WO2023101200A1 - Ai를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법 - Google Patents
Ai를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법 Download PDFInfo
- Publication number
- WO2023101200A1 WO2023101200A1 PCT/KR2022/015488 KR2022015488W WO2023101200A1 WO 2023101200 A1 WO2023101200 A1 WO 2023101200A1 KR 2022015488 W KR2022015488 W KR 2022015488W WO 2023101200 A1 WO2023101200 A1 WO 2023101200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fingerprint
- fake
- neural network
- value
- discrimination
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000006870 function Effects 0.000 claims abstract description 25
- 238000013528 artificial neural network Methods 0.000 claims description 49
- 238000013473 artificial intelligence Methods 0.000 claims description 12
- 230000002787 reinforcement Effects 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000013135 deep learning Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010801 machine learning Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 2
- 208000008918 voyeurism Diseases 0.000 description 2
- 241000217377 Amblema plicata Species 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1382—Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1312—Sensors therefor direct reading, e.g. contactless acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0264—Details of the structure or mounting of specific components for a camera module assembly
Definitions
- the present invention relates to a non-contact fingerprint authentication method including a forged fingerprint discrimination function using AI, and more particularly, when a fingerprint is recognized in a non-contact manner using a mobile device with a built-in camera, it is printed on paper or reproduced on a screen. It is about a non-contact fingerprint authentication method that includes a forged fingerprint identification function using AI, which is formed to discriminate the use of counterfeit fingerprints, etc., and learns such discrimination data with AI to quickly and accurately discriminate counterfeit fingerprints. .
- Biometrics refers to a self-authentication technology that identifies a user based on human body characteristics or behavioral characteristics. It is defined as a self-authentication technology based on observation.
- Methods of recognizing information about human physical characteristics used in the biometric technology include fingerprint recognition, iris-scan, retina-scan, hand geo-metry, There is a facial recognition method, and methods for recognizing information on behavioral characteristics include voice recognition, signature scan, gait recognition, and the like.
- Fingerprint recognition is the most widely used and universalized biometric technology. Fingerprints formed on human fingers are all different, and not only are different for each individual, but also have characteristics that do not change throughout life as they were at birth. It has high reliability and stability, and it is easy to store and compare information.
- a conventional fingerprint verification device for fingerprint recognition has a glass surface (sensor) formed on the top, and a camera and light are built-in, and the user's finger touches the glass surface (sensor) to operate the fingerprint reader.
- the camera is formed to acquire a fingerprint image by photographing the finger.
- the fingerprint recognizer has a function of discriminating whether it is a fake fingerprint made of silicon or the like (LiveFinger Detection, LFD), a function of extracting and storing feature points of the ridge of the fingerprint (optimal recognition fingerprint data generation function, Image Enhancement Feature Extraction Matching), etc. are provided together.
- the fingerprint reader is called an optical (or contact type) fingerprint reader, and obtains a clean flat fingerprint image by adjusting the sharpness and color contrast of the fingerprint image captured by the optical fingerprint reader.
- the fingerprint image is used by extracting feature points (position and direction) of the ridges of each fingerprint from the part where the ridge of the fingerprint is cut or split, etc., and stored as recognition fingerprint data.
- the optimal recognition fingerprint data is stored in a method (hereinafter referred to as 'international standard') specified in an international standard (ISO19794-2/ANSI378) for compatibility between different products.
- the conventional optical fingerprint reader is repulsive because the user must directly contact the sensor with his or her finger, and the shape of the fingerprint may be distorted depending on the strength of the pressure applied to the glass surface (sensor) when in contact, and the glass surface ( The shape of the fingerprint may be distorted as the finger slips on the contact surface of the sensor), and a clear fingerprint image cannot be obtained depending on the difference between the ambient temperature and humidity or the user's skin condition (eg, dryness and humidity of the skin).
- the ambient temperature and humidity or the user's skin condition eg, dryness and humidity of the skin
- a non-contact fingerprint reader has recently been developed in which a user does not directly touch a finger on a glass surface (sensor) and acquires a fingerprint image by photographing a fingerprint at a location slightly away from a camera.
- a conventional non-contact fingerprint reader and technology related to a fingerprint recognition method have been disclosed in Korean Intellectual Property Office Registered Patent Publication Nos. 0604267, 1274260, and 1596298.
- fake fingerprints include fake fingerprints printed on paper (printed fake fingerprints), fake fingerprints printed on a screen (screen fake fingerprints), fake fingerprints worn and recognized by imitating other people's fingerprints with silicon, etc. (silicon fake fingerprints), or There are forged fingerprints (forged fingerprints for voyeurism) in which the finger of a person who does not consent is photographed and recognized in a non-contact manner.
- Korean Intellectual Property Office Publication Patent Publication No. 2017-0112302, Patent Nos. 874688 and 1179559 provide forged fingerprint discrimination technology through neural network learning.
- the conventional counterfeit fingerprint identification technology has the following problems.
- the present invention is a non-contact fingerprint recognition method for obtaining a finger print by photographing a finger as a subject with a mobile device having a built-in camera,
- a fingerprint recognition program is formed in the mobile device having the camera, and a counterfeit fingerprint identification program is formed in the fingerprint recognition program.
- the forged fingerprint discrimination program includes a noise pattern method for recognizing a noise pattern and discriminating a forged fingerprint
- the detected fake fingerprint stores the corresponding noise pattern, RGB histogram pattern, and contour error as fake fingerprint data, respectively.
- the non-contact fingerprint authentication method including the fake fingerprint discrimination function using AI formed in a preferred embodiment of the present invention, the following effects occur.
- a non-contact fingerprint recognition method using a fingerprint image captured by a camera can also determine a forged fingerprint.
- 1 is a photograph showing an example of a forged fingerprint.
- Figure 2 is a flow chart showing a non-contact fingerprint authentication method including a forged fingerprint discrimination function using AI formed in a preferred embodiment of the present invention.
- FIG. 3 is a photograph showing an example of a histogram method in a non-contact fingerprint authentication method including a fake fingerprint discrimination function using AI formed in a preferred embodiment of the present invention.
- the present invention is a non-contact fingerprint recognition method for obtaining a finger print by photographing a finger as a subject with a mobile device having a built-in camera,
- a fingerprint recognition program is formed in the mobile device having the camera, and a counterfeit fingerprint identification program is formed in the fingerprint recognition program.
- the forged fingerprint discrimination program includes a noise pattern method for recognizing a noise pattern and discriminating a forged fingerprint
- the detected fake fingerprint stores the corresponding noise pattern, RGB histogram pattern, and contour error as fake fingerprint data, respectively.
- It is configured to quickly and accurately determine the forged fingerprint by deep learning the forged fingerprint data through AI.
- the non-contact fingerprint recognition method of the present invention is employed in a mobile device having a built-in camera, and a fake fingerprint discrimination program is formed in the fingerprint recognition program in a state where the fingerprint recognition program is installed in the mobile device having a built-in camera.
- the forged fingerprint identification program simultaneously applies a noise pattern method, a histogram method, and a contour method.
- the noise pattern method uses a noise pattern generated when a camera captures a finger, and utilizes a finger image taken from a distance that has poor quality because more noise is generated.
- the noise pattern method and the histogram method are used to determine the fake fingerprint.
- a normal fingerprint is photographed with a mobile device with a built-in camera, it is photographed with strong lighting, so it is not only photographed very clearly but also in color. Since the RGB histogram can be confirmed, the forged fingerprint can be determined from the difference between the RGB histogram of the normal fingerprint and the forged fingerprint.
- the fingerprint formed on the left is a normal fingerprint
- the fingerprint formed on the right is a fake fingerprint (printed photograph taken).
- the RGB histogram on the left has a sharp peak and colors appear clearly, whereas the RGB histogram on the right has a peak and all colors do not appear.
- the ridge area shows a higher light reflectance than the ridge area between the ridges, and because of the perspective, the center of the finger print area has a higher light reflectance than the outer area of the finger fingerprint area. It is possible to check the difference in illuminance, and forged fingerprints do not show such a difference in illuminance, so it can be determined.
- the present invention can sufficiently discriminate a forged fingerprint using only the noise pattern method and the histogram method, a contour method can also be employed to more accurately discriminate.
- the contour method is a method of determining whether the shadowed portion is a forged fingerprint by checking a newly formed shadowed portion that deviate from the ridge and the finger's outline separately from the ridge at the time of the expected normal fingerprint in the photographed fingerprint image.
- the forged fingerprint data stores the degree of noise pattern, RGB histogram distribution form, and contour error data of a unique shape as forged fingerprint data.
- the forged fingerprint data is formed by being classified into fake printed fingerprints, screen fake fingerprints, silicon fake fingerprints, and voyeur fake fingerprints.
- the artificial intelligence neural network of AI analyzing the forged fingerprint data includes a state value transmission step of transmitting a fingerprint state value (s) to a deep reinforcement learning neural network, a discriminant prediction neural network, and a discriminant neural network;
- the discrimination prediction neural network is composed of a normal fingerprint prediction neural network and a fake fingerprint prediction neural network, and the normal fingerprint prediction neural network and the fake fingerprint prediction neural network learn about the fingerprint state value (s), and then determine and transmit an additional discrimination value ( ⁇ ) an additional discrimination value transmission step;
- the deep reinforcement learning neural network is composed of an Actor neural network and a Critic neural network, and the Critic neural network converts the transmitted fingerprint state value (s) and the expected discriminant value (a) together with an additional discriminant value ( ⁇ ) through a state-value function.
- An optimal discriminant value calculation step of calculating a value (Q) and transmitting it to the Actor neural network, and calculating an optimal discriminant value (A) by using the value value (Q) and the state value (s) in the Actor neural network;
- the discriminant neural network stores the discriminant value (a) as learning data, calculates the optimal fingerprint discriminant value (K) using a machine learning technique, and transmits it to the discriminating means of the forged fingerprint discriminating program. It consists of
- the artificial intelligence neural network uses a supervised learning algorithm and operates in a state in which the basic algorithm is optimized using a training set (learning data).
- the supervised learning algorithm is operated in a state in which the basic algorithm is optimized to find an optimal fingerprint discrimination value (K) by using fingerprint state values of many types of forged fingerprint data.
- the discrimination value ( ⁇ ) is learned and calculated as an expected value.
- the discrimination prediction neural network is composed of a normal fingerprint prediction neural network and a fake fingerprint prediction neural network, and the normal fingerprint prediction neural network and the fake fingerprint prediction neural network learn about the fingerprint state value (s), and the final additional discriminant value is the average of the discriminant values evaluated. ( ⁇ ) is determined and transmitted to the deep reinforcement learning neural network.
- the deep reinforcement learning neural network is composed of an Actor neural network and a Critic neural network.
- the Critic neural network learns and calculates a value value (Q) using a state value (s) and a discriminant value ( ⁇ ).
- the actor neural network learns and calculates the optimal discrimination value (A) using the state value (s) and value value (Q).
- the optimum discriminant value (A) generated by the Actor neural network is transmitted to the critical neural network and stored as a new previous state value.
- the non-contact fingerprint recognition method using the fingerprint image captured by the camera can also discriminate the fake fingerprint, and can detect the fingerprint of another person. It is possible to identify fake fingerprints as fake fingerprints by utilizing the noise pattern of the photographed fingerprint image, such as voyeurism, and using AI to store and analyze fake fingerprint data to identify fake fingerprints more quickly and accurately. occurs.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- Collating Specific Patterns (AREA)
Abstract
본 발명은 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 관한 것으로, 더욱 상세하게는 카메라가 내장된 모바일기기를 활용하여 비접촉식으로 지문을 인식할 때 종이에 인쇄하거나, 화면에 재생되는 등의 위조지문을 사용하는 것을 판별할 수 있도록 형성하고, 이러한 판별데이터를 AI로 학습하여 위조지문을 빠르고 정확하게 판별할 수 있도록 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 관한 것이다. 본 발명의 바람직한 실시예로 형성되는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 의하면 카메라로 촬영되는 지문이미지를 이용하는 비접촉식 지문인식방법에서도 위조지문을 판별할 수 있고, 타인의 지문을 도촬하는 등의 위조지문을 촬영된 지문이미지의 노이즈패턴을 활용하여 위조지문으로 판별할 수 있으며, AI를 이용하여 위조지문데이터를 저장 및 분석하여 위조지문을 보다 빠르고 정확하게 판별할 수 있는 등의 효과가 발생한다.
Description
본 발명은 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 관한 것으로, 더욱 상세하게는 카메라가 내장된 모바일기기를 활용하여 비접촉식으로 지문을 인식할 때 종이에 인쇄하거나, 화면에 재생되는 등의 위조지문을 사용하는 것을 판별할 수 있도록 형성하고, 이러한 판별데이터를 AI로 학습하여 위조지문을 빠르고 정확하게 판별할 수 있도록 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 관한 것이다.
생체인식(Biometrics)이란 인간의 신체특성 또는 행동적 특징을 기반으로 하여 사용자의 신원을 파악하는 본인 인증기술을 말하며, 국내의 생체인식포럼에서는 '행동적, 생물학적(해부학적, 생리학적) 특징의 관찰에 기반을 둔 본인인증기술로 정의하고 있다.
상기 생체인식기술에 사용되는 인간의 신체적 특징에 관한 정보를 인식하는 방법은 지문인식(Fingerprint), 홍채인식(Iris-scan), 망막인식(Retina-scan), 손모양(Hand geo-metry), 안면인식(Facial recognition)의 방법이 있고, 행동적 특징에 관한 정보를 인식하는 방법으로는 음성인식(Voice recognition), 서명(Signaturescan), 걸음걸이인식 등의 방법이 있다.
상기 생체인식기술에서 가장 많이 활용되고, 보편화 된 것은 지문인식인데, 인간의 손가락에 형성된 지문(Fingerprint)은 모두 다르고, 개인마다 서로 다를 뿐만 아니라, 태어날 때의 모습 그대로 평생 변하지 않는 특성이 있어 판별성에 대한 신뢰도와 안정도가 높으며, 또 정보의 저장 및 대조가 간편용이하다.
종래의 지문인식을 위한 지문인식기(Fingerprint verification device)는 상단에 유리면(센서)이 형성되고, 내부에 카메라와 조명이 내장된 구성으로, 유리면(센서)에 사용자의 손가락을 접촉하고 지문인식기를 작동하면 카메라가 손가락을 촬영하여 지문이미지를 획득하도록 형성된다.
또한, 상기 지문인식기에는 실제 인체의 지문이 아닌 실리콘 등으로 만든 위조 지문인지를 변별하는 기능(LiveFinger Detection, LFD), 지문의 융선의 특징점들을 추출하여 저장하는 기능(최적의 인식지문데이터 생성 기능, Image Enhancement Feature Extraction Matching) 등이 함께 제공된다.
상기 지문인식기는 광학식(또는 접촉식) 지문인식기라고 하는데, 이러한 광학식 지문인식기에 의해서 촬영된 지문이미지를 선명도(Sharpness)와 색상대비(Contrast)를 조정하여 깨끗한 평면적 지문이미지를 획득한다.
또한, 상기 지문이미지는 지문의 융선이 끊어진 부분, 갈라지는 부분 등을 각 지문의 융선의 특징점(위치 및 방향성)들을 추출하여 인식지문데이터로 저장하여 사용한다.
상기 최적의 인식지문데이터는 다른 제품들 간의 호환성(Compatibility)을 위해서 국제표준(ISO19794-2/ANSI378)에서 규정하는 방법(이하, '국제표준'이라 함)으로 데이터를 저장하게 된다.
그러나, 종래의 광학식 지문인식기는 사용자가 직접 손가락을 센서에 접촉시켜야 하는 관계로 거부감이 있고, 접촉할 때 유리면(센서)에 가해지는 압력의 강도에 따라 지문의 형태가 왜곡될 수 있으며, 유리면(센서)의 접촉면에서 손가락이 미끄러지면서 지문의 형태가 왜곡될 수 있고, 주변온도와 습도의 차이 또는 사용자의 피부상태(예, 피부의 건조, 습한 정도)에 따라서 선명한 지문이미지를 획득할 수 없는 등의 문제점이 있었다.
이러한 종래의 광학식 지문인식기의 문제점을 해결하기 위해서, 최근에는 사용자가 유리면(센서)에 손가락을 직접 접촉하지 않고, 카메라로부터 조금 떨어진 위치에서 촬영하여 지문이미지를 획득하는 비접촉식 지문인식기가 개발되고 있다.
종래의 비접촉식 지문인식기 및 지문인식방법에 관한 기술은 대한민국 특허청 등록특허공보 제0604267호, 제1274260호 및 제1596298호 등에 개시된 바 있다.
그런데, 다양한 목적으로 위조지문으로 인증을 하고자 하는 사람들이 있어서, 종래의 지문을 인식 및 인증하는 방법에 있어서, 위조지문을 판별할 수 있는 기능이 필요하다.
이러한 위조지문으로는 종이에 인쇄된 위조지문(인쇄위조지문), 화면에 출력되는 위조지문(화면위조지문), 실리콘 등으로 타인의 지문을 본떠서 이를 착용하고 인식하는 위조지문(실리콘위조지문) 또는 동의하지 않는 사람의 손가락을 비접촉 방식으로 도촬하여 인식시키는 위조지문(도촬위조지문) 등이 존재한다.
이러한 위조지문을 막기 위해서 대한민국 특허청 공개특허공보 제2017-0112302호, 특허 제874688호 및 제1179559호 등에는 신경망학습을 통한 위조지문 판별기술이 제공되고 있다.
그러나, 종래의 위조지문 판별기술에는 다음과 같은 문제점이 있었다.
(1) 접촉식 지문인식장치에는 위조지문 판별을 위한 다양한 기술이 제공되고 있지만, 카메라가 내장된 모바일기기의 카메라를 사용하는 비접촉식 지문인식방법에는 제공되지 않고 있다.
(2) 비접촉식으로 촬영할 때 잘못인식될 수 있는 특수한 위조지문 또는 도촬에 의한 타인의 지문습득 등의 문제에 대하여는 대처하지 못한다.
(3) 위조지문을 데이터화하고 이를 분석하여 위조지문을 빠르고 정확하게 판별할 수 있는 방법이 제공되지 못하고 있다.
상기한 문제점을 해결하기 위해서, 본 발명은 카메라가 내장된 모바일기기로 피사체인 손가락을 촬영하여 손가락지문을 획득하는 비접촉식 지문인식방법에 있어서,
상기 카메라가 내장된 모바일기기에 지문인식프로그램이 형성되고, 상기 지문인식프로그램에는 위조지문판별프로그램이 형성되되,
상기 위조지문판별프로그램은 노이즈패턴을 인식하여 위조지문을 판별하는 노이즈패턴방식과;
RGB 히스토그램을 통하여 위조지문을 판단하는 히스토그램방식과;
손가락의 윤곽선을 인식하여 위조지문을 판단하는 윤곽선방식을 동시에 채용하고,
발견되는 위조지문은 해당 노이즈패턴, RGB 히스토그램패턴 및 윤곽선오류 등을 각각 위조지문데이터로 저장하며,
상기 위조지문데이터들을 AI를 통해서 딥러닝하도록 하는 것을 특징으로 한다.
본 발명의 바람직한 실시예로 형성되는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 의하면 다음과 같은 효과가 발생한다.
(1) 카메라로 촬영되는 지문이미지를 이용하는 비접촉식 지문인식방법에서도 위조지문을 판별할 수 있다.
(2) 타인의 지문을 도촬하는 등의 위조지문을 촬영된 지문이미지의 노이즈패턴을 활용하여 위조지문으로 판별할 수 있다.
(3) AI를 이용하여 위조지문데이터를 저장 및 분석하여 위조지문을 보다 빠르고 정확하게 판별할 수 있다.
도 1은 위조지문의 예를 나타낸 사진.
도 2는 본 발명의 바람직한 실시예로 형성되는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법을 나타낸 순서도.
도 3은 본 발명의 바람직한 실시예로 형성되는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에서 히스토그램방식의 예를 나타낸 사진.
본 발명의 구체적인 실시예를 설명하기에 앞서, 본 명세서에 도시된 도면은 본 발명을 보다 명확하게 설명하기 위해서 그 구성요소의 크기나 형상 등을 다소 과장되거나 단순화시켜 표현할 수 있다.
본 발명에서 정의된 용어 및 부호들은 사용자, 운용자 및 작성자에 의해서 임의로 정의되거나, 선택적으로 사용된 용어이기 때문에, 이러한 용어들은 본 명세서의 전체적인 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 하고, 용어자체의 의미로 한정하여서는 안된다.
본 발명은 카메라가 내장된 모바일기기로 피사체인 손가락을 촬영하여 손가락지문을 획득하는 비접촉식 지문인식방법에 있어서,
상기 카메라가 내장된 모바일기기에 지문인식프로그램이 형성되고, 상기 지문인식프로그램에는 위조지문판별프로그램이 형성되되,
상기 위조지문판별프로그램은 노이즈패턴을 인식하여 위조지문을 판별하는 노이즈패턴방식과;
RGB 히스토그램을 통하여 위조지문을 판단하는 히스토그램방식과;
손가락의 윤곽선을 인식하여 위조지문을 판단하는 윤곽선방식을 동시에 채용하고,
발견되는 위조지문은 해당 노이즈패턴, RGB 히스토그램패턴 및 윤곽선오류 등을 각각 위조지문데이터로 저장하며,
상기 위조지문데이터들을 AI를 통해서 딥러닝함으로써 위조지문을 빠르고 정확하게 판별할 수 있도록 구성된다.
본 발명의 비접촉식 지문인식방법은 카메라가 내장된 모바일기기에 채용되고, 상기 카메라가 내장된 모바일기기에 지문인식프로그램이 설치된 상태에서 지문인식프로그램 내에 위조지문판별프로그램이 형성된다.
상기 위조지문판별프로그램은 노이즈패턴방식, 히스토그램방식 및 윤곽선방식이 동시에 적용된다.
상기 노이즈패턴방식은 카메라가 손가락을 촬영할 때 발생하는 노이즈패턴을 이용하는 방식으로, 원거리에서 도촬하는 손가락이미지에 노이즈가 더 많이 발생하기 때문에 품질이 좋지 않은 것을 활용하는 방식이다.
즉, 정상지문을 촬영할 때에는, 강한 조명이 조사되어 선명하게 촬영되는데, 원거리에서 도촬할 경우에는 노이즈패턴이 생기면서 화질이 떨어지게 되고, 이러한 노이즈패턴이 발생할 경우에는 위조지문으로 판별할 수 있다.
상기 노이즈패턴방식과 동시에 히스토그램방식을 사용하여 위조지문을 판별하는데, 카메라가 내장된 모바일기기로 정상지문을 촬영할 때에는 강한 조명과 함께 촬영되므로 매우 선명하게 촬영될 뿐만 아니라 컬러로 촬영되기 때문에 RGB색상에서 RGB 히스토그램을 확인할 수 있어서 정상지문과 위조지문의 이러한 RGB 히스토그램의 차이에서 위조지문을 판별할 수 있다.
즉, 정상지문이 촬영될 때에는 RGB 히스토그램이 분명하게 드러나는데 반해, 인쇄되거나, 화면에 출력되는 위조지문이나 종이에 인쇄된 위조지문은 RGB 히스토그램이 분명하지 않고 서로 겹치면서 색상이 잘 나타나지 않는다.
도 3은 정상지문과 위조지문의 RGB 히스토그램을 대비한 것으로, 왼쪽에 형성된 지문은 정상지문이고, 오른쪽에 형성된 지문은 위조지문(인쇄한 사진을 촬영한)이다.
도 3에서, 왼쪽의 RGB 히스토그램은 피크가 뾰족하고 색상들이 선명하게 나타나는데 반해, 오른쪽의 RGB 히스토그램은 피크가 뭉그러지면서 모든 색상이 다 나타나지 않는다.
상기 히스토그램방식에서는 2~3개 정도의 융선의 영역을 선택하여 융선의 RGB 히스토그램을 분석하여도 충분히 판별할 수 있다.
또, 정상지문을 촬영하게 되면, 융선영역은 융선과 융선사이의 골영역에 비해 빛반사율이 높게 나타나고, 원근감이 나타나기 때문에 손가락지문영역의 중앙이 손가락지문영역의 외곽지역에 비해 빛반사율이 높게 나타나서 조도의 차이를 확인할 수 있는데, 위조지문은 이러한 조도의 차이가 나타나지 않으므로 이를 판별할 수 있다.
본 발명은 노이즈패턴방식과 히스토그램방식만으로도 충분히 위조지문을 판별할 수 있으나, 보다 정확하게 판별할 수 있도록 하기 위해서 윤곽선방식도 채용할 수 있다.
상기 윤곽선방식은 촬영된 지문이미지를 예상되는 정상지문일때의 융선과 손가락의 외곽선에서 별도로 벗어나거나 새롭게 생기는 음영부분을 확인하여 이러한 음영부분이 위조지문인지를 판별하는 방식이다.
상기와 같이 위조지문판별프로그램에 의해서 위조지문을 판별하면, 이러한 위조지문데이터는 노이즈패턴정도, RGB 히스토그램의 분포형태 및 특이한 형상의 윤곽선오류의 데이터를 위조지문데이터로 저장한다.
상기 위조지문데이터는 인쇄위조지문, 화면위조지문, 실리콘위조지문, 도촬위조지문 등으로 분류하여 형성한다.
상기 저장된 위조지문데이터들을 AI를 통해서 딥러닝함으로써 위조지문을 빠르고 정확하게 판별하도록 형성된다.
상기 위조지문데이터를 분석하는 AI의 인공지능신경망은 지문상태값(s)이 심층강화학습신경망, 판별예측신경망 및 판별신경망으로 전송되는 상태값전송단계와;
상기 판별예측신경망은 정상지문예측신경망과 위조지문예측신경망으로 구성되고, 정상지문예측신경망과 위조지문예측신경망은 지문상태값(s)에 대하여 학습한 후에 추가판별값(γ)을 결정하여 전송하는 추가판별값전송단계와;
상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되고, Critic신경망은 전송된 지문상태값(s)과 기대된 판별값(a)을 추가판별값(γ)과 함께 상태-가치함수를 통하여 가치값(Q)을 산출하여 Actor신경망으로 전송하고, Actor신경망은 가치값(Q)과 상태값(s)을 활용하여 최적의 최적판별값(A)을 산출하는 최적판별값산출단계와;
상기 판별신경망은 판별값(a)을 학습데이터로 저장하고, 머신러닝기법을 사용하여 최적의 지문판별값(K)을 산출하고, 위조지문판별프로그램의 판별수단으로 전송하는 지문판별값산출단계로 구성된다.
상기 인공지능신경망은 지도학습알고리즘을 사용하고 훈련세트(학습데이터)를 이용하여 기본 알고리즘을 최적화한 상태로 운영한다.
상기 지도학습알고리즘은 많은 종류의 위조지문데이터의 지문상태값들을 사용하여, 최적의 지문판별값(K)를 찾을 수 있도록 기본 알고리즘을 최적화한 상태에서 운영한다.
상기 판별예측신경망에 사용되는 판별함수의 예로는
를 사용할 수 있는데, 특정 위치(t)에 상태값(s)과 판별값(a)일 때 판별값(γ)을 기대값으로 학습산출한다.
상기 판별예측신경망은 정상지문예측신경망과 위조지문예측신경망으로 구성되고, 정상지문예측신경망과 위조지문예측신경망은 지문상태값(s)에 대하여 학습한 후에 평가된 판별값의 평균으로 최종 추가판별값(γ)으로 결정하여 심층강화학습신경망으로 전송한다.
상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되는데, Critic신경망은 상태값(s)과 판별값(γ)을 활용하여 가치값(Q)을 학습산출한다.
상기 가치값(Q)에 사용되는 방정식의 예로는
의 벨만기대방정식을 사용할 수 있다.
상기 Actor신경망은 상태값(s)과 가치값(Q)을 사용하여 최적의 판별값(A)을 학습산출한다.
상기 Actor신경망에서 생성된 최적판별값(A)은 Critic신경망으로 전송되어 새로운 직전 상태값으로 저장한다.
상기와 같이 AI를 이용한 딥러닝으로 판별값을 업데이트함으로써, 촬영된 지문이미지로부터 예측되는 위조지문을 정확히 판별하고, 이를 학습하여 추후 위조지문을 빠르고 정확하게 판별할 수 있다.
본 발명의 바람직한 실시예로 형성되는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법에 의하면 카메라로 촬영되는 지문이미지를 이용하는 비접촉식 지문인식방법에서도 위조지문을 판별할 수 있고, 타인의 지문을 도촬하는 등의 위조지문을 촬영된 지문이미지의 노이즈패턴을 활용하여 위조지문으로 판별할 수 있으며, AI를 이용하여 위조지문데이터를 저장 및 분석하여 위조지문을 보다 빠르고 정확하게 판별할 수 있는 등의 효과가 발생한다.
본 발명은 첨부된 도면을 참조하여 바람직한 실시 예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 후술하는 특허청구범위에 의해 포괄되는 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다.
Claims (11)
- 카메라가 내장된 모바일기기에 지문인식프로그램이 형성되고, 상기 지문인식프로그램에는 위조지문판별프로그램이 형성되며, 상기 위조지문판별프로그램에 의하여 수행되는 위조지문판별기능이 포함된 비접촉식 지문인증방법은,상기 위조지문판별기능에서 발견되는 위조지문에 대응되는 노이즈패턴, RGB 히스토그램패턴 및 윤곽선오류 들을 각각 위조지문데이터로 저장하는 단계; 및상기 저장된 위조지문데이터를 AI(Artificial Intelligence)통해 딥러닝하는 단계;를 포함하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제1항에 있어서,상기 위조지문데이터는 인쇄위조지문, 화면위조지문, 실리콘위조지문 및 도촬위조지문 중 적어도 두 개 이상으로 분류하여 저장되는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제1항에 있어서,상기 노이즈 패턴을 이용한 노이즈 패턴 방식은,정상지문 대비 손가락이미지에 노이즈 패턴이 더 많이 발생할 경우 위조지문으로 판정하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제1항에 있어서,상기 RGB 히스토그램패턴을 이용한 히스토그램방식은,RGB 히스토그램의 분표 형태를 기초로 위조 지문을 판정하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제4항에 있어서,상기 히스토그램방식의 RGB 히스토그램은 2~3개의 융선이 나타나는 영역만을 분석하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제1항에 있어서,상기 윤곽선오류를 이용한 윤곽선방식은,촬영된 지문이미지를 예상되는 정상지문일때의 융선과 손가락의 외곽선에서 별도로 벗어나거나 새롭게 생기는 음영부분을 확인하여 음영부분이 위조지문인지를 판정하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제1항에 있어서,상기 위조지문데이터를 분석하는 AI의 인공신경망은 지문상태값이 심층강화학습신경망, 판별예측신경망 및 판별신경망으로 전송되는 상태값전송단계;를 더 포함하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법..
- 제7항에 있어서,상기 판별예측신경망은 정상지문예측신경망과 위조지문예측신경망으로 구성되고, 정상지문예측신경망과 위조지문예측신경망은 상기 지문상태값에 대하여 학습한 후에 추가판별값을 결정하여 전송하는 추가판별값전송단계;를 더 포함하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제8항에 있어서,상기 심층강화학습신경망은 Actor신경망과 Critic신경망으로 구성되고, Critic신경망은 상기 전송된 지문상태값과 기대된 판별값을 상기 추가판별값과 함께 상태-가치함수를 통하여 가치값을 산출하여 Actor신경망으로 전송하고, Actor신경망은 가치값(Q)과 상태값(s)을 활용하여 최적의 최적판별값(A)을 산출하는 최적판별값산출단계;를 더 포함하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제9항에 있어서,상기 판별신경망은 상기 판별값을 학습데이터로 저장하고, 머신러닝기법을 사용하여 최적의 지문판별값을 산출하고, 위조지문판별프로그램의 판별수단으로 전송하는 지문판별값산출단계;를 포함하는 것을 특징으로 하는 AI를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법.
- 제7항에 있어서,상기 인공지능신경망은 지도학습알고리즘을 이용하여 위조지문데이터의 지문상태값들을 사용하여 최적의 지문판별값를 찾을 수 있도록 학습한 상태에서 운영되는 것을 특징으로 하는 지문인증방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210170995 | 2021-12-02 | ||
KR10-2021-0170995 | 2021-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023101200A1 true WO2023101200A1 (ko) | 2023-06-08 |
Family
ID=86612527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/015488 WO2023101200A1 (ko) | 2021-12-02 | 2022-10-13 | Ai를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230083208A (ko) |
WO (1) | WO2023101200A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190094352A (ko) * | 2016-12-08 | 2019-08-13 | 베라디움 아이피 리미티드 | 모바일 디바이스를 사용하여 캡처된 화상을 사용하여 지문 기반 사용자 인증을 수행하기 위한 시스템 및 방법 |
KR20200051903A (ko) * | 2018-11-05 | 2020-05-14 | 주식회사 비젼인 | 위조지문 검출 가능한 지문인식 방법 및 시스템 |
KR20210052034A (ko) * | 2019-10-31 | 2021-05-10 | 엘지전자 주식회사 | 생체 정보의 위조 검증 장치 및 방법 |
US20210209327A1 (en) * | 2020-01-02 | 2021-07-08 | Egis Technology Inc. | Touch display device with fingerprint anti-spoofing function and associated fingerprint anti-spoofing method |
WO2021226709A1 (en) * | 2020-05-11 | 2021-11-18 | Fluent.Ai Inc. | Neural architecture search with imitation learning |
-
2022
- 2022-08-16 KR KR1020220102361A patent/KR20230083208A/ko unknown
- 2022-10-13 WO PCT/KR2022/015488 patent/WO2023101200A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190094352A (ko) * | 2016-12-08 | 2019-08-13 | 베라디움 아이피 리미티드 | 모바일 디바이스를 사용하여 캡처된 화상을 사용하여 지문 기반 사용자 인증을 수행하기 위한 시스템 및 방법 |
KR20200051903A (ko) * | 2018-11-05 | 2020-05-14 | 주식회사 비젼인 | 위조지문 검출 가능한 지문인식 방법 및 시스템 |
KR20210052034A (ko) * | 2019-10-31 | 2021-05-10 | 엘지전자 주식회사 | 생체 정보의 위조 검증 장치 및 방법 |
US20210209327A1 (en) * | 2020-01-02 | 2021-07-08 | Egis Technology Inc. | Touch display device with fingerprint anti-spoofing function and associated fingerprint anti-spoofing method |
WO2021226709A1 (en) * | 2020-05-11 | 2021-11-18 | Fluent.Ai Inc. | Neural architecture search with imitation learning |
Also Published As
Publication number | Publication date |
---|---|
KR20230083208A (ko) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100447023B1 (ko) | 분류신경망을이용한생물측정인식시스템 | |
CN110326001B (zh) | 使用利用移动设备捕捉的图像执行基于指纹的用户认证的系统和方法 | |
WO2010008143A2 (ko) | 생체지문 판단장치 및 그 판단방법 | |
US8265347B2 (en) | Method and system for personal identification using 3D palmprint imaging | |
US7092555B2 (en) | System for registering and authenticating human face using support vector machines and method thereof | |
WO2013129825A1 (ko) | 얼굴 인식 환경 통지 방법, 장치, 및 이 방법을 실행하기 위한 컴퓨터 판독 가능한 기록 매체 | |
CN111462379A (zh) | 一种含掌静脉和人脸识别的门禁管理方法、系统及介质 | |
JPWO2005069212A1 (ja) | 生体情報による認証装置 | |
WO2013048159A1 (ko) | 아다부스트 학습 알고리즘을 이용하여 얼굴 특징점 위치를 검출하기 위한 방법, 장치, 및 컴퓨터 판독 가능한 기록 매체 | |
KR101626837B1 (ko) | 손가락 마디 및 지정맥 기반의 융합형 생체 인증 방법 및 그 장치 | |
WO2018012928A1 (ko) | 얼굴 인식을 이용한 사용자 인증 방법 및 그 장치 | |
WO2011019192A2 (ko) | Ir 조명을 이용한 얼굴인식 시스템 및 방법 | |
WO2020241987A1 (ko) | 얼굴 인식 및 수기 서명 검증 기반의 사용자 인증 방법 및 장치 | |
WO2017179751A1 (ko) | 광 파장 특성을 이용한 위조지문 판별장치 및 그 방법 | |
CN113076886A (zh) | 一种猫的面部个体识别装置和方法 | |
CN110929680B (zh) | 一种基于特征融合的人脸活体检测方法 | |
WO2024010120A1 (ko) | 비전-초분광 융합 데이터 기반 폐기물 분류 시스템 | |
CN108388858A (zh) | 虹膜防伪方法与装置 | |
WO2023101200A1 (ko) | Ai를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법 | |
JPH08315143A (ja) | 指紋照合装置 | |
Zaghetto et al. | Liveness detection on touchless fingerprint devices using texture descriptors and artificial neural networks | |
JP2005292994A (ja) | 人物認識装置と通行制御装置 | |
JPH10134191A (ja) | 顔形状による人物識別システム | |
WO2015080309A1 (ko) | Usb 홍채 인식기 | |
KR100465136B1 (ko) | 지문이미지의 영상처리방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22901560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |