WO2023102778A1 - Positive electrode plate for medical device battery and its preparation method - Google Patents

Positive electrode plate for medical device battery and its preparation method Download PDF

Info

Publication number
WO2023102778A1
WO2023102778A1 PCT/CN2021/136498 CN2021136498W WO2023102778A1 WO 2023102778 A1 WO2023102778 A1 WO 2023102778A1 CN 2021136498 W CN2021136498 W CN 2021136498W WO 2023102778 A1 WO2023102778 A1 WO 2023102778A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode plate
medical device
mixture
manganese dioxide
Prior art date
Application number
PCT/CN2021/136498
Other languages
French (fr)
Inventor
Cuijun YANG
Original Assignee
Medtrum Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtrum Technologies Inc. filed Critical Medtrum Technologies Inc.
Priority to PCT/CN2021/136498 priority Critical patent/WO2023102778A1/en
Publication of WO2023102778A1 publication Critical patent/WO2023102778A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery material, in particular to a positive electrode plate for medical device battery and its preparation method.
  • pancreas in the normal human body automatically monitors the glucose level in the blood and secretes the required insulin/glucagon automatically.
  • the pancreas does not function properly and cannot properly produce the insulin the body needs. Therefore, diabetes is a metabolic disease caused by abnormal pancreas function, and diabetes is a lifelong disease.
  • the medical technology cannot cure diabetes completely, but can only control the occurrence and development of diabetes and its complications by stabilizing blood glucose.
  • Diabetics need to test their blood sugar before injecting insulin into the body.
  • Most of the current methods can continuously monitor blood Glucose and send Glucose data to a remote device in real time for users to view.
  • This method is called Continuous Glucose Monitoring (CGM) .
  • CGM Continuous Glucose Monitoring
  • This method requires the detection device to be attached to the skin surface, and the probe carried by it is inserted into the subcutaneous tissue fluid to complete periodic detection. During detection, the battery is required to provide large current pulse discharge.
  • the electrolyte can not penetrate into the electrode gap to form an electrochemical pathway and affect the electrochemical response rate of the positive electrode.
  • the positive electrode with low porosity is prone to polarization, which further affects the electrochemical response rate of the positive electrode. Due to the slow electrochemical response rate of the positive electrode when the current pulse discharge is carried out, the instantaneous voltage drop will be extremely large and the stable current cannot be output normally.
  • the existing technology needs a positive electrode with large porosity and rapid electrochemical response to meet the requirements of large current pulse discharge.
  • the invention implementation cases made public a large current pulse discharge the positive pole piece, manganese dioxide by dry mixture combined with wet mixing coating method, blending can avoid conductive powder material distribution, as well as the bonding uneven phenomenon, help build of conductive network, increasing pole piece porosity, thus reducing the positive pole piece of polarization, improve the ability of large current pulse discharge.
  • the invention discloses a positive electrode plate for medical device battery, which comprises a base, which is one or more of aluminum foil, nickel foam mesh or stainless steel mesh; A conductive layer, consisting of electrolytic manganese dioxide, conductive agent and binder, coated on the surface of the base and prepared by the following steps:
  • the electrolytic manganese dioxide was heat treated to optimize its crystal structure, the heat treatment method is as follows: sieve the electrolytic manganese dioxide, select particles with particle size less than 200um, place them in the sintering furnace, heat them to 200-300°C for 2-4h.
  • the grinding mixture is placed in a vacuum drying oven and heated to 65-85°C for 3-5h to dry the grinding mixture and get the positive mixture;
  • the conductive agent is one or more of conductive carbon black, graphite, super P or carbon nanotubes.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene or sodium polyacrylate.
  • the binder is polyvinylidene fluoride and sodium polyacrylate with a mass ratio of 1: 1.
  • the mass proportions of electrolytic manganese dioxide, conductive agent and binder in the grinding mixture are 80-96%, 2-10%and 2-10%, respectively.
  • the mass ratio of the positive mixture to the NMP solvent is (0.8-1) : 1.
  • the invention also provides a preparation method for a positive electrode plate for medical device battery, which includes the following steps:
  • the heat treatment method is as follows: firstly, sieve the electrolytic manganese dioxide, select particles with particle size less than 200um, place them in the sintering furnace, heat them to 200-300°C for 2-4h.
  • the heating temperature is 250°C and the duration is 3h.
  • the conductive agent is one or more of conductive carbon black, graphite, super P or carbon nanotubes.
  • the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, or sodium polyacrylate.
  • step (2) the mass proportions of the electrolytic manganese dioxide, the conductive agent and the binder are 80-96%, 2-10%and 2-10%, respectively.
  • the mass ratio of the positive electrode mixture to the NMP solvent is (0.8-1) : 1.
  • the thickness of the positive electrode plate after rolling is 180-220um.
  • the invention also discloses a highly integrated analyte detection device, which comprises a bottom case for fixing on the user's skin surface; Sensor module, releasable connection with the bottom case; The transmitter module is electrically connected with the sensor module; And a battery that uses a positive electrode plate for medical device battery to provide electrical energy.
  • a highly integrated analyte detection device which comprises a bottom case for fixing on the user's skin surface; Sensor module, releasable connection with the bottom case; The transmitter module is electrically connected with the sensor module; And a battery that uses a positive electrode plate for medical device battery to provide electrical energy.
  • the positive electrode plate for medical device battery disclosed by the invention has uniform material mixing, perfect overall conductive network, high porosity, can improve ion conduction efficiency, reduce polarization, and electrolyte is easier to penetrate, and can meet the requirements of large current pulse discharge.
  • the preparation process of large current pulse discharge manganese dioxide positive electrode plate is simple, the method is universal and the cost is low, which is suitable for large-scale industrial production.
  • the thickness of the positive electrode after rolling is smaller, making the battery more miniaturized.
  • FIG. 1 is the electrochemical impedance spectrum of the positive electrode plate for medical device battery according to the embodiment of the invention
  • FIG. 2 is a schematic diagram of the application of an embodiment of the invention in a highly integrated analyte detection device.
  • the positive electrode of the battery is usually made by pressing or paste method, which are low porosity, on the one hand, the electrolyte will less infiltrate into the electrode gap and affect the response of the positive electrode plate, on the other hand, it is easy to produce polarization.
  • the ions in the electrolyte need to overcome the barrier of the battery pole, diaphragm and electrolyte, which is manifested as the polarization internal resistance of the pole. Too high polarization internal resistance will affect the electrochemical response of the pole. Due to the above problems, the battery has weak discharge capacity of large current pulse, slow electrochemical response rate, easy to cause instantaneous maximum voltage drop, and can’ t work stably in the environment of large current pulse and output current.
  • the invention provides a positive electrode plate for medical device battery and its preparation method.
  • all equipment and raw materials can be purchased from the market or commonly used in the industry, the methods in the following embodiments, unless otherwise specified, are the conventional methods in the field.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 200°C for 4h.
  • the purpose of this step is to make electrolytic manganese dioxide lose part of binding water, X-ray diffraction peak shift, crystal plane spacing decrease, Mn-O bond force increase, so as to enhance the discharge capacity of electrolytic manganese dioxide.
  • step (2) After the electrolytic manganese dioxide in step (1) is cooled to below 60°C, an electronic balance is used to weigh 9g electrolytic manganese dioxide, 0.5g conductive agent with particle size less than 200um, and 0.5g binder with particle size less than 200um, put them in the grinding dish, fully stir and mix, then grind manually or electrically to get 10g grinding mixture. And allows the grinding mixture to pass through a screen of 300 mesh (size 48um) . The purpose of this step is to ensure the uniformity of the mixture and avoid the phenomenon of uneven dispersion of conductive agent and binder.
  • the mass proportion of electrolytic manganese dioxide, conductive agent and binder is not limited to the above proportion, and the mass proportion can be 80%-96%, 2%-10%and 2%-10%respectively.
  • the conductive agent may be one or more of conductive carbon black, graphite, super P or carbon nanotubes.
  • the binder may be one or more of PVDF (polyvinylidene fluoride) , polytetrafluoroethylene, or sodium polyacrylate.
  • the grinding mixture is placed in a vacuum drying oven and heated to 65°C for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110°C, for 12h, to ensure that the water is completely dried.
  • the base material is one of aluminum foil or foam nickel mesh, and the thickness is 12-18um.
  • the base material is aluminum foil with a thickness of 15um.
  • FIG. 1 is the contrast diagram of electrochemical impedance spectrum.
  • the solid line ⁇ is the electrochemical impedance curve of the positive electrode plate ⁇ processed according to the process steps of the embodiment of the present invention (coating method combining dry and wet mixture)
  • the dotted line ⁇ is the electrochemical impedance curve of the positive electrode plate ⁇ processed by the prior art process steps (tablet paste method) .
  • the curvature of the solid line ⁇ is smaller than that of the dotted line ⁇ , indicating that the polarization degree of the positive electrode plate ⁇ is smaller than that of the positive electrode plate ⁇ , and the wetness of the electrolyte of the positive electrode plate ⁇ is better than that of the positive electrode plate ⁇ , so when large current pulse discharge, the resistance of ⁇ is smaller than that of ⁇ , which improves the discharge capacity of the battery.
  • the curvature of the solid line ⁇ is still smaller than the curvature of the dotted line ⁇ , indicating that the resistance of the positive electrode plate ⁇ is smaller than that of the positive electrode plate ⁇ .
  • the porosity of the positive electrode plate ⁇ is larger than that of the positive electrode plate ⁇ in the same environment in the battery.
  • the positive electrode plate ⁇ can accommodate more and higher concentration of electrolyte. The discharge capacity of the battery under large current pulse is further improved.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 9g electrolytic manganese dioxide, 0.5g super P (or conductive carbon black, graphite, carbon nanotubes) with particle size less than 200um, 0.25g PVDF (polyvinylidene fluoride) with particle size less than 200um, and 0.25g sodium polyacrylate with particle size less than 200um, and place them in a grinding dish. After fully stirring and mixing, by hand or by electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • super P or conductive carbon black, graphite, carbon nanotubes
  • PVDF polyvinylidene fluoride
  • polyvinylidene fluoride and sodium polyacrylate together as binders can provide better bonding effect, so that in the subsequent coating and rolling process, the anode paste has better film forming effect and further reduces the possibility of powder loss or rupture.
  • the grinding mixture is placed in a vacuum drying oven and heated to 65°C for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110°C, for 12h, to ensure that the water is completely dried.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 9g electrolytic manganese dioxide, 0.5g super P (or conductive carbon black, graphite, carbon nanotubes) with particle size less than 200um, 0.25g PVDF (polyvinylidene fluoride) with particle size less than 200um, and 0.25g sodium polyacrylate with particle size less than 200um, and place them in a grinding dish. After fully stirring and mixing, by hand or by electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • super P or conductive carbon black, graphite, carbon nanotubes
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 65°C for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110°C, for 12h, to ensure that the water is completely dried.
  • the dotted line ⁇ is the electrochemical impedance curve of the positive electrode plate ⁇ processed by the prior art process (tablet paste method) . It can be seen from the figure that the curvature of solid line ⁇ is smaller than that of dotted line ⁇ in Rsei stage, indicating that the polarization degree of positive electrode plate ⁇ is smaller than that of positive electrode plate ⁇ . Therefore, the resistance of positive electrode plate ⁇ is smaller than that of positive electrode plate ⁇ in large current pulse discharge, which improves the discharge capacity of the battery.
  • the curvature of the solid line ⁇ is still smaller than that of the dotted line ⁇ , indicating that the resistivity of the positive electrode plate ⁇ is smaller than that of the positive electrode plate ⁇ .
  • the porosity of the positive electrode plate ⁇ is larger than that of the positive electrode plate ⁇ under the same environment in the battery.
  • the positive electrode plate ⁇ can contain more and higher concentration of electrolyte. The discharge capacity of the battery under large current pulse is further improved.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, , select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • electrolytic manganese dioxide 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 65°C for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110°C, for 12h, to ensure that the water is completely dried.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • electrolytic manganese dioxide 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 85°C for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110°C, for 12h, to ensure that the water is completely dried.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled to below 60°C, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • electrolytic manganese dioxide 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 85°C for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130°C, for 9h, to ensure that the water is completely dried.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300°C for 2h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • electrolytic manganese dioxide 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 85°C for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130°C, for 9h, to ensure that the water is completely dried.
  • the electrolytic manganese dioxide particles can be heated to 300°C to obtain a better crystal shape, and the obtained electrode sheet after the coating process has higher porosity, uniform material distribution and better electrolyte wettability.
  • the solid line ⁇ is the electrochemical impedance curve of the positive electrode plate ⁇ processed according to the process steps of the embodiment of the invention (coating method with a combination of wet and dry mixtures) .
  • the curvature of the solid line ⁇ is smaller than that of the dotted line ⁇ and the curvature of the solid line ⁇ , ⁇ , indicating that the polarization degree of the positive electrode plate ⁇ is smaller than that of the positive electrode plate ⁇ and the positive electrode plate ⁇ , ⁇ , and the wetness of the electrolyte of the positive electrode plate ⁇ is better than that of the positive electrode plate ⁇ and the positive electrode plate ⁇ , ⁇ , therefore, when large current pulse discharge, the resistance of positive electrode plate ⁇ is smaller than that of positive electrode plate ⁇ , ⁇ , ⁇ , which improves the discharge capacity of the battery.
  • the curvature of solid line ⁇ is still smaller than that of dotted line ⁇ and solid line ⁇ , ⁇ , indicating that the resistance of positive plate ⁇ is smaller than that of positive plate ⁇ , ⁇ , ⁇ , this is due to the battery in the same environment, the porosity of positive electrode plate ⁇ is larger than that of positive electrode plate ⁇ , ⁇ , ⁇ .
  • the positive electrode plate ⁇ can contain more and higher concentration of electrolyte, which further improves the discharge capacity of the battery under high current pulse.
  • the thickness of the positive electrode of lithium manganese battery is generally 2mm.
  • the thickness of the positive electrode plate is kept at about 200um, and the normal conductive network and large porosity of the electrode plate can be maintained, so as to meet the miniaturization design of the battery and the discharge capacity of large current pulse.
  • the electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 250°C for 3h.
  • step (1) After the electrolytic manganese dioxide in step (1) is cooled below 60°C, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
  • electrolytic manganese dioxide 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um
  • PVDF polyvinylidene fluoride
  • the grinding mixture is placed in a vacuum drying oven and heated to 85°C for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
  • plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130°C, for 9h, to ensure that the water is completely dried.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the highly integrated analyte detection device in an embodiment of the present invention.
  • the highly integrated analyte detection device 10 includes a bottom case 101, a sensor module 102, a transmitter module 103 and a battery 105.
  • the first clamping part 1011 for fixing the transmitter module 103 is arranged on the side wall of the bottom case 101
  • the second clamping part 1030 corresponding to the first clamping part 1011 is arranged on the side wall of the transmitter module 103.
  • the first clamping part 1011 and the second clamping part 1030 are clamped together to fix the transmitter module 103 and the bottom case 101.
  • the assembly hole 1012 for auxiliary installation of sensor 102 is also arranged on the bottom case 101.
  • the shape of the assembly hole 1012 fits the shape of the edge of sensor 102 to assist the installation of sensor 102 on the bottom case 101.
  • Battery 105 is also sealed on the bottom case 101.
  • the positive electrode plate of battery 105 (not shown in the figure) is made using the process steps described in the embodiment above. Since the positive electrode plate of battery 105 is thinner, the overall thickness of the bottom case 101 can also be thinner.
  • the battery 105 is used to supply power to transmitter module 103 when the transmitter module 103 is clamped to the bottom case 101.103 to launch on a certain frequency transmitter, battery 105 provide equal frequency pulse current output, as stated earlier example process steps to make the positive electrode plate, can improve the discharge capacity of battery 105, so as to make the transmitter module 103 work under the working condition of high reliability, improve the reliability of the analyte detection device.
  • the present invention provides a positive electrode plate for medical device battery and its preparation method, using dry mix and wet mixing with the combination of coating method, due to the blending can reduce the conductive powder material distribution, bonding uneven phenomenon, help build of conductive network, higher porosity of the positive pole piece material, so as to decrease the anode polarization of sheet material, reduce the resistance of the positive electrode plate, improve the discharge capacity of the battery large current pulse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention discloses a kind of positive electrode plate for medical device battery and its preparation method, using dry mix and wet mixing with the combination of coating method, due to the blending can reduce the conductive powder material distribution and the uneven binding phenomenon, help build of conductive network, increase the porosity of the anode material, reducing the positive pole piece of polarization, the large current pulse discharge capacity of the battery is improved.

Description

POSITIVE ELECTRODE PLATE FOR MEDICAL DEVICE BATTERY AND ITS PREPARATION METHOD TECHNICAL FIELD
The invention relates to a battery material, in particular to a positive electrode plate for medical device battery and its preparation method.
BACKGROUND
The pancreas in the normal human body automatically monitors the glucose level in the blood and secretes the required insulin/glucagon automatically. In diabetics, however, the pancreas does not function properly and cannot properly produce the insulin the body needs. Therefore, diabetes is a metabolic disease caused by abnormal pancreas function, and diabetes is a lifelong disease. At present, the medical technology cannot cure diabetes completely, but can only control the occurrence and development of diabetes and its complications by stabilizing blood glucose.
Diabetics need to test their blood sugar before injecting insulin into the body. Most of the current methods can continuously monitor blood Glucose and send Glucose data to a remote device in real time for users to view. This method is called Continuous Glucose Monitoring (CGM) . This method requires the detection device to be attached to the skin surface, and the probe carried by it is inserted into the subcutaneous tissue fluid to complete periodic detection. During detection, the battery is required to provide large current pulse discharge.
Due to the low porosity of the positive electrode in existing lithium-manganese buckle batteries, the electrolyte can not penetrate into the electrode gap to form an electrochemical pathway and affect the electrochemical response rate of the positive electrode. Secondly, the positive electrode with low porosity is prone to polarization, which further affects the electrochemical response rate of the positive electrode. Due to the slow electrochemical response rate of the positive electrode when the current pulse discharge is carried out, the instantaneous voltage drop will be extremely large and the stable current cannot be output normally.
Therefore, the existing technology needs a positive electrode with large porosity and rapid electrochemical response to meet the requirements of large current pulse discharge.
BRIEF SUMMARY OF THE INVENTION
The invention implementation cases made public a large current pulse discharge the positive pole piece, manganese dioxide by dry mixture combined with wet mixing coating method, blending  can avoid conductive powder material distribution, as well as the bonding uneven phenomenon, help build of conductive network, increasing pole piece porosity, thus reducing the positive pole piece of polarization, improve the ability of large current pulse discharge.
The invention discloses a positive electrode plate for medical device battery, which comprises a base, which is one or more of aluminum foil, nickel foam mesh or stainless steel mesh; A conductive layer, consisting of electrolytic manganese dioxide, conductive agent and binder, coated on the surface of the base and prepared by the following steps:
(1) The electrolytic manganese dioxide was heat treated to optimize its crystal structure, the heat treatment method is as follows: sieve the electrolytic manganese dioxide, select particles with particle size less than 200um, place them in the sintering furnace, heat them to 200-300℃ for 2-4h.
(2) After the electrolytic manganese dioxide is cooled to below 60℃, it is mixed, stirred and ground with conductive agent and binder with particle size less than 200um to obtain the grinding mixture;
(3) The grinding mixture is placed in a vacuum drying oven and heated to 65-85℃ for 3-5h to dry the grinding mixture and get the positive mixture;
(4) Mix and stir the positive mixture with NMP solvent to get the positive electrode mixed slurry;
(5) Coat the base with the positive electrode mixed slurry, place it in a vacuum drying oven, heat it to 110-130℃ for 9-12h, and get the conductive layer after drying.
According to one aspect of the invention, the conductive agent is one or more of conductive carbon black, graphite, super P or carbon nanotubes.
According to one aspect of the invention, the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene or sodium polyacrylate.
According to one aspect of the invention, the binder is polyvinylidene fluoride and sodium polyacrylate with a mass ratio of 1: 1.
According to one aspect of the invention, the mass proportions of electrolytic manganese dioxide, conductive agent and binder in the grinding mixture are 80-96%, 2-10%and 2-10%, respectively. According to one aspect of the invention, in the positive electrode mixed slurry, the mass ratio of the positive mixture to the NMP solvent is (0.8-1) : 1.
The invention also provides a preparation method for a positive electrode plate for medical device battery, which includes the following steps:
(1) Heat treatment was carried out to optimize the crystal structure of electrolytic manganese dioxide;
(2) After the electrolytic manganese dioxide is cooled to below 60℃, it is mixed, stirred and ground with conductive agent and binder to get the grinding mixture;
(3) The grinding mixture was placed in a vacuum drying oven and heated to 65-85℃ for 3-5h to get the positive mixture;
(4) Mix and stir the positive mixture with NMP solvent to get the positive electrode mixed slurry;
(5) Coating the base with the positive electrode mixed slurry, placed in a vacuum drying oven, heated to 110-130℃, for 9-12h, drying to obtain the conductive layer;
(6) The base and the conductive layer coated on the surface of the base is rolled, and the positive electrode plate is obtained.
According to one aspect of the invention, in step (1) , the heat treatment method is as follows: firstly, sieve the electrolytic manganese dioxide, select particles with particle size less than 200um, place them in the sintering furnace, heat them to 200-300℃ for 2-4h.
According to one aspect of the invention, in step (1) , , the heating temperature is 250℃ and the duration is 3h.
In step (2) , according to one aspect of the invention, the conductive agent is one or more of conductive carbon black, graphite, super P or carbon nanotubes.
According to one aspect of the invention, in step (2) , the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, or sodium polyacrylate.
According to one aspect of the invention, in step (2) , the mass proportions of the electrolytic manganese dioxide, the conductive agent and the binder are 80-96%, 2-10%and 2-10%, respectively.
According to one aspect of the invention, in step (4) , the mass ratio of the positive electrode mixture to the NMP solvent is (0.8-1) : 1.
According to one aspect of the invention, in step (6) , the thickness of the positive electrode plate after rolling is 180-220um.
The invention also discloses a highly integrated analyte detection device, which comprises a bottom case for fixing on the user's skin surface; Sensor module, releasable connection with the bottom case; The transmitter module is electrically connected with the sensor module; And a battery that uses a positive electrode plate for medical device battery to provide electrical energy. Compared with the prior art, the technical scheme of the invention has the following advantages:
The positive electrode plate for medical device battery disclosed by the invention has uniform material mixing, perfect overall conductive network, high porosity, can improve ion conduction efficiency, reduce polarization, and electrolyte is easier to penetrate, and can meet the requirements of large current pulse discharge.
Furthermore, the preparation process of large current pulse discharge manganese dioxide positive electrode plate is simple, the method is universal and the cost is low, which is suitable for large-scale industrial production.
Furthermore, the thickness of the positive electrode after rolling is smaller, making the battery  more miniaturized.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is the electrochemical impedance spectrum of the positive electrode plate for medical device battery according to the embodiment of the invention;
FIG. 2 is a schematic diagram of the application of an embodiment of the invention in a highly integrated analyte detection device.
DETAILED DESCRIPTION
As mentioned above, the positive electrode of the battery is usually made by pressing or paste method, which are low porosity, on the one hand, the electrolyte will less infiltrate into the electrode gap and affect the response of the positive electrode plate, on the other hand, it is easy to produce polarization. The ions in the electrolyte need to overcome the barrier of the battery pole, diaphragm and electrolyte, which is manifested as the polarization internal resistance of the pole. Too high polarization internal resistance will affect the electrochemical response of the pole. Due to the above problems, the battery has weak discharge capacity of large current pulse, slow electrochemical response rate, easy to cause instantaneous maximum voltage drop, and can’ t work stably in the environment of large current pulse and output current.
In order to solve the problem, the invention provides a positive electrode plate for medical device battery and its preparation method. In the invention, unless specifically mentioned, all equipment and raw materials can be purchased from the market or commonly used in the industry, the methods in the following embodiments, unless otherwise specified, are the conventional methods in the field.
Implementation example one
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 200℃ for 4h. The purpose of this step is to make electrolytic manganese dioxide lose part of binding water, X-ray diffraction peak shift, crystal plane spacing decrease, Mn-O bond force increase, so as to enhance the discharge capacity of electrolytic manganese dioxide.
(2) After the electrolytic manganese dioxide in step (1) is cooled to below 60℃, an electronic balance is used to weigh 9g electrolytic manganese dioxide, 0.5g conductive agent with particle size less than 200um, and 0.5g binder with particle size less than 200um, put them in  the grinding dish, fully stir and mix, then grind manually or electrically to get 10g grinding mixture. And allows the grinding mixture to pass through a screen of 300 mesh (size 48um) . The purpose of this step is to ensure the uniformity of the mixture and avoid the phenomenon of uneven dispersion of conductive agent and binder.
In other embodiments of the invention, the mass proportion of electrolytic manganese dioxide, conductive agent and binder is not limited to the above proportion, and the mass proportion can be 80%-96%, 2%-10%and 2%-10%respectively.
In preferred embodiments of the invention, the conductive agent may be one or more of conductive carbon black, graphite, super P or carbon nanotubes.
In preferred embodiments of the invention, the binder may be one or more of PVDF (polyvinylidene fluoride) , polytetrafluoroethylene, or sodium polyacrylate.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 65℃ for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste. The purpose of this step is to ensure that the components of the anode paste dispersed evenly, and the solid content and the viscosity of the anode paste has a certain relationship, 50%solid content of the anode paste viscosity is better, coated on the base after the film effect is better, can reduce the phenomenon of powder or rupture.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110℃, for 12h, to ensure that the water is completely dried.
In the preferred embodiment of the invention, the base material is one of aluminum foil or foam nickel mesh, and the thickness is 12-18um.
In a preferred embodiment of the invention, the base material is aluminum foil with a thickness of 15um.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product. By adjusting the working parameters of the coating machine and the roller press, the thickness of the positive electrode plate can be controlled to ensure that the electrode sheet can have a relatively perfect conductive network on the premise of higher compaction density, so as to meet the working requirements of large current pulse discharge.
FIG. 1 is the contrast diagram of electrochemical impedance spectrum. The solid line γ is the electrochemical impedance curve of the positive electrode plate γ processed according to the process steps of the embodiment of the present invention (coating method combining dry and wet  mixture) , and the dotted line β is the electrochemical impedance curve of the positive electrode plate β processed by the prior art process steps (tablet paste method) . Can be seen from the diagram, in the stage of Rsei, the curvature of the solid line γ is smaller than that of the dotted line β, indicating that the polarization degree of the positive electrode plate γ is smaller than that of the positive electrode plate β, and the wetness of the electrolyte of the positive electrode plate γis better than that of the positive electrode plate β, so when large current pulse discharge, the resistance of γ is smaller than that of β, which improves the discharge capacity of the battery. Secondly, in the stage of Rct, the curvature of the solid line γ is still smaller than the curvature of the dotted line β, indicating that the resistance of the positive electrode plate γ is smaller than that of the positive electrode plate β. This is because the porosity of the positive electrode plate γ is larger than that of the positive electrode plate β in the same environment in the battery. The positive electrode plate γ can accommodate more and higher concentration of electrolyte. The discharge capacity of the battery under large current pulse is further improved.
Implementation example two
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 9g electrolytic manganese dioxide, 0.5g super P (or conductive carbon black, graphite, carbon nanotubes) with particle size less than 200um, 0.25g PVDF (polyvinylidene fluoride) with particle size less than 200um, and 0.25g sodium polyacrylate with particle size less than 200um, and place them in a grinding dish. After fully stirring and mixing, by hand or by electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
In embodiments of the invention, polyvinylidene fluoride and sodium polyacrylate together as binders can provide better bonding effect, so that in the subsequent coating and rolling process, the anode paste has better film forming effect and further reduces the possibility of powder loss or rupture.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 65℃ for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110℃, for 12h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product.
Implementation example three
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 9g electrolytic manganese dioxide, 0.5g super P (or conductive carbon black, graphite, carbon nanotubes) with particle size less than 200um, 0.25g PVDF (polyvinylidene fluoride) with particle size less than 200um, and 0.25g sodium polyacrylate with particle size less than 200um, and place them in a grinding dish. After fully stirring and mixing, by hand or by electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 65℃ for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 12.5g NMP (n-methyl-pyrrolidone) solvent into the dry glass bottle, and then slowly add the positive mixture into the glass bottle, and stir with magnetic agitator for 3h, to ensure that the mixture is uniform, the solid content of 44.4%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110℃, for 12h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product.
Continue to refer to electrochemical impedance spectrum comparison chart shown in fig. 1, the solid line θ for according to the present invention example process step (dry and wet mixing coating method) combined with the processing of the positive electrode plate θ electrochemical impedance curve, the dotted line β is the electrochemical impedance curve of the positive electrode plate β processed by the prior art process (tablet paste method) . It can be seen from the figure that the curvature of solid line θ is smaller than that of dotted line β in Rsei stage, indicating that the polarization degree of positive electrode plate θ is smaller than that of positive electrode plate β. Therefore, the resistance of positive electrode plate θ is smaller than that of positive electrode plate β in large current pulse discharge, which improves the discharge capacity of the battery. Secondly, in the stage of Rct, the curvature of the solid line θ is still smaller than that of the dotted line β, indicating that the resistivity of the positive electrode plate θ is smaller  than that of the positive electrode plate β. This is because the porosity of the positive electrode plate θ is larger than that of the positive electrode plate β under the same environment in the battery. The positive electrode plate θ can contain more and higher concentration of electrolyte. The discharge capacity of the battery under large current pulse is further improved.
Implementation example four
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, , select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 65℃ for 5h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110℃, for 12h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product.
Implementation example five
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric  grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 85℃ for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 110℃, for 12h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product.
Implementation example six
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled to below 60℃, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 85℃ for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130℃, for 9h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the  positive electrode plate finished product.
Implementation example seven
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 300℃ for 2h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 85℃ for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130℃, for 9h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 220um, get the positive electrode plate finished product.
In the embodiment of the invention, the electrolytic manganese dioxide particles can be heated to 300℃ to obtain a better crystal shape, and the obtained electrode sheet after the coating process has higher porosity, uniform material distribution and better electrolyte wettability.
Continuing with FIG. 1, the solid line α is the electrochemical impedance curve of the positive electrode plate α processed according to the process steps of the embodiment of the invention (coating method with a combination of wet and dry mixtures) . Can be seen from the diagram, in the stage of Rsei, the curvature of the solid line α is smaller than that of the dotted line β and the curvature of the solid line γ, θ, indicating that the polarization degree of the positive electrode plate α is smaller than that of the positive electrode plate β and the positive electrode plate γ, θ, and the wetness of the electrolyte of the positive electrode plate α is better than that of the positive electrode plate β and the positive electrode plate γ, θ, therefore, when large current pulse discharge, the resistance of positive electrode plate α is smaller than that of positive electrode plate β, γ, θ, which improves the discharge capacity of the battery. Secondly, in the stage of Rct,  the curvature of solid line α is still smaller than that of dotted line β and solid line γ, θ, indicating that the resistance of positive plate α is smaller than that of positive plate β, γ, θ, this is due to the battery in the same environment, the porosity of positive electrode plate α is larger than that of positive electrode plate β, γ, θ. The positive electrode plate α can contain more and higher concentration of electrolyte, which further improves the discharge capacity of the battery under high current pulse.
In existing technology, the thickness of the positive electrode of lithium manganese battery is generally 2mm. In the embodiment of the invention, by controlling the working parameters of the roller press, the thickness of the positive electrode plate is kept at about 200um, and the normal conductive network and large porosity of the electrode plate can be maintained, so as to meet the miniaturization design of the battery and the discharge capacity of large current pulse.
Implementation example eight
(1) The electrolytic manganese dioxide, conductive agent and binder were screened through a screen or air classifier, select the particle size less than 200um electrolytic manganese dioxide particles, placed in the quartz boat, heat treatment was carried out in the sintering furnace and the temperature was heated to 250℃ for 3h.
(2) After the electrolytic manganese dioxide in step (1) is cooled below 60℃, use an electronic balance to weigh 8g electrolytic manganese dioxide, 1g super P (or conductive carbon black, graphite, carbon nanotubes) with a particle size less than 200um, 0.5g PVDF (polyvinylidene fluoride) with a particle size less than 200um and 0.5g sodium polyacrylate with a particle size less than 200um, put them in a grinding dish, fully stir and mix, by hand or electric grinding, 10g of the grinding mixture is obtained, and the grinding mixture can pass through a 300 mesh (48um particle size) screen.
(3) The grinding mixture is placed in a vacuum drying oven and heated to 85℃ for 3h to dry the moisture that may exist in the mixture to ensure that the sample is dry and the positive mixture is obtained.
(4) Drop 10g of NMP (N-methyl-pyrrolidone) solvent in a dry glass bottle, and then slowly add the positive mixture to the glass bottle, and stir with a magnetic stirrer for 3h, to ensure that the mixture is uniform, to get a solid content of 50%anode paste.
(5) The use of plate coating machine will be positive paste coated on the surface of the base, the conductive layer, and then the conductive layer and the base in a vacuum drying oven baking, heating to 130℃, for 9h, to ensure that the water is completely dried.
(6) The use of electric vertical roller press on the conductive layer and the base of the roll, can make the overall thickness of the conductive layer and the base down to 180-220um, get the positive electrode plate finished product.
FIG. 2 is a schematic diagram of the three-dimensional structure of the highly integrated analyte detection device in an embodiment of the present invention. The highly integrated analyte detection device 10 includes a bottom case 101, a sensor module 102, a transmitter module 103  and a battery 105. The first clamping part 1011 for fixing the transmitter module 103 is arranged on the side wall of the bottom case 101, and the second clamping part 1030 corresponding to the first clamping part 1011 is arranged on the side wall of the transmitter module 103. The first clamping part 1011 and the second clamping part 1030 are clamped together to fix the transmitter module 103 and the bottom case 101. The assembly hole 1012 for auxiliary installation of sensor 102 is also arranged on the bottom case 101. The shape of the assembly hole 1012 fits the shape of the edge of sensor 102 to assist the installation of sensor 102 on the bottom case 101. Battery 105 is also sealed on the bottom case 101. The positive electrode plate of battery 105 (not shown in the figure) is made using the process steps described in the embodiment above. Since the positive electrode plate of battery 105 is thinner, the overall thickness of the bottom case 101 can also be thinner. The battery 105 is used to supply power to transmitter module 103 when the transmitter module 103 is clamped to the bottom case 101.103 to launch on a certain frequency transmitter, battery 105 provide equal frequency pulse current output, as stated earlier example process steps to make the positive electrode plate, can improve the discharge capacity of battery 105, so as to make the transmitter module 103 work under the working condition of high reliability, improve the reliability of the analyte detection device.
To sum up, the present invention provides a positive electrode plate for medical device battery and its preparation method, using dry mix and wet mixing with the combination of coating method, due to the blending can reduce the conductive powder material distribution, bonding uneven phenomenon, help build of conductive network, higher porosity of the positive pole piece material, so as to decrease the anode polarization of sheet material, reduce the resistance of the positive electrode plate, improve the discharge capacity of the battery large current pulse.
Although some specific embodiments of the present invention have been elaborated by examples, those skilled in the field should understand that the above examples are intended only to illustrate and not to limit the scope of the present invention. Those skilled in the field should understand that modifications to the above embodiments may be made without departing from the scope and spirit of the invention. The scope of the invention is limited by the attached claims.

Claims (15)

  1. A positive electrode plate for medical device battery is characterized in that the positive electrode plate comprises:
    The base, the base is one or more of aluminum foil, nickel foam net and stainless steel mesh;
    A conductive layer coated on the surface of the base, including electrolytic manganese dioxide, conductive agent and binder, prepared by the following steps:
    (1) Heat treatment is carried out on the electrolytic manganese dioxide to optimize the crystal structure of the electrolytic manganese dioxide. The heat treatment method is as follows: screen the electrolytic manganese dioxide, select particles with particle size less than 200um, place them in the sintering furnace, heat them to 200-300 ℃ for 2-4h;
    (2) After the electrolytic manganese dioxide is cooled to below 60℃, it is mixed, stirred and ground with conductive agent and binder whose particle size is less than 200um to obtain the grinding mixture;
    (3) The grinding mixture is placed in a vacuum drying oven, heated to 65-85℃ for 3-5h, to dry the grinding mixture, get the positive mixture;
    (4) The positive mixture is mixed with NMP solvent and stirred to obtain the positive electrode mixed slurry;
    (5) The positive electrode mixed slurry is coated on the base, placed in a vacuum drying oven, heated to 110-130℃, lasting 9-12h, drying to obtain the conductive layer.
  2. According to the positive electrode plate for medical device battery mentioned in claim 1, characterized by, the conductive agent is one or more of the conductive carbon black, graphite, super P or carbon nanotubes.
  3. According to the positive electrode plate for medical device battery mentioned in claim 1, characterized by, the binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene and poly-sodium acrylate.
  4. According to the positive electrode plate for medical device battery mentioned in claim 3, characterized by, the binder is polyvinylidene fluoride and sodium polyacrylate, and the mass ratio is 1: 1.
  5. According to the positive electrode plate for medical device battery mentioned in claim 1, characterized by, in the grinding mixture, the mass proportion of electrolytic manganese dioxide, conductive agent and binder is 80-96%, 2-10%and 2-10%respectively.
  6. According to the positive electrode plate for medical device battery mentioned in claim 1, characterized by, in the positive electrode mixed slurry, the mass ratio of the positive electrode mixture to the NMP solvent is (0.8-1) : 1.
  7. According to the positive electrode plate for medical device battery mentioned in claim 1, characterized by, it includes the following steps:
    (1) Heat treatment was carried out to optimize the crystal structure of electrolytic manganese dioxide;
    (2) After the electrolytic manganese dioxide is cooled to below 60℃, it is mixed, stirred and ground with conductive agent and binder to get the grinding mixture;
    (3) The grinding mixture was placed in a vacuum drying oven and heated to 65-85℃ for 3-5h to obtain the positive mixture;
    (4) Mix and stir the positive mixture with NMP solvent to get the positive electrode mixed slurry;
    (5) Coating the base with the positive electrode mixed slurry, placed in a vacuum drying oven, heated to 110-130℃, for 9-12h, drying to obtain the conductive layer;
    (6) The base and the conductive layer coated on the surface of the base is rolled, and the positive electrode plate is obtained.
  8. According to the positive electrode plate for medical device battery mentioned in claim 7, characterized by, in step (1) , the heat treatment method is: firstly, the electrolytic manganese dioxide is screened, the particles with particle size less than 200um are selected, and placed in the sintering furnace, heated to 200-300℃ for 2-4h.
  9. According to the positive electrode plate for medical device battery mentioned in claim 8, characterized by, the heating temperature is 250℃ and the duration is 3h.
  10. According to the positive electrode plate for medical device battery mentioned in claim 7, characterized by, the conductive agent in step 2 is one or more of the conductive carbon black, graphite, super P or carbon nanotubes.
  11. According to the positive electrode plate for medical device battery mentioned in claim 1 7, characterized by, the preparation method is that in step 2, the said binder is one or more of polyvinylidene fluoride, polytetrafluoroethylene, and sodium polyacrylate.
  12. According to the positive electrode plate for medical device battery mentioned in claim 7, characterized by, the mass proportions of the electrolytic manganese dioxide, the conductive agent and the binder in step 2 are 80-96%, 2-10%and 2-10%, respectively.
  13. According to the positive electrode plate for medical device battery mentioned in claim 7, characterized by, the mass ratio of the positive electrode mixture to the NMP solvent of (0.8-1) : 1 in step 4.
  14. According to the positive electrode plate for medical device battery mentioned in claim 7, characterized by, in step 6, the thickness of the positive electrode plate after rolling is 180-220um.
  15. A highly integrated analyte detection device is characterized in that:
    The bottom case is fixed on the user's skin surface;
    The sensor module, the sensor module is releasably connected with the bottom case for detecting the analyte parameter information in the user's body;
    The transmitter module, the transmitter module is electrically connected with the sensor module, for transmitting the analyte parameter information to the outside world; and
    A battery using a positive electrode plate for medical device battery as described in claim 1 is used to provide electrical energy.
PCT/CN2021/136498 2021-12-08 2021-12-08 Positive electrode plate for medical device battery and its preparation method WO2023102778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136498 WO2023102778A1 (en) 2021-12-08 2021-12-08 Positive electrode plate for medical device battery and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136498 WO2023102778A1 (en) 2021-12-08 2021-12-08 Positive electrode plate for medical device battery and its preparation method

Publications (1)

Publication Number Publication Date
WO2023102778A1 true WO2023102778A1 (en) 2023-06-15

Family

ID=86729253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136498 WO2023102778A1 (en) 2021-12-08 2021-12-08 Positive electrode plate for medical device battery and its preparation method

Country Status (1)

Country Link
WO (1) WO2023102778A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012044A (en) * 1998-06-29 2000-01-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution primary battery
CN102891280A (en) * 2012-10-08 2013-01-23 中国电子科技集团公司第十八研究所 Preparation method for high-capacity lithium manganese battery positive plate
CN103357557A (en) * 2013-06-25 2013-10-23 中国兵器工业第二一三研究所 Method for continuously coating high-viscosity sizing agent used for preparing positive pole piece of lithium-manganese primary cell
CN108493444A (en) * 2018-03-13 2018-09-04 福建南平南孚电池有限公司 A kind of anode of li-Mn button cell and preparation method thereof
CN109728243A (en) * 2018-12-06 2019-05-07 福建南平南孚电池有限公司 A kind of positive pole of lithium manganese battery manufacture craft
CN111769255A (en) * 2020-07-09 2020-10-13 四川虹微技术有限公司 Positive pole piece for high-power lithium-manganese dioxide battery and preparation method thereof
CN113274002A (en) * 2019-08-19 2021-08-20 上海移宇科技股份有限公司 High integrated analyte detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012044A (en) * 1998-06-29 2000-01-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution primary battery
CN102891280A (en) * 2012-10-08 2013-01-23 中国电子科技集团公司第十八研究所 Preparation method for high-capacity lithium manganese battery positive plate
CN103357557A (en) * 2013-06-25 2013-10-23 中国兵器工业第二一三研究所 Method for continuously coating high-viscosity sizing agent used for preparing positive pole piece of lithium-manganese primary cell
CN108493444A (en) * 2018-03-13 2018-09-04 福建南平南孚电池有限公司 A kind of anode of li-Mn button cell and preparation method thereof
CN109728243A (en) * 2018-12-06 2019-05-07 福建南平南孚电池有限公司 A kind of positive pole of lithium manganese battery manufacture craft
CN113274002A (en) * 2019-08-19 2021-08-20 上海移宇科技股份有限公司 High integrated analyte detection device
CN111769255A (en) * 2020-07-09 2020-10-13 四川虹微技术有限公司 Positive pole piece for high-power lithium-manganese dioxide battery and preparation method thereof

Similar Documents

Publication Publication Date Title
CN106207129B (en) A kind of preparation method of anode slurry of high-rate
CN104810508B (en) Cell negative electrode material and preparation method thereof
CN100527491C (en) Battery electrode paste compound containing modified maleimide
CN105731427B (en) A kind of graphite negative material of lithium ion battery and preparation method thereof
CN109346671A (en) A kind of anode of lithium ion battery slurry and the preparation method and application thereof
CN108878767A (en) A kind of high capacity lithium ion battery anode sizing agent and its preparation method and application
CN107464929B (en) Preparation method of nickel cobalt lithium manganate cathode material, lithium ion battery cathode material and lithium ion battery
CN109923697A (en) Anode slurry for lithium ion battery
CN113871561B (en) Preparation method of dry electrode pole piece, electrode pole piece and battery cell
CN104733738B (en) A kind of lithium-thionyl chloride power type battery anode preparation method
CN105304906A (en) Flexible lithium ion battery cathode and manufacturing method thereof
Manev et al. Effect of electrode porosity on the performance of natural Brazilian graphite electrodes
CN109671903A (en) A kind of preparation method of solid state battery positive combination electrode
CN108376761A (en) A kind of preparation method and lithium ion battery of anode slice of lithium ion battery
CN110176576A (en) A kind of composite solid electrolyte positive plate and the preparation method and application thereof
CN108899522A (en) A kind of high-volume silicon-carbon negative electrode material, preparation method and application
CN109950543B (en) Current collector suitable for lithium ion battery electrode material and preparation and application thereof
WO2023102778A1 (en) Positive electrode plate for medical device battery and its preparation method
CN111934004B (en) Lithium manganate/solid electrolyte composite material and preparation method and application thereof
CN113782741A (en) Binder composition, method for producing binder composition, and method for producing all-solid-state battery
CN105449212B (en) Cell negative electrode material and preparation method thereof
CN111554881A (en) MXene-based flexible self-supporting electrode material and preparation method thereof
WO2024103273A1 (en) Negative electrode material and battery
WO2023045100A1 (en) Highly integrated analyte detection device
CN116247160A (en) Medical equipment battery positive electrode plate and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966702

Country of ref document: EP

Kind code of ref document: A1