor 21-1 sends its identification information and the first vibration signal detected by it to its output
  • the device (the first vibration sensor 21-2) that end is connected; And receive the data that the first vibration sensor 21-N that is connected with the input terminal of processor 22 communicates and transmit, to obtain the first vibration signal of each first vibration sensor 21 .
  • the processor 22 sends an acquisition instruction to the first vibration sensor 21-1 that is communicatively connected to the output end of the processor 22, and the first vibration sensor 21-1 that is communicatively connected to the output end of the processor 22 receives the acquisition instruction Afterwards, the identification information of the first vibration sensor 21-1 and the first vibration signal detected by the first vibration sensor 21-1 are transmitted to the first vibration sensor 21-2 connected to the output end of the first vibration sensor 21-1, The first vibration sensor 21-2 uses the identification information of the first vibration sensor 21-2 and the first vibration signal detected by the first vibration sensor 21-2, and the identification information of the first vibration sensor 21-1 and the first vibration sensor 21 The first vibration signal detected by ⁇ 1 is passed down until it is passed to the first vibration sensor 21 -N communicatively connected to the input terminal of the processor 22 .
  • the first vibration sensor 21-N After the first vibration sensor 21-N receives the data transmitted by the upper level, the identification information of the first vibration sensor 21-N and the first vibration signal detected by the first vibration sensor 21-N, as well as the data transmitted by the upper level (including the identification information of the first vibration sensor 21 - 1 to the first vibration sensor 21 -N- 1 and the detected first vibration signal), and transmit it to the processor 22 .
  • the processor 22 can acquire the first vibration signals detected by each first vibration sensor 21 .
  • the processor 22 may obtain identification information corresponding to each first vibration signal, and determine at which position the first vibration signal is detected by the first vibration sensor, so as to subsequently determine tapping information.
  • the first vibration sensor 21-1 communicatively connected to the output terminal of the processor can start the data transmission mode after receiving the acquiring instruction. In the data transmission mode, after each vibration is detected, its identification information and the first vibration signal are transmitted downward.
  • the identification information of the first vibration sensor may be, for example, location information or label information of the first vibration sensor, and the label information may be, for example, the factory number or custom ID of the first vibration sensor, which is not limited in the present application.
  • the first vibration sensor may eg be a microphone.
  • the tapping information may, for example, indicate any one or any combination of the tapping position, tapping times, tapping rhythm and tapping intensity, which is not limited in the present application.
  • the manner of determining the tapping information is illustrated below with an example.
  • the number of the first vibration sensor is one
  • the determination of the tapping information by the electronic device according to the first vibration signal may, for example, include: analyzing the first vibration signal detected by the first vibration sensor to obtain the tapping information. Click Information.
  • the tapping information indicates the tapping position or tapping intensity
  • the electronic device may, for example, store the corresponding relationship between different amplitude ranges and tapping positions, or the corresponding relationship between different amplitude ranges and tapping intensity, so that according to the first vibration sensor
  • the detected amplitude of the first vibration signal determines the tapping position or tapping intensity as the tapping information.
  • the corresponding relationship between different amplitude ranges and tapping positions may be determined based on the model of the first vibration sensor, etc., which is not limited in the present application.
  • the tap information indicates the tap times
  • the electronic device may determine the tap times as the tap information, for example, according to the number of peaks of the first vibration signal detected by the first vibration sensor.
  • the tapping information indicates the tapping rhythm
  • the electronic device may determine the tapping rhythm as the tapping information, for example, according to the distribution of peaks of the first vibration signal detected by the first vibration sensor.
  • the first vibration signal includes 3 peaks
  • the interval between the first peak and the second peak is about 1 second
  • the determined tapping rhythm is: 1 tap, 1 second pause, 2 taps.
  • the vehicle has a sensor array formed by a plurality of first vibration sensors
  • the electronic device determining knock information according to the first vibration signal may, for example, include: according to the first vibration sensor detected by the first vibration sensor in the sensor array
  • the vibration signal determines the tapping information.
  • the first vibration sensors are installed at different positions of the vehicle, and a plurality of first vibration sensors form an array, and the array formed of a plurality of first vibration sensors is referred to as a "sensor array" for short.
  • the electronic device jointly determines the tapping information based on the first vibration signals detected by the multiple first vibration sensors.
  • the tap information indicates a tap position.
  • the electronic device can determine the knock position based on the first vibration signals detected by the multiple first vibration sensors.
  • first vibration sensors are installed in multiple positions on the vehicle.
  • the vibration amplitude of the first vibration signal detected by the first vibration sensor on the left front door The maximum, the vibration amplitude of the first vibration signal detected by the nearer first vibration sensor (such as the left rear door, front trunk lid, sunroof position) is smaller, and the first vibration sensor farther away (such as the right front door, The vibration amplitude of the first vibration signal detected by right rear car door, trunk lid position) is smaller, even no vibration. Therefore, the electronic device can determine that the knocking position is the left front door according to the distribution of the vibration amplitudes of the first vibration signals detected by each first vibration sensor.
  • the tap information indicates the tap strength.
  • the electronic device may determine the tapping intensity, for example, according to the average value of the vibration amplitudes of the first vibration signals detected by the T first vibration sensors with relatively large vibration amplitudes.
  • the electronic device may determine the tapping intensity, for example, according to the vibration amplitude of the first vibration signal detected by the first vibration sensor with the largest vibration amplitude.
  • the algorithm for determining the knocking intensity based on the vibration amplitudes of the first vibration signals detected by the multiple first vibration sensors can be adjusted as required, and the present application does not limit this .
  • the tap information indicates the number of taps.
  • the number of taps may be determined, for example, according to the average of the number of peaks of the first vibration signals detected by the T first vibration sensors with relatively large vibration amplitudes.
  • the electronic device may determine the number of taps, for example, according to the number of peaks of the first vibration signal detected by the first vibration sensor with the largest vibration amplitude.
  • the algorithm for determining the number of taps based on the number of peaks of the first vibration signal detected by the plurality of first vibration sensors can be adjusted as needed, and the present application does not make any contribution to this limit.
  • the tapping information indicates the tapping rhythm.
  • the electronic device may determine the tapping rhythm, for example, according to the distribution of peaks of the first vibration signal detected by the first vibration sensor with the largest vibration amplitude.
  • the algorithm for determining the tapping rhythm based on the distribution of the peaks of the first vibration signals detected by the multiple first vibration sensors can be adjusted as needed, and the present application No limit.
  • the electronic device may, for example, use a noise reduction algorithm to perform noise reduction processing, so as to improve the accuracy of the determined tap information.
  • the step of the electronic device determining the tapping information according to the first vibration signal may, for example, include: performing denoising processing on the first vibration signal, and determining the tapping information according to the processed first vibration signal.
  • the vehicle is equipped with at least one second vibration sensor for detecting noise of the vehicle.
  • Denoising the first vibration signal may include, for example: acquiring a second vibration signal detected by at least one second vibration sensor of the vehicle; determining the noise of the vehicle according to the second vibration signal; and performing denoising on the first vibration signal according to the noise of the vehicle Noise removal.
  • the vehicle is equipped with N first vibration sensors and M second vibration sensors, wherein the first vibration sensor and the second vibration sensor can be realized by using a microphone, N can be, for example, a positive integer greater than 1, and M can, for example, be greater than A positive integer of 1.
  • the N first vibration sensors are used to detect knocking vibrations, and the obtained first vibration signals are respectively v 1 , v 2 , ... v N .
  • the M second vibration sensors are used to detect common mode noise, and the obtained second vibration signals are r 1 . . . r M .
  • the second vibration sensor may, for example, be mounted on a location of the vehicle which is unlikely to be a knock point (such as under the vehicle, etc.).
  • N is equal to 5
  • M is equal to 2.
  • the vehicle is further equipped with a state detector for detecting state information of at least one first vibration sensor.
  • the connection relationship between the processor, the first vibration sensor and the state detector is as shown in FIG. 21-N) respectively install a state detector (such as 23-1 to 23-N among Fig. 6), and the state detector is respectively connected with processor 22, to transmit the state information of each first vibration sensor to processor 22 .
  • a state detector such as 23-1 to 23-N among Fig. 6
  • one state detector can also be installed for multiple first vibration sensors, and the present application does not limit the corresponding relationship between the first vibration sensors and the state detectors.
  • the vehicle control method 1000 may further include, for example: acquiring state information of at least one first vibration sensor transmitted by the state detector.
  • the electronic device determines the tapping information according to the first vibration signal detected by the first vibration sensor in the sensor array, for example: determining the data conversion algorithm of the sensor array according to the state information; according to the data conversion algorithm and the first vibration sensor detection in the sensor array The first vibration signal is used to determine the tapping information.
  • the electronic device simultaneously senses vibrations through multiple first vibration sensors, and the processor calculates data of the multiple first vibration sensors, where the data includes at least the first vibration signal and position information.
  • the electronic device can perform auxiliary calculation and mutual verification and error correction on the data of multiple first vibration sensors, which can reduce data errors that are prone to occur in a single first vibration sensor.
  • by forming a sensor array there is no need to install the first vibration sensor on each component that needs to detect vibration, which can avoid the situation of installing the first vibration sensor in a small or inconvenient installation place, which can reduce costs and improve implementability. sex. If individual first vibration sensors fail to provide data, the processor can exclude the first vibration sensors from the calculation and adjust the data conversion algorithm without affecting subsequent use.
  • the processor After the faulty first vibration sensor is repaired or replaced, the processor detects that the state of the first vibration sensor is normal, and then restores the original data conversion algorithm. Compared with the situation that the first vibration sensor and the in-vehicle equipment are installed together in a one-to-one correspondence, some embodiments of the present application obtain knocking information through the sensor array, which has better accuracy and robustness.
  • the in-vehicle device includes a voice system of the vehicle, and the voice system can be awakened by tapping.
  • determining the in-vehicle device to be controlled and the corresponding control instruction from the tap information may, for example, include: in response to the tap information meeting a preset voice wake-up condition, determining that the in-vehicle device is the voice system of the vehicle, and The control command is a wake-up command of the voice system of the vehicle.
  • the voice wake-up condition includes at least any one of the following: the tap position indicated by the tap information is a preset position; the number of taps indicated by the tap information is a preset number of times; The rhythm is the preset rhythm; the tapping intensity indicated by the tapping information belongs to the preset intensity range.
  • the tap position indicated by the tap information is a preset position
  • the number of taps indicated by the tap information is a preset number of times
  • the rhythm is the preset rhythm
  • the tapping intensity indicated by the tapping information belongs to the preset intensity range.
  • a first vibration sensor 21 can be installed under the instrument panel 24 of the vehicle 20 , and the voice system (not shown) of the vehicle can be awakened by tapping the instrument panel 24 to perform voice interaction with passengers.
  • the voice system is awakened by tapping without using voice wake-up words to wake up the voice system for voice communication, which can reduce the failure to wake up the voice system in time due to inaccurate voice recognition and other reasons.
  • the system provides services to passengers.
  • the tapping information indicates any one of the tapping position, tapping times, tapping rhythm and tapping intensity
  • the electronic device can determine the in-vehicle device to be controlled according to the tapping information, and A control command is determined according to the determined in-vehicle equipment.
  • the number of control instructions corresponding to some in-vehicle devices is 1, and the electronic device can directly determine the control instructions after determining that the in-vehicle device to be controlled is the part of the in-vehicle device.
  • the in-vehicle device is the front cover, and its corresponding control instruction indicates to open the front cover.
  • the electronic device determines that the in-vehicle device to be controlled is the front cover according to the tapping information
  • the determined control instruction is the instruction Open the hood.
  • the number of control instructions corresponding to some in-vehicle devices is greater than 1, and after determining the in-vehicle device to be controlled, the electronic device can obtain the state information of the in-vehicle device; and determine the control according to the state information of the in-vehicle device instruction.
  • the in-vehicle device is a window
  • its corresponding control instruction includes a first instruction to control the window to move upward by a first preset distance and a second instruction to control the window to move downward by a second preset distance.
  • the first preset distance and the second preset distance can be determined according to the size of the vehicle window, etc., which are not limited here.
  • the tap information indicates the tap position
  • the electronic device determines the in-vehicle device to be controlled according to the tap position indicated by the tap information and the corresponding relationship between the tap position and the in-vehicle device, and
  • the state information of the in-vehicle equipment determines the control instruction.
  • the corresponding relationship between the tapping position and the in-vehicle equipment may include, for example: the tapping position is in the first area, and the in-vehicle equipment to be controlled is the window on the side of the main driver's seat;
  • the in-vehicle device is the window next to the passenger seat;
  • the tap position is in the third area, and the in-car device to be controlled is the window behind the main driver's seat;
  • the tap position is in the fourth area, and the in-car device to be controlled is the window
  • the equipment is the window behind the passenger seat.
  • there may be no intersection among the first area, the second area, the third area and the fourth area, and the specific areas may be divided according to the vehicle structure or the detection area covered by the first vibration sensor, which is not limited here.
  • the tap information indicates the number of taps
  • the electronic device determines the in-vehicle device to be controlled according to the tap count indicated by the tap information and the corresponding relationship between the tap count and the in-vehicle device, and The status information of the in-vehicle equipment determines the control instruction.
  • the corresponding relationship between the number of taps and the in-vehicle equipment may include, for example: the number of taps is 1, and the in-vehicle device to be controlled is the window on the side of the main driver's seat; the number of taps is 2, and the car window to be controlled
  • the interior device is the window next to the passenger seat; the number of taps is 3 times, and the interior device to be controlled is the window behind the main driver's seat; the number of taps is 4 times, and the interior device to be controlled is the co-pilot rear windows.
  • the tapping information indicates the tapping rhythm
  • the electronic device determines the in-vehicle device to be controlled according to the tapping rhythm indicated by the tapping information and the corresponding relationship between the tapping rhythm and the in-vehicle device, and controls the The status information of the in-vehicle equipment determines the control instruction.
  • the corresponding relationship between tapping rhythm and in-vehicle equipment may include: the tapping rhythm is the first preset rhythm (such as tapping once, stopping for 1 second, and tapping again), and the in-vehicle equipment to be controlled is the main driver.
  • tapping rhythm is the second preset rhythm (such as tapping once, stopping for 1 second, and tapping twice), and the in-car equipment to be controlled is the window next to the passenger seat; tapping The rhythm is the third preset rhythm (for example, knock once, stop for 1 second, and then knock three times), and the in-car equipment to be controlled is mainly the window behind the driver's seat; the knock rhythm is the fourth preset rhythm (such as knock 1 tap, stop for 1 second, and then tap 4 times), the in-vehicle device to be controlled is the window behind the passenger seat.
  • the tapping information indicates the tapping intensity
  • the electronic device determines the in-vehicle device to be controlled according to the tapping intensity indicated by the tapping information and the corresponding relationship between the tapping intensity and the in-vehicle device, and
  • the status information of the in-vehicle equipment determines the control instruction.
  • the corresponding relationship between the knocking intensity and the in-vehicle equipment may include: the knocking intensity is in the first preset range, and the in-vehicle equipment to be controlled is the window on the side of the main driver's seat; the knocking intensity is in the second preset range.
  • the in-vehicle device to be controlled is the window next to the passenger seat; the knock intensity is in the third preset range, and the in-vehicle device to be controlled is the window behind the main driver's seat; the tap intensity is in the fourth preset range Set the range, and the in-vehicle device to be controlled is the window behind the passenger seat.
  • the specific numerical ranges thereof may be divided according to the range of the first vibration sensor, which is not described here. limit.
  • the above example is only for illustration, and without departing from the teaching of the present application, the above-mentioned correspondence between the tap position and the in-vehicle device, the correspondence between the number of taps and the in-vehicle device, the tap
  • the corresponding relationship between the tapping rhythm and the in-vehicle equipment and the corresponding relationship between the tapping intensity and the in-vehicle equipment can be adjusted according to the application scenarios, which are not limited in this application.
  • the tapping information indicates a combination of any two information of tapping position, tapping times, tapping rhythm and tapping intensity.
  • the electronic device determines the in-vehicle device to be controlled based on one of the two types of information, and determines a control command based on the other type of information. Combining different combinations of tap information, the electronic device determines the in-vehicle device to be controlled and the control command by way of example.
  • the tap information indicates a tap position and a tap count.
  • the electronic device determines the in-vehicle device to be controlled according to the tap position indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the number of taps corresponding to the in-vehicle device to be controlled and the control instruction ; and determine the control instruction according to the tap times indicated by the tap information and the corresponding relationship between the tap times and the control instructions.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the number of taps of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled, call the tap count of the in-vehicle device The corresponding relationship with the control command in order to determine the control command.
  • different control instructions can be realized through different tapping times.
  • one or more first vibration sensors are installed in the vehicle, and the electronic device acquires the tap position and the tap count.
  • the electronic device determines that the in-vehicle device to be controlled is the window on the side of the main driver's seat, and obtains the window on the side of the main driver's seat The corresponding relationship between the number of taps and the control command.
  • the corresponding relationship between the number of taps and the control instruction can be, for example, when the number of taps is 1, the control instruction can be, for example, a first instruction indicating to control the window to move upwards by a first preset distance, and the number of taps is 2 , the control instruction may, for example, instruct to control the vehicle window to move downward by the second preset distance. If the number of taps indicated by the tap information of the electronic device is one, the determined control instruction may, for example, instruct to control the vehicle window to move upward by a first preset distance. Wherein, the first preset distance and the second preset distance can be set according to the size of the vehicle window, etc., which are not limited here.
  • the corresponding relationship between the tap times and the control commands corresponding to each in-vehicle device may be determined according to the structure or function of the in-vehicle device, which is not limited in the present application.
  • the electronic device determines the in-vehicle device to be controlled according to the number of taps indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap position corresponding to the in-vehicle device to be controlled and the control instruction Relationship: determine the control instruction according to the tap position indicated by the tap information and the corresponding relationship between the tap position and the control instruction. Since different in-vehicle devices have different control commands, the electronic device stores the corresponding relationship between the tap position of each in-vehicle device and the control commands. After the in-vehicle device to be controlled is determined, the corresponding relationship between the tapping position of the in-vehicle device and the control instruction is invoked, so as to determine the control instruction. In this example, using different tapping positions, different control instructions can be realized.
  • one or more first vibration sensors are installed in the vehicle, and the electronic device acquires the tap position and the tap count.
  • the acquisition process refer to the relevant description in step S12.
  • the correspondence between the tap position corresponding to the car window and the control command may, for example, indicate that when the tap position belongs to the fifth area, the control command may, for example, instruct to control the window to move upward by a first preset distance , when the tap position belongs to the sixth area, the control instruction may, for example, instruct to control the vehicle window to move downward by a second preset distance.
  • the fifth area and the sixth area can be determined according to the detection range of a single first vibration sensor or the detection range of a sensor array.
  • the corresponding relationship between the tap position and the control instruction corresponding to each in-vehicle device can be determined according to the structure or function of the in-vehicle device, which is not limited in the present application.
  • the tapping information indicates a tapping position and a tapping rhythm.
  • the electronic device determines the in-vehicle device to be controlled according to the tap position indicated by the tap information; according to the in-vehicle device to be controlled, obtains the corresponding relationship between the tap rhythm and the control instruction corresponding to the in-vehicle device to be controlled ; and determine the control instruction according to the tapping rhythm indicated by the tapping information and the corresponding relationship between the tapping rhythm and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping rhythm of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled, call the tapping rhythm of the in-vehicle device The corresponding relationship with the control command in order to determine the control command.
  • different control commands can be realized through different tapping rhythms.
  • one or more first vibration sensors are installed in the vehicle, and the electronic device acquires the tapping position and tapping rhythm.
  • the electronic device determines that the in-vehicle device to be controlled is the window on the side of the main driver's seat, and obtains the window on the side of the main driver's seat The correspondence between the corresponding tapping rhythm and the control command.
  • the corresponding relationship between the tapping rhythm and the control instruction may include, for example: the tapping rhythm is the first preset rhythm (such as tapping once, stopping for 1 second, and tapping again), and the determined control instruction may, for example, indicate the control
  • the window moves up a first preset distance;
  • the tapping rhythm is a second preset rhythm (such as knocking 1 time, stopping for 1 second, and then knocking 2 times), and the determined control command can, for example, indicate to control the window to move down the second time.
  • Two preset distances can be set according to the size of the vehicle window and the like.
  • the electronic device determines the in-vehicle device to be controlled according to the tap rhythm indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap position corresponding to the in-vehicle device to be controlled and the control instruction Relationship: determine the control instruction according to the tap position indicated by the tap information and the corresponding relationship between the tap position and the control instruction. Since different in-vehicle devices have different control commands, the electronic device stores the corresponding relationship between the tap position of each in-vehicle device and the control commands. After the in-vehicle device to be controlled is determined, the corresponding relationship between the tapping position of the in-vehicle device and the control instruction is invoked, so as to determine the control instruction. In this example, using different tapping positions, different control instructions can be realized.
  • one or more first vibration sensors are installed in the vehicle, and the electronic device acquires the tapping position and tapping rhythm.
  • the acquisition process refer to the relevant description in step S12.
  • the correspondence between the tap position corresponding to the car window and the control command may, for example, indicate that when the tap position belongs to the fifth area, the control command may, for example, instruct to control the window to move upward by a first preset distance , when the tap position belongs to the sixth area, the control instruction may, for example, instruct to control the vehicle window to move downward by a second preset distance.
  • the fifth area and the sixth area can be determined according to the detection range of a single first vibration sensor or the detection range of a sensor array.
  • the corresponding relationship between the tap position and the control instruction corresponding to each in-vehicle device can be determined according to the structure or function of the in-vehicle device, which is not limited in the present application.
  • the tap information indicates tap position and tap intensity.
  • the electronic device determines the in-vehicle device to be controlled according to the tap position indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap intensity corresponding to the in-vehicle device to be controlled and the control instruction ; and determine the control instruction according to the tapping intensity indicated by the tapping information and the corresponding relationship between the tapping intensity and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping intensity of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled, call the tapping intensity of the in-vehicle device The corresponding relationship with the control command in order to determine the control command.
  • different control commands can be realized through different tapping intensities.
  • a sensor array formed by a plurality of first vibration sensors is installed in the vehicle, and the electronic device acquires the tapping position and tapping intensity.
  • the electronic device determines that the in-vehicle device to be controlled is the window on the side of the main driver's seat, and obtains the window on the side of the main driver's seat.
  • the corresponding relationship between the knocking intensity and the control command can be, for example, if the knocking intensity is in the fifth preset range, the control command can, for example, instruct to control the window to move up the first preset distance, if the knocking intensity is in the fifth preset range
  • the control instruction may, for example, instruct to control the vehicle window to move down a second preset distance. For example, there may be no intersection between the fifth preset range and the sixth preset range.
  • the electronic device determines the in-vehicle device to be controlled according to the tap intensity indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap position corresponding to the in-vehicle device to be controlled and the control command relationship; and determine the control instruction according to the tap position indicated by the tap information and the corresponding relationship between the tap position and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping position of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled, call the tapping position of the in-vehicle device The corresponding relationship with the control command in order to determine the control command. In this example, using different tapping positions, different control instructions can be realized.
  • a sensor array formed by a plurality of first vibration sensors is installed in the vehicle, and the electronic device acquires the tap position and the tap count, and the acquisition process can refer to the relevant description in step S12.
  • the corresponding relationship between the tapping intensity and the in-vehicle equipment please refer to the related examples above.
  • the corresponding relationship between the tap position and the control command of each window can refer to the related examples above.
  • the corresponding relationship between the tap position and the control instruction corresponding to each in-vehicle device can be determined according to the structure or function of the in-vehicle device, which is not limited in the present application.
  • the tap information indicates the number of taps and the strength of the taps.
  • the electronic device determines the in-vehicle device to be controlled according to the number of taps indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap intensity corresponding to the in-vehicle device to be controlled and the control instruction ; and determine the control instruction according to the tapping intensity indicated by the tapping information and the corresponding relationship between the tapping intensity and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping intensity of each in-vehicle device and the control command.
  • the in-vehicle device After determining the in-vehicle device to be controlled based on the number of taps, call the in-vehicle device The corresponding relationship between the tapping intensity and the control command in order to determine the control command.
  • different control commands can be realized through different tapping intensities.
  • a first vibration sensor is installed in the vehicle, or a sensor array formed by a plurality of first vibration sensors is installed, and the electronic device acquires the number of taps and the intensity of taps.
  • the acquisition process refer to the related description in step S12.
  • the correspondence between the number of taps and the in-vehicle equipment and the correspondence between the tap intensity and the control instruction reference may be made to the related examples above.
  • the electronic device determines the in-vehicle device to be controlled according to the tap intensity indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the number of taps corresponding to the in-vehicle device to be controlled and the control instruction relationship; and determine the control instruction according to the tap times indicated by the tap information and the corresponding relationship between the tap times and the control instructions.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the number of taps of each in-vehicle device and the control commands.
  • the in-vehicle device After determining the in-vehicle device to be controlled according to the tap intensity, call the in-vehicle device The corresponding relationship between the number of taps and the control command in order to determine the control command.
  • different control instructions can be realized through different tapping times.
  • a sensor array formed by a plurality of first vibration sensors is installed in the vehicle, and the electronic device acquires the number of knocks and the intensity of the knocks (see the relevant description in step S12 for the specific process).
  • the electronic device acquires the number of knocks and the intensity of the knocks (see the relevant description in step S12 for the specific process).
  • the tapping information indicates tapping rhythm and tapping intensity.
  • the electronic device determines the in-vehicle device to be controlled according to the tap rhythm indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap intensity corresponding to the in-vehicle device to be controlled and the control instruction ; and determine the control instruction according to the tapping intensity indicated by the tapping information and the corresponding relationship between the tapping intensity and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping intensity of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled based on the tapping rhythm, call the in-vehicle device The corresponding relationship between the tapping intensity and the control command in order to determine the control command.
  • different control commands can be realized through different tapping intensities.
  • a first vibration sensor is installed in the vehicle, or a sensor array formed by a plurality of first vibration sensors is installed, and the electronic device obtains the tapping rhythm and tapping intensity.
  • the electronic device obtains the tapping rhythm and tapping intensity.
  • the obtaining process refer to the relevant description in step S12.
  • the tap rhythm and the in-vehicle equipment and the correspondence between the tap intensity and the control command, reference may be made to the related examples above.
  • the electronic device determines the in-vehicle device to be controlled according to the tap intensity indicated by the tap information; according to the in-vehicle device to be controlled, obtains the correspondence between the tap rhythm corresponding to the in-vehicle device to be controlled and the control instruction Relationship; determine the control instruction according to the tapping rhythm indicated by the tapping information and the corresponding relationship between the tapping rhythm and the control instruction.
  • Different in-vehicle devices have different control commands.
  • the electronic device stores the corresponding relationship between the tapping rhythm of each in-vehicle device and the control command. After determining the in-vehicle device to be controlled according to the tapping intensity, call the in-vehicle device The corresponding relationship between the tapping rhythm and the control command in order to determine the control command.
  • different control commands can be realized through different tapping rhythms.
  • one or more first vibration sensors are installed in the vehicle, and the electronic device acquires the tapping rhythm and tapping intensity.
  • the acquisition process refer to the related description in step S12.
  • the corresponding relationship between the tapping intensity and the in-vehicle equipment and the corresponding relationship between the tapping rhythm and the control instruction please refer to the related examples above.
  • the method of determining the in-vehicle device to be controlled and the corresponding control command from the tapping information can be adjusted according to the combination of the tapping information, and the present application does not limit this .
  • the tapping information indicates a combination of any three information of tapping position, tapping times, tapping rhythm and tapping intensity.
  • the tap information indicates a tap position, a tap count, and a tap rhythm, or, the tap information indicates a tap intensity, a tap count, and a tap tempo.
  • the tap information indicates a tap position, a tap count, and a tap tempo.
  • the electronic device determines the in-vehicle device to be controlled according to the tap position indicated by the tap information; according to the in-vehicle device to be controlled, obtains the information of the tap rhythm, the number of taps and the control command corresponding to the in-vehicle device to be controlled.
  • the control instruction is determined according to the tapping rhythm and the tapping times indicated by the tapping information, and the corresponding relationship between the tapping rhythm, the tapping times and the control instruction.
  • the tap information indicates tap strength, tap count, and tap tempo.
  • the electronic device determines the in-vehicle device to be controlled according to the percussion intensity indicated by the percussion information; according to the in-vehicle device to be controlled, obtains the corresponding percussion rhythm, the number of percussions and the control command of the in-vehicle device to be controlled.
  • the control instruction is determined according to the tapping rhythm and the tapping times indicated by the tapping information, and the corresponding relationship between the tapping rhythm, the tapping times and the control instruction.
  • the corresponding relationship between the tapping rhythm, the tapping frequency and the control command can be, for example, as follows: if the tapping frequency is 3 times, and the tapping rhythm is one tap, Stop for one second, tap twice, the corresponding control command can, for example, indicate to switch to the next song; if the number of taps is 3 times, and the tapping rhythm is two taps, stop for one second, tap once, the corresponding control command For example, it can indicate to switch to the previous song; if the number of taps is 4 times, and the tap rhythm is tap once, stop for one second, and tap three times, the corresponding control command can, for example, instruct to turn up the volume, tap three times, and stop once Seconds, knock once, and the corresponding control instruction may, for example, indicate to decrease the volume.
  • the electronic device in response to the absence of in-vehicle equipment or control instructions matching the tap information, may feed back prompt information through voice or other forms to prompt passengers that there is an operation error.
  • the step of the electronic device controlling the in-vehicle device according to the control instruction may, for example, include: sending the control instruction to an actuator corresponding to the in-vehicle device, and executing the control instruction through the actuator to control the in-vehicle device .
  • the electronic device may also inform the passenger of the in-vehicle device to be controlled and the control instruction determined in the above manner, for example, by voice.
  • the electronic device controls the in-vehicle device according to the control instruction.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • the embodiment of the present application also provides a vehicle, the vehicle includes: at least one first vibration sensor (such as 21 in Figure 2 and Figure 3, 21-1 to 21-N in Figure 4, Figure 5 and Figure 6) , for detecting a first vibration signal; a processor (such as 22 in FIG. 4, FIG. 5 and FIG. 6), connected to at least one first vibration sensor, configured to execute the vehicle control method mentioned in the above embodiments.
  • at least one first vibration sensor such as 21 in Figure 2 and Figure 3, 21-1 to 21-N in Figure 4, Figure 5 and Figure 6) , for detecting a first vibration signal
  • a processor such as 22 in FIG. 4, FIG. 5 and FIG. 6
  • a vehicle 20 includes a plurality of first vibration sensors 21 installed in different positions, and the plurality of first vibration sensors 21 form a sensor array.
  • the processor 22 is respectively connected to the first vibration sensors ( 21 - 1 to 21 -N).
  • the processor 22 is connected in series with the first vibration sensors ( 21 - 1 to 21 -N).
  • the vehicle further includes: a state detector (23-1 to 23-N), respectively connected to at least one first vibration sensor (21-1 to 21-N) and The processor 22 is connected and used to detect the status of at least one first vibration sensor (21-1 to 21-N).
  • the vehicle further includes: at least one second vibration sensor (not shown), connected to the processor, and used for detecting noise.
  • this embodiment is a device implementation manner corresponding to the above-mentioned method embodiment, and this embodiment can be implemented in cooperation with the above-mentioned method embodiment.
  • the relevant technical details mentioned in the foregoing method embodiments are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied to the above method embodiments.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed by the present invention are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application also provides an electronic device, which includes at least one processor and a memory communicatively connected to the at least one processor; wherein, the memory stores instructions executable by the at least one processor, and the instructions are executed by At least one processor executes, so that the at least one processor can execute the above vehicle control method.
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, a vehicle control method is implemented.
  • Fig. 7 shows a schematic block diagram of an example electronic device 300 that may be used to implement embodiments of the present application.
  • Electronic device is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular telephones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions, are by way of example only, and are not intended to limit implementations of the applications described and/or claimed herein.
  • the electronic device 300 includes a computing unit 301, which can perform calculations according to a computer program stored in a read-only memory (ROM) 302 or a computer program loaded from a storage unit 308 into a random access memory (RAM) 303. Various appropriate actions and processes are performed. In the RAM 303, various programs and data necessary for the operation of the electronic device 300 can also be stored.
  • the computing unit 301, ROM 302, and RAM 303 are connected to each other through a bus 304.
  • An input/output (I/O) interface 305 is also connected to the bus 304 .
  • the I/O interface 305 Multiple components in the electronic device 300 are connected to the I/O interface 305, including: an input unit 306, such as a keyboard, a mouse, etc.; an output unit 307, such as various types of displays, speakers, etc.; a storage unit 308, such as a magnetic disk, an optical disk etc.; and a communication unit 309, such as a network card, a modem, a wireless communication transceiver, and the like.
  • the communication unit 309 allows the electronic device 300 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.
  • the computing unit 301 may be various general-purpose and/or special-purpose processing components having processing and computing capabilities. Some examples of computing units 301 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various dedicated artificial intelligence (AI) computing chips, various computing units that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc.
  • the computing unit 301 executes various methods and processes described above, such as a vehicle control method.
  • the vehicle control method may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 308 .
  • part or all of the computer program can be loaded and/or installed on the electronic device 300 via the ROM 302 and/or the communication unit 309.
  • the computer program is loaded into RAM 303 and executed by computing unit 301, one or more steps of the vehicle control method described above can be performed.
  • the computing unit 301 may be configured to execute the vehicle control method in any other suitable manner (for example, by means of firmware).
  • Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOC system of systems
  • CPLD load programmable logic device
  • computer hardware firmware, software, and/or combinations thereof.
  • Various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor It may be a special-purpose or general-purpose programmable processor that can receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device. output device.
  • Program codes for implementing the methods of the present application may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special purpose computer, or other programmable data processing devices, so that the program codes, when executed by the processor or controller, make the functions/functions specified in the flow diagrams and/or block diagrams Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the systems and techniques described herein can be implemented on a computer having a display device, such as a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and pointing device (eg, a mouse or a trackball) through which the user may provide input to the computer.
  • a display device such as a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or a trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.

Abstract

一种车辆控制方法(1000)、电子设备及存储介质。车辆控制方法(1000)包括:获取车辆的至少一个振动传感器检测的振动信号(S11);根据振动信号确定敲击信息(S12);从敲击信息确定出要控制的车内设备以及相应的控制指令(S13);以及根据控制指令控制车内设备(S14)。上述车辆控制方法(1000)、电子设备及存储介质可使车辆和乘客的交互多元化,操作便捷。

Description

车辆控制方法、电子设备及存储介质
相关申请的交叉引用
本申请要求于2021年12月7日提交于中国国家知识产权局(CNIPA)的专利申请号为202111485991.3的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请的实施方式涉及车辆技术领域,更具体地,涉及一种车辆控制方法、电子设备及存储介质。
背景技术
随着社会的不断进步和发展,车辆被越来越多地应用于人们的日常生活中。相对于传统的出行方式,比如步行、骑行或乘坐公共交通,私家车不仅快捷,而且能够最大程度上满足乘客的需求,比如乘坐的舒适度要求等。因此,已经有越来越多的人们正在或将会接触并控制各类车辆。
目前,用户控制车上不同设备,主要有3种实现技术:
1.通常可通过自然语音识别的方式实现车辆的命令控制或信息交互。
2.通过手机等终端的操作界面控制车辆的设备。
3.通过空中手势控制车辆设备。
然而,智能汽车的高速发展让人们希望进入车辆后可采用更多的方式与车辆进行交互。
发明内容
本申请的实施方式提供了一种可至少部分解决现有技术中存在的上述问题的一种车辆控制方法、电子设备及存储介质。
本申请的实施方式第一方面提供了一种车辆控制方法,包括:获取车辆的至少一个第一振动传感器检测的第一振动信号;根据第一振动信号确定敲击信息;从敲击信息确定出要控制的车内设备以及相应的控制指令;以及根据控制指令控制车内设备。
本申请的实施方式第二方面提供了一种车辆,包括:至少一个第一振动传感器,用于检测第一振动信号;处理器,与至少一个第一振动传感器连接,被配置为执行上述实施方式提及的车辆控制方法。
本申请的实施方式第三方面提供了一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上述实施方式提及的车辆控制方法。
本申请的实施方式第四方面提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时,实现如上述实施方式提及的车辆控制方法。
根据本申请一个实施方式提供的车辆控制方法、电子设备及存储介质,电子设备可通过第一振动传感器检测的第一振动信号来控制车辆的车内设备,为乘 客提供了新的交互方式,使车辆和乘客的交互更多元化。相对于通过终端的操作界面来控制车辆的方式而言,操作更为便捷。
在本申请的一些示例性实施方式中,从敲击信息确定出要控制的车内设备以及相应的控制指令包括:响应于敲击信息符合预设的语音唤醒条件,确定出车内设备为车辆的语音系统,以及控制指令为车辆的语音系统的唤醒指令。通过敲击的方式唤醒语音系统,无需使用语音唤醒词来唤醒语音系统进行语音交流,可减少由于语音识别不准确等原因导致无法及时唤醒语音系统为乘客提供服务的情况。
在本申请的一些示例性实施方式中,根据第一振动信号确定敲击信息包括:对第一振动信号进行去噪处理,以及根据处理后的第一振动信号确定敲击信息。通过降噪处理可提高确定出的敲击信息的准确性。
在本申请的一些示例性实施方式中,车辆具有多个第一振动传感器形成的传感器阵列;其中,根据第一振动信号确定敲击信息包括:根据传感器阵列中的第一振动传感器检测的第一振动信号确定敲击信息。通过传感器阵列获取敲击信息可提高准确性和鲁棒性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例的详细描述,本申请的其它特征、目的和优点将会变得更明显。其中:
图1是根据本申请一个实施方式的车辆控制方法的流程示意图;
图2是根据本申请一个实施方式的第一振动传感器的安装位置示意图;
图3是根据本申请另一实施方式的第一振动传感器的安装位置示意图;
图4是根据本申请一个实施方式的处理器和第一振动传感器的连接示意图;
图5是根据本申请另一实施方式的处理器和第一振动传感器的连接示意图;
图6是根据本申请一个实施方式的处理器、第一振动传感器和状态检测器的连接关系示意图;以及
图7是根据本申请一个实施方式的电子设备的结构示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区域分开来,而不表示对特征的任何限制,尤其不表示任何的先后顺序。因此,在不背离本申请的教导的情况下,本申请中讨论的第一振动传感器亦可称为第二振动传感器,第一振动信号亦可称为第二振动信号,反之亦然。
还应理解的是,诸如“包括”、“包括有”、“具有”、“包含”和/或“包含有”等表述在本说明书中是开放性而非封闭性的表述,其表示存在所陈述的特征、元件和/或部件,但不排除一个或多个其它特征、元件、部件和/或它们的组合的存在。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,其 修饰整列特征,而非仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
此外,在本申请中当使用“连接”或“联接”时可表示相应部件之间为直接的接触或间接的接触,除非有明确的其它限定或者能够从上下文推导出的除外。
图1是根据本申请一个实施方式的车辆控制方法1000的流程示意图。该车辆控制方法1000可例如由诸如车载终端、与车辆控制器通信连接的服务器的电子设备执行,此处不作限制。如图1所示,本申请的实施方式提供的车辆控制方法1000可例如包括:
S11,获取车辆的至少一个振动传感器检测的振动信号。
S12,根据振动信号确定敲击信息。
S13,从敲击信息确定出要控制的车内设备以及相应的控制指令。
S14,根据控制指令控制车内设备。
根据本申请的实施方式,电子设备可通过第一振动传感器检测的第一振动信号来控制车辆的车内设备,为乘客提供了新的交互方式,使车辆和乘客的交互更多元化。相对于通过终端的操作界面来控制车辆的方式而言,操作更为便捷。
步骤S11
在本申请的一个实施方式中,车辆安装的第一振动传感器的数量可例如为1个,电子设备根据该第一振动传感器检测的振动信号控制车内设备。
应当理解的是,本申请的实施方式中提及的车内设备可例如为车辆安装的硬件(如车窗、车前盖等)或软件(如语音系统等),本申请对此不作限制。
作为一个示例,第一振动传感器的安装位置示意图如图2所示,车辆20的第一振动传感器21可例如安装于车辆仪表盘24下方,以便司机通过敲击仪表盘24的方式来控制车辆20,提高车辆20安全。
作为另一示例,车辆的第一振动传感器还可例如安装于主驾驶位和副驾驶位之间的汽车扶手盒表面的下方,以便车辆内的乘客可通过敲击汽车扶手盒的方式控制车内设备。
应当理解的是,在未背离本申请教导的情况下,车辆的第一振动传感器还可例如安装于方向盘内、主驾驶位的车门上等各个位置,本申请对此不作限制。
在本申请的另一实施方式中,车辆具有多个第一振动传感器,其形成传感器阵列。电子设备获取传感器阵列中的第一振动传感器检测的第一振动信号,基于 多个第一振动传感器检测的第一振动信号控制车辆。
作为一个示例,第一振动传感器可分别安装于希望可通过敲击方式实现控制的车辆的器件上,例如,车前盖、车后盖等,以便乘客通过敲击要控制的车内设备来实现车内设备的控制。
作为另一示例,可基于车辆的结构安装多个第一振动传感器,以使多个第一振动传感器形成的传感器阵列可检测车辆的多个区域的振动,无需在希望可通过敲击方式实现控制的车辆的器件均安装上第一振动传感器上,降低了成本。
例如,如图3所示,可分别在车辆20的车前盖、车后盖、车顶的前部、车顶的后部、车辆20的4个车门处分别安装第一振动传感器21,以便乘客通过本申请的实施方式提及的车辆控制方法控制各个车门、车前盖、车后盖和车顶。
应当理解的是,在未背离本申请教导的情况下,传感器阵列中的第一振动传感器21的数量和安装位置可根据需要调整,本申请对此不作限制。
可选择的,在设置第一振动传感器位置时,可考虑适当冗余。例如,在5个第一振动传感器即可覆盖要检测振动的所有部件的情况下,可以布置7~8个第一振动传感器,以在个别第一振动传感器出现故障时,继续执行本申请的实施方式提及的车辆控制方法,提高本申请的实施方式提及的车辆控制犯法的鲁棒性。
可选择的,可在每个第一振动传感器附近至少布置3个第一振动传感器,当这个第一振动传感器出现故障,附近的3个第一振动传感器仍然可以有效检测出这个区域内的振动。
可选择的,若相邻的第一振动传感器安装在同一块材质上,距离可以适当增加,若相邻的第一振动传感器安装在不同材质上,距离可以适当缩短。
在本申请的一个实施方式中,可通过车辆的处理器获取第一振动传感器检测的第一振动信号。处理器和第一振动传感器的连接方式包括但不限于方式一和方式二。
方式一
图4是本申请的实施方式的一种处理器22和第一振动传感器21的连接示意图。如图4所示,车辆20安装有N个第一振动传感器21,N为大于1的正整数。第一振动传感器21-1、第一振动传感器21-2……第一振动传感器21-N分别与处理器22连接。各个第一振动传感器21分别将自身检测的第一振动信号传给处理器22。
方式二
图5是本申请的实施方式的一种处理器22和第一振动传感器21的连接示意图。如图5所示,处理器22与第一振动传感器21串联。处理器22发送获取指令至与处理器22的输出端通信连接的第一振动传感器21-1,以使各个第一振动传感器21-1发送其标识信息和其检测的第一振动信号至与其输出端连接的器件(第一振动传感器21-2);以及接收与处理器22的输入端通信连接的第一振动传感器21-N传输的数据,以获取各个第一振动传感器21的第一振动信号。
示例性地,处理器22发送获取指令至与处理器22的输出端通信连接的第一振动传感器21-1,与处理器22的输出端通信连接的第一振动传感器21-1接收到获取指令后,将第一振动传感器21-1的标识信息和第一振动传感器21-1检测的 第一振动信号传输至与第一振动传感器21-1的输出端连接的第一振动传感器21-2,第一振动传感器21-2将第一振动传感器21-2的标识信息和第一振动传感器21-2检测的第一振动信号,以及第一振动传感器21-1的标识信息和第一振动传感器21-1检测的第一振动信号向下传递,直至传递至与处理器22的输入端通信连接的第一振动传感器21-N。第一振动传感器21-N接收到上一级传输的数据后,将第一振动传感器21-N的标识信息和第一振动传感器21-N检测的第一振动信号,以及上一级传输的数据(包含第一振动传感器21-1至第一振动传感器21-N-1自身的标识信息及检测的第一振动信号),传输至处理器22。通过上述方式,处理器22可获取各个第一振动传感器21检测的第一振动信号。处理器22可获取根据各个第一振动信号对应的标识信息,确定该第一振动信号是由哪个位置的第一振动传感器检测得到的,以便后续确定敲击信息。
作为一种选择,与处理器的输出端通信连接的第一振动传感器21-1可在接收到获取指令后,开启数据传输模式。在数据传输模式下,在每次检测到振动后,向下传递其标识信息和第一振动信号。
应当理解的是,第一振动传感器的标识信息可例如为第一振动传感器的位置信息或标号信息,该标号信息可例如为第一振动传感器出厂编号或自定义ID,本申请对此不作限制。
作为一种选择,第一振动传感器可例如为麦克风。
应当理解的是,在未背离本申请教导的情况下,还可将其他可检测振动的器件作为振动传感器,本申请对此不作限制。
步骤S12
在本申请的一些实施方式中,敲击信息可例如指示敲击位置、敲击次数、敲击节奏和敲击强度中的任意一种或任意组合,本申请对此不作限制。
以下对确定敲击信息的方式进行举例说明。
方式一
在本申请的一些实施方式中,第一振动传感器的个数为1个,电子设备根据第一振动信号确定敲击信息可例如包括:分析该第一振动传感器检测的第一振动信号以得到敲击信息。
例如,敲击信息指示敲击位置或敲击强度,电子设备可例如存储有不同幅度范围与敲击位置的对应关系,或者,不同幅度范围与敲击强度的对应关系,以便根据第一振动传感器检测的第一振动信号的幅度大小,确定出敲击位置或敲击强度作为敲击信息。其中,不同幅度范围与敲击位置的对应关系可基于第一振动传感器的型号等确定,本申请对此不作限制。
又如,敲击信息指示敲击次数,电子设备可例如根据该第一振动传感器检测的第一振动信号的波峰的数量,确定出敲击次数作为敲击信息。
再如,敲击信息指示敲击节奏,电子设备可例如根据该第一振动传感器检测的第一振动信号的波峰的分布情况,确定出敲击节奏作为敲击信息。如,第一振动信号包括3个波峰,第一个波峰和第二个波峰之间的间距大约为1秒,确定出的敲击节奏为:敲1下,停1秒,敲2下。
应当理解的是,在未背离本申请教导的情况下,还可基于第一振动信号分析 其他信息以作为敲击信息,本申请对此不作限制。
方式二
在本申请的一些实施方式中,车辆具有多个第一振动传感器形成的传感器阵列,电子设备根据第一振动信号确定敲击信息可例如包括:根据传感器阵列中的第一振动传感器检测的第一振动信号确定敲击信息。换言之,在车辆的不同位置安装第一振动传感器,并由多个第一振动传感器组成阵列,将多个第一振动传感器组成的阵列简称为“传感器阵列”。电子设备基于多个第一振动传感器检测的第一振动信号共同确定敲击信息。
例如,敲击信息指示敲击位置。当用户敲击车辆的某个部位,由于多个第一振动传感器接收到的振动幅度不同,电子设备可基于多个第一振动传感器检测的第一振动信号判断出敲击位置。可选的,如图3所示,在车辆上多个位置都安装了第一振动传感器,若用户敲击了左前车门,左前车门上的第一振动传感器检测到的第一振动信号的振动幅度最大,距离近一些的第一振动传感器(如左后车门、前备箱盖、天窗位置)检测到的第一振动信号的振动幅度小一些,距离远一些的第一振动传感器(如右前车门、右后车门、后备箱盖位置)检测到的第一振动信号的振动幅度更小,甚至没有振动。因此,电子设备可根据各个第一振动传感器检测到的第一振动信号的振动幅度大小的分布,能够判断出敲击位置是左前车门。
又如,敲击信息指示敲击强度。当用户敲击车辆的某个部位,电子设备可例如根据振动幅度较大的T个第一振动传感器检测的第一振动信号的振动幅度的均值,确定敲击强度。或者,电子设备可例如根据振动幅度最大的第一振动传感器检测的第一振动信号的振动幅度,确定敲击强度。
应当理解的是,在未背离本申请教导的情况下,基于多个第一振动传感器检测到的第一振动信号的振动幅度确定出敲击强度的算法可根据需要调整,本申请对此不作限制。
再如,敲击信息指示敲击次数。当用户敲击车辆的某个部位,可例如根据振动幅度较大的T个第一振动传感器检测的第一振动信号的波峰的数量的均值,确定敲击次数。或者,电子设备可例如根据振动幅度最大的第一振动传感器检测的第一振动信号的波峰的数量,确定敲击次数。
应当理解的是,在未背离本申请教导的情况下,基于多个第一振动传感器检测到的第一振动信号的波峰的数量确定出敲击次数的算法可根据需要调整,本申请对此不作限制。
还如,敲击信息指示敲击节奏。当用户敲击车辆的某个部位,电子设备可例如根据振动幅度最大的第一振动传感器检测的第一振动信号的波峰的分布情况,确定敲击节奏。
应当理解的是,在未背离本申请教导的情况下,基于多个第一振动传感器检测到的第一振动信号的波峰的分布情况确定出敲击节奏的算法可根据需要调整,本申请对此不作限制。
在本申请的一些实施方式中,由于车辆在使用过程中,会有一些工作噪声,如发动机噪声、风噪、胎噪,以及环境噪声,如下雨、鸣笛、说话等等,这些噪 声基本属于共模噪声。因此,电子设备可例如采用消噪算法,进行降噪处理,以提高确定出的敲击信息的准确性。示例性地,电子设备根据第一振动信号确定敲击信息的步骤可例如包括:对第一振动信号进行去噪处理,根据处理后的第一振动信号确定敲击信息。
作为一个示例,车辆安装有至少一个第二振动传感器,以用于检测车辆的噪声。对第一振动信号进行去噪处理可例如包括:获取车辆的至少一个第二振动传感器检测的第二振动信号;根据第二振动信号确定车辆的噪声;根据车辆的噪声,对第一振动信号进行去噪处理。
例如,车辆安装有N个第一振动传感器和M个第二振动传感器,其中,第一振动传感器和第二振动传感器可采用麦克风实现,N可例如为大于1的正整数,M可例如为大于1的正整数。N个第一振动传感器用于检测敲击振动,所得到的第一振动信号分别为v 1、v 2、……v N。M个第二振动传感器用于检测共模噪声,所得到的第二振动信号分别为r 1……r M。第二振动传感器可例如安装在车辆的不太可能作为敲击点的位置(比如车底等)。各个第一振动传感器处理后的第一振动信号分别为v 1'、v 2'、……v N',v i'=v i-c,其中,i=1、2、……N,c表示共模噪声,计算公式为:c=(r 1+……+r M)/2。示例性地,N等于5,M等于2。
在本申请的一个实施方式中,车辆还安装有状态检测器,以用于检测至少一个第一振动传感器的状态信息。
示例性地,以图4所示架构为例,处理器、第一振动传感器和状态检测器的连接关系如图6所示,可为各个第一振动传感器(例如图6中的21-1至21-N)分别安装一个状态检测器(例如图6中的23-1至23-N),状态检测器分别与处理器22连接,以将各个第一振动传感器的状态信息传输至处理器22。
应当理解的是,在未背离本申请教导的情况下,也可针对多个第一振动传感器安装一个状态检测器,本申请对第一振动传感器和状态检测器的对应关系不作限制。
在本申请的一个实施方式中,若车辆安装有状态检测器,车辆控制方法1000还可例如包括:获取状态检测器传输的至少一个第一振动传感器的状态信息。电子设备根据传感器阵列中的第一振动传感器检测的第一振动信号确定敲击信息可例如包括:根据状态信息确定传感器阵列的数据转换算法;根据数据转换算法和传感器阵列中的第一振动传感器检测的第一振动信号,确定出敲击信息。
示例性地,电子设备通过多个第一振动传感器同时感应振动并由处理器计算多个第一振动传感器的数据,该数据至少包括第一振动信号和位置信息。电子设备可将多个第一振动传感器的数据进行辅助计算与互相验证纠错,可减少单个第一振动传感器容易出现的数据错误。此外,通过形成传感器阵列,无需在每个需要检测振动的部件上都安装第一振动传感器,可避免在较小或不方便安装的地方安装第一振动传感器的情况,可降低成本并提高可实施性。若个别第一振动传感器出现故障,无法提供数据,处理器可将此第一振动传感器从计算中排除,并调整数据转换算法,不会影响后续使用。故障的第一振动传感器修复或被替换后,处理器检测到第一振动传感器状态正常,再恢复原始的数据转换算法即可。相对于根据第一振动传感器和车内设备一一对应地安装在一起的情况,本申请一些实 施方式通过传感器阵列获取敲击信息,准确性和鲁棒性更好。
步骤S13
在本申请的一个实施方式中,车内设备包括车辆的语音系统,语音系统可通过敲击的方式唤醒。示例性地,从敲击信息确定出要控制的车内设备以及相应的控制指令可例如包括:响应于敲击信息符合预设的语音唤醒条件,确定出车内设备为车辆的语音系统,以及控制指令为车辆的语音系统的唤醒指令。
作为一个示例,语音唤醒条件至少包括以下任意一种:敲击信息所指示的敲击位置为预设位置;敲击信息所指示的敲击次数为预设次数;敲击信息所指示的敲击节奏为预设节奏;敲击信息所指示的敲击强度属于预设强度范围。换言之,当乘客的敲击方式为预先定义的敲击方式,唤醒车辆的语音系统。
例如,如图2所示,可在车辆20的仪表盘24下方安装一个第一振动传感器21,通过敲击仪表盘24即可唤醒车辆的语音系统(未示出),与乘客进行语音交互。
值得一提的是,本申请的部分实施方式中,通过敲击的方式唤醒语音系统,无需使用语音唤醒词来唤醒语音系统进行语音交流,可减少由于语音识别不准确等原因导致无法及时唤醒语音系统为乘客提供服务的情况。
以下结合敲击信息,对确定出要控制的车内设备和控制指令的方式进行举例说明。
方式一
在本申请的一些实施方式中,敲击信息指示敲击位置、敲击次数、敲击节奏和敲击强度中的任意一种,电子设备可根据敲击信息确定要控制的车内设备,并根据确定出的车内设备,确定控制指令。
作为一种选择,部分车内设备对应的控制指令的数量为1,电子设备在确定出要控制的车内设备为该部分车内设备后,即可直接确定控制指令。
例如,车内设备为车前盖,其对应的控制指令指示打开车前盖,电子设备在根据敲击信息确定出要控制的车内设备为车前盖后,确定出的控制指令即为指示打开车前盖。
作为另一选择,部分车内设备对应的控制指令的数量大于1,在确定出要控制的车内设备后,电子设备可获取车内设备的状态信息;以及根据车内设备的状态信息确定控制指令。
例如,车内设备为车窗,其对应的控制指令包括指示控制车窗向上移动第一预设距离的第一指令和控制车窗向下移动第二预设距离的第二指令。其中,第一预设距离和第二预设距离可根据车窗尺寸等确定,此处不作限制。电子设备在根据敲击信息确定出要控制的车内设备为车窗后,获取车窗的状态信息,若车窗的状态信息指示车窗处于开启状态时,确定出的控制指令为第一指令,若车窗的状态信息指示车窗处于关闭状态,确定出的控制指令为第二指令。
作为一个示例,敲击信息指示敲击位置,电子设备根据敲击信息所指示的敲击位置,以及敲击位置和车内设备的对应关系,确定要控制的车内设备,并根据要控制的车内设备的状态信息确定控制指令。例如,敲击位置和车内设备的对应 关系可例如包括:敲击位置处于第一区域,要控制的车内设备为主驾驶位边上的车窗;敲击位置处于第二区域,要控制的车内设备为副驾驶位边上的车窗;敲击位置处于第三区域,要控制的车内设备为主驾驶位后方的车窗;敲击位置处于第四区域,要控制的车内设备为副驾驶位后方的车窗。第一区域、第二区域、第三区域和第四区域之间可例如不存在交集,其具体区域可根据车辆结构或第一振动传感器所覆盖的检测区域划分,此处不作限制。
作为另一示例,敲击信息指示敲击次数,电子设备根据敲击信息所指示的敲击次数,以及敲击次数和车内设备的对应关系,确定要控制的车内设备,并根据要控制的车内设备的状态信息确定控制指令。例如,敲击次数和车内设备的对应关系可例如包括:敲击次数为1次,要控制的车内设备为主驾驶位边上的车窗;敲击次数为2次,要控制的车内设备为副驾驶位边上的车窗;敲击次数为3次,要控制的车内设备为主驾驶位后方的车窗;敲击次数为4次,要控制的车内设备为副驾驶位后方的车窗。
作为又一示例,敲击信息指示敲击节奏,电子设备根据敲击信息所指示的敲击节奏,以及敲击节奏和车内设备的对应关系,确定要控制的车内设备,并根据要控制的车内设备的状态信息确定控制指令。例如,敲击节奏和车内设备的对应关系可例如包括:敲击节奏为第一预设节奏(如敲1下,停1秒,再敲1下),要控制的车内设备为主驾驶位边上的车窗;敲击节奏为第二预设节奏(如敲1下,停1秒,再敲2下),要控制的车内设备为副驾驶位边上的车窗;敲击节奏为第三预设节奏(如敲1下,停1秒,再敲3下),要控制的车内设备为主驾驶位后方的车窗;敲击节奏为第四预设节奏(如敲1下,停1秒,再敲4下),要控制的车内设备为副驾驶位后方的车窗。
作为再一示例,敲击信息指示敲击强度,电子设备根据敲击信息所指示的敲击强度,以及敲击强度和车内设备的对应关系,确定要控制的车内设备,并根据要控制的车内设备的状态信息确定控制指令。例如,敲击强度和车内设备的对应关系可例如包括:敲击强度处于第一预设范围,要控制的车内设备为主驾驶位边上的车窗;敲击强度处于第二预设范围,要控制的车内设备为副驾驶位边上的车窗;敲击强度处于第三预设范围,要控制的车内设备为主驾驶位后方的车窗;敲击强度处于第四预设范围,要控制的车内设备为副驾驶位后方的车窗。其中,第一预设范围、第二预设范围、第三预设范围和第四预设范围之间可例如不存在交集,其具体数值范围可根据第一振动传感器的量程划分,此处不作限制。
应当理解的是,上述示例仅为举例说明,在未背离本申请教导的情况下,上文提及的敲击位置与车内设备的对应关系、敲击次数与车内设备的对应关系、敲击节奏与车内设备的对应关系和敲击强度与车内设备的对应关系可根据其应用场景调整,本申请不作限制。
方式二
在本申请的一些实施方式中,敲击信息指示敲击位置、敲击次数、敲击节奏和敲击强度中的任意两种信息的组合。电子设备基于两种信息中的一种信息确定要控制的车内设备,基于另一种信息确定控制指令。以下结合敲击信息的不同组合,对电子设备确定要控制的车内设备和控制指令进行举例说明。
在本申请的第一个实施例中,敲击信息指示敲击位置和敲击次数。
作为一个示例,电子设备根据敲击信息所指示的敲击位置确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击次数与控制指令的对应关系;以及根据敲击信息所指示的敲击次数和敲击次数与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击次数与控制指令的对应关系,在确定要控制的车内设备后,调用该车内设备的敲击次数与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击次数,实现不同的控制指令。
例如,车辆中安装一个或多个第一振动传感器,电子设备获取敲击位置和敲击次数,其获取过程可参见步骤S12中的相关描述。当敲击信息所指示的敲击位置为车辆的主驾驶位边上的车窗,电子设备确定要控制的车内设备为主驾驶位边上的车窗,获取主驾驶位边上的车窗对应的敲击次数与控制指令的对应关系。示例的,敲击次数和控制指令的对应关系可例如为敲击次数为1次时,控制指令可例如为指示控制车窗向上移动第一预设距离的第一指令,敲击次数为2次时,控制指令可例如指示控制车窗向下移动第二预设距离。电子设备若敲击信息所指示的敲击次数为1次,确定出的控制指令可例如指示控制车窗向上移动第一预设距离。其中,第一预设距离和第二预设距离可根据车窗尺寸等设置,此处不作限制。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击次数与控制指令的对应关系可根据车内设备的结构或功能确定,本申请对此不作限制。
作为另一示例,电子设备根据敲击信息所指示的敲击次数确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击位置与控制指令的对应关系;根据敲击信息所指示的敲击位置和敲击位置与控制指令的对应关系确定控制指令。由于不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击位置与控制指令的对应关系。在确定要控制的车内设备后,调用该车内设备的敲击位置与控制指令的对应关系,以便确定控制指令。该示例中,利用不同的敲击位置,可实现不同的控制指令。
例如,车辆中安装一个或多个第一振动传感器,电子设备获取敲击位置和敲击次数,其获取过程可参见步骤S12中的相关描述。敲击次数和车内设备的对应关系可参见上文相关示例。以车内设备为车窗为例,车窗对应的敲击位置和控制指令的对应关系可例如指示敲击位置属于第五区域时,控制指令可例如指示控制车窗向上移动第一预设距离,敲击位置属于第六区域时,控制指令可例如指示控制车窗向下移动第二预设距离。其中,第五区域和第六区域可根据单个第一振动传感器的检测范围或者传感器阵列的检测范围确定。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击位置与控制指令的对应关系可根据车内设备的结构或功能确定,本申请对此不作限制。
在本申请的第二个实施例中,敲击信息指示敲击位置和敲击节奏。
作为一个示例,电子设备根据敲击信息所指示的敲击位置确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击节奏与控制指令的对应关系;以及根据敲击信息所指示的敲击节奏和敲击节奏与控制指令的对 应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击节奏与控制指令的对应关系,在确定要控制的车内设备后,调用该车内设备的敲击节奏与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击节奏,实现不同的控制指令。
例如,车辆中安装一个或多个第一振动传感器,电子设备获取敲击位置和敲击节奏,其获取过程可参见步骤S12中的相关描述。当敲击信息所指示的敲击位置为车辆的主驾驶位边上的车窗,电子设备确定要控制的车内设备为主驾驶位边上的车窗,获取主驾驶位边上的车窗对应的敲击节奏与控制指令的对应关系。示例的,敲击节奏和控制指令的对应关系可例如包括:敲击节奏为第一预设节奏(如敲1下,停1秒,再敲1下),确定出的控制指令可例如指示控制车窗向上移动第一预设距离;敲击节奏为第二预设节奏(如敲1下,停1秒,再敲2下),确定出的控制指令可例如指示控制车窗向下移动第二预设距离。其中,第一预设距离和第二预设距离可根据车窗尺寸等设置。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击节奏与控制指令的对应关系可根据需要调整,本申请对此不作限制。
作为另一示例,电子设备根据敲击信息所指示的敲击节奏确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击位置与控制指令的对应关系;根据敲击信息所指示的敲击位置和敲击位置与控制指令的对应关系确定控制指令。由于不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击位置与控制指令的对应关系。在确定要控制的车内设备后,调用该车内设备的敲击位置与控制指令的对应关系,以便确定控制指令。该示例中,利用不同的敲击位置,可实现不同的控制指令。
例如,车辆中安装一个或多个第一振动传感器,电子设备获取敲击位置和敲击节奏,其获取过程可参见步骤S12中的相关描述。敲击节奏和车内设备的对应关系可参见上文相关示例。以车内设备为车窗为例,车窗对应的敲击位置和控制指令的对应关系可例如指示敲击位置属于第五区域时,控制指令可例如指示控制车窗向上移动第一预设距离,敲击位置属于第六区域时,控制指令可例如指示控制车窗向下移动第二预设距离。其中,第五区域和第六区域可根据单个第一振动传感器的检测范围或者传感器阵列的检测范围确定。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击位置与控制指令的对应关系可根据车内设备的结构或功能确定,本申请对此不作限制。
在本申请的第三个实施例中,敲击信息指示敲击位置和敲击强度。
作为一个示例,电子设备根据敲击信息所指示的敲击位置确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击强度与控制指令的对应关系;以及根据敲击信息所指示的敲击强度和敲击强度与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击强度与控制指令的对应关系,在确定要控制的车内设备后,调用该车内设备的敲击强度与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击强度,实现不同的控制指令。
例如,车辆中安装有多个第一振动传感器形成的传感器阵列,电子设备获取敲击位置和敲击强度,其获取过程可参见步骤S12中的相关描述。当敲击信息所指示的敲击位置为车辆的主驾驶位边上的车窗,电子设备确定要控制的车内设备为主驾驶位边上的车窗,获取主驾驶位边上的车窗对应的敲击强度与控制指令的对应关系,该对应关系可例如为若敲击强度处于第五预设范围,控制指令可例如指示控制车窗向上移动第一预设距离,若敲击强度处于第六预设范围,控制指令可例如指示控制车窗向下移动第二预设距离。第五预设范围和第六预设范围可例如不存在交集。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击强度与控制指令的对应关系可根据需要调整,本申请对此不作限制。
作为另一示例,电子设备根据敲击信息所指示的敲击强度确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击位置与控制指令的对应关系;以及根据敲击信息所指示的敲击位置和敲击位置与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击位置与控制指令的对应关系,在确定要控制的车内设备后,调用该车内设备的敲击位置与控制指令的对应关系,以便确定控制指令。该示例中,利用不同的敲击位置,可实现不同的控制指令。
例如,车辆中安装有多个第一振动传感器形成的传感器阵列,电子设备获取敲击位置和敲击次数,其获取过程可参见步骤S12中的相关描述。敲击强度和车内设备的对应关系可参见上文相关示例。以车内设备为车窗为例,各个车窗对应的敲击位置和控制指令的对应关系可参考上文的相关示例。
应当理解的是,在未背离本申请教导的情况下,各车内设备对应的敲击位置与控制指令的对应关系可根据车内设备的结构或功能确定,本申请对此不作限制。
在本申请的第四个实施例中,敲击信息指示敲击次数和敲击强度。
作为一个示例,电子设备根据敲击信息所指示的敲击次数确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击强度与控制指令的对应关系;以及根据敲击信息所指示的敲击强度和敲击强度与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击强度与控制指令的对应关系,在基于敲击次数确定要控制的车内设备后,调用该车内设备的敲击强度与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击强度,实现不同的控制指令。
例如,车辆中安装一个第一振动传感器,或者,安装有多个第一振动传感器形成的传感器阵列,电子设备获取敲击次数和敲击强度,其获取过程可参见步骤S12中的相关描述。敲击次数和车内设备的对应关系和敲击强度和控制指令的对应关系可参考上文的相关示例。
作为另一示例,电子设备根据敲击信息所指示的敲击强度确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击次数与控制指令的对应关系;以及根据敲击信息所指示的敲击次数和敲击次数与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有 各个车内设备的敲击次数与控制指令的对应关系,在根据敲击强度确定要控制的车内设备后,调用该车内设备的敲击次数与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击次数,实现不同的控制指令。
例如,车辆中安装有多个第一振动传感器形成的传感器阵列,电子设备获取敲击次数和敲击强度(具体过程可参见步骤S12中的相关描述)。敲击强度和车内设备的对应关系和敲击次数和控制指令的对应关系可参考上文的相关示例。
在本申请的第五实施例中,敲击信息指示敲击节奏和敲击强度。
作为一个示例,电子设备根据敲击信息所指示的敲击节奏确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击强度与控制指令的对应关系;以及根据敲击信息所指示的敲击强度和敲击强度与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击强度与控制指令的对应关系,在基于敲击节奏确定要控制的车内设备后,调用该车内设备的敲击强度与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击强度,实现不同的控制指令。
例如,车辆中安装一个第一振动传感器,或者,安装有多个第一振动传感器形成的传感器阵列,电子设备获取敲击节奏和敲击强度,其获取过程可参见步骤S12中的相关描述。敲击节奏和车内设备的对应关系和敲击强度和控制指令的对应关系可参考上文的相关示例。
作为另一示例,电子设备根据敲击信息所指示的敲击强度确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击节奏与控制指令的对应关系;根据敲击信息所指示的敲击节奏和敲击节奏与控制指令的对应关系确定控制指令。不同的车内设备具有不同的控制指令,电子设备中存储有各个车内设备的敲击节奏与控制指令的对应关系,在根据敲击强度确定要控制的车内设备后,调用该车内设备的敲击节奏与控制指令的对应关系,以便确定控制指令。该示例中,可通过不同敲击节奏,实现不同的控制指令。
例如,车辆中安装有一个或多个第一振动传感器,电子设备获取敲击节奏和敲击强度,其获取过程可参见步骤S12中的相关描述。敲击强度和车内设备的对应关系和敲击节奏和控制指令的对应关系可参考上文的相关示例。
应当理解的是,在未背离本申请教导的情况下,可根据敲击信息的组合形式调整从敲击信息确定出要控制的车内设备以及相应的控制指令的方式,本申请对此不作限制。
方式三
在本申请的一些实施方式中,敲击信息指示敲击位置、敲击次数、敲击节奏和敲击强度中的任意三种信息的组合。例如,敲击信息指示敲击位置、敲击次数和敲击节奏,或者,敲击信息指示敲击强度、敲击次数和敲击节奏。
作为一个示例,敲击信息指示敲击位置、敲击次数和敲击节奏。电子设备根据敲击信息所指示的敲击位置确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击节奏、敲击次数与控制指令三者的对应关系;根据敲击信息所指示的敲击节奏和敲击次数,以及敲击节奏、敲击次数与控制指令三者的对应关系确定控制指令。
作为另一示例,敲击信息指示敲击强度、敲击次数和敲击节奏。电子设备根据敲击信息所指示的敲击强度确定要控制的车内设备;根据要控制的车内设备,获取要控制的车内设备对应的敲击节奏、敲击次数与控制指令三者的对应关系;根据敲击信息所指示的敲击节奏和敲击次数,以及敲击节奏、敲击次数与控制指令三者的对应关系确定控制指令。
示例性地,以车内设备为听歌系统为例,敲击节奏、敲击次数与控制指令三者的对应关系可例如为:若敲击次数为3次,且敲击节奏为敲一下,停一秒,敲两下,对应的控制指令可例如指示切换至下一首歌;若敲击次数为3次,且敲击节奏为敲两下,停一秒,敲一下,对应的控制指令可例如指示切换至上一首歌;若敲击次数为4次,且敲击节奏为敲一下,停一秒,敲三下,对应的控制指令可例如指示调大音量,敲三下,停一秒,敲一下,对应的控制指令可例如指示减小音量。
应当理解的是,在未背离本申请教导的情况下,可根据车内设备的功能设置敲击节奏、敲击次数与控制指令三者的对应关系,本申请对此不作限制。
在本申请的一个实施方式中,响应于不存在与敲击信息匹配的车内设备或控制指令,电子设备可通过语音等形式反馈提示信息,以提示乘客存在操作错误。
步骤S14
在本申请的一个实施方式中,电子设备根据控制指令控制车内设备的步骤可例如包括:将控制指令发送至该车内设备对应的执行器,通过执行器执行该控制指令以控制车内设备。
可选择的,电子设备在根据控制指令控制车内设备之前,还可例如通过语音等方式,告知乘客通过上述方式确定出的要控制的车内设备和控制指令。响应于乘客确认指令,电子设备根据控制指令控制车内设备。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的实施方式还提供了一种车辆,车辆包括:至少一个第一振动传感器(例如图2和图3中的21,图4、图5和图6中的21-1至21-N),用于检测第一振动信号;处理器(例如图4、图5和图6中的22),与至少一个第一振动传感器连接,被配置为执行上述实施方式提及的车辆控制方法。
在本申请的一个实施方式中,如图3所示,车辆20包括多个安装位置不同的第一振动传感器21,多个第一振动传感器21构成传感器阵列。
在本申请的一个实施方式中,如图4所示,处理器22分别与第一振动传感器(21-1至21-N)连接。
在本申请的一个实施方式中,如图5所示,处理器22与第一振动传感器(21-1至21-N)串联连接。
在本申请的一个实施方式中,如图6所示,车辆还包括:状态检测器(23-1至23-N),分别与至少一个第一振动传感器(21-1至21-N)和处理器22连接, 并用于检测至少一个第一振动传感器(21-1至21-N)的状态。
在本申请的一个实施方式中,车辆还包括:至少一个第二振动传感器(未示出),与处理器连接,并用于检测噪声。
不难发现,本实施例为与上述方法实施例相对应的装置实施方式,本实施例可与上述方法实施例互相配合实施。上述方法实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述方法实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本发明的创新部分,本实施例中并没有将与解决本发明所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请的一个实施方式还提供了一种电子设备,该电子设备包括至少一个处理器以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述车辆控制方法。
本申请的一个实施方式还提供了一种计算机可读存储介质,该存储介质存储有计算机程序,计算机程序被处理器执行时,实现车辆控制方法。
图7示出了可以用来实施本申请的实施方式的示例电子设备300的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图7所示,电子设备300包括计算单元301,其可以根据存储在只读存储器(ROM)302中的计算机程序或者从存储单元308加载到随机访问存储器(RAM)303中的计算机程序,来执行各种适当的动作和处理。在RAM 303中,还可存储电子设备300操作所需的各种程序和数据。计算单元301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。
电子设备300中的多个部件连接至I/O接口305,包括:输入单元306,例如键盘、鼠标等;输出单元307,例如各种类型的显示器、扬声器等;存储单元308,例如磁盘、光盘等;以及通信单元309,例如网卡、调制解调器、无线通信收发机等。通信单元309允许电子设备300通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元301可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元301的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元301执行上文所描述的各个方法和处理,例如车辆控制方法。例如,在一些 实施方式中,车辆控制方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元308。在一些实施方式中,计算机程序的部分或者全部可以经由ROM 302和/或通信单元309而被载入和/或安装到电子设备300上。当计算机程序加载到RAM 303并由计算单元301执行时,可以执行上文描述的车辆控制方法的一个或多个步骤。备选地,在其他实施方式中,计算单元301可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行车辆控制方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置和该至少一个输出装置。
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置,例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器;以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的 实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
以上描述仅为本申请的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 一种车辆控制方法,其特征在于,包括:
    获取车辆的至少一个第一振动传感器检测的第一振动信号;
    根据所述第一振动信号确定敲击信息;
    从所述敲击信息确定出要控制的车内设备以及相应的控制指令;以及
    根据所述控制指令控制所述车内设备。
  2. 根据权利要求1所述的车辆控制方法,其中,所述敲击信息指示敲击位置、敲击次数、敲击节奏和敲击强度中的任意一种或任意组合。
  3. 根据权利要求1所述的车辆控制方法,其中,从所述敲击信息确定出要控制的车内设备以及相应的控制指令包括:
    响应于所述敲击信息符合预设的语音唤醒条件,确定出所述车内设备为车辆的语音系统,以及所述控制指令为所述车辆的语音系统的唤醒指令。
  4. 根据权利要求3所述的车辆控制方法,其中,所述语音唤醒条件至少包括以下任意一种:
    所述敲击信息所指示的敲击位置为预设位置;
    所述敲击信息所指示的敲击次数为预设次数;
    所述敲击信息所指示的敲击节奏为预设节奏;
    所述敲击信息所指示的敲击强度属于预设强度范围。
  5. 根据权利要求2所述的车辆控制方法,其中,所述敲击信息指示所述敲击位置;
    其中,从所述敲击信息确定出要控制的车内设备包括:
    根据所述敲击信息所指示的敲击位置确定所述车内设备。
  6. 根据权利要求2所述的车辆控制方法,其中,所述敲击信息指示所述敲击强度,
    其中,从所述敲击信息确定出要控制的车内设备包括:
    根据所述敲击信息所指示的敲击强度确定所述车内设备。
  7. 根据权利要求2所述的车辆控制方法,其中,所述敲击信息指示所述敲击次数或所述敲击节奏;
    其中,从所述敲击信息确定出要控制的车内设备包括:
    根据所述敲击信息所指示的敲击次数或敲击节奏确定所述车内设备。
  8. 根据权利要求5或6所述的车辆控制方法,其中,所述敲击信息还指示所述敲击次数;
    其中,从所述敲击信息确定出所述控制指令包括:
    根据所述车内设备,获取敲击次数与控制指令的对应关系;以及
    根据所述敲击信息所指示的敲击次数和所述敲击次数与控制指令的对应关系确定所述控制指令。
  9. 根据权利要求5或6所述的车辆控制方法,其中,所述敲击信息还包括所述敲击节奏;
    其中,从所述敲击信息确定出所述控制指令包括:
    根据所述车内设备,获取敲击节奏与控制指令的对应关系;以及
    根据所述敲击信息所指示的敲击节奏和所述敲击节奏与控制指令的对应关系确定所述控制指令。
  10. 根据权利要求5或6所述的车辆控制方法,其中,所述敲击信息还包括所述敲击节奏和所述敲击次数;
    其中,从所述敲击信息确定出所述控制指令包括:
    根据所述车内设备,获取敲击节奏、敲击次数与控制指令三者的对应关系;以及
    根据所述敲击信息所指示的敲击节奏和敲击次数,以及所述敲击节奏、敲击次数与控制指令三者的对应关系确定所述控制指令。
  11. 根据权利要求5或7所述的车辆控制方法,其中,所述敲击信息还包括所述敲击强度;
    其中,从所述敲击信息确定出所述控制指令包括:
    根据所述车内设备,获取敲击强度与控制指令的对应关系;以及
    根据所述敲击信息所指示的敲击强度和所述敲击强度与控制指令的对应关系确定所述控制指令。
  12. 根据权利要求6或7所述的车辆控制方法,其中,所述敲击信息还包括所述敲击位置;
    其中,从所述敲击信息确定出所述控制指令包括:
    根据所述车内设备,获取敲击位置与控制指令的对应关系;以及
    根据所述敲击信息所指示的敲击位置和所述敲击位置与控制指令的对应关系确定所述控制指令。
  13. 根据权利要求5至7中任一项所述的车辆控制方法,其中,从所述敲击信息确定出所述控制指令包括:
    获取所述车内设备的状态信息;以及
    根据所述车内设备的状态信息确定所述控制指令。
  14. 根据权利要求1所述的车辆控制方法,其中,所述根据所述第一振动信号确定敲击信息包括:
    对所述第一振动信号进行去噪处理,以及
    根据处理后的第一振动信号确定所述敲击信息。
  15. 根据权利要求14所述的车辆控制方法,其中,所述对所述第一振动信号进行去噪处理包括:
    获取所述车辆的至少一个第二振动传感器检测的第二振动信号;
    根据所述第二振动信号确定所述车辆的噪声;以及
    根据所述车辆的噪声,对所述第一振动信号进行去噪处理。
  16. 根据权利要求1所述的车辆控制方法,其中,所述车辆具有多个所述第一振动传感器形成的传感器阵列;
    其中,所述根据所述第一振动信号确定敲击信息包括:
    根据所述传感器阵列中的所述第一振动传感器检测的第一振动信号确定所述敲击信息。
  17. 根据权利要求16所述的车辆控制方法,其中,所述方法还包括:
    获取状态检测器传输的所述至少一个第一振动传感器的状态信息;
    其中,所述根据所述传感器阵列中的所述第一振动传感器检测的第一振动信号确定所述敲击信息包括:
    根据所述状态信息确定所述传感器阵列的数据转换算法;以及
    根据所述数据转换算法和所述传感器阵列中的所述第一振动传感器检测的第一振动信号,确定出所述敲击信息。
  18. 根据权利要求16所述的车辆控制方法,其中,所述车辆控制方法应用于所述车辆的处理器,所述处理器与所述第一振动传感器串联,
    所述获取车辆的至少一个第一振动传感器检测的第一振动信号包括:
    发送获取指令至与所述处理器的输出端通信连接的第一振动传感器,以使各个所述第一振动传感器发送其标识信息和其检测的第一振动信号至与其输出端连接的器件;以及
    接收与所述处理器的输入端通信连接的第一振动传感器传输的数据,以获取各个所述第一振动传感器的第一振动信号。
  19. 一种车辆,其特征在于,包括:
    至少一个第一振动传感器,用于检测所述第一振动信号;
    处理器,与所述至少一个第一振动传感器连接,被配置为执行权利要求1至18中任一项所述的车辆控制方法。
  20. 根据权利要求19所述的车辆,其中,所述车辆包括多个安装位置不同的所述第一振动传感器,多个所述第一振动传感器构成传感器阵列。
  21. 根据权利要求20所述的车辆,其中,所述处理器分别与所述第一振动传感器连接,或者,所述处理器与所述第一振动传感器串联连接。
  22. 根据权利要求19所述车辆,其中,所述车辆还包括:
    状态检测器,分别与所述至少一个第一振动传感器和所述处理器连接,并用于检测所述至少一个第一振动传感器的状态。
  23. 根据权利要求19所述的车辆,其中,所述车辆还包括:
    至少一个第二振动传感器,与所述处理器连接,并用于检测噪声。
  24. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至18中任一项所述的车辆控制方法。
  25. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至18中任一项所述的车辆控制方法。
PCT/CN2021/139612 2021-12-07 2021-12-20 车辆控制方法、电子设备及存储介质 WO2023103072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111485991.3 2021-12-07
CN202111485991.3A CN115071613A (zh) 2021-12-07 2021-12-07 车辆控制方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023103072A1 true WO2023103072A1 (zh) 2023-06-15

Family

ID=83246194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139612 WO2023103072A1 (zh) 2021-12-07 2021-12-20 车辆控制方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115071613A (zh)
WO (1) WO2023103072A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060259205A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Controlling systems through user tapping
CN212047220U (zh) * 2020-03-25 2020-12-01 北京新能源汽车股份有限公司 控制电路、方向盘和车辆
CN112249026A (zh) * 2020-10-26 2021-01-22 广州小鹏汽车科技有限公司 一种车辆控制的方法和装置
CN112572597A (zh) * 2019-09-30 2021-03-30 比亚迪股份有限公司 基于转向盘的车辆控制方法、装置、转向盘和车辆
US20210221228A1 (en) * 2017-10-31 2021-07-22 Mogees Ltd A user interface for vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060259205A1 (en) * 2005-05-13 2006-11-16 Robert Bosch Gmbh Controlling systems through user tapping
US20210221228A1 (en) * 2017-10-31 2021-07-22 Mogees Ltd A user interface for vehicles
CN112572597A (zh) * 2019-09-30 2021-03-30 比亚迪股份有限公司 基于转向盘的车辆控制方法、装置、转向盘和车辆
CN212047220U (zh) * 2020-03-25 2020-12-01 北京新能源汽车股份有限公司 控制电路、方向盘和车辆
CN112249026A (zh) * 2020-10-26 2021-01-22 广州小鹏汽车科技有限公司 一种车辆控制的方法和装置

Also Published As

Publication number Publication date
CN115071613A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US9953634B1 (en) Passive training for automatic speech recognition
US10074372B2 (en) Speech recognition using electronic device and server
CN108447472B (zh) 语音唤醒方法及装置
EP3916719B1 (en) Speech recognition
US9487167B2 (en) Vehicular speech recognition grammar selection based upon captured or proximity information
US20140244072A1 (en) System And Method For Incorporating Gesture And Voice Recognition Into A Single System
US9633655B1 (en) Voice sensing and keyword analysis
US11197094B2 (en) Noise reduction method and apparatus based on in-vehicle sound zones, and medium
US20230102157A1 (en) Contextual utterance resolution in multimodal systems
KR20210040854A (ko) 음성 데이터 처리 방법, 장치 및 지능형 차량
US11724667B2 (en) Motor vehicle and method for processing sound from outside the motor vehicle
CN109756818B (zh) 双麦克风降噪方法、装置、存储介质及电子设备
CN109903751B (zh) 关键词确认方法和装置
CN111833870A (zh) 车载语音系统的唤醒方法、装置、车辆和介质
US11437031B2 (en) Activating speech recognition based on hand patterns detected using plurality of filters
WO2023103072A1 (zh) 车辆控制方法、电子设备及存储介质
US11282517B2 (en) In-vehicle device, non-transitory computer-readable medium storing program, and control method for the control of a dialogue system based on vehicle acceleration
JP7274903B2 (ja) エージェント装置、エージェント装置の制御方法、およびプログラム
EP4030424B1 (en) Method and apparatus of processing voice for vehicle, electronic device and medium
CN114633721B (zh) 一种车辆解锁方法、装置、电子设备和存储介质
US11336424B1 (en) Clock drift estimation
CN115426512A (zh) 一种具有多种识别控制的车载影音控制系统
US11205433B2 (en) Method and apparatus for activating speech recognition
JP2007530327A (ja) 対話プロセス制御方法
US20180321907A1 (en) Acoustic pattern learning method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966985

Country of ref document: EP

Kind code of ref document: A1