WO2023102900A1 - 一种微流体装置及微流体检测装置 - Google Patents

一种微流体装置及微流体检测装置 Download PDF

Info

Publication number
WO2023102900A1
WO2023102900A1 PCT/CN2021/137127 CN2021137127W WO2023102900A1 WO 2023102900 A1 WO2023102900 A1 WO 2023102900A1 CN 2021137127 W CN2021137127 W CN 2021137127W WO 2023102900 A1 WO2023102900 A1 WO 2023102900A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sensing
liquid channel
cavity
microfluidic device
Prior art date
Application number
PCT/CN2021/137127
Other languages
English (en)
French (fr)
Inventor
赵振涛
张宇宁
黎宇翔
云全新
董宇亮
章文蔚
徐讯
Original Assignee
深圳华大生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大生命科学研究院 filed Critical 深圳华大生命科学研究院
Priority to PCT/CN2021/137127 priority Critical patent/WO2023102900A1/zh
Priority to AU2021477173A priority patent/AU2021477173A1/en
Priority to CN202180101430.0A priority patent/CN117795339A/zh
Publication of WO2023102900A1 publication Critical patent/WO2023102900A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the invention relates to the field of microfluid technology, in particular to a microfluid device and a microfluid detection device.
  • Microfluidic technology is a technology for controlling, manipulating and detecting complex fluids at a microscopic scale. It is a new interdisciplinary subject developed on the basis of microelectronics, micromechanics, bioengineering and nanotechnology. In scientific experiments such as biology, chemistry, and materials, it is often necessary to operate on fluids, such as the preparation of sample DNA, liquid chromatography, PCR reaction, and electrophoresis detection, all of which are performed in a liquid-phase environment.
  • microfluidic devices have the advantages of light and small size, small amount of samples/reagents used, fast reaction speed, etc., and have a wide range of applications in biotechnology research.
  • microfluidic devices in the prior art usually need to open a liquid injection hole (33 in Fig. 1a and Fig. 1b) above the sensing area to add reagents or samples, which is easy to introduce air bubbles in the sensing area and is not easy to operate.
  • the invention provides a microfluidic device and a microfluidic detection device to solve the problem in the prior art that the microfluidic device introduces air bubbles due to opening a liquid injection hole above the sensing area.
  • the present invention adopts the following scheme:
  • a microfluidic device comprising a body and a liquid channel disposed in the body;
  • the body is provided with a sensing area
  • the body is also provided with a fluid input port communicating with the liquid channel, and the position of the fluid input port does not include the sensing area.
  • the microfluidic device includes a body and a liquid channel arranged inside the body.
  • the body is provided with a sensing area, and the liquid in the sensing area can be sensed as required; the body is also provided with a The fluid input port, and the setting position of the fluid input port does not include the sensing area, that is, the fluid input port is not located directly above the sensing area, and the liquid to be measured enters the liquid channel from the fluid input port and flows into the sensing area to be detected.
  • Sensing is easy to operate, and can effectively solve the problem of introducing air bubbles due to directly opening the liquid injection hole above the sensing area.
  • an on-off device is also arranged in the body, and the on-off device is used to control the circulation and interruption of the liquid in the liquid channel.
  • the on-off device is used to interrupt the liquid in the liquid channel to stop the flow, so as to ensure that the liquid in the sensing area is continuously and stably sensed, and the sensing efficiency is improved.
  • the on-off device is provided with a flow channel that can communicate with the liquid channel; the on-off device controls the connection between the flow channel and the liquid channel through relative movement with the body. Whether it is interlinked.
  • the on-off device is adjusted so that both ends of the flow channel in the on-off device communicate with the liquid channel, the liquid will circulate normally; when the two ends of the flow channel in the on-off device are not connected to the liquid channel, The liquid in the liquid channel will be interrupted.
  • At least one hollow sealed chamber is arranged in the body, and a flow-through membrane is arranged on the top of at least one of the sealed chambers, and the sealed chamber and the liquid channel share the Flow membrane.
  • the liquid in the sealed chamber and the liquid in the liquid channel are independent of each other, and ion transmission or other forms of signal transmission in the two liquids can be realized through the flow-through membrane.
  • the body is also provided with at least one liquid opening, and the liquid opening communicates with the sealed chamber. Liquid can be filled into the sealed chamber through the liquid opening, and the number of liquid openings can be adjusted as required.
  • the bottom of the sealed chamber is provided with a sealing component or a conductive component, the conductive component is used to transmit electrical signals, and the sealing component is mainly used to seal the bottom of the sealed chamber.
  • the sealed chamber at least includes a chamber A and a chamber B that communicate with each other, and the chamber A and the chamber B are respectively provided with at least one chamber for liquid inlet or outlet.
  • the two liquid ports cooperate with each other without interfering with each other.
  • the conductive component is arranged at the bottom of the cavity A for transmitting electrical signals to the outside.
  • the flow-through membrane is arranged on the top of the chamber B, and the bottom of the chamber B is provided with the sealing member.
  • the flow-through membrane is used to achieve ion transmission or other forms of signal transmission between the liquid in the cavity B and the liquid in the liquid channel; the sealing component is used to seal the bottom of the cavity B to prevent the liquid from seeping out.
  • the cavity A is a shuttle-shaped structure and is located on one side of the liquid channel, the cavity B is arranged below the liquid channel, and the cavity A and the The opposite tip of the liquid channel communicates with the chamber B.
  • Cavity B is set under the liquid channel, and the flow membrane on the top of cavity B can realize signal transmission with the liquid channel.
  • the tip of cavity A communicates with cavity B, thus forming a sealed area as a whole, and can be sealed to a certain extent. Increase the liquid storage volume in the sealed area.
  • a fluid storage device is provided in communication with the fluid input port, the top end of the fluid storage device is open, and the bottom end communicates with the fluid input port. Because the fluid input port of the microfluidic device is usually small in size, it is not convenient to directly add liquid through the fluid input port. In this solution, the fluid storage device can be used as a liquid addition device, and its top opening is large, which is convenient for liquid addition.
  • the fluid storage device is detachably arranged on the body, and the interior of the fluid storage device is a funnel structure.
  • the fluid storage device is detachably arranged on the body, which is convenient for installation, disassembly and replacement.
  • the interior of the fluid storage device is a funnel structure, wide at the top and narrow at the bottom, thus facilitating liquid filling.
  • the area on the body opposite to the sensing area is transparent, so as to facilitate observation of the liquid state in the sensing area.
  • a collection area is also provided inside the body, the collection area communicates with the tail end of the liquid channel, and a liquid discharge port is opened on the collection area. After the liquid in the liquid channel is sensed, it can enter the collection area to be collected. When the volume of the liquid in the collection area is larger than the volume of the collection area, the liquid can be discharged from the collection area through the discharge port to realize the function of circular collection.
  • the collection area is a helical or serpentine structure.
  • the spiral or serpentine structure can effectively increase the volume of the collection area and facilitate the collection of more liquid.
  • the body includes an upper plate and a lower plate connected to each other, and the liquid channel is a cavity formed between the upper plate and the lower plate;
  • the bottom of the liquid channel is part of the upper surface of the lower plate, and the top of the liquid channel is part of the lower surface of the upper plate.
  • the liquid channel is formed through the special structure of the upper plate and the lower plate, and resources are fully utilized, and the structure of the upper plate and the lower plate also plays an important role in the whole microfluidic device.
  • the area of the upper plate opposite to the sensing area is recessed toward the direction of the lower plate, which is convenient for observing the state of the liquid in the sensing area; the lower plate and the sensing area
  • the area opposite to the area is hollowed out, and the hollowed out area is used for connecting an external sensing device.
  • Ventilations holes are also provided on the collection area.
  • a negative pressure device can be externally connected to the air hole, and the liquid in the fluid storage device can be sucked into the liquid channel and into the sensing area by applying negative pressure.
  • a control valve is provided between the fluid input port and the fluid storage device, and the control valve is used to control whether the fluid input port communicates with the fluid storage device.
  • the control valve is opened, the fluid input port communicates with the fluid storage device, and now the liquid can be filled directly through the fluid storage device.
  • microfluidic detection device comprising the above-mentioned microfluidic device, the microfluidic detection device also includes:
  • a sensing device connected to the body and corresponding to the sensing area
  • the sensing device corresponds to the hollow position of the sensing area, and the sensing device overlaps with the liquid channel, and the sensing device can sense the liquid in the sensing area.
  • a sealing element is arranged between the sensing device and the body.
  • the arrangement of the sealing element can effectively avoid liquid leakage at the joint between the sensing device and the body.
  • the sensing device is detachably connected to the lower plate; the sealing element is detachably connected to the sensing device.
  • the detachable connection method is adopted to facilitate the installation and removal of the sensing device.
  • the sensing device includes a carrier plate
  • the sensing chip is arranged on the carrier plate, and the sensing chip corresponds to the liquid channel in the sensing area.
  • the liquid in the liquid channel will flow through the upper surface of the sensing chip, and then be sensed by the sensing chip, and the carrier plate mainly plays the role of supporting and fixing the sensing chip, and the combination of the two forms the sensing device as a whole.
  • the sealing element is a sealing sheet, and a through hole is opened in the middle of the sealing sheet, and the liquid channel communicates with the sensing chip through the through hole.
  • a through hole is opened in the middle of the sealing sheet, and the liquid can flow into the through hole and reach the surface of the sensing chip to be sensed, and the sensing area can be effectively closed by the sealing sheet.
  • the cross-sectional area of the through hole is smaller than the upper surface area of the sensing chip, and the edge of the through hole is located above the sensing chip. Ensure that the through hole is completely above the sensing chip, that is, the liquid in the through hole is only in contact with the upper surface of the sensing chip, and can be fully sensed.
  • the present invention has the following beneficial effects:
  • a microfluidic device provided by the present invention includes a body and a liquid channel arranged inside the body, the body is provided with a sensing area, the fluid input port is not located directly above the sensing area, and the liquid in the sensing area can It is sensed as required, the liquid to be tested enters the liquid channel from the fluid input port, and flows into the sensing area to be sensed. It is easy to operate and can effectively solve the problem of introducing air bubbles due to directly opening the liquid injection hole above the sensing area. The problem.
  • the present invention also provides a microfluid detection device comprising the above microfluid device, which can directly use the microfluid detection device to sense the liquid to be detected, and is easy to operate and has strong practicability.
  • Fig. 1a and Fig. 1b are the structural representations of the existing microfluidic device described in the background art
  • Fig. 2 is a kind of specific structural representation of the microfluidic device of the present invention.
  • Fig. 3 is A-A sectional schematic diagram among Fig. 2;
  • Fig. 4 is a kind of specific structural split diagram of the microfluid detection device of the present invention.
  • Fig. 5 is a structural split view of another angle of the microfluidic detection device according to the present invention.
  • Fig. 6 is another specific structural schematic diagram of the microfluidic device of the present invention.
  • Fig. 7 is B-B sectional schematic diagram among Fig. 6;
  • Fig. 8 is a structural schematic diagram of the interrupted state of the flow channel and the liquid channel of the on-off device of the present invention.
  • Fig. 9 is a schematic cross-sectional view of C-C in Fig. 8.
  • Fig. 10 is an enlarged schematic diagram of the structure of the on-off device in Fig. 9;
  • Fig. 11 is a structural schematic diagram of the flow channel and the liquid channel of the on-off device of the present invention in a state of communication;
  • Fig. 12 is a schematic diagram of D-D section in Fig. 11;
  • Fig. 13 is an enlarged schematic diagram of the structure of the on-off device in Fig. 11;
  • Figure 14 is one of the structural schematic diagrams of the collection area of the present invention.
  • Fig. 15 is the second schematic diagram of the structure of the collection area of the present invention.
  • Sensing device 500; carrier board—501; sensing chip—502; sealing element—503;
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the present invention provides a microfluidic device, including a body 100 and a liquid channel 201 disposed in the body 100; a sensing region 301 is disposed on the body 100; and a The fluid channel 201 communicates with the fluid input port 103 , and the location of the fluid input port 103 does not include the sensing area 301 .
  • the microfluidic device includes a body 100 and a liquid channel 201 arranged inside the body 100.
  • the body 100 is provided with a sensing area 301, and the liquid in the liquid channel 201 can flow through the sensing area 301.
  • the liquid can be sensed as required; the body 100 is also provided with a fluid input port 103 communicating with the liquid channel 201, and the setting position of the fluid input port 103 does not include the sensing area 301, that is, the fluid input port 103 is not located in the sensing area 301.
  • the sensing area 301 Directly above the sensing area 301, it can effectively solve the problem of introducing air bubbles due to directly opening the liquid injection hole above the sensing area.
  • an on-off device 104 is provided in the body 100 , and the on-off device 104 is used to control the flow and interruption of the liquid in the liquid channel 201 .
  • the on-off device 104 is used to interrupt the liquid in the liquid channel 201 to stop the flow, thereby ensuring that the liquid in the sensing area 301 is continuously and stably sensed, and the sensing efficiency is improved.
  • the on-off device 104 is mainly used to control the circulation and interruption of the liquid in the liquid channel 201 , and its specific structure and working principle are not limited here.
  • the on-off device 104 is provided with a flow channel capable of communicating with the liquid channel 201 ; the on-off device 104 controls whether the flow channel communicates with the liquid channel 201 through relative movement with the body 100 .
  • the on-off device 104 is adjusted so that both ends of the flow channel in the on-off device 104 communicate with the liquid channel 201, the liquid circulates normally; when the two ends of the flow channel in the on-off device 104 are not connected to the liquid channel 201, At this time, the on-off device 104 will interrupt the liquid in the liquid channel 201 .
  • there is no specific limitation on how the on-off device 104 and the body 100 move relative to each other for example, translation or rotation may be used.
  • the on-off device 104 is a rotary valve, and a flow channel capable of communicating with the liquid channel 201 is arranged in the rotary valve, and whether the flow channel communicates with the liquid channel 201 is controlled by turning the rotary valve.
  • a flow channel capable of communicating with the liquid channel 201 is arranged in the rotary valve, and whether the flow channel communicates with the liquid channel 201 is controlled by turning the rotary valve.
  • At least one hollow sealed chamber 400 is provided in the body 100, and a flow-through membrane 402 is provided on the top of at least one sealed chamber 400, and the sealed chamber 400 and the liquid channel 201
  • the common flow membrane 402 that is, the sealed chamber 400 and the liquid channel 201 are separated into two independent spaces by the flow membrane 402 .
  • the liquid in the sealed chamber 400 and the liquid in the liquid channel 201 are independent of each other, and the ion transmission or other forms of signal transmission between the liquid in the sealed chamber 400 and the liquid in the liquid channel 201 can be realized through the flow-through membrane 402 .
  • the specific structure and material of the flow-through membrane 402 are not limited here, and can be fabricated according to actual functional requirements.
  • the flow-through membrane 402 can be a semi-permeable membrane.
  • the sealed chamber 400 in this solution only needs to be arranged between the on-off device 104 and the fluid input port 103 , and it can be both upstream and downstream of the sensing area 301 .
  • the body 100 is further provided with at least one liquid opening 401 , and the liquid opening 401 communicates with the sealed chamber 400 .
  • Liquid can be filled into the sealed chamber 400 through the liquid opening 401 , and the number of the liquid opening 401 can be adjusted as required.
  • the liquid opening 401 in this solution can be used to fill the sealed chamber 400 with liquid, and can also be used as a discharge channel for the liquid in the sealed chamber 400 .
  • the bottom of the sealed chamber 400 is provided with a sealing member 403 or a conductive member 404, and the conductive member 404 is used to transmit electrical signals, and its specific shape and location are not limited in this embodiment.
  • the sealing member 403 is mainly used to seal the bottom of the sealing chamber 400 to avoid liquid leakage.
  • the sealed chamber 400 at least includes a cavity A4001 and a cavity B4002 that communicate with each other.
  • the cavity A4001 and the cavity B4002 are respectively provided with at least one liquid port 401 for liquid inlet or outlet. .
  • the liquid port 401 on the cavity A4001 is used for liquid intake
  • the liquid port 401 on the cavity B4002 is used for liquid discharge; similarly, when the liquid port 401 on the cavity B4002 is used for liquid intake, Then the liquid opening 401 on the cavity A4001 is used for liquid outlet, and the two liquid openings 401 do not interfere with each other.
  • the positions and shapes of cavity A4001 and cavity B4002 can be arranged according to the needs of detection.
  • the conductive component 404 is disposed at the bottom of the cavity A4001 for transmitting electrical signals to the outside.
  • the conductive member 404 may be a metal sheet or an electrode.
  • the flow-through membrane 402 is arranged on the top of the cavity B4002, and the bottom of the cavity B4002 is provided with a sealing member 403.
  • the flow-through membrane 402 is used to achieve ion transmission or other forms of signal transmission between the liquid in the cavity B4002 and the liquid in the liquid channel 201 ; the sealing member 403 is used to seal the bottom of the cavity B4002 to prevent the liquid from seeping out.
  • the sealing member 403 may adopt a sheet-like object.
  • the conductive member 404 is arranged at the bottom of the cavity A4001, and the flow membrane 402 is arranged at the top of the cavity B4002, so the conductive member 404 and the flow membrane 402 can be placed in the same place. liquid infiltration.
  • the cavity A4001 is a shuttle-shaped structure and is located on one side of the liquid channel 201, the cavity B4002 is arranged below the liquid channel 201, and the tip of the cavity A4001 opposite to the liquid channel 201 communicates with the cavity B4002.
  • the cavity B4002 is set under the liquid channel 201, and the cavity B4002 can realize signal transmission with the liquid channel 201 through the flow membrane 402 provided on the top of the cavity B4002, that is, the liquid in the cavity B4002 and the liquid in the liquid channel 201 can pass through the flow membrane 402
  • cavity A4001 communicates with cavity B4002 to form a sealed area as a whole.
  • the structures of the cavity A4001 and the cavity B4002 can be adjusted according to needs.
  • setting the cavity A4001 as a shuttle-shaped structure is only an example.
  • the cavity A4001 can also be Oval or other shapes.
  • the cavity A4001 and the cavity B4002 are detachably disposed in the main body 100, and it is possible to choose whether to install it or not, or consider installing only one of them.
  • a fluid storage device 105 is provided in communication with the fluid input port 103 , the top end of the fluid storage device 105 is open, and the bottom end of the fluid storage device 105 communicates with the fluid input port 103 . Because the fluid input port 103 of the microfluidic device is generally small in size, it is not convenient to add liquid directly through the fluid input port 103. In this solution, the fluid storage device 105 can be used as a liquid addition device. Easy to pour.
  • the fluid storage device 105 is detachably arranged on the body 100, and the inside of the fluid storage device 105 is a funnel structure.
  • the fluid storage device 105 is detachably arranged on the body 100, which is convenient for installation, disassembly and replacement.
  • the interior of the fluid storage device 105 is set as a funnel structure in this solution, which is wide at the top and narrow at the bottom. Therefore, it is convenient to add liquid, and it is possible to avoid liquid remaining on the inner wall of the fluid storage device 105 as much as possible.
  • the fluid storage device 105 can be made into different shapes according to needs, and the above-mentioned funnel structure is only a more preferred embodiment.
  • the shape of the fluid input port 103 can also be adjusted according to actual needs, such as a round mouth, a square mouth or a bell mouth.
  • the area on the body 100 opposite to the sensing area 301 is transparent, so as to facilitate observation of the liquid state in the sensing area 301 .
  • the circle in Fig. 2 only refers to the approximate range of the sensing area 301, the body 100 in this area can be made of transparent material, so as to visually observe the liquid state in the sensing area 301, and improve the sensing efficiency; the sensing area 301
  • the shape is not limited and can be adjusted according to actual needs.
  • a collection area 106 is provided inside the body 100 , and the collection area 106 communicates with the tail end of the liquid channel 201 , and a liquid discharge port 601 is opened on the collection area 106 .
  • the on-off device 104 is opened, so that the liquid in the liquid channel 201 can enter the collection area 106 to be collected.
  • the liquid volume in the collection area 106 is greater than the volume of the collection area 106, it can The liquid is discharged from the collection area 106 through the liquid discharge port 601 , such as using a syringe to draw the liquid from the liquid discharge port 601 , so that the collection area 106 can continue to collect liquid, so as to realize the function of circular collection.
  • the collection area 106 has a spiral or serpentine structure.
  • the spiral or serpentine structure can effectively increase the volume of the collection area 106, so as to facilitate the collection of more liquid.
  • the form of the liquid collection area 106 can be various, it can be a liquid storage tank, and can also be other storage media such as absorbent cotton, etc.
  • the collection area 106 is not limited to a cavity structure.
  • the body 100 includes an upper plate 101 and a lower plate 102 connected to each other, and the liquid channel 201 is a cavity formed between the upper plate 101 and the lower plate 102 ;
  • the bottom of the liquid channel 201 is part of the upper surface of the lower plate 102
  • the top of the liquid channel 201 is part of the lower surface of the upper plate 101 .
  • the upper plate 101 and the lower plate 102 are permanently combined by welding, gluing, bonding, etc., and the liquid channel 201 is formed through the special structure of the upper plate 101 and the lower plate 102, making full use of resources, and the upper plate
  • the structure of 101 and lower plate 102 also plays an important role in the whole microfluidic device.
  • the part of the upper plate 101 inside the sensing area 301 is made of transparent material.
  • the area of the upper plate 101 opposite to the position of the sensing area 301 is recessed toward the direction of the lower plate 102, that is, the thickness of the upper plate 101 in the sensing area 301 is reduced to facilitate observation of the state of the liquid in the sensing area 301;
  • the area of the plate 102 opposite to the sensing area 301 is hollowed out.
  • the shape and size of the hollowed out area can be adjusted according to needs.
  • the hollowed out area is used for externally connecting the sensing device 500 .
  • a ventilation hole 602 is also provided on the collection area 106 .
  • a negative pressure device can be externally connected to the vent hole 602 , and the liquid in the fluid storage device 105 can be sucked into the liquid channel 201 and into the sensing area 301 by applying negative pressure.
  • a control valve is provided between the fluid input port 103 and the fluid storage device 105 , and the control valve is used to control whether the fluid input port 103 communicates with the fluid storage device 105 .
  • the control valve When the control valve is opened, the fluid input port 103 communicates with the fluid storage device 105, and now the liquid can be filled directly through the fluid storage device 105; when the control valve is closed, the fluid input port 103 is cut off from the fluid storage device 105, and the liquid cannot Inflow fluid input port 103 .
  • this solution also provides a microfluidic detection device including a microfluidic device, and the microfluidic detection device also includes:
  • a sensing device 500 connected to the main body 100 and corresponding to the sensing area 301;
  • the sensing device 500 overlaps with the liquid channel 201 and allows the liquid in the liquid channel 201 to flow through.
  • the sensing device 500 corresponds to the hollow position of the sensing region 301 , and the sensing device 500 overlaps with the liquid channel 201 , and the sensing device 500 can sense the liquid in the sensing region 301 .
  • the sensing device 500 When in use, the sensing device 500 is sealed and installed at the hollow position of the sensing area 301, so that the liquid channel 201 is in a sealed state, and the sensing device 500 is used as a part of the liquid channel 201. When the liquid flows through the sensing device 500 The surface can be effectively sensed.
  • a sealing element 503 is provided between the sensing device 500 and the body 100 .
  • the setting of the sealing element 503 keeps the sensing area 301 in a sealed state, which can effectively avoid liquid leakage at the joint between the sensing device 500 and the body 100 , and avoid introducing air bubbles, thereby improving sensing efficiency.
  • the sensing device 500 is detachably connected to the lower plate 102 ; the sealing element 503 is detachably connected to the sensing device 500 .
  • a detachable connection method such as a screw or buckle, is adopted to facilitate installation and disassembly of the sensing device 500 .
  • the sealing element 503 and the sensing device 500 can be connected together first, and then installed on the lower plate 102 as a whole; Element 503 is connected.
  • the sensing device 500 includes a carrier plate 501 ; and a sensing chip 502 disposed on the carrier plate 501 , the sensing chip 502 corresponds to the liquid channel 201 in the sensing region 301 .
  • the sensing chip 502 is provided with a metal probe, and the metal probe is electrically connected to the conductive member 404.
  • the conductive component 404 transmits the signal sensed by the sensing chip 502 to the outside.
  • the form of the metal probe can be various, as long as it can be electrically connected with the conductive member 404, for example, it can be an electrode.
  • the carrier board 501 is mainly used to protect and fix the sensing chip 502.
  • the carrier board 501 can be a PCB board, and the carrier board 501 and the sensing chip 502 are combined to form the sensing device 500 as a whole.
  • the sealing element 503 is a sealing sheet, and a through hole is opened in the middle of the sealing sheet, and the liquid channel 201 communicates with the sensing chip 502 through the through hole.
  • a through hole is opened in the middle of the sealing sheet, and the liquid can flow into the through hole and reach the surface of the sensing chip 502 to be sensed.
  • the sensing area 301 can be effectively sealed by the sealing sheet to avoid leakage and introduction of air bubbles.
  • the cross-sectional area of the through hole is smaller than the upper surface area of the sensing chip 502 , and the edge of the through hole is located above the sensing chip 502 . Ensure that the through hole is completely above the sensing chip 502 , that is, the liquid in the through hole only contacts the upper surface of the sensing chip 502 and can be fully sensed.
  • the sealing sheet and the sensing device 500 are first installed on the hollow of the lower plate 102 in the sealing area with bolts 1041, and the rotary valve is adjusted so that the liquid channel 201 and the flow channel are in an interrupted state, and then the fluid input is opened.
  • the control valve at the port 103 is filled with liquid through the fluid storage device 105, so that the liquid enters the liquid channel 201, and the sensing chip 502 of the sensing device 500 is used to continuously and stably sense the liquid in the sensing area 301, and the sensing is completed
  • adjust the rotary valve so that the liquid channel 201 and the flow channel are in a connected state, and the sensed liquid flows into the collection area 106 immediately. When there is too much liquid in the collection area 106, it can be discharged through the liquid discharge port 601 in time.
  • the fluid storage device 105 is a cylindrical structure
  • the on-off device 500 adopts a rotary valve
  • the rotary valve is arranged on the upper surface of the upper plate 101, near the inlet of the collection area 106, And located on one side of the liquid channel, the collecting area 106 is a serpentine flow channel.
  • the part of the upper plate 101 in the sensing area 301 is inwardly recessed to form a shuttle-shaped groove or a rectangular groove.
  • the sealing element 503 is a butterfly-shaped sealing sheet.
  • the two wings of the sealing sheet are connected to the carrier plate 501 by bolts.
  • the material of the sealing sheet is here There are no specific restrictions, and the main consideration should be its sealing performance when selecting.
  • Both the sensing chip 502 and the carrier board 501 are in the shape of a rectangular plate, and the carrier board 501 is fixed in the middle of the carrier board 501.
  • Three pairs of threaded holes are arranged symmetrically around the edge of the sensing chip 502 on the carrier board 501, wherein the middle part A pair of threaded holes are used to fix the sealing element 503 , and the rest of the threaded holes are used to bolt the lower plate 102 to fix the carrier plate 501 .
  • the positions opposite to the remaining two pairs of threaded holes are provided with screw holes.
  • the bolts are sequentially passed through the screw holes of the upper plate 101 and the lower plate 102, and then connected to the carrier plate 501.
  • the remaining two pairs of threaded holes are screwed to complete the installation and fixation of the sensing device 500 .
  • the rotary valve has a rectangular structure, which is fixed on the upper surface of the upper plate 101 by bolts, and two openings are provided through the upper plate 101 below the rotary valve.
  • the hole, the opening of the flow channel is arranged on the surface of the rotary valve in contact with the upper plate 101, and the direction indicated by the arrow in the figure is the direction of liquid flow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种微流体装置及微流体检测装置,包括本体(100)以及设置在本体(100)内的液道(201);本体(100)上还设置有和液道(201)连通的流体输入端口(103),且流体输入端口(103)的设置位置不包括感测区域(301)。微流体装置及微流体检测装置操作方便,且可有效解决因在感测区域(301)的上方直接开注液孔而引入气泡的问题。

Description

一种微流体装置及微流体检测装置 技术领域
本发明涉及微流体技术领域,尤其是涉及一种微流体装置及微流体检测装置。
背景技术
微流体技术是在微观尺寸下控制、操作和检测复杂流体的技术,是在微电子、微机械、生物工程和纳米技术基础上发展起来的一门全新交叉学科。在生物、化学、材料等科学实验中,经常需要对流体进行操作,如样品DNA的制备、液相色谱、PCR反应、电泳检测等操作都是在液相环境中进行。
如果要将样品制备、生化反应、结果检测等步骤集成到生物芯片上,则实验所用流体的量通常就会从毫升降至微升级,此时需要使用专门的微流体装置才能满足操作需求。微流体装置具有体积轻巧、使用样品/试剂量少、反应速度快等优点,在生物技术研究上的应用范围非常广泛。
然而,现有技术中的微流体装置,通常需在感测区的上方开注液孔(图1a和图1b中33),用来加入试剂或样本,易在感测区引入气泡,且不易操作。
有鉴于此,特提出本发明。
发明内容
本发明提供了一种微流体装置及微流体检测装置,以解决现有技术中微流体装置因在感测区的上方开注液孔而引入气泡的问题。
为解决上述问题,并提高生物分子检测装置的集成度,缩小检测装置尺寸,本发明采用以下方案:
一种微流体装置,包括本体以及设置在所述本体内的液道;
所述本体上设置有感测区域;
所述本体上还设置有和所述液道连通的流体输入端口,且所述流体输入端口的设置位置不包括感测区域。
该方案中,微流体装置包括本体以及设置在本体的内部的液道,本体上设置有感测区域,感测区域内的液体能够根据需要被感测;本体上还设置有和液道连通的流体输入端口,且流体输入端口的设置位置不包括感测区域,即流体输入端口不设在感测区域的正上方,待测液体从流体输入端口处进入液道内,并流入感测区域内被感测,操作方便,且可有效解决因在感测区的上方直接开注液孔而引入气泡的问题。
在进一步优选的方案中,所述本体内还设置有通断装置,所述通断装置用于控制所述液道内液体的流通与中断。利用通断装置将液道内的液体中断,使其停止流动,从而保证感测区域内的液体被持续稳定地感测,提升感测效率。
在进一步优选的方案中,所述通断装置内设置有能够与所述液道连通的流道;所述通断装置通过与所述本体发生相对运动,控制所述流道与所述液道是否相通。当调节通断装置,使通断装置内的流道的两端与液道连通时,液体正常流通;当通断装置内的流道的两端与液道不连通时,此时通断装置会将液道内的液体中断。
在进一步优选的方案中,所述本体内还设置有至少一个中空的密封腔室,且至少一个所述密封腔室的顶部设置有流通膜,所述密封腔室和所述液道共用所述流通膜。密封腔室内的液体与液道内的液体相互独立,可通过流通膜实现两液体中的离子传递或其他形式的信号传递。
在进一步优选的方案中,所述本体上还设置有至少一个通液口,所述通 液口与所述密封腔室连通。通过通液口能够对密封腔室内加注液体,通液口的数量可根据需要进行调整。
在进一步优选的方案中,所述密封腔室的底部设置有密封部件或导电部件,所述导电部件用于传递电信号,密封部件主要用于封闭密封腔室的底部。
在进一步优选的方案中,所述密封腔室至少包括相互连通的腔体A和腔体B,所述腔体A和所述腔体B上分别至少设置一个用于进液或出液的所述通液口,两个通液口相互配合,互不干扰。
在进一步优选的方案中,所述导电部件设置在所述腔体A的底部,用于向外部传递电信号。
在进一步优选的方案中,所述流通膜设置在所述腔体B的顶部,所述腔体B的底部设置有所述密封部件。流通膜用于实现腔体B内的液体和液道内的液体的离子传递或其他形式的信号传递;密封部件用于封闭腔体B的底部,以防液体渗出。
在进一步优选的方案中,所述腔体A为梭形结构,且处在所述液道的一侧,所述腔体B设置在所述液道的下方,所述腔体A与所述液道相对的尖端与所述腔体B连通。腔体B设置在液道的下方,腔体B通过其顶部设置的流通膜可以和液道实现信号传递,腔体A的尖端与腔体B连通,从而整体形成密封区域,且能在一定程度上扩大密封区域的储液量。
在进一步优选的方案中,所述流体输入端口处配合连通设置有流体储存装置,所述流体储存装置的顶端开口,底端与所述流体输入端口连通。由于微流体装置的流体输入端口通常尺寸较小,不便于直接通过流体输入端口加液,本方案中流体储存装置可以作为加液装置,其顶端开口较大,便于加液。
在进一步优选的方案中,所述流体储存装置可拆卸设置在所述本体上,且所述流体储存装置的内部为漏斗式结构。流体储存装置可拆卸设置在本体 上,便于安装、拆卸和更换,流体储存装置的内部为漏斗式结构,上宽下窄,从而便于加注液体。
在进一步优选的方案中,所述本体上与所述感测区域的位置相对的区域透明,从而便于观测感测区域内的液体状态。
在进一步优选的方案中,所述本体内部还设置有收集区域,所述收集区域与所述液道的尾端连通,所述收集区域上开设有排液口。液道内的液体被感测完毕后,能够进入收集区域被收集,当收集区域内的液体体积大于收集区域的容积时,可通过排液口将液体排出收集区域,以实现循环收集的作用。
在进一步优选的方案中,所述收集区域为螺旋形或蛇形结构。螺旋形或蛇形结构能有效增大收集区域的容积,便于收集更多的液体。
在进一步优选的方案中,所述本体包括互相连接的上板和下板,所述液道为所述上板和所述下板之间形成的腔体;
其中,所述液道的底部为部分所述下板的上表面,所述液道的顶部为部分所述上板的下表面。通过上板和下板的特殊结构来形成液道,充分利用资源,且上板和下板的结构在整个微流体装置中也有重要作用。
在进一步优选的方案中,所述上板与所述感测区域的位置相对的区域向所述下板的方向凹陷,便于观测感测区域内液体的状态;所述下板与所述感测区域的位置相对的区域镂空,镂空区域用于外接感测装置。
在进一步优选的方案中,所述收集区域上还设置有通气孔。能够在通气孔处外接负压装置,通过施加负压的方式将流体储存装置内的液体抽吸进入液道内,并进入感测区域。
在进一步优选的方案中,所述流体输入端口和所述流体储存装置之间设置有控制阀门,所述控制阀门用于控制所述流体输入端口与所述流体储存装置是否连通。当控制阀门打开时,流体输入端口与流体储存装置连通,此时 可直接通过流体储存装置来加注液体。
本方案还提供了一种包括上述微流体装置的微流体检测装置,所述微流体检测装置还包括:
连接在所述本体上,且和所述感测区域对应的感测装置;
所述感测装置与所述液道存在重叠部分,且可供所述液道内的液体流过。
本方案中,感测装置和感测区域的镂空位置对应,且感测装置与液道存在重叠部分,利用感测装置可对位于感测区域内的液体进行感测。
在进一步优选的方案中,所述感测装置和所述本体之间设置有一密封元件。密封元件的设置,可有效避免感测装置和本体的连接处发生液体渗漏。
在进一步优选的方案中,所述感测装置与下板可拆卸连接;所述密封元件与所述感测装置可拆卸连接。采用可拆卸的连接方式,便于感测装置的安装及拆卸。
在进一步优选的方案中,所述感测装置包括载板;以及
设置在所述载板上的感测芯片,所述感测芯片与所述感测区域内的液道相对应。使用时,液道内的液体会流经感测芯片的上表面,进而被感测芯片所感测,载板主要起到支撑和固定感测芯片的作用,以两者结合作为感测装置整体。
在进一步优选的方案中,所述密封元件为密封片,且所述密封片的中部开设有通孔,所述液道与所述感测芯片通过所述通孔连通。密封片的中部开设有通孔,液体可流入该通孔,并到达感测芯片的表面被感测,感测区域能够被密封片有效封闭。
在进一步优选的方案中,所述通孔的截面积小于所述感测芯片的上表面积,且所述通孔的边缘位于所述感测芯片的上方。保证通孔完全位于感测芯片的上方,即通孔内的液体仅与感测芯片的上表面,能够被充分感测。
与现有技术相比,本发明具有以下有益效果:
本发明提供的一种微流体装置,包括本体以及设置在本体的内部的液道,本体上设置有感测区域,流体输入端口不设在感测区域的正上方,感测区域内的液体能够根据需要被感测,待测液体从流体输入端口处进入液道内,并流入感测区域内被感测,操作方便,且可有效解决因在感测区的上方直接开注液孔而引入气泡的问题。
本发明还提供了一种包含上述微流体装置的微流体检测装置,能够直接利用该微流体检测装置对需要检测的液体进行感测,操作方便,实用性强。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a和图1b为背景技术所述的现有微流体装置的结构示意图;
图2为本发明所述的微流体装置的一种具体的结构示意图;
图3为图2中A-A剖面示意图;
图4为本发明所述的微流体检测装置的一种具体的结构拆分图;
图5为本发明所述的微流体检测装置的另一角度的结构拆分图;
图6为本发明所述的微流体装置的另一种具体的结构示意图;
图7为图6中B-B剖面示意图;
图8为本发明所述通断装置的流道与液道处于中断状态的结构示意图;
图9为图8中C-C剖面示意图;
图10为图9中通断装置的结构放大示意图;
图11为本发明所述通断装置的流道与液道处于连通状态的结构示意图;
图12为图11中D-D剖面示意图;
图13为图11中通断装置的结构放大示意图;
图14为本发明所述收集区域的结构示意图之一;
图15为本发明所述收集区域的结构示意图之二。
以上附图中,各标号所代表的部件列表如下:
本体—100;上板—101;下板—102;流体输入端口—103;通断装置—104;流体储存装置—105;收集区域—106;
液道—201;
感测区域—301;
密封腔室—400;腔体A—4001;腔体B—4002;通液口—401;流通膜—402;密封部件—403;导电部件—404;
感测装置—500;载板—501;感测芯片—502;密封元件—503;
排液口—601;通气孔—602。
具体实施方式
为了使本发明的上述以及其他特征和优点更加清楚,下面结合附图进一步描述本发明。应当理解,本文给出的具体实施例是出于向本领域技术人员解释的目的,仅是示例性的,而非限制性的。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水 平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而 且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
请参考图2-7所示,本发明提供了一种微流体装置,包括本体100以及设置在本体100内的液道201;本体100上设置有感测区域301;本体100上还设置有和液道201连通的流体输入端口103,且流体输入端口103的设置位置不包括感测区域301。
该方案中,微流体装置包括本体100以及设置在本体100的内部的液道201,本体100设置有感测区域301,液道201内的液体能流经感测区域301,感测区域301内的液体能够根据需要被感测;本体100上还设置有和液道201连通的流体输入端口103,且流体输入端口103的设置位置不包括感测区域301,即流体输入端口103不设在感测区域301的正上方,能够有效解决因在感测区的上方直接开注液孔而引入气泡的问题。
进一步地,本体100内还设置有通断装置104,通断装置104用于控制液道201内液体的流通与中断。利用通断装置104将液道201内的液体中断,使其停止流动,从而保证感测区域301内的液体被持续稳定地感测,提升感测效率。
需要说明的是,通断装置104主要用于控制液道201内液体的流通与中断,其具体结构和工作原理在此不做限制。
进一步地,通断装置104内设置有能够与液道201连通的流道;通断装置104通过与本体100发生相对运动,控制流道与液道201是否相通。当调节通断装置104,使通断装置104内的流道的两端与液道201连通时,液体正常流通;当通断装置104内的流道的两端与液道201不连通时,此时通断 装置104会将液道201内的液体中断。本方案中通断装置104与本体100发生相对运动的方式不做具体限制,如可以为平动或转动等。
在另一优选的实施例中,通断装置104为一旋转阀,旋转阀内设置有能够与液道201连通的流道,通过转动旋转阀来控制流道与液道201是否相通。如图8-10所示,当旋转阀处于“OFF”状态时,流道与液道201处于断开状态,此时可对感测区域301内的液体进行持续稳定地感测;如图11-13所示,当旋转阀处于“ON”状态时,流道与液道201处于连通状态,此时液道201内液体可顺利流经流道,并进入收集区域106内被收集。
进一步地,如图6和图7所示,本体100内还设置有至少一个中空的密封腔室400,且至少一个密封腔室400的顶部设置有流通膜402,密封腔室400和液道201共用流通膜402,也即密封腔室400和液道201被流通膜402隔成两个独立空间。密封腔室400内的液体与液道201内的液体相互独立,可通过流通膜402实现密封腔室400内的液体与液道201内的液体中的离子传递或其他形式的信号传递。流通膜402的具体结构和材质在此不做限制,可根据实际功能的需要来制作,如在某些情况下,流通膜402可采用半透膜。
需要理解的是,本方案中的密封腔室400只需满足其设置在通断装置104和流体输入端口103之间即可,而在感测区域301的上下游均可。
进一步地,本体100上还设置有至少一个通液口401,通液口401与密封腔室400连通。通过通液口401能够对密封腔室400内加注液体,通液口401的数量可根据需要进行调整。本方案中的通液口401既可用于对密封腔室400内加注液体,也可作为密封腔室400内液体的排出通道。
进一步地,如图7所示,密封腔室400的底部设置有密封部件403或导电部件404,导电部件404用于传递电信号,其具体形态及设置的位置在本实施例中不做限制,密封部件403主要用于封闭密封腔室400的底部,避免 液体外渗。
进一步地,如图4所示,密封腔室400至少包括相互连通的腔体A4001和腔体B4002,腔体A4001和腔体B4002上分别至少设置一个用于进液或出液的通液口401。当腔体A4001上的通液口401用于进液时,则腔体B4002上的通液口401用于出液;同理,当腔体B4002上的通液口401用于进液时,则腔体A4001上的通液口401用于出液,两个通液口401互不干扰。腔体A4001和腔体B4002的位置和形态可根据检测的需要来布设。
进一步地,导电部件404设置在腔体A4001的底部,用于向外部传递电信号。在另一实施例中,导电部件404可采用金属片或者电极。
进一步地,流通膜402设置在腔体B4002的顶部,腔体B4002的底部设置有密封部件403。流通膜402用于实现腔体B4002内的液体和液道201内的液体的离子传递或其他形式的信号传递;密封部件403用于封闭腔体B4002的底部,以防液体渗出。在另一实施例中,密封部件403可采用薄片状物体。
由于腔体A4001和腔体B4002互相连通,且间隔较近,导电部件404设置在腔体A4001的底部,流通膜402设置在腔体B4002的顶部,故导电部件404和流通膜402能够被同一处的液体浸润。
进一步地,腔体A4001为梭形结构,且处在液道201的一侧,腔体B4002设置在液道201的下方,腔体A4001与液道201相对的尖端与腔体B4002连通。腔体B4002设置在液道201的下方,腔体B4002通过其顶部设置的流通膜402可以和液道201实现信号传递,即腔体B4002内的液体和液道201内的液体可通过流通膜402进行离子传递或其他形式的信号传递,腔体A4001与腔体B4002连通,整体形成密封区域。
需要理解的是,腔体A4001与腔体B4002的结构可根据需要进行调整, 本方案中将腔体A4001设置为梭形结构仅为一种实施例,在其他实施例中,腔体A4001也可为椭圆形或其他形态。腔体A4001与腔体B4002可拆卸地设置在本体100内,可根据需要来选择是否安装,或考虑仅安装其一。
进一步地,流体输入端口103处配合连通设置有流体储存装置105,流体储存装置105的顶端开口,底端与流体输入端口103连通。由于微流体装置的流体输入端口103通常尺寸较小,不便于直接通过流体输入端口103加液,本方案中流体储存装置105可以作为加液装置,其顶端开口较大,便于加液,且不容易倾洒。
进一步地,流体储存装置105可拆卸设置在本体100上,且流体储存装置105的内部为漏斗式结构。流体储存装置105可拆卸设置在本体100上,便于安装、拆卸和更换,为便于液体充分进入液道201内,本方案中将流体储存装置105的内部设置为漏斗式结构,上宽下窄,从而便于加注液体,且能尽量避免液体在流体储存装置105的内壁残留。
需要说明的是,流体储存装置105可根据需要做成不同的形状,上述漏斗式结构仅作为一较为优选的实施例。流体输入端口103的形状也可根据实际需求调整,如圆口、方口或喇叭口等。
进一步地,本体100上与感测区域301的位置相对的区域透明,从而便于观测感测区域301内的液体状态。图2中圆圈仅指代感测区域301的大致范围,该区域内的本体100可采用透明材质的材料制作,以便直观观察感测区域301内的液体状态,提升感测效率;感测区域301的形状不限,可根据实际需要进行调整。
进一步地,本体100内部还设置有收集区域106,收集区域106与液道201的尾端连通,收集区域106上开设有排液口601。液道201内的液体被感测完毕后,打开通断装置104,使液道201内的液体能够进入收集区域106 被收集,当收集区域106内的液体体积大于收集区域106的容积时,可通过排液口601将液体排出收集区域106,如利用注射器将液体从排液口601处抽出,使得收集区域106能继续收集液体,以实现循环收集的作用。
进一步地,如图14和图15所示,收集区域106为螺旋形或蛇形结构。螺旋形或蛇形结构能有效增大收集区域106的容积,便于收集更多的液体。
需要说明的是,液体收集区域106的形式可以是多样的,可以是储液池,也可以是其他储存介质如吸水棉等,收集区域106不局限于空腔结构。
进一步地,如图4所示,本体100包括互相连接的上板101和下板102,液道201为上板101和下板102之间形成的腔体;
其中,液道201的底部为部分下板102的上表面,液道201的顶部为部分上板101的下表面。具体使用时,上板101和下板102通过焊接、胶粘、键合等方式永久结合在一起,通过上板101和下板102的特殊结构来形成液道201,充分利用资源,且上板101和下板102的结构在整个微流体装置中也有重要作用。
应该理解的是,本方案中上板101在感测区域301内的部分由透明材质制成。
进一步地,上板101与感测区域301的位置相对的区域向下板102的方向凹陷,即减小上板101在感测区域301的厚度,便于观测感测区域301内液体的状态;下板102与感测区域301的位置相对的区域镂空,镂空区域的形态及大小可根据需要进行调节,镂空区域用于外接感测装置500。
进一步地,收集区域106上还设置有通气孔602。能够在通气孔602处外接负压装置,通过施加负压的方式将流体储存装置105内的液体抽吸进入液道201内,并进入感测区域301。
需要补充的是,液体从流体输入端口103进入液道201的方式,可以是 在下游施加负压的方式抽吸进入,也可以是外部施压,还可以是通过将液道201内的空气提前排出,形成一个真空腔室,使流体自吸进入。
进一步地,流体输入端口103和流体储存装置105之间设置有控制阀门,控制阀门用于控制流体输入端口103与流体储存装置105是否连通。当控制阀门打开时,流体输入端口103与流体储存装置105连通,此时可直接通过流体储存装置105来加注液体;当控制阀门关闭时,流体输入端口103与流体储存装置105隔断,液体无法流入流体输入端口103。
如图5所示,本方案还提供了一种包括微流体装置的微流体检测装置,微流体检测装置还包括:
连接在本体100上,且和感测区域301对应的感测装置500;
感测装置500与液道201存在重叠部分,且可供液道201内的液体流过。
本方案中,感测装置500和感测区域301的镂空位置对应,且感测装置500与液道201存在重叠部分,利用感测装置500可对位于感测区域301内的液体进行感测。
使用时,将感测装置500密封安装在感测区域301的镂空位置处,使该处液道201属于密封状态,感测装置500即作为液道201的一部分,当液体流经感测装置500的表面,即可被有效感测。
进一步地,感测装置500和本体100之间设置有一密封元件503。密封元件503的设置,使得感测区域301保持密封状态,既可有效避免感测装置500和本体100的连接处发生液体渗漏,还能避免引入气泡,提升感测效率。
进一步地,感测装置500与下板102可拆卸连接;密封元件503与感测装置500可拆卸连接。采用可拆卸的连接方式,如通过螺钉或卡扣等形式,便于感测装置500的安装及拆卸。
具体安装时,可先将密封元件503与感测装置500连接在一起,再整体 安装在下板102上;也可先将密封元件503与下板102连接在一起,再将感测装置500与密封元件503连接。
进一步地,感测装置500包括载板501;以及设置在载板501上的感测芯片502,感测芯片502与感测区域301内的液道201相对应。使用时,液道201内的液体会流经感测芯片502的上表面,进而被感测芯片502所感测,感测芯片502上设置有金属探针,金属探针和导电部件404电连接,导电部件404再将感测芯片502所感测的信号传递至外部。金属探针形式可以是多样的,只要能与导电部件404电连接即可,例如可以是电极。载板501主要起到保护和固定感测芯片502的作用,载板501可采用PCB板,以载板501和感测芯片502结合作为感测装置500整体。
进一步地,密封元件503为密封片,且密封片的中部开设有通孔,液道201与感测芯片502通过通孔连通。密封片的中部开设有通孔,液体可流入该通孔,并到达感测芯片502的表面被感测,感测区域301能够被密封片有效封闭,避免渗漏和引入气泡。
进一步地,通孔的截面积小于感测芯片502的上表面积,且通孔的边缘位于感测芯片502的上方。保证通孔完全位于感测芯片502的上方,即通孔内的液体仅与感测芯片502的上表面接触,能够被充分感测。
在另一优选的实施例中,先用螺栓1041将密封片和感测装置500安装在下板102在密封区域的镂空处,调节旋转阀使液道201和流道处于中断状态,再打开流体输入端口103处的控制阀门,通过流体储存装置105加注液体,使液体进入液道201,利用感测装置500的感测芯片502对感测区域301内液体进行持续稳定的感测,感测完毕后,调节旋转阀使液道201和流道处于连通状态,感测后的液体随即流入收集区域106,当收集区域106内液体过多时,可及时通过排液口601排出。
如图5所示,在又一优选的实施例中,流体储存装置105为圆柱状结构,通断装置500采用旋转阀,旋转阀设置在上板101的上表面,靠近收集区域106的入口,且位于液道的一侧,收集区域106为蛇形流道。上板101在感测区域301内的部分向内凹陷形成梭形槽或矩形槽,密封元件503为蝶形的密封片,密封片的两翼与载板501通过螺栓连接,密封片的材质在此不做具体限制,选择时应以其密封性能为主要考虑因素。感测芯片502和载板501均为矩形片板状结构,且载板501固定在载板501的中部,载板501上围绕感测芯片502的边缘对称设置有三对螺纹孔,其中,中部的一对螺纹孔用于固定密封元件503,其余的螺纹孔用于和下板102螺栓连接,以固定载板501。
上板101和下板102上与其余的两对螺纹孔相对的位置处均贯通开设有螺孔,具体安装时,将螺栓依次贯穿上板101和下板102的螺孔,再与载板501上其余的两对螺纹孔螺旋拧紧,完成感测装置500的安装与固定。
如图8-13所示,在另一优选的实施例中,旋转阀为矩形结构,其通过螺栓固定在上板101的上表面,在旋转阀下方的上板101上贯通设置有两个开孔,流道的开口设在旋转阀与上板101接触的面上,图中箭头指示方向为液体流向。当旋转阀处于“OFF”状态时,旋转阀的底部会封闭这两个开孔,从而导致液道201与流道中断,即液道201与收集区域106不连通,此时可进行持续稳定地感测;当旋转阀处于“ON”状态时,旋转阀底部的流道会与这两个开孔对应连通,从而导致液道201与流道连通,即液道201与收集区域106连通,此时液体可进入收集区域106内被收集。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (25)

  1. 一种微流体装置,其特征在于,包括本体以及设置在所述本体内的液道;
    所述本体上设置有感测区域;
    所述本体上还设置有和所述液道连通的流体输入端口,且所述流体输入端口的设置位置不包括感测区域。
  2. 根据权利要求1所述的微流体装置,其特征在于,所述本体内还设置有通断装置,所述通断装置用于控制所述液道内液体的流通与中断。
  3. 根据权利要求2所述的微流体装置,其特征在于,所述通断装置内设置有能够与所述液道连通的流道;所述通断装置通过与所述本体发生相对运动,控制所述流道与所述液道是否相通。
  4. 根据权利要求3所述的微流体装置,其特征在于,所述本体内还设置有至少一个中空的密封腔室,且至少一个所述密封腔室的顶部设置有流通膜,所述密封腔室和所述液道共用所述流通膜。
  5. 根据权利要求4所述的微流体装置,其特征在于,所述本体上还设置有至少一个通液口,所述通液口与所述密封腔室连通。
  6. 根据权利要求5所述的微流体装置,其特征在于,所述密封腔室的底部设置有密封部件或导电部件,所述导电部件用于传递电信号。
  7. 根据权利要求6所述的微流体装置,其特征在于,所述密封腔室至少包括相互连通的腔体A和腔体B,所述腔体A和所述腔体B上分别至少设置一个用于进液或出液的所述通液口。
  8. 根据权利要求7所述的微流体装置,其特征在于,所述导电部件设置在所述腔体A的底部。
  9. 根据权利要求8所述的微流体装置,其特征在于,所述流通膜设置在 所述腔体B的顶部,所述腔体B的底部设置有所述密封部件。
  10. 根据权利要求7所述的微流体装置,其特征在于,所述腔体A为梭形结构,且处在所述液道的一侧,所述腔体B设置在所述液道的下方,所述腔体A与所述液道相对的尖端与所述腔体B连通。
  11. 根据权利要求1所述的微流体装置,其特征在于,所述流体输入端口处配合连通设置有流体储存装置,所述流体储存装置的顶端开口,底端与所述流体输入端口连通。
  12. 根据权利要求11所述的微流体装置,其特征在于,所述流体储存装置可拆卸设置在所述本体上,且所述流体储存装置的内部为漏斗式结构。
  13. 根据权利要求1所述的微流体装置,其特征在于,所述本体上与所述感测区域的位置相对的区域透明。
  14. 根据权利要求13所述的微流体装置,其特征在于,所述本体内部还设置有收集区域,所述收集区域与所述液道的尾端连通,所述收集区域上开设有排液口。
  15. 根据权利要求14所述的微流体装置,其特征在于,所述收集区域为螺旋形或蛇形结构。
  16. 根据权利要求1-15任一所述的微流体装置,其特征在于,所述本体包括互相连接的上板和下板,所述液道为所述上板和所述下板之间形成的腔体;
    其中,所述液道的底部为部分所述下板的上表面,所述液道的顶部为部分所述上板的下表面。
  17. 根据权利要求16所述的微流体装置,其特征在于,所述上板与所述感测区域的位置相对的区域向所述下板的方向凹陷;所述下板与所述感测区域的位置相对的区域镂空。
  18. 根据权利要求16所述的微流体装置,其特征在于,所述收集区域上还设置有通气孔。
  19. 根据权利要求17所述的微流体装置,其特征在于,所述流体输入端口和所述流体储存装置之间设置有控制阀门,所述控制阀门用于控制所述流体输入端口与所述流体储存装置是否连通。
  20. 一种包括权利要求1-19任一所述的微流体装置的微流体检测装置,其特征在于,还包括:
    连接在所述本体上,且和所述感测区域对应的感测装置;
    所述感测装置与所述液道存在重叠部分,且可供所述液道内的液体流过。
  21. 根据权利要求20所述的微流体检测装置,其特征在于,所述感测装置和所述本体之间设置有一密封元件。
  22. 根据权利要求20所述的微流体检测装置,其特征在于,所述感测装置与下板可拆卸连接;所述密封元件与所述感测装置可拆卸连接。
  23. 根据权利要求20-22任一项所述的微流体检测装置,其特征在于,所述感测装置包括载板;以及
    设置在所述载板上的感测芯片,所述感测芯片与所述感测区域内的液道相对应。
  24. 根据权利要求23所述的微流体检测装置,其特征在于,所述密封元件为密封片,且所述密封片的中部开设有通孔,所述液道与所述感测芯片通过所述通孔连通。
  25. 根据权利要求24所述的微流体检测装置,其特征在于,所述通孔的截面积小于所述感测芯片的上表面积,且所述通孔的边缘位于所述感测芯片的上方。
PCT/CN2021/137127 2021-12-10 2021-12-10 一种微流体装置及微流体检测装置 WO2023102900A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/137127 WO2023102900A1 (zh) 2021-12-10 2021-12-10 一种微流体装置及微流体检测装置
AU2021477173A AU2021477173A1 (en) 2021-12-10 2021-12-10 Microfluidic device and microfluidic detection device
CN202180101430.0A CN117795339A (zh) 2021-12-10 2021-12-10 一种微流体装置及微流体检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137127 WO2023102900A1 (zh) 2021-12-10 2021-12-10 一种微流体装置及微流体检测装置

Publications (1)

Publication Number Publication Date
WO2023102900A1 true WO2023102900A1 (zh) 2023-06-15

Family

ID=86729458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137127 WO2023102900A1 (zh) 2021-12-10 2021-12-10 一种微流体装置及微流体检测装置

Country Status (3)

Country Link
CN (1) CN117795339A (zh)
AU (1) AU2021477173A1 (zh)
WO (1) WO2023102900A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159993A1 (en) * 2002-02-26 2003-08-28 Hongfeng Yin Mobile phase gradient generation microfluidic device
US20090023610A1 (en) * 2004-03-26 2009-01-22 Regis Peytavi Removable microfluidic cell
CN107542973A (zh) * 2017-08-02 2018-01-05 南京岚煜生物科技有限公司 具有闭锁阀门的微流控芯片及其使用方法
CN108443579A (zh) * 2018-04-11 2018-08-24 利多(香港)有限公司 一种能控制液体流动的微阀及微流控芯片
CN108698046A (zh) * 2016-02-01 2018-10-23 斯堪的纳维亚微生物制剂公司 微流体分析系统、微流体盒和进行分析的方法
CN111269831A (zh) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 一种透明多层夹膜微流控芯片及其制备方法和应用
CN111569966A (zh) * 2020-06-17 2020-08-25 北京京东方健康科技有限公司 微流控芯片及检测系统
CN113444624A (zh) * 2021-06-21 2021-09-28 清华大学深圳国际研究生院 一种依靠拉伸力驱动的核酸检测芯片及核酸检测设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159993A1 (en) * 2002-02-26 2003-08-28 Hongfeng Yin Mobile phase gradient generation microfluidic device
US20090023610A1 (en) * 2004-03-26 2009-01-22 Regis Peytavi Removable microfluidic cell
CN108698046A (zh) * 2016-02-01 2018-10-23 斯堪的纳维亚微生物制剂公司 微流体分析系统、微流体盒和进行分析的方法
CN107542973A (zh) * 2017-08-02 2018-01-05 南京岚煜生物科技有限公司 具有闭锁阀门的微流控芯片及其使用方法
CN108443579A (zh) * 2018-04-11 2018-08-24 利多(香港)有限公司 一种能控制液体流动的微阀及微流控芯片
CN111269831A (zh) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 一种透明多层夹膜微流控芯片及其制备方法和应用
CN111569966A (zh) * 2020-06-17 2020-08-25 北京京东方健康科技有限公司 微流控芯片及检测系统
CN113444624A (zh) * 2021-06-21 2021-09-28 清华大学深圳国际研究生院 一种依靠拉伸力驱动的核酸检测芯片及核酸检测设备

Also Published As

Publication number Publication date
CN117795339A (zh) 2024-03-29
AU2021477173A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
US5945070A (en) Reaction vessel filter for combinatorial chemistry or biological use
US8858897B2 (en) Microfluidic chip for analysis for fluid sample
WO2013122995A4 (en) Microfluidic cartridge for processing and detecting nucleic acids
JP4964955B2 (ja) 核酸増幅による液体サンプル分析用使い捨て装置
US9186638B2 (en) Microfluidic structure
CN110180610B (zh) 试剂顺序加载方法、结构及微流控装置
WO2023087964A1 (zh) 微流控芯片、及其注液方法和用途
US9415390B2 (en) Flat body in manner of chip card for biochemical analysis and method of using
Sun et al. High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array
WO2023102900A1 (zh) 一种微流体装置及微流体检测装置
CN216224463U (zh) 数字pcr液滴或单细胞液滴的生成装置及液滴生成管
JP2009543055A (ja) フロースルーアッセイ用の流体取扱システム
CN217093515U (zh) 一种可自动化控制液体的反应装置
CN217490918U (zh) 应用相变阀的微流控芯片以及体外诊断装置
WO2024130679A1 (zh) 微流控检测装置
CN215506830U (zh) 一种基于特斯拉阀的微流控芯片
WO2024130678A1 (zh) 微流控装置及微流控检测装置
CN215404147U (zh) 一种滑动式快速检测芯片
CN210385818U (zh) 一种生物芯片微流控出液机构
CN111822064A (zh) 微流控基板及微流控芯片
WO2024130680A1 (zh) 微流控装置及微流控检测装置
CN220803314U (zh) 离心式微流控芯片和检测设备
CN115138404B (zh) 具备废液及产物自动提取功能的微流控芯片及其提取方法
JP2008286519A (ja) 液体導入用デバイス
CN114618420A (zh) 一种可自动化控制液体的反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101430.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021477173

Country of ref document: AU

Date of ref document: 20211210

Kind code of ref document: A