WO2023100959A1 - Optical member, surface light source device, display device, and wavelength conversion sheet - Google Patents
Optical member, surface light source device, display device, and wavelength conversion sheet Download PDFInfo
- Publication number
- WO2023100959A1 WO2023100959A1 PCT/JP2022/044297 JP2022044297W WO2023100959A1 WO 2023100959 A1 WO2023100959 A1 WO 2023100959A1 JP 2022044297 W JP2022044297 W JP 2022044297W WO 2023100959 A1 WO2023100959 A1 WO 2023100959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- wavelength conversion
- sheet
- wavelength
- selective transmission
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 940
- 230000003287 optical effect Effects 0.000 title claims abstract description 882
- 230000005540 biological transmission Effects 0.000 claims abstract description 727
- 238000002834 transmittance Methods 0.000 claims abstract description 171
- 239000003795 chemical substances by application Substances 0.000 claims description 348
- 230000004888 barrier function Effects 0.000 claims description 180
- 238000009792 diffusion process Methods 0.000 claims description 136
- 238000009826 distribution Methods 0.000 claims description 128
- 239000000758 substrate Substances 0.000 claims description 112
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 claims description 49
- 238000003475 lamination Methods 0.000 claims description 27
- 239000000470 constituent Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 215
- 239000011295 pitch Substances 0.000 description 49
- 239000010408 film Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 30
- 238000011156 evaluation Methods 0.000 description 29
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 25
- 238000005259 measurement Methods 0.000 description 25
- 230000008859 change Effects 0.000 description 23
- 239000002096 quantum dot Substances 0.000 description 21
- 230000014509 gene expression Effects 0.000 description 20
- 229920005989 resin Polymers 0.000 description 20
- 239000011347 resin Substances 0.000 description 20
- 150000002736 metal compounds Chemical class 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 13
- 238000004088 simulation Methods 0.000 description 13
- 238000000149 argon plasma sintering Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 125000006850 spacer group Chemical group 0.000 description 10
- 238000011160 research Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000011162 core material Substances 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 239000012508 resin bead Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000004049 embossing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229910004613 CdTe Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000010485 coping Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910015808 BaTe Inorganic materials 0.000 description 1
- 229910004813 CaTe Inorganic materials 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241001585094 Dyspteris abortivaria Species 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910017680 MgTe Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004411 SrTe Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V3/00—Globes; Bowls; Cover glasses
- F21V3/04—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
- F21V3/06—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
- F21V3/08—Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
- F21V7/28—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/20—Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
- F21Y2105/14—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
- F21Y2105/16—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array square or rectangular, e.g. for light panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present invention relates to optical members, surface light source devices, display devices and wavelength conversion sheets.
- Patent Document 1 JP2013-519232A
- the surface light source device of Patent Document 1 includes a fluorescent layer containing a wavelength conversion agent.
- the wavelength converting agent absorbs the light from the light source and emits light of a different wavelength.
- the emission color can be adjusted.
- the present disclosure aims to reduce the amount of wavelength conversion agent.
- An embodiment of the present disclosure relates to the following [1] to [62].
- a selective transmission sheet including a selective transmission portion; and a wavelength conversion sheet superimposed on the selective transmission sheet,
- the transmittance of the selective transmission section for the light of the specific wavelength incident on the selective transmission section at an incident angle greater than 0° is the transmittance of the light of the specific wavelength incident on the selective transmission section at an incident angle of 0°. is greater than the transmittance of the selective transmission portion of
- the wavelength conversion sheet includes a first surface and a second surface facing the first surface, at least one of the first surface and the second surface includes an uneven surface;
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, The optical member, wherein the secondary light has a wavelength different from that of the primary light.
- the first surface is positioned between the selectively permeable sheet and the second surface;
- [4] further comprising a light diffusion sheet joined to the selective transmission sheet, The optical member of [2] or [3], wherein the selective transmission sheet is positioned between the light diffusion sheet and the wavelength conversion sheet.
- the wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, a first barrier layer and a second barrier layer superimposed on the wavelength conversion section, and the uneven surface superposed on the second barrier layer an optical element portion including the wavelength conversion part is located between the first barrier layer and the second barrier layer,
- the optical member according to any one of [2] to [4], wherein the second barrier layer is positioned between the wavelength conversion section and the optical element section.
- the first surface is positioned between the selectively permeable sheet and the second surface, The optical member according to [1], wherein the first surface includes the uneven surface.
- the transmittance of the selective transmission portion for the light of the specific wavelength emitted from the selective transmission sheet at an emission angle of 0° or more and 35° or less in absolute value is the maximum value of the transmittance of the selective transmission portion.
- the inclination angle ⁇ p (°) of the element surface that constitutes the uneven surface and the refractive index np of the portion that constitutes the element surface of the wavelength conversion sheet satisfy the following formula, sin ⁇ 1 (1/np) ⁇ 90 ⁇ p
- Inclination angle ⁇ p (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet satisfies sin -1 (1/np) ⁇ sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane
- the angle ⁇ x (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value.
- the optical member according to any one of [6] to [10], wherein the angle between the emission direction and the lamination direction.
- Inclination angle ⁇ p (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet satisfies sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p ⁇ 90- ⁇ p
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane
- the angle ⁇ x (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value.
- the optical member according to any one of [6] to [11], wherein the angle between the emitting direction and the stacking direction.
- the wavelength conversion agent includes a first conversion agent that absorbs the primary light and emits first secondary light, and a second conversion agent that absorbs the primary light and emits second secondary light. , including the wavelength of the second secondary light is longer than the wavelength of the first secondary light; the wavelength of the first secondary light is longer than the wavelength of the primary light;
- the optical member according to any one of [1] to [12], wherein the conversion efficiency of the second conversion agent in the wavelength conversion sheet is higher than the conversion efficiency of the first conversion agent in the wavelength conversion sheet.
- the wavelength conversion sheet includes: a wavelength conversion section containing the wavelength conversion agent; a first barrier layer and a second barrier layer superimposed on the wavelength conversion section; an optical element portion including the wavelength conversion part is located between the first barrier layer and the second barrier layer,
- the optical member according to any one of [6] to [13], wherein the first barrier layer is positioned between the wavelength conversion section and the optical element section.
- the wavelength conversion sheet includes a first surface and a second surface facing the first surface, The first surface is located between the light diffusion sheet and the second surface, the second surface includes an uneven surface;
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, The optical member, wherein the secondary light has a wavelength different from that of the primary light.
- a selective transmission sheet including a selective transmission portion; and a wavelength conversion sheet superimposed on the selective transmission sheet,
- the selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
- the wavelength conversion sheet includes an uneven surface,
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, the secondary light has a wavelength different from the wavelength of the primary light;
- the optical member wherein the transmission internal haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
- a selective transmission sheet including a selective transmission part; and a wavelength conversion sheet superimposed on the selective transmission sheet,
- the selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
- the wavelength conversion sheet includes an uneven surface,
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, the secondary light has a wavelength different from the wavelength of the primary light;
- the optical member wherein the transmission internal haze of the wavelength conversion sheet is 50% or less.
- the difference between the transmission internal haze of the wavelength conversion sheet for light of a wavelength different from the primary light and the transmission internal haze of the wavelength conversion sheet is 5% or less of [16] to [21].
- the wavelength conversion sheet includes a first surface and a second surface opposite to the first surface, the first surface is positioned between the selectively permeable sheet and the second surface;
- the optical member according to any one of [18] to [22], wherein the first surface includes the uneven surface.
- the transmittance of the selective transmission portion for light of a specific wavelength incident on the selective transmission portion at an incident angle greater than 0° is the specific wavelength incident on the selective transmission portion at an incident angle of 0°. is greater than the transmittance of the selective transmission portion for light of [23].
- the inclination angle ⁇ p (°) of the element surface that constitutes the uneven surface and the refractive index np of the portion that constitutes the element surface of the wavelength conversion sheet satisfy the following formula, sin ⁇ 1 (1/np) ⁇ 90 ⁇ p
- Inclination angle ⁇ p (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet satisfies sin -1 (1/np) ⁇ sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane
- the angle ⁇ x (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value.
- the optical member according to any one of [23] to [25], wherein the angle between the emitting direction and the stacking direction.
- Inclination angle ⁇ p (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet satisfies sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p ⁇ 90- ⁇ p
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane
- the angle ⁇ x (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value.
- the optical member according to any one of [23] to [26], wherein the angle between the emitting direction and the stacking direction.
- the wavelength conversion sheet includes a first surface and a second surface opposite to the first surface, the first surface is positioned between the selectively permeable sheet and the second surface;
- the optical member according to any one of [18] to [22], wherein the second surface includes the uneven surface.
- the transmittance of the selective transmission section for light of a specific wavelength incident on the selective transmission section at an incident angle of 0° is the transmittance of the specific wavelength incident on the selective transmission section at an incident angle greater than 0°.
- the optical member according to [28], wherein the transmittance of the selective transmission portion for light is greater than that of the selective transmission portion.
- the wavelength conversion sheet includes an optical element portion including the uneven surface,
- the optical element section includes a plurality of unit optical elements,
- the wavelength conversion sheet includes: a wavelength conversion section containing the wavelength conversion agent; a first barrier layer and a second barrier layer superimposed on the wavelength conversion section; an optical element portion including the wavelength conversion part is located between the first barrier layer and the second barrier layer,
- the optical member according to any one of [18] to [30], wherein one of the first barrier layer and the second barrier layer is positioned between the wavelength converting section and the optical element section.
- a selective transmission sheet including a selective transmission portion; an optical sheet having an uneven surface; a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
- the selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle, The uneven surface faces the wavelength conversion sheet,
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, the secondary light has a wavelength different from the wavelength of the primary light;
- the optical member wherein a transmission haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
- a selective transmission sheet including a selective transmission portion; an optical sheet having an uneven surface; a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
- the selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle, The uneven surface faces the wavelength conversion sheet,
- the wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light, the secondary light has a wavelength different from the wavelength of the primary light;
- the optical member, wherein the wavelength conversion sheet has a transmission haze of 50% or less.
- the transmittance of the selective transmission section for light of a specific wavelength incident on the selective transmission section at an incident angle greater than 0° is the specific wavelength incident on the selective transmission section at an incident angle of 0°.
- the optical sheet includes a plurality of unit optical elements, The optical member according to any one of [32] to [37], wherein each unit optical element includes an element surface forming the uneven surface.
- the wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, and a first barrier layer and a second barrier layer superimposed on the wavelength conversion section,
- the optical member according to any one of [32] to [38], wherein the wavelength converting portion is positioned between the first barrier layer and the second barrier layer.
- the inclination angle ⁇ p (°) of the element planes forming the uneven surface and the refractive index np of the portion forming the element planes of the optical sheet satisfy the following formula, sin ⁇ 1 (1/np) ⁇ 90 ⁇ p [32] to [39], wherein the inclination angle ⁇ p (°) is an angle between the element plane and a plane orthogonal to the lamination direction of the selective transmission sheet, the wavelength conversion sheet, and the optical sheet. any optical member;
- the inclination angle ⁇ p (°) of the element planes forming the concave-convex surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle ⁇ x (°) with respect to the incident direction to the optical sheet are satisfies the following equation, sin -1 (1/np) ⁇ sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p
- the inclination angle ⁇ p (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane
- the angle ⁇ x (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value.
- the optical member according to any one of [32] to [40], wherein the angle between the emitting direction and the stacking direction.
- the inclination angle ⁇ p (°) of the element planes forming the concave-convex surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle ⁇ x (°) with respect to the incident direction to the optical sheet are satisfies the following equation, sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p ⁇ 90- ⁇ p
- the inclination angle ⁇ p (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane
- the angle ⁇ x (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value.
- the optical member according to any one of [32] to [41], wherein the angle between the emitting direction and the stacking direction.
- the wavelength conversion agent includes a first conversion agent that absorbs the primary light and emits first secondary light, and a second conversion agent that absorbs the primary light and emits second secondary light. , including the wavelength of the second secondary light is longer than the wavelength of the first secondary light;
- the optical member according to any one of [1] to [42], wherein the first secondary light has a longer wavelength than the primary light.
- a surface light source device comprising a light source substrate having a reflective layer facing the optical member and a light source for emitting light incident on the optical member.
- an optical member according to any one of [6] to [31]; a light source facing the optical member,
- the inclination angle ⁇ p (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet are as follows.
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
- the angle ⁇ x (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed.
- a surface light source device which is an angle between a direction in which half the luminance is obtained and the lamination direction.
- an optical member according to any one of [6] to [31]; a light source facing the optical member,
- the inclination angle ⁇ p (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet are as follows.
- the inclination angle ⁇ p (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
- the angle ⁇ x (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed.
- a surface light source device which is an angle between a direction in which luminance of 1/10 of luminance is obtained and the lamination direction.
- an optical member according to any one of [32] to [42]; a light source facing the optical member,
- the inclination angle ⁇ p (°) of the element planes forming the uneven surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle ⁇ x (°) with respect to the direction of incidence on the optical sheet are obtained by the following equations: The filling, sin -1 (1/np) ⁇ sin -1 (sin( ⁇ x- ⁇ p)/np)+ ⁇ p
- the inclination angle ⁇ p (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane
- the angle ⁇ x (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed.
- a surface light source device which is an angle between a direction in which half
- an optical member according to any one of [32] to [42]; a light source facing the optical member,
- the angle of inclination ⁇ p (°) of the element surface that constitutes the uneven surface, the refractive index np of the portion that constitutes the element surface of the optical sheet, and the angle ⁇ x (°) with respect to the incident direction to the wavelength conversion sheet are as follows.
- the inclination angle ⁇ p (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane,
- the angle ⁇ x (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed.
- a surface light source device which is an angle between a direction in which luminance of 1/10 of luminance is obtained and the lamination direction.
- [50] further comprising a reflective polarizing plate superimposed on the optical member;
- a surface light source device according to any one of [44] to [52];
- a display device comprising: a display panel stacked on the surface light source device.
- the optical element section includes a plurality of unit optical elements, at least one of the first surface and the second surface includes an uneven surface configured by a plurality of unit optical elements;
- the wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light, The wavelength conversion sheet, wherein the secondary light has a wavelength different from the specific wavelength.
- the first surface is located between the light source emitting light of the specific wavelength and the second surface, The wavelength conversion sheet of [54], wherein the second surface includes the uneven surface.
- the first surface is located between the light source emitting light of the specific wavelength and the second surface, The wavelength conversion sheet of [54], wherein the first surface includes the uneven surface.
- a selective transmission sheet including a selective transmission portion in which the transmittance of light of a specific wavelength incident at an incident angle greater than 0° is greater than the transmittance of light of the specific wavelength incident at an incident angle of 0°; , the wavelength conversion sheet according to any one of [54] to [56], which is used repeatedly.
- a first surface a second surface facing the first surface; a wavelength converting agent positioned between the first surface and the second surface; The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light, the secondary light has a wavelength different from the specific wavelength; A wavelength conversion sheet, wherein a transmission haze of light having a wavelength different from that of the primary light is 45% or less.
- a first surface a second surface facing the first surface; a wavelength converting agent positioned between the first surface and the second surface; The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light, the secondary light has a wavelength different from the specific wavelength; A wavelength conversion sheet having a transmission haze of 50% or less.
- a selective transmission sheet including a selective transmission portion in which the transmittance of light of a specific wavelength incident at an incident angle greater than 0° is greater than the transmittance of light of the specific wavelength incident at an incident angle of 0°; , the wavelength conversion sheet of [60] or [61], which is used repeatedly.
- the amount of wavelength conversion agent can be reduced.
- FIG. 1 is a diagram for explaining an embodiment, and is a perspective view showing a display device and a surface light source device.
- FIG. 2 is a vertical cross-sectional view of the first aspect of the surface light source device shown in FIG. 1, showing an optical member and a light source substrate that can be included in the first aspect of the surface light source device.
- FIG. 3 is a plan view showing the light source substrate shown in FIG. 2, showing an example of arrangement of a plurality of light sources.
- FIG. 4 is a cross-sectional view showing the light source substrate shown in FIG. 2, showing an example of the configuration of the light source substrate.
- 5 is a cross-sectional view showing an example of the configuration of the optical member shown in FIG. 2.
- FIG. 6 is a perspective view showing a light diffusion sheet that can be included in the surface light source device shown in FIG. 5, showing an example of unit diffusion elements of the light diffusion sheet.
- FIG. 7 is a graph showing an example of optical characteristics of a selective transmission portion that can be included in the optical member shown in FIG. 8A is a cross-sectional view showing an example of a wavelength conversion sheet that can be included in the optical member shown in FIG. 2.
- FIG. 8B is a cross-sectional view showing another example of a wavelength conversion sheet that can be included in the optical member shown in FIG. 2.
- FIG. FIG. 9 is a vertical cross-sectional view showing an example of a wavelength conversion section that can be included in the wavelength conversion sheet shown in FIGS. 8A and 8B.
- FIG. 8A is a cross-sectional view showing an example of a wavelength conversion section that can be included in the wavelength conversion sheet shown in FIGS. 8A and 8B.
- FIG. 10A is a plan view showing an example of an optical element portion that can be included in the wavelength conversion sheet shown in FIGS. 8A and 8B, showing the arrangement of unit optical elements that can be included in the optical element portion.
- FIG. 10B is a perspective view showing a specific example of the unit optical element shown in FIG. 10A.
- FIG. 10C is a diagram corresponding to FIG. 10A and showing another example of arrangement of unit optical elements.
- 11A is a plan view showing another example of an optical element portion that can be included in the wavelength conversion sheet shown in FIGS. 8A and 8B, showing the arrangement of unit optical elements that can be included in the optical element portion;
- FIG. there is FIG. 11B is a perspective view showing one specific example of the unit optical element shown in FIG. 11A.
- FIG. 12 is a perspective view showing an example of a light control sheet that can be included in the surface light source device shown in FIG. 2.
- FIG. 13A and 13B are explanatory diagrams of the action of a wavelength conversion sheet that can be included in the optical member shown in FIG.
- FIG. 14 is a view corresponding to FIG. 5 and a longitudinal sectional view showing another example of the optical member.
- FIG. 15 is a diagram showing the in-plane distribution of radiant intensity on the light emitting surface of the surface light source device according to Example A1.
- FIG. 16 is a diagram showing the in-plane distribution of radiant intensity on the light emitting surface of the surface light source device according to Comparative Example A1.
- FIG. 17 is a longitudinal sectional view of the surface light source device shown in FIG.
- FIG. 18 is a longitudinal sectional view showing a specific example of a selective transmission sheet that can be included in the optical member shown in FIG. 17.
- FIG. 19 is a graph showing a first specific example and a second specific example of optical characteristics of a selective transmission portion that can be included in the selective transmission sheet shown in FIG. 20 is a cross-sectional view showing an example of a wavelength conversion sheet that can be included in the optical member shown in FIG. 17.
- FIG. 21 is a cross-sectional view showing another example of a wavelength conversion sheet that can be included in the optical member shown in FIG. 17.
- FIG. FIG. 19 is a longitudinal sectional view showing a specific example of a selective transmission sheet that can be included in the optical member shown in FIG. 17.
- FIG. 19 is a graph showing a first specific example and a second specific example of optical characteristics of a selective transmission portion that can be included in the selective transmission sheet shown in FIG. 20 is a cross-sectional view showing an example of a wavelength conversion sheet that can be included in the optical member shown in FIG.
- FIG. 22 is a vertical cross-sectional view showing an example of a wavelength conversion section that can be included in the wavelength conversion sheet shown in FIGS. 20 and 21.
- FIG. FIG. 23A is a plan view showing an example of an optical element portion that can be included in the wavelength conversion sheet shown in FIGS. 20 and 21, showing the arrangement of unit optical elements that can be included in the optical element portion.
- FIG. 23B is a perspective view showing one specific example of the unit optical element shown in FIG. 23A.
- FIG. 23C is a diagram corresponding to FIG. 23A and showing another example of arrangement of unit optical elements.
- 24A and 24B are explanatory views of the action of a wavelength conversion sheet that can be included in the optical member shown in FIG. 17.
- FIG. 23A is a plan view showing an example of an optical element portion that can be included in the wavelength conversion sheet shown in FIGS. 20 and 21, showing the arrangement of unit optical elements that can be included in the optical element portion.
- FIG. 23B is a perspective view showing one specific example of the unit
- FIG. 25 is a graph showing an example of the angular distribution of brightness on the second surface of the selective transmission sheet that can be included in the optical member shown in FIG. 17.
- FIG. FIG. 26 is a graph corresponding to FIG. 19 and showing another specific example of the optical characteristics of the selective transmission portion.
- FIG. 27 is a cross-sectional view corresponding to FIG. 24 and showing a modification of the wavelength conversion sheet that can be included in the optical member.
- FIG. 28 is a longitudinal sectional view of the surface light source device shown in FIG. 1, showing still another example of optical members and light source substrates that can be included in the surface light source device. 29 is a longitudinal sectional view showing one specific example of a wavelength conversion sheet that can be included in the optical member shown in FIG. 28.
- FIG. 30 is a cross-sectional view showing an example of an optical sheet that can be included in the optical member shown in FIG. 28.
- FIG. 31 is a cross-sectional view showing another example of an optical sheet that can be included in the optical member shown in FIG. 28.
- FIG. 32A is a plan view showing an example of arrangement of unit optical elements that can be included in the optical sheet shown in FIGS. 30 and 31.
- FIG. 32B is a perspective view showing one specific example of the unit optical element shown in FIG. 32A.
- FIG. 32C is a diagram corresponding to FIG. 32A and showing another example of arrangement of unit optical elements.
- 33A and 33B are cross-sectional views illustrating the action of an optical sheet that can be included in the optical member shown in FIG.
- a “wavelength conversion sheet” cannot be distinguished from a member called a wavelength conversion film or a wavelength conversion plate only by the difference in name.
- a “selectively permeable sheet” cannot be distinguished from a member called a selectively permeable film or a selectively permeable plate only by the difference in name.
- An “optical sheet” cannot be distinguished from a member called an optical film or an optical plate only by the difference in name.
- the normal direction of the sheet-like (sheet-like, plate-like) member refers to the normal direction to the sheet surface of the target sheet-like (film-like, plate-like) member.
- “Sheet surface (film surface, plate surface)” refers to a sheet-like member (film-like member, plate-shaped member).
- drawings show the first direction D1, the second direction D2 and the third direction D3 as common directions by commonly labeled arrows.
- the tip side of the arrow is the first side in each direction.
- the side opposite to the tip of the arrow is the second side in each direction.
- a symbol with an X in a circle indicates an arrow pointing into the drawing along a direction perpendicular to the drawing.
- the dot-in-a-circle symbol indicates an arrow pointing forward from the plane of the drawing along a direction perpendicular to the plane of the drawing.
- FIG. 1 is a perspective view schematically showing a surface light source device 20 and a display device 10 as an application example of an optical member 30 according to this embodiment.
- the display device 10 may display, for example, a moving image, a still image, character information, or an image composed of a combination thereof.
- the display device 10 may be used indoors or outdoors for various purposes such as displaying advertisements, presentations, television images, and various types of information.
- the display device 10 may be used, for example, as an in-vehicle liquid crystal display device.
- the display device 10 shown in FIG. 1 includes a surface light source device 20 having a light emitting surface 20a and a display panel 15 facing the light emitting surface 20a.
- FIG. 2 is a longitudinal sectional view showing one specific example of the surface light source device 20 in the first mode.
- the surface light source device 20 may include, as main components, a light source 23 and an optical laminate 21 that adjusts the optical path of the light emitted from the light source 23 .
- the optical laminate 21 may include an optical member 30 that adjusts the optical path.
- the optical layered body 21 and the optical member 30 may face the light source 23 .
- the optical member 30 may be a sheet-like member.
- the optical member 30 may face the light source 23 in its normal direction.
- the optical layered body 21 and the optical member 30 may be diffusion members that diffuse the light emitted from the light source 23 .
- the optical layered body 21 and the optical member 30 can effectively suppress in-plane variations in illuminance caused by the arrangement of the light sources 23 . Due to the diffusion in the optical layered body 21 and the optical member 30, the illuminance at each position on the light emitting side surface 30b of the optical layered body 21 and the optical member 30, or an imaginary light parallel to the light emitting side surface 30b located near the light emitting side surface 30b. The illuminance at each position on the light receiving surface of can be effectively uniformed.
- the display device 10, the surface light source device 20, the optical layered body 21, and the optical member 30 in the first aspect will be described below with reference to the illustrated specific examples.
- the display panel 15 overlaps the surface light source device 20 in the third direction D3.
- the display panel 15 is arranged facing the light emitting surface 20 a of the surface light source device 20 .
- the display panel 15 includes a display surface 15a on which an image is displayed as a surface facing the first side, ie, the side opposite to the surface light source device 20 in the third direction D3.
- the display panel 15 is flat.
- the display panel 15 extends in a first direction D1 and a second direction D2 orthogonal to the third direction D3.
- the display panel 15 has a rectangular shape when viewed from the third direction D3.
- the first direction D1 and the second direction D2 are orthogonal to each other.
- the first direction D1 and the second direction D2 are orthogonal to the third direction D3.
- the display panel 15 is configured as, for example, a transmissive liquid crystal display panel. A part of the light incident from the surface light source device 20 is transmitted through the display panel 15 as a liquid crystal display panel, whereby an image is displayed on the display surface 15a.
- the display panel 15 includes a liquid crystal layer having liquid crystal material. The light transmittance of the display panel 15 changes according to the strength of the electric field applied to the liquid crystal layer.
- the surface light source device 20 includes a light emitting surface 20a that planarly emits light.
- the surface light source device 20 is configured as a direct type backlight.
- Surface light source device 20 includes light source 23 and optical member 30 .
- a light source 23 is provided in a region overlapping with the optical member 30 in projection in the third direction D3.
- a surface light source device 20 shown in FIG. 2 includes a light source substrate 22 including a light source 23 and an optical laminated body 21 .
- the illustrated optical laminate 21 includes an optical member 30 , a first light control sheet 81 , a second light control sheet 82 and a reflective polarizing plate 85 .
- the light source substrate 22, the optical member 30, the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 are stacked in this order in the third direction D3.
- the light source substrate 22, the optical member 30, the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 are sheet-shaped.
- the light source substrate 22, the optical member 30, the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 extend in the first direction D1 and the second direction D2.
- the light source board 22 includes a light source 23 and a support board 25 .
- the light source substrate 22 has a rectangular shape when viewed from the third direction D3.
- the light source 23 has a light emitting element that emits light.
- a light-emitting diode denoted as LED may be used as the light-emitting element.
- the dimensions of the light emitting diode are not particularly limited. From the viewpoint of making the image of the light source 23 inconspicuous, a small light-emitting diode such as a mini-LED or micro-LED may be used.
- the lengths WL1 and WL2 of the sides of the light source 23 having a rectangular shape when observed from the third direction D3 shown in FIG. 3 may be 0.5 mm or less, or 0.2 mm or less. .
- the emission wavelength of the light source 23 can be appropriately selected according to the application of the surface light source device 20. Light emitted from the light source 23 is absorbed by a wavelength conversion agent 67, which will be described later, as primary light LA. Therefore, the emission wavelength of light source 23 can be appropriately selected according to the optical properties of wavelength conversion agent 67 . In the illustrated example, the light source 23 emits blue light. The wavelength of the light emitted from the light source 23 may be 430 nm or more and 500 nm or less.
- the light distribution characteristics of the light source 23 are not particularly limited.
- the light distribution characteristic of the light source 23 may be Lambertian light distribution.
- the peak luminous intensity may be obtained in a direction other than the third direction D3.
- the light source 23 may have a bad wing light distribution, for example disclosed in JP6299811B.
- the light source 23 may be composed only of light emitting elements.
- the light source 23 may include, in addition to the light emitting element, optical elements such as a cover and a lens that adjust the light distribution from the light emitting element.
- the light source board 22 may include a plurality of light sources 23 like the illustrated surface light source device 20 .
- the number of light sources 23 is appropriately selected according to the application of the surface light source device 20, the area of the light emitting surface 20a, and the like.
- the plurality of light sources 23 included in the surface light source device 20 may be arranged regularly on a plane perpendicular to the third direction D3.
- a honeycomb arrangement or a square arrangement may be employed.
- the light sources 23 can be arranged at a constant pitch in each of three directions that are mutually inclined by 60°.
- the square array the light sources 23 can be arranged at a constant pitch in each of two directions orthogonal to each other.
- the plurality of light sources 23 are arranged at a constant pitch in each of the first direction D1 and the second direction D2 that are orthogonal to each other.
- the arrangement pitch PL1 of the light sources 23 in the first direction D1 and the arrangement pitch PL2 of the light sources 23 in the second direction D2 are the same.
- the placement pitch PL1 and the placement pitch PL2 may be different.
- the first direction D1 and the second direction D2 are parallel to the side edges of the rectangular surface light source device 20 and the optical member 30, respectively.
- the arrangement pitch PL1 and the arrangement pitch PL2 may each be 0.2 mm or more and 10 mm or less.
- the support substrate 25 that constitutes the light source substrate 22 together with the plurality of light sources 23 will be described.
- the support substrate 25 supports the plurality of light sources 23 from the second side in the third direction D3.
- the support substrate 25 is sheet-like.
- Support substrate 25 may include circuitry for powering light source 23 .
- the support substrate 25 may have light reflectivity to reflect light toward the optical member 30 .
- the support substrate 25 shown in FIG. 4 includes a sheet-like substrate body 26 and a reflective layer 27 and wiring 29 provided on the substrate body 26 .
- the substrate body 26 extends in the first direction D1 and the second direction D2.
- the substrate body 26 may have insulating properties.
- the substrate body 26 may be a resin film, such as a polyethylene terephthalate film.
- the wiring 29 is electrically connected to the light source 23 .
- the wiring 29 is electrically connected to a terminal (not shown) of the light source 23 via solder or the like. If the substrate body 26 and the reflective layer 27 are insulative, the wiring 29 may be positioned between the substrate body 26 and the reflective layer 27 as shown in FIG.
- the reflective layer 27 is laminated on the substrate main body 26 from the optical member 30 side.
- the reflective layer 27 covers the area on the substrate body 26 where the light source 23 is not arranged.
- the reflective layer 27 is reflective with respect to light of a specific wavelength emitted by the light source 23 or light used for light emission by the surface light source device 20 .
- the reflection on the reflective layer 27 may be specular reflection, also called specular reflection, diffuse reflection, or anisotropic diffuse reflection.
- the reflective layer 27 having diffuse reflectivity may include a white reflective layer containing white particles such as titanium oxide and silicon dioxide.
- the reflective layer 27 may be a metal layer laminated on the substrate body 26, or may be a reflective diffractive optical element.
- the optical member 30 includes a selective transmission sheet 40 and a wavelength conversion sheet 60 in this order.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 are stacked in the third direction D3. That is, the third direction D3 is the lamination direction of the selective transmission sheet 40 and the wavelength conversion sheet 60 .
- the selective transmission sheet 40 is positioned closer to the second side in the third direction D3 than the wavelength conversion sheet 60 is.
- the wavelength conversion sheet 60 is positioned closer to the first side in the third direction D3 than the selective transmission sheet 40 is.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 may be bonded together.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 may simply be in contact and may not be joined together.
- the selectively transmitting sheet 40 and the wavelength converting sheet 60 may be separated from each other.
- Constituent elements other than the optical member 30, such as the display panel 15, the light source substrate 22, the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, will be described in the first aspect later. It can also be used in other aspects to do. Also, regarding the selective transmission sheet 40 of the optical member 30 and the light diffusion sheet 50 described later, the configuration described in the first mode can also be used in other modes described later.
- both the selective transmission sheet 40 and the wavelength conversion sheet 60 extend in the first direction D1 and the second direction D2.
- the wavelength conversion sheet 60 constitutes the light output side surface 30b of the optical member 30.
- the light exit side surface 30b faces the first side that is the viewer side in the third direction D3.
- the illustrated optical member 30 further has a light diffusion sheet 50 .
- the light diffusing sheet 50 is located on the second side, which is the light source side opposite to the viewer side in the third direction D3, relative to the selectively transmitting sheet 40 .
- the light diffusion sheet 50 constitutes the light entrance side surface 30 a of the optical member 30 .
- the light incident side surface 30a faces the second side in the third direction D3.
- the illustrated light diffusion sheet 50 is bonded to the selective transmission sheet 40 .
- the light diffusion sheet 50 does not have to be bonded to the selective transmission sheet 40 .
- the light diffusion sheet 50 may be provided separately from the optical member 30 .
- the light diffusion sheet 50 changes the traveling direction of light emitted from the light source 23 .
- the light diffusion sheet 50 has a light diffusion function of diffusing light.
- the light diffusion sheet 50 may contain a resin binder and a light diffusion component dispersed in the resin binder. Examples of the light diffusing component include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the light diffusion sheet 50 may contain a diffractive optical element.
- the light diffusion sheet 50 may be a layer including a matte surface.
- the light diffusion sheet 50 may include microlenses and linear array lenses. In this embodiment, the light diffusion sheet 50 may be omitted from the optical member 30 .
- the light diffusion sheet 50 includes a first surface 50a and a second surface 50b.
- the first surface 50a faces the second side in the third direction D3.
- the first surface 50a constitutes the light incident side surface 30a.
- the second surface 50b faces the first side in the third direction D3.
- the light diffusion sheet 50 is bonded to the selective transmission sheet 40 on the second surface 50b.
- the light diffusion sheet 50 may be directly bonded to the selective transmission sheet 40 .
- the light diffusion sheet 50 may be bonded to the selective transmission sheet 40 via a bonding layer such as an adhesive layer or adhesive layer.
- the first surface 50a of the light diffusion sheet 50 is an uneven surface 51.
- the light diffusion sheet 50 includes a sheet-like body portion 52 and a plurality of unit diffusion elements 55 each formed as a convex portion 53 or a concave portion.
- the unit diffusion element 55 is an element that changes the traveling direction of light by refraction, reflection, or the like.
- the unit diffusion element 55 is a concept including elements called unit shape element, unit prism, unit lens, and unit optical element.
- a unit diffusion element 55 is provided on the body portion 52 .
- the unit diffusion element 55 faces the light source substrate 22 .
- the uneven surface 51 is configured by a plurality of unit diffusion elements 55 .
- the light diffusion sheet 50 shown in FIG. 5 includes a plurality of convex portions 53 provided on the body portion 52 .
- the plurality of protrusions 53 are arranged two-dimensionally. That is, the convex portions 53 are arranged in two or more non-parallel directions.
- a plurality of convex portions 53 may be provided adjacent to each other without a gap.
- the light diffusion sheet 50 may include a plurality of recesses provided in the body portion 52 .
- the plurality of recesses may be arranged two-dimensionally.
- a plurality of recesses may be provided adjacent to each other without a gap.
- the unit diffusion element 55 shown in FIGS. 5 and 6 includes an element surface 56 inclined with respect to the third direction D3. Element faces 56 define unit diffusion elements 55 .
- the uneven surface 51 of the light diffusion sheet 50 is composed of the element surfaces 56 of the unit diffusion elements 55 .
- the optical properties of the light diffusion sheet 50 are affected by the tilt angles of the element surfaces 56 of the unit diffusion elements 55 . Therefore, the configuration of the unit diffusion element 55 can be appropriately adjusted based on the optical characteristics required for the surface light source device 20 and the optical member 30.
- FIG. the inclination angles of a plurality of element surfaces 56 included in one unit diffusion element 55 may be different from each other or may be the same.
- the light diffusion sheet 50 may include unit diffusion elements 55 different in at least one of shape and orientation, or may include only unit diffusion elements 55 that are the same as each other.
- the plurality of unit diffusion elements 55 included in the light diffusion sheet 50 are preferably arranged two-dimensionally.
- the element surfaces 56 of the unit diffusion elements 55 included in the light diffusion sheet 50 face various directions.
- the light diffusion sheet 50 can guide light in various directions by the two-dimensionally arranged unit diffusion elements 55 .
- light can be guided in a plurality of non-parallel directions, and the in-plane distribution of illuminance can be effectively uniformed.
- Each unit diffusion element 55 may be configured rotationally symmetrical about an axis parallel to the third direction D3.
- each unit diffusion element 55 may be configured with 3-fold, 4-fold, or 6-fold symmetry about an axis parallel to the third direction D3.
- the plurality of unit diffusion elements 55 may be arranged irregularly or may be arranged regularly.
- FIG. 6 shows a specific example of the unit diffusion elements 55 in the light diffusion sheet 50.
- the arrangement of the plurality of unit diffusion elements 55 is a square arrangement.
- a plurality of unit diffusion elements 55 are arranged at a constant pitch in the first direction D1.
- a plurality of unit diffusion elements 55 are arranged at a constant pitch in the second direction D2.
- the unit diffusion elements 55 may be arranged in directions inclined in the first direction D1 and the second direction D2.
- the plurality of unit diffusion elements 55 may be arranged at a constant pitch in two directions that are inclined ⁇ 45° with respect to the first direction D1.
- the arrangement pitches of the unit diffusion elements 55 in the two directions may be the same or different.
- the arrangement pitch of the unit diffusion elements 55 may be 0.05 mm or more and 1 mm or less, or may be 0.1 mm or more and 0.5 mm or less.
- the unit diffusion element 55 may be configured as a quadrangular pyramid-shaped protrusion 53 or recess having a square bottom surface.
- the height or depth of each unit diffusion element 55 in the third direction D3 may be 0.025 mm or more and 0.5 mm or less, or may be 0.05 mm or more and 0.25 mm or less.
- the unit diffusion elements 55 shown in FIGS. 5 and 6 can be made by embossing or resin molding.
- the selectively permeable sheet 40 includes a selectively permeable portion 45 .
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 have incident angle dependency.
- the reflectance and transmittance of the selective transmission portion 45 change depending on the incident angle.
- the incident angle means the angle (°) formed by the traveling direction of incident light with respect to the normal direction of a member such as a sheet on which light is incident.
- the emission angle means the angle (°) formed by the direction of travel of emitted light with respect to the normal direction of a member such as a sheet from which the light is emitted.
- the selectively permeable sheet 40 includes a first surface 40a and a second surface 40b.
- the first surface 40a faces the second side in the third direction D3.
- the second surface 40b faces the first side in the third direction D3.
- the illustrated selective transmission sheet 40 is composed of only the selective transmission portion 45 .
- the selective transmission portion 45 includes a first surface 45a and a second surface 45b.
- the first surface 45a faces the second side in the third direction D3.
- the second surface 45b faces the first side in the third direction D3.
- the first surface 45 a of the selectively transmitting portion 45 constitutes the first surface 40 a of the selectively transmitting sheet 40 .
- the second surface 45 b of the selectively transmitting portion 45 constitutes the second surface 40 b of the selectively transmitting sheet 40 .
- the first surface 40a and the second surface 40b are parallel flat surfaces.
- the selectively permeable sheet 40 may include a protective film that protects the selectively permeable portion 45 .
- the protective film may constitute the first surface 40a and the second surface 40b.
- the transmittance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° is the transmittance of the light of a specific wavelength incident on the selective transmission portion 45 at an incident angle greater than 0°. It is smaller than the transmittance of the selective transmission portion 45 . That is, the transmittance of the selectively transmitting portion 45 for the vertically incident specific wavelength light is lower than the transmittance of the selectively transmitting portion 45 for the specific wavelength light incident on the selectively transmitting portion 45 from at least one oblique direction. .
- the reflectance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° is It is larger than the reflectance of the selective transmission portion 45 .
- the reflectance of the selectively transmitting portion 45 for the vertically incident specific wavelength light is higher than the reflectance of the selectively transmitting portion 45 for the specific wavelength light incident on the selectively transmitting portion 45 from at least one oblique direction.
- the selective transmission portion 45 can also be described as a selective reflection sheet or a light reflection sheet.
- the selective transmission section 45 may have various transmission characteristics and reflection characteristics.
- the transmittance of the selective transmission portion 45 for light of a specific wavelength incident at an incident angle of 0° may be less than 5%, less than 3%, or less than 1%.
- the reflectance of the selective transmission portion 45 for light of a specific wavelength incident at an incident angle of 0° may be 95% or higher, 97% or higher, or 99% or higher.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 30° or less in absolute value may be half or less of the maximum transmittance of the selective transmission portion 45.
- the maximum transmittance of the selective transmission portion 45 may be 1/5 or less, or the maximum transmittance of the selective transmission portion 45 may be 1/10 or less.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 45° or less in absolute value may be half or less of the maximum transmittance of the selective transmission portion 45.
- the maximum transmittance of the selective transmission portion 45 may be 1/5 or less, or the maximum transmittance of the selective transmission portion 45 may be 1/10 or less.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 55° or less in absolute value may be half or less of the maximum transmittance of the selective transmission portion 45.
- the maximum transmittance of the selective transmission portion 45 may be 1/5 or less, or the maximum transmittance of the selective transmission portion 45 may be 1/10 or less.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 35° or less in absolute value may be less than 10%, less than 5%, or less than 1%. It's okay.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 40° or less in absolute value may be less than 10%, less than 5%, or less than 1%. It's okay.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 45° or less in absolute value may be less than 15%, less than 10%, or less than 5%.
- the transmittance of the selective transmission portion 45 with respect to light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° or more and 50° or less in absolute value may be less than 15%, less than 10%, or less than 5%. It's okay.
- the absolute value of the incident angle at which the maximum transmittance of the selective transmission portion 45 is obtained may be 50° or more, 55° or more, or 60° or more.
- the absolute value of the incident angle at which the maximum transmittance of the selective transmission portion 45 is obtained may be 80° or less, 75° or less, or 70° or less.
- FIG. 7 is a graph showing an example of optical characteristics of the selective transmission portion 45.
- the transmittance at the selective transmission portion 45 of light having a specific wavelength whose absolute value is 0° or more and 30° or less may be less than 15%, less than 8%, or 3%. may be less than
- the transmittance at the selective transmission portion 45 of light of a specific wavelength whose absolute value is 0° or more and 50° or less may be less than 15%, less than 10%, or less than 5%.
- the reflectance at the selective transmission portion 45 of light having a specific wavelength whose absolute value is 0° or more and 30° or less may be 85% or more, 92% or more, or 97% or more.
- the reflectance at the selective transmission portion 45 of light having a specific wavelength whose absolute value is 0° or more and 50° or less may be 85% or more, 90% or more, or 95% or more.
- the transmittance at the selective transmission portion 45 of light of a specific wavelength incident at an incident angle of 60° or more and 70° or less in absolute value may be 50%.
- the absolute value of the incident angle increases within the range of 0° to 65°, the transmittance of the light of the specific wavelength at the selective transmission portion 45 may increase.
- the reflectance at the selective transmission portion 45 of light of a specific wavelength incident at an incident angle of 60° or more and 70° or less in absolute value may be 50%. As the absolute value of the incident angle increases in the range of 0° to 65°, the reflectance of the light of the specific wavelength at the selective transmission portion 45 may decrease.
- optical characteristics of the selective transmission portion 45 described here are that the first surface 45a and the second surface 45b of the selective transmission portion 45 are parallel, and the first surface 45a and the second surface 45b are adjacent to the air layer. is assumed.
- the light of the specific wavelength can be appropriately set according to the application of the surface light source device 20 and the optical member 30.
- the light emitted from the light source 23 may be light of a specific wavelength.
- Visible light may be light of a specific wavelength.
- “Visible light” means light with a wavelength of 380 nm or more and 780 nm or less.
- the reflectance of the selective transmission portion 45 is a value measured using a variable angle photometer (goniophotometer) GP-200 manufactured by Murakami Color Research Laboratory.
- the transmittance of the selective transmission portion 45 is the total light transmittance measured according to JIS K7361-1:1997.
- the transmittance of the selective transmission portion 45 is a value measured using a goniophotometer GP-200 manufactured by Murakami Color Research Laboratory.
- the selective transmission section 45 is not particularly limited as long as it has incident angle dependency of reflectance and incident angle dependency of transmittance.
- the selective transmission section 45 may include a dielectric multilayer film, a reflective volume hologram, a cholesteric liquid crystal structure layer, a retroreflective film, or a reflective diffractive optical element.
- a dielectric multilayer film is excellent in that the degree of freedom in designing reflection characteristics and transmission characteristics is relatively high.
- the transmission characteristics shown in FIGS. 6A and 6B are an example of the transmission characteristics of a dielectric multilayer film.
- the selective transmission section 45 may include a reflective structure that is structurally imparted with incident angle dependency of reflectance and incident angle dependency of transmittance. Reflective structures are superior in that they are less wavelength dependent.
- the dielectric multilayer film forming the selective transmission portion 45 may include alternately laminated low refractive index layers and high refractive index layers having different refractive indexes.
- the low refractive index layer and the high refractive index layer may be inorganic compound layers or resin layers.
- a multilayer film constituting a dielectric multilayer film may have a protective layer on one side or both sides.
- the material of the protective layer may be polyethylene terephthalate or polyethylene naphthalate.
- the thickness of the protective layer may be 5 ⁇ m or more.
- a coextrusion method or the like may be adopted as a method for manufacturing the dielectric multilayer film. Specifically, the method for producing a laminated film described in JP2008-200861A may be employed.
- a commercially available laminated film may be used as the dielectric multilayer film. Examples of commercially available dielectric multilayer films include Picassus (registered trademark) manufactured by Toray Industries, Inc. and ESR manufactured by 3M.
- the wavelength conversion sheet 60 includes a first surface 60a and a second surface 60b.
- the first surface 60a faces the second side in the third direction D3.
- the second surface 60b faces the first side in the third direction D3.
- at least one of the first surface 60a and the second surface 60b includes an uneven surface 61.
- the second surface 60b includes an uneven surface 61.
- the wavelength conversion sheet 60 contains a wavelength conversion agent 67 .
- the wavelength converting agent 67 absorbs primary light and emits secondary light with a different wavelength than the primary light.
- the illustrated second surface 60b is an uneven surface 61 over the entire surface.
- the illustrated wavelength conversion sheet 60 is bonded to the selective transmission sheet 40 via the first surface 60a.
- the wavelength conversion sheet 60 may be directly bonded to the second surface 50b of the light diffusion sheet 50.
- FIG. As shown in FIG. 9, the light diffusion sheet 50 may be bonded to the second surface 50b of the selective transmission sheet 40 via a bonding layer 35 such as an adhesive layer or adhesive layer.
- the wavelength conversion sheet 60 includes a first barrier layer 63, a wavelength conversion section 65, a second barrier layer 64 and an optical element section .
- the first barrier layer 63, the wavelength conversion section 65, the second barrier layer 64 and the optical element section 70 are stacked in this order in the third direction D3.
- the first barrier layer 63, the wavelength conversion section 65, the second barrier layer 64, and the optical element section 70 are arranged in this order from the first side toward the second side in the third direction D3.
- the first barrier layer 63, the wavelength conversion section 65, the second barrier layer 64 and the optical element section 70 are sheet-like.
- the first barrier layer 63, the wavelength conversion section 65, the second barrier layer 64 and the optical element section 70 extend in the first direction D1 and the second direction D2.
- the wavelength converting portion 65 includes a first surface 65a and a second surface 65b.
- the first surface 65a faces the second side in the third direction D3.
- the second surface 65b faces the first side in the third direction D3.
- the wavelength converting portion 65 is bonded to the first barrier layer 63 on the first surface 65a.
- the wavelength converting portion 65 is bonded to the second barrier layer 64 on the second surface 65b.
- the wavelength converting portion 65 may include a base material portion 66 that holds the wavelength converting agent 67 .
- Resin may be used as the base material portion 66 .
- the resin forming the base material portion 66 include a thermoplastic resin, a cured product of a thermosetting resin composition, and a cured product of an ionizing radiation-curable resin composition.
- the wavelength conversion agent 67 absorbs primary light LA of a certain wavelength and emits secondary light LB having a wavelength different from the wavelength of the primary light LA.
- a quantum dot or a phosphor may be used as the wavelength conversion agent 67 .
- the wavelength of the primary light LA may be the wavelength of light emitted from the light source 23 . That is, the light emitted from the light source 23 may contain primary light LA of a certain wavelength.
- Quantum dots are nanometer-sized semiconductor particles. Quantum dots may be composed of one semiconductor compound. Quantum dots may be composed of two or more semiconductor compounds. A quantum dot may have, for example, a core-shell structure having a core made of a semiconductor compound and a shell made of a semiconductor compound different from the core.
- Quantum dot core materials also include III-V semiconductor compounds such as AlN, AlP, AlAs, AlSb, GaAs, GaP, GaN, GaSb, InN, InAs, InP, InSb, TiN, TiP, TiAs and TiSb. be done.
- quantum dot core materials include semiconductor crystals containing semiconductor compounds or semiconductors such as group IV semiconductors such as Si, Ge and Pb.
- a material having a higher bandgap than the semiconductor compound forming the core may be used as the semiconductor forming the shell.
- the excitons are confined in the core, and the luminous efficiency of the quantum dots can be improved.
- core-shell structures having such a bandgap magnitude relationship, CdSe/ZnS, CdSe/ZnSe, CdSe/CdS, CdTe/CdS, InP/ZnS, Gap/ZnS, Si/ZnS, InN/GaN , InP/CdSSe, InP/ZnSeTe, InGaP/ZnSe, InGaP/ZnS, Si/AlP, InP/ZnSTe, InGaP/ZnSTe, InGaP/ZnSSe, and the like.
- the size of the quantum dots is adjusted in consideration of the desired wavelength of the secondary light LB.
- Quantum dots have a larger energy bandgap as the particle size decreases. As the crystal size decreases, the quantum dot emission shifts to the blue side, ie, to the higher energy side.
- the average particle size of the quantum dots may be 20 nm or less, 0.5 nm or more and 20 nm or less, or 1 nm or more and 10 nm or less.
- the shape, dispersion state, etc. of the quantum dots are specified by a transmission electron microscope (TEM).
- the crystal structure and particle size of quantum dots are specified by X-ray crystal diffraction (XRD).
- the wavelength conversion part 65 may contain a plurality of quantum dots with different emission wavelengths as the wavelength conversion agent 67 . By adjusting the content of each quantum dot, the color of light emitted from the surface light source device 20 can be adjusted.
- the wavelength converting agent 67 includes a first converting agent 67A and a second converting agent 67B.
- the first conversion agent 67A and the second conversion agent 67B have different sizes.
- the first conversion agent 67A and the second conversion agent 67B emit light of different wavelengths.
- the light source 23 may emit blue light having a wavelength of 430 nm or more and 500 nm or less.
- the first conversion agent 67A may absorb the primary light LA from the light source 23 and emit green light having a wavelength of 500 nm or more and 600 nm or less as the first secondary light LB1.
- the second conversion agent 67B may absorb the primary light LA from the light source 23 and emit red light having a wavelength of 600 nm or more and 750 nm or less as the second secondary light LB2.
- the surface light source device 20 emits light of various colors by additive color mixing of the first secondary light LB1, the second secondary light LB2, and the primary light LA that has not been wavelength-converted by the wavelength conversion section 65. can be released. By adjusting the contents of the first conversion agent 67A and the second conversion agent 67B, the surface light source device 20 can emit white light.
- the wavelength conversion section 65 may contain a light scattering component that scatters transmitted light.
- the light scattering component may be dispersed within the matrix portion 66 .
- Examples of light-scattering components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the first barrier layer 63 is bonded to the first surface 65a of the wavelength conversion section 65.
- the first barrier layer 63 constitutes the first surface 60a.
- the second barrier layer 64 is bonded to the second surface 65b of the wavelength conversion section 65. As shown in FIG.
- the first barrier layer 63 and the second barrier layer 64 have the function of protecting the wavelength conversion agent 67 from oxygen and moisture.
- the first barrier layer 63 and the second barrier layer 64 may have oxygen barrier properties.
- the oxygen permeability of the first barrier layer 63 and the second barrier layer 64 is 1.0 ⁇ 10 ⁇ 1 cc/m 2 /day/atm or less under conditions of 23° C. and 90% relative humidity. It may well be 1.0 ⁇ 10 ⁇ 2 cc/m 2 /day/atm or less.
- the oxygen permeability can be measured using an oxygen gas permeability meter (OX-TRAN 2/21 manufactured by MOCON).
- the first barrier layer 63 and the second barrier layer 64 may have water vapor barrier properties.
- the water vapor permeability of the first barrier layer 63 and the second barrier layer 64 may be 1.0 ⁇ 10 ⁇ 1 g/m 2 /day or less under conditions of 40° C. and 90% relative humidity, It may be 1.0 ⁇ 10 ⁇ 2 g/m 2 /day or less.
- the water vapor transmission rate can be measured using a water vapor transmission rate measuring device (DELTAPERM (manufactured by Technolox)).
- the first barrier layer 63 and the second barrier layer 64 are formed by using a material capable of exhibiting barrier properties, using a physical vapor deposition (PVD) method such as a sputtering method or an ion plating method, or a chemical vapor deposition (CVD) method. or a coating method such as roll coating or spin coating.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- a coating method such as roll coating or spin coating.
- materials inorganic oxides, metals, sol-gel materials, and the like may be used.
- silicon oxide (SiO x ), aluminum oxide (Al n O m ), titanium oxide (TiO 2 ), yttrium oxide, boron oxide (B 2 O 3 ), calcium oxide (CaO), silicon carbide oxynitride ( SiOxNyCz ) and the like are exemplified.
- metals include Ti, Al, Mg, Zr, and the like.
- sol-gel materials include siloxane-based sol-gel materials.
- the optical element section 70 includes a first surface 70a and a second surface 70b.
- the first surface 70a faces the second side in the third direction D3.
- the second surface 70b faces the first side in the third direction D3.
- the optical element portion 70 is bonded to the second barrier layer 64 on the first surface 70a.
- the second surface 70b constitutes the second surface 60b.
- the second surface 70 b constitutes the light exit side surface 30 b of the optical member 30 .
- the second surface 70 b includes an uneven surface 61 .
- the optical element portion 70 includes a plurality of unit optical elements 75 each formed as a convex portion 73 or a concave portion 74 .
- the unit optical element 75 is an element that changes the traveling direction of light by refraction, reflection, or the like.
- the unit optical element 75 is a concept including elements called unit shaped elements, unit prisms, and unit lenses.
- the unit optical element 75 constitutes the first surface 60a.
- a concave-convex surface 61 is formed by the unit optical element 75 .
- the optical element portion 70 shown in FIG. 8A includes a sheet-like body portion 72 and a plurality of convex portions 73 provided on the body portion 72 .
- a plurality of protrusions 73 may be provided adjacent to each other without gaps.
- the optical element portion 70 shown in FIG. 8B includes a body portion 72 having a plurality of recesses 74 therein. In the example shown in FIG. 8B, multiple recesses 74 may be provided adjacent to each other without gaps.
- the unit optical element 75 has an element surface 76 inclined with respect to the third direction D3.
- a unit optical element 75 is defined by this element surface 76 .
- the uneven surface 61 of the wavelength conversion sheet 60 is composed of the element surfaces 76 of the unit optical elements 75 .
- the optical characteristics of the uneven surface 61 are affected by the inclination angles of the element surfaces 76 of the unit optical elements 75 . Therefore, the cross-sectional shape of the unit optical element 75 can be appropriately adjusted based on the optical properties required for the surface light source device 20 and the optical member 30 .
- the inclination angles of a plurality of element surfaces 56 included in one unit optical element 75 may be different from each other or may be the same.
- the optical element section 70 may include unit optical elements 75 that differ in at least one of shape and orientation, or may include only unit optical elements 75 that are the same as each other.
- the element faces 76 may be somewhat curved, unlike the examples shown in FIGS. 8A and 8B.
- the unit optical element 75 may have the outer shape of a portion of a sphere such as a hemisphere, or the outer shape of a portion of a spheroid.
- the plurality of unit diffusion elements 55 may be arranged two-dimensionally.
- the element surfaces 76 of the unit optical elements 75 included in the optical element portion 70 face various directions.
- the optical element section 70 can guide light in various directions by the two-dimensionally arranged unit optical elements 75 .
- light can be guided in a plurality of non-parallel directions, and the in-plane distribution of illuminance can be effectively uniformed.
- Each unit optical element 75 may be configured rotationally symmetrical about an axis parallel to the third direction D3.
- each unit optical element 75 may be configured with 3-fold, 4-fold, or 6-fold symmetry about an axis parallel to the third direction D3.
- the plurality of unit optical elements 75 may be arranged irregularly or may be arranged regularly. By regularly arranging the unit optical elements 75, the design of the optical element section 70 can be facilitated. By regularly arranging the plurality of unit optical elements 75, it becomes easy to spread the unit optical elements 75 without gaps.
- the maximum length of the unit optical element 75 in the direction perpendicular to the stacking direction D3 may be 1.5 mm or less, 1 mm or less, or 0.5 mm or less.
- the arrangement pitch of the unit optical elements 75 may be 0.01 mm or more and 1.5 mm or less.
- the arrangement pitch of the unit optical elements 75 is 0.05 mm or more and 1 mm.
- the height or depth of the unit optical element 75 in the third direction D3 may be 0.025 mm or more and 0.5 mm or less, or may be 0.05 mm or more and 0.25 mm or less.
- FIGS. 10A and 10B show a specific example of the unit optical element 75 included in the optical element section 70.
- the multiple unit optical elements 75 are arranged in a square arrangement.
- the plurality of unit optical elements 75 are arranged at a constant pitch in the first direction D1.
- the plurality of unit optical elements 75 are also arranged at a constant pitch in the second direction D2.
- the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 may be the same or different.
- the plurality of unit optical elements 75 may be laid out without gaps.
- the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 are the same.
- the unit optical elements 75 may be arranged in directions inclined in the first direction D1 and the second direction D2.
- the plurality of unit optical elements 75 are arranged at a constant pitch in two directions that are inclined ⁇ 45° with respect to the first direction D1.
- the arrangement of FIG. 10C can be applied to the unit optical element 75 shown in FIG. 10B.
- the element surface 76 faces in two directions that are inclined by ⁇ 45° with respect to the first direction D1, and the light can be spread in these two directions.
- FIG. 11A and 11B show another specific example of the unit optical element 75 included in the optical element section 70.
- FIG. In the example of the optical element portion 70 shown in FIGS. 11A and 11B, unit optical elements 75 having the same bottom surface shape are arranged in four directions. As a result, the plurality of unit optical elements 75 having the same bottom shape and orientation are arranged at a constant pitch in each of the first direction D1 and the second direction D2.
- the arrangement pitches in the two directions may be the same or different. In the illustrated example, the arrangement pitches in each of the two directions are the same.
- the unit optical element 75 has a triangular pyramid shape with an isosceles right triangle bottom surface.
- the optical element portion 70 shown in FIGS. 8A to 11B can be produced by embossing or resin molding.
- the optical element portion 70 including the unit optical elements 75 may be bonded to the second barrier layer 64 via a bonding layer containing adhesive or adhesive.
- An optical element portion 70 including unit optical elements 75 may be fabricated on the second barrier layer 64 .
- the optical element section 70 may include a diffractive optical element.
- the surface light source device 20 includes the first light control sheet 81 , the second light control sheet 82 and the reflective polarizing plate 85 that are superimposed on the optical member 30 .
- the first light control sheet 81 and the second light control sheet 82 exert optical actions such as reflection, refraction, and diffraction on incident light.
- the first light control sheet 81 and the second light control sheet 82 may have functions suitable for the uses of the optical member 30 and the surface light source device 20 .
- FIG. 12 shows one specific example of the first light control sheet 81 and the second light control sheet 82.
- the first light control sheet 81 and the second light control sheet 82 shown in FIG. 12 are prism sheets including a plurality of linearly extending unit prisms 84 .
- the light control sheets 81 and 82 may function as light condensing sheets that restrict the traveling direction of incident light to a narrow angular range.
- the prism sheet includes a sheet-like body portion 83 and a plurality of unit prisms 84 provided on the body portion 83 .
- the unit prisms 84 may extend linearly in a direction orthogonal to the arrangement direction of the plurality of unit prisms 84 . That is, the first light control sheet 81 and the second light control sheet 82 are prism sheets in which the unit prisms 84 are linearly arranged.
- the linearly arranged unit prisms 84 shown in FIG. 12 mainly adjust the luminance angular distribution within the plane parallel to both the arrangement direction of the unit prisms 84 and the third direction D3. Therefore, the first light control sheet 81 and the second light control sheet 82 may be incorporated into the optical member 30 such that the arrangement directions of the unit prisms 84 are non-parallel.
- the arrangement direction of the unit prisms 84 of the first light control sheet 81 may be orthogonal to the arrangement direction of the unit prisms 84 of the second light control sheet 82 .
- the prism sheet shown in FIG. 12 may be "BEF" (registered trademark) available from 3M Company, USA.
- the prism sheet shown in FIG. 12 bends the traveling direction of transmitted light so that the angle between the traveling direction of transmitted light and the third direction D3 is small.
- the prism sheet shown in FIG. 12 functions as a condensing sheet.
- the reflective polarizing plate 85 transmits one linearly polarized component and reflects the other linearly polarized component. According to the reflective polarizing plate 85 , it is possible to selectively transmit the linearly polarized light component that can be transmitted through the polarizing plate positioned on the surface light source device 20 side of the display panel 15 . The light reflected by the reflective polarizing plate 85 can re-enter the reflective polarizing plate 85 with its polarization state changed by subsequent reflection or the like. Thereby, the utilization efficiency of the light emitted from the light source 23 can be improved.
- the reflective polarizer 85 may be "DBEF" (registered trademark) available from 3M USA.
- the reflective polarizing plate 85 may be a high brightness polarizing sheet "WRPS" available from Shinwa Intertek, Korea, a wire grid polarizer, or the like.
- the light source 23 emits primary light LA.
- the primary light LA is, for example, blue light.
- the wavelength of the blue primary light LA may be 430 nm or more and 500 nm or less.
- a light L21 emitted from the light source 23 travels toward the optical member 30 .
- the primary light LA from the light source 23 is incident on the light diffusion sheet 50 of the optical member 30 .
- the light diffusion sheet 50 has a light diffusion function.
- the first surface 50a of the light diffusion sheet 50 forming the light incident side surface 30a of the optical member 30 is an uneven surface 51.
- the light L51 changes its traveling direction when entering the light diffusion sheet 50 .
- the primary light LA from the light source 23 passes through the light diffusion sheet 50 and enters the selective transmission portion 45 of the selective transmission sheet 40 .
- the transmittance of the selective transmission portion 45 depends on the incident angle.
- the transmittance of the selectively transmitting portion 45 for the primary light LA incident at an incident angle greater than 0° is greater than the transmittance of the selectively transmitting portion 45 for the primary light LA incident at an incident angle of 0°.
- the transmittance of the selective transmission portion 45 for light incident on the selective transmission portion 45 at an incident angle of 0° is 1% or less.
- the transmittance of the selective transmission portion 45 with respect to light incident on the selective transmission portion 45 at an incident angle of 0° or more and 40° or less in terms of absolute value is half or less of the maximum transmittance of the selective transmission portion 45.
- the transmittance of the selective transmission portion 45 increases as the incident angle increases within a wide range of absolute values from 0° to 65°.
- the transmittance is 5% or less when the absolute value of the incident angle is in the range of 0° or more and 30° or less. That is, light inclined with respect to the third direction D3 can be transmitted through the selective transmission portion 45 with a higher transmittance than light traveling in the third direction D3.
- a region facing the light source 23 in the third direction D3 and a surrounding region near the region are defined as an immediately overhead region.
- a large amount of light from the light source 23 is directly incident on this directly overhead region.
- the angle of incidence of light on the directly overhead region is small. Therefore, the light L21 emitted from the light source 23 and traveling to the selective transmission sheet 40 is reflected with a high reflectance in the directly overhead region.
- light passes through the selective transmission sheet 40 with low transmittance. As a result, it is possible to prevent the light emitting surface 20a from becoming too bright in the directly overhead region.
- a large amount of light L52 reflected by the selective transmission portion 45 is transmitted through the light diffusion sheet 50 and directed toward the light source substrate 22, as shown in FIG.
- This light L52 is diffused by the light diffusion sheet 50 .
- the light L22 is reflected by the reflective layer 27 of the light source substrate 22 . Due to this reflection, the light L23 reflected by the reflective layer 27 travels toward the optical member 30 in the third direction D3.
- the light L23 re-enters the optical member 30 at a position away from the light source 23 in the first direction D1 or the second direction D2 perpendicular to the third direction D3.
- the light diffusion sheet 50 can change the traveling direction of the light L23 re-entering the optical member 30 to a direction greatly inclined with respect to the third direction D3.
- the light L24 diffused by the light diffusion sheet 50 can be transmitted through the selective transmission sheet 40 with high transmittance in a spaced region away from the light source 23 in the direction orthogonal to the third direction D3. This can prevent the light emitting surface 20a from becoming too dark in the spaced region.
- the wavelength conversion sheet 60 includes a first barrier layer 63, a wavelength conversion section 65, a second barrier layer 64, and an optical element section 70 from the second side in the third direction D3.
- the light emitted from the selective transmission sheet 40 passes through the first barrier layer 63 of the wavelength conversion sheet 60 and travels toward the wavelength conversion section 65 .
- the wavelength converting portion 65 contains a wavelength converting agent 67.
- the wavelength conversion agent 67 absorbs the primary light LA emitted from the light source 23 and emits secondary light LB with a different wavelength.
- the wavelength converting portion 65 includes a first converting agent 67A and a second converting agent 67B.
- the first conversion agent 67A absorbs a portion L91 of the blue primary light LA and emits green first secondary light LB1.
- the second conversion agent 67B absorbs a portion L92 of the blue primary light LA and emits a red second secondary light LB2.
- the light L24 (see FIG. 2) traveling through the wavelength conversion sheet 60 travels in a direction greatly inclined with respect to the third direction D3 due to the transmission characteristics of the selective transmission portion 45. Therefore, even if the thickness of the wavelength conversion section 65 is reduced, the optical path length of the light L24 in the wavelength conversion section 65 is increased. Therefore, it becomes easier for the light to enter the wavelength conversion agent 67 in the wavelength conversion sheet 60 . Since the wavelength conversion agent 67 can be used efficiently, the content of the wavelength conversion agent 67 in the selective transmission portion 45 can be reduced.
- a portion L93 of the primary light LA does not enter the wavelength conversion agent 67 and reaches the second surface 60b.
- the light L81 that has passed through the wavelength conversion section 65 passes through the second barrier layer 64 and travels to the optical element section 70.
- the optical element section 70 includes a plurality of unit optical elements 75 .
- the optical element portion 70 has an uneven surface 61 on the second surface 60 b of the wavelength conversion sheet 60 .
- the uneven surface 61 is composed of the element surfaces 76 of the unit optical elements 75 .
- the second surface 60b constitutes the light output side surface 30b.
- the light L ⁇ b>81 is refracted by the uneven surface 61 and emitted from the optical member 30 .
- the traveling direction angle formed by the traveling direction with respect to the third direction D3 can be reduced due to the refraction at the element surface 76 that constitutes the light exit side surface 30b. That is, the element surface 76 of the optical element portion 70 exerts a condensing function on the emitted light.
- the light-collecting function of the optical element section 70 can reduce the burden of correcting the optical path of the light transmitted through the optical member 30 . Therefore, the utilization efficiency of the light transmitted through the optical member 30 can be improved.
- the number and thickness of members incorporated in the surface light source device 20 can be reduced, and the surface light source device 20 can be thinned.
- the light L25 (see FIG. 2) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 can be emitted from the optical member 30 to the first side in the third direction D3.
- the light L25 emitted from the optical member 30 passes through the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, and is emitted from the light emitting surface 20a of the surface light source device 20.
- the light emitting surface 20a of the surface light source device 20 emits light.
- the lights L26, L131, and L132 incident on the second surface 60b of the wavelength conversion sheet 60 can be reflected by the second surface 60b.
- Lights L26, L131, and L132 reflected by the second surface 60b travel to the second side in the third direction D3.
- these lights can turn around in the traveling direction in the third direction D3 and enter the light output side surface 30b again.
- These lights travel in the first direction D1 and the second direction D2 perpendicular to the third direction D3 until they reach the light exit side surface 30b again.
- the wavelength conversion sheet 60 can reinforce or complement the optical characteristics of the selective transmission portion 45 having the incident angle dependence, and can further sufficiently uniform the in-plane distribution of the illuminance.
- the thickness of the wavelength conversion sheet 60 is shown to be thin in order to facilitate understanding of the optical action regarding the optical path within the wavelength conversion sheet 60 .
- illustration of the wavelength conversion agent 67 is omitted.
- a wavelength conversion agent 67 is provided between the first surface 60a and the second surface 60b of the wavelength conversion sheet 60.
- the wavelength conversion agent 67 is positioned within the circulating optical path of the light emitted from the light source 23 .
- the wavelength conversion agent 67 is dispersed inside the wavelength conversion sheet 60 that turns back the traveling direction in the third direction D3 in the circulating optical path.
- the light travels in a direction inclined with respect to the third direction D3.
- the optical path length in the wavelength conversion sheet 60 becomes very long.
- the utilization efficiency of the wavelength conversion agent 67 can be significantly improved, and the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be greatly reduced.
- the thickness of the wavelength converting portion 65 can be reduced, and the thicknesses of the optical member 30 and the surface light source device 20 in the third direction D3 can be reduced.
- the density of the wavelength conversion agent 67 in the wavelength conversion section 65 can be reduced.
- the wavelength converting agent 67 is dispersed within the base material portion 66 .
- the refractive index of the base material portion 66 may be smaller than the refractive index of the optical element portion 70 .
- the refractive index of the base material portion 66 may be smaller than the refractive index of the selective transmission portion 45 . According to such setting of the refractive index, the light travels in a direction greatly inclined with respect to the third direction D3 within the wavelength conversion section 65 . This makes it possible to ensure a longer optical path length in the wavelength conversion section 65 . Therefore, the content of the wavelength conversion agent 67 in the wavelength conversion section 65 can be reduced.
- the thickness of the wavelength converting portion 65 can be made thin.
- a barrier layer may not be provided on the side end face of the wavelength conversion portion 65 in some cases.
- the deterioration of the wavelength conversion agent 67 located near the side end surface progresses, and the color of the peripheral portion of the wavelength conversion portion 65 may change.
- the content of the wavelength converting agent 67 in the wavelength converting portion 65 can be reduced as described above. Therefore, the area ratio of the wavelength conversion agent 67 per unit area in the projection in the third direction D3 can be reduced. Accordingly, even when no barrier layer is provided on the side end surface of the wavelength conversion section 65, color change in the peripheral portion can be suppressed.
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film, increases with respect to light with a longer wavelength than the specific wavelength. More specifically, the incident angle at which the transmittance starts to increase is small for light with a long wavelength.
- the selective transmission of the selective transmission portion 45 which depends on the angle of incidence, becomes weaker with respect to light with a wavelength greater than the specific wavelength. Therefore, the selective transmission portion 45 cannot effectively exhibit the selective transmission property depending on the incident angle with respect to the secondary light LB having a wavelength longer than the specific wavelength. In other words, the selective transmission section 45 cannot reflect the secondary light LB similarly to the primary light LA.
- the primary light LA is sufficiently circulated between the optical member 30 and the light source substrate 22 to uniform the in-plane distribution of the illuminance
- the primary light It is preferable to convert LA into secondary light LB. That is, from the viewpoint of suppressing in-plane variations in brightness, it is preferable to reduce the content of the wavelength conversion agent 67 in the selective transmission portion 45 that is in the circulating optical path.
- the primary light LA may be selectively reflected on the light exit side surface 30b.
- the reflectance of the primary light LA on the light exit side surface 30b may be greater than the reflectance of the secondary light LB on the light exit side surface 30b.
- the traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling direction of the primary light LA before being absorbed by the wavelength converting agent 67 .
- the secondary light LB is emitted from the wavelength conversion agent 67 over a wide angular range.
- the angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the second surface 65b of the wavelength converting section 65. As shown in FIG.
- the traveling direction angle of the secondary light LB is dispersed within a wide angle range.
- the traveling direction angle of the primary light LA depends on the transmission characteristics of the selective transmission portion 45 and falls within a relatively narrow angle range.
- the angle of incidence (°) shown in FIG. 7 is the angle of incidence from an air layer with a refractive index of one.
- the refractive index of transparent resin generally used for optical members is 1.4 or more and 1.7 or less.
- the selective transmission portion 45 intensively transmits light with an incident angle of 45° to 70° from the air layer.
- the traveling direction angle (°) of the light passing through the selective transmission portion 45 and traveling through the resin that is, the angle (°) between the traveling direction and the third direction D3 is about 25° to 40°. becomes.
- the inclination angle ⁇ p (°) of the element surface 76 forming the light output side surface 30b may be adjusted so that the primary light LA with this limited traveling direction angle is reflected by the light output side surface 30b.
- the inclination angle ⁇ p is the angle (°) between the element plane 76 and the plane orthogonal to the third direction D3. It is also envisioned that the element face 76 is not flat.
- the inclination angle ⁇ p of the element surface 76 is specified at the center position of the element surface 76 in the third direction D3.
- the element surface 76 as the convex portion 73 has a base end portion connected to the main body portion 72 of the element surface 76 and a second surface extending from the main body portion 72.
- the inclination angle ⁇ p is specified at the position that is the center in the third direction D3 from the tip that is the most distant in the three directions D3.
- the element surface 76 as the concave portion 74 is the base end portion of the element surface 76 that is closest to the selective transmission sheet 40 in the third direction D3.
- the inclination angle ⁇ p is specified at the center position in the stacking direction D3 between the (deepest portion) and the tip portion (bank portion) farthest away from the selectively permeable sheet 40 in the stacking direction D3.
- FIG. 13 shows an optical path in which the traveling direction in the third direction D3 is turned back by reflection on the element surface 76.
- FIG. Both the light L131 and the light L132 are incident on the first element surface 76A that is inclined to the same side as the traveling direction with respect to the third direction D3.
- the lights L131 and L132 are reflected by the first element surface 76A.
- the inclination angle ⁇ p may be set so that the reflection on the first element surface 76A is total reflection. Assuming the reference conditions described above, the inclination angle ⁇ p may be 5° or more, 10° or more, or 15° or more.
- the inclination angle ⁇ p may be set so that the traveling direction of the light is turned back in the third direction D3 by the reflected light from the first element surface 76A and directed toward the second side. Assuming the reference conditions described above, the inclination angle ⁇ p may be 35° or less, 30° or less, or 25° or less.
- the lights L131 and L132 are then incident on the second element surface 76B facing the first element surface 76A.
- the light L131 is further reflected by the second element surface 76B. Due to the reflection on the second element surface 76B, the traveling direction of the light L131 is turned back in the third direction D3 to face the second side. Preferably, this reflection is total internal reflection.
- the tilt angle ⁇ p may be set so that the reflection on the second element surface 76B is total reflection. Assuming the reference conditions described above, the inclination angle ⁇ p may be 38° or less, 35° or less, or 32° or less.
- the light L132 is refracted by the second element surface 76B and emitted from the unit optical element 75. After that, the light L132 enters another adjacent unit optical element 75 via the third element surface 76C. Next, the light L132 is reflected by the fourth element surface 76D of another unit optical element 75. As shown in FIG. Due to the reflection on the fourth element surface 76D, the traveling direction of the light L132 is turned back in the third direction D3 to face the second side.
- the traveling direction of the light L132 due to refraction on the second element surface 76B when emitted from the first unit optical element 75, the traveling direction of the light may be turned back in the third direction D3 toward the second side.
- the inclination angle ⁇ p may be set so that the traveling direction of the light is turned back in the third direction D3 by refraction on the second element surface 76B and directed toward the second side. Assuming the reference conditions described above, the inclination angle ⁇ p may be 38° or less, 35° or less, or 32° or less.
- the inclination angle ⁇ p may be set such that .
- the traveling direction of the light changes with respect to the third direction D3 due to the refraction on the second element surface 76B.
- the tilt angle ⁇ p may be set so that the tilt angle ⁇ p is greater. Assuming the reference conditions described above, the inclination angle ⁇ p may be 55° or less, 50° or less, or 45° or less.
- the primary light LA whose traveling direction angle is adjusted by the selective transmission section 45 is selectively emitted from the light exit side surface 30b formed by the element surface 76. can be reflected Thereby, the illuminance distribution can be more effectively uniformed.
- FIG. 9 shows the optical path of light L94 assuming that a gap is provided between the wavelength conversion sheet 60 and the selective transmission sheet 40.
- FIG. 9 shows the optical path of light L94 assuming that a gap is provided between the wavelength conversion sheet 60 and the selective transmission sheet 40.
- light L94 and light L91 are emitted from the selective transmission sheet 40 in the same direction.
- Light L94 incident on the wavelength conversion sheet 60 through the gap is reflected by the first surface 60a of the wavelength conversion sheet 60 .
- the lights L91 and L94 travel in directions greatly inclined with respect to the third direction D3.
- the light L94 is reflected at the first surface 60a of the wavelength conversion sheet 60 with a high reflectance.
- Such light L94 becomes stray light and reduces light utilization efficiency.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 via, for example, the bonding layer 35, the incident angle to the first surface 60a of the wavelength conversion sheet 60 can be reduced. As a result, the reflection on the first surface 60a can be suppressed, and the light utilization efficiency can be improved.
- the optical member 30 includes the selective transmission sheet 40 including the selective transmission portion 45, the first surface 60a on the side of the selective transmission sheet 40, and the second surface facing the first surface 60a. and a wavelength conversion sheet 60 including 60b.
- the transmittance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle greater than 0° is greater than the transmittance of the selective transmission portion 45 of .
- At least one of the first surface 60 a and the second surface 60 b includes an uneven surface 61 .
- second surface 60b includes uneven surface 61 .
- the wavelength conversion sheet 60 includes a wavelength conversion agent 67 that absorbs primary light LA and emits secondary light LB.
- the secondary light LB has a wavelength different from that of the primary light LA.
- the primary light LA from the light source 23 can be reflected by the second surface 60b of the wavelength conversion sheet 60. That is, the second surface 60b can reflect light directed toward the first side, which is the viewer side, in the third direction D3. Therefore, a circulating optical path in which the primary light LA circulates can be formed between the second surface 60b of the wavelength conversion sheet 60 and the light source substrate 22 and the like.
- the wavelength conversion agent 67 is included in the wavelength conversion sheet 60 that folds back in the third direction D3. The primary light LA travels in a direction inclined with respect to the third direction D3 within the wavelength conversion sheet 60 depending on the transmission characteristics of the selective transmission portion 45 .
- the content of the wavelength conversion agent 67 in the wavelength conversion sheet 60 can be greatly reduced. Rather, by reducing the content of the wavelength conversion agent 67 that emits the secondary light LB in various directions, the circulation of the primary light LA using reflection on the second surface 60b can be promoted. That is, the circulation of the primary light LA can significantly reduce the content of the wavelength conversion agent 67 while suppressing the in-plane variation in brightness caused by the arrangement of the light sources 23 and suppressing the in-plane variation in illuminance. It is also possible to reduce the thickness of the optical member 30 and the optical laminate 21 and to reduce the thickness of the surface light source device 20 .
- a spacer may be arranged between the light source substrate 22 and the optical member 30 in the surface light source device 20 described above.
- a transparent resin layer may be provided between the light source substrate 22 and the optical member 30, and the resin layer may function as a spacer.
- the resin layer may be made of a thermoplastic resin.
- the resin layer may contain a light diffusion component. Examples of the light diffusing component include metal compounds, gas-containing porous substances, resin beads surrounding metal compounds, white fine particles, mere air bubbles, and crystalline interfaces.
- one or more of the first light control sheet 81 , the second light control sheet 82 and the reflective polarizing plate 85 may be omitted from the optical laminate 21 of the surface light source device 20 .
- the light diffusion sheet 50 may be omitted from the optical member 30 .
- the selective transmission sheet 40 may be omitted from the optical member 30 as another form.
- the optical member 30 may include the light diffusion sheet 50 and the wavelength conversion sheet 60 .
- the light diffusion sheet 50 and the wavelength conversion sheet 60 may be bonded together as shown in FIG.
- the light diffusion sheet 50 includes a main body portion 52 and a plurality of unit diffusion elements 55.
- the light diffusion sheet 50 can exhibit a light diffusion function by the uneven surface 51 formed by the element surfaces 56 of the unit diffusion elements 55 .
- the body portion 52 may contain a light diffusing component. Examples of the light diffusing component include metal compounds, gas-containing porous substances, resin beads surrounding metal compounds, white fine particles, mere air bubbles, and crystalline interfaces.
- the traveling direction of the light incident on the wavelength conversion sheet 60 can be greatly inclined with respect to the third direction D3. Therefore, while reducing the amount of the wavelength conversion agent 67 contained in the wavelength conversion sheet 60, the in-plane variation in brightness can be effectively suppressed.
- Example A1 The surface light source devices of Example A1 and Comparative Example A1 were manufactured as follows.
- the surface light source device of Example A1 had the configuration shown in FIG.
- the surface light source device included a light source substrate including a light source, an optical member, a first light control sheet, a second light control sheet, and a reflective polarizing plate.
- the support substrate had a white reflective layer containing titanium oxide. Diffuse reflection with a reflectance of 95% was used for reflection on the reflective layer of the support substrate.
- the light sources were arranged in a square array on the support substrate as shown in FIG.
- the arrangement pitch of the light sources in the first direction was 6 mm.
- the arrangement pitch of the light sources in the second direction perpendicular to the first direction was 6 mm.
- each light source a light-emitting diode that emits blue light with a central wavelength of 450 nm was used.
- the planar shape of this light-emitting diode was a rectangular shape of 0.2 mm ⁇ 0.4 mm.
- the light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction.
- the distance along the third direction D3 from the surface of the light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm.
- the optical member included a light diffusion sheet, a selective transmission sheet and a wavelength conversion sheet in this order from the second side in the third direction D3.
- the selectively permeable sheet contained a selectively permeable portion.
- a light diffusion sheet and a wavelength conversion sheet were bonded to the selective transmission portion.
- a dielectric multilayer film obtained from Toray Industries, Inc. was used for the selective transmission portion.
- the selective transmission portion had transmission characteristics shown in FIG. 7 for light of 450 nm.
- the wavelength conversion sheet contained a first barrier layer, a wavelength conversion section, a second barrier layer and an optical element section, as shown in FIG. 8A.
- the light diffusing sheet and the optical element portion were molded by supplying an ultraviolet curable resin composition before curing between the mold and the body portion and curing the composition between the mold and the body portion.
- the optical element portion includes a body portion and unit optical elements as convex portions arranged on the body portion.
- the optical element portion included unit optical elements having configurations such as shapes and arrangements described with reference to FIGS. 11A and 11B. As shown in FIG. 11A, unit optical elements of the same shape were arranged on the surface of the main body with no space between them, while changing the orientation of the bottom surface in four types. Each unit optical element had a triangular pyramid shape and included three element faces. The bottom surface of the unit optical element was in the shape of an isosceles right triangle.
- the element faces of the unit optical element included equilateral element faces extending from equilateral sides of the isosceles right triangle forming the base and base element faces extending from the base of the isosceles right triangle forming the base. .
- the base is the side facing the vertex forming a right angle with the base.
- the length of each of the two equilateral sides of the isosceles right triangle forming the bottom was set to 0.1 mm.
- the inclination angle ⁇ p of each equilateral element surface was 45°.
- the inclination angle ⁇ p of the base element surface was 45°.
- the light diffusing sheet included a sheet-like main body joined to the selective transmission sheet, and unit diffusion elements as recesses arranged on the main body.
- the light diffusion sheet included unit diffusion elements having configurations such as shapes and arrangements described with reference to FIGS. 11A and 11B. As shown in FIG. 11A, unit diffusion elements of the same shape were arranged on the surface of the main body with no space between them, with the orientation of the bottom surface changed in four types.
- Each unit diffuser element had a triangular pyramidal shape and included three element faces.
- the base of the unit diffuser element was an isosceles right triangle shape.
- the element faces of the unit diffusion elements included equilateral element faces extending from the equilateral sides of the isosceles right triangle forming the base and base element faces extending from the base of the isosceles right triangle forming the base. .
- the length of each of the two equilateral sides of the isosceles right triangle forming the bottom was set to 0.1 mm.
- the inclination angle ⁇ p of each equilateral element surface was 45°.
- the inclination angle ⁇ p of the base element surface was 45°.
- the concave-convex surface formed by the element surfaces of the unit diffusion elements was configured identically to the concave-convex surface formed by the element surfaces of the unit optical elements, except that the concave-convex surfaces were reversed.
- the wavelength converter QF-6000 available from Showa Denko Materials was used as the wavelength converter.
- the first light control sheet and the second light control sheet two sheets of brightness enhancement film BEF (registered trademark) available from 3M Company were used.
- the longitudinal direction of the prisms extended in the second direction.
- the longitudinal direction of the prisms extended in the first direction.
- a reflective polarizer a brightness enhancement film DBEF (registered trademark) available from 3M Company was used.
- the distance along the third direction from the surface of the light source facing the optical member to the light incident side surface of the optical member facing the light source was 0.5 mm.
- a laminate including the first barrier layer, the wavelength conversion section and the second barrier layer was joined to the selective transmission section of the selective transmission sheet. That is, in the surface light source device of Comparative Example A1, the optical element portion was omitted from the optical member of Example A1. Further, in the surface light source device of Comparative Example A1, the content of the wavelength converting agent contained in the wavelength converting portion was 1.5 times the content of the wavelength converting agent of Example A1. The surface light source device of Comparative Example A1 was otherwise the same as the surface light source device of Example A1.
- the black area indicates the outside of the evaluation area.
- circles centered on the light source are indicated by white lines.
- the white-lined circle is superimposed on the radiant intensity distribution for the purpose of indicating the position of the center of the light source.
- the radiant intensity distribution was uneven according to the arrangement of the light sources, and the positions of the light sources could be grasped.
- the in-plane distribution of radiant intensity of the surface light source device of Example A1 was sufficiently uniform with respect to the in-plane distribution of radiant intensity of the surface light source device of Comparative Example A1.
- the brightness distribution was uniform, making it difficult to find the position of the light source.
- FIGS. 17 to 25 are diagrams for explaining the second aspect of the present embodiment.
- FIGS. 1 to 16 some drawings such as FIG. 1, FIG. 3, and FIG. 4 are diagrams for explaining the second aspect.
- FIG. 17 is a longitudinal sectional view showing one specific example of the surface light source device 20 in the second mode.
- the surface light source device 20 shown in FIG. 17 can be applied to the display device 10 of FIG.
- the second mode differs from the above-described first mode in the optical element portion 70 included in the wavelength conversion sheet 60 of the optical member 30 .
- the second aspect can be configured in the same manner as the above-described first aspect except for the optical element portion 70 included in the wavelength conversion sheet 60 .
- the surface light source device 20 in the second aspect may include the light source substrate 22 described above as the first aspect.
- the optical laminate 21 in the second aspect may include the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 described in the first aspect.
- the optical member 30 in the second aspect may include the selective transmission sheet 40 and the light diffusion sheet 50 described as the first aspect.
- the surface light source device 20 may include a light source 23 and an optical laminate 21 that adjusts the optical path of the light emitted from the light source 23 as main components.
- the optical laminate 21 may include optical members 30 .
- the optical layered body 21 and the optical member 30 may face the light source 23 .
- the optical layered body 21 and the optical member 30 may be sheet-like members.
- the optical layered body 21 and the optical member 30 may face the light source 23 in their normal direction.
- the optical layered body 21 and the optical member 30 may be diffusion members that diffuse the light emitted from the light source 23 .
- the optical layered body 21 and the optical member 30 can effectively suppress in-plane variations in illuminance caused by the arrangement of the light sources 23 .
- the illuminance at each position on the light receiving surface of can be effectively uniformed.
- the display device 10, the surface light source device 20, and the optical laminated body 21 in the second aspect will be described below with reference to the illustrated specific examples.
- the display panel 15 of the display device 10 may be configured in the same manner as the above-described display panel 15 described as the first mode.
- the light source substrate 22 of the surface light source device 20 may be configured in the same manner as the above-described light source substrate 22 described as the first mode.
- the optical laminate 21 may include the optical member 30 , the first light control sheet 81 , the second light control sheet 82 and the reflective polarizing plate 85 in order from the light source substrate 22 .
- the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 are the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, respectively, described as the first mode. It may have the same configuration as the polarizing plate 85 .
- the optical member 30 includes a selective transmission sheet 40 and a wavelength conversion sheet 60 in order from the light source substrate 22 .
- the selective transmission sheet 40 and the wavelength conversion sheet 60 are stacked in the third direction D3. That is, the third direction D3 is the lamination direction of the selective transmission sheet 40 and the wavelength conversion sheet 60 .
- the selective transmission sheet 40 is positioned closer to the second side in the third direction D3 than the wavelength conversion sheet 60 is.
- the wavelength conversion sheet 60 is positioned closer to the first side in the third direction D3 than the selective transmission sheet 40 is.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 are both sheet-like members extending in the first direction D1 and the second direction D2.
- the selective transmission sheet 40 constitutes the light incident side surface 30 a of the optical member 30 .
- the wavelength conversion sheet 60 constitutes the light output side surface 30b of the optical member 30.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 may be bonded to each other, may be simply in contact and not bonded, or may be separated from each other.
- the optical member 30 may include the light diffusion sheet 50 as in the first aspect.
- the first surface 50a of the light diffusion sheet 50 may constitute the light incident side surface 30a.
- the selectively permeable sheet 40 includes a selectively permeable portion 45 .
- the selective transmission sheet 40 and the selective transmission section 45 may be the same as the selective transmission sheet 40 and the selective transmission section 45 described in the first mode.
- the reflectance and transmittance of the selective transmission portion 45 change depending on the incident angle.
- the selective transmission sheet 40 is composed of only the selective transmission portion 45 .
- the illustrated selective transmission portion 45 is sheet-shaped.
- the illustrated selectively permeable sheet 40 includes a first surface 40a and a second surface 40b.
- the first surface 40a faces the second side that is the light source side in the third direction D3, and the second surface 40b faces the first side that is the viewer side in the third direction D3.
- the selective transmission portion 45 includes a first surface 45a and a second surface 45b.
- the first surface 45a faces the second side in the third direction D3.
- the second surface 45b faces the first side in the third direction D3.
- the first surface 45 a of the selectively transmitting portion 45 constitutes the first surface 40 a of the selectively transmitting sheet 40 .
- the second surface 45 b of the selectively transmitting portion 45 constitutes the second surface 40 b of the selectively transmitting sheet 40 .
- the first surface 40a and the second surface 40b are parallel flat surfaces.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 have incident angle dependency.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 may be the same as the transmission characteristics and reflection characteristics described above as the first mode.
- FIG. 19 shows a first specific example and a second specific example of the transmission characteristics of the selective transmission portion 45.
- the incident angle (°) on the horizontal axis in the graph of FIG. 19 indicates the incident angle when the selective transmission portion 45 forms an interface with the air layer.
- the transmittance of the selective transmission portion 45 takes the maximum value in the range where the absolute value of the incident angle is 65° or more and 70° or less.
- the transmittance of the selective transmission portion 45 increases as the incident angle increases from 0° to the maximum incident angle.
- the maximum transmittance of the selective transmission portion 45 is 40% or more and 50% or less.
- the optical characteristics of the selective transmission portion 45 described here are that the first surface 45a and the second surface 45b of the selective transmission portion 45 are parallel, and the first surface 45a and the second surface 45b are adjacent to the air layer. is assumed.
- the first and second specific examples of transmission characteristics shown in FIG. 19 are also applicable to the selective transmission portion 45 of the first mode.
- the first specific example and second specific example of the transmission characteristics shown in FIG. 19 are also applicable to the selective transmission portion 45 of the third and fourth modes described later.
- the wavelength conversion sheet 60 includes a first surface 60a and a second surface 60b.
- the first surface 60a faces the second side that is the light source side in the third direction D3.
- the second surface 60b faces the first side that is the viewer side in the third direction D3.
- at least one of the first surface 60a and the second surface 60b includes an uneven surface 61.
- the first surface 60 a includes an uneven surface 61 .
- the illustrated first surface 60a is an uneven surface 61 over the entire surface.
- the second surface 60b includes a flat surface.
- the illustrated second surface 60b is entirely flat.
- the second surface 60b may be a surface perpendicular to the third direction D3.
- the wavelength conversion sheet 60 includes an optical element section 70, a first barrier layer 63, a wavelength conversion section 65 and a second barrier layer 64 in order from the selective transmission sheet 40. I'm in.
- the optical element portion 70, the first barrier layer 63, the wavelength converting portion 65 and the second barrier layer 64 are stacked in this order in the third direction D3.
- the optical element portion 70, the first barrier layer 63, the wavelength conversion portion 65, and the second barrier layer 64 are arranged in this order from the first side toward the second side in the third direction D3.
- the optical element portion 70, the first barrier layer 63, the wavelength conversion portion 65 and the second barrier layer 64 are sheet-like.
- the optical element portion 70, the first barrier layer 63, the wavelength converting portion 65 and the second barrier layer 64 extend in the first direction D1 and the second direction D2.
- the optical element portion 70, the first barrier layer 63, the wavelength conversion portion 65 and the second barrier layer 64, which constitute the wavelength conversion sheet 60, can be configured in the same manner as the corresponding portions described above as the first.
- the wavelength conversion sheet 60 in the second aspect may differ from the wavelength conversion sheet 60 in the first aspect only in the arrangement of the optical element portions 70 .
- the wavelength conversion sheet 60 in the second aspect may be configured in the same manner as the wavelength conversion sheet 60 in the first aspect except for the arrangement of the optical element portion 70 .
- the first surface 70a of the optical element portion 70 constitutes the first surface 60a.
- the second barrier layer 64 forms the second surface 60b and the light output side surface 30b.
- the wavelength conversion part 65 may contain a plurality of quantum dots with different emission wavelengths as the wavelength conversion agent 67 . By adjusting the content of each quantum dot, the color of light emitted from the surface light source device 20 can be adjusted.
- the wavelength converting agent 67 includes a first converting agent 67A and a second converting agent 67B.
- the first conversion agent 67A and the second conversion agent 67B have different sizes.
- the first conversion agent 67A and the second conversion agent 67B emit light of different wavelengths.
- the wavelength converting portion 65 may include a base material portion 66 and a wavelength converting agent 67 .
- the wavelength conversion agent 67 includes a first conversion agent 67A that absorbs the primary light LA and emits first secondary light LB1, and a second conversion agent 67B that absorbs the primary light LA and emits second secondary light LB2. and may include In this example, the wavelength of the second secondary light LB2 is longer than the wavelength of the first secondary light LB1. The wavelength of the first secondary light LB1 is longer than the wavelength of the primary light LA.
- the conversion efficiency of the second conversion agent 67B in the wavelength conversion section 65 may be higher than the conversion efficiency of the first conversion agent 67A. This point may be the same for the first aspect, the third aspect described later, and the fourth aspect described later.
- the conversion efficiency of the wavelength conversion agent is the amount of light (W) of the primary light LA incident on the first surfaces 60a and 65a of the wavelength conversion sheet 60 or the wavelength conversion portion 65 with respect to the second surface of the wavelength conversion sheet 60 or the wavelength conversion portion 65. It is evaluated by the ratio (%) of the light quantity (W) of the target secondary light LB emitted from 60b and 65b. This evaluation is performed with the first surfaces 60a, 65a and the second surfaces 60b, 65b of the wavelength conversion sheet 60 or the wavelength conversion portion 65 as flat surfaces perpendicular to the third direction D3. It can be said that the higher the ratio of the secondary light LB, the higher the conversion efficiency.
- the incident angle of the primary light LA to the first surfaces 60a and 65a of the wavelength conversion sheet 60 or the wavelength conversion portion 65 is 0°.
- the first secondary light LB1 and the second secondary light LB2 emitted from the second surfaces 60b and 65b of the wavelength conversion sheet 60 or the wavelength conversion portion 65 are collected in an integrating sphere, and the light amount (W) of the first secondary light LB1 is and the light quantity (W) of the second secondary light LB. This allows the conversion efficiency to be specified.
- the optical element portion 70 includes a second surface 70b facing the first side, which is the viewer side in the third direction D3.
- the optical element portion 70 is bonded to the first barrier layer 63 on the second surface 70b.
- the optical element portion 70 includes a first surface 70a facing a first side that is the light source side in the third direction D3.
- the first surface 70 a of the optical element portion 70 constitutes the first surface 60 a of the wavelength conversion sheet 60 .
- the first surface 70 a includes an uneven surface 61 .
- the optical element portion 70 may differ from the optical element portion 70 of the first aspect only in the arrangement within the wavelength conversion sheet 60 .
- the optical element portion 70 may be configured in the same manner as the optical element portion 70 of the first mode except for the arrangement within the wavelength conversion sheet 60 .
- the optical element portion 70 includes a plurality of unit optical elements 75 each formed as a convex portion 73 or a concave portion 74 .
- the unit optical element 75 is an element that changes the traveling direction of light by refraction, reflection, or the like.
- the unit optical element 75 directly faces the selective transmission sheet 40 .
- a concave-convex surface 61 is formed by the unit optical element 75 .
- the optical element portion 70 shown in FIG. 20 includes a sheet-like body portion 72 and a plurality of convex portions 73 provided on the body portion 72 .
- the plurality of protrusions 73 may be provided adjacent to each other without gaps.
- the optical element portion 70 shown in FIG. 21 includes a body portion 72 provided with a plurality of recesses 74 on the surface facing the selective transmission sheet 40 in the third direction D3.
- the plurality of recesses 74 may be provided adjacent to each other without gaps.
- the unit optical element 75 has an element surface 76 inclined with respect to the third direction D3.
- a unit optical element 75 is defined by this element surface 76 .
- the uneven surface 61 of the wavelength conversion sheet 60 is composed of the element surfaces 76 of the unit optical elements 75 .
- the optical characteristics of the uneven surface 61 are affected by the inclination angles of the element surfaces 76 of the unit optical elements 75 . Therefore, the cross-sectional shape of the unit optical element 75 can be appropriately adjusted based on the optical properties required for the surface light source device 20 and the optical member 30 .
- the inclination angles of a plurality of element surfaces 76 included in one unit optical element 75 may be different from each other or may be the same.
- the optical element section 70 may include unit optical elements 75 that differ in at least one of shape and orientation, or may include only unit optical elements 75 that are the same as each other.
- the element faces 76 may be somewhat curved.
- the unit optical element 75 may have the outer shape of a portion of a sphere such as a hemisphere, or the outer shape of a portion of a spheroid.
- the plurality of unit diffusion elements 55 may be arranged two-dimensionally. According to this example, light can be guided in a plurality of non-parallel directions, and the in-plane distribution of illuminance can be effectively uniformed.
- Each unit optical element 75 may be configured rotationally symmetrical about an axis parallel to the third direction D3.
- each unit optical element 75 may be configured with 3-fold, 4-fold, or 6-fold symmetry about an axis parallel to the third direction D3.
- the plurality of unit optical elements 75 may be arranged irregularly or may be arranged regularly. By regularly arranging the unit optical elements 75, the design of the optical element section 70 can be facilitated. By regularly arranging the plurality of unit optical elements 75, it becomes easy to spread the unit optical elements 75 without gaps.
- the dimensions, arrangement pitch, etc. of the unit optical elements 75 may be the same as in the first mode.
- FIGS. 23A and 23B show specific examples of unit optical elements 75 included in the optical element section 70.
- the multiple unit optical elements 75 are arranged in a square arrangement.
- the plurality of unit optical elements 75 are arranged at a constant pitch in the first direction D1.
- the plurality of unit optical elements 75 are also arranged at a constant pitch in the second direction D2.
- the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 may be the same or different.
- the plurality of unit optical elements 75 may be laid out without gaps.
- the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 are the same.
- the unit optical elements 75 may be arranged in directions inclined in the first direction D1 and the second direction D2.
- the plurality of unit optical elements 75 are arranged at a constant pitch in two directions that are inclined ⁇ 45° with respect to the first direction D1.
- the arrangement of FIG. 23C can be applied to the unit optical element 75 shown in FIG. 23B.
- the element surface 76 faces in two directions that are inclined by ⁇ 45° with respect to the first direction D1, and the light can be spread in these two directions.
- the optical element section 70 and the unit optical elements 75 may have the configurations described with reference to FIGS. 11A and 11B as the first mode.
- the optical element portion 70 shown in FIGS. 20 to 23C can be produced by embossing or resin molding.
- the optical element portion 70 including the unit optical elements 75 may be bonded to the first barrier layer 63 via a bonding layer containing adhesive or adhesive.
- An optical element portion 70 including unit optical elements 75 may be fabricated on the first barrier layer 63 .
- the optical element section 70 may include a diffractive optical element.
- the light source 23 emits primary light LA.
- the primary light LA is, for example, blue light.
- the wavelength of the blue primary light LA may be 430 nm or more and 500 nm or less.
- a light L21 emitted from the light source 23 travels toward the optical member 30 .
- primary light LA from light source 23 is incident on selective transmission sheet 40 of optical member 30 .
- the selective transmission sheet 40 includes a selective transmission portion 45 .
- the primary light LA from the light source 23 enters the selective transmission section 45 .
- the transmittance of the selective transmission portion 45 depends on the incident angle.
- the transmittance of the selectively transmitting portion 45 for the primary light LA incident at an incident angle greater than 0° is greater than the transmittance of the selectively transmitting portion 45 for the primary light LA incident at an incident angle of 0°.
- the transmittance of the selective transmission portion 45 for light incident on the selective transmission portion 45 at an incident angle of 0° is 5% or less.
- the transmittance of the selective transmission portion 45 for light emitted from the selective transmission sheet 40 at an emission angle of 0° or more and 35° or less in absolute value is half or less of the maximum value of the transmittance of the selective transmission portion 45.
- the transmittance of the selective transmission portion 45 increases as the output angle increases within a wide range of absolute values from 0° to 65°.
- the transmittance is 10% or less when the absolute value of the output angle is in the range of 0° or more and 50° or less. That is, light inclined with respect to the third direction D3 can be transmitted through the selective transmission portion 45 with a higher transmittance than light traveling in the third direction D3.
- the output angle means the angle (°) formed by the traveling direction of the output light with respect to the normal direction of the member such as a sheet from which the light is output.
- a region facing the light source 23 in the third direction D3 and a surrounding region near the region are defined as an immediately overhead region.
- a large amount of light is incident on this directly overhead region.
- the angle of incidence of light on the directly overhead region is small. Therefore, the light L171 emitted from the light source 23 and traveling to the selective transmission sheet 40 is reflected with high reflectance in the directly overhead region.
- light passes through the selective transmission sheet 40 with low transmittance. As a result, it is possible to prevent the light emitting surface 20a from becoming too bright in the directly overhead region.
- a large amount of light L172 reflected by the selective transmission portion 45 is directed toward the light source substrate 22.
- the light L172 is reflected by the reflective layer 27 of the light source substrate 22.
- the light L173 reflected by the reflective layer 27 travels toward the optical member 30 in the third direction D3.
- the reflection on the reflective layer 27 may be diffuse reflection. Due to diffuse reflection, the angle formed by the traveling direction of the reflected light L173 with respect to the third direction D3 increases.
- the light L173 re-enters the optical member 30 at a position away from the light source 23 in the first direction D1 or the second direction D2 orthogonal to the third direction D3.
- the light L173 can re-enter the selectively transmissive sheet 40 in a spaced region away from the light source 23 in the direction orthogonal to the third direction D3.
- the reflected light L173 travels in a direction greatly inclined with respect to the third direction D3, the light L173 can be transmitted through the selective transmission sheet 40 . This can prevent the light emitting surface 20a from becoming too dark in the spaced region.
- the light L201 emitted from the selective transmission sheet 40 travels toward the wavelength conversion sheet 60.
- the wavelength conversion sheet 60 includes an optical element section 70, a first barrier layer 63, a wavelength conversion section 65, and a second barrier layer 64 from the second side, which is the light source side in the third direction D3.
- the optical element portion 70 has an uneven surface 61 on the first surface 60 a of the wavelength conversion sheet 60 .
- the light L201 changes its traveling direction when entering the optical element section 70 .
- the light L201 passes through the first barrier layer 63 and travels toward the wavelength conversion section 65 .
- the wavelength converting portion 65 contains a wavelength converting agent 67. As shown in FIG. A portion of the light L221 traveling through the wavelength converting portion 65 collides with the wavelength converting agent 67. As shown in FIG. The wavelength conversion agent 67 absorbs the primary light LA emitted from the light source 23 and emits secondary light LB with a different wavelength.
- the wavelength converting portion 65 includes a first converting agent 67A and a second converting agent 67B.
- the first conversion agent 67A absorbs a portion L221 of the blue primary light LA and emits green first secondary light LB1.
- the second conversion agent 67B absorbs a portion L222 of the blue primary light LA and emits a red second secondary light LB2.
- the wavelength conversion section 65 Most of the light L174 (see FIG. 17) traveling through the wavelength conversion sheet 60 travels in a direction greatly inclined with respect to the third direction D3 due to the transmission characteristics of the selective transmission portion 45 . Therefore, even if the thickness of the wavelength conversion section 65 is reduced, the optical path length of the light L174 in the wavelength conversion section 65 is increased. Therefore, it becomes easier for the light to enter the wavelength conversion agent 67 in the wavelength conversion sheet 60 . Since the wavelength conversion agent 67 can be used efficiently in this manner, the content of the wavelength conversion agent 67 in the selective transmission portion 45 can be reduced.
- the traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling direction of the primary light LA before being absorbed by the wavelength converting agent 67 .
- the secondary light LB is emitted from the wavelength conversion agent 67 over a wide range of angles.
- the angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the second surface 60b of the wavelength conversion sheet 60 .
- Most of the secondary light LB emitted from the wavelength conversion agent 67 passes through the flat second surface 60 b and exits from the wavelength conversion sheet 60 .
- part L223 of the primary light LA does not enter the wavelength conversion agent 67, but enters the second surface 60b. A portion of such light L223 also passes through the flat second surface 60b and exits from the wavelength conversion sheet 60. As shown in FIG. 22, part L223 of the primary light LA does not enter the wavelength conversion agent 67, but enters the second surface 60b. A portion of such light L223 also passes through the flat second surface 60b and exits from the wavelength conversion sheet 60. As shown in FIG.
- the light L175 (see FIG. 17) such as the primary light LA, the first secondary light LB1, and the second secondary light LB2 is emitted from the light exit side surface 30b of the optical member 30 in the first direction in the third direction D3. emit to the side.
- the light L175 passes through the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 and exits from the light exit side surface of the optical laminate 21.
- the light emitting surface 20a constituted by the optical layered body 21 emits light.
- the lights L176 and L241 incident on the second surface 60b of the wavelength conversion sheet 60 can be reflected by the second surface 60b.
- Lights L176 and L241 reflected by the second surface 60b travel to the second side in the third direction D3.
- Such light can turn around in the traveling direction in the third direction D3 by being reflected by any interface, for example, the surface of the reflective layer 27, and can enter the wavelength conversion sheet 60 again.
- Most of such light, when incident on the second surface 60b travels in a direction greatly inclined with respect to the third direction D3 due to the optical characteristics of the selective transmission portion 45.
- the lights L176 and L241 are reflected by the second surface 60b with a relatively high reflectance.
- Lights L176 and L241 reflected by the wavelength conversion sheet 60 travel in a first direction D1 or a second direction D2 perpendicular to the third direction D3 and leave the light source 23 . Therefore, by utilizing the reflection on the second surface 60b, it is possible to effectively suppress in-plane variations in brightness due to the arrangement of the light source 23.
- the wavelength conversion sheet 60 can reinforce or supplement the optical characteristics of the selective transmission portion 45 having the incident angle dependence, and sufficiently uniform the in-plane distribution of the illuminance.
- the thickness of the wavelength conversion sheet 60 is shown to be thin in order to facilitate understanding of the optical action regarding the optical path within the wavelength conversion sheet 60.
- FIG. also, in FIG. 24, illustration of the wavelength conversion agent 67 is omitted.
- a wavelength conversion agent 67 is provided between the first surface 60a and the second surface 60b of the wavelength conversion sheet 60.
- the wavelength conversion agent 67 is positioned within the circulating optical path of the light emitted from the light source 23 .
- the wavelength conversion agent 67 is dispersed inside the wavelength conversion sheet 60 that turns back the traveling direction in the third direction D3 in the circulating optical path.
- the light travels in a direction inclined with respect to the third direction D3.
- the optical path length in the wavelength conversion sheet 60 becomes very long.
- the utilization efficiency of the wavelength conversion agent 67 can be significantly improved, and the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be greatly reduced.
- the thickness of the wavelength converting portion 65 can be reduced, and the thicknesses of the optical member 30, the optical laminate 21, and the surface light source device 20 in the third direction D3 can be reduced.
- the density of the wavelength conversion agent 67 in the wavelength conversion section 65 can be reduced.
- a barrier layer may not be provided on the side end face of the wavelength conversion portion 65 in some cases.
- the deterioration of the wavelength conversion agent 67 located near the side end surface progresses, and the color of the peripheral portion of the wavelength conversion portion 65 may change.
- the content of the wavelength converting agent 67 in the wavelength converting portion 65 can be reduced as described above. Therefore, the area ratio of the wavelength conversion agent 67 per unit area in the projection in the third direction D3 can be reduced. Accordingly, even when no barrier layer is provided on the side end surface of the wavelength conversion section 65, color change in the peripheral portion can be suppressed.
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film
- the transmittance of the selective transmission portion 45 tends to increase with respect to light with a longer wavelength than the specific wavelength.
- the selective transmission of the selective transmission portion 45 which depends on the angle of incidence, becomes weaker with respect to light with a wavelength greater than the specific wavelength. Therefore, the selective transmission portion 45 cannot effectively exhibit the selective transmission property depending on the incident angle with respect to the secondary light LB having a wavelength longer than the specific wavelength. In other words, the selective transmission section 45 cannot reflect the secondary light LB similarly to the primary light LA.
- the primary light LA is sufficiently circulated between the optical member 30 and the light source substrate 22 to uniform the in-plane distribution of the illuminance
- the primary light It is preferable to convert LA into secondary light LB. That is, from the viewpoint of suppressing in-plane variations in brightness, it is preferable to reduce the content of the wavelength conversion agent 67 in the selective transmission portion 45 that is in the circulating optical path.
- the first surface 60a of the wavelength conversion sheet 60 is configured by the optical element section 70.
- the optical element section 70 includes a plurality of unit optical elements 75 .
- a unit optical element 75 as a convex portion 73 or a concave portion 74 includes a plurality of element surfaces 76 .
- a plurality of element surfaces 76 constitute the first surface 60a.
- the light L241 incident on the wavelength conversion sheet 60 is directed in the element surface 76 forming the uneven surface 61 in the direction opposite to the traveling direction with respect to the third direction D3. Incident on the inclined element surface 76 is facilitated.
- the light L ⁇ b>241 maintains a traveling direction greatly inclined to the third direction D ⁇ b>3 even after being incident on the unit optical element 75 .
- the incident angle ⁇ y on the flat second surface 60b of the wavelength conversion sheet 60 increases, and the reflectance on the second surface 60b increases.
- the reflection on the second surface 60b of the wavelength conversion sheet 60 may be total reflection.
- the formula (A) which is the total reflection condition using the incident angle ⁇ y (°) to the second surface 60b, may hold.
- np ⁇ Sin ⁇ y ⁇ 1 Formula (A) “np” in the formula (A) is the refractive index of the portion forming the element surface 76 of the wavelength conversion sheet 60 . Therefore, “np” may be the refractive index of the portion that constitutes the unit optical element 75 . Strictly speaking, "np” should be the refractive index of the portion forming the second surface 60b. As shown in FIGS.
- the second surface 70b of the optical element portion 70, the first surface 65a and the second surface 65b of the wavelength conversion portion 65, and the second surface 60b of the wavelength conversion sheet 60 are normally They are parallel to each other and substantially orthogonal to the third direction D3. Therefore, “np” in formula (A) may be the refractive index that constitutes the element surface 76 of the wavelength conversion sheet 60 .
- the inclination angle ⁇ p of the element surface 76 may be determined as follows so as not to hinder the light traveling toward the second surface 60b at the incident angle that satisfies the formula (A).
- sin ⁇ 1 (1/np) ⁇ 90 ⁇ p (X) ⁇ p (°) in the formula (X) is the angle (°) between the plane perpendicular to the third direction D3 and the element plane 76 .
- the formula (X) When the formula (X) is satisfied, light traveling in a direction inclined at an angle equal to or greater than the critical angle (°) for total reflection with respect to the third direction D3 is incident on the second surface 60b without being incident on the element surface 76. can promote With such a setting, light circulation between the wavelength conversion sheet 60 and the light source substrate 22 is promoted, and the in-plane distribution of illuminance can be effectively uniformed.
- ⁇ 1 (°) in equation (C) is the incident angle (°) of the light L241 with respect to the element surface 76 on which the light L241 is incident.
- ⁇ 2 (°) in equation (C) is the refraction angle (°) of the light L241 at the element surface 76 through which the light L241 passes. That is, ⁇ 2 (°) is the angle between the normal direction to the element surface 76 and the traveling direction of light after refraction at the element surface 76 .
- the light traveling angle ⁇ x (°) used in the formula (E) is applied to the selective transmission portion 45 at an incident angle at which the transmittance of light of a specific wavelength in the selective transmission portion 45 is 1/2 of the maximum value.
- the first specific angle ⁇ x1 (°) may be the angle (°) between the peak emission direction of the incident light from the selective transmission sheet 40 and the third direction D3.
- the incident angle at which the transmittance is 1/2 of the maximum value is set to be smaller than the incident angle at which the transmittance is at the maximum value.
- most of the traveling directions of light emitted from the selective transmission sheet 40 and directed to the wavelength conversion sheet 60 are inclined by the first specific angle ⁇ x1 with respect to the third direction D3.
- the inclination angle ⁇ p of the element surface 76 is preferably 16° or more.
- the light traveling angle ⁇ x (°) used in the formula (E) is set to the incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion 45 is 1/10 of the maximum value.
- the second specific angle ⁇ x2 (°) may be the angle (°) between the peak emission direction of the light incident on 45 from the selective transmission sheet 40 and the third direction D3.
- the incident angle at which the transmittance is 1/10 of the maximum value is smaller than the incident angle at which the transmittance is at the maximum value.
- the light traveling at the second specific angle ⁇ x2 is light with a very small incident angle among the incident lights on the wavelength conversion sheet 60 .
- the inclination angle ⁇ p of the element surface 76 is preferably 30° or more.
- the light traveling angle ⁇ x (°) used in the formula (E) is a third specific angle ⁇ x3 may be According to this example, of the light incident on the wavelength conversion sheet 60 in the surface light source device 20 actually used, the light with a relatively small incident angle satisfies the total reflection condition on the second surface 60b. Therefore, when the following formula (H) using the third specific angle ⁇ x3 is satisfied, light circulation between the wavelength conversion sheet 60 and the light source substrate 22 can be promoted, and the in-plane distribution of illuminance can be effectively uniformed.
- the third specific angle ⁇ x3 is specified from the luminance angular distribution on the second surface 40 b of the selective transmission sheet 40 .
- the third specific angle ⁇ x3 is specified from the luminance angular distribution on the second surface 40 b of the selective transmission sheet 40 .
- the half-value angle in the luminance angle distribution is the minimum value of the magnitude (absolute value) of the angle between the third direction D3 and the direction in which half the peak luminance is obtained in the luminance angle distribution.
- the expressions (F), (G) and (H) need not be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76, and if this condition is satisfied over 50% or more of the element surface 76,
- the in-plane distribution of illuminance can be made uniform.
- the inclination angle ⁇ p in the area of 70% or more of the element surface 76, more preferably the inclination angle ⁇ p in the area of 80% or more of the element surface 76 is expressed by the formulas (F), (G), and (H). It is filled.
- the conditions for total reflection described above are the conditions for the light L241 shown in FIG.
- This light L241 passes through one element surface 76 and travels through the wavelength conversion sheet 60 .
- This light L241 enters the second surface 60b without entering the other element surface 76.
- the light L242 that has passed through one element surface 76 is incident on another element surface 76 that faces the one element surface 76 .
- This light L242 can be totally reflected by another element surface 76 and enter the second surface 60b at a small incident angle. The reflectance of this light L242 on the second surface 60b is reduced.
- the angle between the traveling direction of the light traveling in the unit optical element 75 and the third direction D3 is It may be less than or equal to the angle between 76 and the third direction D3.
- the following formula (I) may be satisfied.
- Formula (J) which is obtained by rewriting formula (I) in consideration of formulas (B) to (D) described above, may be satisfied.
- the angles and refractive indices used in formulas (I) and (J) are as described above.
- the light traveling angle ⁇ x (°) used in the formula (J) may be the above-described first specific angle ⁇ x1 (°).
- the light traveling angle ⁇ x (°) used in the formula (J) may be the above-described second specific angle ⁇ x2 (°).
- the following formula (L) using the second specific angle ⁇ x2 is satisfied, at least part of the light incident on the unit optical element 75 from the one element surface 76 is directed to another element facing the one element surface 76 It can be incident on the second surface 60 b without being incident on the surface 76 . Therefore, when formula (L) is satisfied, light circulation can be expected between the wavelength conversion sheet 60 and the light source substrate 22, and in-plane variations in illuminance can be suppressed.
- the inclination angle ⁇ p of the element surface 76 is preferably 45° or less.
- the light traveling angle ⁇ x (°) used in formula (J) is the direction in which the brightness of 1/10 of the peak brightness in the brightness angular distribution on the second surface 40b of the selective transmission sheet 40 is obtained.
- the third direction D3 may be a fourth specific angle ⁇ x4, which is the angle (°) between them.
- ⁇ x4 the angle (°) between them.
- this luminance angular distribution light is emitted from the light source 23 in a state in which the surface light source device 20 is removed from the constituent elements on the first side, which is closer to the observer in the third direction D3 than the selective transmission sheet 40, and the second surface 40b Distribution of luminance in each direction measured above.
- An example of this luminance angular distribution is shown in FIG.
- the angle between the direction in which the luminance of 1/10 of the peak luminance in the luminance angular distribution is obtained and the third direction D3 is the direction in which the luminance of 1/10 of the peak luminance in the luminance angular distribution is obtained and the third direction. It is the minimum value of the magnitudes (absolute values) of the angles with D3.
- the expressions (K), (L) and (M) need not be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76, and if this condition is satisfied over 50% or more of the element surface 76,
- the in-plane distribution of illuminance can be made uniform.
- the inclination angle ⁇ p in the area of 70% or more of the element surface 76, more preferably the inclination angle ⁇ p in the area of 80% or more of the element surface 76, the formulas (K), (L) and (M) are: It is filled.
- the specific angle ⁇ x is preferably 35° or more in order to satisfy both the above formulas (E) and (J).
- the inclination angle ⁇ p has an appropriate range within the range of the refractive index np of the portion forming the element surface 76 from 1.50 to 1.60. From this point, the angle formed by the traveling direction of the light traveling from the selective transmission sheet 40 to the wavelength conversion sheet 60 with respect to the third direction D3 may be 35° or more, 40° or more, or 45° or more.
- the transmittance of the selective transmission portion 45 with respect to the light of the specific wavelength emitted from the selective transmission sheet 40 at the emission angle of 0° or more and 35° or less in terms of absolute value is half or less of the maximum value of the transmittance of the selective transmission portion 45. , or 1/10 or less of the maximum transmittance of the selective transmission portion 45 .
- the optical member 30 includes the selective transmission sheet 40 including the selective transmission portion 45, the first surface 40a on the side of the selective transmission sheet 40, and the second surface 40b facing the first surface 40a. and a wavelength conversion sheet 60 containing.
- the transmittance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle greater than 0° is the light of the selective transmission portion 45 incident on the selective transmission portion 45 at an incident angle of 0°. is greater than the transmittance of the selective transmission portion 45 for .
- At least one of the first surface 60 a and the second surface 60 b includes an uneven surface 61 .
- the first surface 60a of the wavelength conversion sheet 60 includes an uneven surface.
- the primary light LA from the light source 23 can be reflected by the second surface 60b of the wavelength conversion sheet 60. That is, the second surface 60b of the wavelength conversion sheet 60 can reflect light directed toward the first side, which is the viewer side, in the third direction D3. That is, a circulation optical path in which the primary light LA circulates can be formed between the second surface 60b of the wavelength conversion sheet 60 and the light source substrate 22 and the like.
- the wavelength conversion agent 67 is included in the wavelength conversion sheet 60 that folds back in the third direction D3. The primary light LA travels in the wavelength conversion sheet 60 in a direction inclined with respect to the third direction D3.
- the content of the wavelength conversion agent 67 in the wavelength conversion sheet 60 can be greatly reduced. Rather, by reducing the content of the wavelength conversion agent 67 that emits the secondary light LB in various directions, the circulation of the primary light LA using reflection on the second surface 60b can be promoted. That is, the circulation of the primary light LA can significantly reduce the content of the wavelength conversion agent 67 while suppressing the in-plane variation in brightness caused by the arrangement of the light sources 23 and suppressing the in-plane variation in illuminance. It is also possible to reduce the thickness of the optical member 30 and the optical laminate 21 and to reduce the thickness of the surface light source device 20 .
- the simulation was a ray tracing simulation using LightTools manufactured by Synopsys.
- the simulation target was the surface light source device shown in FIGS. 3, 4, 17 to 20, 22, 23A and 23B. That is, the surface light source device included a light source substrate and an optical laminate.
- the optical laminate included an optical member, a first light control sheet, a second light control sheet and a reflective polarizing plate.
- the optical member included a selective transmission sheet and a wavelength conversion sheet.
- the first surface of the wavelength conversion sheet had an uneven surface.
- blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction.
- the distance along the third direction D3 from the surface of the light source facing the optical member 30 to the light incident side surface of the optical member was set to 0.5 mm.
- the selectively permeable sheet contained only the selectively permeable portion.
- the first surface and the second surface of the selective transmission portion were parallel to each other.
- the first surface and the second surface were orthogonal to the third direction D3.
- the wavelength conversion sheet contained an optical element portion, a first barrier layer, a wavelength conversion portion and a second barrier layer.
- the first light control sheet and the second light control sheet were "BEF” (registered trademark) available from US 3M Company.
- the reflective polarizing plate was “DBEF” (registered trademark) available from 3M Company, USA.
- the inclination angles ⁇ p of the element surfaces included in the optical element portion described above were changed as shown in Tables 1 and 2.
- the content of the wavelength conversion agent was changed to investigate the content of the wavelength conversion agent that can make the emission color white and uniform the in-plane distribution of illuminance.
- the wavelength conversion agent consists of a first conversion agent that absorbs blue light from the light source and emits green light, and a second conversion agent that absorbs blue light from the light source and emits red light. and included.
- the conversion efficiency by the 1st conversion agent and the conversion efficiency by the 2nd conversion agent were set to 11:20.
- Tables 1 and 2 show the results of a simulation using the selective transmission portion 45 having the transmission characteristics of the first specific example shown in FIG.
- Table 2 shows the results of a simulation using the selective transmission portion 45 having the transmission characteristics of the second specific example shown in FIG.
- the column of "conversion efficiency" in Tables 1 and 2 shows the conversion efficiency that can suppress the in-plane variation of the illuminance most for each simulation target in terms of relative ratio.
- evaluation is made based on low optimum conversion efficiency and uniformity of in-plane distribution of illuminance.
- Samples marked with "X” in the "Comprehensive Evaluation” column are the samples with the lowest evaluation.
- Samples marked with " ⁇ " in the "Comprehensive evaluation” column are samples with good evaluation. In the "Comprehensive evaluation”, samples with high evaluation were marked with more " ⁇ ”.
- the in-plane distribution of illuminance can be made uniform while the conversion efficiency is reduced when the tilt angle ⁇ p of the unit optical elements included in the optical element section is in the range of 10° or more and 50° or less. In the range where the tilt angle ⁇ p of the unit optical elements included in the optical element portion is 30° or more and 45° or less, the in-plane distribution of illuminance can be made more uniform while the conversion efficiency is further reduced.
- the first surface 60a of the wavelength conversion sheet 60 includes an uneven surface.
- the second surface 60b of the wavelength conversion sheet 60 may include an uneven surface. Since at least one of the first surface 60a and the second surface 60b includes an uneven surface, it is possible to cause total reflection on the second surface 60b.
- ⁇ Third aspect> 1 to 27 are also diagrams for explaining the third aspect of the present embodiment.
- the light scattering properties of the wavelength conversion sheet 60 are adjusted.
- the transmission haze of the wavelength conversion sheet 60 is adjusted.
- the third mode can be configured in the same manner as the first mode except for the transmission haze of the wavelength conversion sheet 60 .
- the third mode can be configured in the same manner as the second mode except for the transmission haze of the wavelength conversion sheet 60 .
- a surface light source device 20 in the third aspect may include, as main components, a light source 23 and an optical laminate 21 that adjusts the optical path of light emitted from the light source 23.
- the optical laminate 21 may include optical members 30 .
- the optical layered body 21 and the optical member 30 may face the light source 23 .
- the optical layered body 21 and the optical member 30 may be sheet-like members.
- the optical layered body 21 and the optical member 30 may face the light source 23 in their normal direction.
- the optical layered body 21 and the optical member 30 may be diffusion members that diffuse the light emitted from the light source 23 .
- the optical layered body 21 and the optical member 30 can effectively suppress in-plane variations in illuminance caused by the arrangement of the light sources 23 .
- the illumination intensity at each position can be effectively homogenized.
- the display device 10, the surface light source device 20, and the optical member 30 in the third embodiment will be described below mainly with reference to the specific examples shown in FIGS. 17 to 25.
- the display panel 15 of the display device 10 may be configured in the same manner as the above-described display panel 15 described as the first mode.
- the light source substrate 22 of the surface light source device 20 may be configured in the same manner as the above-described light source substrate 22 described as the first mode.
- the optical laminate 21 may include the optical member 30 , the first light control sheet 81 , the second light control sheet 82 and the reflective polarizing plate 85 in order from the light source substrate 22 .
- the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 are the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, respectively, described as the first mode. It may have the same configuration as the polarizing plate 85 .
- the optical member 30 includes a selective transmission sheet 40 and a wavelength conversion sheet 60 in this order.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 are stacked in the third direction D3.
- Both the selective transmission sheet 40 and the wavelength conversion sheet 60 may be sheet-like members extending in the first direction D1 and the second direction D2.
- the selective transmission sheet 40 constitutes the light incident side surface 30 a of the optical member 30 .
- the wavelength conversion sheet 60 constitutes the light output side surface 30b of the optical member 30.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 may be bonded to each other, may be simply in contact and not bonded, or may be separated from each other.
- the optical member 30 may include the light diffusion sheet 50 as in the first aspect.
- the first surface 50a of the light diffusion sheet 50 may constitute the light incident side surface 30a.
- the selectively permeable sheet 40 includes a selectively permeable portion 45 .
- the reflectance and transmittance of the selective transmission portion 45 change depending on the incident angle.
- the selective transmission portion 45 has its transmission characteristics adjusted so that the transmittance changes according to the incident angle.
- the selective transmission portion 45 has its reflection characteristics adjusted so that the reflectance changes according to the incident angle.
- the selective transmission sheet 40 and the selective transmission section 45 may be configured in the same manner as the above-described selective transmission sheet 40 and selective transmission section 45 described as the first mode, respectively.
- the selective transmission sheet 40 and the selective transmission section 45 may be configured in the same manner as the above-described selective transmission sheet 40 and selective transmission section 45 described as the second mode.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 have incident angle dependency.
- the transmittance of the selective transmission portion 45 and the reflectance of the selective transmission portion 45 change according to the incident angle.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 may have wavelength dependence.
- the transmittance of the selective transmission portion 45 and the reflectance of the selective transmission portion 45 may change according to the wavelength.
- the selective transmission section 45 is not particularly limited as long as it has incident angle dependency of reflectance and incident angle dependency of transmittance, as described above.
- the selective transmission section 45 may include a dielectric multilayer film, a reflective volume hologram, a cholesteric liquid crystal structure layer, a retroreflective film, or a reflective diffractive optical element.
- a dielectric multilayer film, a reflective volume hologram, a cholesteric liquid crystal structure layer, and a reflective diffractive optical element have wavelength dependence.
- the transmission haze of the wavelength conversion sheet 60 is low.
- the wavelength conversion sheet 60 may be configured in the same manner as the above-described wavelength conversion sheet 60 described as the first mode, as long as the transmission haze is set within the range described below.
- the wavelength conversion sheet 60 may be configured in the same manner as the above-described wavelength conversion sheet 60 described as the second mode, as long as the transmission haze is set within the range described below.
- the wavelength conversion sheet 60 includes a first surface 60a and a second surface 60b.
- the first surface 60a faces the second side that is the light source side in the third direction D3.
- the second surface 60b faces the first side that is the viewer side in the third direction D3.
- the wavelength conversion sheet 60 includes an uneven surface 61 on at least one of the first surface 60a and the second surface 60b.
- the wavelength conversion sheet 60 will be described with reference to the illustrated example in which the first surface 60 a includes the uneven surface 61 .
- the illustrated first surface 60a is an uneven surface 61 over the entire surface.
- the second surface 60b includes a flat surface.
- the illustrated second surface 60b is entirely flat.
- the second surface 60b may be a surface perpendicular to the third direction D3.
- the wavelength conversion sheet 60 contains a wavelength conversion agent 67 .
- the wavelength converting agent 67 absorbs primary light and emits secondary light with a different wavelength than the primary light.
- the wavelength conversion sheet 60 includes an optical element section 70, a first barrier layer 63, a wavelength conversion section 65 and a second barrier layer 64 in order from the light source substrate 22. may contain.
- the optical element portion 70, the first barrier layer 63, the wavelength converting portion 65 and the second barrier layer 64 are stacked in this order in the third direction D3.
- the optical element portion 70, the first barrier layer 63, the wavelength conversion portion 65 and the second barrier layer 64 may be sheet-like.
- the optical element section 70, the first barrier layer 63, the wavelength converting section 65 and the second barrier layer 64 may extend in the first direction D1 and the second direction D2.
- the optical element section 70 may be the same as the optical element section 70 described above as the first aspect.
- the optical element portion 70 may be the same as the optical element portion 70 described above as the second aspect.
- the first barrier layer 63 may be the same as the first barrier layer 63 described above as the first aspect.
- the first barrier layer 63 may be the same as the first barrier layer 63 described above as the second aspect.
- the wavelength conversion section 65 may be the same as the wavelength conversion section 65 described above as the first mode.
- the wavelength conversion section 65 may be the same as the wavelength conversion section 65 described above as the second mode.
- the second barrier layer 64 may be the same as the second barrier layer 64 described above as the first aspect.
- the second barrier layer 64 may be the same as the second barrier layer 64 described above as the second embodiment.
- the wavelength conversion section 65 may contain a light scattering component that scatters transmitted light.
- the light scattering component may be dispersed within the matrix portion 66 .
- Examples of light-scattering components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the transmission haze of the wavelength conversion sheet 60 can be adjusted by the type and content of the light scattering component.
- the operation of generating planar light with the planar light source device 20 according to the third aspect will be described.
- An example in which the first surface 60a of the wavelength conversion sheet 60 includes an uneven surface 61, that is, the surface light source device 20 shown in FIGS. 17 to 25 will be described below.
- the selective transmission function of the selective transmission portion 45 can suppress in-plane variations in brightness according to the arrangement of the light sources 23 . Thereby, the illuminance at each position on the second surface 40b of the selective transmission sheet 40 can be effectively uniformed.
- the lights L174 and L201 transmitted through the selective transmission sheet 40 travel toward the wavelength conversion sheet 60.
- the light L201 changes its traveling direction to some extent due to refraction at the element surface 76 when entering the optical element section 70 .
- the light L201 passes through the first barrier layer 63 and travels toward the wavelength conversion section 65 .
- the traveling direction of this light L174 is further inclined with respect to the third direction D3 due to refraction at the second surface 40b of the selective transmission sheet 40.
- the first surface 60 a of the wavelength conversion sheet 60 which is the incident surface, is an uneven surface 61 .
- the light L201 incident on the wavelength conversion sheet 60 is likely to enter the element surface 76 inclined in the direction opposite to the traveling direction of the light L201 with respect to the third direction D3.
- the traveling direction of the light L201 is unlikely to change significantly.
- the light L201 traveling through the wavelength conversion sheet 60 tends to travel in a direction greatly inclined with respect to the third direction D3.
- the optical path length of the light L174 in the wavelength conversion section 65 becomes longer. Therefore, it becomes easier for the light to enter the wavelength conversion agent 67 in the wavelength conversion sheet 60 .
- the wavelength conversion agent 67 can be used efficiently, the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be reduced.
- the traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling direction of the primary light LA before being absorbed by the wavelength converting agent 67 .
- the secondary light LB is emitted from the wavelength conversion agent 67 over a wide range of angles.
- the angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the second surface 60b of the wavelength conversion sheet 60 .
- Most of the secondary light LB emitted from the wavelength conversion agent 67 can pass through the flat second surface 60 b and exit from the wavelength conversion sheet 60 .
- part L223 of the primary light LA does not enter the wavelength conversion agent 67, but enters the second surface 60b.
- a part of such light L223 can also pass through the flat second surface 60b and be emitted from the wavelength conversion sheet 60.
- the light L175 (see FIG. 17) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 is emitted from the wavelength conversion sheet 60 to the first side in the third direction D3. do.
- the light L175 passes through the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 and exits from the light exit side surface 30b of the optical member 30. FIG. In this manner, the light emitting side surface 30b of the optical member 30 emits light.
- the lights L176 and L241 incident on the second surface 60b of the wavelength conversion sheet 60 can be reflected by the second surface 60b.
- Lights L176 and L241 reflected by the second surface 60b travel to the second side in the third direction D3.
- Such light can turn around in the traveling direction in the third direction D3 by being reflected by any interface, for example, the surface of the reflective layer 27, and can enter the wavelength conversion sheet 60 again.
- Lights L176 and L241 reflected by the second surface 60b of the wavelength conversion sheet 60 travel in the first direction D1 and the second direction D2 orthogonal to the third direction D3. That is, the lights L176 and L241 leave the light source 23 in a direction orthogonal to the third direction D3. Therefore, by utilizing the reflection on the second surface 60b, it is possible to effectively suppress in-plane variations in brightness due to the arrangement of the light source 23.
- the wavelength conversion sheet 60 can reinforce or supplement the optical characteristics of the selective transmission portion 45 having the incident angle dependence, and sufficiently uniform the in-plane distribution of the illuminance.
- the primary light LA can be selectively reflected on the second surface 60b with a very high reflectance.
- the first surface 60 a of the wavelength conversion sheet 60 includes an uneven surface 61 formed by the optical element portion 70 .
- the optical element section 70 includes a plurality of unit optical elements 75 .
- a unit optical element 75 as a convex portion 73 or a concave portion 74 includes a plurality of element surfaces 76 .
- the plurality of element surfaces 76 constitute the uneven surface 61 of the first surface 60a.
- the light L241 as the primary light LA incident on the wavelength conversion sheet 60 travels in the third direction D3 among the element surfaces 76 forming the uneven surface 61.
- this light LA can maintain a traveling direction that is very greatly inclined with respect to the third direction D3 within the wavelength conversion sheet 60 .
- the incident angle ⁇ y on the flat second surface 60b of the wavelength conversion sheet 60 increases. Accordingly, the primary light LA that has not been wavelength-converted by the wavelength conversion agent 67 is reflected at the second surface 60b with high reflectance. Furthermore, the primary light LA can be totally reflected by the second surface 60b due to the large incident angle.
- the direction in which the secondary light LB is emitted from the wavelength conversion agent 67 does not depend on the direction of incidence on the wavelength conversion agent 67 . Therefore, the secondary light LB is diffused light and cannot be reflected at a high reflectance on the second surface 60b.
- the second surface 60b selectively reflects the primary light LA with a high reflectance due to the combination of the transmission characteristics of the selective transmission portion 45 that affects the emission direction of the primary light LA and the uneven surface 61. do.
- a wavelength conversion agent 67 is positioned in the circulating optical path between the wavelength conversion sheet 60 of the primary light LA and the light source substrate 22 .
- the element surface 76 orthogonal to the direction in which the peak luminance of the primary light LA is obtained is formed on the second surface 40b of the selective transmission sheet 40.
- the second surface 60b can selectively emit the primary light LA at a high angle. Reflectance can be reflected.
- the wavelength conversion agent 67 is positioned within the circulating optical path of the light emitted from the light source 23 .
- the wavelength conversion agent 67 is dispersed inside the wavelength conversion sheet 60 that turns back the traveling direction in the third direction D3 in the circulating optical path. Therefore, the optical path length of the primary light LA in the wavelength conversion sheet 60 containing the wavelength conversion agent 67 becomes very long.
- the primary light LA is selectively reflected by the second surface 60b.
- the in-plane distribution of the illuminance caused by the primary light LA can be made sufficiently uniform.
- a wavelength conversion agent 67 is provided in the circulating optical path of the primary light LA between the second surface 60b and the light source substrate 22 in the third direction D3.
- the in-plane distribution of illuminance can be made sufficiently uniform, and color unevenness within the light emitting surface 20a can be suppressed. Since the primary light LA is selectively reflected by the second surface 60b and circulated, the utilization efficiency of the wavelength conversion agent 67 can be significantly improved, and the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be greatly reduced.
- the thickness of the wavelength converting portion 65 can be reduced, and the thicknesses of the optical member 30, the optical laminate 21, and the surface light source device 20 in the third direction D3 can be reduced.
- the density of the wavelength conversion agent 67 in the wavelength conversion section 65 can be reduced.
- a barrier layer may not be provided on the side end face of the wavelength conversion portion 65 in some cases.
- the deterioration of the wavelength conversion agent 67 located near the side end surface progresses, and the color of the peripheral portion of the wavelength conversion portion 65 may change.
- the content of the wavelength converting agent 67 in the wavelength converting portion 65 can be reduced as described above. Therefore, the area ratio of the wavelength conversion agent 67 per unit area in the projection in the third direction D3 can be reduced. Accordingly, even when no barrier layer is provided on the side end surface of the wavelength conversion section 65, color change in the peripheral portion can be suppressed.
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film, tends to increase with respect to light with a longer wavelength than the specific wavelength.
- the selective transmission of the selective transmission portion 45 which depends on the angle of incidence, becomes weaker with respect to light with a wavelength greater than the specific wavelength. Therefore, the selective transmission portion 45 cannot effectively exhibit the selective transmission property depending on the incident angle with respect to the secondary light LB having a wavelength longer than the specific wavelength. In other words, the selective transmission section 45 cannot reflect the secondary light LB similarly to the primary light LA.
- the primary light LA is sufficiently circulated between the optical member 30 and the light source substrate 22 to uniform the in-plane distribution of the illuminance
- the primary light It is preferable to convert LA into secondary light LB. That is, it is preferable to reduce the content of the wavelength conversion agent 67 in the selective transmission portion 45 in the circulating optical path also from the viewpoint of suppressing in-plane variations in brightness.
- uniformizing the in-plane distribution of illuminance caused by the primary light LA and reducing the density of the wavelength conversion agent 67 color unevenness can be effectively suppressed.
- the function of homogenizing the in-plane distribution of illuminance and the function of suppressing color unevenness by using a wavelength conversion sheet including an uneven surface in combination with a selective transmission sheet having incident angle dependence are the same as those of the conventional wavelength conversion unit (wavelength conversion unit). sheet) was not sufficiently demonstrated.
- the wavelength conversion sheet is provided with an uneven surface, the usage amount of the wavelength conversion agent cannot be reduced.
- the color of the light-emitting surface can be made white by using a large amount of the wavelength conversion agent, the color unevenness of the light-emitting surface cannot be sufficiently eliminated in some cases.
- a conventional wavelength converting portion contains a large amount of scattering agent along with the wavelength converting agent.
- the optical path length within the wavelength conversion section is ensured by containing a scattering agent.
- the amount of wavelength conversion agent used can be reduced to about half.
- a scattering agent is used to reduce the amount of the wavelength conversion agent used, thereby coping with the color change caused by the wavelength conversion agent.
- the primary light LA traveling through the wavelength conversion sheet is diffused.
- the distribution of the traveling direction of the primary light LA according to the transmission characteristics of the selective transmission portion is eliminated by the scattering agent, and the primary light LA cannot be selectively reflected on the second surface of the wavelength conversion sheet. For this reason, it was considered that when a conventional wavelength conversion portion is used, even if the wavelength conversion sheet is provided with an uneven surface corresponding to the transmission characteristics of the selective transmission portion, the in-plane distribution of illuminance cannot be sufficiently uniformized.
- the amount of the wavelength conversion agent 67 used can be greatly reduced.
- the in-plane distribution of illuminance could be made sufficiently uniform, and color unevenness could be sufficiently suppressed.
- the amount of the wavelength conversion agent 67 used can be significantly reduced, the in-plane distribution of illuminance can be made sufficiently uniform, and color unevenness can be effectively reduced.
- the transmission internal haze may be 18% or less, 12% or less, or 7% or less. Furthermore, it may be 5% or less.
- the transmission internal haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA may be 1% or more. Even if this transmission internal haze is reduced to less than 1%, it is difficult to further reduce the usage amount of the wavelength conversion agent 67 . Therefore, from the viewpoint of color unevenness and illuminance uniformity, the transmission internal haze may be set to 1% or more.
- the transmission internal haze (%) of the wavelength conversion sheet 60 is a value measured in accordance with JIS K7136:2000 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory. That is, the transmission internal haze (%) is the ratio (%) of the diffuse transmittance to the total light transmittance.
- Internal haze means haze caused by scattering inside the wavelength conversion sheet 60 .
- “Internal haze” means haze caused by scattering other than scattering on the first surface 60 a and the second surface 60 b of the wavelength conversion sheet 60 .
- Alternatively, for the measurement of the "internal haze” it is possible to use a sample obtained by removing the portion (the unit optical elements 75 in the above example) forming the uneven surface 61 of the wavelength conversion sheet 60 to form a flat surface.
- One of the samples with the uneven surface 61 buried and the sample with the uneven surface 61 removed is selected in consideration of the structure of the wavelength conversion sheet 60 and the like, and the internal haze can be measured with higher accuracy. Let the measured value about a sample be a value of an internal haze.
- Light with a wavelength different from that of the primary light LA means light other than light having a wavelength that can excite the wavelength conversion agent 67 contained in the wavelength conversion sheet 60 to be measured. That is, "light having a wavelength different from that of the primary light LA” means light having no wavelength capable of exciting the wavelength conversion agent 67 contained in the wavelength conversion sheet 60 to be measured.
- the haze value of the sample is measured by irradiating the sample to be measured with the measurement light emitted from the light source of the haze meter, which passes through a band-pass filter that regulates the transmission of primary light.
- a band-pass filter with a primary light transmittance of 5% or less is used.
- the band-pass filter used for measurement may shield not only the light within the wavelength range that can excite the wavelength conversion agent 67, but also the light within the wavelength range.
- the primary light LA is absorbed by the wavelength conversion agent 67 .
- the wavelength conversion agent 67 emits the secondary light LB in a direction irrelevant to the direction of incidence of the primary light LA.
- the degree of the scattering function caused by the scattering agent of the wavelength conversion sheet 60 can be evaluated more accurately. That is, by limiting the wavelength of the light used for measurement, the degree of diffusion of the primary light LA just before it enters the uneven surface 61 can be evaluated with high accuracy. Therefore, "light having a wavelength different from that of the primary light LA" is used for measurement of the transmitted internal haze.
- the usage amount of the wavelength conversion agent 67 can be reduced.
- the optical path conversion function of the wavelength conversion agent 67 exerted on transmitted light is weakened.
- the transmission internal haze (%) of the wavelength conversion sheet 60 in which the content of the wavelength conversion agent 67 is reduced is measured without limiting the wavelength of the measurement light, using only light with a wavelength different from that of the primary light LA.
- the transmission internal haze (%) of the wavelength conversion sheet 60 is a value that is significantly different from the transmission internal haze (%) of the wavelength conversion sheet.
- the transmission internal haze (%) when all the light from the light source of the above-mentioned haze meter is used for measurement is also sufficiently uniform in-plane distribution of illuminance, while reducing the amount of wavelength conversion agent 67 used. It serves as an index to distinguish the obtained wavelength conversion sheet 60 from the conventional wavelength conversion sheet.
- the transmission inside of the wavelength conversion sheet 60 measured in accordance with JIS K7136: 2000 without limiting the measurement light from the built-in light source using the above-mentioned haze meter HM-150 manufactured by Murakami Color Research Laboratory By setting the upper limit of the haze (%), the usage amount of the wavelength conversion agent 67 can be greatly reduced, and the in-plane distribution of illuminance can be made sufficiently uniform. Specifically, by setting the transmission internal haze to 50% or less, the amount of the wavelength conversion agent 67 used can be greatly reduced, the in-plane distribution of illuminance can be made sufficiently uniform, and color unevenness can be effectively reduced.
- the transmission internal haze may be 20% or less, 15% or less, or 10% or less. Furthermore, it may be 5% or less.
- Transmissive internal haze (%) of the wavelength conversion sheet 60 measured in accordance with JIS K7136: 2000 without limiting the measurement light from the built-in light source using a haze meter HM-150 manufactured by Murakami Color Research Laboratory. may be 1% or more. Even if this transmission internal haze is reduced to less than 1%, it is difficult to further reduce the usage amount of the wavelength conversion agent 67 . Therefore, from the viewpoint of color unevenness and illuminance uniformity, the transmission internal haze may be set to 1% or more.
- the difference between the transmission internal haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA and the normal transmission internal haze (%) measured without limiting the measurement light from the built-in light source of the haze meter may be 5% or less, or 3% or less.
- the difference between the transmission internal haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA and the normal transmission internal haze (%) measured without limiting the measurement light from the built-in light source of the haze meter may be 0% or more. According to such an example, the wavelength conversion agent 67 can be sufficiently reduced.
- the reflection on the second surface 60b of the wavelength conversion sheet 60 may be total reflection.
- the formula (A) described in the second aspect may hold.
- the inclination angle ⁇ p of the element surface 76 may satisfy the expression (X) described in the second aspect so as not to hinder the light traveling toward the second surface 60b at the incident angle that satisfies the expression (A). .
- the formula (E) described in the second aspect may hold.
- the formula (E) When the formula (E) is satisfied, light traveling in a direction slanted by ⁇ x (°) with respect to the third direction D3 passes through the element surface 76 and enters the wavelength conversion sheet 60, and then passes through the second surface 60b. reflect.
- the refractive index np of the portion forming the element surface 76 and the inclination angle ⁇ p (°) of the element surface 76 are set so as to satisfy the formula (E) for at least part of the light incident on the wavelength conversion sheet 60.
- the light traveling angle ⁇ x (°) in formula (E) is set in the same manner as in the second mode, and one or more of the above formulas (F), (G) and (H) are satisfied. good too.
- the light traveling angle ⁇ x (°) used in formula (E) is an incident angle at which the transmittance of light of a specific wavelength in the selective transmission portion 45 is 1/2 of the maximum value, and enters the selective transmission portion 45.
- the first specific angle ⁇ x1 (°), which is the angle (°) between the peak emission direction of the light from the selectively transmissive sheet 40 and the third direction D3, may also be used. That is, the above formula (F) may be satisfied.
- the inclination angle ⁇ p of the element surface 76 is preferably 16° or more.
- the light traveling angle ⁇ x (°) used in equation (E) is an incident angle at which the transmittance of light of a specific wavelength in the selective transmission portion 45 is 1/10 of the maximum value. It may be the second specific angle ⁇ x2 (°), which is the angle (°) between the peak emission direction of the light incident on 45 from the selective transmission sheet 40 and the third direction D3. That is, the above formula (G) may be satisfied.
- the inclination angle ⁇ p of the element surface 76 is preferably 30° or more.
- the light traveling angle ⁇ x (°) used in the formula (E) is a third specific angle ⁇ x3 It's okay. That is, the above formula (H) may be satisfied.
- the expressions (F), (G) and (H) need not be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76, and if this condition is satisfied over 50% or more of the element surface 76,
- the in-plane distribution of illuminance can be made uniform.
- formulas (F), (G) and (H) are obtained. It is filled.
- the conditions for total reflection described above are the conditions for the light L241 shown in FIG.
- This light L241 passes through one element surface 76 and travels through the wavelength conversion sheet 60 .
- This light L241 enters the second surface 60b without entering the other element surface 76.
- the light L242 that has passed through one element surface 76 is incident on another element surface 76 that faces the one element surface 76 .
- This light L242 can be totally reflected by another element surface 76 and enter the second surface 60b at a small incident angle. The reflectance of this light L242 on the second surface 60b is reduced.
- the element surface 76 is arranged so that the formulas (I) and (J) described in the second aspect are established.
- the refractive index np of the constituent portion and the inclination angle ⁇ p (°) of the element surface 76 may be set.
- the light traveling angle ⁇ x (°) used in the formula (J) may be the above-described first specific angle ⁇ x1 (°).
- the light traveling angle ⁇ x (°) used in the formula (J) may be the second specific angle ⁇ x2 (°) described above. That is, the above formula (L) may be satisfied.
- the light traveling angle ⁇ x (°) used in formula (J) is the direction in which 1/10 of the peak luminance in the luminance angular distribution on the second surface 40b of the selective transmission sheet 40 is obtained.
- the third direction D3 may be a third specific angle ⁇ x4, which is the angle (°) between . That is, the above formula (M) may be satisfied. Equations (L) and (M) do not have to be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76.
- the in-plane illuminance is predominantly Uniform distribution.
- the optical member 30 includes the selective transmission sheet 40 including the selective transmission portion 45 and the wavelength conversion sheet 60 overlaid on the selective transmission sheet 40 .
- the selective transmission portion 45 has a transmission characteristic in which the transmittance changes according to the incident angle.
- the wavelength conversion sheet 60 includes an uneven surface 61 .
- the wavelength conversion sheet 60 includes a wavelength conversion agent 67 that absorbs primary light LA and emits secondary light LB.
- the secondary light LB has a wavelength different from that of the primary light LA.
- the transmission internal haze of the wavelength conversion sheet 60 for light having a wavelength different from that of the primary light LA may be 45% or less, and the transmission internal haze of the wavelength conversion sheet 60 may be 50% or less.
- the wavelength conversion sheet 60 includes a first surface 60a, a second surface 60b facing the first surface 60a, and a surface between the first surface 60a and the second surface 60b. and a wavelength converting agent 67 located at .
- An optical element portion 70 that forms at least one of the first surface 60a and the second surface 60b is provided.
- the optical element section 70 includes a plurality of unit optical elements 75 .
- At least one of the first surface 60 a and the second surface 60 b includes an uneven surface 61 composed of a plurality of unit optical elements 75 .
- the wavelength conversion agent 67 absorbs the primary light LA of a specific wavelength and emits the secondary light LB.
- the secondary light LB has a wavelength different from the specific wavelength.
- the transmission internal haze of the wavelength conversion sheet 60 for light having a wavelength different from that of the primary light LA may be 45% or less.
- the transmission internal haze of the wavelength conversion sheet 60 may be 50% or less.
- the primary light LA mainly travels in the direction within a narrow angular range corresponding to the transmission characteristics of the selective transmission portion 45 within the wavelength conversion sheet 60 .
- the secondary light LB emitted from the wavelength conversion agent 67 in the wavelength conversion sheet 60 travels in a direction irrelevant to the traveling direction of the primary light LA.
- the wavelength conversion sheet 60 By setting the transmission internal haze of the wavelength conversion sheet 60 to 45% or less for light of a wavelength different from that of the primary light LA, or by setting the transmission internal haze of the wavelength conversion sheet 60 to 50% or less, the wavelength conversion sheet 60
- the direction of travel of the primary light LA within can be maintained within a narrow angular range that can be distinguished from the directions of travel of many secondary lights LB.
- the wavelength conversion sheet 60 can selectively reflect the primary light LA with a high reflectance. That is, the primary light LA that has not been wavelength-converted in the wavelength conversion sheet 60 circulates between the wavelength conversion sheet 60 and the light source substrate 22 . Thereby, the in-plane distribution of the illuminance can be made sufficiently uniform. Further, since the wavelength conversion agent 67 is positioned in the circulating optical path of the primary light LA, the wavelength conversion agent 67 can be used efficiently. Therefore, the usage amount of the wavelength conversion agent 67 can be reduced.
- the in-plane distribution of illuminance caused by the primary light LA can be made sufficiently uniform, and accordingly color unevenness can be effectively suppressed. Also, by reducing the amount of the wavelength conversion agent 67 used, the thickness of the wavelength conversion sheet 60 and the thickness of the optical member 30 can be reduced.
- the transmission characteristics of the selective transmission portion 45 of the selective transmission sheet 40 can be changed in various ways.
- the selective transmission portion 45 may have the transmission characteristics shown in FIG. Even with the transmission characteristics shown in FIG. 26, the transmittance changes according to the incident angle.
- the transmittance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° is a specific wavelength incident on the selective transmission portion 45 at an incident angle greater than 0°. It may be higher than the transmittance of the selective transmission portion 45 for light of the wavelength.
- the transmittance of the selectively transmitting portion 45 for the vertically incident specific wavelength light is higher than the transmittance of the selectively transmitting portion 45 for the specific wavelength light incident on the selectively transmitting portion 45 from at least one oblique direction.
- the reflectance of the selective transmission portion 45 for light of a specific wavelength incident on the selective transmission portion 45 at an incident angle of 0° is It may be smaller than the reflectance of the selective transmission portion 45 .
- the reflectance of the selectively transmitting portion 45 for the vertically incident specific wavelength light is lower than the reflectance of the selectively transmitting portion 45 for the specific wavelength light incident on the selectively transmitting portion 45 from at least one oblique direction. good too.
- the transmittance of the selective transmission portion 45 may decrease as the incident angle increases.
- the transmittance of the selective transmission portion 45 may be maximum when the incident angle is 0°.
- the transmittance of the selective transmission portion 45 may be 15% or less, 10% or less, or 5% or less at an incident angle of 20° or more.
- the first surface 60a of the wavelength conversion sheet 60 includes an uneven surface.
- the second surface 60b of the wavelength conversion sheet 60 may include the uneven surface as shown in FIG.
- the second surface 60 b of the wavelength conversion sheet 60 may include the uneven surface 61 .
- the optical element portion 70 includes unit optical elements 75 as convex portions 73 on the second surface 60b.
- the optical element portion 70 may include a unit optical element 75 as the recess 74 on the second surface 60b.
- the wavelength conversion sheet 60 shown in FIG. 27 functions as a retroreflection sheet, and intensively reflects light L271 traveling in a direction that is not greatly inclined in the third direction D3.
- This wavelength conversion sheet 60 may be combined with a selective transmission sheet 40 that mainly transmits light traveling in a narrow angular range around the third direction D3.
- the wavelength conversion sheet 60 shown in FIG. 27 is suitable, for example, in combination with the selective transmission sheet 40 having transmission characteristics shown in FIG. According to this combination, the primary light LA that has not been wavelength-converted by the wavelength conversion portion 65 of the wavelength conversion sheet 60 is reflected, especially totally reflected, by the concave-convex surface 61 and turns back in the traveling direction in the third direction.
- the secondary light LB wavelength-converted by the wavelength conversion portion 65 of the wavelength conversion sheet 60 is easily emitted from the wavelength conversion sheet 60 via the uneven surface 61 .
- the thickness of the wavelength conversion sheet 60 is shown to be thin in order to facilitate understanding of the optical action regarding the optical path in the wavelength conversion sheet 60 .
- illustration of the wavelength conversion agent 67 and the wavelength conversion section 65 is omitted.
- a wavelength conversion agent 67 is provided between the first surface 60a and the second surface 60b of the wavelength conversion sheet 60.
- a wavelength conversion sheet 60 shown in FIG. 27 may include a first barrier layer 63 and a second barrier layer 64 .
- both the first surface 60 a and the second surface 60 b of the wavelength conversion sheet 60 may include the uneven surface 61 .
- the first surface 60 a and the second surface 60 b may partially include the uneven surface 61 .
- the arrangement of the uneven surface 61 may correspond to the arrangement of the light source 23 .
- Samples 1 to 18 of surface light source devices were produced.
- the surface light source devices of Samples 1-18 had the configurations shown in FIGS. 3, 4, 17-20, 22, 23A and 23B. That is, the surface light source device included a light source substrate and an optical laminate.
- the optical laminate included an optical member, a first light control sheet, a second light control sheet and a reflective polarizing plate.
- the optical member included a selective transmission sheet and a wavelength conversion sheet.
- the light source substrate, selective transmission sheet, first light control sheet, second light control sheet and reflective polarizing plate were common among samples 1 to 18.
- the light source substrate On the light source substrate, blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction.
- a light-emitting diode that emits blue light with a central wavelength of 450 nm was used.
- the planar shape of this light-emitting diode was a rectangular shape of 0.2 mm ⁇ 0.4 mm.
- the light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction.
- the distance along the third direction D3 from the surface of each light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm.
- the reflective layer of the light source substrate was a white polyethylene terephthalate plate containing titanium oxide. The reflective layer had a reflectance of 95% and was diffusely reflective.
- the selectively permeable sheet contained only the selectively permeable portion.
- the selective transmission part was a dielectric multilayer film having the transmission characteristics of the first specific example shown in FIG.
- the first surface of the selective transmission sheet was a flat surface configured by the selective transmission portion.
- the second surface of the selective transmission sheet was a flat surface configured by the selective transmission portion.
- the first and second surfaces of the selectively permeable sheet were parallel to each other and perpendicular to the third direction.
- wavelength conversion sheet For the surface light source devices of Samples 1 to 18, wavelength conversion sheets were produced as follows.
- the wavelength conversion sheets of samples 1 to 9 included an optical element portion, a first barrier layer, a wavelength conversion portion and a second barrier layer.
- Wavelength converting sheet samples 10-18 included a first barrier layer, a wavelength converting portion and a second barrier layer. Wavelength conversion sheet samples 10 to 18 did not contain an optical element portion.
- the first surface of the wavelength conversion sheet was a flat surface constituted by the first barrier layer.
- the first surface of the wavelength conversion sheet was an uneven surface formed by the optical element portion.
- the second surface of the wavelength conversion sheet was a flat surface constituted by the second barrier layer. Between samples 1-18, the first barrier layer and the second barrier layer were constructed identically.
- the optical elements of samples 1 to 9 were constructed identically.
- the optical element portions of samples 1 to 9 included unit optical elements in the shape of a regular quadrangular pyramid.
- the plurality of unit optical elements were arranged without gaps at a pitch of 0.1 mm in the first direction and the second direction.
- the inclination angle ⁇ p of the element surface included in the optical element portion was set to 40°.
- the wavelength conversion portion of samples 1 to 7 and 9 of the wavelength conversion sheet contained a base material, and a wavelength conversion agent and a scattering agent dispersed in the base material.
- the wavelength converting portion of Sample 8 included a base material and a wavelength converting agent dispersed in the base material.
- the wavelength converting portion of Sample 8 did not contain a scattering agent.
- the wavelength conversion portions of Samples 1 to 9 differed from each other in the content of the scattering agent and the content of the wavelength conversion agent, and otherwise had the same configuration.
- the wavelength converting agents included a first converting agent that absorbs blue light from the light source and emits green light, and a second converting agent that absorbs blue light from the light source and emits red light.
- the content of the wavelength conversion agent was determined by ray tracing simulation using LightTools manufactured by Synopsys.
- the content of the wavelength conversion agent was determined in a simulation for the surface light source device of each sample so that the light emitting surface could emit white light.
- the content of the wavelength converting agent in the wavelength converting portions of Samples 10 to 17 was the same as the content of the wavelength converting agent in the wavelength converting portions of Samples 1 to 8, respectively.
- the wavelength converting agent content of samples 9 and 18 was five times the wavelength converting agent content of the sample with the lowest wavelength converting agent content.
- the amount of the wavelength converting agent contained in the wavelength converting portion of Samples 1 to 18 is shown in the column of "content ratio" in Table 3 as a relative ratio.
- Samples 10 to 18 had the same configuration as samples 1 to 9, respectively, except that the optical element portion was not provided. That is, sample 10 differed from sample 1 in that no optical element portion was provided, and had the same configuration as sample 1 in other respects.
- Sample 11 differed from Sample 2 in that no optical element section was provided, and had the same configuration as Sample 2 in other respects.
- Sample 12 differed from Sample 3 in that no optical element portion was provided, and had the same configuration as Sample 3 in other respects.
- Sample 13 was different from Sample 4 in that no optical element portion was provided, and had the same configuration as Sample 4 in other respects.
- Sample 14 was different from Sample 5 in that no optical element portion was provided, and had the same configuration as Sample 5 in other respects.
- Sample 15 differed from Sample 6 in that no optical element portion was provided, and had the same configuration as Sample 6 in other respects.
- Sample 16 was different from Sample 7 in that no optical element portion was provided, and had the same configuration as Sample 7 in other respects.
- Sample 17 differed from Sample 8 in that no optical element portion was provided, and had the same configuration as Sample 8 in other respects.
- Sample 18 was different from Sample 9 in that no optical element portion was provided, and had the same configuration as Sample 9 in other respects.
- the first light control sheet and the second light control sheet were "BEF” (registered trademark) available from US 3M Company.
- the first light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the first direction.
- the second light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the second direction.
- the reflective polarizing plate was “DBEF” (registered trademark) available from 3M Company, USA.
- a sample with an uneven surface due to the optical element portion could change the color of the light-emitting surface more than a sample without an optical element portion containing the same amount of wavelength conversion agent. From this point, it was thought that the uneven surface of the optical element part promotes the circulation of primary light, improves the utilization efficiency of the wavelength conversion agent, and reduces the usage amount of the wavelength conversion agent. In addition, by reducing the transmission internal haze of the wavelength conversion sheet, unevenness in brightness and unevenness in color can be made inconspicuous using a smaller amount of the wavelength conversion agent. From this point, it was thought that the circulation of primary light would be promoted by reducing the transmission internal haze, the efficiency of utilization of the wavelength conversion agent could be improved, and the usage amount of the wavelength conversion agent could be reduced.
- FIG. 28 is a longitudinal sectional view showing one specific example of the surface light source device 20 in the fourth aspect.
- the surface light source device 20 shown in FIG. 28 can be applied to the display device 10 of FIG.
- the fourth mode differs from the third mode in that the optical member 30 includes an optical sheet S70 in addition to the selective transmission sheet 40 and the wavelength conversion sheet 60.
- FIG. The fourth aspect may be configured identically to the third aspect except for the optical sheet S70.
- FIG. 28 is a longitudinal sectional view showing one specific example of the surface light source device 20 in the fourth aspect.
- the surface light source device 20 in the fourth aspect may include, as main components, a light source 23 and an optical laminate 21 that adjusts the optical path of the light emitted from the light source 23.
- the optical laminate 21 may include optical members 30 .
- the optical layered body 21 and the optical member 30 may face the light source 23 .
- the optical layered body 21 and the optical member 30 may be sheet-like members.
- the optical layered body 21 and the optical member 30 may face the light source 23 in their normal direction.
- the optical layered body 21 and the optical member 30 may be diffusion members that diffuse the light emitted from the light source 23 .
- the optical layered body 21 and the optical member 30 can effectively suppress in-plane variations in illuminance caused by the arrangement of the light sources 23 . Due to the diffusion in the optical layered body 21 and the optical member 30, the illuminance at each position on the light emitting side surface 30b of the optical member 30, or the illuminance on a virtual light receiving surface parallel to the light emitting side surface 30b located near the light emitting side surface 30b. The illumination intensity at each position can be effectively homogenized.
- the display device 10, the surface light source device 20, and the optical member 30 in the fourth aspect will be described below mainly with reference to specific examples shown in FIGS.
- the display panel 15 of the display device 10 may be configured in the same manner as the above-described display panel 15 described as the first mode.
- the light source substrate 22 of the surface light source device 20 may be configured in the same manner as the above-described light source substrate 22 described as the first mode.
- the optical laminate 21 may include the optical member 30 , the first light control sheet 81 , the second light control sheet 82 and the reflective polarizing plate 85 in order from the light source substrate 22 .
- the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85 are the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, respectively, described as the first mode. It may have the same configuration as the polarizing plate 85 .
- the optical member 30 includes a selective transmission sheet 40, a wavelength conversion sheet 60 and an optical sheet S70 in this order.
- the selective transmission sheet 40, the wavelength conversion sheet 60 and the optical sheet S70 are stacked in the third direction D3. That is, the third direction D3 is the lamination direction of the selective transmission sheet 40, the wavelength conversion sheet 60, and the optical sheet S70.
- the wavelength conversion sheet 60 is positioned between the selective transmission sheet 40 and the optical sheet S70.
- the selective transmission sheet 40 is positioned between the wavelength conversion sheet 60 and the light source substrate 22 in the third direction D3.
- the optical sheet S70 is positioned between the wavelength conversion sheet 60 and the display panel 15 in the third direction D3.
- the selective transmission sheet 40, the wavelength conversion sheet 60 and the optical sheet S70 are sheet-shaped members extending in the first direction D1 and the second direction D2.
- the selective transmission sheet 40 forms the light entrance side surface 30a of the optical member 30.
- the optical sheet S70 constitutes the light exit side surface 30b of the optical member 30.
- the selective transmission sheet 40 and the wavelength conversion sheet 60 may be bonded to each other, may be simply in contact and not bonded, or may be separated from each other.
- the wavelength conversion sheet 60 and the optical sheet S70 may be bonded to each other, may be simply in contact and not bonded, or may be separated from each other.
- the optical member 30 may include the light diffusion sheet 50 as in the first aspect.
- the first surface 50a of the light diffusion sheet 50 may constitute the light incident side surface 30a.
- the selectively permeable sheet 40 includes a selectively permeable portion 45 .
- the reflectance and transmittance of the selective transmission portion 45 change depending on the incident angle.
- the selective transmission portion 45 has its transmission characteristics adjusted so that the transmittance changes according to the incident angle.
- the selective transmission portion 45 has its reflection characteristics adjusted so that the reflectance changes according to the incident angle.
- the selective transmission sheet 40 and the selective transmission section 45 may be configured in the same manner as the above-described selective transmission sheet 40 and selective transmission section 45 described as the first mode, respectively.
- the selective transmission sheet 40 and the selective transmission section 45 may be configured in the same manner as the above-described selective transmission sheet 40 and selective transmission section 45 described as the second mode.
- the selective transmission sheet 40 and the selective transmission section 45 may be configured in the same manner as the above-described selective transmission sheet 40 and selective transmission section 45 described as the third mode.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 have incident angle dependency.
- the transmittance of the selective transmission portion 45 and the reflectance of the selective transmission portion 45 change according to the incident angle.
- the transmission characteristics and reflection characteristics of the selective transmission portion 45 may have wavelength dependence.
- the transmittance of the selective transmission portion 45 and the reflectance of the selective transmission portion 45 may change according to the wavelength.
- the wavelength conversion sheet 60 contains a wavelength conversion agent 67.
- the wavelength converting agent 67 absorbs primary light and emits secondary light with a different wavelength than the primary light.
- the wavelength conversion sheet 60 includes a first surface 60a and a second surface 60b.
- the first surface 60a faces the second side that is the light source side in the third direction D3.
- the second surface 60b faces the first side that is the viewer side in the third direction D3.
- the first surface 60a and the second surface 60b are parallel flat surfaces.
- the first surface 60a and the second surface 60b are orthogonal to the third direction D3.
- both the first surface 60a and the second surface 60b may be flat surfaces. In the fourth aspect, neither the first surface 60 a nor the second surface 60 b may include the uneven surface 61 . As will be described later, the optical sheet S70 includes an uneven surface 71 that can function similarly to the uneven surface 61 . 4th aspect WHEREIN: The wavelength conversion sheet 60 does not need to contain the optical element part 70. FIG. An optical sheet S70, which will be described later, may be configured in the same manner as the optical element portion 70. FIG.
- the wavelength conversion sheet 60 includes a first barrier layer 63, a wavelength conversion section 65 and a second barrier layer 64 in this order.
- the first barrier layer 63, the wavelength converting section 65 and the second barrier layer 64 are stacked in this order in the third direction D3.
- the first barrier layer 63, the wavelength conversion section 65, and the second barrier layer 64 are arranged in this order from the second side to the first side in the third direction D3.
- the 1st barrier layer 63, the wavelength conversion part 65, and the 2nd barrier layer 64 are sheet-shaped.
- the first barrier layer 63, the wavelength conversion section 65 and the second barrier layer 64 extend in the first direction D1 and the second direction D2.
- the first barrier layer 63 may be the same as the first barrier layer 63 described above as the first mode.
- the first barrier layer 63 may be the same as the first barrier layer 63 described above as the second aspect.
- the first barrier layer 63 may be the same as the first barrier layer 63 described above as the third aspect.
- the wavelength conversion section 65 may be the same as the wavelength conversion section 65 described above as the first mode.
- the wavelength conversion section 65 may be the same as the wavelength conversion section 65 described above as the second mode.
- the wavelength conversion section 65 may be the same as the wavelength conversion section 65 described above as the third mode.
- the second barrier layer 64 may be the same as the second barrier layer 64 described above as the first aspect.
- the second barrier layer 64 may be the same as the second barrier layer 64 described above as the second embodiment.
- the second barrier layer 64 may be the same as the second barrier layer 64 described above as the third aspect.
- the wavelength conversion section 65 may contain a light scattering component that scatters transmitted light.
- the light scattering component may be dispersed within the matrix portion 66 .
- Examples of light-scattering components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the transmission haze of the wavelength conversion sheet 60 can be adjusted by the type and content of the light scattering component.
- the optical sheet S70 includes a first surface 70a and a second surface 70b.
- the first surface 70a faces the second side that is the light source side in the third direction D3.
- the second surface 70b faces the first side that is the viewer side in the third direction D3.
- the optical sheet S ⁇ b>70 includes an uneven surface 71 .
- the first surface 70 a includes an uneven surface 71 .
- the uneven surface 71 faces the wavelength conversion sheet 60 .
- the second surface 70b may include a flat surface.
- the illustrated second surface 70b is entirely flat.
- the second surface 70b may be a surface perpendicular to the third direction D3.
- the optical sheet S70 is positioned between the wavelength conversion sheet 60 and the first light control sheet 81 described later in the third direction D3.
- the optical sheet S70 may be configured in the same manner as the optical element section 70 in the third aspect. That is, the optical sheet S ⁇ b>70 may include the body portion 72 and the plurality of unit optical elements 75 similarly to the optical element portion 70 .
- the body portion 72 of the optical sheet S70 may be configured in the same manner as the body portion 72 of the optical element portion 70 in the third aspect.
- the unit optical elements 75 of the optical sheet S70 may be configured in the same manner as the unit optical elements 75 of the optical element section 70 in the third aspect.
- the optical sheet S70 includes a plurality of unit optical elements 75 each formed as a convex portion 73 or a concave portion 74.
- the unit optical element 75 is an element that changes the traveling direction of light by refraction, reflection, or the like.
- the unit optical element 75 is a concept including elements called unit shaped elements, unit prisms, and unit lenses.
- the unit optical element 75 directly faces the wavelength conversion sheet 60 .
- An uneven surface (prism surface) 71 is formed by the unit optical element 75 .
- the optical sheet S70 shown in FIG. 30 includes a sheet-like main body portion 72 and a plurality of convex portions 73 provided on the main body portion 72 .
- a plurality of convex portions 73 may be provided adjacent to each other without gaps.
- the optical sheet S70 shown in FIG. 31 includes a body portion 72 provided with a plurality of concave portions 74 on the surface facing the wavelength conversion sheet 60 in the third direction D3.
- the plurality of recesses 74 may be provided adjacent to each other without any gaps.
- the unit optical element 75 has an element surface 76 inclined with respect to the third direction D3.
- a unit optical element 75 is defined by this element surface 76 .
- the concave-convex surface (prism surface) 71 of the optical sheet S70 is composed of element surfaces (element prism surfaces) 76 of unit optical elements (unit prisms) 75 .
- the optical characteristics of the uneven surface 71 are affected by the inclination angles of the element surfaces 76 of the unit optical elements 75 . Therefore, the cross-sectional shape of the unit optical element 75 can be appropriately adjusted based on the optical properties required for the surface light source device 20 and the optical member 30 .
- the inclination angles of a plurality of element surfaces 76 included in one unit optical element 75 may be different from each other or may be the same.
- the optical sheet S70 may include unit optical elements 75 that differ in at least one of shape and orientation, or may include only unit optical elements 75 that are the same as each other.
- the optical sheet S ⁇ b>70 may include both the unit optical elements 75 as the convex portions 73 and the unit optical elements 75 as the concave portions 74 .
- the element surfaces (element prism surfaces) 76 may be somewhat curved.
- the unit optical element 75 may have the outer shape of a portion of a sphere such as a hemisphere, or the outer shape of a portion of a spheroid.
- a plurality of unit diffusion elements 75 may be arranged two-dimensionally.
- the element surfaces 76 of the unit optical elements 75 included in the optical sheet S70 face various directions.
- the optical sheet S70 can guide light in various directions by the two-dimensionally arranged unit optical elements 75 .
- light can be guided in a plurality of non-parallel directions, and the in-plane distribution of illuminance can be effectively uniformed.
- Each unit optical element 75 may be configured rotationally symmetrical about an axis parallel to the third direction D3.
- each unit optical element 75 may be configured with 3-fold, 4-fold, or 6-fold symmetry about an axis parallel to the third direction D3.
- the plurality of unit optical elements 75 may be arranged irregularly or may be arranged regularly. By regularly arranging the plurality of unit optical elements 75, the design of the optical sheet S70 can be facilitated. By regularly arranging the plurality of unit optical elements 75, it becomes easy to spread the unit optical elements 75 without gaps.
- the dimensions and arrangement pitch of the unit optical elements 75 may be the same as those in other embodiments.
- the multiple unit optical elements 75 are arranged in a square arrangement.
- the plurality of unit optical elements 75 are arranged at a constant pitch in the first direction D1.
- the plurality of unit optical elements 75 are also arranged at a constant pitch in the second direction D2.
- the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 may be the same or different.
- the plurality of unit optical elements 75 may be laid out without gaps. In the illustrated example, the arrangement pitch in the first direction D1 and the arrangement pitch in the second direction D2 are the same.
- the unit optical elements 75 may be arranged in directions inclined in the first direction D1 and the second direction D2.
- the plurality of unit optical elements 75 are arranged at a constant pitch in two directions inclined by ⁇ 45° with respect to the first direction D1.
- the arrangement of FIG. 32C can be applied to the unit optical element 75 shown in FIG. 32B.
- the element surface 76 faces in two directions that are inclined by ⁇ 45° with respect to the first direction D1, and the light can be spread in these two directions.
- the optical sheet S70 shown in FIGS. 30 to 32C can be produced by embossing or resin molding.
- the optical sheet S70 including the unit optical elements 75 may be bonded to the wavelength conversion sheet 60 and the first light control sheet 81 via a bonding layer containing an adhesive or an adhesive.
- the selective transmission function of the selective transmission portion 45 can suppress in-plane variations in brightness according to the arrangement of the light sources 23 . Thereby, the illuminance at each position on the second surface 40b of the selective transmission sheet 40 can be effectively uniformed.
- the wavelength conversion sheet 60 includes a first barrier layer 63, a wavelength conversion section 65, and a second barrier layer 64 from the second side which is the light source side in the third direction D3.
- the wavelength converting portion 65 contains a wavelength converting agent 67. As shown in FIG. Lights L 291 and L 292 traveling through the wavelength converting portion 65 can collide with the wavelength converting agent 67 .
- the wavelength conversion agent 67 absorbs the primary light LA emitted from the light source 23 and emits secondary light LB with a different wavelength.
- the wavelength converting portion 65 includes a first converting agent 67A and a second converting agent 67B.
- the first conversion agent 67A absorbs a portion L291 of the blue primary light LA and emits green first secondary light LB1.
- the second conversion agent 67B absorbs a portion L292 of the blue primary light LA and emits a red second secondary light LB2.
- the light L284 (see FIG. 28) transmitted through the selective transmission sheet 40 travels in a direction greatly inclined with respect to the third direction D3 due to the transmission characteristics of the selective transmission portion 45. Therefore, as shown in FIG. 29, the lights L291, L292, and L293 traveling through the wavelength conversion sheet 60 tend to travel in directions greatly inclined with respect to the third direction D3. Along with this, the optical path length of the light L284 in the wavelength conversion section 65 becomes longer. Therefore, it becomes easier for the light to enter the wavelength conversion agent 67 in the wavelength conversion sheet 60 . As a result, since the wavelength conversion agent 67 can be used efficiently, the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be reduced.
- the traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling directions of the primary lights LA, L291, L292 before being absorbed by the wavelength converting agent 67.
- the secondary light LB is emitted from the wavelength conversion agent 67 over a wide angular range.
- the angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the second surface 60b of the wavelength conversion sheet 60 .
- Most of the secondary light LB emitted from the wavelength conversion agent 67 passes through the flat second surface 60 b and exits from the wavelength conversion sheet 60 .
- part L293 of the primary light LA does not enter the wavelength conversion agent 67, but enters the second surface 60b.
- a part of such light L293 can also pass through the flat second surface 60b and be emitted from the wavelength conversion sheet 60.
- the light L285 (see FIG. 28) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 is emitted from the wavelength conversion sheet 60 to the first side in the third direction D3. do.
- the lights L285 and L301 transmitted through the wavelength conversion sheet 60 travel toward the optical sheet S70.
- the optical sheet S70 includes unit optical elements 75 on the second side, which is the light source side in the third direction D3.
- the unit optical element 75 provides an uneven surface 71 to the first surface 70a of the optical sheet S70.
- the light L301 changes its traveling direction somewhat due to refraction at the element surface 76 when entering the optical sheet S70.
- the light L285 can then exit the optical sheet S70 via the flat second surface 70b.
- the light L286 emitted from the optical sheet S70 passes through the first light control sheet 81, the second light control sheet 82, and the reflective polarizing plate 85, and is emitted from the light emitting side surface 30b of the optical member 30. In this manner, the light emitting side surface 30b of the optical member 30 emits light.
- the lights L285 and L331 incident on the second surface 70b of the optical sheet S70 can be reflected by the second surface 70b.
- Lights L287 and L331 reflected by the second surface 70b travel to the second side in the third direction D3.
- Such light can turn around in the traveling direction in the third direction D3 by being reflected by any interface, for example, the surface of the reflective layer 27, and can enter the wavelength conversion sheet 60 again.
- Lights L287 and L331 reflected by the second surface 70b of the optical sheet S70 travel in the first direction D1 and the second direction D2 orthogonal to the third direction D3. That is, the lights L287 and L331 leave the light source 23 in a direction orthogonal to the third direction D3. Therefore, by utilizing the reflection on the second surface 70b, it is possible to effectively suppress in-plane variations in brightness due to the arrangement of the light source 23.
- the optical sheet S70 can reinforce or complement the optical characteristics of the selective transmission portions 45 having the incident angle dependence, and sufficiently uniform the in-plane distribution of the illuminance.
- the primary light LA can be selectively reflected at a very high reflectance on the second surface 70b.
- the primary light LA (see FIG. 28) of the light L285 transmitted through the wavelength conversion sheet 60 maintains its traveling direction in a direction greatly inclined with respect to the third direction D3, similarly to when it is emitted from the selective transmission sheet 40. can.
- the traveling directions of the lights LA and L285 are further inclined with respect to the third direction D3 due to refraction on the second surface 60b of the wavelength conversion sheet 60.
- the first surface 70a of the optical sheet S70 includes an uneven surface 71.
- the optical sheet S70 includes a plurality of unit optical elements 75.
- a unit optical element 75 as a convex portion 73 or a concave portion 74 includes a plurality of element surfaces 76 .
- the plurality of element surfaces 76 constitute the uneven surface 71 of the first surface 70a.
- the light L331 as the primary light LA incident on the optical sheet S70 travels in the element surface 76 forming the uneven surface 71 in the direction opposite to the traveling direction with respect to the third direction D3. Incident on the inclined element surface 76 is facilitated.
- the traveling direction of this light L331 is not greatly bent by refraction on the uneven surface 71 when incident on the optical sheet S70. That is, the primary light LA can maintain a traveling direction that is very greatly inclined with respect to the third direction D3 within the optical sheet S70.
- the incident angle ⁇ y on the flat second surface 70b of the optical sheet S70 increases.
- the primary light LA that has not been wavelength-converted by the wavelength conversion agent 67 is reflected at the second surface 70b with high reflectance. Furthermore, since the incident angle ⁇ y increases, the primary light LA can be totally reflected by the second surface 70b.
- the thickness of the optical sheet S70 is shown to be thin in order to facilitate understanding of the optical action regarding the optical path in the optical sheet S70. Further, in FIG. 33, the wavelength conversion sheet 60 is omitted assuming that the wavelength conversion sheet 60 does not change the optical path.
- the direction in which the secondary light LB is emitted from the wavelength conversion agent 67 does not depend on the direction of incidence on the wavelength conversion agent 67 . Therefore, the secondary light LB is diffused light and cannot be reflected at a high reflectance on the second surface 70b.
- the second surface 70b of the optical sheet S70 has a primary light It selectively reflects LA with high reflectance.
- a wavelength conversion sheet 60 containing a wavelength conversion agent 67 is positioned in the circulating optical path between the optical sheet S70 of the primary light LA and the light source substrate 22 . Therefore, the utilization efficiency of the wavelength conversion agent 67 can be improved, and the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be reduced.
- the element surface 76 orthogonal to the direction in which the peak luminance of the primary light LA is obtained is formed on the second surface 40b of the selective transmission sheet 40.
- An element surface 76 orthogonal to the direction in which the peak luminance of the primary light LA is obtained on the second surface 60b of the wavelength conversion sheet 60 may be used.
- the primary light LA is selectively reflected by the second surface 70b.
- the in-plane distribution of the illuminance caused by the primary light LA can be made sufficiently uniform.
- a wavelength conversion sheet 60 containing a wavelength conversion agent 67 is provided in the circulating optical path of the primary light LA between the optical sheet S70 and the light source substrate 22 in the third direction D3.
- the in-plane distribution of illuminance can be made sufficiently uniform, and color unevenness within the light emitting surface 20a can be suppressed.
- the utilization efficiency of the wavelength conversion agent 67 can be significantly improved, and the wavelength conversion agent 67 to the wavelength conversion portion 65
- the content can be greatly reduced.
- the thickness of the wavelength converting portion 65 can be reduced, and the thicknesses of the optical member 30, the optical laminate 21, and the surface light source device 20 in the third direction D3 can be reduced.
- the density of the wavelength conversion agent 67 in the wavelength conversion section 65 can be reduced.
- a barrier layer may not be provided on the side end face of the wavelength conversion portion 65 in some cases.
- the deterioration of the wavelength conversion agent 67 located near the side end surface progresses, and the color of the peripheral portion of the wavelength conversion portion 65 may change.
- the content of the wavelength converting agent 67 in the wavelength converting portion 65 can be reduced as described above. Therefore, the area ratio of the wavelength conversion agent 67 per unit area in the projection in the third direction D3 can be reduced. Accordingly, even when no barrier layer is provided on the side end surface of the wavelength conversion section 65, color change in the peripheral portion can be suppressed.
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film
- the transmittance of the selective transmission portion 45 which is a dielectric multilayer film, tends to increase with respect to light with a longer wavelength than the specific wavelength.
- the selective transmission of the selective transmission portion 45 which depends on the angle of incidence, becomes weaker with respect to light with a wavelength greater than the specific wavelength. Therefore, the selective transmission portion 45 cannot effectively exhibit the selective transmission property depending on the incident angle with respect to the secondary light LB having a wavelength longer than the specific wavelength. In other words, the selective transmission section 45 cannot reflect the secondary light LB similarly to the primary light LA.
- the primary light LA is sufficiently circulated between the optical member 30 and the light source substrate 22 to uniform the in-plane distribution of the illuminance
- the primary light It is preferable to convert LA into secondary light LB. That is, it is preferable to reduce the content of the wavelength conversion agent 67 in the selective transmission portion 45 in the circulating optical path also from the viewpoint of suppressing in-plane variations in brightness.
- uniformizing the in-plane distribution of illuminance caused by the primary light LA and reducing the density of the wavelength conversion agent 67 color unevenness can be effectively suppressed.
- the function of homogenizing the in-plane distribution of illuminance and the function of suppressing color unevenness by using an optical sheet including an uneven surface in combination with a selective transmission sheet having incident angle dependence are the same as those of the conventional wavelength conversion unit (wavelength conversion sheet ) was not sufficiently demonstrated.
- the usage amount of the wavelength converting agent cannot be reduced.
- the color of the light-emitting surface can be made white by using a large amount of the wavelength conversion agent, the color unevenness of the light-emitting surface cannot be sufficiently eliminated in some cases.
- a conventional wavelength converting portion contains a large amount of scattering agent along with the wavelength converting agent.
- the optical path length within the wavelength conversion section is ensured by containing a scattering agent.
- the amount of wavelength conversion agent used can be reduced to about half.
- a scattering agent is used to reduce the amount of the wavelength conversion agent used, thereby coping with the color change caused by the wavelength conversion agent.
- the primary light LA that passes through the selective transmission section and travels through the wavelength conversion sheet is diffused.
- the distribution of the traveling direction of the primary light LA according to the transmission characteristics of the selective transmission section is eliminated by the scattering agent of the wavelength conversion section. Therefore, the primary light LA diffusely transmitted through the wavelength conversion sheet 60 cannot be selectively reflected on the second surface of the optical sheet after entering the optical sheet. For this reason, it was considered that when a conventional wavelength conversion portion is used, the in-plane distribution of illuminance cannot be made sufficiently uniform even if the optical sheet is provided with an uneven surface corresponding to the transmission characteristics of the selective transmission portion.
- the amount of the wavelength conversion agent 67 used can be greatly reduced while The in-plane distribution of illuminance could be made sufficiently uniform, and color unevenness could be sufficiently suppressed.
- the transmission haze to 45% or less, the in-plane distribution of illuminance can be made sufficiently uniform while the usage amount of the wavelength conversion agent 67 is significantly reduced, and color unevenness can be effectively reduced. I was able to suppress it.
- the transmission haze may be 18% or less, 12% or less, 7% or less, and further. It may be 5% or less.
- the transmission haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA may be 1% or more. Even if this transmission haze is reduced to less than 1%, it is difficult to further reduce the usage amount of the wavelength conversion agent 67 . Therefore, from the viewpoint of color unevenness and illuminance uniformity, the transmission haze may be set to 1% or more.
- the transmission haze (%) of the wavelength conversion sheet 60 is a value measured in accordance with JIS K7136:2000 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory. That is, the transmission haze (%) is the ratio (%) of the diffuse transmittance to the total light transmittance.
- the “light having a wavelength different from that of the primary light LA” is as described in the third aspect, and is other than light having a wavelength capable of exciting the wavelength conversion agent 67 contained in the wavelength conversion sheet 60 to be measured. means the light of
- the primary light LA is absorbed by the wavelength conversion agent 67 .
- the wavelength conversion agent 67 emits the secondary light LB in a direction irrelevant to the direction of incidence of the primary light LA.
- the degree of the scattering function caused by the scattering agent of the wavelength conversion sheet 60 can be evaluated more accurately. That is, by limiting the wavelength of the light used for measurement, the degree of diffusion of the primary light LA just before it enters the uneven surface 71 can be evaluated with high accuracy. Therefore, "light having a wavelength different from that of the primary light LA" is used for measuring the transmission haze.
- the usage amount of the wavelength conversion agent 67 can be reduced.
- the transmission haze (%) when all the light from the light source of the above-mentioned haze meter is used for measurement can also
- the wavelength conversion sheet 60 capable of reducing the amount is distinguished from the conventional wavelength conversion sheet, and serves as an indicator.
- the transmission haze (% ), the usage amount of the wavelength conversion agent 67 can be greatly reduced, and the in-plane distribution of illuminance can be made sufficiently uniform.
- the transmission haze to 50% or less, the amount of the wavelength conversion agent 67 used can be greatly reduced, the in-plane distribution of illuminance can be sufficiently uniformed, and color unevenness can be effectively reduced.
- the transmission haze may be set to 20% or less, 15% or less, or 10% or less, and further. It may be 5% or less.
- the transmission haze (%) of the wavelength conversion sheet 60 measured according to JIS K7136:2000 without limiting the measurement light from the built-in light source using a haze meter HM-150 manufactured by Murakami Color Research Laboratory is , 1% or more. Even if this transmission haze is reduced to less than 1%, it is difficult to further reduce the usage amount of the wavelength conversion agent 67 . Therefore, from the viewpoint of color unevenness and illuminance uniformity, the transmission haze may be set to 1% or more.
- the difference between the transmission haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA and the normal transmission haze (%) measured without limiting the measurement light from the built-in light source of the haze meter It may be 5% or less, or 3% or less.
- the difference between the transmission haze (%) of the wavelength conversion sheet 60 for light with a wavelength different from that of the primary light LA and the normal transmission haze (%) measured without limiting the measurement light from the built-in light source of the haze meter is 0. % or more. According to such an example, the wavelength conversion agent 67 can be sufficiently reduced.
- the reflection on the second surface 70b of the optical sheet S70 may be total reflection.
- the formula (XA) which is the total reflection condition using the incident angle ⁇ y (°) to the second surface 70b, may hold.
- np ⁇ Sin ⁇ y ⁇ 1 Formula (XA) "np" in the formula (XA) is the refractive index of the portion forming the element surface 76 of the optical sheet S70. Therefore, “np” may be the refractive index of the portion that constitutes the unit optical element 75 .
- the inclination angle ⁇ p of the element surface 76 may be determined as follows so as not to hinder the light traveling toward the second surface 70b at the incident angle that satisfies the formula (XA).
- sin ⁇ 1 (1/np) ⁇ 90 ⁇ p (XX) ⁇ p (°) in the formula (XX) is the angle (°) between the element plane 76 and the plane perpendicular to the third direction D3.
- the formula (XX) is satisfied, light traveling in a direction inclined at an angle equal to or greater than the critical angle (°) for total reflection with respect to the third direction D3 is incident on the second surface 70b without being incident on the element surface 76. can promote With such a setting, the light circulation between the optical sheet S70 and the light source substrate 22 is promoted, and the in-plane distribution of illuminance can be effectively uniformed.
- ⁇ 1 (°) in the formula (XC) is the incident angle (°) of the light L331 with respect to the element surface 76 on which the light L331 is incident.
- ⁇ 2 (°) in the formula (XC) is the refraction angle (°) of the light L331 at the element surface 76 through which the light L331 passes. That is, ⁇ 2 (°) is the angle between the normal direction to the element surface 76 and the traveling direction of light after refraction at the element surface 76 .
- the light traveling angle ⁇ x (°) used in the formula (XE) is applied to the selective transmission portion 45 at an incident angle at which the transmittance of light of a specific wavelength in the selective transmission portion 45 is 1/2 of the maximum value.
- the first specific angle ⁇ x1 (°) may be the angle (°) between the peak emission direction of the incident light from the selective transmission sheet 40 and the third direction D3.
- the incident angle at which the transmittance is 1/2 of the maximum value is set to be smaller than the incident angle at which the transmittance is at the maximum value.
- many of the traveling directions of light emitted from the selective transmission sheet 40, transmitted through the wavelength conversion sheet 60 while maintaining the traveling direction, and directed toward the optical sheet S70 are different from the third direction D3.
- the direction is inclined by an angle equal to or greater than the first specific angle ⁇ x1. Therefore, when the following formula (XF) using the first specific angle ⁇ x1 is satisfied, most of the light directed toward the optical sheet S70 is totally reflected by the optical sheet S70. As a result, when the formula (XF) is satisfied, light circulation between the optical sheet S70 and the light source substrate 22 can be promoted, and the in-plane distribution of illuminance can be effectively uniformed.
- the inclination angle ⁇ p of the element surface 76 is preferably 16° or more.
- the light traveling angle ⁇ x (°) used in the formula (XE) is set to the incident angle at which the transmittance of light of a specific wavelength in the selective transmission portion 45 is 1/10 of the maximum value.
- the second specific angle ⁇ x2 (°) may be the angle (°) between the peak emission direction of the light incident on 45 from the selective transmission sheet 40 and the third direction D3.
- the incident angle at which the transmittance is 1/10 of the maximum value is smaller than the incident angle at which the transmittance is at the maximum value.
- the light traveling at the second specific angle ⁇ x2 is light with a very small incident angle among the incident lights that enter the optical sheet S70 after passing through the wavelength conversion sheet 60 while maintaining the traveling direction.
- the inclination angle ⁇ p of the element surface 76 is preferably 30° or more.
- the light traveling angle ⁇ x (°) used in the formula (XE) is a third specific angle ⁇ x3 may be According to this example, of the light incident on the optical sheet S70 in the surface light source device 20 actually used, the light with a relatively small incident angle satisfies the total reflection condition on the second surface 70b. Therefore, when the following formula (XH) using the third specific angle ⁇ x3 is satisfied, light circulation between the optical sheet S70 and the light source substrate 22 can be promoted, and the in-plane distribution of illuminance can be effectively uniformed. can.
- the third specific angle ⁇ x3 is specified from the luminance angular distribution on the second surface 40 b of the selective transmission sheet 40 .
- the luminance angular distribution light is emitted from the light source 23 in a state in which the surface light source device 20 is removed from the constituent elements on the first side, which is closer to the observer in the third direction D3 than the selective transmission sheet 40, and the second surface 40b Distribution of luminance in each direction measured above.
- An example of this angular distribution of brightness is shown in FIG. 25 described above.
- the half-value angle in the luminance angle distribution is the minimum value of the magnitude (absolute value) of the angle between the third direction D3 and the direction in which half the peak luminance is obtained in the luminance angle distribution.
- the formulas (XF), (XG) and (XH) need not be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76, and if this condition is satisfied over 50% or more of the element surface 76,
- the in-plane distribution of illuminance can be made uniform.
- the inclination angle ⁇ p in the area of 70% or more of the element surface 76, more preferably the inclination angle ⁇ p in the area of 80% or more of the element surface 76 is expressed by formulas (XF), (XG) and (XH). It is filled.
- the conditions for total reflection described above are the conditions for the light L331 shown in FIG.
- This light L331 passes through one element surface 76 and travels through the optical sheet S70.
- This light L331 enters the second surface 70b without entering the other element surface 76.
- the light L332 that has passed through one element surface 76 is incident on another element surface 76 that faces the one element surface 76 .
- This light L332 can be totally reflected by another element surface 76 and enter the second surface 70b at a small incident angle. The reflectance of this light L332 on the second surface 70b is reduced.
- the angle between the traveling direction of the light traveling in the unit optical element 75 and the third direction D3 is It may be less than or equal to the angle between 76 and the third direction D3.
- Equation (XI) which is obtained by rewriting equation (XI) in consideration of equations (XB) to (XD) described above, may be satisfied.
- the angles and refractive indices used in formulas (XI) and (XJ) are as described above.
- the light traveling angle ⁇ x (°) used in the formula (XJ) may be the above-described first specific angle ⁇ x1 (°).
- the light traveling angle ⁇ x (°) used in the formula (XJ) may be the above-described second specific angle ⁇ x2 (°).
- the following formula (XL) using the second specific angle ⁇ x2 is satisfied, at least part of the light incident on the unit optical element 75 from the one element surface 76 is directed to another element facing the one element surface 76. It can be incident on the second surface 70 b without being incident on the surface 76 . Therefore, when the formula (XL) is satisfied, light circulation can be expected between the optical sheet S70 and the light source substrate 22, and in-plane variations in illuminance can be suppressed.
- the inclination angle ⁇ p of the element surface 76 is preferably 45° or less.
- the light traveling angle ⁇ x (°) used in the formula (XJ) is the direction in which the brightness of 1/10 of the peak brightness in the brightness angular distribution on the second surface 40b of the selective transmission sheet 40 is obtained.
- the third direction D3 may be a fourth specific angle ⁇ x4, which is the angle (°) between them.
- this luminance angular distribution light is emitted from the light source 23 in a state in which the surface light source device 20 is removed from the constituent elements on the first side, which is closer to the observer in the third direction D3 than the selective transmission sheet 40, and the second surface 40b Distribution of luminance in each direction measured above.
- An example of this luminance angular distribution is shown in FIG. 25 described above.
- the angle between the direction in which the luminance of 1/10 of the peak luminance in the luminance angular distribution is obtained and the third direction D3 is the direction in which the luminance of 1/10 of the peak luminance in the luminance angular distribution is obtained and the third direction. It is the minimum value of the magnitudes (absolute values) of the angles with D3.
- the expressions (XL) and (XM) do not need to be satisfied by the inclination angle ⁇ p over the entire area of the element surface 76, and if this condition is satisfied over 50% or more of the element surface 76, the illuminance will be superior. In-plane distribution can be made uniform.
- the inclination angle ⁇ p in the area of 70% or more of the element surface 76, more preferably the inclination angle ⁇ p in the area of 80% or more of the element surface 76, the expressions (XL) and (XM) are satisfied.
- the specific angle ⁇ x is preferably 35° or more in order to satisfy both the above formulas (XE) and (XJ).
- the inclination angle ⁇ p has an appropriate range within the range of the refractive index np of the portion forming the element surface 76 from 1.50 to 1.60. From this point, the angle formed by the traveling direction of the light traveling from the selective transmission sheet 40 to the wavelength conversion sheet 60 with respect to the third direction D3 may be 35° or more, 40° or more, or 45° or more.
- the transmittance of the selective transmission portion 45 with respect to the light of the specific wavelength emitted from the selective transmission sheet 40 at the emission angle of 0° or more and 35° or less in terms of absolute value is half or less of the maximum value of the transmittance of the selective transmission portion 45. , or 1/10 or less of the maximum transmittance of the selective transmission portion 45 .
- the optical member 30 includes the selective transmission sheet 40 including the selective transmission portion 45, the optical sheet S70 having the uneven surface 71, and the selective transmission sheet 40 and the optical sheet S70. and a wavelength conversion sheet 60 positioned therebetween.
- the selective transmission portion 45 has a transmission characteristic in which the transmittance changes according to the incident angle.
- the uneven surface 71 faces the wavelength conversion sheet 60 .
- the wavelength conversion sheet 60 includes a wavelength conversion agent 67 that absorbs primary light LA and emits secondary light LB.
- the secondary light LB has a wavelength different from that of the primary light LA.
- the transmission haze of the wavelength conversion sheet 60 for light having a wavelength different from that of the primary light LA may be 45% or less, and the transmission haze of the wavelength conversion sheet 60 may be 50% or less.
- the wavelength conversion sheet 60 includes a first surface 60a, a second surface 60b facing the first surface 60a, and a surface between the first surface 60a and the second surface 60b. and a wavelength converting agent 67 located at .
- the wavelength conversion agent 67 absorbs the primary light LA of a specific wavelength and emits the secondary light LB.
- the secondary light LB has a wavelength different from the specific wavelength.
- the transmission haze of the wavelength conversion sheet 60 for light having a wavelength different from that of the primary light LA may be 45% or less, and the transmission haze of the wavelength conversion sheet 60 may be 45% or less.
- the primary light LA transmitted through the selective transmission sheet 40 is transmitted through the wavelength conversion sheet 60 without being excessively diffused, and enters the optical sheet S70. Therefore, the primary light LA mainly travels in directions within a narrow angular range according to the transmission characteristics of the selective transmission portions 45 within the optical sheet S70.
- the secondary light LB emitted from the wavelength conversion agent 67 in the wavelength conversion sheet 60 travels in a direction irrelevant to the traveling direction of the primary light LA.
- the optical sheet S70 can selectively reflect the primary light LA with a high reflectance. That is, the primary light LA that has not been wavelength-converted in the wavelength conversion sheet 60 circulates between the optical sheet S70 and the light source substrate 22 .
- the in-plane distribution of the illuminance can be made sufficiently uniform.
- the wavelength conversion sheet 60 containing the wavelength conversion agent 67 is positioned in the circulating optical path of the primary light LA, the wavelength conversion agent 67 can be used efficiently. Therefore, the usage amount of the wavelength conversion agent 67 can be reduced. In other words, the content of the wavelength conversion agent 67 in the wavelength conversion portion 65 can be reduced.
- the in-plane distribution of illuminance caused by the primary light LA can be made sufficiently uniform, and accordingly color unevenness can be effectively suppressed.
- the thickness of the wavelength conversion sheet 60 and the thickness of the optical member 30 can be reduced.
- ⁇ Surface light source device Surface light source device samples X1 to X9 including a light source substrate and an optical member were produced.
- the surface light source devices of samples X1 to X9 had the configurations shown in FIGS. 3, 4, 18, 19, 28, 29, 30, 32A and 32B. That is, the surface light source devices of samples X1 to X9 included a light source substrate and an optical laminate.
- the optical laminate included an optical member, a first light control sheet, a second light control sheet and a reflective polarizing plate.
- the optical members included a selective transmission sheet, a wavelength conversion sheet, and an optical sheet.
- the light source substrate had a common configuration among the surface light source devices of samples X1 to X9.
- the selective transmission sheet, the optical sheet, the first light control sheet, the second light control sheet, and the reflective polarizing plate had common configurations among the surface light source devices of samples X1 to X9.
- the light source substrate On the light source substrate, blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction.
- a light-emitting diode that emits blue light with a central wavelength of 450 nm was used.
- the planar shape of this light-emitting diode was a rectangular shape of 0.2 mm ⁇ 0.4 mm.
- the light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction.
- the distance along the third direction D3 from the surface of each light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm.
- the reflective layer of the light source substrate was a white polyethylene terephthalate plate containing titanium oxide. The reflective layer had a reflectance of 95% and was diffusely reflective.
- the selectively permeable sheet contained only the selectively permeable portion.
- the selective transmission part was a dielectric multilayer film having the transmission characteristics of the first specific example shown in FIG.
- the first surface of the selective transmission sheet was a flat surface configured by the selective transmission portion.
- the second surface of the selective transmission sheet was a flat surface configured by the selective transmission portion.
- the first and second surfaces of the selectively permeable sheet were parallel to each other and perpendicular to the third direction.
- wavelength conversion sheet For the surface light source devices of Samples X1 to X9, wavelength conversion sheets were produced as follows.
- the wavelength conversion sheets of samples X1 to X9 included a first barrier layer, a wavelength conversion section and a second barrier layer.
- the first barrier layer and the second barrier layer had a common configuration among the surface light source devices of Samples X1 to X9.
- the first surface of the wavelength conversion sheet was a flat surface composed of the first barrier layer.
- the second surface of the wavelength conversion sheet was a flat surface composed of the second barrier layer. The first and second surfaces of the wavelength conversion sheet were parallel to each other and perpendicular to the third direction.
- the wavelength conversion part contained a base material and a wavelength conversion agent dispersed in the base material.
- the wavelength converting portion did not contain a scattering agent.
- the wavelength converting portion included a base material, and a wavelength converting agent and a scattering agent dispersed in the base material.
- the wavelength conversion portions of samples X1 to X9 differed from each other in the content of the scattering agent and the content of the wavelength conversion agent, and otherwise had the same configuration.
- the wavelength converting agents included a first converting agent that absorbs blue light from the light source and emits green light, and a second converting agent that absorbs blue light from the light source and emits red light.
- the content of the wavelength conversion agent was determined by ray tracing simulation using LightTools manufactured by Synopsys.
- the content of the wavelength conversion agent was determined in a simulation for the surface light source device of each sample so that the light emitting surface could emit white light.
- the content of the wavelength converting agent in sample X9 was five times the content of the wavelength converting agent in the sample with the lowest content of the wavelength converting agent.
- the amount of the wavelength converting agent contained in the wavelength converting portion of Samples X1 to X9 is shown in the column of "content ratio" in Table 4 as a relative ratio.
- optical sheet The optical sheets of the surface light source devices of Samples X1 to X9 had a common configuration. As shown in FIG. 32B, the optical sheets of samples X1 to X9 included unit optical elements in the shape of regular quadrangular pyramids. The first surface of the optical sheet was an uneven surface formed by the element surfaces of the unit optical elements. The second surface of the optical sheet was a flat surface perpendicular to the third direction. As shown in FIG. 32A, the plurality of unit optical elements were arranged without gaps at a pitch of 0.1 mm in the first direction and the second direction. The inclination angle ⁇ p of the element planes included in the optical sheet was set to 40°.
- the first light control sheet and the second light control sheet were "BEF” (registered trademark) available from US 3M Company.
- the first light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the first direction.
- the second light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the second direction.
- the reflective polarizing plate was “DBEF” (registered trademark) available from 3M Company, USA.
- Transmission haze was measured for samples X1 to X9.
- the haze was measured in accordance with JIS K7136:2000 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory.
- the measurement results of the transmission haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light are shown in the "Haze 1" column of Table 4.
- the light from the light source of the haze meter was passed through the bandpass filter and entered the sample.
- substantially no light with a wavelength of 500 nm or less was incident on the sample.
- Each sample was measured so that all the light from the light source of the haze meter was incident on the sample.
- a sample containing an optical sheet with an uneven surface could change the color of the light-emitting surface more than a sample without an optical sheet containing the same amount of wavelength conversion agent. From this point, it was thought that the uneven surface of the optical sheet promotes the circulation of primary light, improves the utilization efficiency of the wavelength conversion agent, and reduces the usage amount of the wavelength conversion agent. In addition, by reducing the transmission haze of the wavelength conversion sheet, unevenness in brightness and unevenness in color can be made inconspicuous using a smaller amount of the wavelength conversion agent. From this point, it was thought that by reducing the transmission haze of the wavelength conversion sheet, the circulation of the primary light is promoted, the utilization efficiency of the wavelength conversion agent can be improved, and the usage amount of the wavelength conversion agent can be reduced.
- the wavelength conversion sheet 60 includes the wavelength conversion section 65, the first barrier layer 63, and the second barrier layer 64
- the present invention is not limited to this example.
- one or more of the first barrier layer 63 and the second barrier layer 64 may be omitted.
- the wavelength conversion agent 67 may contain a coating layer with barrier properties.
- a spacer may be arranged between the light source substrate 22 and the optical member 30 in the surface light source device 20 of the present embodiment.
- a transparent resin layer may be provided between the light source substrate 22 and the optical member 30, and the resin layer may function as a spacer.
- the resin layer may be made of a thermoplastic resin.
- the resin layer may contain a light diffusion component. Examples of the light diffusing component include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the spacer may be joined to the light source substrate 22 or may be seamlessly formed integrally with the light source substrate 22 .
- the spacer may be bonded to the optical member 30 (the selective transmission sheet 40 in the illustrated example), or may be integrally formed seamlessly with the optical member 30 (the selective transmission sheet 40 in the illustrated example). good.
- the spacer may be bonded to both the light source substrate 22 and the optical member 30 (the selective transmission sheet 40 in the illustrated example), or may be bonded to the light source substrate 22 and the optical member 30 (the selective transmission sheet 40 in the illustrated example). Both may be integrally formed seamlessly.
- a functional layer functioning as a spacer may be bonded to at least one of the light source substrate 22 and the optical member 30 .
- the relative positions of the light source substrate 22 and the optical member 30 can be maintained, and warping of the light source substrate 22 and the warping of the optical member 30 can be suppressed.
- a spacer or a functional layer to at least one of the light source substrate 22 and the optical member 30, warping of the light source substrate 22 and warping of the optical member 30 can be suppressed more effectively.
- one or more of the first light control sheet 81, the second light control sheet 82 and the reflective polarizing plate 85 may be omitted from the optical laminate 21.
- the optical member 30 or the optical laminate 21 may further include other components.
- the optical member or optical laminate 21 may further include a light diffusion sheet that diffuses light.
- the light diffusion sheet may include a base material and a light diffusion component dispersed in the base material.
- the light diffusing component include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
- the light diffusion sheet may have unevenness on its surface.
- the light diffusion sheet may be positioned between the wavelength conversion sheet 60 and the first light control sheet 81 in the third direction D3.
- the wavelength conversion sheet 60 may be positioned between the light diffusion sheet and the selective transmission sheet 40 in the third direction D3.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
本発明は、光学部材、面光源装置、表示装置および波長変換シートに関する。 The present invention relates to optical members, surface light source devices, display devices and wavelength conversion sheets.
特許文献1(JP2013-519232A)に開示されているように、単色の光源を有する面光源装置が知られている。特許文献1の面光源装置は、波長変換剤を含有した蛍光層を含む。光源からの光が波長変換剤に衝突すると、波長変換剤は、光源からの光を吸収し異なる波長の光を放出する。十分な量の波長変換剤を蛍光層に含有させることによって、発光色を調節できる。
As disclosed in Patent Document 1 (JP2013-519232A), a surface light source device having a monochromatic light source is known. The surface light source device of
本開示は、波長変換剤の量を低減することを目的とする。 The present disclosure aims to reduce the amount of wavelength conversion agent.
本開示の一実施の形態は、次の[1]~[62]に関する。 An embodiment of the present disclosure relates to the following [1] to [62].
[1] 選択透過部を含む選択透過シートと、
前記選択透過シートと重ねられた波長変換シートと、を備え、
0°より大きい或る入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率は、0°の入射角で前記選択透過部に入射する前記特定波長の光についての前記選択透過部の透過率より大きく、
前記波長変換シートは、第1面と、前記第1面と対向する第2面と、を含み、
前記第1面および前記第2面の少なくとも一方は凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有する、光学部材。
[1] a selective transmission sheet including a selective transmission portion;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The transmittance of the selective transmission section for the light of the specific wavelength incident on the selective transmission section at an incident angle greater than 0° is the transmittance of the light of the specific wavelength incident on the selective transmission section at an incident angle of 0°. is greater than the transmittance of the selective transmission portion of
The wavelength conversion sheet includes a first surface and a second surface facing the first surface,
at least one of the first surface and the second surface includes an uneven surface;
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
The optical member, wherein the secondary light has a wavelength different from that of the primary light.
[2] 前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第2面は前記凹凸面を含む、[1]の光学部材。
[2] the first surface is positioned between the selectively permeable sheet and the second surface;
The optical member according to [1], wherein the second surface includes the uneven surface.
[3] 前記選択透過シートは前記波長変換シートと接合している、[2]の光学部材。 [3] The optical member of [2], wherein the selective transmission sheet is joined to the wavelength conversion sheet.
[4] 前記選択透過シートと接合した光拡散シートを更に備え、
前記選択透過シートは、前記光拡散シートおよび前記波長変換シートの間に位置する、[2]又は[3]の光学部材。
[4] further comprising a light diffusion sheet joined to the selective transmission sheet,
The optical member of [2] or [3], wherein the selective transmission sheet is positioned between the light diffusion sheet and the wavelength conversion sheet.
[5] 前記波長変換シートは、前記波長変換剤を含む波長変換部と、前記波長変換部と重ねられた第1バリア層および第2バリア層と、前記第2バリア層と重ねられ前記凹凸面を含む光学要素部と、を含み、
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第2バリア層は前記波長変換部および前記光学要素部の間に位置する、[2]~[4]のいずれかの光学部材。
[5] The wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, a first barrier layer and a second barrier layer superimposed on the wavelength conversion section, and the uneven surface superposed on the second barrier layer an optical element portion including
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
The optical member according to any one of [2] to [4], wherein the second barrier layer is positioned between the wavelength conversion section and the optical element section.
[6] 前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第1面は前記凹凸面を含む、[1]の光学部材。
[6] The first surface is positioned between the selectively permeable sheet and the second surface,
The optical member according to [1], wherein the first surface includes the uneven surface.
[7] 0°の入射角で前記選択透過部に入射する前記特定波長の光についての前記選択透過部の透過率は5%以下である、[6]の光学部材。 [7] The optical member according to [6], wherein the selective transmission portion has a transmittance of 5% or less with respect to the light of the specific wavelength incident on the selective transmission portion at an incident angle of 0°.
[8] 0°の出射角で前記選択透過シートから出射する前記特定波長の光についての前記選択透過部の透過率は5%以下である、[6]又は[7]の光学部材。 [8] The optical member according to [6] or [7], wherein the transmittance of the selective transmission portion with respect to the light of the specific wavelength emitted from the selective transmission sheet at an emission angle of 0° is 5% or less.
[9] 絶対値で0°以上35°以下の出射角で前記選択透過シートから出射する前記特定波長の光についての前記選択透過部の透過率は、前記選択透過部の透過率の最大値の半分以下である、[6]~[8]のいずれかの光学部材。 [9] The transmittance of the selective transmission portion for the light of the specific wavelength emitted from the selective transmission sheet at an emission angle of 0° or more and 35° or less in absolute value is the maximum value of the transmittance of the selective transmission portion. The optical member according to any one of [6] to [8], which is half or less.
[10] 前記凹凸面を構成する要素面の傾斜角θp(°)および前記波長変換シートの前記要素面を構成する部分の屈折率npは、次の式を満たし、
sin-1(1/np)≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度である、[6]~[9]のいずれかの光学部材。
[10] The inclination angle θp (°) of the element surface that constitutes the uneven surface and the refractive index np of the portion that constitutes the element surface of the wavelength conversion sheet satisfy the following formula,
sin −1 (1/np)≦90−θp
The optical system according to any one of [6] to [9], wherein the tilt angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane. Element.
[11] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/2となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[6]~[10]のいずれかの光学部材。
[11] Inclination angle θp (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle θx (°) with respect to the incident direction to the wavelength conversion sheet satisfies
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value. The optical member according to any one of [6] to [10], wherein the angle between the emission direction and the lamination direction.
[12] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/10となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[6]~[11]のいずれかの光学部材。
[12] Inclination angle θp (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle θx (°) with respect to the incident direction to the wavelength conversion sheet satisfies
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value. The optical member according to any one of [6] to [11], wherein the angle between the emitting direction and the stacking direction.
[13] 前記波長変換剤は、前記一次光を吸収して第1二次光を放出する第1変換剤と、前記一次光を吸収して第2二次光を放出する第2変換剤と、を含み、
前記第2二次光の波長は前記第1二次光の波長よりも長く、
前記第1二次光の波長は前記一次光の波長よりも長く、
前記波長変換シートでの前記第2変換剤による変換効率は、前記波長変換シートでの前記第1変換剤による変換効率よりも大きい、[1]~[12]のいずれかの光学部材。
[13] The wavelength conversion agent includes a first conversion agent that absorbs the primary light and emits first secondary light, and a second conversion agent that absorbs the primary light and emits second secondary light. , including
the wavelength of the second secondary light is longer than the wavelength of the first secondary light;
the wavelength of the first secondary light is longer than the wavelength of the primary light;
The optical member according to any one of [1] to [12], wherein the conversion efficiency of the second conversion agent in the wavelength conversion sheet is higher than the conversion efficiency of the first conversion agent in the wavelength conversion sheet.
[14] 前記波長変換シートは、前記波長変換剤を含む波長変換部と、前記波長変換部と重ねられた第1バリア層および第2バリア層と、前記第1バリア層と重ねられ前記凹凸面を含む光学要素部と、を含み、
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第1バリア層は前記波長変換部および前記光学要素部の間に位置する、[6]~[13]のいずれかの光学部材。
[14] The wavelength conversion sheet includes: a wavelength conversion section containing the wavelength conversion agent; a first barrier layer and a second barrier layer superimposed on the wavelength conversion section; an optical element portion including
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
The optical member according to any one of [6] to [13], wherein the first barrier layer is positioned between the wavelength conversion section and the optical element section.
[15] 光拡散シートと、
前記光拡散シートと重ねられた波長変換シートと、を備え、
前記波長変換シートは、第1面と、前記第1面と対向する第2面と、を含み、
前記第1面は、前記光拡散シートと前記第2面との間に位置し、
前記第2面は凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有する、光学部材。
[15] a light diffusion sheet;
and a wavelength conversion sheet superimposed on the light diffusion sheet,
The wavelength conversion sheet includes a first surface and a second surface facing the first surface,
The first surface is located between the light diffusion sheet and the second surface,
the second surface includes an uneven surface;
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
The optical member, wherein the secondary light has a wavelength different from that of the primary light.
[16] 前記一次光と異なる波長の光についての前記波長変換シートの透過内部ヘイズは、45%以下である、[1]~[15]のいずれかの光学部材。 [16] The optical member according to any one of [1] to [15], wherein the transmission internal haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light is 45% or less.
[17] 前記波長変換シートの透過内部ヘイズは、50%以下である、[1]~[16]のいずれかの光学部材。 [17] The optical member according to any one of [1] to [16], wherein the transmission internal haze of the wavelength conversion sheet is 50% or less.
[18] 選択透過部を含む選択透過シートと、
前記選択透過シートと重ねられた波長変換シートと、を備え、
前記選択透過部は、入射角に応じて透過率が変化する透過特性を有し、
前記波長変換シートは凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記一次光と異なる波長の光についての前記波長変換シートの透過内部ヘイズは、45%以下である、光学部材。
[18] a selective transmission sheet including a selective transmission portion;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The wavelength conversion sheet includes an uneven surface,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the transmission internal haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
[19] 前記一次光と異なる波長の光についての前記波長変換シートの前記透過内部ヘイズは18%以下である、[18]の光学部材。 [19] The optical member according to [18], wherein the transmission internal haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light is 18% or less.
[20] 選択透過部を含む選択透過シートと、
前記選択透過シートと重ねられた波長変換シートと、を備え、
前記選択透過部は、入射角に応じて透過率が変化する透過特性を有し、
前記波長変換シートは凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記波長変換シートの透過内部ヘイズは、50%以下である、光学部材。
[20] a selective transmission sheet including a selective transmission part;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The wavelength conversion sheet includes an uneven surface,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the transmission internal haze of the wavelength conversion sheet is 50% or less.
[21] 前記波長変換シートの前記透過内部ヘイズは20%以下である、[20]の光学部材。 [21] The optical member according to [20], wherein the transmission internal haze of the wavelength conversion sheet is 20% or less.
[22] 前記波長変換シートの前記一次光と異なる波長の光についての透過内部ヘイズと、前記波長変換シートの透過内部ヘイズとの差は、5%以下である、[16]~[21]のいずれかの光学部材。 [22] The difference between the transmission internal haze of the wavelength conversion sheet for light of a wavelength different from the primary light and the transmission internal haze of the wavelength conversion sheet is 5% or less of [16] to [21]. any optical member;
[23] 前記波長変換シートは、第1面と、前記第1面と反対側の第2面と、を含み、
前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第1面は前記凹凸面を含む、[18]~[22]のいずれかの光学部材。
[23] The wavelength conversion sheet includes a first surface and a second surface opposite to the first surface,
the first surface is positioned between the selectively permeable sheet and the second surface;
The optical member according to any one of [18] to [22], wherein the first surface includes the uneven surface.
[24] 0°より大きい或る入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率は、0°の入射角で前記選択透過部に入射する前記特定波長の光についての前記選択透過部の透過率より大きい、[23]の光学部材。 [24] The transmittance of the selective transmission portion for light of a specific wavelength incident on the selective transmission portion at an incident angle greater than 0° is the specific wavelength incident on the selective transmission portion at an incident angle of 0°. is greater than the transmittance of the selective transmission portion for light of [23].
[25] 前記凹凸面を構成する要素面の傾斜角θp(°)および前記波長変換シートの前記要素面を構成する部分の屈折率npは、次の式を満たし、
sin-1(1/np)≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度である、[23]又は[24]の光学部材。
[25] The inclination angle θp (°) of the element surface that constitutes the uneven surface and the refractive index np of the portion that constitutes the element surface of the wavelength conversion sheet satisfy the following formula,
sin −1 (1/np)≦90−θp
The optical member according to [23] or [24], wherein the inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane.
[26] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/2となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[23]~[25]のいずれかの光学部材。
[26] Inclination angle θp (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle θx (°) with respect to the incident direction to the wavelength conversion sheet satisfies
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value. The optical member according to any one of [23] to [25], wherein the angle between the emitting direction and the stacking direction.
[27] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/10となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[23]~[26]のいずれかの光学部材。
[27] Inclination angle θp (°) of the element surface forming the uneven surface, refractive index np of the portion forming the element surface of the wavelength conversion sheet, and angle θx (°) with respect to the incident direction to the wavelength conversion sheet satisfies
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value. The optical member according to any one of [23] to [26], wherein the angle between the emitting direction and the stacking direction.
[28] 前記波長変換シートは、第1面と、前記第1面と反対側の第2面と、を含み、
前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第2面は前記凹凸面を含む、[18]~[22]のいずれかの光学部材。
[28] The wavelength conversion sheet includes a first surface and a second surface opposite to the first surface,
the first surface is positioned between the selectively permeable sheet and the second surface;
The optical member according to any one of [18] to [22], wherein the second surface includes the uneven surface.
[29] 0°の入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率は、0°より大きい或る入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率より大きい、[28]の光学部材。 [29] The transmittance of the selective transmission section for light of a specific wavelength incident on the selective transmission section at an incident angle of 0° is the transmittance of the specific wavelength incident on the selective transmission section at an incident angle greater than 0°. The optical member according to [28], wherein the transmittance of the selective transmission portion for light is greater than that of the selective transmission portion.
[30] 前記波長変換シートは、前記凹凸面を含む光学要素部を含み、
前記光学要素部は、複数の単位光学要素を含み、
各単位光学要素は、前記凹凸面を構成する要素面を含む、[1]~[29]のいずれかの光学部材。
[30] The wavelength conversion sheet includes an optical element portion including the uneven surface,
The optical element section includes a plurality of unit optical elements,
The optical member according to any one of [1] to [29], wherein each unit optical element includes an element surface forming the uneven surface.
[31] 前記波長変換シートは、前記波長変換剤を含む波長変換部と、前記波長変換部と重ねられた第1バリア層および第2バリア層と、前記第1バリア層と重ねられ前記凹凸面を含む光学要素部と、を含み、
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第1バリア層及び前記第2バリア層の一方が、前記波長変換部および前記光学要素部の間に位置する、[18]~[30]のいずれかの光学部材。
[31] The wavelength conversion sheet includes: a wavelength conversion section containing the wavelength conversion agent; a first barrier layer and a second barrier layer superimposed on the wavelength conversion section; an optical element portion including
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
The optical member according to any one of [18] to [30], wherein one of the first barrier layer and the second barrier layer is positioned between the wavelength converting section and the optical element section.
[32] 選択透過部を含む選択透過シートと、
凹凸面を有する光学シートと、
前記選択透過シート及び前記光学シートの間に位置する波長変換シートと、を備え、
前記選択透過部は、入射角度に応じて透過率が変化する透過特性を有し、
前記凹凸面は、前記波長変換シートに対面し、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記一次光と異なる波長の光についての前記波長変換シートの透過ヘイズは、45%以下である、光学部材。
[32] a selective transmission sheet including a selective transmission portion;
an optical sheet having an uneven surface;
a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The uneven surface faces the wavelength conversion sheet,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein a transmission haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
[33] 前記一次光と異なる波長の光についての前記波長変換シートの前記透過ヘイズは18%以下である、[32]の光学部材。 [33] The optical member according to [32], wherein the transmission haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light is 18% or less.
[34] 選択透過部を含む選択透過シートと、
凹凸面を有する光学シートと、
前記選択透過シート及び前記光学シートの間に位置する波長変換シートと、を備え、
前記選択透過部は、入射角度に応じて透過率が変化する透過特性を有し、
前記凹凸面は、前記波長変換シートに対面し、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記波長変換シートの透過ヘイズは、50%以下である、光学部材。
[34] a selective transmission sheet including a selective transmission portion;
an optical sheet having an uneven surface;
a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The uneven surface faces the wavelength conversion sheet,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the wavelength conversion sheet has a transmission haze of 50% or less.
[35] 前記波長変換シートの前記透過ヘイズは20%以下である、[34]の光学部材。 [35] The optical member of [34], wherein the transmission haze of the wavelength conversion sheet is 20% or less.
[36] 前記一次光と異なる波長の光についての前記波長変換シートの透過ヘイズと、前記波長変換シートの透過ヘイズとの差は、5%以下である、[32]~[35]のいずれかの光学部材。 [36] Any one of [32] to [35], wherein the difference between the transmission haze of the wavelength conversion sheet and the transmission haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light is 5% or less. optical member.
[37] 0°より大きい或る入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率は、0°の入射角で前記選択透過部に入射する前記特定波長の光についての前記選択透過部の透過率より大きい、[32]~[36]のいずれかの光学部材。 [37] The transmittance of the selective transmission section for light of a specific wavelength incident on the selective transmission section at an incident angle greater than 0° is the specific wavelength incident on the selective transmission section at an incident angle of 0°. The optical member according to any one of [32] to [36], wherein the transmittance of the selective transmission portion with respect to the light of
[38] 前記光学シートは、複数の単位光学要素を含み、
各単位光学要素は、前記凹凸面を構成する要素面を含む、[32]~[37]のいずれかの光学部材。
[38] The optical sheet includes a plurality of unit optical elements,
The optical member according to any one of [32] to [37], wherein each unit optical element includes an element surface forming the uneven surface.
[39] 前記波長変換シートは、前記波長変換剤を含む波長変換部と、前記波長変換部と重ねられた第1バリア層および第2バリア層と、を含み、
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置する、[32]~[38]のいずれかの光学部材。
[39] The wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, and a first barrier layer and a second barrier layer superimposed on the wavelength conversion section,
The optical member according to any one of [32] to [38], wherein the wavelength converting portion is positioned between the first barrier layer and the second barrier layer.
[40] 前記凹凸面を構成する要素面の傾斜角θp(°)および前記光学シートの前記要素面を構成する部分の屈折率npは、次の式を満たし、
sin-1(1/np)≦90-θp
前記傾斜角θp(°)は、前記選択透過シート、前記波長変換シート及び前記光学シートの積層方向に直交する面と、前記要素面との間の角度である、[32]~[39]のいずれかの光学部材。
[40] The inclination angle θp (°) of the element planes forming the uneven surface and the refractive index np of the portion forming the element planes of the optical sheet satisfy the following formula,
sin −1 (1/np)≦90−θp
[32] to [39], wherein the inclination angle θp (°) is an angle between the element plane and a plane orthogonal to the lamination direction of the selective transmission sheet, the wavelength conversion sheet, and the optical sheet. any optical member;
[41] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記光学シートの前記要素面を構成する部分の屈折率npおよび前記光学シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シート、前記波長変換シート及び前記光学シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/2となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[32]~[40]のいずれかの光学部材。
[41] The inclination angle θp (°) of the element planes forming the concave-convex surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle θx (°) with respect to the incident direction to the optical sheet are satisfies the following equation,
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane,
The angle θx (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value. The optical member according to any one of [32] to [40], wherein the angle between the emitting direction and the stacking direction.
[42] 前記凹凸面を構成する要素面の傾斜角θp(°)、前記光学シートの前記要素面を構成する部分の屈折率npおよび前記光学シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シート、前記波長変換シート及び前記光学シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/10となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、[32]~[41]のいずれかの光学部材。
[42] The inclination angle θp (°) of the element planes forming the concave-convex surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle θx (°) with respect to the incident direction to the optical sheet are satisfies the following equation,
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane,
The angle θx (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value. The optical member according to any one of [32] to [41], wherein the angle between the emitting direction and the stacking direction.
[43] 前記波長変換剤は、前記一次光を吸収して第1二次光を放出する第1変換剤と、前記一次光を吸収して第2二次光を放出する第2変換剤と、を含み、
前記第2二次光の波長は前記第1二次光の波長よりも長く、
前記第1二次光の波長は前記一次光の波長よりも長い、[1]~[42]のいずれかの光学部材。
[43] The wavelength conversion agent includes a first conversion agent that absorbs the primary light and emits first secondary light, and a second conversion agent that absorbs the primary light and emits second secondary light. , including
the wavelength of the second secondary light is longer than the wavelength of the first secondary light;
The optical member according to any one of [1] to [42], wherein the first secondary light has a longer wavelength than the primary light.
[44] [1]~[43]のいずれかの光学部材と、
前記光学部材に対面する光源と、を備える、面光源装置。
[44] an optical member according to any one of [1] to [43];
and a light source facing the optical member.
[45] [1]~[43]のいずれかの光学部材と、
前記光学部材に対面する反射層と、前記光学部材に入射する光を射出する光源と、を有する光源基板と、を備える、面光源装置。
[45] an optical member according to any one of [1] to [43];
A surface light source device comprising a light source substrate having a reflective layer facing the optical member and a light source for emitting light incident on the optical member.
[46] [6]~[31]のいずれかの光学部材と、
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/2の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。
[46] an optical member according to any one of [6] to [31];
a light source facing the optical member,
The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which half the luminance is obtained and the lamination direction.
[47] [6]~[31]のいずれかの光学部材と、
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。
[47] an optical member according to any one of [6] to [31];
a light source facing the optical member,
The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which luminance of 1/10 of luminance is obtained and the lamination direction.
[48] [32]~[42]のいずれかの光学部材と、
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記光学シートの前記要素面を構成する部分の屈折率npおよび前記光学シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シート、前記波長変換シート及び前記光学シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/2の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。
[48] an optical member according to any one of [32] to [42];
a light source facing the optical member,
The inclination angle θp (°) of the element planes forming the uneven surface, the refractive index np of the portions forming the element planes of the optical sheet, and the angle θx (°) with respect to the direction of incidence on the optical sheet are obtained by the following equations: The filling,
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which half the luminance is obtained and the lamination direction.
[49] [32]~[42]のいずれかの光学部材と、
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記光学シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シート、前記波長変換シート及び前記光学シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。
[49] an optical member according to any one of [32] to [42];
a light source facing the optical member,
The angle of inclination θp (°) of the element surface that constitutes the uneven surface, the refractive index np of the portion that constitutes the element surface of the optical sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula,
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is the angle between the plane perpendicular to the lamination direction of the selective transmission sheet, the wavelength conversion sheet and the optical sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which luminance of 1/10 of luminance is obtained and the lamination direction.
[50] 前記光学部材と重ねられた反射型偏光板を更に備え、
前記光学部材は、前記光源および前記反射型偏光板の間に位置する、[44]~[49]のいずれかの面光源装置。
[50] further comprising a reflective polarizing plate superimposed on the optical member;
The surface light source device according to any one of [44] to [49], wherein the optical member is positioned between the light source and the reflective polarizing plate.
[51] 前記光学部材と重ねられた光制御シートを更に備え、
前記光学部材は、前記光源および前記光制御シートの間に位置する、[44]~[49]のいずれかの面光源装置。
[51] further comprising a light control sheet superimposed on the optical member,
The surface light source device according to any one of [44] to [49], wherein the optical member is positioned between the light source and the light control sheet.
[52] 前記光学部材の前記光源基板に最も近接した部分と、前記光源基板と、が接合されている、[44]~[51]のいずれかの面光源装置。 [52] The surface light source device according to any one of [44] to [51], wherein the portion of the optical member closest to the light source substrate and the light source substrate are bonded.
[53] [44]~[52]のいずれかの面光源装置と、
前記面光源装置と重ねられた表示パネルと、を備える、表示装置。
[53] A surface light source device according to any one of [44] to [52];
A display device comprising: a display panel stacked on the surface light source device.
[54] 第1面と、
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記第1面および前記第2面の少なくとも一方を構成する光学要素部が設けられ、
前記光学要素部は複数の単位光学要素を含み、
前記第1面および前記第2面の前記少なくとも一方は、複数の単位光学要素によって構成された凹凸面を含み、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有する、波長変換シート。
[54] a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
An optical element portion that constitutes at least one of the first surface and the second surface is provided,
The optical element section includes a plurality of unit optical elements,
at least one of the first surface and the second surface includes an uneven surface configured by a plurality of unit optical elements;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
The wavelength conversion sheet, wherein the secondary light has a wavelength different from the specific wavelength.
[55] 前記第1面は、前記特定波長の光を放出する光源と前記第2面との間に位置し、
前記第2面は前記凹凸面を含む、[54]の波長変換シート。
[55] The first surface is located between the light source emitting light of the specific wavelength and the second surface,
The wavelength conversion sheet of [54], wherein the second surface includes the uneven surface.
[56] 前記第1面は、前記特定波長の光を放出する光源と前記第2面との間に位置し、
前記第1面は前記凹凸面を含む、[54]の波長変換シート。
[56] The first surface is located between the light source emitting light of the specific wavelength and the second surface,
The wavelength conversion sheet of [54], wherein the first surface includes the uneven surface.
[57] 0°より大きい或る入射角で入射する特定波長の光の透過率が0°の入射角で入射する前記特定波長の光の透過率より大きい選択透過部を含んだ選択透過シートと、重ねて用いられる、[54]~[56]のいずれかの波長変換シート。 [57] a selective transmission sheet including a selective transmission portion in which the transmittance of light of a specific wavelength incident at an incident angle greater than 0° is greater than the transmittance of light of the specific wavelength incident at an incident angle of 0°; , the wavelength conversion sheet according to any one of [54] to [56], which is used repeatedly.
[58] 前記一次光と異なる波長の光についての透過内部ヘイズは45%以下である、[54]~[57]のいずれかの波長変換シート。 [58] The wavelength conversion sheet according to any one of [54] to [57], wherein the transmission internal haze for light with a wavelength different from that of the primary light is 45% or less.
[59] 透過内部ヘイズは50%以下である、[54]~[58]のいずれかの波長変換シート。 [59] The wavelength conversion sheet according to any one of [54] to [58], which has a transmission internal haze of 50% or less.
[60] 第1面と、
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有し、
前記一次光と異なる波長の光についての透過ヘイズは、45%以下である、波長変換シート。
[60] a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
the secondary light has a wavelength different from the specific wavelength;
A wavelength conversion sheet, wherein a transmission haze of light having a wavelength different from that of the primary light is 45% or less.
[61] 第1面と、
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有し、
透過ヘイズは、50%以下である、波長変換シート。
[61] a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
the secondary light has a wavelength different from the specific wavelength;
A wavelength conversion sheet having a transmission haze of 50% or less.
[62] 0°より大きい或る入射角で入射する特定波長の光の透過率が0°の入射角で入射する前記特定波長の光の透過率より大きい選択透過部を含んだ選択透過シートと、重ねて用いられる、[60]又は[61]の波長変換シート。 [62] a selective transmission sheet including a selective transmission portion in which the transmittance of light of a specific wavelength incident at an incident angle greater than 0° is greater than the transmittance of light of the specific wavelength incident at an incident angle of 0°; , the wavelength conversion sheet of [60] or [61], which is used repeatedly.
本開示によれば、波長変換剤の量を低減できる。 According to the present disclosure, the amount of wavelength conversion agent can be reduced.
以下、図面を参照して本開示の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。一部の図において示された構成等は、他の図において省略され得る。また、一実施の形態について複数の態様を説明するが、以下の説明および図面において、複数の態様の間において同一に構成され得る部分には同一の符号を用いて、重複する説明を省略する。 An embodiment of the present disclosure will be described below with reference to the drawings. In addition, in the drawings attached to this specification, for the convenience of illustration and ease of understanding, the scale and the ratio of vertical and horizontal dimensions are appropriately changed and exaggerated from those of the real thing. Configurations and the like shown in some drawings may be omitted in other drawings. In addition, although a plurality of aspects of one embodiment will be described, in the following description and drawings, the same reference numerals are used for portions that can be configured in the same manner among the plurality of aspects, and overlapping descriptions will be omitted.
本明細書において、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に限定されることなく、同様の機能を期待し得る程度の範囲を含めて解釈する。 In this specification, terms that specify shapes and geometric conditions and their degrees, such as "parallel", "perpendicular", "identical", length and angle values, etc., are limited to strict meanings. It is interpreted to include the extent to which similar functions can be expected without being
本明細書において、「シート」、「フィルム」および「板」等の用語は、呼称の違いのみに基づいて互いから区別されない。例えば、「波長変換シート」は、波長変換フィルム又は波長変換板と呼ばれる部材等と呼称の違いのみにおいて区別され得ない。「選択透過シート」は、選択透過フィルム又は選択透過板と呼ばれる部材等と呼称の違いのみにおいて区別され得ない。「光学シート」は、光学フィルム又は光学板と呼ばれる部材等と呼称の違いのみにおいて区別され得ない。 In this specification, terms such as "sheet", "film" and "plate" are not distinguished from each other based only on the difference in designation. For example, a "wavelength conversion sheet" cannot be distinguished from a member called a wavelength conversion film or a wavelength conversion plate only by the difference in name. A "selectively permeable sheet" cannot be distinguished from a member called a selectively permeable film or a selectively permeable plate only by the difference in name. An "optical sheet" cannot be distinguished from a member called an optical film or an optical plate only by the difference in name.
本明細書において、シート状(シート状、板状)の部材の法線方向とは、対象となるシート状(フィルム状、板状)の部材のシート面への法線方向のことを指す。「シート面(フィルム面、板面)」とは、対象となるシート状(フィルム状、板状)の部材を全体的且つ大局的に見た場合において対象となるシート状部材(フィルム状部材、板状部材)の平面方向と一致する面のことを指す。 In this specification, the normal direction of the sheet-like (sheet-like, plate-like) member refers to the normal direction to the sheet surface of the target sheet-like (film-like, plate-like) member. "Sheet surface (film surface, plate surface)" refers to a sheet-like member (film-like member, plate-shaped member).
方向の関係を図面間で明確にするため、いくつかの図面は、共通する符号を付した矢印により第1方向D1、第2方向D2および第3方向D3を共通する方向として示す。矢印の先端側が各方向の第1側である。矢印の先端とは逆側が各方向の第2側である。例えば図2に示すように、円の中に×を設けた記号は、図面の紙面に垂直な方向に沿って紙面の奥に向かう矢印を示す。例えば図3に示すように、円の中に点を設けた記号は、図面の紙面に垂直な方向に沿って紙面から手前に向かう矢印を示す。 In order to clarify the directional relationships among the drawings, some drawings show the first direction D1, the second direction D2 and the third direction D3 as common directions by commonly labeled arrows. The tip side of the arrow is the first side in each direction. The side opposite to the tip of the arrow is the second side in each direction. For example, as shown in FIG. 2, a symbol with an X in a circle indicates an arrow pointing into the drawing along a direction perpendicular to the drawing. For example, as shown in FIG. 3, the dot-in-a-circle symbol indicates an arrow pointing forward from the plane of the drawing along a direction perpendicular to the plane of the drawing.
添付図面は、一実施の形態を説明するための図である。図1は、本実施の形態による光学部材30の一適用例としての面光源装置20および表示装置10を概略的に示す斜視図である。表示装置10は、例えば動画、静止画、文字情報、或いはこれらの組み合わせで構成された映像を表示してもよい。表示装置10は、室内又は屋外において、広告、プレゼンテーション、テレビジョン映像、各種情報の表示等、様々の用途に使用されてもよい。表示装置10は、例えば車載用の液晶表示装置として使用されてもよい。図1に示された表示装置10は、発光面20aを有する面光源装置20と、発光面20aに対面する表示パネル15と、を含んでいる。
The attached drawings are diagrams for explaining one embodiment. FIG. 1 is a perspective view schematically showing a surface
<第1態様>
図2~図16は、本実施の形態の第1態様を説明するための図である。図2は、第1態様における面光源装置20の一具体例を示す縦断面図である。図2に示すように、面光源装置20は、主要な構成要素として、光源23と、光源23から放出された光の光路を調整する光学積層体21と、を含んでもよい。光学積層体21は、光路を調整する光学部材30を含んでもよい。光学積層体21及び光学部材30は、光源23に正対してもよい。光学部材30は、シート状の部材でもよい。光学部材30は、その法線方向に光源23と対面してもよい。光学積層体21及び光学部材30は、光源23から放出された光を拡散する拡散部材でもよい。光学積層体21及び光学部材30は、光源23の配置に起因した照度の面内バラツキを効果的に抑制できる。光学積層体21及び光学部材30での拡散によって、光学積層体21及び光学部材30の出光側面30b上の各位置での照度、或いは、出光側面30bの近傍に位置する出光側面30bと平行な仮想の受光面上の各位置での照度が効果的に均一化され得る。
<First aspect>
2 to 16 are diagrams for explaining the first aspect of the present embodiment. FIG. 2 is a longitudinal sectional view showing one specific example of the surface
以下、第1態様における表示装置10、面光源装置20、光学積層体21および光学部材30について、図示された具体例を参照しながら、説明する。
The
図1に示すように、表示パネル15は、第3方向D3に面光源装置20と重ねられる。表示パネル15は、面光源装置20の発光面20aに対面して配置されている。表示パネル15は、第3方向D3における面光源装置20とは反対側、すなわち第1側を向く面として、映像が表示される表示面15aを含んでいる。図示された例において、表示パネル15は、平板状である。表示パネル15は、第3方向D3に直交する第1方向D1および第2方向D2に広がっている。表示パネル15は、第3方向D3から観察して、矩形形状である。第1方向D1及び第2方向D2は、互いに直交している。第1方向D1及び第2方向D2は、第3方向D3に直交している。
As shown in FIG. 1, the
表示パネル15は、例えば透過型の液晶表示パネルとして構成される。面光源装置20から入射した光の一部が、液晶表示パネルとしての表示パネル15を透過することによって、表示面15aに映像が表示される。表示パネル15は、液晶材料を有する液晶層を含んでいる。表示パネル15の光透過率は、液晶層に印加される電界の強度に応じて変化する。
The
面光源装置20は、面状に光を放出する発光面20aを含んでいる。面光源装置20は、直下型のバックライトとして構成されている。面光源装置20は、光源23および光学部材30を含んでいる。第3方向D3への投影において、光学部材30と重なる領域内に光源23が設けられている。
The surface
図2に示された面光源装置20は、光源23を含む光源基板22および光学積層体21を含んでいる。図示された光学積層体21は、光学部材30、第1光制御シート81、第2光制御シート82および反射型偏光板85を含んでいる。光源基板22、光学部材30、第1光制御シート81、第2光制御シート82および反射型偏光板85は、この順で第3方向D3に重ねられている。光源基板22、光学部材30、第1光制御シート81、第2光制御シート82および反射型偏光板85は、シート状である。光源基板22、光学部材30、第1光制御シート81、第2光制御シート82および反射型偏光板85は、第1方向D1および第2方向D2に広がっている。
A surface
光源基板22は、光源23および支持基板25を含んでいる。図示された例において、光源基板22は、第3方向D3からの観察において矩形形状を有している。
The
光源23は、光を射出する発光素子を有する。発光素子として、LEDと表記される発光ダイオードを用いてもよい。発光ダイオードの寸法は特に限定されない。光源23の像を目立たなくさせる観点から、小型の発光ダイオード、例えばミニLEDやマイクロLEDを用いてもよい。具体的には、図3に示された第3方向D3からの観察において四角形形状を有する光源23の一辺の長さWL1,WL2を、0.5mm以下としてもよく、0.2mm以下としてもよい。
The
光源23の発光波長は、面光源装置20の用途に応じて適宜選択され得る。光源23から放出された光は、一次光LAとして後述の波長変換剤67に吸収される。したがって、光源23の発光波長は、波長変換剤67の光学特性に応じて適宜選択され得る。図示された例において、光源23は、青色光を放出する。光源23から放出される光の波長は、430nm以上500nm以下でもよい。
The emission wavelength of the
光源23の配光特性は、特に限定されない。光源23の配光特性は、ランバーシアン配光でもよい。その一方で、第3方向D3に光軸が沿っている光源23の発光光度分布において、第3方向D3以外の方向にピーク光度が得られるようにしてもよい。例えばJP6299811Bに開示されたバッドウイング配光を、光源23が有してもよい。光源23は、一例として、発光素子のみによって構成されてもよい。他の例として、光源23は、発光素子に加え、発光素子からの配光を調節するカバーやレンズ等の光学要素を含んでもよい。
The light distribution characteristics of the
図示された面光源装置20のように、光源基板22は複数の光源23を含んでもよい。光源23の数量は、面光源装置20の用途や発光面20aの面積等に応じて適宜選択される。光源23の配置に起因した明るさのむらを抑制する観点から、面光源装置20に含まれる複数の光源23は、第3方向D3に垂直な面上において、規則的に配置されてもよい。光源23の規則的な配置の一例として、ハニカム配列や正方配列を採用してもよい。ハニカム配列において、互いに60°傾斜する三つの方向のそれぞれに一定のピッチで光源23が配置され得る。正方配列において、互いに直交する二つの方向のそれぞれに一定のピッチで光源23が配置され得る。
The
図3に示された例において、複数の光源23は、互いに直交する第1方向D1および第2方向D2のそれぞれに一定のピッチで配置されている。図示された例において、第1方向D1への光源23の配置ピッチPL1および第2方向D2への光源23の配置ピッチPL2は同一となっている。配置ピッチPL1および配置ピッチPL2は異なってもよい。図示された例において、第1方向D1および第2方向D2は、それぞれ、矩形状をなす面光源装置20および光学部材30の側縁とそれぞれ平行になっている。配置ピッチPL1および配置ピッチPL2は、それぞれ、0.2mm以上10mm以下でもよい。
In the example shown in FIG. 3, the plurality of
次に、複数の光源23とともに光源基板22を構成する支持基板25について説明する。支持基板25は、第3方向D3における第2側から複数の光源23を支持している。支持基板25はシート状である。支持基板25は、光源23に電力を供給する回路を含んでもよい。支持基板25は、光を反射して光学部材30へ向ける光反射性を有してもよい。
Next, the
図4に示された支持基板25は、シート状の基板本体26と、基板本体26上に設けられた反射層27および配線29と、を含んでいる。基板本体26は、第1方向D1および第2方向D2に広がっている。基板本体26は絶縁性を有してもよい。基板本体26は、樹脂フィルム、たとえはポリエチレンテレフタレート製フィルムでもよい。配線29は、光源23と電気的に接続している。配線29は、はんだ等を介して、光源23の図示しない端子と電気的に接続している。基板本体26および反射層27が絶縁性を有している場合、図4に示すように、配線29は、基板本体26および反射層27の間に位置してもよい。
The
反射層27は、光学部材30の側から基板本体26に積層されている。反射層27は、基板本体26上における光源23が配置されていない領域を覆っている。反射層27は、光源23で発光される特定波長の光に対して又は面光源装置20での発光に用いられる光に対して、反射性を有する。反射層27での反射は、鏡面反射とも呼ばれる正反射でもよく、拡散反射でもよく、さらに異方性拡散反射でもよい。拡散反射性を有する反射層27は、酸化チタンや二酸化ケイ素等の白色粒子を含有した白色反射層を含んでもよい。反射層27は、基板本体26上に積層された金属層でもよいし、反射型の回折光学素子でもよい。
The
光学部材30は、選択透過シート40および波長変換シート60をこの順番で含んでいる。選択透過シート40および波長変換シート60は第3方向D3に重ねられている。つまり、第3方向D3は、選択透過シート40および波長変換シート60の積層方向である。選択透過シート40は、波長変換シート60よりも、第3方向D3における第2側に位置する。波長変換シート60は、選択透過シート40よりも、第3方向D3における第1側に位置する。選択透過シート40および波長変換シート60は、互いに接合していてもよい。選択透過シート40および波長変換シート60は、単に接触しているだけであって接合していなくてもよい。選択透過シート40および波長変換シート60は、互いから離れていてもよい。
The
光学部材30以外の構成要素、例えば、表示パネル15、光源基板22、第1光制御シート81、第2光制御シート82、反射型偏光板85については、第1態様で説明する構成を、後述する他の態様においても使用可能である。また、光学部材30の選択透過シート40や後述する光拡散シート50についても、第1態様で説明する構成を、後述する他の態様においても使用可能である。
Constituent elements other than the
図示された例において、選択透過シート40および波長変換シート60は、共に、第1方向D1および第2方向D2に広がっている。図示された例において、波長変換シート60が光学部材30の出光側面30bを構成している。出光側面30bは、第3方向D3における観察者側となる第1側を向く。図示された光学部材30は、更に、光拡散シート50を有している。光拡散シート50は、選択透過シート40よりも、第3方向D3における観察者側とは反対側の光源側となる第2側に位置する。光拡散シート50が光学部材30の入光側面30aを構成している。入光側面30aは、第3方向D3における第2側を向く。図示された光拡散シート50は、選択透過シート40に接合している。光拡散シート50は、選択透過シート40に接合されていなくてもよい。光拡散シート50は、光学部材30と別途に設けられてもよい。
In the illustrated example, both the
光拡散シート50は、光源23から放出された光の進行方向を変化させる。光拡散シート50は、光を拡散する光拡散機能を有する。光拡散シート50は、樹脂バインダーと、樹脂バインダー中に分散した光拡散成分と、を含んでもよい。光拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。光拡散シート50は、回折光学素子を含んでもよい。光拡散シート50は、マット面を含む層でもよい。光拡散シート50は、マイクロレンズやリニアアレイレンズを含んでもよい。本実施の形態において、光拡散シート50は、光学部材30から省略してもよい。
The
光拡散シート50は、第1面50aおよび第2面50bを含む。第1面50aは、第3方向D3における第2側を向く。第1面50aは、入光側面30aを構成している。第2面50bは、第3方向D3における第1側を向く。光拡散シート50は、第2面50bにおいて、選択透過シート40に接合している。光拡散シート50は、直接、選択透過シート40に接合してもよい。光拡散シート50は、粘着層や接着層等の接合層を介して、選択透過シート40に接合してもよい。
The
図5および図6に示された例において、光拡散シート50の第1面50aは凹凸面51となっている。光拡散シート50は、シート状の本体部52と、各々が凸部53または凹部として形成された複数の単位拡散要素55と、を含んでいる。単位拡散要素55は、屈折や反射等によって光の進行方向を変化させる要素である。単位拡散要素55は、単位形状要素、単位プリズム、単位レンズ、単位光学要素と呼ばれる要素を含む概念である。単位拡散要素55は、本体部52上に設けられている。単位拡散要素55は、光源基板22に対面している。複数の単位拡散要素55によって、凹凸面51が構成されている。
In the examples shown in FIGS. 5 and 6, the
図5に示された光拡散シート50は、本体部52上に設けられた複数の凸部53を含んでいる。図5および図6に示された例において、複数の凸部53は、二次元配列されている。すなわち、凸部53は、非平行な二以上の方向に配列されている。複数の凸部53は、隙間無く隣接して設けられてもよい。光拡散シート50は、本体部52に設けられた複数の凹部を含んでもよい。複数の凹部は、二次元配列されてもよい。複数の凹部は、隙間無く隣接して設けられてもよい。図5および図6に示された単位拡散要素55は、第3方向D3に対して傾斜した要素面56を含んでいる。要素面56によって単位拡散要素55が画成される。光拡散シート50の凹凸面51は、単位拡散要素55の要素面56によって構成される。
The
光拡散シート50の光学特性は、単位拡散要素55の要素面56の傾斜角に影響を受ける。したがって、単位拡散要素55の構成は、面光源装置20や光学部材30に要求される光学特性に基づいて、適宜調節され得る。例えば、一つの単位拡散要素55に含まれる複数の要素面56の傾斜角が互いに異なってもよいし、同一でもよい。光拡散シート50が、形状および向きの少なくとも一方において異なる単位拡散要素55を含んでもよいし、互いに同一の単位拡散要素55のみを含んでもよい。
The optical properties of the
光拡散シート50に含まれる複数の単位拡散要素55は、二次元配列されることが好ましい。この例によれば、光拡散シート50に含まれる単位拡散要素55の要素面56は、種々の方向を向く。結果として、光拡散シート50は、二次元配列された単位拡散要素55によって、光を種々の方向に誘導できる。つまり、非平行な複数の方向へ光を誘導でき、照度の面内分布を効果的に均一化できる。各単位拡散要素55は、第3方向D3と平行な軸線を中心として回転対称に構成されていてもよい。例えば、各単位拡散要素55は、第3方向D3と平行な軸線を中心として3回転対称、4回対称又は6回対称に構成されてもよい。複数の単位拡散要素55は、不規則に配置されてもよいし、或いは、規則的に配置されてもよい。
The plurality of unit diffusion elements 55 included in the
図6は、光拡散シート50における単位拡散要素55の具体例を示している。図6に示された例において、複数の単位拡散要素55の配置は、正方配置となっている。複数の単位拡散要素55は、第1方向D1に一定のピッチで配置されている。複数の単位拡散要素55は、第2方向D2に一定のピッチで配置されている。単位拡散要素55を第1方向D1および第2方向D2に傾斜した方向に配置してもよい。例えば、複数の単位拡散要素55は、第1方向D1に対して±45°傾斜した二つの方向に一定のピッチで配置されてもよい。二つの方向への単位拡散要素55の配列ピッチは、同一でもよいし、異なっていてもよい。単位拡散要素55の配列ピッチは0.05mm以上1mm以下でもよく、0.1mm以上0.5mm以下でもよい。図6に示すように、単位拡散要素55は、底面が正方形となる四角錐形状の凸部53又は凹部として構成されてもよい。各単位拡散要素55の第3方向D3への高さ又は深さは0.025mm以上0.5mm以下でもよく、0.05mm以上0.25mm以下でもよい。図5および図6に示された単位拡散要素55は、エンボス加工や樹脂賦型によって、作製され得る。
FIG. 6 shows a specific example of the unit diffusion elements 55 in the
選択透過シート40は、選択透過部45を含んでいる。選択透過部45の透過特性および反射特性は、入射角依存性を有している。選択透過部45の反射率および透過率は、入射角に依存して変化する。入射角は、光が入射するシート状等の部材の法線方向に対して入射光の進行方向がなす角度(°)を意味する。出射角は、光が出射するシート状等の部材の法線方向に対して出射光の進行方向がなす角度(°)を意味する。
The selectively
選択透過シート40は、第1面40aおよび第2面40bを含んでいる。第1面40aは、第3方向D3における第2側を向く。第2面40bは、第3方向D3における第1側を向く。図示された選択透過シート40は、選択透過部45のみよって構成されている。選択透過部45は、第1面45aおよび第2面45bを含んでいる。第1面45aは、第3方向D3における第2側を向く。第2面45bは、第3方向D3における第1側を向く。選択透過部45の第1面45aは、選択透過シート40の第1面40aを構成している。選択透過部45の第2面45bは、選択透過シート40の第2面40bを構成している。第1面40aおよび第2面40bは平行な平坦面となっている。
The selectively
図示された例と異なり、選択透過シート40は、選択透過部45を保護する保護フィルムを含んでもよい。この例において、保護フィルムが、第1面40aおよび第2面40bを構成してもよい。
Unlike the illustrated example, the selectively
0°の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率よりも、小さい。すなわち、垂直入射する特定波長光についての選択透過部45の透過率は、少なくとも或る一つの斜め方向から選択透過部45に入射する特定波長光についての選択透過部45の透過率よりも、小さい。0°の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の反射率は、0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の反射率よりも、大きい。すなわち、垂直入射する特定波長光の選択透過部45の反射率は、少なくとも或る一つの斜め方向から選択透過部45に入射する特定波長光についての選択透過部45の反射率よりも、大きい。選択透過部45は、選択反射シートや光反射シートとも表記できる。
The transmittance of the
選択透過部45は、種々の透過特性および反射特性を有してもよい。
The
0°の入射角で入射する特定波長の光についての選択透過部45の透過率は、5%未満でもよく、3%未満でもよく、1%未満でもよい。0°の入射角で入射する特定波長の光についての選択透過部45の反射率は、95%以上でもよく、97%以上でもよく、99%以上でもよい。
The transmittance of the
絶対値で0°以上30°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下でもよく、選択透過部45の透過率の最大値の1/5以下でもよく、選択透過部45の透過率の最大値の1/10以下でもよい。絶対値で0°以上45°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下でもよく、選択透過部45の透過率の最大値の1/5以下でもよく、選択透過部45の透過率の最大値の1/10以下でもよい。絶対値で0°以上55°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下でもよく、選択透過部45の透過率の最大値の1/5以下でもよく、選択透過部45の透過率の最大値の1/10以下でもよい。
The transmittance of the
絶対値で0°以上35°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、10%未満でもよく、5%未満でもよく、1%未満でもよい。絶対値で0°以上40°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、10%未満でもよく、5%未満でもよく、1%未満でもよい。絶対値で0°以上45°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、15%未満でもよく、10%未満でもよく、5%未満でもよい。絶対値で0°以上50°以下の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、15%未満でもよく、10%未満でもよく、5%未満でもよい。
The transmittance of the
選択透過部45の透過率の最大値が得られる入射角は、絶対値で、50°以上でもよく、55°以上でもよく、60°以上でもよい。選択透過部45の透過率の最大値が得られる入射角は、絶対値で、80°以下でもよく、75°以下でも、70°以下でもよい。
The absolute value of the incident angle at which the maximum transmittance of the
図7は、選択透過部45の光学特性の一例を示すグラフである。図7に示すように、入射角が絶対値で0°以上30°以下である特定波長の光の選択透過部45での透過率は、15%未満でもよく、8%未満でよく、3%未満でもよい。入射角が絶対値で0°以上50°以下である特定波長の光の選択透過部45での透過率は、15%未満でもよく、10%未満でもよく、5%未満でもよい。
FIG. 7 is a graph showing an example of optical characteristics of the
入射角が絶対値で0°以上30°以下である特定波長の光の選択透過部45での反射率は、85%以上でもよく、92%以上でよく、97%以上でもよい。入射角が絶対値で0°以上50°以下である特定波長の光の選択透過部45での反射率は、85%以上でもよく、90%以上でもよく、95%以上でもよい。
The reflectance at the
図7に示すように、絶対値で60°以上70°以下となる或る入射角で入射する特定波長の光の選択透過部45での透過率が50%でもよい。入射角の絶対値が0°以上65°以下となる範囲で増加するにつれて、特定波長の光の選択透過部45での透過率が大きくなってもよい。
As shown in FIG. 7, the transmittance at the
絶対値で60°以上70°以下となる或る入射角で入射する特定波長の光の選択透過部45での反射率が50%でもよい。入射角の絶対値が0°以上65°以下となる範囲で増加するにつれて、特定波長の光の選択透過部45での反射率が小さくなってもよい。
The reflectance at the
ここで説明した選択透過部45の光学特性は、選択透過部45の第1面45aおよび第2面45bが平行であり、第1面45aおよび第2面45bが空気層に隣接していることを想定している。
The optical characteristics of the
特定波長の光とは、面光源装置20や光学部材30の用途に応じて適宜設定できる。光源23から射出する光を、特定波長の光としてもよい。特定波長の光を可視光としてもよい。「可視光」とは、波長380nm以上波長780nm以下の光を意味する。
The light of the specific wavelength can be appropriately set according to the application of the surface
選択透過部45の反射率は、村上色彩技術研究所社製の変角光度計(ゴニオフォトメーター)GP-200を用いて測定された値とする。選択透過部45の透過率は、JIS K7361-1:1997に準拠して測定された全光線透過率である。選択透過部45の透過率は、村上色彩技術研究所社製の変角光度計(ゴニオフォトメーター)GP-200を用いて測定された値とする。
The reflectance of the
選択透過部45としては、反射率の入射角依存性および透過率の入射角依存性を有するものであれば、特に限定されない。選択透過部45は、誘電体多層膜、反射型の体積ホログラム、コレステリック液晶構造層、再帰反射フィルム、反射型の回折光学素子を含んでもよい。誘電体多層膜は、反射特性および透過特性の設計自由度が比較的高い点において優れる。図6Aおよび図6Bに示された透過特性は、誘電体多層膜の透過特性の一例である。構造的に反射率の入射角依存性および透過率の入射角依存性を付与された反射構造体を、選択透過部45が含んでもよい。反射構造体は、波長依存性が低い点において優れる。
The
選択透過部45を構成する誘電体多層膜は、交互に積層された屈折率の異なる低屈折率層および高屈折率層を含んでもよい。低屈折率層および高屈折率層は、無機化合物の層でもよいし、樹脂層でもよい。誘電体多層膜を構成する多層膜は、片面に又は両面に、保護層を有してもよい。保護層の材料は、ポリエチレンテレフタレートやポリエチレンナフタレートでもよい。保護層の厚みは5μm以上でもよい。誘電体多層膜の製造方法として、共押出法等が採用されてもよい。具体的には、JP2008-200861Aに記載の積層フィルムの製造方法を採用してもよい。誘電体多層膜として、市販の積層フィルムを用いてもよい。市販の誘電体多層幕として、東レ株式会社製のピカサス(登録商標)や、3M社製のESR等が例示される。
The dielectric multilayer film forming the
図8Aおよび図8Bに示すように、波長変換シート60は、第1面60aおよび第2面60bを含んでいる。第1面60aは、第3方向D3における第2側を向く。第2面60bは、第3方向D3における第1側を向く。本実施の形態において、第1面60a及び第2面60bの少なくとも一方は凹凸面61を含んでいる。第1態様において、第2面60bは凹凸面61を含んでいる。波長変換シート60は波長変換剤67を含んでいる。波長変換剤67は、一次光を吸収して、一次光とは異なる波長の二次光を放出する。
As shown in FIGS. 8A and 8B, the
図示された第2面60bは、全面において、凹凸面61である。図示された波長変換シート60は、第1面60aを介して選択透過シート40に接合している。波長変換シート60は、直接、光拡散シート50の第2面50bに接合してもよい。図9に示すように、光拡散シート50は、粘着層や接着層等の接合層35を介して、選択透過シート40の第2面50bに接合してもよい。
The illustrated
図8Aおよび図8Bに示された例において、波長変換シート60は、第1バリア層63、波長変換部65、第2バリア層64および光学要素部70を含んでいる。第1バリア層63、波長変換部65、第2バリア層64および光学要素部70は、第3方向D3にこの順で重ねられている。第1バリア層63、波長変換部65、第2バリア層64および光学要素部70は、第3方向D3おける第1側から第2側へ向けて、この順で配置されている。第1バリア層63、波長変換部65、第2バリア層64および光学要素部70は、シート状である。第1バリア層63、波長変換部65、第2バリア層64および光学要素部70は、第1方向D1および第2方向D2に広がっている。
In the example shown in FIGS. 8A and 8B, the
図8Aおよび図8Bに示された例において、波長変換部65は、第1面65aおよび第2面65bを含んでいる。第1面65aは、第3方向D3における第2側を向く。第2面65bは、第3方向D3における第1側を向く。波長変換部65は、第1面65aにおいて第1バリア層63に接合している。波長変換部65は、第2面65bにおいて第2バリア層64に接合している。
In the example shown in FIGS. 8A and 8B, the
波長変換部65は、波長変換剤67を保持する母材部66を含んでもよい。母材部66として、樹脂を用いてもよい。母材部66を構成する樹脂として、熱可塑性樹脂、熱硬化性樹脂組成物の硬化物、電離放射線硬化性樹脂組成物の硬化物が例示される。
The
波長変換剤67は、或る波長の一次光LAを吸収し、一次光LAの波長とは異なる波長を有した二次光LBを放出する。波長変換剤67として、量子ドットや蛍光体を用いてもよい。一次光LAの波長は、光源23から放出される光の波長でもよい。すなわち、光源23から放出される光は、或る波長の一次光LAを含んでもよい。
The wavelength conversion agent 67 absorbs primary light LA of a certain wavelength and emits secondary light LB having a wavelength different from the wavelength of the primary light LA. A quantum dot or a phosphor may be used as the wavelength conversion agent 67 . The wavelength of the primary light LA may be the wavelength of light emitted from the
量子ドット(Quantum dot)は、半導体のナノメートルサイズの微粒子である。量子ドットは、1種の半導体化合物から構成されてもよい。量子ドットは、2種以上の半導体化合物から構成されてもよい。量子ドットは、例えば、半導体化合物からなるコアと、該コアと異なる半導体化合物からなるシェルとを有するコアシェル型構造を有してもよい。 Quantum dots are nanometer-sized semiconductor particles. Quantum dots may be composed of one semiconductor compound. Quantum dots may be composed of two or more semiconductor compounds. A quantum dot may have, for example, a core-shell structure having a core made of a semiconductor compound and a shell made of a semiconductor compound different from the core.
量子ドットのコアの材料として、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSeおよびHgTeのようなII-VI族半導体化合物が例示される。量子ドットのコアの材料として、AlN、AlP、AlAs、AlSb、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSb、TiN、TiP、TiAsおよびTiSbのようなIII-V族半導体化合物も例示される。量子ドットのコアの材料として、Si、GeおよびPbのようなIV族半導体等の半導体化合物又は半導体を含有する半導体結晶も例示される。 MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe and HgTe as materials for the core of quantum dots. II-VI group semiconductor compounds such as: Quantum dot core materials also include III-V semiconductor compounds such as AlN, AlP, AlAs, AlSb, GaAs, GaP, GaN, GaSb, InN, InAs, InP, InSb, TiN, TiP, TiAs and TiSb. be done. Examples of quantum dot core materials include semiconductor crystals containing semiconductor compounds or semiconductors such as group IV semiconductors such as Si, Ge and Pb.
コアシェル型の量子ドットを用いる場合、シェルを構成する半導体として、コアを形成する半導体化合物よりもバンドギャップの高い材料を用いてもよい。この場合、励起子がコアに閉じ込められ、量子ドットの発光効率を向上できる。このようなバンドギャップの大小関係を有するコアシェル構造(コア/シェル)として、CdSe/ZnS、CdSe/ZnSe、CdSe/CdS、CdTe/CdS、InP/ZnS、Gap/ZnS、Si/ZnS、InN/GaN、InP/CdSSe、InP/ZnSeTe、InGaP/ZnSe、InGaP/ZnS、Si/AlP、InP/ZnSTe、InGaP/ZnSTe、InGaP/ZnSSe等が例示される。 When core-shell quantum dots are used, a material having a higher bandgap than the semiconductor compound forming the core may be used as the semiconductor forming the shell. In this case, the excitons are confined in the core, and the luminous efficiency of the quantum dots can be improved. As core-shell structures (core/shell) having such a bandgap magnitude relationship, CdSe/ZnS, CdSe/ZnSe, CdSe/CdS, CdTe/CdS, InP/ZnS, Gap/ZnS, Si/ZnS, InN/GaN , InP/CdSSe, InP/ZnSeTe, InGaP/ZnSe, InGaP/ZnS, Si/AlP, InP/ZnSTe, InGaP/ZnSTe, InGaP/ZnSSe, and the like.
量子ドットの大きさは、所望する二次光LBの波長を考慮して調節される。量子ドットは粒子径が小さくなるにつれて、エネルギーバンドギャップが大きくなる。結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトする。量子ドットの大きさを変化させることにより、二次光LBの波長を調節できる。量子ドットの平均粒子径は、20nm以下でもよく、0.5nm以上20nm以下でもよく、1nm以上10nm以下でもよい。量子ドットの形状、分散状態等は、透過型電子顕微鏡(TEM)により特定される。量子ドットの結晶構造、粒子径は、X線結晶回折(XRD)により特定される。 The size of the quantum dots is adjusted in consideration of the desired wavelength of the secondary light LB. Quantum dots have a larger energy bandgap as the particle size decreases. As the crystal size decreases, the quantum dot emission shifts to the blue side, ie, to the higher energy side. By changing the size of the quantum dots, the wavelength of the secondary light LB can be adjusted. The average particle size of the quantum dots may be 20 nm or less, 0.5 nm or more and 20 nm or less, or 1 nm or more and 10 nm or less. The shape, dispersion state, etc. of the quantum dots are specified by a transmission electron microscope (TEM). The crystal structure and particle size of quantum dots are specified by X-ray crystal diffraction (XRD).
波長変換部65は、波長変換剤67として、放出波長の異なる複数の量子ドットを含んでもよい。各量子ドットの含有量を調節することによって、面光源装置20から出射する光の色を調節することができる。図9に示された例において、波長変換剤67は、第1変換剤67Aおよび第2変換剤67Bを含んでいる。第1変換剤67Aおよび第2変換剤67Bは、互いに異なる大きさを有している。第1変換剤67Aおよび第2変換剤67Bは、互いに異なる波長の光を放出する。
The
一具体例として、光源23は、430nm以上500nm以下の波長を有した青色光を放出してもよい。第1変換剤67Aは、光源23からの一次光LAを吸収して、500nm以上600nm以下の波長を有した緑色光を、第1二次光LB1として、放出してもよい。第2変換剤67Bは、光源23からの一次光LAを吸収して、600nm以上750nm以下の波長を有した赤色光を、第2二次光LB2として、放出してもよい。この例によれば、第1二次光LB1、第2二次光LB2、および波長変換部65で波長変換されなかった一次光LAの加法混色により、面光源装置20は種々の色の光を放出できる。第1変換剤67Aおよび第2変換剤67Bの含有量を調節することによって、面光源装置20が白色光を放出できる。
As a specific example, the
波長変換部65は、透過光を散乱させる光散乱成分を含んでいてもよい。光散乱成分は、母材部66内に分散していてもよい。光散乱成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。
The
第1バリア層63は、波長変換部65の第1面65aに接合している。第1バリア層63は、第1面60aを構成している。第2バリア層64は、波長変換部65の第2面65bに接合している。第1バリア層63および第2バリア層64は、酸素や水分から波長変換剤67を保護する機能を有する。
The
第1バリア層63および第2バリア層64は、酸素バリア性を有してもよい。この例において、第1バリア層63および第2バリア層64の酸素透過率は、23℃、相対湿度90%の条件下において、1.0×10-1cc/m2/day/atm以下でもよく、1.0×10-2cc/m2/day/atm以下でもよい。酸素透過率は、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/21)を用いて測定され得る。
The
第1バリア層63および第2バリア層64は、水蒸気バリア性を有してもよい。この例において、第1バリア層63および第2バリア層64の水蒸気透過率は、40℃、相対湿度90%の条件下において、1.0×10-1g/m2/day以下でもよく、1.0×10-2g/m2/day以下でもよい。水蒸気透過率は、水蒸気透過率測定装置(DELTAPERM(Technolox社製))を用いて測定され得る。
The
第1バリア層63および第2バリア層64は、バリア性を発現し得る材料を用いて、スパッタリング法、イオンプレーティング法等の物理気相成長(PVD)法や、化学気相成長(CVD)法等の蒸着法、又は、ロールコートやスピンコート等のコーティング法によって作製され得る。材料として、無機酸化物、金属、ゾルゲル材料等を用いてもよい。無機酸化物として、酸化ケイ素(SiOx)、酸化アルミニウム(AlnOm)、酸化チタン(TiO2)、酸化イットリウム、酸化ホウ素(B2O3)、酸化カルシウム(CaO)、酸化窒化炭化ケイ素(SiOxNyCz)等が例示される。金属としては、Ti、Al、Mg、Zr等が例示される。ゾルゲル材料として、シロキサン系ゾルゲル材料が例示される。
The
光学要素部70は、第1面70aおよび第2面70bを含む。第1面70aは、第3方向D3における第2側を向く。第2面70bは、第3方向D3における第1側を向く。光学要素部70は、第1面70aにおいて、第2バリア層64に接合している。第2面70bは、第2面60bを構成している。第2面70bは、光学部材30の出光側面30bを構成している。第2面70bは凹凸面61を含んでいる。
The
図8Aおよび図8Bに示された例において、光学要素部70は、各々が凸部73または凹部74として形成された複数の単位光学要素75を含んでいる。単位光学要素75は、屈折や反射等によって光の進行方向を変化させる要素である。単位光学要素75は、単位形状要素、単位プリズム、単位レンズと呼ばれる要素を含む概念である。単位光学要素75は、第1面60aを構成している。単位光学要素75によって、凹凸面61が形成されている。
In the example shown in FIGS. 8A and 8B, the
図8Aに示された光学要素部70は、シート状の本体部72と、本体部72上に設けられた複数の凸部73と、を含んでいる。図8Aに示された例において、複数の凸部73は、隙間無く隣接して設けられてもよい。図8Bに示された光学要素部70は、複数の凹部74を設けられた本体部72を含んでいる。図8Bに示された例において、複数の凹部74は、隙間無く隣接して設けられてもよい。
The
図8Aおよび図8Bに示すように、単位光学要素75は、第3方向D3に対して傾斜した要素面76を有している。この要素面76によって単位光学要素75が画成されている。波長変換シート60の凹凸面61は、単位光学要素75の要素面76によって構成されている。
As shown in FIGS. 8A and 8B, the unit
凹凸面61の光学特性は、単位光学要素75の要素面76の傾斜角に影響を受ける。したがって、単位光学要素75の断面形状は、面光源装置20や光学部材30に要求される光学特性に基づいて、適宜調節され得る。一つの単位光学要素75に含まれる複数の要素面56の傾斜角が互いに異なってもよいし、同一でもよい。光学要素部70が、形状および向きの少なくとも一方において異なる単位光学要素75を含んでもよいし、互いに同一の単位光学要素75のみを含んでもよい。
The optical characteristics of the
図8Aおよび図8Bに示された例と異なり、要素面76がいくらか湾曲してもよい。単位光学要素75が、半球状等の球の一部分の外形状を有してもよいし、回転楕円体の一部分の外形状を有してもよい。
The element faces 76 may be somewhat curved, unlike the examples shown in FIGS. 8A and 8B. The unit
複数の単位拡散要素55は、二次元配列されてもよい。この例によれば、光学要素部70に含まれる単位光学要素75の要素面76は、種々の方向を向く。結果として、光学要素部70は、二次元配列された単位光学要素75によって、光を種々の方向に誘導できる。つまり、非平行な複数の方向へ光を誘導することができ、照度の面内分布を効果的に均一化できる。各単位光学要素75は、第3方向D3と平行な軸線を中心として回転対称に構成されていてもよい。例えば、各単位光学要素75は、第3方向D3と平行な軸線を中心として3回転対称、4回対称又は6回対称に構成されてもよい。
The plurality of unit diffusion elements 55 may be arranged two-dimensionally. According to this example, the element surfaces 76 of the unit
複数の単位光学要素75は、不規則に配列されてもよいし、規則的に配列されてもよい。複数の単位光学要素75を規則的に配列することによって、光学要素部70の設計を容易化できる。複数の単位光学要素75を規則的に配列することによって、単位光学要素75を隙間無く敷き詰めることが容易となる。
The plurality of unit
第3方向D3からの観察における単位光学要素75の寸法が大きいと、単位光学要素75の形状に起因した明るさのムラが視認されやすくなる。このような不具合を防止する観点から、単位光学要素75の積層方向D3に垂直な方向への最大長さは、1.5mm以下でもよく、1mm以下でもよく、0.5mm以下でもよい。単位光学要素75の配列ピッチは、0.01mm以上1.5mm以下でもよい。更に、面光源装置20に適用した際に光学部材30の出光側面30b上での照度の面内分布を効果的に均一化する観点から、単位光学要素75の配列ピッチは、0.05mm以上1mm以下でもよく、0.1mm以上0.5mm以下でもよい。単位光学要素75の第3方向D3への高さ又は深さは、0.025mm以上0.5mm以下でもよく、0.05mm以上0.25mm以下でもよい。
When the dimensions of the unit
図10A及び図10Bは、光学要素部70に含まれる単位光学要素75の一具体例を示している。図10A及び図10Bに示された例において、複数の単位光学要素75の配置は、正方配置となっている。複数の単位光学要素75は、第1方向D1に一定のピッチで配置されている。複数の単位光学要素75は、第2方向D2にも一定のピッチで配置されている。第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、同一でもよいし、異なってもよい。図10A及び図10Bに示された例において、複数の単位光学要素75は隙間無く敷き詰められてもよい。図示された例において、第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、互いに同一となっている。
10A and 10B show a specific example of the unit
単位光学要素75を第1方向D1及び第2方向D2に傾斜した方向に配置してもよい。例えば、図10Cに示された例において、複数の単位光学要素75は、第1方向D1に対して±45°傾斜した二つの方向に一定のピッチで配置されている。図10Bに示された単位光学要素75に対して、図10Cの配置を適用できる。この例によれば、要素面76が第1方向D1に対して±45°傾斜した二つの方向に向き、この二つの方向に光を広げることができる。
The unit
図11Aおよび図11Bは、光学要素部70に含まれる単位光学要素75の他の具体例を示している。図11A及び図11Bに示された光学要素部70例では、底面が同一形状である単位光学要素75が、四つの向きで配列されている。結果として、底面の形状及び向きが同一となる複数の単位光学要素75は、第1方向D1及び第2方向D2のそれぞれに一定のピッチで配列されている。二つの方向への配列ピッチは、同一でもよいし、異なっていてもよい。図示された例において、二つの各方向への配列ピッチは同一となっている。単位光学要素75は、底面が直角二等辺三角形形状となっている三角錐形状を有している。
11A and 11B show another specific example of the unit
図8A~図11Bに示された光学要素部70は、エンボス加工や樹脂賦型によって、作製され得る。単位光学要素75を含む光学要素部70は、粘着剤や接着剤を含む接合層を介して、第2バリア層64に接合してもよい。単位光学要素75を含む光学要素部70を第2バリア層64上に作製してもよい。
The
光学要素部70は、回折光学素子を含んでもよい。
The
上述したように、面光源装置20は、光学部材30と重ねられた第1光制御シート81、第2光制御シート82および反射型偏光板85を含んでいる。
As described above, the surface
第1光制御シート81および第2光制御シート82は、入射光に対して、反射、屈折、回折等の光学作用を及ぼす。第1光制御シート81および第2光制御シート82は、光学部材30や面光源装置20の用途に対して適切な機能を有してもよい。
The first
図12は、第1光制御シート81および第2光制御シート82の一具体例を示している。図12に示された第1光制御シート81および第2光制御シート82は、複数の線状に延びる単位プリズム84を含むプリズムシートである。光制御シート81,82は、入射光の進行方向を狭い角度範囲に絞る集光シートとして機能してもよい。プリズムシートは、シート状の本体部83と、本体部83上に設けられた複数の単位プリズム84と、を含んでいる。単位プリズム84は、複数の単位プリズム84の配列方向と直交する方向に直線状に延びてもよい。すなわち、第1光制御シート81および第2光制御シート82は、単位プリズム84がリニア配列されたプリズムシートである。
12 shows one specific example of the first
図12に示された、リニア配列された単位プリズム84は、主として、単位プリズム84の配列方向および第3方向D3の両方に平行な面内での輝度角度分布を調整する。したがって、第1光制御シート81および第2光制御シート82は、単位プリズム84の配列方向が非平行となるようにして、光学部材30に組み込まれてもよい。例えば、第1光制御シート81の単位プリズム84の配列方向が、第2光制御シート82の単位プリズム84の配列方向と直交してもよい。図12に示されたプリズムシートは、米国3M社から入手可能な「BEF」(登録商標)でもよい。図12に示されたプリズムシートは、透過光の進行方向と第3方向D3との間の角度が小さくなるように、透過光の進行方向を曲げる。図12に示されたプリズムシートは、集光シートとして機能する。
The linearly arranged
反射型偏光板85は、一方の直線偏光成分を透過させ、他方の直線偏光成分を反射する。反射型偏光板85によれば、表示パネル15の面光源装置20側に位置する偏光板を透過し得る直線偏光成分の光を選択的に透過させることができる。反射型偏光板85で反射された光は、その後の反射等によって、偏光状態を変化させて反射型偏光板85へ再度入射し得る。これにより、光源23から放出された光の利用効率を向上できる。反射型偏光板85は、米国3M社から入手可能な「DBEF」(登録商標)でもよい。反射型偏光板85は、韓国Shinwa Intertek社から入手可能な高輝度偏光シート「WRPS」や、ワイヤーグリッド偏光子等でもよい。
The reflective
次に、以上の構成を有する面光源装置20で面状光を生成する際の作用について説明する。
Next, the operation of generating planar light with the planar
図2に示すように、光源23が一次光LAを放出する。一次光LAは、一例として、青色光である。青色の一次光LAの波長は、430nm以上500nm以下でもよい。光源23から放出された光L21は、光学部材30へと向かう。図5に示すように、光源23からの一次光LAは、光学部材30の光拡散シート50に入射する。光拡散シート50は、光拡散機能を有している。図示された例において、光学部材30の入光側面30aを構成する光拡散シート50の第1面50aは凹凸面51となっている。図5に示すように、光L51は、光拡散シート50へ入射する際に進行方向を変化させる。
As shown in FIG. 2, the
光源23からの一次光LAは、光拡散シート50を透過して、選択透過シート40の選択透過部45に入射する。選択透過部45の透過率は入射角に依存している。0°より大きい或る入射角で入射する一次光LAについての選択透過部45の透過率は、0°の入射角で入射する一次光LAについての選択透過部45の透過率より大きい。図7に示された光学特性では、0°の入射角で選択透過部45に入射する光についての選択透過部45の透過率は1%以下である。また、絶対値で0°以上40°以下の入射角で選択透過部45に入射する光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下となっている。さらには、絶対値で0°以上65°以下の広い範囲内において入射角が大きくなるにつれて、選択透過部45の透過率は大きくなる。入射角が絶対値で0°以上30°以下の範囲において、透過率は5%以下となる。すなわち、第3方向D3に対して傾斜した光が、第3方向D3に進む光と比較してより高い透過率で選択透過部45を透過できる。
The primary light LA from the
光源23と第3方向D3に対面する領域と、当該領域の近傍となる周囲の領域と、を直上領域とする。この直上領域には、多量の光が光源23から直接入射する。しかしながら、直上領域への光の入射角は小さい。このため、光源23から放出されて選択透過シート40に進んだ光L21は、直上領域において、高い反射率にて反射される。直上領域において、光は、低い透過率にて選択透過シート40を透過する。これにより、直上領域において発光面20aが明るくなり過ぎることを抑制できる。
A region facing the
選択透過部45で反射した多くの光L52は、図5に示すように、光拡散シート50を透過して光源基板22に向かう。この光L52は、光拡散シート50において拡散される。これにより、光L22,L52は、第3方向D3に対して大きく傾斜した方向に進み得る。図2に示すように、光L22は、光源基板22の反射層27で反射する。この反射によって、反射層27で反射した光L23は、第3方向D3において光学部材30に向けて進む。図2に示すように、光L23は、第3方向D3に直交する第1方向D1や第2方向D2に光源23から離れた位置において、光学部材30に再入射する。
A large amount of light L52 reflected by the
光拡散シート50は、光学部材30に再入射した光L23の進行方向を、第3方向D3に対して大きく傾斜した方向に変化させ得る。光拡散シート50によって拡散された光L24は、第3方向D3に直交する方向に光源23から離れた離間領域において、選択透過シート40を高い透過率で透過し得る。これにより、離間領域において、発光面20aが暗くなり過ぎることを抑制できる。
The
以上のような、光拡散シート50の拡散機能と入射角に応じた選択透過部45の選択透過機能との組合せによって、光源23の配置に応じた明るさの面内バラツキを抑制できる。これにより、選択透過シート40の第2面40b上の各位置での照度を効果的に均一化できる。
By combining the diffusion function of the
図8Aに示すように、波長変換シート60は、第3方向D3における第2側から、第1バリア層63、波長変換部65、第2バリア層64、光学要素部70を含んでいる。選択透過シート40から出射した光は、波長変換シート60の第1バリア層63を透過して、波長変換部65に向かう。
As shown in FIG. 8A, the
図9に示すように、波長変換部65は波長変換剤67を含んでいる。波長変換部65内を進む光の一部は、波長変換剤67に衝突する。波長変換剤67は、光源23から放出された一次光LAを吸収して、波長の異なる二次光LBを放出する。図示された例において、波長変換部65は、第1変換剤67Aおよび第2変換剤67Bを含んでいる。第1変換剤67Aは、青色の一次光LAの一部L91を吸収して、緑色の第1二次光LB1を放出する。第2変換剤67Bは、青色の一次光LAの一部L92を吸収して、赤色の第2二次光LB2を放出する。
As shown in FIG. 9, the
波長変換シート60内を進む光L24(図2参照)の多くは、選択透過部45の透過特性に起因して、第3方向D3に対して大きく傾斜した方向に進む。したがって、波長変換部65の厚みを薄くしても、波長変換部65内における光L24の光路長は長くなる。このため、波長変換シート60内において、波長変換剤67に入射し易くなる。波長変換剤67を効率的に使用できるので、波長変換剤67の選択透過部45への含有量を低減できる。
Most of the light L24 (see FIG. 2) traveling through the
図9に示すように、一次光LAの一部L93は、波長変換剤67に入射せず、第2面60bへ到達する。
As shown in FIG. 9, a portion L93 of the primary light LA does not enter the wavelength conversion agent 67 and reaches the
図8Aに示すように、波長変換部65を通過した光L81は、第2バリア層64を通過して光学要素部70に進む。光学要素部70は、複数の単位光学要素75を含んでいる。光学要素部70は、波長変換シート60の第2面60bに凹凸面61を付与している。凹凸面61は、単位光学要素75の要素面76によって構成されている。第2面60bは、出光側面30bを構成している。光L81は、凹凸面61で屈折し、光学部材30から出射する。
As shown in FIG. 8A, the light L81 that has passed through the
図8Aに示すように、図示された例において、出光側面30bを構成する要素面76での屈折により、進行方向が第3方向D3に対してなす進行方向角度を小さくできる。すなわち、光学要素部70の要素面76は、出射光に対して集光機能を発揮する。光学要素部70の集光機能により、光学部材30を透過した光に対する光路補正の負担を軽減できる。したがって、光学部材30を透過した光の利用効率を改善できる。また、面光源装置20に組み込まれる部材の数量や部材の厚みを低減でき、面光源装置20を薄型化できる。
As shown in FIG. 8A, in the illustrated example, the traveling direction angle formed by the traveling direction with respect to the third direction D3 can be reduced due to the refraction at the
以上のようにして、一次光LA、第1二次光LB1および第2二次光LB2等の光L25(図2参照)が、光学部材30から第3方向D3における第1側に出射し得る。光学部材30から出射した光L25は、第1光制御シート81、第2光制御シート82および反射型偏光板85を透過して、面光源装置20の発光面20aから出射する。このようにして、面光源装置20の発光面20aが発光する。
As described above, the light L25 (see FIG. 2) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 can be emitted from the
ところで、図2および図13に示すように、波長変換シート60の第2面60bに入射する光L26,L131,L132は、第2面60bにおいて反射し得る。第2面60bで反射した光L26,L131,L132は、第3方向D3における第2側へ進む。これらの光は、いずれかの界面、例えば反射層27の表面で反射することによって、第3方向D3における進行方向を折り返し、再度、出光側面30bに入射し得る。これらの光は、出光側面30bに再度到達する迄、第3方向D3に直交する第1方向D1や第2方向D2に進む。したがって、出光側面30bでの反射を利用することにより、光源23の配置に起因した明るさの面内バラツキを更に効果的に抑制できる。すなわち、波長変換シート60は、選択透過部45の入射角依存性を有した光学特性を補強または補完して、照度の面内分布を更に十分に均一化できる。
By the way, as shown in FIGS. 2 and 13, the lights L26, L131, and L132 incident on the
図13では、波長変換シート60内における光路に関する光学的作用の理解を容易とするため、波長変換シート60の厚みが薄く示されている。また、図13では、波長変換剤67の図示が省略されている。実際には、波長変換シート60の第1面60aおよび第2面60bの間に、波長変換剤67が設けられている。波長変換シート60の第2面60bでの反射を利用することにより、光源23から放出された光の循環光路内に、波長変換剤67が位置する。とりわけ、波長変換剤67は、循環光路において第3方向D3における進行方向を折り返す波長変換シート60の内部に分散している。したがって、波長変換剤67が含有された波長変換シート60内において、光は第3方向D3に対して傾斜した方向に進む。波長変換シート60内における光路長は非常に長くなる。これにより、波長変換剤67の利用効率を顕著に改善でき、波長変換剤67の波長変換部65への含有量を大幅に低減できる。例えば、波長変換部65の厚みを薄くでき、光学部材30および面光源装置20の第3方向D3への厚みを低減できる。波長変換部65内における波長変換剤67の密度を低減できる。
In FIG. 13, the thickness of the
図示された波長変換部65において、波長変換剤67は母材部66内に分散されている。母材部66の屈折率は、光学要素部70の屈折率より小さくてもよい。母材部66の屈折率は、選択透過部45の屈折率より小さくてもよい。このような屈折率の設定によれば、波長変換部65内において、光は第3方向D3に対してより大きく傾斜した方向に進む。これにより、波長変換部65内での光路長をより長く確保できる。したがって、波長変換部65内における波長変換剤67の含有量を低減できる。波長変換部65の厚みを薄くできる。
In the illustrated
波長変換シート60においては、波長変換部65の側端面にバリア層が設けられないことがある。この例によれば、側端面近傍に位置する波長変換剤67の劣化が進み、波長変換部65の周縁部において色が変化し得る。本実施の形態によれば、上述のように波長変換剤67の波長変換部65への含有量を低減できる。したがって、第3方向D3への投影における、単位面積当たりにおける波長変換剤67の面積割合を低減できる。これにより、波長変換部65の側端面にバリア層を設けない場合でも、周縁部における色の変化を抑制できる。
In the
ここで、誘電体多層膜である選択透過部45の透過率は、特定波長よりも長波長の光に対し大きくなる。より具体的には、長波長となる光に対し、透過率が上昇し始める入射角は小さくなる。選択透過部45の入射角に依存した選択透過性は、特定波長よりも大きな波長の光に対して、弱くなる。したがって、特定波長よりも長い波長を有した二次光LBに対し、選択透過部45は入射角に依存した選択透過性を有効に発揮し得ない。すなわち、選択透過部45は、一次光LAと同様に、二次光LBを反射できない。
Here, the transmittance of the
したがって、照度の面内分布を十分に均一化させる観点から、光学部材30と光源基板22との間で一次光LAを十分に循環させて照度の面内分布を均一化させた後、一次光LAを二次光LBに変換することが好ましい。すなわち、明るさの面内バラツキを抑制する観点から、循環光路内となる選択透過部45における波長変換剤67の含有量を低減することが好ましい。
Therefore, from the viewpoint of sufficiently uniforming the in-plane distribution of the illuminance, after the primary light LA is sufficiently circulated between the
さらに、出光側面30bにおいて、一次光LAが選択的に反射されてもよい。出光側面30bでの一次光LAの反射率が、出光側面30bでの二次光LBの反射率より大きくてもよい。図9に示すように、波長変換剤67から放出される二次光LBの進行方向は、当該波長変換剤67に吸収される前の一次光LAの進行方向に依存しない。図9に示すように、二次光LBは、波長変換剤67から広い角度範囲に放出される。二次光LBに起因する輝度の角度分布は、波長変換部65の第2面65b上において或る程度均一化される。すなわち、二次光LBの進行方向角度は、広い角度範囲内に分散する。一方、一次光LAの進行方向角度は、選択透過部45の透過特性に依存し、比較的狭い角度範囲内に収まる。図7に示された入射角(°)は、屈折率1の空気層からの入射角である。ここで、光学部材に一般的に用いられている透明樹脂の屈折率を1.4以上1.7以下と想定する。選択透過部45が、空気層からの入射角45°以上70°の光を集中的に透過すると想定する。この基準想定において、選択透過部45を透過して樹脂中を進む光の進行方向角度(°)、すなわち進行方向と第3方向D3との間の角度(°)は、25°~40°程度となる。この限られた進行方向角度の一次光LAが、出光側面30bによって反射されるよう、出光側面30bを構成する要素面76の傾斜角θp(°)が調整してもよい。
Further, the primary light LA may be selectively reflected on the light
傾斜角θpは、要素面76と第3方向D3に直交する面との間の角度(°)である。要素面76が平坦でないこと等も想定される。要素面76の傾斜角θpは、要素面76の第3方向D3における中心となる位置で特定されるものとする。光学要素部70が第2面60bを構成する図示された例において、凸部73としての要素面76については、要素面76のうちの本体部72に接続する基端部と本体部72から第3方向D3に最も離間した先端部との第3方向D3における中心となる位置において、傾斜角θpを特定する。光学要素部70が第2面60bを構成する図示された例において、凹部74としての要素面76については、要素面76のうちの選択透過シート40へ第3方向D3に最も近接する基端部(最深部)と選択透過シート40から積層方向D3に最も離間した先端部(土手部)との積層方向D3における中心となる位置において、傾斜角θpを特定する。
The inclination angle θp is the angle (°) between the
図13は、要素面76での反射によって第3方向D3における進行方向を折り返す光路を示している。光L131および光L132は、共に、第3方向D3に対して進行方向と同じ側に傾斜した第1要素面76Aに入射している。光L131,L132は、第1要素面76Aで反射している。第1要素面76Aでの反射が全反射となるよう、傾斜角θpを設定してもよい。上述した基準条件を想定すると、傾斜角θpは、5°以上でもよく、10°以上でもよく、15°以上でもよい。
FIG. 13 shows an optical path in which the traveling direction in the third direction D3 is turned back by reflection on the
また、第1要素面76Aでの反射光によって光の進行方向が第3方向D3において折り返して第2側へ向くよう、傾斜角θpを設定してもよい。上述した基準条件を想定すると、傾斜角θpは、35°以下でもよく、30°以下でもよく、25°以下でもよい。
Further, the inclination angle θp may be set so that the traveling direction of the light is turned back in the third direction D3 by the reflected light from the
光L131,L132は、次に、第1要素面76Aに対向する第2要素面76Bに入射する。光L131は、第2要素面76Bにおいて更に反射している。第2要素面76Bでの反射により、光L131の進行方向は、第3方向D3において折り返して第2側へ向く。この反射は全反射であることが好ましい。第2要素面76Bでの反射が全反射となるよう、傾斜角θpを設定してもよい。上述した基準条件を想定すると、傾斜角θpは、38°以下でもよく、35°以下でもよく、32°以下でもよい。
The lights L131 and L132 are then incident on the
光L132は、第2要素面76Bで屈折し、単位光学要素75から出射する。その後、光L132は、隣り合う他の単位光学要素75に第3要素面76Cを介して入射する。次に、光L132は、他の単位光学要素75の第4要素面76Dで反射する。第4要素面76Dでの反射により、光L132の進行方向は、第3方向D3において折り返して第2側へ向いている。
The light L132 is refracted by the
光L132の進行方向は、一つ目の単位光学要素75からの出射時における第2要素面76Bでの屈折により、光の進行方向が第3方向D3において折り返して第2側へ向いてもよい。第2要素面76Bでの屈折によって光の進行方向が第3方向D3において折り返して第2側へ向くよう、傾斜角θpを設定してもよい。上述した基準条件を想定すると、傾斜角θpは、38°以下でもよく、35°以下でもよく、32°以下でもよい。別の条件として、第2要素面76Bでの屈折後も第3方向D3において第1側への進行を継続するものの、光L132のように、第2要素面76Bでの屈折によって、進行方向角度が大きくなるよう、傾斜角θpを設定してもよい。言い換えると、第2要素面76Bでの屈折後も第3方向D3において第1側への進行を継続するものの、第2要素面76Bでの屈折によって、光の進行方向が第3方向D3に対してより大きく傾斜するよう、傾斜角θpを設定してもよい。上述した基準条件を想定すると、傾斜角θpは、55°以下でもよく、50°以下でもよく、45°以下でもよい。
As for the traveling direction of the light L132, due to refraction on the
以上のように要素面76の傾斜角θpを設定することによって、選択透過部45によって進行方向角度を調節されている一次光LAを、選択的に、要素面76によって構成された出光側面30bで反射できる。これにより、照度分布をより効果的に均一化できる。
By setting the inclination angle θp of the
なお、図示された例において、波長変換シート60は選択透過シート40に接合している。この例によれば、光源23から放出された光の利用効率を改善できる。図9は、波長変換シート60と選択透過シート40との間に空隙が設けられていることを想定した光L94の光路を示している。図9において、光L94および光L91は選択透過シート40から同じ方向に出射している。空隙から波長変換シート60に入射する光L94は、波長変換シート60の第1面60aで反射している。選択透過部45の透過特性に依存して、光L91,L94は第3方向D3に対して大きく傾斜した方向に進む。したがって、波長変換シート60第1面60aにおいて高い反射率で光L94が反射される。このような光L94は、迷光となり光利用効率を低下させる。これに対し、例えば接合層35を介す等して、選択透過シート40および波長変換シート60を接合することにより、波長変換シート60第1面60aへの入射角を小さくできる。これにより、第1面60aでの反射を抑制して、光の利用効率を改善できる。
Note that in the illustrated example, the
以上に説明してきた本実施の形態において、光学部材30は、選択透過部45を含む選択透過シート40と、選択透過シート40側となる第1面60aおよび第1面60aと対向する第2面60bを含む波長変換シート60と、を含む。0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、0°の入射角で選択透過部45に入射する前記特定波長の光についての選択透過部45の透過率より大きい。第1面60a及び第2面60bの少なくとも一方は、凹凸面61を含む。本実施の形態の第1態様において、第2面60bは凹凸面61を含む。波長変換シート60は、一次光LAを吸収して二次光LBを放出する波長変換剤67を含む。二次光LBは一次光LAの波長と異なる波長を有する。
In the embodiment described above, the
本実施の形態の第1態様による光学部材30によれば、光源23からの一次光LAを、波長変換シート60の第2面60bで反射できる。すなわち、第2面60bは、第3方向D3における観察者側となる第1側へ向かう光を反射できる。したがって、波長変換シート60の第2面60bと光源基板22等との間で、一次光LAが循環する循環光路を形成できる。本実施の形態によれば、波長変換剤67は、第3方向D3における進行方向を折り返す波長変換シート60に含まれている。一次光LAは、選択透過部45の透過特性に依存して、波長変換シート60内において、第3方向D3に対して傾斜した方向に進む。したがって、波長変換剤67の波長変換シート60内への含有量を大幅に低減できる。むしろ、二次光LBを種々の方向に放出する波長変換剤67の含有量を低減することにより、第2面60bでの反射を利用した一次光LAの循環を促進できる。すなわち、一次光LAの循環により、光源23の配置に起因した明るさの面内バラツキを抑制して照度の面内バラツキを抑制しながら、波長変換剤67の含有量を大幅に低減できる。光学部材30、光学積層体21の薄型化および面光源装置20の薄型化も可能となる。
According to the
具体例を参照しながら本実施の形態の第1態様を説明してきたが、上述の具体例が本実施の形態の第1態様を限定しない。上述した本実施の形態の第1態様は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。 Although the first aspect of the present embodiment has been described with reference to specific examples, the above-described specific examples do not limit the first aspect of the present embodiment. The first aspect of the present embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention.
例えば、上述した面光源装置20において、光源基板22と光学部材30との間に、スペーサが配置されてもよい。光源基板22と光学部材30との間に、透明な樹脂層が設けられ、樹脂層がスペーサとして機能してもよい。樹脂層は、熱可塑性樹脂によって形成されてもよい。樹脂層は光拡散成分を含んでもよい。光拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡、結晶性界面が例示される。
For example, a spacer may be arranged between the
例えば、上述した具体例において、面光源装置20の光学積層体21から、第1光制御シート81、第2光制御シート82および反射型偏光板85の一以上を省略してもよい。また、光学部材30から光拡散シート50を省略してもよい。
For example, in the specific example described above, one or more of the first
また、別の形態として、光学部材30から選択透過シート40を省いてもよい。この変形例において、光学部材30は、光拡散シート50および波長変換シート60を含んでもよい。光拡散シート50および波長変換シート60は、図14に示すように、互いに接合されていてもよい。図14に示された例において、光拡散シート50は、本体部52と、複数の単位拡散要素55と、を含んでいる。光拡散シート50が、単位拡散要素55の要素面56によって構成された凹凸面51によって、光拡散機能を発揮し得る。本体部52は、光拡散成分を含んでいてもよい。光拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡、結晶性界面が例示される。図14に示された光学部材30においても、光拡散シート50の光拡散機能によって、波長変換シート60に入射する光の進行方向は、第3方向D3に対して大きく傾斜し得る。したがって、波長変換シート60に含有される波長変換剤67の量を低減しながら、明るさの面内ばらつきを効果的に抑制できる。
Alternatively, the
ここで、実施例を用いて上述した本実施の形態の第1態様をより詳細に説明するが、上述した本実施の形態の第1態様はこの実施例に限定されない。 Here, the above-described first aspect of the present embodiment will be described in more detail using an example, but the above-described first aspect of the present embodiment is not limited to this example.
実施例A1および比較例A1の面光源装置を次のように製造した。 The surface light source devices of Example A1 and Comparative Example A1 were manufactured as follows.
<実施例A1>
実施例A1の面光源装置は、図2の構成を有していた。面光源装置は、光源を含む光源基板、光学部材、第1光制御シート、第2光制御シートおよび反射型偏光板を含んでいた。支持基板は、酸化チタンを含有した白色の反射層を有していた。支持基板の反射層での反射は、反射率95%の拡散反射とした。光源は、図3に示すように、支持基板上に正方配列で配列した。光源の第1方向への配列ピッチは6mmとした。第1方向へ垂直な第2方向への光源の配列ピッチは6mmとした。各光源として、450nmを中心波長として青色光を射出する発光ダイオードを用いた。この発光ダイオードの平面形状は、0.2mm×0.4mmとなる長方形形状であった。発光ダイオードの側辺が第1方向及び第2方向に沿うように、発光ダイオードを支持基板上に配置した。光源の光学部材に対面する面から光学部材の入光側面までの第3方向D3に沿った距離を0.5mmとした。
<Example A1>
The surface light source device of Example A1 had the configuration shown in FIG. The surface light source device included a light source substrate including a light source, an optical member, a first light control sheet, a second light control sheet, and a reflective polarizing plate. The support substrate had a white reflective layer containing titanium oxide. Diffuse reflection with a reflectance of 95% was used for reflection on the reflective layer of the support substrate. The light sources were arranged in a square array on the support substrate as shown in FIG. The arrangement pitch of the light sources in the first direction was 6 mm. The arrangement pitch of the light sources in the second direction perpendicular to the first direction was 6 mm. As each light source, a light-emitting diode that emits blue light with a central wavelength of 450 nm was used. The planar shape of this light-emitting diode was a rectangular shape of 0.2 mm×0.4 mm. The light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction. The distance along the third direction D3 from the surface of the light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm.
実施例A1の面光源装置において、光学部材は、図5に示すように、光拡散シート、選択透過シートおよび波長変換シートを、第3方向D3に第2側からこの順で含んでいた。選択透過シートは選択透過部を含んでいた。選択透過部に光拡散シートおよび波長変換シートがそれぞれ接合していた。選択透過部は、東レ株式会社から入手した誘電体多層膜を用いた。選択透過部は、450nmの光に対して図7に示す透過特性を有していた。波長変換シートは、図8Aに示すように、第1バリア層、波長変換部、第2バリア層および光学要素部を含んでいた。光拡散シートおよび光学要素部は、硬化前の紫外線硬化型樹脂組成物を型と本体部との間に供給し、型と本体部との間で硬化させることによって、成形した。 In the surface light source device of Example A1, as shown in FIG. 5, the optical member included a light diffusion sheet, a selective transmission sheet and a wavelength conversion sheet in this order from the second side in the third direction D3. The selectively permeable sheet contained a selectively permeable portion. A light diffusion sheet and a wavelength conversion sheet were bonded to the selective transmission portion. A dielectric multilayer film obtained from Toray Industries, Inc. was used for the selective transmission portion. The selective transmission portion had transmission characteristics shown in FIG. 7 for light of 450 nm. The wavelength conversion sheet contained a first barrier layer, a wavelength conversion section, a second barrier layer and an optical element section, as shown in FIG. 8A. The light diffusing sheet and the optical element portion were molded by supplying an ultraviolet curable resin composition before curing between the mold and the body portion and curing the composition between the mold and the body portion.
光学要素部は、本体部と、本体部上に配列された凸部としての単位光学要素と、を含んでいた。光学要素部は、図11A及び図11Bを参照して説明した形状や配列等の構成を有する単位光学要素を含んでいた。図11Aに示すように、同一形状の単位光学要素を、底面の向きを四種類に変化させて、本体部の面上に隙間無く敷き詰めて配置した。各単位光学要素は、三角錐形状を有し、三つの要素面を含んでいた。単位光学要素の底面は、直角二等辺三角形形状であった。単位光学要素の要素面は、底面をなす直角二等辺三角形形状の等辺から延び出た等辺要素面と、底面をなす直角二等辺三角形形状の底辺から延び出た底辺要素面と、を含んでいた。底辺は、底面の直角をなす頂点に対面する辺である。底面をなす直角二等辺三角形形状の等辺をなす二辺の長さは、それぞれ、0.1mmとした。各等辺要素面の傾斜角θpは45°であった。底辺要素面の傾斜角θpは45°であった。 The optical element portion includes a body portion and unit optical elements as convex portions arranged on the body portion. The optical element portion included unit optical elements having configurations such as shapes and arrangements described with reference to FIGS. 11A and 11B. As shown in FIG. 11A, unit optical elements of the same shape were arranged on the surface of the main body with no space between them, while changing the orientation of the bottom surface in four types. Each unit optical element had a triangular pyramid shape and included three element faces. The bottom surface of the unit optical element was in the shape of an isosceles right triangle. The element faces of the unit optical element included equilateral element faces extending from equilateral sides of the isosceles right triangle forming the base and base element faces extending from the base of the isosceles right triangle forming the base. . The base is the side facing the vertex forming a right angle with the base. The length of each of the two equilateral sides of the isosceles right triangle forming the bottom was set to 0.1 mm. The inclination angle θp of each equilateral element surface was 45°. The inclination angle θp of the base element surface was 45°.
光拡散シートは、選択透過シートに接合したシート状の本体部と、本体部上に配列された凹部としての単位拡散要素と、を含んでいた。光拡散シートは、図11A及び図11Bを参照して説明した形状や配列等の構成を有する単位拡散要素を含んでいた。図11Aに示すように、同一形状の単位拡散要素を、底面の向きを四種類に変化させて、本体部の面上に隙間無く敷き詰めて配置した。各単位拡散要素は、三角錐形状を有し、三つの要素面を含んでいた。単位拡散要素の底面は、直角二等辺三角形形状であった。単位拡散要素の要素面は、底面をなす直角二等辺三角形形状の等辺から延び出た等辺要素面と、底面をなす直角二等辺三角形形状の底辺から延び出た底辺要素面と、を含んでいた。底面をなす直角二等辺三角形形状の等辺をなす二辺の長さは、それぞれ、0.1mmとした。各等辺要素面の傾斜角θpは45°であった。底辺要素面の傾斜角θpは45°であった。結果として、単位拡散要素の要素面によって形成された凹凸面は、単位光学要素の要素面によって形成された凹凸面と、凹凸を逆にした点を除き同一に構成された。 The light diffusing sheet included a sheet-like main body joined to the selective transmission sheet, and unit diffusion elements as recesses arranged on the main body. The light diffusion sheet included unit diffusion elements having configurations such as shapes and arrangements described with reference to FIGS. 11A and 11B. As shown in FIG. 11A, unit diffusion elements of the same shape were arranged on the surface of the main body with no space between them, with the orientation of the bottom surface changed in four types. Each unit diffuser element had a triangular pyramidal shape and included three element faces. The base of the unit diffuser element was an isosceles right triangle shape. The element faces of the unit diffusion elements included equilateral element faces extending from the equilateral sides of the isosceles right triangle forming the base and base element faces extending from the base of the isosceles right triangle forming the base. . The length of each of the two equilateral sides of the isosceles right triangle forming the bottom was set to 0.1 mm. The inclination angle θp of each equilateral element surface was 45°. The inclination angle θp of the base element surface was 45°. As a result, the concave-convex surface formed by the element surfaces of the unit diffusion elements was configured identically to the concave-convex surface formed by the element surfaces of the unit optical elements, except that the concave-convex surfaces were reversed.
波長変換部として、昭和電工マテリアルズから入手可能なQF-6000を用いた。第1光制御シートおよび第2光制御シートとして、3M社から入手可能な輝度上昇フィルムBEF(登録商標)を二枚用いた。第1光制御シートについては、プリズムの長手方向が第2方向に延びていた。第2光制御シートについては、プリズムの長手方向が第1方向に延びていた。反射型偏光板として、3M社から入手可能な輝度上昇フィルムDBEF(登録商標)を用いた。 QF-6000 available from Showa Denko Materials was used as the wavelength converter. As the first light control sheet and the second light control sheet, two sheets of brightness enhancement film BEF (registered trademark) available from 3M Company were used. As for the first light control sheet, the longitudinal direction of the prisms extended in the second direction. As for the second light control sheet, the longitudinal direction of the prisms extended in the first direction. As a reflective polarizer, a brightness enhancement film DBEF (registered trademark) available from 3M Company was used.
実施例A1の面光源装置において、光源の光学部材に対面する面から光学部材の光源に対面する入光側面までの第3方向に沿った距離は0.5mmであった。 In the surface light source device of Example A1, the distance along the third direction from the surface of the light source facing the optical member to the light incident side surface of the optical member facing the light source was 0.5 mm.
<比較例A1>
比較例A1の面光源装置において、実施例A1の波長変換シートに変えて、第1バリア層、波長変換部および第2バリア層を含む積層体を選択透過シートの選択透過部に接合した。すなわち、比較例A1の面光源装置において、実施例A1の光学部材から光学要素部を省いた。また、比較例A1の面光源装置において、波長変換部に含まれる波長変換剤の含有量を、実施例A1の波長変換剤の含有量の1.5倍にした。比較例A1の面光源装置は、その他において実施例A1の面光源装置と同一とした。
<Comparative Example A1>
In the surface light source device of Comparative Example A1, instead of the wavelength conversion sheet of Example A1, a laminate including the first barrier layer, the wavelength conversion section and the second barrier layer was joined to the selective transmission section of the selective transmission sheet. That is, in the surface light source device of Comparative Example A1, the optical element portion was omitted from the optical member of Example A1. Further, in the surface light source device of Comparative Example A1, the content of the wavelength converting agent contained in the wavelength converting portion was 1.5 times the content of the wavelength converting agent of Example A1. The surface light source device of Comparative Example A1 was otherwise the same as the surface light source device of Example A1.
<評価>
実施例A1および比較例A1の面光源装置について、光源を発光した状態で、面光源装置の発光面での放射強度の分布を測定した。放射強度の測定範囲は、一つの光源を中心とする半径6mmの円の評価領域とした。第3方向からの観察において評価領域の中心に光源が位置するように、評価領域を設定した。実施例A1および比較例A1の面光源装置の発光面上での放射強度の面内分布を、それぞれ、図15および図16に示す。図15および図16は、評価領域内の各位置の放射強度の大きさを当該位置における色の濃さによって示している。放射強度が低い位置で色を濃く表示している。図15および図16において、黒で示された領域は、評価領域の外部を示している。図15および図16において、光源を中心とした円を白線にて示している。白線で示され円は、光源の中心の位置を示す目的で、放射強度分布に重ねて設けている。
<Evaluation>
Regarding the surface light source devices of Example A1 and Comparative Example A1, the distribution of radiant intensity on the light emitting surface of the surface light source device was measured while the light source was emitting light. The measurement range of the radiant intensity was a circular evaluation area with a radius of 6 mm centered on one light source. The evaluation area was set so that the light source was positioned at the center of the evaluation area when observed from the third direction. 15 and 16 show in-plane distributions of radiant intensity on the light emitting surfaces of the surface light source devices of Example A1 and Comparative Example A1, respectively. 15 and 16 show the magnitude of the radiant intensity at each position within the evaluation area by the color density at that position. Colors are darker at positions where the radiation intensity is low. In FIGS. 15 and 16, the black area indicates the outside of the evaluation area. In FIGS. 15 and 16, circles centered on the light source are indicated by white lines. The white-lined circle is superimposed on the radiant intensity distribution for the purpose of indicating the position of the center of the light source.
図16に示された比較例A1の面光源装置については、光源の配置に応じた放射強度分布のムラが生じており、光源の位置を把握することができた。比較例A1の面光源装置についての放射強度の面内分布に対し、実施例A1の面光源装置についての放射強度の面内分布を、十分に均一化できた。図15に示された実施例A1について、明るさの分布が均一化され、光源の位置がわかりにくくなっていた。 With respect to the surface light source device of Comparative Example A1 shown in FIG. 16, the radiant intensity distribution was uneven according to the arrangement of the light sources, and the positions of the light sources could be grasped. The in-plane distribution of radiant intensity of the surface light source device of Example A1 was sufficiently uniform with respect to the in-plane distribution of radiant intensity of the surface light source device of Comparative Example A1. In Example A1 shown in FIG. 15, the brightness distribution was uniform, making it difficult to find the position of the light source.
<第2態様>
図17~図25は、本実施の形態の第2態様を説明するための図である。図1~図16の内の図1、図3、図4等のいくつかの図面は、第2態様を説明するための図である。図17は、第2態様における面光源装置20の一具体例を示す縦断面図である。図17に示された面光源装置20は、図1の表示装置10に適用され得る。第2態様は、光学部材30の波長変換シート60に含まれる光学要素部70において、上述の第1態様と異なる。第2態様は、波長変換シート60に含まれる光学要素部70以外の構成において、上述の第1態様と同一に構成され得る。すなわち、第2態様における面光源装置20は、第1態様として説明した上述の光源基板22を含んでもよい。第2態様における光学積層体21は、第1態様として説明した上述の第1光制御シート81、第2光制御シート82、及び反射型偏光板85を含んでもよい。第2態様における光学部材30は、第1態様として説明した上述の選択透過シート40、及び光拡散シート50を含んでもよい。
<Second aspect>
17 to 25 are diagrams for explaining the second aspect of the present embodiment. Among FIGS. 1 to 16, some drawings such as FIG. 1, FIG. 3, and FIG. 4 are diagrams for explaining the second aspect. FIG. 17 is a longitudinal sectional view showing one specific example of the surface
図17に示すように、面光源装置20は、主要な構成要素として、光源23と、光源23から放出された光の光路を調整する光学積層体21と、を含んでもよい。光学積層体21は光学部材30を含んでもよい。光学積層体21及び光学部材30は、光源23に正対してもよい。光学積層体21及び光学部材30は、シート状の部材でもよい。光学積層体21及び光学部材30は、その法線方向に光源23と対面してもよい。光学積層体21及び光学部材30は、光源23から放出された光を拡散する拡散部材でもよい。光学積層体21及び光学部材30は、光源23の配置に起因した照度の面内バラツキを効果的に抑制できる。光学積層体21及び光学部材30での拡散によって、光学積層体21及び光学部材30の出光側面30b上の各位置での照度、或いは、出光側面30bの近傍に位置する出光側面30bと平行な仮想の受光面上の各位置での照度が効果的に均一化され得る。
As shown in FIG. 17, the surface
以下、第2態様における表示装置10、面光源装置20および光学積層体21について、図示された具体例を参照しながら、説明する。表示装置10の表示パネル15は、第1態様として説明した上述の表示パネル15と同一に構成されてもよい。面光源装置20の光源基板22は、第1態様として説明した上述の光源基板22と同一に構成されてもよい。光学積層体21は、光源基板22からの順で、光学部材30、第1光制御シート81、第2光制御シート82及び反射型偏光板85を含んでもよい。このうち、第1光制御シート81、第2光制御シート82及び反射型偏光板85は、それぞれ、第1態様として説明した上述の第1光制御シート81、第2光制御シート82及び反射型偏光板85と同一に構成されてもよい。
The
光学部材30は、光源基板22からの順で、選択透過シート40および波長変換シート60を含んでいる。選択透過シート40および波長変換シート60は第3方向D3に重ねられている。つまり、第3方向D3は、選択透過シート40および波長変換シート60の積層方向である。選択透過シート40は、波長変換シート60よりも、第3方向D3における第2側に位置する。波長変換シート60は、選択透過シート40よりも、第3方向D3における第1側に位置する。図示された例において、選択透過シート40および波長変換シート60は、共に、第1方向D1および第2方向D2に広がるシート状の部材である。図示された例において、選択透過シート40が光学部材30の入光側面30aを構成している。図示された例において、波長変換シート60が光学部材30の出光側面30bを構成している。選択透過シート40および波長変換シート60は、互いに接合していてもよいし、単に接触しているだけであって接合していなくてもよく、互いから離れていてもよい。なお、第1態様と同様に、光学部材30が光拡散シート50を含んでもよい。光拡散シート50の第1面50aが入光側面30aを構成してもよい。
The
選択透過シート40は、選択透過部45を含んでいる。選択透過シート40及び選択透過部45は、第1態様として説明した上述の選択透過シート40及び選択透過部45と同一としてもよい。選択透過部45の反射率および透過率は、入射角に依存して変化する。図18に示された例において、選択透過シート40は、選択透過部45のみよって構成されている。図示された選択透過部45は、シート状である。
The selectively
図示された選択透過シート40は、第1面40aおよび第2面40bを含んでいる。第1面40aは、第3方向D3における光源側となる第2側を向く、第2面40bは、第3方向D3における観察者側となる第1側を向く。選択透過部45は、第1面45aおよび第2面45bを含んでいる。第1面45aは、第3方向D3における第2側を向く。第2面45bは、第3方向D3における第1側を向く。選択透過部45の第1面45aは、選択透過シート40の第1面40aを構成している。選択透過部45の第2面45bは、選択透過シート40の第2面40bを構成している。第1面40aおよび第2面40bは平行な平坦面となっている。
The illustrated selectively
選択透過部45の透過特性および反射特性は、入射角依存性を有している。選択透過部45の透過特性および反射特性は、第1態様として説明した上述の透過特性および反射特性と同一としてもよい。
The transmission characteristics and reflection characteristics of the
図19は、選択透過部45が有する透過特性の第1具体例および第2具体例を示している。図19のグラフにおける横軸の入射角(°)は、選択透過部45が空気層と界面を形成する場合の入射角を示している。図19に示された第1具体例および第2具体例において、入射角が絶対値で65°以上70°以下となる範囲で、選択透過部45の透過率は最大値をとる。入射角が0°から最大値を取る入射角まで増加するにつれて、選択透過部45の透過率は増加する。選択透過部45は透過率の最大値は、40%以上50%以下である。ここで説明した選択透過部45の光学特性は、選択透過部45の第1面45aおよび第2面45bが平行であり、第1面45aおよび第2面45bが空気層に隣接していることを想定している。
FIG. 19 shows a first specific example and a second specific example of the transmission characteristics of the
図19に示された透過特性の第1具体例および第2具体例は、第1態様の選択透過部45にも適用可能である。図19に示された透過特性の第1具体例および第2具体例は、後述の第3態様及び第4態様の選択透過部45にも適用可能である。
The first and second specific examples of transmission characteristics shown in FIG. 19 are also applicable to the
図20および図21に示すように、波長変換シート60は、第1面60aおよび第2面60bを含んでいる。第1面60aは、第3方向D3における光源側となる第2側を向く。第2面60bは、第3方向D3における観察者側となる第1側を向く。本実施の形態において、第1面60a及び第2面60bの少なくとも一方は凹凸面61を含んでいる。第2態様において、第1面60aは凹凸面61を含んでいる。図示された第1面60aは、全面において、凹凸面61である。第2面60bは、平坦面を含んでいる。図示された第2面60bは、全面において、平坦面である。第2面60bは、第3方向D3に垂直な面でもよい。
As shown in FIGS. 20 and 21, the
図20および図21に示された例において、波長変換シート60は、選択透過シート40からの順で、光学要素部70、第1バリア層63、波長変換部65および第2バリア層64を含んでいる。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、第3方向D3にこの順で重ねられている。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、第3方向D3おける第1側から第2側へ向けて、この順で配置されている。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、シート状である。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、第1方向D1および第2方向D2に広がっている。
20 and 21, the
波長変換シート60を構成する光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、それぞれ、第1として説明した上述の対応する部分と同一に構成され得る。第2態様における波長変換シート60は、光学要素部70の配置のみにおいて、第1態様における波長変換シート60と異なってもよい。第2態様における波長変換シート60は、光学要素部70の配置以外において、第1態様における波長変換シート60と同一に構成されてもよい。図20及び図21に示された例において、光学要素部70の第1面70aが第1面60aを構成している。図20及び図21に示された例において、第2バリア層64が、第2面60b及び出光側面30bを構成している。
The
波長変換部65は、波長変換剤67として、放出波長の異なる複数の量子ドットを含んでもよい。各量子ドットの含有量を調節することによって、面光源装置20から出射する光の色を調節することができる。図22に示された例において、波長変換剤67は、第1変換剤67Aおよび第2変換剤67Bを含んでいる。第1変換剤67Aおよび第2変換剤67Bは、互いに異なる大きさを有している。第1変換剤67Aおよび第2変換剤67Bは、互いに異なる波長の光を放出する。
The
図22に示すように、波長変換部65は、母材部66及び波長変換剤67を含んでもよい。波長変換剤67は、一次光LAを吸収して第1二次光LB1を放出する第1変換剤67Aと、一次光LAを吸収して第2二次光LB2を放出する第2変換剤67Bと、を含んでもよい。この例において、第2二次光LB2の波長は第1二次光LB1の波長よりも長い。第1二次光LB1の波長は一次光LAの波長よりも長い。波長変換部65での第2変換剤67Bによる変換効率を、第1変換剤67Aによる変換効率よりも大きくしてもよい。この点は、第1態様、後述の第3態様、及び後述の第4態様においても、同様にしてもよい。
As shown in FIG. 22 , the
波長変換剤による変換効率は、波長変換シート60又は波長変換部65の第1面60a,65aに入射した一次光LAの光量(W)に対する、波長変換シート60又は波長変換部65の第2面60b,65bから放出した対象となる二次光LBの光量(W)の割合(%)にて評価される。この評価は、波長変換シート60又は波長変換部65の第1面60a,65aおよび第2面60b,65bを、第3方向D3に直交する平坦面として行われる。二次光LBの割合が大きいほど、変換効率が高いと言える。変換効率の測定において、波長変換シート60又は波長変換部65の第1面60a,65aへの一次光LAの入射角は0°とする。波長変換シート60又は波長変換部65の第2面60b,65bから出射した第1二次光LB1および第2二次光LB2を積分球に回収し、第1二次光LB1の光量(W)および第2二次光LBの光量(W)を測定する。これにより、変換効率を特定できる。
The conversion efficiency of the wavelength conversion agent is the amount of light (W) of the primary light LA incident on the
光学要素部70は、第3方向D3における観察者側となる第1側を向く第2面70bを含んでいる。光学要素部70は、第2面70bにおいて、第1バリア層63に接合している。光学要素部70は、第3方向D3における光源側となる第1側を向く第1面70aを含んでいる。光学要素部70の第1面70aは、波長変換シート60の第1面60aを構成している。第1面70aは凹凸面61を含んでいる。光学要素部70は、波長変換シート60内における配置のみにおいて、第1態様の光学要素部70と異なってもよい。光学要素部70は、波長変換シート60内における配置以外において、第1態様の光学要素部70と同一に構成されてもよい。
The
図20および図21に示された例において、光学要素部70は、各々が凸部73または凹部74として形成された複数の単位光学要素75を含んでいる。単位光学要素75は、屈折や反射等によって光の進行方向を変化させる要素である。単位光学要素75は、選択透過シート40に直接対面している。単位光学要素75によって、凹凸面61が形成されている。
In the example shown in FIGS. 20 and 21, the
図20に示された光学要素部70は、シート状の本体部72と、本体部72上に設けられた複数の凸部73と、を含んでいる。図20に示された例において、複数の凸部73は、隙間無く隣接して設けられてもよい。図21に示された光学要素部70は、第3方向D3における選択透過シート40に対面する面に複数の凹部74を設けられた本体部72を含んでいる。図21に示された例において、複数の凹部74は、隙間無く隣接して設けられてもよい。
The
図20および図21に示すように、単位光学要素75は、第3方向D3に対して傾斜した要素面76を有している。この要素面76によって単位光学要素75が画成されている。波長変換シート60の凹凸面61は、単位光学要素75の要素面76によって構成されている。
As shown in FIGS. 20 and 21, the unit
凹凸面61の光学特性は、単位光学要素75の要素面76の傾斜角に影響を受ける。したがって、単位光学要素75の断面形状は、面光源装置20や光学部材30に要求される光学特性に基づいて、適宜調節され得る。一つの単位光学要素75に含まれる複数の要素面76の傾斜角が互いに異なってもよいし、同一でもよい。光学要素部70が、形状および向きの少なくとも一方において異なる単位光学要素75を含んでもよいし、互いに同一の単位光学要素75のみを含んでもよい。
The optical characteristics of the
図20および図21に示された例と異なり、要素面76がいくらか湾曲してもよい。単位光学要素75が、半球状等の球の一部分の外形状を有してもよいし、回転楕円体の一部分の外形状を有してもよい。
Unlike the examples shown in FIGS. 20 and 21, the element faces 76 may be somewhat curved. The unit
複数の単位拡散要素55は、二次元配列されてもよい。この例によれば、非平行な複数の方向へ光を誘導することができ、照度の面内分布を効果的に均一化できる。各単位光学要素75は、第3方向D3と平行な軸線を中心として回転対称に構成されていてもよい。例えば、各単位光学要素75は、第3方向D3と平行な軸線を中心として3回転対称、4回対称又は6回対称に構成されてもよい。
The plurality of unit diffusion elements 55 may be arranged two-dimensionally. According to this example, light can be guided in a plurality of non-parallel directions, and the in-plane distribution of illuminance can be effectively uniformed. Each unit
複数の単位光学要素75は、不規則に配列されてもよいし、規則的に配列されてもよい。複数の単位光学要素75を規則的に配列することによって、光学要素部70の設計を容易化できる。複数の単位光学要素75を規則的に配列することによって、単位光学要素75を隙間無く敷き詰めることが容易となる。単位光学要素75の寸法や配列ピッチ等は、第1態様と同様にしてもよい。
The plurality of unit
図23A及び図23Bは、光学要素部70に含まれる単位光学要素75の具体例を示している。図23A及び図23Bに示された例において、複数の単位光学要素75の配置は、正方配置となっている。複数の単位光学要素75は、第1方向D1に一定のピッチで配置されている。複数の単位光学要素75は、第2方向D2にも一定のピッチで配置されている。第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、同一でもよいし、異なってもよい。図23A及び図23Bに示された例において、複数の単位光学要素75は隙間無く敷き詰められてもよい。図示された例において、第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、互いに同一となっている。
23A and 23B show specific examples of unit
単位光学要素75を第1方向D1及び第2方向D2に傾斜した方向に配置してもよい。例えば、図23Cに示された例において、複数の単位光学要素75は、第1方向D1に対して±45°傾斜した二つの方向に一定のピッチで配置されている。図23Bに示された単位光学要素75に対して、図23Cの配置を適用できる。この例によれば、要素面76が第1方向D1に対して±45°傾斜した二つの方向に向き、この二つの方向に光を広げることができる。
The unit
光学要素部70及び単位光学要素75は、第1態様として図11A及び図11Bを参照して説明した構成を有してもよい。
The
図20~図23Cに示された光学要素部70は、エンボス加工や樹脂賦型によって、作製され得る。単位光学要素75を含む光学要素部70は、粘着剤や接着剤を含む接合層を介して、第1バリア層63に接合してもよい。単位光学要素75を含む光学要素部70を第1バリア層63上に作製してもよい。
The
光学要素部70は、回折光学素子を含んでもよい。
The
次に、以上の構成を有する面光源装置20で面状光を生成する際の作用について説明する。
Next, the operation of generating planar light with the planar
図17に示すように、光源23が一次光LAを放出する。一次光LAは、一例として、青色光である。青色の一次光LAの波長は、430nm以上500nm以下でもよい。光源23から放出された光L21は、光学部材30へと向かう。図18に示すように、光源23からの一次光LAは、光学部材30の選択透過シート40に入射する。図18に示すように、選択透過シート40は、選択透過部45を含んでいる。
As shown in FIG. 17, the
光源23からの一次光LAは、選択透過部45に入射する。選択透過部45の透過率は入射角に依存している。0°より大きい或る入射角で入射する一次光LAについての選択透過部45の透過率は、0°の入射角で入射する一次光LAについての選択透過部45の透過率より大きい。図19に示された光学特性では、0°の入射角で選択透過部45に入射する光についての選択透過部45の透過率は5%以下である。また、絶対値で0°以上35°以下の出射角で選択透過シート40から出射する光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下となっている。さらには、絶対値で0°以上65°以下の広い範囲内において出射角が大きくなるにつれて、選択透過部45の透過率は大きくなる。出射角が絶対値で0°以上50°以下の範囲において、透過率は10%以下となる。すなわち、第3方向D3に対して傾斜した光が、第3方向D3に進む光と比較してより高い透過率で選択透過部45を透過できる。出射角は、出射光は、光が出射するシート状等の部材の法線方向に対して出射光の進行方向がなす角度(°)を意味する。
The primary light LA from the
光源23と第3方向D3に対面する領域と、当該領域の近傍となる周囲の領域と、を直上領域とする。この直上領域には、多量の光が入射する。しかしながら、直上領域への光の入射角は小さい。このため、光源23から放出されて選択透過シート40に進んだ光L171は、直上領域において、高い反射率にて反射される。直上領域において、光は、低い透過率にて選択透過シート40を透過する。これにより、直上領域において発光面20aが明るくなり過ぎることを抑制できる。
A region facing the
選択透過部45で反射した多くの光L172は、光源基板22に向かう。図17に示すように、光L172は、光源基板22の反射層27で反射する。この反射によって、反射層27で反射した光L173は、第3方向D3において光学部材30に向けて進む。反射層27での反射は拡散反射でもよい。拡散反射により、反射光L173の進行方向が第3方向D3に対してなす角度は大きくなる。図17に示すように、光L173は、第3方向D3に直交する第1方向D1や第2方向D2に光源23から離れた位置において、光学部材30に再入射する。
A large amount of light L172 reflected by the
光L173は、第3方向D3に直交する方向に光源23から離れた離間領域において、選択透過シート40に再入射し得る。反射光L173が第3方向D3に対して大きく傾斜した方向に進む場合、当該光L173は、選択透過シート40を透過し得る。これにより、離間領域において、発光面20aが暗くなり過ぎることを抑制できる。
The light L173 can re-enter the selectively
以上のような、選択透過部45の選択透過機能によって、光源23の配置に応じた明るさの面内バラツキを抑制できる。これにより、選択透過シート40の第2面40b上の各位置での照度を効果的に均一化できる。
With the selective transmission function of the
図20に示すように、選択透過シート40から出射した光L201は、波長変換シート60に向かう。波長変換シート60は、第3方向D3における光源側となる第2側から、光学要素部70、第1バリア層63、波長変換部65および第2バリア層64を含んでいる。光学要素部70は、波長変換シート60の第1面60aに凹凸面61を付与している。図20に示すように、光L201は、光学要素部70へ入射する際に進行方向を変化させる。光L201は、第1バリア層63を通過して、波長変換部65に向かう。
As shown in FIG. 20, the light L201 emitted from the
図22に示すように、波長変換部65は波長変換剤67を含んでいる。波長変換部65内を進む光L221の一部は、波長変換剤67に衝突する。波長変換剤67は、光源23から放出された一次光LAを吸収して、波長の異なる二次光LBを放出する。図示された例において、波長変換部65は、第1変換剤67Aおよび第2変換剤67Bを含んでいる。第1変換剤67Aは、青色の一次光LAの一部L221を吸収して、緑色の第1二次光LB1を放出する。第2変換剤67Bは、青色の一次光LAの一部L222を吸収して、赤色の第2二次光LB2を放出する。
As shown in FIG. 22, the
波長変換シート60内を進む光L174(図17参照)の多くは、選択透過部45の透過特性に起因して、第3方向D3に対して大きく傾斜した方向に進む。したがって、波長変換部65の厚みを薄くしても、波長変換部65内における光L174の光路長は長くなる。このため、波長変換シート60内において、波長変換剤67に入射し易くなる。このように、波長変換剤67を効率的に使用できるので、波長変換剤67の選択透過部45への含有量を低減できる。
Most of the light L174 (see FIG. 17) traveling through the
波長変換剤67から放出される二次光LBの進行方向は、当該波長変換剤67に吸収される前の一次光LAの進行方向に依存しない。図22に示すように、二次光LBは、波長変換剤67から広い角度範囲に放出される。二次光LBに起因する輝度の角度分布は、波長変換シート60の第2面60b上において或る程度均一化される。波長変換剤67から放出された二次光LBの多くは、平坦な第2面60bを通過し、波長変換シート60から出射する。
The traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling direction of the primary light LA before being absorbed by the wavelength converting agent 67 . As shown in FIG. 22, the secondary light LB is emitted from the wavelength conversion agent 67 over a wide range of angles. The angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the
図22に示すように、一次光LAの一部L223は、波長変換剤67に入射せず、第2面60bへ入射する。このような光L223の一部も、平坦な第2面60bを通過し、波長変換シート60から出射する。
As shown in FIG. 22, part L223 of the primary light LA does not enter the wavelength conversion agent 67, but enters the
以上のようにして、光学部材30の出光側面30bから、一次光LA、第1二次光LB1および第2二次光LB2等の光L175(図17参照)が、第3方向D3における第1側に出射する。光L175は、第1光制御シート81、第2光制御シート82および反射型偏光板85を透過して、光学積層体21の出光側面から出射する。このようにして、光学積層体21によって構成される発光面20aが発光する。
As described above, the light L175 (see FIG. 17) such as the primary light LA, the first secondary light LB1, and the second secondary light LB2 is emitted from the light
ところで、図17および図24に示すように、波長変換シート60の第2面60bに入射する光L176,L241は、第2面60bにおいて反射し得る。第2面60bで反射した光L176,L241は、第3方向D3における第2側へ進む。このような光は、いずれかの界面、例えば反射層27の表面で反射することによって、第3方向D3における進行方向を折り返し、再度、波長変換シート60に入射し得る。このような光の多くは、第2面60bに入射する際、選択透過部45の光学特性に起因して、第3方向D3に対して大きく傾斜した方向へ進む。したがって、光L176,L241は、第2面60bにおいて、比較的に高い反射率で反射する。また、波長変換シート60で反射した光は、光L176,L241は、第3方向D3に直交する第1方向D1や第2方向D2に進み、光源23から離れる。したがって、第2面60bでの反射を利用することにより、光源23の配置に起因した明るさの面内バラツキを効果的に抑制できる。すなわち、波長変換シート60は、選択透過部45の入射角依存性を有した光学特性を補強または補完して、照度の面内分布を十分に均一化できる。
By the way, as shown in FIGS. 17 and 24, the lights L176 and L241 incident on the
図24では、波長変換シート60内における光路に関する光学的作用の理解を容易とするため、波長変換シート60の厚みが薄く示されている。また、図24では、波長変換剤67の図示が省略されている。実際には、波長変換シート60の第1面60aおよび第2面60bの間に、波長変換剤67が設けられている。波長変換シート60の第2面60bでの反射を利用することにより、光源23から放出された光の循環光路内に、波長変換剤67が位置する。とりわけ、波長変換剤67は、循環光路において第3方向D3における進行方向を折り返す波長変換シート60の内部に分散している。したがって、波長変換剤67が含有された波長変換シート60内において、光は第3方向D3に対して傾斜した方向に進む。波長変換シート60内における光路長は非常に長くなる。これにより、波長変換剤67の利用効率を顕著に改善でき、波長変換剤67の波長変換部65への含有量を大幅に低減できる。例えば、波長変換部65の厚みを薄くでき、光学部材30、光学積層体21および面光源装置20の第3方向D3への厚みを低減できる。波長変換部65内における波長変換剤67の密度を低減できる。
In FIG. 24, the thickness of the
波長変換シート60においては、波長変換部65の側端面にバリア層が設けられないことがある。この例によれば、側端面近傍に位置する波長変換剤67の劣化が進み、波長変換部65の周縁部において色が変化し得る。本実施の形態によれば、上述のように波長変換剤67の波長変換部65への含有量を低減できる。したがって、第3方向D3への投影における、単位面積当たりにおける波長変換剤67の面積割合を低減できる。これにより、波長変換部65の側端面にバリア層を設けない場合でも、周縁部における色の変化を抑制できる。
In the
ここで、誘電体多層膜である選択透過部45の透過率は、波長が異なると変化する。誘電体多層膜である選択透過部45の透過率は、特定波長よりも長波長の光に対し大きくなりやすい。すなわち、選択透過部45の入射角に依存した選択透過性は、特定波長よりも大きな波長の光に対して、弱くなる。したがって、特定波長よりも長い波長を有した二次光LBに対して、選択透過部45は入射角に依存した選択透過性を有効に発揮し得ない。すなわち、選択透過部45は、一次光LAと同様に、二次光LBを反射できない。
Here, the transmittance of the
したがって、照度の面内分布を十分に均一化させる観点から、光学部材30と光源基板22との間で一次光LAを十分に循環させて照度の面内分布を均一化させた後、一次光LAを二次光LBに変換することが好ましい。すなわち、明るさの面内バラツキを抑制する観点から、循環光路内となる選択透過部45における波長変換剤67の含有量を低減することが好ましい。
Therefore, from the viewpoint of sufficiently uniforming the in-plane distribution of the illuminance, after the primary light LA is sufficiently circulated between the
図示された例において、波長変換シート60の第1面60aは、光学要素部70によって構成されている。光学要素部70は複数の単位光学要素75を含んでいる。凸部73又は凹部74としての単位光学要素75は、複数の要素面76を含んでいる。そして、複数の要素面76によって、第1面60aが構成されている。この例によれば、図24に示すように、波長変換シート60へ入射する光L241は、凹凸面61を構成する要素面76のうち、第3方向D3に対して当該進行方向と逆側に傾斜した要素面76に入射しやすくなる。この場合、光L241は、単位光学要素75への入射後においても、第3方向D3に大きく傾斜した進行方向を維持する。結果として、波長変換シート60の平坦な第2面60bへの入射角θyは大きくなり、第2面60bでの反射率が高くなる。第2面60bでの反射を促進することによって、明るさの面内バラツキを効果的に均一化できる。
In the illustrated example, the
照度の面内分布を十分に均一化させる観点から、波長変換シート60の第2面60bでの反射は全反射でもよい。具体的には、第2面60bへの入射角θy(°)を用いた全反射条件である式(A)が成立してもよい。
np×Sinθy≧1 ・・・式(A)
式(A)における、「np」は、波長変換シート60の要素面76を構成する部分の屈折率である。したがって、「np」は、単位光学要素75を構成する部分の屈折率としてもよい。厳密には、「np」は、第2面60bを構成する部分の屈折率とすべきである。図20および図21に示すように、光学要素部70の第2面70b、波長変換部65の第1面65aおよび第2面65b、波長変換シート60の第2面60bは、通常であれば互いに平行であり、第3方向D3に略直交する。したがって、式(A)における「np」を、波長変換シート60の要素面76を構成する屈折率としてもよい。
From the viewpoint of sufficiently uniforming the in-plane distribution of illuminance, the reflection on the
np×Sinθy≧1 Formula (A)
“np” in the formula (A) is the refractive index of the portion forming the
式(A)を満たす入射角で第2面60bに向かう光の進行を妨げないように、要素面76の傾斜角θpを次のように決定してもよい。
sin-1(1/np)≦90-θp ・・・(X)
式(X)におけるθp(°)は、第3方向D3に直交する面と、要素面76との間の角度(°)である。式(X)が満たされる場合、第3方向D3に対して全反射臨界角(°)以上の角度で傾斜した方向に進む光が、要素面76に入射することなく、第2面60bへ入射することを促進できる。このような設定により、波長変換シート60と光源基板22との間での光循環を促進して、照度の面内分布を効果的に均一化できる。
The inclination angle θp of the
sin −1 (1/np)≦90−θp (X)
θp (°) in the formula (X) is the angle (°) between the plane perpendicular to the third direction D3 and the
図24に示すように、単位光学要素75の要素面76に入射する光L241の光路に関し、次の式が成立する。
θ1=θx-θp ・・・式(B)
Sinθ1=np×Sinθ2 ・・・式(C)
θy=θp+θ2 ・・・式(D)
式(B)におけるθx(°)は、波長変換シート60に向かう光L241の進行方向と第3方向D3との間の角度(°)である。式(B)におけるθp(°)は、第3方向D3に直交する面と、光L241が入射する要素面76との間の角度(°)である。式(C)におけるθ1(°)は、光L241が入射する要素面76に対する光L241の入射角(°)である。式(C)におけるθ2(°)は、光L241が通過した要素面76での光L241の屈折角(°)である。すなわち、θ2(°)は、要素面76への法線方向と、要素面76での屈折後における光の進行方向と、の間の角度である。
As shown in FIG. 24, regarding the optical path of the light L241 incident on the
θ1=θx-θp Expression (B)
Sinθ1=np×Sinθ2 Formula (C)
θy=θp+θ2 Formula (D)
θx (°) in the formula (B) is the angle (°) between the traveling direction of the light L241 toward the
式(B)~(D)を用いて式(A)を記載し直すと、次の条件式(E)が得られる。
sin-1(1/np) ≦ sin-1(sin(θx-θp)/np)+θp ・・・式(E)
式(E)が満たされる場合、第3方向D3に対してθx(°)傾斜した方向に進む光が、要素面76を通過して波長変換シート60に入射した後、第2面60bにおいて全反射する。波長変換シート60に入射する光の少なくとも一部に対して式(E)を成立させるように、要素面76を構成する部分の屈折率npおよび要素面76の傾斜角θp(°)を設定してもよい。このような設定により、波長変換シート60と光源基板22との間での光循環を促進して、照度の面内分布を効果的に均一化できる。
By rewriting formula (A) using formulas (B) to (D), the following conditional formula (E) is obtained.
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp Expression (E)
When the formula (E) is satisfied, light traveling in a direction slanted by θx (°) with respect to the third direction D3 passes through the
ここで、式(E)において用いられる光の進行角度θx(°)を、選択透過部45での特定波長の光の透過率が最大値の1/2となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である第1特定角度θx1(°)としてもよい。なお、透過率が最大値の1/2となる入射角は、透過率が最大値となる入射角より小さい角度とする。実際の面光源装置において、選択透過シート40から出射して波長変換シート60に向かう多くの光の進行方向は、第3方向D3に対して第1特定角度θx1だけ傾斜した方向となる。したがって、第1特定角度θx1を用いた次の式(F)が満たされる場合、選択透過シート40から波長変換シート60へ向かう多くの光が、波長変換シート60で全反射する。結果として、式(F)が満たされる場合、波長変換シート60と光源基板22との間での光循環が促進でき、照度の面内分布を効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx1-θp)/np)+θp ・・・式(F)
Here, the light traveling angle θx (°) used in the formula (E) is applied to the
sin -1 (1/np)≤sin -1 (sin(θx1-θp)/np)+θp ・・・Formula (F)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学要素部70を形成した場合、式(F)によれば、要素面76の傾斜角θpは16°以上が好ましい。
In combination with the
他の例として、式(E)において用いられる光の進行角度θx(°)を、選択透過部45での特定波長の光の透過率が最大値の1/10となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である第2特定角度θx2(°)としてもよい。なお、透過率が最大値の1/10となる入射角は、透過率が最大値となる入射角より小さい角度とする。第2特定角度θx2に進む光は、波長変換シート60への入射光のうち入射角が非常に小さい光である。この入射角が小さい光が第2面60bでの全反射条件を満たす場合、波長変換シート60に入射するほとんどの光が、波長変換シート60での全反射条件を満たし得る。したがって、第2特定角度θx2を用いた次の式(G)が満たされる場合、波長変換シート60と光源基板22との間での光循環がより促進でき、照度の面内分布を非常に効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx2-θp)/np)+θp ・・・式(G)
As another example, the light traveling angle θx (°) used in the formula (E) is set to the incident angle at which the transmittance of the light of the specific wavelength in the
sin -1 (1/np)≤sin -1 (sin(θx2-θp)/np)+θp Formula (G)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学要素部70を形成した場合、式(G)によれば、要素面76の傾斜角θpは30°以上が好ましい。
In combination with the
更に他の例として、式(E)において用いられる光の進行角度θx(°)を、選択透過シート40の第2面40bでの輝度角度分布における半値角(°)である第3特定角度θx3としてもよい。この例によれば、実際に使用されている面光源装置20において波長変換シート60に入射する光のうち入射角が比較的に小さくなる光が、第2面60bでの全反射条件を満たす。したがって、第3特定角度θx3を用いた次の式(H)が満たされる場合、波長変換シート60と光源基板22との間での光循環が促進でき、照度の面内分布を効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx3-θp)/np)+θp ・・・式(H)
第3特定角度θx3は、選択透過シート40の第2面40bでの輝度角度分布から特定される。この輝度角度分布は、選択透過シート40よりも第3方向D3における観察者側となる第1側の構成要素を面光源装置20から取り除いた状態で光源23から光を放出し、第2面40b上で測定される各方向での輝度の分布である。この輝度角度分布の一例を図25に示す。輝度角度分布における半値角は、当該輝度角度分布におけるピーク輝度の半分の輝度が得られる方向と、第3方向D3との間の角度の大きさ(絶対値)のうちの最小値である。
As still another example, the light traveling angle θx (°) used in the formula (E) is a third specific angle θx3 may be According to this example, of the light incident on the
sin -1 (1/np)≤sin -1 (sin(θx3-θp)/np)+θp Expression (H)
The third specific angle θx3 is specified from the luminance angular distribution on the
なお、式(F)、(G)および(H)は、要素面76の全領域における傾斜角θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角θpについて、より好ましくは要素面76の80%以上の領域での傾斜角θpについて、式(F)、(G)および(H)が満たされる。
It should be noted that the expressions (F), (G) and (H) need not be satisfied by the inclination angle θp over the entire area of the
以上に説明した全反射条件は、図24に示された光L241についての条件である。この光L241は、一つの要素面76を通過して、波長変換シート60内を進む。この光L241は、他の要素面76に入射することなく、第2面60bに入射する。その一方で、一の要素面76を通過した光L242が、当該一の要素面76に対面する他の要素面76に入射することも想定される。この光L242は、他の要素面76で全反射し、小さい入射角で第2面60bに入射し得る。この光L242の第2面60bでの反射率は小さくなる。
The conditions for total reflection described above are the conditions for the light L241 shown in FIG. This light L241 passes through one
このような光L242の発生を抑制して、第2面60bでの反射を促進する観点から、単位光学要素75内を進む光の進行方向と第3方向D3との間の角度は、要素面76と第3方向D3との間の角度以下でもよい。具体的には、次の式(I)が満たされてもよい。上述した式(B)~(D)を考慮して式(I)を書き換えた式(J)が満たされてもよい。式(I)および式(J)中で用いられる角度や屈折率については、上述した通りである。
θp+θ2≦90-θp ・・・式(I)
sin-1(sin(θx-θp)/np)+θp≦90-θp ・・・式(J)
ここで、式(J)において用いられる光の進行角度θx(°)を、上述した第1特定角度θx1(°)としてもよい。
From the viewpoint of suppressing the generation of such light L242 and promoting reflection on the
θp+θ2≦90−θp Formula (I)
sin -1 (sin(θx-θp)/np)+θp≦90-θp Expression (J)
Here, the light traveling angle θx (°) used in the formula (J) may be the above-described first specific angle θx1 (°).
ここで、式(J)において用いられる光の進行角度θx(°)を、上述した第2特定角度θx2(°)としてもよい。第2特定角度θx2を用いた次の式(L)が満たされる場合、一の要素面76から単位光学要素75に入射した光の少なくとも一部が、一の要素面76に対面する他の要素面76に入射することなく第2面60bに入射できる。したがって、式(L)が満たされる場合、波長変換シート60と光源基板22との間での光循環を期待でき、照度の面内バラツキを抑制できる。
sin-1(sin(θx2-θp)/np)+θp≦90-θp ・・・式(L)
Here, the light traveling angle θx (°) used in the formula (J) may be the above-described second specific angle θx2 (°). When the following formula (L) using the second specific angle θx2 is satisfied, at least part of the light incident on the unit
sin -1 (sin(θx2-θp)/np)+θp≦90-θp ・・・Formula (L)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学要素部70を形成した場合、式(L)によれば、要素面76の傾斜角θpは45°以下が好ましい。
In combination with the
他の例として、式(J)において用いられる光の進行角度θx(°)を、選択透過シート40の第2面40bでの輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、第3方向D3と、の間の角度(°)である第4特定角度θx4としてもよい。この例によれば、実際に使用されている面光源装置20において一の要素面76から単位光学要素75に入射した光の少なくとも一部が、一の要素面76に対面する他の要素面76に入射することなく第2面60bに入射できる。したがって、第3特定角度θx4を用いた次の式(M)が満たされる場合、波長変換シート60と光源基板22との間での光循環を期待でき、照度の面内バラツキを抑制できる。
sin-1(sin(θx4-θp)/np)+θp≦90-θp ・・・式(M)
第4特定角度θx4は、選択透過シート40の第2面40bでの輝度角度分布から特定される。この輝度角度分布は、選択透過シート40よりも第3方向D3における観察者側となる第1側の構成要素を面光源装置20から取り除いた状態で光源23から光を放出し、第2面40b上で測定される各方向での輝度の分布である。この輝度角度分布の一例を図25に示す。輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と第3方向D3との間の角度は、当該輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、第3方向D3との間の角度の大きさ(絶対値)のうちの最小値である。
As another example, the light traveling angle θx (°) used in formula (J) is the direction in which the brightness of 1/10 of the peak brightness in the brightness angular distribution on the
sin -1 (sin(θx4-θp)/np)+θp≦90-θp Expression (M)
The fourth specific angle θx4 is specified from the luminance angular distribution on the
なお、式(K)、(L)および(M)は、要素面76の全領域における傾斜角θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角θpについて、より好ましくは要素面76の80%以上の領域での傾斜角θpについて、式(K)、(L)および(M)が満たされる。
It should be noted that the expressions (K), (L) and (M) need not be satisfied by the inclination angle θp over the entire area of the
上述した式(E)および式(J)を両立させる上で、特定角度θxは、35°以上であることが好ましい。特定角度θxを35°以上とすることによって、要素面76を構成する部分の屈折率npが1.50以上1.60以下の範囲において、傾斜角θpが適切な範囲を有するようになる。この点から、選択透過シート40から波長変換シート60へ向かう光の進行方向が第3方向D3に対してなす角度は、35°以上でもよく、40°以上でもよく、45°以上でもよい。また、絶対値で0°以上35°以下の出射角で選択透過シート40から出射する特定波長の光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下でもよく、選択透過部45の透過率の最大値の1/10以下でもよい。
The specific angle θx is preferably 35° or more in order to satisfy both the above formulas (E) and (J). By setting the specific angle θx to 35° or more, the inclination angle θp has an appropriate range within the range of the refractive index np of the portion forming the
以上に説明した本実施の形態において、光学部材30は、選択透過部45を含む選択透過シート40と、選択透過シート40側となる第1面40aおよび第1面40aと対向する第2面40bを含む波長変換シート60と、を含んでいる。0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、0°の入射角で選択透過部45に入射する選択透過部45の光についての選択透過部45の透過率より大きい。第1面60a及び第2面60bの少なくとも一方は、凹凸面61を含む。本実施の形態の第2態様において、波長変換シート60の第1面60aは凹凸面を含んでいる。
In the embodiment described above, the
本実施の形態の第2態様による光学部材30によれば、光源23からの一次光LAを、波長変換シート60の第2面60bで反射できる。すなわち、波長変換シート60の第2面60bは、第3方向D3における観察者側となる第1側へ向かう光を反射できる。つまり、波長変換シート60の第2面60bと光源基板22等との間で、一次光LAが循環する循環光路を形成できる。本実施の形態によれば、波長変換剤67は、第3方向D3における進行方向を折り返す波長変換シート60に含まれている。一次光LAは、波長変換シート60内において、第3方向D3に対して傾斜した方向に進む。したがって、波長変換剤67の波長変換シート60内への含有量を大幅に低減できる。むしろ、二次光LBを種々の方向に放出する波長変換剤67の含有量を低減することにより、第2面60bでの反射を利用した一次光LAの循環を促進できる。すなわち、一次光LAの循環により、光源23の配置に起因した明るさの面内バラツキを抑制して照度の面内バラツキを抑制しながら、波長変換剤67の含有量を大幅に低減できる。光学部材30、光学積層体21の薄型化および面光源装置20の薄型化も可能となる。
According to the
ここで、本件発明者らが実施したシミュレーション結果について説明する。シミュレーションは、Synopsys社製のLightToolsを用いた光線追跡シミュレーションとした。 Here, the results of the simulation conducted by the inventors will be explained. The simulation was a ray tracing simulation using LightTools manufactured by Synopsys.
シミュレーションの対象は、図3、図4、図17~図20、図22、図23Aおよび図23Bに示された面光源装置とした。すなわち、面光源装置は、光源基板および光学積層体を含んでいた。光学積層体は、光学部材、第1光制御シート、第2光制御シートおよび反射型偏光板を含んでいた。光学部材は、選択透過シート及び波長変換シートを含んでいた。波長変換シートの第1面は凹凸面を有していた。光源基板は、青色のマイクロ発光ダイオードを第1方向および第2方向の両方向に6mmのピッチで配置した。光源の光学部材30に対面する面から光学部材の入光側面までの第3方向D3に沿った距離を0.5mmとした。選択透過シートは、選択透過部のみを含んでいた。選択透過部の第1面および第2面は互いに平行とした。第1面および第2面は第3方向D3に直交していた。波長変換シートは、光学要素部、第1バリア層、波長変換部および第2バリア層を含んでいた。第1光制御シートおよび第2光制御シートは米国3M社から入手可能な「BEF」(登録商標)とした。反射型偏光板は米国3M社から入手可能な「DBEF」(登録商標)とした。
The simulation target was the surface light source device shown in FIGS. 3, 4, 17 to 20, 22, 23A and 23B. That is, the surface light source device included a light source substrate and an optical laminate. The optical laminate included an optical member, a first light control sheet, a second light control sheet and a reflective polarizing plate. The optical member included a selective transmission sheet and a wavelength conversion sheet. The first surface of the wavelength conversion sheet had an uneven surface. On the light source substrate, blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction. The distance along the third direction D3 from the surface of the light source facing the
上述した光学要素部に含まれる要素面の傾斜角θpを、表1および表2に示すように変更した。各傾斜角θpのシミュレーション対象について、波長変換剤の含有量を変化させて、発光色が白色となり照度の面内分布を均一化できる波長変換剤の含有量を調査した。いずれのシミュレーション対象についても、波長変換剤は、光源からの青色光を吸収して緑色光を放出する第1変換剤と、光源からの青色光を吸収して赤色光を放出する第2変換剤と、を含んでいた。第1変換剤による変換効率と第2変換剤による変換効率は、11:20とした。波長変換部65での第2変換剤67Bによる変換効率を、第1変換剤67Aによる変換効率よりも大きくすることによって、色のバランスを改善できた。
The inclination angles θp of the element surfaces included in the optical element portion described above were changed as shown in Tables 1 and 2. For each tilt angle θp to be simulated, the content of the wavelength conversion agent was changed to investigate the content of the wavelength conversion agent that can make the emission color white and uniform the in-plane distribution of illuminance. For any simulation target, the wavelength conversion agent consists of a first conversion agent that absorbs blue light from the light source and emits green light, and a second conversion agent that absorbs blue light from the light source and emits red light. and included. The conversion efficiency by the 1st conversion agent and the conversion efficiency by the 2nd conversion agent were set to 11:20. By making the conversion efficiency of the second conversion agent 67B in the
シミュレーションの結果を表1および表2に示す。表1は、図19に示された第1具体例の透過特性を有する選択透過部45を用いたシミュレーションの結果を示している。表2は、図19に示された第2具体例の透過特性を有する選択透過部45を用いたシミュレーションの結果を示している。表1および表2における「変換効率」の欄には、各シミュレーション対象において最も照度の面内バラツキを抑制できた変換効率を相対比にて示している。表1および表2における「総合評価」の欄には、最適な変換効率の低さと、照度の面内分布の均一さとに基づいて評価している。「総合評価」の欄に「×」が記入されているサンプルは最も評価が低かったサンプルである。「総合評価」の欄に「○」が記入されているサンプルは評価が良かったサンプルである。「総合評価」には、評価が高いサンプルについて、より多くの「○」を記入した。
The simulation results are shown in Tables 1 and 2. Table 1 shows the results of a simulation using the
表1および表2に示すように、光学要素部に含まれる単位光学要素の傾斜角θpが10°以上50°以下の範囲において、変換効率を低減しながら照度の面内分布を均一化できる。光学要素部に含まれる単位光学要素の傾斜角θpが30°以上45°以下の範囲において、変換効率をより低減しながら照度の面内分布をより均一化できる。 As shown in Tables 1 and 2, the in-plane distribution of illuminance can be made uniform while the conversion efficiency is reduced when the tilt angle θp of the unit optical elements included in the optical element section is in the range of 10° or more and 50° or less. In the range where the tilt angle θp of the unit optical elements included in the optical element portion is 30° or more and 45° or less, the in-plane distribution of illuminance can be made more uniform while the conversion efficiency is further reduced.
具体例を参照しながら本実施の形態の第2態様を説明してきたが、上述の具体例が本実施の形態の第2態様を限定しない。上述した本実施の形態の第2態様は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。 Although the second aspect of the present embodiment has been described with reference to specific examples, the above-described specific examples do not limit the second aspect of the present embodiment. The second aspect of the present embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention.
図示された具体例において、波長変換シート60の第1面60aが凹凸面を含む例を示した。波長変換シート60の第1面60aが凹凸面を含むことに加えて、波長変換シート60の第2面60bが凹凸面を含んでもよい。第1面60aおよび第2面60bの少なくとも一方が凹凸面を含むことによって、第2面60bでの全反射を生じさせることが可能となる。
In the illustrated example, the
<第3態様>
図1~図27は、本実施の形態の第3態様を説明するための図でもある。第3態様では、波長変換シート60の光散乱性が調節されている。第3態様において、波長変換シート60の透過ヘイズが調節されている。第3態様は、波長変換シート60の透過ヘイズ以外において、第1態様と同一に構成され得る。第3態様は、波長変換シート60の透過ヘイズ以外において、第2態様と同一に構成され得る。
<Third aspect>
1 to 27 are also diagrams for explaining the third aspect of the present embodiment. In the third aspect, the light scattering properties of the
例えば図17に示すように、第3態様における面光源装置20は、主要な構成要素として、光源23と、光源23から放出された光の光路を調整する光学積層体21と、を含んでもよい。光学積層体21は光学部材30を含んでもよい。光学積層体21及び光学部材30は、光源23に正対していてもよい。光学積層体21及び光学部材30は、シート状の部材でもよい。光学積層体21及び光学部材30は、その法線方向に光源23と対面してもよい。光学積層体21及び光学部材30は、光源23から放出された光を拡散する拡散部材でもよい。光学積層体21及び光学部材30は、光源23の配置に起因した照度の面内バラツキを効果的に抑制できる。光学積層体21及び光学部材30での拡散によって、光学部材30の出光側面30b上の各位置での照度、或いは、出光側面30bの近傍に位置する出光側面30bと平行な仮想の受光面上の各位置での照度が効果的に均一化され得る。
For example, as shown in FIG. 17, a surface
以下、第3態様における表示装置10、面光源装置20および光学部材30について、図17~図25に示された具体例を主に参照しながら、説明する。表示装置10の表示パネル15は、第1態様として説明した上述の表示パネル15と同一に構成されてもよい。面光源装置20の光源基板22は、第1態様として説明した上述の光源基板22と同一に構成されてもよい。光学積層体21は、光源基板22からの順で、光学部材30、第1光制御シート81、第2光制御シート82及び反射型偏光板85を含んでもよい。このうち、第1光制御シート81、第2光制御シート82及び反射型偏光板85は、それぞれ、第1態様として説明した上述の第1光制御シート81、第2光制御シート82及び反射型偏光板85と同一に構成されてもよい。
The
光学部材30は、選択透過シート40および波長変換シート60をこの順番で含んでいる。選択透過シート40および波長変換シート60は第3方向D3に重ねられている。選択透過シート40および波長変換シート60は、共に、第1方向D1および第2方向D2に広がるシート状の部材でもよい。図示された例において、選択透過シート40が光学部材30の入光側面30aを構成している。図示された例において、波長変換シート60が光学部材30の出光側面30bを構成している。選択透過シート40および波長変換シート60は、互いに接合していてもよいし、単に接触しているだけであって接合していなくてもよく、互いから離れていてもよい。なお、第1態様と同様に、光学部材30が光拡散シート50を含んでもよい。光拡散シート50の第1面50aが入光側面30aを構成してもよい。
The
選択透過シート40は、選択透過部45を含んでいる。選択透過部45の反射率および透過率は、入射角に依存して変化する。選択透過部45は、入射角に応じて透過率が変化するように透過特性を調節されている。選択透過部45は、入射角に応じて反射率が変化するように反射特性を調節されている。選択透過シート40及び選択透過部45は、それぞれ、第1態様として説明した上述の選択透過シート40及び選択透過部45と同一に構成されてもよい。選択透過シート40及び選択透過部45は、それぞれ、第2態様として説明した上述の選択透過シート40及び選択透過部45と同一に構成されてもよい。
The selectively
選択透過部45の透過特性および反射特性は、入射角依存性を有している。選択透過部45の透過率及び選択透過部45の反射率は、入射角に応じて変化する。選択透過部45の透過特性および反射特性は、波長依存性を有してもよい。選択透過部45の透過率及び選択透過部45の反射率は、波長に応じて変化してもよい。
The transmission characteristics and reflection characteristics of the
選択透過部45としては、上述したように、反射率の入射角依存性および透過率の入射角依存性を有するものであれば、特に限定されない。選択透過部45は、誘電体多層膜、反射型の体積ホログラム、コレステリック液晶構造層、再帰反射フィルム、反射型の回折光学素子を含んでもよい。誘電体多層膜、反射型の体積ホログラム、コレステリック液晶構造層および反射型の回折光学素子は、波長依存性を有している。
The
第3態様において、波長変換シート60の透過ヘイズは低くなっている。波長変換シート60は、透過ヘイズが後述の範囲に設定されていれば、第1態様として説明した上述の波長変換シート60と同一に構成されてもよい。波長変換シート60は、透過ヘイズが後述の範囲に設定されていれば、第2態様として説明した上述の波長変換シート60と同一に構成されてもよい。
In the third aspect, the transmission haze of the
図20および図21に示すように、波長変換シート60は、第1面60aおよび第2面60bを含んでいる。第1面60aは、第3方向D3における光源側となる第2側を向く。第2面60bは、第3方向D3における観察者側となる第1側を向く。波長変換シート60は、第1面60a及び第2面60bの少なくとも一方の面に凹凸面61を含む。以下、第1面60aが凹凸面61を含む図示された例を参照して、波長変換シート60について説明する。図示された第1面60aは、全面において、凹凸面61である。第2面60bは、平坦面を含んでいる。図示された第2面60bは、全面において、平坦面である。第2面60bは、第3方向D3に垂直な面でもよい。
As shown in FIGS. 20 and 21, the
波長変換シート60は波長変換剤67を含んでいる。波長変換剤67は、一次光を吸収して、一次光とは異なる波長の二次光を放出する。
The
図20および図21に示された例のように、波長変換シート60は、光源基板22からの順で、光学要素部70、第1バリア層63、波長変換部65および第2バリア層64を含んでもよい。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、第3方向D3にこの順で重ねられている。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、シート状でもよい。光学要素部70、第1バリア層63、波長変換部65および第2バリア層64は、第1方向D1および第2方向D2に広がってもよい。
20 and 21, the
光学要素部70は、第1態様として説明した上述の光学要素部70と同一でもよい。光学要素部70は、第2態様として説明した上述の光学要素部70と同一でもよい。第1バリア層63は、第1態様として説明した上述の第1バリア層63と同一でもよい。第1バリア層63は、第2態様として説明した上述の第1バリア層63と同一でもよい。波長変換部65は、第1態様として説明した上述の波長変換部65と同一でもよい。波長変換部65は、第2態様として説明した上述の波長変換部65と同一でもよい。第2バリア層64は、第1態様として説明した上述の第2バリア層64と同一でもよい。第2バリア層64は、第2態様として説明した上述の第2バリア層64と同一でもよい。
The
波長変換部65は、透過光を散乱させる光散乱成分を含んでもよい。光散乱成分は、母材部66内に分散していてもよい。光散乱成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。光散乱成分の種類や含有量等により、波長変換シート60の透過ヘイズを調節できる。
The
次に、第3態様による面光源装置20で面状光を生成する際の作用について説明する。以下では、波長変換シート60の第1面60aが凹凸面61を含む例について、すなわち、図17~図25に示された面光源装置20について説明する。
Next, the operation of generating planar light with the planar
第2態様において説明したように、選択透過部45の選択透過機能によって、光源23の配置に応じた明るさの面内バラツキを抑制できる。これにより、選択透過シート40の第2面40b上の各位置での照度を効果的に均一化できる。
As described in the second aspect, the selective transmission function of the
図17及び図20に示すように、選択透過シート40を透過した光L174,L201は、波長変換シート60に向かう。図20に示すように、光L201は、光学要素部70へ入射する際に要素面76での屈折によりいくらか進行方向を変化させる。光L201は、第1バリア層63を通過して、波長変換部65に向かう。
As shown in FIGS. 17 and 20, the lights L174 and L201 transmitted through the
選択透過シート40を透過した光L174(図17参照)の多くは、選択透過部45の透過特性に起因して、第3方向D3に対して大きく傾斜した方向に進む。図示された例において、この光L174の進行方向は、選択透過シート40の第2面40bでの屈折により、更に第3方向D3に対して傾斜する。更に、波長変換シート60の入射面となる第1面60aは、凹凸面61となっている。図20に示す例のように、波長変換シート60へ入射する光L201は、当該光L201の進行方向と第3方向D3に関して逆方向に傾斜した要素面76へ入射しやすい。そして、この要素面76を入射する際、光L201の進行方向は大きく変化しにくい。これにより、図20に示すように、波長変換シート60内を進む光L201は、第3方向D3に対して非常に大きく傾斜した方向に進み易くなる。これにともない、波長変換部65内における光L174の光路長は長くなる。このため、波長変換シート60内において、波長変換剤67に入射し易くなる。結果として、波長変換剤67を効率的に使用できるので、波長変換剤67の波長変換部65への含有量を低減できる。
Most of the light L174 (see FIG. 17) transmitted through the
波長変換剤67から放出される二次光LBの進行方向は、当該波長変換剤67に吸収される前の一次光LAの進行方向に依存しない。図22に示すように、二次光LBは、波長変換剤67から広い角度範囲に放出される。二次光LBに起因する輝度の角度分布は、波長変換シート60の第2面60b上において或る程度均一化される。波長変換剤67から放出された二次光LBの多くは、平坦な第2面60bを通過し、波長変換シート60から出射し得る。
The traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling direction of the primary light LA before being absorbed by the wavelength converting agent 67 . As shown in FIG. 22, the secondary light LB is emitted from the wavelength conversion agent 67 over a wide range of angles. The angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the
図22に示すように、一次光LAの一部L223は、波長変換剤67に入射せず、第2面60bへ入射する。このような光L223の一部も、平坦な第2面60bを通過し、波長変換シート60から出射し得る。
As shown in FIG. 22, part L223 of the primary light LA does not enter the wavelength conversion agent 67, but enters the
以上のようにして、波長変換シート60から、一次光LA、第1二次光LB1および第2二次光LB2等の光L175(図17参照)が、第3方向D3における第1側に出射する。光L175は、第1光制御シート81、第2光制御シート82および反射型偏光板85を透過して、光学部材30の出光側面30bから出射する。このようにして、光学部材30の出光側面30bが発光する。
As described above, the light L175 (see FIG. 17) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 is emitted from the
ところで、図17および図24に示すように、波長変換シート60の第2面60bに入射する光L176,L241は、第2面60bにおいて反射し得る。第2面60bで反射した光L176,L241は、第3方向D3における第2側へ進む。このような光は、いずれかの界面、例えば反射層27の表面で反射することによって、第3方向D3における進行方向を折り返し、再度、波長変換シート60に入射し得る。
By the way, as shown in FIGS. 17 and 24, the lights L176 and L241 incident on the
波長変換シート60の第2面60bで反射した光L176,L241は、第3方向D3に直交する第1方向D1や第2方向D2に進む。すなわち、光L176,L241は、第3方向D3に直交する方向に光源23から離れる。したがって、第2面60bでの反射を利用することにより、光源23の配置に起因した明るさの面内バラツキを効果的に抑制できる。すなわち、波長変換シート60は、選択透過部45の入射角依存性を有した光学特性を補強または補完して、照度の面内分布を十分に均一化できる。
Lights L176 and L241 reflected by the
また、第2面60bでは、一次光LAが非常に高い反射率にて選択的に反射され得る。図示された例において、波長変換シート60の第1面60aは、光学要素部70によって構成された凹凸面61を含んでいる。光学要素部70は複数の単位光学要素75を含んでいる。凸部73又は凹部74としての単位光学要素75は、複数の要素面76を含んでいる。そして、複数の要素面76によって、第1面60aの凹凸面61が構成されている。この例によれば、図24に示すように、波長変換シート60へ入射する一次光LAとしての光L241は、凹凸面61を構成する要素面76のうち、第3方向D3に対して当該進行方向と逆側に傾斜した要素面76に入射しやすくなる。この光L241の進行方向は、波長変換シート60への入射時に、凹凸面61での屈折によって大きく曲げられない。すなわち、一次光LAは、波長変換シート60内において、第3方向D3に対して非常に大きく傾斜した進行方向を維持できる。結果として、波長変換シート60の平坦な第2面60bへの入射角θyは大きくなる。これにより、波長変換剤67によって波長変換されなかった一次光LAは、第2面60bにおいて高い反射率で反射する。さらに、入射角度が大きくなることから、一次光LAは、第2面60bにおいて全反射し得る。
In addition, the primary light LA can be selectively reflected on the
その一方で、二次光LBの波長変換剤67から放出される方向は、波長変換剤67への入射方向に依存しない。したがって、二次光LBは、拡散光となっており、第2面60bにおいて高い反射率で反射され得ない。
On the other hand, the direction in which the secondary light LB is emitted from the wavelength conversion agent 67 does not depend on the direction of incidence on the wavelength conversion agent 67 . Therefore, the secondary light LB is diffused light and cannot be reflected at a high reflectance on the
以上のようにして、一次光LAの出射方向に影響与える選択透過部45の透過特性と、凹凸面61との組合せにより、第2面60bは、一次光LAを選択的に高い反射率で反射する。この一次光LAの波長変換シート60と光源基板22との間での循環光路内に、波長変換剤67が位置している。
As described above, the
なお、凹凸面61による一次光LAの進行方向維持機能を強化するには、選択透過シート40の第2面40b上において一次光LAのピーク輝度が得られる方向に対して直交する要素面76を用いてもよい。このように一次光LAの出射方向に影響を及ぼす選択透過部45の透過特性を考慮して凹凸面61の傾斜角度を決定することにより、第2面60bは、一次光LAを選択的に高い反射率で反射し得る。
In order to strengthen the function of maintaining the traveling direction of the primary light LA by the
波長変換シート60の第2面60bでの反射を利用することにより、光源23から放出された光の循環光路内に、波長変換剤67が位置する。とりわけ、波長変換剤67は、循環光路において第3方向D3における進行方向を折り返す波長変換シート60の内部に分散している。したがって、波長変換剤67が含有された波長変換シート60内における一次光LAの光路長は非常に長くなる。
By utilizing the reflection on the
このように、一次光LAが選択的に第2面60bで反射される。これにより、一次光LAに起因した照度の面内分布を十分に均一化できる。そして、第3方向D3における第2面60bと光源基板22との間となる一次光LAの循環光路中に、波長変換剤67が設けられている。これにより、照度の面内分布を十分に均一化できることに加え、発光面20a内における色むらを抑制できる。そして、一次光LAが選択的に第2面60bで反射されて循環することから、波長変換剤67の利用効率を顕著に改善でき、波長変換剤67の波長変換部65への含有量を大幅に低減できる。例えば、波長変換部65の厚みを薄くでき、光学部材30、光学積層体21および面光源装置20の第3方向D3への厚みを低減できる。波長変換部65内における波長変換剤67の密度を低減できる。
Thus, the primary light LA is selectively reflected by the
波長変換シート60においては、波長変換部65の側端面にバリア層が設けられないことがある。この例によれば、側端面近傍に位置する波長変換剤67の劣化が進み、波長変換部65の周縁部において色が変化し得る。本実施の形態によれば、上述のように波長変換剤67の波長変換部65への含有量を低減できる。したがって、第3方向D3への投影における、単位面積当たりにおける波長変換剤67の面積割合を低減できる。これにより、波長変換部65の側端面にバリア層を設けない場合でも、周縁部における色の変化を抑制できる。
In the
また、誘電体多層膜である選択透過部45の透過率は、波長依存性を有している。すわち、誘電体多層膜である選択透過部45の透過率は、波長が異なると変化する。誘電体多層膜である選択透過部45の透過率は、特定波長よりも長波長の光に対し大きくなりやすい。すなわち、選択透過部45の入射角に依存した選択透過性は、特定波長よりも大きな波長の光に対して、弱くなる。したがって、特定波長よりも長い波長を有した二次光LBに対して、選択透過部45は入射角に依存した選択透過性を有効に発揮し得ない。すなわち、選択透過部45は、一次光LAと同様に、二次光LBを反射できない。
Also, the transmittance of the
したがって、照度の面内分布を十分に均一化させる観点から、光学部材30と光源基板22との間で一次光LAを十分に循環させて照度の面内分布を均一化させた後、一次光LAを二次光LBに変換することが好ましい。すなわち、明るさの面内バラツキを抑制する観点においても、循環光路内となる選択透過部45における波長変換剤67の含有量を低減することが好ましい。また、一次光LAに起因した照度の面内分布を均一化するとともに、波長変換剤67の密度を低減することによって、色むらを効果的に抑制できる。
Therefore, from the viewpoint of sufficiently uniforming the in-plane distribution of the illuminance, after the primary light LA is sufficiently circulated between the
ところが、入射角依存性を有する選択透過シートと組み合わせて凹凸面を含む波長変換シートを用いることによる照度の面内分布の均一化機能および色むらの抑制機能は、従来の波長変換部(波長変換シート)を用いた場合、十分に発揮されなかった。従来の波長変換部を用いた場合、波長変換シートに凹凸面を付与しても、波長変換剤の使用量を低減できなかった。また、波長変換剤を大量に使用することで、発光面の色を白色にすることができたとしても、発光面の色むらを十分に解消できないことがあった。 However, the function of homogenizing the in-plane distribution of illuminance and the function of suppressing color unevenness by using a wavelength conversion sheet including an uneven surface in combination with a selective transmission sheet having incident angle dependence are the same as those of the conventional wavelength conversion unit (wavelength conversion unit). sheet) was not sufficiently demonstrated. When a conventional wavelength conversion part is used, even if the wavelength conversion sheet is provided with an uneven surface, the usage amount of the wavelength conversion agent cannot be reduced. Moreover, even if the color of the light-emitting surface can be made white by using a large amount of the wavelength conversion agent, the color unevenness of the light-emitting surface cannot be sufficiently eliminated in some cases.
この不具合の原因について、本件発明者らが検討したところ、従来の波長変換部に使用されていた散乱剤が影響していることが知見された。従来の波長変換部は、波長変換剤とともに、大量の散乱剤を含んでいる。従来の波長変換部では、散乱剤を含有することにより、当該波長変換部内での光路長を確保している。散乱剤を用いることにより、波長変換剤の使用量を約半分とすることができる。従来の波長変換部では、散乱剤を用いることにより波長変換剤の使用量を低減し、波長変換剤に起因した色変化に対処していた。この従来の波長変換部では、波長変換シート内を進む一次光LAが拡散される。すなわち、選択透過部の透過特性に応じた一次光LAの進行方向の分布が散乱剤によって解消され、波長変換シートの第2面において一次光LAを選択的に反射することができない。このため、従来の波長変換部を用いた場合、選択透過部の透過特性に応じた凹凸面を波長変換シートに付与したとしても、照度の面内分布を十分に均一化できないと考えられた。 When the inventors of the present invention investigated the cause of this problem, they found that the scattering agent used in the conventional wavelength conversion part had an effect. A conventional wavelength converting portion contains a large amount of scattering agent along with the wavelength converting agent. In the conventional wavelength conversion section, the optical path length within the wavelength conversion section is ensured by containing a scattering agent. By using a scattering agent, the amount of wavelength conversion agent used can be reduced to about half. In the conventional wavelength conversion section, a scattering agent is used to reduce the amount of the wavelength conversion agent used, thereby coping with the color change caused by the wavelength conversion agent. In this conventional wavelength conversion section, the primary light LA traveling through the wavelength conversion sheet is diffused. That is, the distribution of the traveling direction of the primary light LA according to the transmission characteristics of the selective transmission portion is eliminated by the scattering agent, and the primary light LA cannot be selectively reflected on the second surface of the wavelength conversion sheet. For this reason, it was considered that when a conventional wavelength conversion portion is used, even if the wavelength conversion sheet is provided with an uneven surface corresponding to the transmission characteristics of the selective transmission portion, the in-plane distribution of illuminance cannot be sufficiently uniformized.
本件発明者らが確認したところ、一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズ(%)に上限を設けることによって、波長変換剤67の使用量を大幅に低減しながら、照度の面内分布を十分に均一化でき且つ色むらを十分に抑制できた。具体的には、この透過内部ヘイズを45%以下とすることによって、波長変換剤67の使用量を大幅に低減しながら、照度の面内分布を十分に均一化でき、さらに色むらを効果的に抑制できた。照度及び色の面内分布を均一化しながら波長変換剤67の使用量を低減する観点から、この透過内部ヘイズを18%以下としてもよく、12%以下としてもよく、7%以下としてもよく、さらに5%以下としてもよい。
As a result of confirmation by the present inventors, by setting an upper limit to the transmission internal haze (%) of the
一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズ(%)は、1%以上としてもよい。この透過内部ヘイズを1%未満に低減しても、波長変換剤67の使用量を更に低減することは難しい。したがって、色むらや照度均一化の観点から、この透過内部ヘイズを1%以上としてもよい。
The transmission internal haze (%) of the
波長変換シート60の透過内部ヘイズ(%)は、村上色彩技術研究所製のヘイズメーターHM-150を用いて、JIS K7136:2000に準拠して測定された値とする。すなわち、透過内部ヘイズ(%)は、拡散透過率の全光線透過率に対する割合(%)である。
The transmission internal haze (%) of the
「内部ヘイズ」とは、波長変換シート60の内部での散乱に起因したヘイズを意味する。「内部ヘイズ」とは、波長変換シート60の第1面60a及び第2面60bでの散乱以外の散乱に起因したヘイズを意味する。「内部ヘイズ」の測定には、波長変換シート60の凹凸面61を、当該凹凸面61を構成する材料と同一の屈折率を有した材料で埋めて平坦面としたサンプルを用いることができる。或いは、「内部ヘイズ」の測定には、波長変換シート60の凹凸面61を構成する部分(上述の例では単位光学要素75)を取り除いて平坦な表面を形成したサンプルを用いることができる。凹凸面61を埋めたサンプル及び凹凸面61を取り除いたサンプルの二つから、波長変換シート60の構成等を考慮して内部ヘイズをより高精度に測定できる一方のサンプルを選択し、当該一方のサンプルについての測定値を内部ヘイズの値とする。
"Internal haze" means haze caused by scattering inside the
「一次光LAと異なる波長の光」とは、測定対象となる波長変換シート60に含まれた波長変換剤67を励起状態とし得る波長を有した光以外の光を意味する。すなわち、「一次光LAと異なる波長の光」とは、測定対象となる波長変換シート60に含まれた波長変換剤67を励起状態とし得る波長を有さない光を意味する。上述したヘイズメーターの光源から射出した測定光を、一次光の透過を規制するバンドパスフィルタを透過させた後に、測定対象となるサンプルに照射することによって、当該サンプルのヘイズ値が測定される。一次光の透過率が5%以下となるバンドパスフィルタが用いられる。測定に用いられるバンドパスフィルタは、波長変換剤67を励起状態とし得る波長範囲の光だけでなく、当該波長範囲以外の波長の光も遮光してもよい。
"Light with a wavelength different from that of the primary light LA" means light other than light having a wavelength that can excite the wavelength conversion agent 67 contained in the
一次光LAは波長変換剤67によって吸収される。この際、波長変換剤67は、一次光LAの入射方向と無関係な方向に二次光LBを放出する。このような波長変換剤67による光路変換機能を排除することで、波長変換シート60の散乱剤に起因した散乱機能の程度をより正確に評価できる。すなわち、測定に用いられる光の波長を制限することによって、凹凸面61に入射する直前における一次光LAの拡散度合いを高精度に評価し得る。このため、「一次光LAと異なる波長の光」を透過内部ヘイズに測定に用いる。
The primary light LA is absorbed by the wavelength conversion agent 67 . At this time, the wavelength conversion agent 67 emits the secondary light LB in a direction irrelevant to the direction of incidence of the primary light LA. By eliminating the optical path conversion function of the wavelength conversion agent 67, the degree of the scattering function caused by the scattering agent of the
上述したように、本実施の形態によれば、波長変換剤67の使用量を低減できる。波長変換剤67の含有量を十分に低減された波長変換シート60は、透過光に対して及ぼす波長変換剤67による光路変換機能は弱められている。この結果、波長変換剤67の含有量が低減された波長変換シート60についての測定光の波長を制限することなく測定した透過内部ヘイズ(%)は、一次光LAと異なる波長の光のみを用いて測定した透過内部ヘイズ(%)と同様に小さい値となる。そして、上述のヘイズメーターに内蔵された光源から射出した全光を用いて測定した場合においても、波長変換剤67の含有量を低減できた波長変換シート60の透過内部ヘイズ(%)は、従来の波長変換シートの透過内部ヘイズ(%)と大きく異なる値となる。この点から、上述のヘイズメーターの光源からの全光を測定に用いた場合の透過内部ヘイズ(%)も、照度の面内分布を十分に均一化しながら波長変換剤67の使用量を低減し得る波長変換シート60を、従来の波長変換シートと区別して、示す指標となる。
As described above, according to this embodiment, the usage amount of the wavelength conversion agent 67 can be reduced. In the
すなわち、上述の村上色彩技術研究所製のヘイズメーターHM-150を用いて、内蔵光源からの測定光を制限することなく、JIS K7136:2000に準拠して測定された波長変換シート60の透過内部ヘイズ(%)に上限を設けることによって、波長変換剤67の使用量を大幅に低減でき、しかも照度の面内分布を十分に均一化できる。具体的には、この透過内部ヘイズを50%以下とすることによって、波長変換剤67の使用量を大幅に低減でき、且つ照度の面内分布を十分に均一化でき、さらに色むらを効果的に抑制できた。照度及び色の面内分布を均一化しながら波長変換剤67の使用量を低減する観点から、この透過内部ヘイズを20%以下としてもよく、15%以下としてもよく、10%以下としてもよく、さらに5%以下としてもよい。
That is, the transmission inside of the
村上色彩技術研究所製のヘイズメーターHM-150を用いて、内蔵光源からの測定光を制限することなく、JIS K7136:2000に準拠して測定された波長変換シート60の透過内部ヘイズ(%)は、1%以上としてもよい。この透過内部ヘイズを1%未満に低減しても、波長変換剤67の使用量を更に低減することは難しい。したがって、色むらや照度均一化の観点から、この透過内部ヘイズを1%以上としてもよい。
Transmissive internal haze (%) of the
一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズ(%)と、ヘイズメーターの内蔵光源からの測定光を制限することなく測定した通常の透過内部ヘイズ(%)との差を、5%以下としてもよく、3%以下としてもよい。一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズ(%)と、ヘイズメーターの内蔵光源からの測定光を制限することなく測定した通常の透過内部ヘイズ(%)との差を0%以上としてもよい。このような例によれば、波長変換剤67を十分に低減できている。
The difference between the transmission internal haze (%) of the
ところで、照度の面内分布を十分に均一化させる観点から、波長変換シート60の第2面60bでの反射は全反射でもよい。具体的には、第2態様において説明した式(A)が成立してもよい。また、式(A)を満たす入射角で第2面60bに向かう光の進行を妨げないように、要素面76の傾斜角θpが、第2態様において説明した式(X)を満たしてもよい。
By the way, from the viewpoint of sufficiently uniforming the in-plane distribution of illuminance, the reflection on the
第3態様において、図24に示すように、単位光学要素75の要素面76に入射する光L241の光路に関し、第2態様において説明した式(E)が成立してもよい。式(E)が満たされる場合、第3方向D3に対してθx(°)傾斜した方向に進む光が、要素面76を通過して波長変換シート60に入射した後、第2面60bにおいて全反射する。波長変換シート60に入射する光の少なくとも一部に対して式(E)を成立させるように、要素面76を構成する部分の屈折率npおよび要素面76の傾斜角度θp(°)を設定してもよい。このような設定により、波長変換シート60と光源基板22との間での光循環を促進して、照度の面内分布を効果的に均一化できる。
In the third aspect, as shown in FIG. 24, regarding the optical path of the light L241 incident on the
第3態様において、式(E)における光の進行角度θx(°)が第2態様と同様に設定されて、上述の式(F)、(G)および(H)の一以上が満たされてもよい。 In the third mode, the light traveling angle θx (°) in formula (E) is set in the same manner as in the second mode, and one or more of the above formulas (F), (G) and (H) are satisfied. good too.
例えば、式(E)において用いられる光の進行角度θx(°)は、選択透過部45での特定波長の光の透過率が最大値の1/2となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である第1特定角度θx1(°)でもよい。すなわち、上述の式(F)が満たされてもよい。図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学要素部70を形成した場合、式(F)によれば、要素面76の傾斜角度θpは16°以上が好ましい。
For example, the light traveling angle θx (°) used in formula (E) is an incident angle at which the transmittance of light of a specific wavelength in the
他の例として、式(E)において用いられる光の進行角度θx(°)は、選択透過部45での特定波長の光の透過率が最大値の1/10となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である上述の第2特定角度θx2(°)でもよい。すなわち、上述の式(G)が満たされてもよい。図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学要素部70を形成した場合、式(G)によれば、要素面76の傾斜角度θpは30°以上が好ましい。
As another example, the light traveling angle θx (°) used in equation (E) is an incident angle at which the transmittance of light of a specific wavelength in the
更に他の例として、式(E)において用いられる光の進行角度θx(°)は、選択透過シート40の第2面40bでの輝度角度分布における半値角(°)である第3特定角度θx3でもよい。すなわち、上述の式(H)が満たされてもよい。 As still another example, the light traveling angle θx (°) used in the formula (E) is a third specific angle θx3 It's okay. That is, the above formula (H) may be satisfied.
なお、式(F)、(G)および(H)は、要素面76の全領域における傾斜角度θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角度θpについて、より好ましくは要素面76の80%以上の領域での傾斜角度θpについて、式(F)、(G)および(H)が満たされる。
It should be noted that the expressions (F), (G) and (H) need not be satisfied by the inclination angle θp over the entire area of the
以上に説明した全反射条件は、図24に示された光L241についての条件である。この光L241は、一つの要素面76を通過して、波長変換シート60内を進む。この光L241は、他の要素面76に入射することなく、第2面60bに入射する。その一方で、一の要素面76を通過した光L242が、当該一の要素面76に対面する他の要素面76に入射することも想定される。この光L242は、他の要素面76で全反射し、小さい入射角で第2面60bに入射し得る。この光L242の第2面60bでの反射率は小さくなる。
The conditions for total reflection described above are the conditions for the light L241 shown in FIG. This light L241 passes through one
このような光L242の発生を抑制して、第2面60bでの反射を促進する観点から、第2態様において説明した式(I)及び式(J)が成立するように、要素面76を構成する部分の屈折率npおよび要素面76の傾斜角度θp(°)を設定してもよい。ここで、式(J)において用いられる光の進行角度θx(°)を、上述した第1特定角度θx1(°)としてもよい。
From the viewpoint of suppressing the generation of such light L242 and promoting reflection on the
また、式(J)において用いられる光の進行角度θx(°)は、上述した第2特定角度θx2(°)でもよい。すなわち、上述の式(L)が満たされてもよい。他の例として、式(J)において用いられる光の進行角度θx(°)は、選択透過シート40の第2面40bでの輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、第3方向D3と、の間の角度(°)である第3特定角度θx4でもよい。すなわち、上述の式(M)が満たされてもよい。式(L)および(M)は、要素面76の全領域における傾斜角度θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角度θpについて、より好ましくは要素面76の80%以上の領域での傾斜角度θpについて、式(L)および(M)が満たされる。
Also, the light traveling angle θx (°) used in the formula (J) may be the second specific angle θx2 (°) described above. That is, the above formula (L) may be satisfied. As another example, the light traveling angle θx (°) used in formula (J) is the direction in which 1/10 of the peak luminance in the luminance angular distribution on the
以上に説明した本実施の形態の第3態様において、光学部材30は、選択透過部45を含む選択透過シート40と、選択透過シート40と重ねられた波長変換シート60と、を含む。選択透過部45は、入射角に応じて透過率が変化する透過特性を有する。波長変換シート60は凹凸面61を含む。波長変換シート60は、一次光LAを吸収して二次光LBを放出する波長変換剤67を含む。二次光LBは一次光LAの波長と異なる波長を有する。一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズは45%以下でもよいし、波長変換シート60の透過内部ヘイズは50%以下でもよい。
In the third aspect of the present embodiment described above, the
以上に説明した本実施の形態の第3態様において、波長変換シート60は、第1面60aと、第1面60aと対向する第2面60bと、第1面60a及び第2面60bの間に位置する波長変換剤67と、を含む。第1面60a及び第2面60bの少なくとも一方を構成する光学要素部70が設けられている。光学要素部70は複数の単位光学要素75を含む。第1面60a及び第2面60bの少なくとも一方は、複数の単位光学要素75によって構成された凹凸面61を含む。波長変換剤67は、特定波長の一次光LAを吸収して二次光LBを放出する。二次光LBは特定波長と異なる波長を有する。一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズは45%以下でもよい。波長変換シート60透過内部ヘイズは50%以下でもよい。
In the third aspect of the present embodiment described above, the
このような本実施の形態の第3態様によれば、一次光LAは、波長変換シート60内において、選択透過部45の透過特性に応じた狭い角度範囲内の方向に主として進む。一方、波長変換シート60内において波長変換剤67から放出された二次光LBは、一次光LAの進行方向とは無関係な方向に進む。そして、一次光LAと異なる波長の光についての波長変換シート60の透過内部ヘイズを45%以下とすること、又は、波長変換シート60透過内部ヘイズを50%以下とすることによって、波長変換シート60内における一次光LAの進行方向を、多くの二次光LBの進行方向から区別され得る狭い角度範囲内に維持し得る。したがって、選択透過部45の透過特性に応じて凹凸面61の構成を調節しておくことにより、波長変換シート60によって、一次光LAを選択的に高い反射率で反射することができる。すなわち、波長変換シート60において波長変換されなかった一次光LAが、波長変換シート60と光源基板22との間で循環する。これにより、照度の面内分布を十分に均一化できる。また、一次光LAの循環光路内に波長変換剤67が位置しているので、波長変換剤67を効率的に利用できる。したがって、波長変換剤67の使用量を低減できる。波長変換剤67の波長変換シート60への含有量を減らすことによって、一次光LAに起因した照度の面内分布を十分に均一化でき、これにともなって、色むらを効果的に抑制できる。また、波長変換剤67の使用量を減じることによって、波長変換シート60の厚み及び光学部材30の厚みを薄型化できる。
According to the third aspect of the present embodiment, the primary light LA mainly travels in the direction within a narrow angular range corresponding to the transmission characteristics of the
具体例を参照しながら本実施の形態の第3態様を説明してきたが、上述の具体例が本実施の形態の第3態様を限定しない。上述した本実施の形態の第3態様は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。 Although the third aspect of the present embodiment has been described with reference to specific examples, the above-described specific examples do not limit the third aspect of the present embodiment. The third aspect of the present embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention.
選択透過シート40の選択透過部45の透過特性は種々の変更が可能である。一例として、選択透過部45は、図26に示された透過特性を有してもよい。図26に示された透過特性でも、入射角に応じて透過率が変化する。具体的には、0°の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率は、0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の透過率よりも、大きくてもよい。すなわち、垂直入射する特定波長光についての選択透過部45の透過率は、少なくとも或る一つの斜め方向から選択透過部45に入射する特定波長光についての選択透過部45の透過率よりも、大きくてもよい。0°の入射角で選択透過部45に入射する特定波長の光についての選択透過部45の反射率は、0°より大きい或る入射角で選択透過部45に入射する特定波長の光についての選択透過部45の反射率よりも、小さくてもよい。すなわち、垂直入射する特定波長光の選択透過部45の反射率は、少なくとも或る一つの斜め方向から選択透過部45に入射する特定波長光についての選択透過部45の反射率よりも、小さくてもよい。選択透過部45の透過率は、入射角が大きくなるにつれて、小さくなってもよい。選択透過部45の透過率は、入射角が0°において、最大でもよい。選択透過部45の透過率は、入射角が20°以上において、15%以下でもよく、10%以下でもよく、5%以下でもよい。
The transmission characteristics of the
図示された具体例において、波長変換シート60の第1面60aが凹凸面を含む例を示した。波長変換シート60の第1面60aが凹凸面を含むことに代えて、図27に示すように、波長変換シート60の第2面60bが凹凸面を含んでもよい。波長変換シート60の第1面60aが凹凸面を含むことに加えて、波長変換シート60の第2面60bが凹凸面61を含んでもよい。図27に示された例において、光学要素部70は、凸部73としての単位光学要素75を第2面60bに含んでいる。光学要素部70は、凹部74としての単位光学要素75を第2面60bに含んでもよい。
In the illustrated example, the
図27に示された波長変換シート60は、再帰反射シートとして機能し、第3方向D3に大きく傾斜しない方向に進む光L271を集中的に反射する。この波長変換シート60は、第3方向D3を中心とした狭い角度範囲の方向に進む光を主として透過させる選択透過シート40と、組合せてもよい。図27に示された波長変換シート60は、例えば図26に示された透過特性を有する選択透過シート40との組合せにおいて、好適であり、波長変換剤67の使用量を大幅に低減できる。この組合せによれば、波長変換シート60の波長変換部65で波長変換されなかった一次光LAは、凹凸面61で反射、とりわけ全反射して、第3方向における進行方向を折り返す。一方、波長変換シート60の波長変換部65で波長変換された二次光LBは、凹凸面61を介して、波長変換シート60から出射し易い。
The
なお、図27では、波長変換シート60内における光路に関する光学的作用の理解を容易とするため、波長変換シート60の厚みが薄く示されている。また、図27では、波長変換剤67及び波長変換部65の図示が省略されている。実際には、波長変換シート60の第1面60aおよび第2面60bの間に、波長変換剤67が設けられている。図27に示された波長変換シート60は、第1バリア層63及び第2バリア層64を含んでもよい。
In addition, in FIG. 27, the thickness of the
他の例として、波長変換シート60の第1面60a及び第2面60bの両方が凹凸面61を含んでもよい。この例において、第1面60a及び第2面60bは、一部に凹凸面61を含んでもよい。凹凸面61の配置は、光源23の配置に応じてもよい。
As another example, both the
以下、実施例を用いて上述した本実施の形態の第3態様をより詳細に説明するが、上述した本実施の形態の第3態様は以下の実施例に限定されない。 The above-described third aspect of the present embodiment will be described in more detail below using examples, but the above-described third aspect of the present embodiment is not limited to the following examples.
<面光源装置>
面光源装置のサンプル1~18を作製した。サンプル1~18の面光源装置は、図3、図4、図17~図20、図22、図23Aおよび図23Bに示された構成を有していた。すなわち、面光源装置は、光源基板および光学積層体を含んでいた。サンプル1~18において、光学積層体は、光学部材、第1光制御シート、第2光制御シートおよび反射型偏光板を含んでいた。光学部材は、選択透過シート及び波長変換シートを含んでいた。サンプル1~18の間で、光源基板、選択透過シート、第1光制御シート、第2光制御シートおよび反射型偏光板は共通とした。
<Surface light source device>
(光源基板)
光源基板は、青色のマイクロ発光ダイオードを第1方向および第2方向の両方向に6mmのピッチで配置した。各光源として、450nmを中心波長として青色光を射出する発光ダイオードを用いた。この発光ダイオードの平面形状は、0.2mm×0.4mmとなる長方形形状であった。発光ダイオードの側辺が第1方向及び第2方向に沿うように、発光ダイオードを支持基板上に配置した。各光源の光学部材に対面する面から光学部材の入光側面までの第3方向D3に沿った距離を0.5mmとした。光源基板の反射層は、酸化チタンを含有した白色ポリエチレンテレフタレート製板とした。反射層は、95%の反射率を有し、拡散反射性を有していた。
(Light source board)
On the light source substrate, blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction. As each light source, a light-emitting diode that emits blue light with a central wavelength of 450 nm was used. The planar shape of this light-emitting diode was a rectangular shape of 0.2 mm×0.4 mm. The light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction. The distance along the third direction D3 from the surface of each light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm. The reflective layer of the light source substrate was a white polyethylene terephthalate plate containing titanium oxide. The reflective layer had a reflectance of 95% and was diffusely reflective.
(選択透過シート)
選択透過シートは、選択透過部のみを含んでいた。選択透過部は、図19に示された第1具体例の透過特性を有する誘電体多層膜であった。サンプル1~18の面光源装置において、選択透過シートの第1面は、選択透過部によって構成される平坦面であった。サンプル1~18の面光源装置において、選択透過シートの第2面は、選択透過部によって構成される平坦面であった。選択透過シートの第1面および第2面は、互いに平行で、第3方向に直交していた。
(selectively transparent sheet)
The selectively permeable sheet contained only the selectively permeable portion. The selective transmission part was a dielectric multilayer film having the transmission characteristics of the first specific example shown in FIG. In the surface light source devices of
(波長変換シート)
サンプル1~18の面光源装置について、波長変換シートを次のように作製した。
(wavelength conversion sheet)
For the surface light source devices of
サンプル1~9の波長変換シートは、光学要素部、第1バリア層、波長変換部および第2バリア層を含んでいた。波長変換シートのサンプル10~18は、第1バリア層、波長変換部および第2バリア層を含んでいた。波長変換シートのサンプル10~18は、光学要素部を含んでいなかった。波長変換シートのサンプル10~18において、波長変換シートの第1面は、第1バリア層によって構成される平坦面であった。波長変換シートのサンプル1~9において、波長変換シートの第1面は、光学要素部によって構成される凹凸面であった。波長変換シートのサンプル1~18において、波長変換シートの第2面は、第2バリア層によって構成される平坦面であった。サンプル1~18の間で、第1バリア層および第2バリア層は同一に構成した。サンプル1~9の間で、光学要素部は、同一に構成した。図10Bに示すように、サンプル1~9の光学要素部は、正四角錐形状の単位光学要素を含んでいた。複数の単位光学要素は、図10Aに示すように、第1方向及び第2方向に0.1mmピッチで隙間無く配列されていた。光学要素部に含まれる要素面の傾斜角θpは40°とした。
The wavelength conversion sheets of
波長変換シートのサンプル1~7及び9の波長変換部は、母材と、母材中に分散した波長変換剤および散乱剤を含んでいた。サンプル8の波長変換部は、母材と、母材中に分散した波長変換剤を含んでいた。サンプル8の波長変換部は、散乱剤を含んでいなかった。サンプル1~9の波長変換部は、散乱剤の含有量及び波長変換剤の含有量において互いに異なり、その他において同一の構成を有していた。波長変換剤は、光源からの青色光を吸収して緑色光を放出する第1変換剤と、光源からの青色光を吸収して赤色光を放出する第2変換剤と、を含んでいた。
The wavelength conversion portion of
サンプル1~8の面光源装置において、波長変換剤の含有量は、Synopsys社製のLightToolsを用いた光線追跡シミュレーションにより決定した。サンプル1~8の面光源装置について、波長変換剤の含有量は、各サンプルの面光源装置を対象としたシミュレーションにおいて、発光面を白色に発光させることができる量に決定した。サンプル10~17の波長変換部への波長変換剤の含有量は、それぞれ、サンプル1~8の波長変換部への波長変換剤の含有量と同一にした。サンプル9及び18の波長変換剤の含有量は、波長変換剤の含有量が最も少なかったサンプルの波長変換剤の含有量の5倍とした。サンプル1~18の波長変換部に含有されていた波長変換剤の量を、相対比にて、表3の「含有量比」の欄に示す。
In the surface light source devices of
サンプル10~18は、光学要素部が設けられていない点を除き、サンプル1~9のそれぞれと同一の構成を有していた。すなわち、サンプル10は、光学要素部が設けられていない点においてサンプル1と異なり、その他の点においてサンプル1と同一の構成を有していた。サンプル11は、光学要素部が設けられていない点においてサンプル2と異なり、その他の点においてサンプル2と同一の構成を有していた。サンプル12は、光学要素部が設けられていない点においてサンプル3と異なり、その他の点においてサンプル3と同一の構成を有していた。サンプル13は、光学要素部が設けられていない点においてサンプル4と異なり、その他の点においてサンプル4と同一の構成を有していた。サンプル14は、光学要素部が設けられていない点においてサンプル5と異なり、その他の点においてサンプル5と同一の構成を有していた。サンプル15は、光学要素部が設けられていない点においてサンプル6と異なり、その他の点においてサンプル6と同一の構成を有していた。サンプル16は、光学要素部が設けられていない点においてサンプル7と異なり、その他の点においてサンプル7と同一の構成を有していた。サンプル17は、光学要素部が設けられていない点においてサンプル8と異なり、その他の点においてサンプル8と同一の構成を有していた。サンプル18は、光学要素部が設けられていない点においてサンプル9と異なり、その他の点においてサンプル9と同一の構成を有していた。
(第1光制御シート、第2光制御シート、反射型偏光板)
第1光制御シートおよび第2光制御シートは米国3M社から入手可能な「BEF」(登録商標)とした。第1光制御シートは、プリズムの長手方向が第1方向と平行になるように配置した。第2光制御シートは、プリズムの長手方向が第2方向と平行になるように配置した。反射型偏光板は米国3M社から入手可能な「DBEF」(登録商標)とした。
(First light control sheet, second light control sheet, reflective polarizing plate)
The first light control sheet and the second light control sheet were "BEF" (registered trademark) available from US 3M Company. The first light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the first direction. The second light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the second direction. The reflective polarizing plate was “DBEF” (registered trademark) available from 3M Company, USA.
<評価1>
サンプル1~18としての面光源装置の発光面を発光させて、明るさのむら及び色むらの有無を確認した。結果を表3の「評価1」の欄に示した。「〇」が記入されたサンプルの面光源装置では、明るさ及び色の面内分布が均一化されていた。明るさ及び色の面内分布がより均一化されていたサンプルに、より多くの「〇」を記入している。「×」が記入されたサンプルの面光源装置では、明るさのむら及び色むらの少なくとも一方が生じていた。一以上の「〇」が記入されたサンプルが良品との判定であり、「×」が記入されたサンプルが不良品との判定であった。
<
The light-emitting surfaces of the surface light source devices of
<評価2>
サンプル1~18としての面光源装置の発光面を発光させた状態で、発光面の色を確認した。結果を表3の「評価2」の欄に示した。また、表3には、光学要素部の有無、すなわち光学要素部によって形成される凹凸面の有無が記入されている。
<Evaluation 2>
The color of the light-emitting surfaces of the surface light source devices of
<評価3>
サンプル1~18の波長変換シートについて透過内部ヘイズを測定した。ヘイズは、村上色彩技術研究所製のヘイズメーターHM-150を用いて、JIS K7136:2000に準拠して測定した値とした。一次光と異なる波長の光についての波長変換シートの透過内部ヘイズの測定結果を、表3の「ヘイズ1」の欄に示す。「ヘイズ1」の測定では、ヘイズメーターの光源からの光がバンドパスフィルタを透過してサンプルに入射するようにした。「ヘイズ1」の測定では、サンプルには500nm以下の波長の光が実質的に入射しないようにした。ヘイズメーターの光源からの光がすべてサンプルに入射するようにして測定して各サンプルの透過内部ヘイズを測定し、その測定結果を表3の「ヘイズ2」の欄に示す。
<Evaluation 3>
The transmission internal haze of the wavelength conversion sheets of
ヘイズ1の値が45%以下となるサンプルを用いた場合、評価1の結果が「○○」以上となった。ヘイズ2の値が50%以下となるサンプルを用いた場合、評価1の結果が「○○」以上となった。
When a sample with a
光学要素部による凹凸面を有するサンプルは、波長変換剤を同程度含有する光学要素部を含まないサンプルよりも、発光面の色を変えることができた。この点から、光学要素部の凹凸面によって一次光の循環が促され、波長変換剤の利用効率を改善して波長変換剤の使用量を低減できる、と考えられた。また、波長変換シートの透過内部ヘイズを小さくすることによって、より少量の波長変換剤を用いて明るさのむら及び色むらを目立たなくできた。この点から、透過内部ヘイズを小さくすることによって一次光の循環が促され、波長変換剤の利用効率を改善して波長変換剤の使用量を低減できる、と考えられた。 A sample with an uneven surface due to the optical element portion could change the color of the light-emitting surface more than a sample without an optical element portion containing the same amount of wavelength conversion agent. From this point, it was thought that the uneven surface of the optical element part promotes the circulation of primary light, improves the utilization efficiency of the wavelength conversion agent, and reduces the usage amount of the wavelength conversion agent. In addition, by reducing the transmission internal haze of the wavelength conversion sheet, unevenness in brightness and unevenness in color can be made inconspicuous using a smaller amount of the wavelength conversion agent. From this point, it was thought that the circulation of primary light would be promoted by reducing the transmission internal haze, the efficiency of utilization of the wavelength conversion agent could be improved, and the usage amount of the wavelength conversion agent could be reduced.
<第4態様>
図28~図33は、本実施の形態の第4態様を説明するための図である。図1~図27の内の図1、図3、図4等のいくつかの図面は、第4態様を説明するための図である。図28は、第4態様における面光源装置20の一具体例を示す縦断面図である。図28に示された面光源装置20は、図1の表示装置10に適用され得る。第4態様は、光学部材30が、選択透過シート40及び波長変換シート60に加えて、光学シートS70を含む点において、第3態様と異なる。第4態様は、光学シートS70以外において、第3態様と同一に構成され得る。
<Fourth Aspect>
28 to 33 are diagrams for explaining the fourth aspect of the present embodiment. Some drawings such as FIG. 1, FIG. 3, and FIG. 4 among FIGS. 1 to 27 are diagrams for explaining the fourth aspect. FIG. 28 is a longitudinal sectional view showing one specific example of the surface
図28は、第4態様における面光源装置20の一具体例を示す縦断面図である。図28に示すように、第4態様における面光源装置20は、主要な構成要素として、光源23と、光源23から放出された光の光路を調整する光学積層体21と、を含んでもよい。光学積層体21は光学部材30を含んでもよい。光学積層体21及び光学部材30は、光源23に正対してもよい。光学積層体21及び光学部材30は、シート状の部材でもよい。光学積層体21及び光学部材30は、その法線方向に光源23と対面してもよい。光学積層体21及び光学部材30は、光源23から放出された光を拡散する拡散部材でもよい。光学積層体21及び光学部材30は、光源23の配置に起因した照度の面内バラツキを効果的に抑制できる。光学積層体21及び光学部材30での拡散によって、光学部材30の出光側面30b上の各位置での照度、或いは、出光側面30bの近傍に位置する出光側面30bと平行な仮想の受光面上の各位置での照度が効果的に均一化され得る。
FIG. 28 is a longitudinal sectional view showing one specific example of the surface
以下、第4態様における表示装置10、面光源装置20および光学部材30について、図28~図33に示された具体例を主に参照しながら、説明する。表示装置10の表示パネル15は、第1態様として説明した上述の表示パネル15と同一に構成されてもよい。面光源装置20の光源基板22は、第1態様として説明した上述の光源基板22と同一に構成されてもよい。光学積層体21は、光源基板22からの順で、光学部材30、第1光制御シート81、第2光制御シート82及び反射型偏光板85を含んでもよい。このうち、第1光制御シート81、第2光制御シート82及び反射型偏光板85は、それぞれ、第1態様として説明した上述の第1光制御シート81、第2光制御シート82及び反射型偏光板85と同一に構成されてもよい。
The
光学部材30は、選択透過シート40、波長変換シート60及び光学シートS70をこの順番で含んでいる。選択透過シート40、波長変換シート60及び光学シートS70は第3方向D3に重ねられている。つまり、第3方向D3は、選択透過シート40、波長変換シート60及び光学シートS70の積層方向である。第3方向D3において、波長変換シート60は、選択透過シート40及び光学シートS70の間に位置する。第3方向D3において、選択透過シート40は、波長変換シート60及び光源基板22の間に位置する。第3方向D3において、光学シートS70は、波長変換シート60及び表示パネル15の間に位置する。図示された例において、選択透過シート40、波長変換シート60及び光学シートS70は、第1方向D1および第2方向D2に広がるシート状の部材である。図示された例において選択透過シート40が光学部材30の入光側面30aを形成している。図示された例において、光学シートS70が光学部材30の出光側面30bを構成している。選択透過シート40および波長変換シート60は、互いに接合していてもよいし、単に接触しているだけであって接合していなくてもよく、互いから離れていてもよい。波長変換シート60および光学シートS70は、互いに接合していてもよいし、単に接触しているだけであって接合していなくてもよく、互いから離れていてもよい。なお、第1態様と同様に、光学部材30が光拡散シート50を含んでもよい。光拡散シート50の第1面50aが入光側面30aを構成してもよい。
The
選択透過シート40は、選択透過部45を含んでいる。選択透過部45の反射率および透過率は、入射角に依存して変化する。選択透過部45は、入射角に応じて透過率が変化するように透過特性を調節されている。選択透過部45は、入射角に応じて反射率が変化するように反射特性を調節されている。選択透過シート40及び選択透過部45は、それぞれ、第1態様として説明した上述の選択透過シート40及び選択透過部45と同一に構成されてもよい。選択透過シート40及び選択透過部45は、それぞれ、第2態様として説明した上述の選択透過シート40及び選択透過部45と同一に構成されてもよい。選択透過シート40及び選択透過部45は、それぞれ、第3態様として説明した上述の選択透過シート40及び選択透過部45と同一に構成されてもよい。
The selectively
選択透過部45の透過特性および反射特性は、入射角依存性を有している。選択透過部45の透過率及び選択透過部45の反射率は、入射角に応じて変化する。選択透過部45の透過特性および反射特性は、波長依存性を有してもよい。選択透過部45の透過率及び選択透過部45の反射率は、波長に応じて変化してもよい。
The transmission characteristics and reflection characteristics of the
図29に示すように、波長変換シート60は波長変換剤67を含んでいる。波長変換剤67は、一次光を吸収して、一次光とは異なる波長の二次光を放出する。
As shown in FIG. 29, the
波長変換シート60は、第1面60aおよび第2面60bを含んでいる。第1面60aは、第3方向D3における光源側となる第2側を向く。第2面60bは、第3方向D3における観察者側となる第1側を向く。図示された例において、第1面60aおよび第2面60bは平行な平坦面となっている。図示された例において、第1面60aおよび第2面60bは、第3方向D3に直交している。
The
第4態様において、第1面60aおよび第2面60bは、いずれも平坦面でもよい。第4態様において、第1面60aおよび第2面60bは、いずれも、凹凸面61を含んでいなくてもよい。後述するように、光学シートS70が、凹凸面61と同様に機能し得る凹凸面71を含んでいる。第4態様において、波長変換シート60は、光学要素部70を含んでいなくてもよい。後述する光学シートS70は、光学要素部70と同一に構成されてもよい。
In the fourth aspect, both the
図29に示された例において、波長変換シート60は、第1バリア層63、波長変換部65および第2バリア層64を、この順で含んでいる。第1バリア層63、波長変換部65および第2バリア層64は、第3方向D3にこの順で重ねられている。第1バリア層63、波長変換部65および第2バリア層64は、第3方向D3おける第2側から第1側へ向けて、この順で配置されている。第1バリア層63、波長変換部65および第2バリア層64は、シート状である。第1バリア層63、波長変換部65および第2バリア層64は、第1方向D1および第2方向D2に広がっている。
In the example shown in FIG. 29, the
第1バリア層63は、第1態様として説明した上述の第1バリア層63と同一でもよい。第1バリア層63は、第2態様として説明した上述の第1バリア層63と同一でもよい。第1バリア層63は、第3態様として説明した上述の第1バリア層63と同一でもよい。波長変換部65は、第1態様として説明した上述の波長変換部65と同一でもよい。波長変換部65は、第2態様として説明した上述の波長変換部65と同一でもよい。波長変換部65は、第3態様として説明した上述の波長変換部65と同一でもよい。第2バリア層64は、第1態様として説明した上述の第2バリア層64と同一でもよい。第2バリア層64は、第2態様として説明した上述の第2バリア層64と同一でもよい。第2バリア層64は、第3態様として説明した上述の第2バリア層64と同一でもよい。
The
波長変換部65は、透過光を散乱させる光散乱成分を含んでもよい。光散乱成分は、母材部66内に分散していてもよい。光散乱成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。光散乱成分の種類や含有量等により、波長変換シート60の透過ヘイズを調節できる。
The
光学シートS70は、図30及び図31に示すように、第1面70a及び第2面70bを含んでいる。第1面70aは、第3方向D3における光源側となる第2側を向く。第2面70bは、第3方向D3における観察者側となる第1側を向く。光学シートS70は凹凸面71を含む。第1面70aが凹凸面71含んでいる。凹凸面71は、波長変換シート60に対面している。第2面70bは、平坦面を含んでもよい。図示された第2面70bは、全面において、平坦面である。第2面70bは、第3方向D3に垂直な面でもよい。図示された例において、光学シートS70は、第3方向D3における波長変換シート60と後述の第1光制御シート81との間に位置している。
The optical sheet S70, as shown in FIGS. 30 and 31, includes a
光学シートS70は、第3態様における光学要素部70と同一に構成されてもよい。すなわち、光学シートS70は、光学要素部70と同様に、本体部72及び複数の単位光学要素75を含んでもよい。光学シートS70の本体部72は、第3態様における光学要素部70の本体部72と同一に構成されてもよい。光学シートS70の単位光学要素75は、第3態様における光学要素部70の単位光学要素75と同一に構成されてもよい。
The optical sheet S70 may be configured in the same manner as the
図30および図31に示された例において、光学シートS70は、各々が凸部73または凹部74として形成された複数の単位光学要素75を含んでいる。単位光学要素75は、屈折や反射等によって光の進行方向を変化させる要素である。単位光学要素75は、単位形状要素、単位プリズム、単位レンズと呼ばれる要素を含む概念である。単位光学要素75は、波長変換シート60に直接対面している。単位光学要素75によって、凹凸面(プリズム面)71が形成されている。
In the example shown in FIGS. 30 and 31, the optical sheet S70 includes a plurality of unit
図30に示された光学シートS70は、シート状の本体部72と、本体部72上に設けられた複数の凸部73と、を含んでいる。図30に示された例において、複数の凸部73は、隙間無く隣接して設けられてもよい。図31に示された光学シートS70は、第3方向D3における波長変換シート60に対面する面に複数の凹部74を設けられた本体部72を含んでいる。図31に示された例において、複数の凹部74は、隙間無く隣接して設けられてもよい。
The optical sheet S70 shown in FIG. 30 includes a sheet-like
図30および図31に示すように、単位光学要素75は、第3方向D3に対して傾斜した要素面76を有している。この要素面76によって単位光学要素75が画成されている。光学シートS70の凹凸面(プリズム面)71は、単位光学要素(単位プリズム)75の要素面(要素プリズム面)76によって構成されている。
As shown in FIGS. 30 and 31, the unit
凹凸面71の光学特性は、単位光学要素75の要素面76の傾斜角に影響を受ける。したがって、単位光学要素75の断面形状は、面光源装置20や光学部材30に要求される光学特性に基づいて、適宜調節され得る。一つの単位光学要素75に含まれる複数の要素面76の傾斜角が互いに異なってもよいし、同一でもよい。光学シートS70が、形状および向きの少なくとも一方において異なる単位光学要素75を含んでもよいし、互いに同一の単位光学要素75のみを含んでもよい。光学シートS70は、凸部73としての単位光学要素75と、凹部74としての単位光学要素75と、の両方を含んでもよい。
The optical characteristics of the
図30および図31に示された例と異なり、要素面(要素プリズム面)76がいくらか湾曲してもよい。単位光学要素75が、半球状等の球の一部分の外形状を有してもよいし、回転楕円体の一部分の外形状を有してもよい。
Unlike the examples shown in FIGS. 30 and 31, the element surfaces (element prism surfaces) 76 may be somewhat curved. The unit
複数の単位拡散要素75は、二次元配列されてもよい。この例によれば、光学シートS70に含まれる単位光学要素75の要素面76は、種々の方向を向く。結果として、光学シートS70は、二次元配列された単位光学要素75によって、光を種々の方向に誘導できる。つまり、非平行な複数の方向へ光を誘導することができ、照度の面内分布を効果的に均一化できる。各単位光学要素75は、第3方向D3と平行な軸線を中心として回転対称に構成されていてもよい。例えば、各単位光学要素75は、第3方向D3と平行な軸線を中心として3回転対称、4回対称又は6回対称に構成されてもよい。
A plurality of
複数の単位光学要素75は、不規則に配列されてもよいし、規則的に配列されてもよい。複数の単位光学要素75を規則的に配列することによって、光学シートS70の設計を容易化できる。複数の単位光学要素75を規則的に配列することによって、単位光学要素75を隙間無く敷き詰めることが容易となる。単位光学要素75の寸法や配列ピッチは、他の態様と同一としてもよい。
The plurality of unit
図32A及び図32Bは、光学シートS70に含まれる単位光学要素75の具体例を示している。図32A及び図32Bに示された例において、複数の単位光学要素75の配置は、正方配置となっている。複数の単位光学要素75は、第1方向D1に一定のピッチで配置されている。複数の単位光学要素75は、第2方向D2にも一定のピッチで配置されている。第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、同一でもよいし、異なってもよい。図32A及び図32Bに示された例において、複数の単位光学要素75は隙間無く敷き詰められてもよい。図示された例において、第1方向D1への配置ピッチと、第2方向D2への配置ピッチは、互いに同一となっている。
32A and 32B show specific examples of the unit
単位光学要素75を第1方向D1及び第2方向D2に傾斜した方向に配置してもよい。例えば、図32Cに示された例において、複数の単位光学要素75は、第1方向D1に対して±45°傾斜した二つの方向に一定のピッチで配置されている。図32Bに示された単位光学要素75に対して、図32Cの配置を適用できる。この例によれば、要素面76が第1方向D1に対して±45°傾斜した二つの方向に向き、この二つの方向に光を広げることができる。
The unit
図30~図32Cに示された光学シートS70は、エンボス加工や樹脂賦型によって、作製され得る。単位光学要素75を含む光学シートS70は、粘着剤や接着剤を含む接合層を介して、波長変換シート60や第1光制御シート81に接合してもよい。
The optical sheet S70 shown in FIGS. 30 to 32C can be produced by embossing or resin molding. The optical sheet S70 including the unit
次に、第4態様による面光源装置20で面状光を生成する際の作用について説明する。
Next, the operation of generating planar light with the planar
第2態様において説明したように、選択透過部45の選択透過機能によって、光源23の配置に応じた明るさの面内バラツキを抑制できる。これにより、選択透過シート40の第2面40b上の各位置での照度を効果的に均一化できる。
As described in the second aspect, the selective transmission function of the
図28に示すように、選択透過シート40を透過した光L284は、波長変換シート60に向かう。図29に示すように、波長変換シート60は、第3方向D3における光源側となる第2側から、第1バリア層63、波長変換部65および第2バリア層64を含んでいる。
As shown in FIG. 28, the light L284 transmitted through the
図29に示すように、波長変換部65は波長変換剤67を含んでいる。波長変換部65内を進む光L291,L292は、波長変換剤67に衝突できる。波長変換剤67は、光源23から放出された一次光LAを吸収して、波長の異なる二次光LBを放出する。図示された例において、波長変換部65は、第1変換剤67Aおよび第2変換剤67Bを含んでいる。第1変換剤67Aは、青色の一次光LAの一部L291を吸収して、緑色の第1二次光LB1を放出する。第2変換剤67Bは、青色の一次光LAの一部L292を吸収して、赤色の第2二次光LB2を放出する。
As shown in FIG. 29, the
選択透過シート40を透過した光L284(図28参照)の多くは、選択透過部45の透過特性に起因して、第3方向D3に対して大きく傾斜した方向に進む。したがって、図29に示すように、波長変換シート60内を進む光L291,L292,L293は、第3方向D3に対して大きく傾斜した方向に進み易くなる。これにともない、波長変換部65内における光L284の光路長は長くなる。このため、波長変換シート60内において、波長変換剤67に入射し易くなる。結果として、波長変換剤67を効率的に使用できるので、波長変換剤67の波長変換部65への含有量を低減できる。
Most of the light L284 (see FIG. 28) transmitted through the
波長変換剤67から放出される二次光LBの進行方向は、当該波長変換剤67に吸収される前の一次光LA,L291,L292の進行方向に依存しない。図29に示すように、二次光LBは、波長変換剤67から広い角度範囲に放出される。二次光LBに起因する輝度の角度分布は、波長変換シート60の第2面60b上において或る程度均一化される。波長変換剤67から放出された二次光LBの多くは、平坦な第2面60bを通過し、波長変換シート60から出射する。
The traveling direction of the secondary light LB emitted from the wavelength converting agent 67 does not depend on the traveling directions of the primary lights LA, L291, L292 before being absorbed by the wavelength converting agent 67. As shown in FIG. 29, the secondary light LB is emitted from the wavelength conversion agent 67 over a wide angular range. The angular distribution of luminance caused by the secondary light LB is uniformed to some extent on the
図29に示すように、一次光LAの一部L293は、波長変換剤67に入射せず、第2面60bへ入射する。このような光L293の一部も、平坦な第2面60bを通過し、波長変換シート60から出射し得る。
As shown in FIG. 29, part L293 of the primary light LA does not enter the wavelength conversion agent 67, but enters the
以上のようにして、波長変換シート60から、一次光LA、第1二次光LB1および第2二次光LB2等の光L285(図28参照)が、第3方向D3における第1側に出射する。
As described above, the light L285 (see FIG. 28) such as the primary light LA, the first secondary light LB1 and the second secondary light LB2 is emitted from the
図28及び図30に示すように、波長変換シート60を透過した光L285,L301は、光学シートS70に向かう。図30及び図31に示すように、光学シートS70は、第3方向D3における光源側となる第2側に、単位光学要素75を含んでいる。単位光学要素75は、光学シートS70の第1面70aに凹凸面71を付与している。図30に示すように、光L301は、光学シートS70へ入射する際に要素面76での屈折によりいくらか進行方向を変化させる。その後、光L285は、平坦な第2面70bを介して、光学シートS70から出射し得る。
As shown in FIGS. 28 and 30, the lights L285 and L301 transmitted through the
光学シートS70から出射した光L286は、第1光制御シート81、第2光制御シート82および反射型偏光板85を透過して、光学部材30の出光側面30bから出射する。このようにして、光学部材30の出光側面30bが発光する。
The light L286 emitted from the optical sheet S70 passes through the first
ところで、図28および図33に示すように、光学シートS70の第2面70bに入射する光L285,L331は、第2面70bにおいて反射し得る。第2面70bで反射した光L287,L331は、第3方向D3における第2側へ進む。このような光は、いずれかの界面、例えば反射層27の表面で反射することによって、第3方向D3における進行方向を折り返し、再度、波長変換シート60に入射し得る。
By the way, as shown in FIGS. 28 and 33, the lights L285 and L331 incident on the
光学シートS70の第2面70bで反射した光L287,L331は、第3方向D3に直交する第1方向D1や第2方向D2に進む。すなわち、光L287,L331は、第3方向D3に直交する方向に光源23から離れる。したがって、第2面70bでの反射を利用することにより、光源23の配置に起因した明るさの面内バラツキを効果的に抑制できる。すなわち、光学シートS70は、選択透過部45の入射角依存性を有した光学特性を補強または補完して、照度の面内分布を十分に均一化できる。
Lights L287 and L331 reflected by the
更に次に説明するように、第2面70bでは、一次光LAが非常に高い反射率にて選択的に反射され得る。波長変換シート60を透過した光L285のうちの一次光LA(図28参照)は、選択透過シート40からの出射時と同様に、進行方向を第3方向D3に対して大きく傾斜した方向に維持し得る。図示された例において、この光LA,L285の進行方向は、波長変換シート60の第2面60bでの屈折により、更に第3方向D3に対して傾斜する。一方、光学シートS70の第1面70aは、凹凸面71を含んでいる。光学シートS70は複数の単位光学要素75を含んでいる。凸部73又は凹部74としての単位光学要素75は、複数の要素面76を含んでいる。そして、複数の要素面76によって、第1面70aの凹凸面71が構成されている。
Further, as described below, the primary light LA can be selectively reflected at a very high reflectance on the
一方、図332に示すように、光学シートS70へ入射する一次光LAとしての光L331は、凹凸面71を構成する要素面76のうち、第3方向D3に対して当該進行方向と逆側に傾斜した要素面76に入射しやすくなる。この光L331の進行方向は、光学シートS70への入射時に、凹凸面71での屈折によって大きく曲げられない。すなわち、一次光LAは、光学シートS70内において、第3方向D3に対して非常に大きく傾斜した進行方向を維持できる。結果として、光学シートS70の平坦な第2面70bへの入射角θyは大きくなる。これにより、波長変換剤67によって波長変換されなかった一次光LAは、第2面70bにおいて高い反射率で反射する。さらに、入射角θyが大きくなることから、一次光LAは、第2面70bにおいて全反射し得る。図33では、光学シートS70内における光路に関する光学的作用の理解を容易とするため、光学シートS70の厚みが薄く示されている。また、図33では、波長変換シート60で光路を変化しないものとして、波長変換シート60を省略している。
On the other hand, as shown in FIG. 332, the light L331 as the primary light LA incident on the optical sheet S70 travels in the
その一方で、二次光LBの波長変換剤67から放出される方向は、波長変換剤67への入射方向に依存しない。したがって、二次光LBは、拡散光となっており、第2面70bにおいて高い反射率で反射され得ない。
On the other hand, the direction in which the secondary light LB is emitted from the wavelength conversion agent 67 does not depend on the direction of incidence on the wavelength conversion agent 67 . Therefore, the secondary light LB is diffused light and cannot be reflected at a high reflectance on the
以上のようにして、一次光LAの出射方向に影響与える選択透過シート40の透過特性と、光学シートS70の凹凸面71との組合せることにより、光学シートS70の第2面70bは、一次光LAを選択的に高い反射率で反射する。この一次光LAの光学シートS70と光源基板22との間での循環光路内に、波長変換剤67を含む波長変換シート60が位置している。したがって、波長変換剤67の利用効率を改善でき、波長変換部65への波長変換剤67の含有量を低減できる。
As described above, by combining the transmission characteristics of the
なお、凹凸面71による一次光LAの進行方向維持機能を強化するには、選択透過シート40の第2面40b上において一次光LAのピーク輝度が得られる方向に対して直交する要素面76を用いてもよい。波長変換シート60の第2面60b上において一次光LAのピーク輝度が得られる方向に対して直交する要素面76を用いてもよい。一次光LAの光学シートS70への入射方向に影響を及ぼす選択透過部45の透過特性を考慮して凹凸面71の傾斜角を決定することにより、光学シートS70の第2面70bは、一次光LAを選択的に高い反射率で反射し得る。
In order to strengthen the function of maintaining the traveling direction of the primary light LA by the
以上のように、一次光LAが選択的に第2面70bで反射される。これにより、一次光LAに起因した照度の面内分布を十分に均一化できる。そして、第3方向D3における光学シートS70と光源基板22との間となる一次光LAの循環光路中に、波長変換剤67を含む波長変換シート60が設けられている。これにより、照度の面内分布を十分に均一化できることに加え、発光面20a内における色むらを抑制できる。そして、一次光LAが選択的に光学シートS70の第2面70bで反射されて循環することから、波長変換剤67の利用効率を顕著に改善でき、波長変換剤67の波長変換部65への含有量を大幅に低減できる。例えば、波長変換部65の厚みを薄くでき、光学部材30、光学積層体21および面光源装置20の第3方向D3への厚みを低減できる。波長変換部65内における波長変換剤67の密度を低減できる。
As described above, the primary light LA is selectively reflected by the
波長変換シート60においては、波長変換部65の側端面にバリア層が設けられないことがある。この例によれば、側端面近傍に位置する波長変換剤67の劣化が進み、波長変換部65の周縁部において色が変化し得る。本実施の形態によれば、上述のように波長変換剤67の波長変換部65への含有量を低減できる。したがって、第3方向D3への投影における、単位面積当たりにおける波長変換剤67の面積割合を低減できる。これにより、波長変換部65の側端面にバリア層を設けない場合でも、周縁部における色の変化を抑制できる。
In the
また、誘電体多層膜である選択透過部45の透過率は、波長依存性を有している。すわち、誘電体多層膜である選択透過部45の透過率は、波長が異なると変化する。誘電体多層膜である選択透過部45の透過率は、特定波長よりも長波長の光に対し大きくなりやすい。すなわち、選択透過部45の入射角に依存した選択透過性は、特定波長よりも大きな波長の光に対して、弱くなる。したがって、特定波長よりも長い波長を有した二次光LBに対して、選択透過部45は入射角に依存した選択透過性を有効に発揮し得ない。すなわち、選択透過部45は、一次光LAと同様に、二次光LBを反射できない。
Also, the transmittance of the
したがって、照度の面内分布を十分に均一化させる観点から、光学部材30と光源基板22との間で一次光LAを十分に循環させて照度の面内分布を均一化させた後、一次光LAを二次光LBに変換することが好ましい。すなわち、明るさの面内バラツキを抑制する観点においても、循環光路内となる選択透過部45における波長変換剤67の含有量を低減することが好ましい。また、一次光LAに起因した照度の面内分布を均一化するとともに、波長変換剤67の密度を低減することによって、色むらを効果的に抑制できる。
Therefore, from the viewpoint of sufficiently uniforming the in-plane distribution of the illuminance, after the primary light LA is sufficiently circulated between the
ところが、入射角依存性を有する選択透過シートと組み合わせて凹凸面を含む光学シートを用いることによる照度の面内分布の均一化機能および色むらの抑制機能は、従来の波長変換部(波長変換シート)を用いた場合、十分に発揮されなかった。従来の波長変換部を用いた場合、光学シートに凹凸面を付与しても、波長変換剤の使用量を低減できなかった。波長変換剤を大量に使用することで、発光面の色を白色にすることができたとしても、発光面の色むらを十分に解消できないことがあった。 However, the function of homogenizing the in-plane distribution of illuminance and the function of suppressing color unevenness by using an optical sheet including an uneven surface in combination with a selective transmission sheet having incident angle dependence are the same as those of the conventional wavelength conversion unit (wavelength conversion sheet ) was not sufficiently demonstrated. In the case of using a conventional wavelength converting portion, even if the optical sheet is provided with an uneven surface, the usage amount of the wavelength converting agent cannot be reduced. Even if the color of the light-emitting surface can be made white by using a large amount of the wavelength conversion agent, the color unevenness of the light-emitting surface cannot be sufficiently eliminated in some cases.
この不具合の原因について、本件発明者らが検討したところ、従来の波長変換部に使用されていた散乱剤が影響していることが知見された。従来の波長変換部は、波長変換剤とともに、大量の散乱剤を含んでいる。従来の波長変換部では、散乱剤を含有することにより、当該波長変換部内での光路長を確保している。散乱剤を用いることにより、波長変換剤の使用量を約半分とすることができる。従来の波長変換部では、散乱剤を用いることにより波長変換剤の使用量を低減し、波長変換剤に起因した色変化に対処していた。この従来の波長変換部では、選択透過部を透過して波長変換シート内を進む一次光LAが拡散される。すなわち、選択透過部の透過特性に応じた一次光LAの進行方向の分布が、波長変換部の散乱剤によって解消される。したがって、波長変換シート60を拡散透過した一次光LAを、光学シートに入射した後に光学シートの第2面において選択的に反射することができない。このため、従来の波長変換部を用いた場合、選択透過部の透過特性に応じた凹凸面を光学シートに付与したとしても、照度の面内分布を十分に均一化できないと考えられた。
When the inventors of the present invention investigated the cause of this problem, they found that the scattering agent used in the conventional wavelength conversion part had an effect. A conventional wavelength converting portion contains a large amount of scattering agent along with the wavelength converting agent. In the conventional wavelength conversion section, the optical path length within the wavelength conversion section is ensured by containing a scattering agent. By using a scattering agent, the amount of wavelength conversion agent used can be reduced to about half. In the conventional wavelength conversion section, a scattering agent is used to reduce the amount of the wavelength conversion agent used, thereby coping with the color change caused by the wavelength conversion agent. In this conventional wavelength conversion section, the primary light LA that passes through the selective transmission section and travels through the wavelength conversion sheet is diffused. That is, the distribution of the traveling direction of the primary light LA according to the transmission characteristics of the selective transmission section is eliminated by the scattering agent of the wavelength conversion section. Therefore, the primary light LA diffusely transmitted through the
本件発明者らが確認したところ、一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズ(%)に上限を設けることによって、波長変換剤67の使用量を大幅に低減しながら、照度の面内分布を十分に均一化でき且つ色むらを十分に抑制できた。具体的には、この透過ヘイズを45%以下とすることによって、波長変換剤67の使用量を大幅に低減しながら、照度の面内分布を十分に均一化でき、さらに色むらを効果的に抑制できた。照度及び色の面内分布を均一化しながら波長変換剤67の使用量を低減する観点から、この透過ヘイズを18%以下としてもよく、12%以下としてもよく、7%以下としてもよく、さらに5%以下としてもよい。
As a result of confirmation by the present inventors, by setting an upper limit to the transmission haze (%) of the
一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズ(%)は、1%以上としてもよい。この透過ヘイズを1%未満に低減しても、波長変換剤67の使用量を更に低減することは難しい。したがって、色むらや照度均一化の観点から、この透過ヘイズを1%以上としてもよい。
The transmission haze (%) of the
波長変換シート60の透過ヘイズ(%)は、村上色彩技術研究所製のヘイズメーターHM-150を用いて、JIS K7136:2000に準拠して測定された値とする。すなわち、透過ヘイズ(%)は、拡散透過率の全光線透過率に対する割合(%)である。「一次光LAと異なる波長の光」とは、第3態様において説明した通りであり、測定対象となる波長変換シート60に含まれた波長変換剤67を励起状態とし得る波長を有した光以外の光を意味する。
The transmission haze (%) of the
一次光LAは波長変換剤67によって吸収される。この際、波長変換剤67は、一次光LAの入射方向と無関係な方向に二次光LBを放出する。このような波長変換剤67による光路変換機能を排除することで、波長変換シート60の散乱剤に起因した散乱機能の程度をより正確に評価できる。すなわち、測定に用いられる光の波長を制限することによって、凹凸面71に入射する直前における一次光LAの拡散度合いを高精度に評価し得る。このため、「一次光LAと異なる波長の光」を透過ヘイズの測定に用いる。
The primary light LA is absorbed by the wavelength conversion agent 67 . At this time, the wavelength conversion agent 67 emits the secondary light LB in a direction irrelevant to the direction of incidence of the primary light LA. By eliminating the optical path conversion function of the wavelength conversion agent 67, the degree of the scattering function caused by the scattering agent of the
上述したように、本実施の形態によれば、波長変換剤67の使用量を低減できる。第3態様において説明したように、上述のヘイズメーターの光源からの全光を測定に用いた場合の透過ヘイズ(%)も、照度の面内分布を十分に均一化しながら波長変換剤67の使用量を低減し得る波長変換シート60を、従来の波長変換シートと区別して、示す指標となる。上述の村上色彩技術研究所製のヘイズメーターHM-150を用いて、内蔵光源からの測定光を制限することなく、JIS K7136:2000に準拠して測定された波長変換シート60の透過ヘイズ(%)に上限を設けることによって、波長変換剤67の使用量を大幅に低減でき、しかも照度の面内分布を十分に均一化できる。具体的には、この透過ヘイズを50%以下とすることによって、波長変換剤67の使用量を大幅に低減でき、且つ照度の面内分布を十分に均一化でき、さらに色むらを効果的に抑制できた。照度及び色の面内分布を均一化しながら波長変換剤67の使用量を低減する観点から、この透過ヘイズを20%以下としてもよく、15%以下としてもよく、10%以下としてもよく、さらに5%以下としてもよい。
As described above, according to this embodiment, the usage amount of the wavelength conversion agent 67 can be reduced. As described in the third aspect, the transmission haze (%) when all the light from the light source of the above-mentioned haze meter is used for measurement can also The
村上色彩技術研究所製のヘイズメーターHM-150を用いて、内蔵光源からの測定光を制限することなく、JIS K7136:2000に準拠して測定された波長変換シート60の透過ヘイズ(%)は、1%以上としてもよい。この透過ヘイズを1%未満に低減しても、波長変換剤67の使用量を更に低減することは難しい。したがって、色むらや照度均一化の観点から、この透過ヘイズを1%以上としてもよい。
The transmission haze (%) of the
一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズ(%)と、ヘイズメーターの内蔵光源からの測定光を制限することなく測定した通常の透過ヘイズ(%)との差を、5%以下としてもよく、3%以下としてもよい。一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズ(%)と、ヘイズメーターの内蔵光源からの測定光を制限することなく測定した通常の透過ヘイズ(%)との差を0%以上としてもよい。このような例によれば、波長変換剤67を十分に低減できている。
The difference between the transmission haze (%) of the
ところで、照度の面内分布を十分に均一化させる観点から、光学シートS70の第2面70bでの反射は全反射でもよい。具体的には、第2面70bへの入射角θy(°)を用いた全反射条件である式(XA)が成立してもよい。
np×Sinθy≧1・・・式(XA)
式(XA)における、「np」は、光学シートS70の要素面76を構成する部分の屈折率である。したがって、「np」は、単位光学要素75を構成する部分の屈折率としてもよい。
By the way, from the viewpoint of sufficiently uniforming the in-plane distribution of illuminance, the reflection on the
np×Sin θy≧1 Formula (XA)
"np" in the formula (XA) is the refractive index of the portion forming the
式(XA)を満たす入射角で第2面70bに向かう光の進行を妨げないように、要素面76の傾斜角θpを次のように決定してもよい。
sin-1(1/np)≦90-θp ・・・(XX)
式(XX)におけるθp(°)は、第3方向D3に直交する面と、要素面76との間の角度(°)である。式(XX)が満たされる場合、第3方向D3に対して全反射臨界角(°)以上の角度で傾斜した方向に進む光が、要素面76に入射することなく、第2面70bへ入射することを促進できる。このような設定により、光学シートS70と光源基板22との間での光循環を促進して、照度の面内分布を効果的に均一化できる。
The inclination angle θp of the
sin −1 (1/np)≦90−θp (XX)
θp (°) in the formula (XX) is the angle (°) between the
図33に示すように、単位光学要素75の要素面76に入射する光L331の光路に関し、次の式が成立する。
θ1=θx-θp ・・・式(XB)
Sinθ1=np×Sinθ2 ・・・式(XC)
θy=θp+θ2 ・・・式(XD)
式(XB)におけるθx(°)は、光学シートS70に向かう光L331の進行方向と第3方向D3との間の角度(°)である。式(XB)におけるθp(°)は、第3方向D3に直交する面と、光L331が入射する要素面76との間の角度(°)である。式(XC)におけるθ1(°)は、光L331が入射する要素面76に対する光L331の入射角(°)である。式(XC)におけるθ2(°)は、光L331が通過した要素面76での光L331の屈折角(°)である。すなわち、θ2(°)は、要素面76への法線方向と、要素面76での屈折後における光の進行方向と、の間の角度である。
As shown in FIG. 33, regarding the optical path of the light L331 incident on the
θ1=θx−θp Expression (XB)
Sin θ1=np×Sin θ2 Expression (XC)
θy=θp+θ2 Formula (XD)
θx (°) in the formula (XB) is the angle (°) between the traveling direction of the light L331 toward the optical sheet S70 and the third direction D3. θp (°) in equation (XB) is the angle (°) between the plane orthogonal to the third direction D3 and the
式(XB)~(XD)を用いて式(XA)を記載し直すと、次の条件式(XE)が得られる。
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp ・・・式(XE)
式(XE)が満たされる場合、第3方向D3に対してθx(°)傾斜した方向に進む光が、要素面76を通過して光学シートS70に入射した後、第2面70bにおいて全反射する。光学シートS70に入射する光の少なくとも一部に対して式(XE)を成立させるように、要素面76を構成する部分の屈折率npおよび要素面76の傾斜角θp(°)を設定してもよい。このような設定により、光学シートS70と光源基板22との間での光循環を促進して、照度の面内分布を効果的に均一化できる。
Rewriting formula (XA) using formulas (XB) to (XD) gives the following conditional formula (XE).
sin -1 (1/np)≤sin -1 (sin(θx-θp)/np)+θp Expression (XE)
When the formula (XE) is satisfied, light traveling in a direction inclined by θx (°) with respect to the third direction D3 passes through the
ここで、式(XE)において用いられる光の進行角度θx(°)を、選択透過部45での特定波長の光の透過率が最大値の1/2となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である第1特定角度θx1(°)としてもよい。なお、透過率が最大値の1/2となる入射角は、透過率が最大値となる入射角より小さい角度とする。実際の面光源装置において、選択透過シート40から出射し、進行方向を維持しながら波長変換シート60を透過して、光学シートS70に向かう多くの光の進行方向は、第3方向D3に対して第1特定角度θx1以上の角度だけ傾斜した方向となる。したがって、第1特定角度θx1を用いた次の式(XF)が満たされる場合、光学シートS70へ向かう多くの光が、光学シートS70で全反射する。結果として、式(XF)が満たされる場合、光学シートS70と光源基板22との間での光循環が促進でき、照度の面内分布を効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx1-θp)/np)+θp ・・・式(XF)
Here, the light traveling angle θx (°) used in the formula (XE) is applied to the
sin -1 (1/np)≤sin -1 (sin(θx1-θp)/np)+θp Formula (XF)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学シートS70を形成した場合、式(XF)によれば、要素面76の傾斜角θpは16°以上が好ましい。
In combination with the
他の例として、式(XE)において用いられる光の進行角度θx(°)を、選択透過部45での特定波長の光の透過率が最大値の1/10となる入射角で選択透過部45に入射した光の選択透過シート40からのピーク出射方向と、第3方向D3との間の角度(°)である第2特定角度θx2(°)としてもよい。なお、透過率が最大値の1/10となる入射角は、透過率が最大値となる入射角より小さい角度とする。第2特定角度θx2に進む光は、進行方向を維持しながら波長変換シート60を透過した後に光学シートS70へ入射する入射光のうち入射角が非常に小さい光である。この入射角が小さい光が第2面70bでの全反射条件を満たす場合、光学シートS70に入射するほとんどの光が、光学シートS70での全反射条件を満たし得る。したがって、第2特定角度θx2を用いた次の式(XG)が満たされる場合、光学シートS70と光源基板22との間での光循環がより促進でき、照度の面内分布を非常に効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx2-θp)/np)+θp ・・・式(XG)
As another example, the light traveling angle θx (°) used in the formula (XE) is set to the incident angle at which the transmittance of light of a specific wavelength in the
sin -1 (1/np)≤sin -1 (sin(θx2-θp)/np)+θp Expression (XG)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学シートS70を形成した場合、式(XG)によれば、要素面76の傾斜角θpは30°以上が好ましい。
In combination with the
更に他の例として、式(XE)において用いられる光の進行角度θx(°)を、選択透過シート40の第2面40bでの輝度角度分布における半値角(°)である第3特定角度θx3としてもよい。この例によれば、実際に使用されている面光源装置20において光学シートS70に入射する光のうち入射角が比較的に小さくなる光が、第2面70bでの全反射条件を満たす。したがって、第3特定角度θx3を用いた次の式(XH)が満たされる場合、光学シートS70と光源基板22との間での光循環が促進でき、照度の面内分布を効果的に均一化できる。
sin-1(1/np)≦sin-1(sin(θx3-θp)/np)+θp ・・・式(XH)
第3特定角度θx3は、選択透過シート40の第2面40bでの輝度角度分布から特定される。この輝度角度分布は、選択透過シート40よりも第3方向D3における観察者側となる第1側の構成要素を面光源装置20から取り除いた状態で光源23から光を放出し、第2面40b上で測定される各方向での輝度の分布である。この輝度角度分布の一例は上述の図25に示されている。輝度角度分布における半値角は、当該輝度角度分布におけるピーク輝度の半分の輝度が得られる方向と、第3方向D3との間の角度の大きさ(絶対値)のうちの最小値である。
As still another example, the light traveling angle θx (°) used in the formula (XE) is a third specific angle θx3 may be According to this example, of the light incident on the optical sheet S70 in the surface
sin -1 (1/np)≤sin -1 (sin(θx3-θp)/np)+θp Expression (XH)
The third specific angle θx3 is specified from the luminance angular distribution on the
なお、式(XF)、(XG)および(XH)は、要素面76の全領域における傾斜角θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角θpについて、より好ましくは要素面76の80%以上の領域での傾斜角θpについて、式(XF)、(XG)および(XH)が満たされる。
It should be noted that the formulas (XF), (XG) and (XH) need not be satisfied by the inclination angle θp over the entire area of the
以上に説明した全反射条件は、図33に示された光L331についての条件である。この光L331は、一つの要素面76を通過して、光学シートS70内を進む。この光L331は、他の要素面76に入射することなく、第2面70bに入射する。その一方で、一の要素面76を通過した光L332が、当該一の要素面76に対面する他の要素面76に入射することも想定される。この光L332は、他の要素面76で全反射し、小さい入射角で第2面70bに入射し得る。この光L332の第2面70bでの反射率は小さくなる。
The conditions for total reflection described above are the conditions for the light L331 shown in FIG. This light L331 passes through one
このような光L332の発生を抑制して、第2面70bでの反射を促進する観点から、単位光学要素75内を進む光の進行方向と第3方向D3との間の角度は、要素面76と第3方向D3との間の角度以下でもよい。具体的には、次の式(XI)が満たされてもよい。上述した式(XB)~(XD)を考慮して式(XI)を書き換えた式(XJ)が満たされてもよい。式(XI)および式(XJ)中で用いられる角度や屈折率については、上述した通りである。
θp+θ2≦90-θp ・・・式(XI)
sin-1(sin(θx-θp)/np)+θp≦90-θp ・・・式(XJ)
ここで、式(XJ)において用いられる光の進行角度θx(°)を、上述した第1特定角度θx1(°)としてもよい。
From the viewpoint of suppressing the generation of such light L332 and promoting reflection on the
θp+θ2≦90−θp Formula (XI)
sin -1 (sin(θx-θp)/np)+θp≤90-θp Expression (XJ)
Here, the light traveling angle θx (°) used in the formula (XJ) may be the above-described first specific angle θx1 (°).
ここで、式(XJ)において用いられる光の進行角度θx(°)を、上述した第2特定角度θx2(°)としてもよい。第2特定角度θx2を用いた次の式(XL)が満たされる場合、一の要素面76から単位光学要素75に入射した光の少なくとも一部が、一の要素面76に対面する他の要素面76に入射することなく第2面70bに入射できる。したがって、式(XL)が満たされる場合、光学シートS70と光源基板22との間での光循環を期待でき、照度の面内バラツキを抑制できる。
sin-1(sin(θx2-θp)/np)+θp≦90-θp ・・・式(XL)
Here, the light traveling angle θx (°) used in the formula (XJ) may be the above-described second specific angle θx2 (°). When the following formula (XL) using the second specific angle θx2 is satisfied, at least part of the light incident on the unit
sin -1 (sin(θx2-θp)/np)+θp≦90-θp ・・・Formula (XL)
図19に示された第1具体例の透過特性を有する選択透過部45との組合せにおいて、光学部品等に通常用いられている樹脂材料によって光学シートS70を形成した場合、式(XL)によれば、要素面76の傾斜角θpは45°以下が好ましい。
In combination with the
他の例として、式(XJ)において用いられる光の進行角度θx(°)を、選択透過シート40の第2面40bでの輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、第3方向D3と、の間の角度(°)である第4特定角度θx4としてもよい。この例によれば、実際に使用されている面光源装置20において一の要素面76から単位光学要素75に入射した光の少なくとも一部が、一の要素面76に対面する他の要素面76に入射することなく第2面70bに入射できる。したがって、第3特定角度θx4を用いた次の式(XM)が満たされる場合、光学シートS70と光源基板22との間での光循環を期待でき、照度の面内バラツキを抑制できる。
sin-1(sin(θx4-θp)/np)+θp≦90-θp ・・・式(XM)
第4特定角度θx4は、選択透過シート40の第2面40bでの輝度角度分布から特定される。この輝度角度分布は、選択透過シート40よりも第3方向D3における観察者側となる第1側の構成要素を面光源装置20から取り除いた状態で光源23から光を放出し、第2面40b上で測定される各方向での輝度の分布である。この輝度角度分布の一例を上述の図25に示す。輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と第3方向D3との間の角度は、当該輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、第3方向D3との間の角度の大きさ(絶対値)のうちの最小値である。
As another example, the light traveling angle θx (°) used in the formula (XJ) is the direction in which the brightness of 1/10 of the peak brightness in the brightness angular distribution on the
sin -1 (sin(θx4-θp)/np)+θp≦90-θp Expression (XM)
The fourth specific angle θx4 is specified from the luminance angular distribution on the
なお、式(XL)および(XM)は、要素面76の全領域における傾斜角θpで満たされる必要はなく、要素面76の50%以上の領域でこの条件が満たされると、優位に照度の面内分布を均一化できる。好ましくは要素面76の70%以上の領域での傾斜角θpについて、より好ましくは要素面76の80%以上の領域での傾斜角θpについて、式(XL)および(XM)が満たされる。
It should be noted that the expressions (XL) and (XM) do not need to be satisfied by the inclination angle θp over the entire area of the
上述した式(XE)および式(XJ)を両立させる上で、特定角度θxは、35°以上であることが好ましい。特定角度θxを35°以上とすることによって、要素面76を構成する部分の屈折率npが1.50以上1.60以下の範囲において、傾斜角θpが適切な範囲を有するようになる。この点から、選択透過シート40から波長変換シート60へ向かう光の進行方向が第3方向D3に対してなす角度は、35°以上でもよく、40°以上でもよく、45°以上でもよい。また、絶対値で0°以上35°以下の出射角で選択透過シート40から出射する特定波長の光についての選択透過部45の透過率は、選択透過部45の透過率の最大値の半分以下でもよく、選択透過部45の透過率の最大値の1/10以下でもよい。
The specific angle θx is preferably 35° or more in order to satisfy both the above formulas (XE) and (XJ). By setting the specific angle θx to 35° or more, the inclination angle θp has an appropriate range within the range of the refractive index np of the portion forming the
以上に説明した本実施の形態の第4態様において、光学部材30は、選択透過部45を含む選択透過シート40と、凹凸面71を有する光学シートS70と、選択透過シート40及び光学シートS70の間に位置する波長変換シート60と、を含む。選択透過部45は、入射角に応じて透過率が変化する透過特性を有する。凹凸面71は、波長変換シート60に対面する。波長変換シート60は、一次光LAを吸収して二次光LBを放出する波長変換剤67を含む。二次光LBは一次光LAの波長と異なる波長を有する。一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズは45%以下でもよいし、波長変換シート60の透過ヘイズは50%以下でもよい。
In the fourth aspect of the present embodiment described above, the
以上に説明した本実施の形態の第4態様において、波長変換シート60は、第1面60aと、第1面60aと対向する第2面60bと、第1面60a及び第2面60bの間に位置する波長変換剤67と、を含む。波長変換剤67は、特定波長の一次光LAを吸収して二次光LBを放出する。二次光LBは特定波長と異なる波長を有する。一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズは45%以下でもよいし、波長変換シート60の透過ヘイズは45%以下でもよい。
In the fourth aspect of the present embodiment described above, the
このような本実施の形態の第4態様によれば、選択透過シート40を透過した一次光LAは、過度に拡散されることなく波長変換シート60を透過して、光学シートS70に入射する。したがって、一次光LAは、光学シートS70内において、選択透過部45の透過特性に応じた狭い角度範囲内の方向に主として進む。一方、波長変換シート60内において波長変換剤67から放出された二次光LBは、一次光LAの進行方向とは無関係な方向に進む。そして、一次光LAと異なる波長の光についての波長変換シート60の透過ヘイズを45%以下とすること、又は、波長変換シート60透過ヘイズを50%以下とすることによって、波長変換シート60内における一次光LAの進行方向を、多くの二次光LBの進行方向から区別され得る狭い角度範囲内に維持し得る。したがって、選択透過部45の透過特性に応じて凹凸面71の構成を調節しておくことにより、光学シートS70によって、一次光LAを選択的に高い反射率で反射することができる。すなわち、波長変換シート60において波長変換されなかった一次光LAが、光学シートS70と光源基板22との間で循環する。これにより、照度の面内分布を十分に均一化できる。また、一次光LAの循環光路内に波長変換剤67を含む波長変換シート60が位置しているので、波長変換剤67を効率的に利用できる。したがって、波長変換剤67の使用量を低減できる。言い換えると波長変換部65への波長変換剤67の含有量を低減できる。波長変換剤67の波長変換シート60への含有量を減らすことによって、一次光LAに起因した照度の面内分布を十分に均一化でき、これにともなって、色むらを効果的に抑制できる。また、波長変換剤67の使用量を減じることによって、波長変換シート60の厚み及び光学部材30の厚みを薄型化できる。
According to the fourth aspect of the present embodiment, the primary light LA transmitted through the
具体例を参照しながら本実施の形態の第4態様を説明してきたが、上述の具体例が本実施の形態の第4態様を限定しない。上述した本実施の形態の第4態様は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。 Although the fourth aspect of the present embodiment has been described with reference to specific examples, the above-described specific examples do not limit the fourth aspect of the present embodiment. The fourth aspect of the present embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention.
以下、実施例を用いて上述した本実施の形態の第4態様をより詳細に説明するが、上述した本実施の形態の第4態様は以下の実施例に限定されない。 The above-described fourth aspect of the present embodiment will be described in more detail below using examples, but the above-described fourth aspect of the present embodiment is not limited to the following examples.
<面光源装置>
光源基板および光学部材を含む面光源装置のサンプルX1~X9を作製した。サンプルX1~X9の面光源装置は、図3、図4、図18,図19、図28、図29、図30、図32Aおよび図32Bに示された構成を有していた。すなわち、サンプルX1~X9の面光源装置は、光源基板及び光学積層体を含んでいた。光学積層体は、光学部材、第1光制御シート、第2光制御シートおよび反射型偏光板を含んでいた。光学部材は、選択透過シート、波長変換シート、光学シートを含んでいた。
<Surface light source device>
Surface light source device samples X1 to X9 including a light source substrate and an optical member were produced. The surface light source devices of samples X1 to X9 had the configurations shown in FIGS. 3, 4, 18, 19, 28, 29, 30, 32A and 32B. That is, the surface light source devices of samples X1 to X9 included a light source substrate and an optical laminate. The optical laminate included an optical member, a first light control sheet, a second light control sheet and a reflective polarizing plate. The optical members included a selective transmission sheet, a wavelength conversion sheet, and an optical sheet.
サンプルX1~X9の面光源装置の間で、光源基板は共通する構成を有していた。サンプルX1~X9の面光源装置の間で、選択透過シート、光学シート、第1光制御シート、第2光制御シートおよび反射型偏光板は共通する構成を有していた。 The light source substrate had a common configuration among the surface light source devices of samples X1 to X9. The selective transmission sheet, the optical sheet, the first light control sheet, the second light control sheet, and the reflective polarizing plate had common configurations among the surface light source devices of samples X1 to X9.
(光源基板)
光源基板は、青色のマイクロ発光ダイオードを第1方向および第2方向の両方向に6mmのピッチで配置した。各光源として、450nmを中心波長として青色光を射出する発光ダイオードを用いた。この発光ダイオードの平面形状は、0.2mm×0.4mmとなる長方形形状であった。発光ダイオードの側辺が第1方向及び第2方向に沿うように、発光ダイオードを支持基板上に配置した。各光源の光学部材に対面する面から光学部材の入光側面までの第3方向D3に沿った距離を0.5mmとした。光源基板の反射層は、酸化チタンを含有した白色ポリエチレンテレフタレート製板とした。反射層は、95%の反射率を有し、拡散反射性を有していた。
(Light source board)
On the light source substrate, blue micro light-emitting diodes were arranged at a pitch of 6 mm in both the first direction and the second direction. As each light source, a light-emitting diode that emits blue light with a central wavelength of 450 nm was used. The planar shape of this light-emitting diode was a rectangular shape of 0.2 mm×0.4 mm. The light-emitting diode was arranged on the support substrate such that the sides of the light-emitting diode were along the first direction and the second direction. The distance along the third direction D3 from the surface of each light source facing the optical member to the light incident side surface of the optical member was set to 0.5 mm. The reflective layer of the light source substrate was a white polyethylene terephthalate plate containing titanium oxide. The reflective layer had a reflectance of 95% and was diffusely reflective.
(選択透過シート)
選択透過シートは、選択透過部のみを含んでいた。選択透過部は、図19に示された第1具体例の透過特性を有する誘電体多層膜であった。サンプルX1~X9の面光源装置において、選択透過シートの第1面は、選択透過部によって構成される平坦面であった。サンプルX1~X9の面光源装置において、選択透過シートの第2面は、選択透過部によって構成される平坦面であった。選択透過シートの第1面および第2面は、互いに平行で、第3方向に直交していた。
(selectively transparent sheet)
The selectively permeable sheet contained only the selectively permeable portion. The selective transmission part was a dielectric multilayer film having the transmission characteristics of the first specific example shown in FIG. In the surface light source devices of Samples X1 to X9, the first surface of the selective transmission sheet was a flat surface configured by the selective transmission portion. In the surface light source devices of Samples X1 to X9, the second surface of the selective transmission sheet was a flat surface configured by the selective transmission portion. The first and second surfaces of the selectively permeable sheet were parallel to each other and perpendicular to the third direction.
(波長変換シート)
サンプルX1~X9の面光源装置について、波長変換シートを次のように作製した。
(wavelength conversion sheet)
For the surface light source devices of Samples X1 to X9, wavelength conversion sheets were produced as follows.
サンプルX1~X9の波長変換シートは、第1バリア層、波長変換部および第2バリア層を含んでいた。サンプルX1~X9の面光源装置の間で、第1バリア層および第2バリア層は共通する構成を有していた。サンプルX1~X9の面光源装置において、波長変換シートの第1面は、第1バリア層によって構成される平坦面であった。サンプルX1~X9の面光源装置において、波長変換シートの第2面は、第2バリア層によって構成される平坦面であった。波長変換シートの第1面および第2面は、互いに平行で、第3方向に直交していた。 The wavelength conversion sheets of samples X1 to X9 included a first barrier layer, a wavelength conversion section and a second barrier layer. The first barrier layer and the second barrier layer had a common configuration among the surface light source devices of Samples X1 to X9. In the surface light source devices of Samples X1 to X9, the first surface of the wavelength conversion sheet was a flat surface composed of the first barrier layer. In the surface light source devices of Samples X1 to X9, the second surface of the wavelength conversion sheet was a flat surface composed of the second barrier layer. The first and second surfaces of the wavelength conversion sheet were parallel to each other and perpendicular to the third direction.
サンプルX8の面光源装置において、波長変換部は、母材と、母材中に分散した波長変換剤と、を含んでいた。サンプルX8の面光源装置において、波長変換部は、散乱剤を含んでいなかった。その他のサンプルの面光源装置において、波長変換部は、母材と、母材中に分散した波長変換剤および散乱剤と、を含んでいた。サンプルX1~X9の波長変換部は、散乱剤の含有量及び波長変換剤の含有量において互いに異なり、その他において同一の構成を有していた。波長変換剤は、光源からの青色光を吸収して緑色光を放出する第1変換剤と、光源からの青色光を吸収して赤色光を放出する第2変換剤と、を含んでいた。 In the surface light source device of sample X8, the wavelength conversion part contained a base material and a wavelength conversion agent dispersed in the base material. In the surface light source device of Sample X8, the wavelength converting portion did not contain a scattering agent. In other sample surface light source devices, the wavelength converting portion included a base material, and a wavelength converting agent and a scattering agent dispersed in the base material. The wavelength conversion portions of samples X1 to X9 differed from each other in the content of the scattering agent and the content of the wavelength conversion agent, and otherwise had the same configuration. The wavelength converting agents included a first converting agent that absorbs blue light from the light source and emits green light, and a second converting agent that absorbs blue light from the light source and emits red light.
サンプルX1~X8の面光源装置において、波長変換剤の含有量は、Synopsys社製のLightToolsを用いた光線追跡シミュレーションにより決定した。サンプルX1~X8の面光源装置について、波長変換剤の含有量は、各サンプルの面光源装置を対象としたシミュレーションにおいて、発光面を白色に発光させることができる量に決定した。サンプルX9の波長変換剤の含有量は、波長変換剤の含有量が最も少なかったサンプルの波長変換剤の含有量の5倍とした。サンプルX1~X9の波長変換部に含有されていた波長変換剤の量を、相対比にて、表4の「含有量比」の欄に示す。 In the surface light source devices of samples X1 to X8, the content of the wavelength conversion agent was determined by ray tracing simulation using LightTools manufactured by Synopsys. For the surface light source devices of samples X1 to X8, the content of the wavelength conversion agent was determined in a simulation for the surface light source device of each sample so that the light emitting surface could emit white light. The content of the wavelength converting agent in sample X9 was five times the content of the wavelength converting agent in the sample with the lowest content of the wavelength converting agent. The amount of the wavelength converting agent contained in the wavelength converting portion of Samples X1 to X9 is shown in the column of "content ratio" in Table 4 as a relative ratio.
(光学シート)
サンプルX1~X9の面光源装置の間で、光学シートは、共通する構成を有していた。図32Bに示すように、サンプルX1~X9の光学シートは、正四角錐形状の単位光学要素を含んでいた。光学シートの第1面は、単位光学要素の要素面によって構成される凹凸面であった。光学シートの第2面は、第3方向に直交する平坦面であった。複数の単位光学要素は、図32Aに示すように、第1方向及び第2方向に0.1mmピッチで隙間無く配列されていた。光学シートに含まれる要素面の傾斜角θpは40°とした。
(optical sheet)
The optical sheets of the surface light source devices of Samples X1 to X9 had a common configuration. As shown in FIG. 32B, the optical sheets of samples X1 to X9 included unit optical elements in the shape of regular quadrangular pyramids. The first surface of the optical sheet was an uneven surface formed by the element surfaces of the unit optical elements. The second surface of the optical sheet was a flat surface perpendicular to the third direction. As shown in FIG. 32A, the plurality of unit optical elements were arranged without gaps at a pitch of 0.1 mm in the first direction and the second direction. The inclination angle θp of the element planes included in the optical sheet was set to 40°.
(第1光制御シート、第2光制御シート、反射型偏光板)
第1光制御シートおよび第2光制御シートは米国3M社から入手可能な「BEF」(登録商標)とした。第1光制御シートは、プリズムの長手方向が第1方向と平行になるように配置した。第2光制御シートは、プリズムの長手方向が第2方向と平行になるように配置した。反射型偏光板は米国3M社から入手可能な「DBEF」(登録商標)とした。
(First light control sheet, second light control sheet, reflective polarizing plate)
The first light control sheet and the second light control sheet were "BEF" (registered trademark) available from US 3M Company. The first light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the first direction. The second light control sheet was arranged so that the longitudinal direction of the prisms was parallel to the second direction. The reflective polarizing plate was “DBEF” (registered trademark) available from 3M Company, USA.
<評価1>
サンプルX1~X9について面光源装置の発光面を発光させて、明るさのむら及び色むらの有無を確認した。結果を表4の「評価1」の欄に示した。「〇」が記入されたサンプルの面光源装置では、明るさ及び色の面内分布が均一化されていた。明るさ及び色の面内分布がより均一化されていたサンプルに、より多くの「〇」を記入している。「×」が記入されたサンプルの面光源装置では、明るさのむら及び色むらの少なくとも一方が生じていた。
<
For samples X1 to X9, the light emitting surface of the surface light source device was caused to emit light, and the presence or absence of unevenness in brightness and color was confirmed. The results are shown in the column of "
<評価2>
サンプルX1~X9について面光源装置の発光面を発光させた状態で、発光面の色を確認した。結果を表4の「評価2」の欄に示した。
<Evaluation 2>
The colors of the light emitting surfaces of the surface light source devices of the samples X1 to X9 were checked while emitting light. The results are shown in the "Evaluation 2" column of Table 4.
<評価3>
サンプルX1~X9について透過ヘイズを測定した。ヘイズは、村上色彩技術研究所製のヘイズメーターHM-150を用いて、JIS K7136:2000に準拠して測定した値とした。一次光と異なる波長の光についての波長変換シートの透過ヘイズの測定結果を、表4の「ヘイズ1」の欄に示す。「ヘイズ1」の測定では、ヘイズメーターの光源からの光がバンドパスフィルタを透過してサンプルに入射するようにした。「ヘイズ1」の測定では、サンプルには500nm以下の波長の光が実質的に入射しないようにした。ヘイズメーターの光源からの光がすべてサンプルに入射するようにして各サンプルを測定し、その測定結果を表4の「ヘイズ2」の欄に示す。
<Evaluation 3>
Transmission haze was measured for samples X1 to X9. The haze was measured in accordance with JIS K7136:2000 using a haze meter HM-150 manufactured by Murakami Color Research Laboratory. The measurement results of the transmission haze of the wavelength conversion sheet for light with a wavelength different from that of the primary light are shown in the "
ヘイズ1の値が45%以下となるサンプルを用いた場合、評価1の結果が「○」以上となった。ヘイズ2の値が50%以下となるサンプルを用いた場合、評価1の結果が「○」以上となった。
When a sample with a
凹凸面を有した光学シートを含むサンプルは、波長変換剤を同程度含有する光学シートを含まないサンプルよりも、発光面の色を変えることができた。この点から、光学シートの凹凸面によって一次光の循環が促され、波長変換剤の利用効率を改善して波長変換剤の使用量を低減できる、と考えられた。また、波長変換シートの透過ヘイズを小さくすることによって、より少量の波長変換剤を用いて明るさのむら及び色むらを目立たなくできた。この点から、波長変換シートの透過ヘイズを小さくすることによって一次光の循環が促され、波長変換剤の利用効率を改善して波長変換剤の使用量を低減できる、と考えられた。 A sample containing an optical sheet with an uneven surface could change the color of the light-emitting surface more than a sample without an optical sheet containing the same amount of wavelength conversion agent. From this point, it was thought that the uneven surface of the optical sheet promotes the circulation of primary light, improves the utilization efficiency of the wavelength conversion agent, and reduces the usage amount of the wavelength conversion agent. In addition, by reducing the transmission haze of the wavelength conversion sheet, unevenness in brightness and unevenness in color can be made inconspicuous using a smaller amount of the wavelength conversion agent. From this point, it was thought that by reducing the transmission haze of the wavelength conversion sheet, the circulation of the primary light is promoted, the utilization efficiency of the wavelength conversion agent can be improved, and the usage amount of the wavelength conversion agent can be reduced.
具体例を参照しながら本実施の形態を説明してきたが、上述の具体例が本実施の形態を限定しない。上述した本実施の形態は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。 Although the present embodiment has been described with reference to specific examples, the above-described specific examples do not limit the present embodiment. The present embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention.
例えば、波長変換シート60が、波長変換部65、第1バリア層63、及び第2バリア層64を含む例を示したが、この例に限られない。本実施の形態において、第1バリア層63及び第2バリア層64の一以上が省略されてもよい。第1バリア層63及び第2バリア層64が省略される例において、波長変換剤67が、バリア性を有した被覆層を含んでもよい。
For example, although the
本実施の形態の面光源装置20において、光源基板22と光学部材30との間に、スペーサが配置されてもよい。光源基板22と光学部材30との間に、透明な樹脂層が設けられ、樹脂層がスペーサとして機能してもよい。樹脂層は、熱可塑性樹脂によって形成されてもよい。樹脂層は光拡散成分を含んでもよい。光拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。
A spacer may be arranged between the
スペーサは、光源基板22と接合されてもよいし、光源基板22と継ぎ目無しで一体的に形成されてもよい。スペーサは、光学部材30(図示された例では選択透過シート40)と接合されてもよいし、光学部材30(図示された例では選択透過シート40)と継ぎ目無しで一体的に形成されてもよい。スペーサは、光源基板22及び光学部材30(図示された例では選択透過シート40)の両方と接合されてもよいし、光源基板22及び光学部材30(図示された例では選択透過シート40)の両方と継ぎ目無しで一体的に形成されてもよい。スペーサとして機能する機能層が、光源基板22及び光学部材30の少なくとも一方に接合されてもよい。
The spacer may be joined to the
スペーサや機能層を設けることにより、光源基板22及び光学部材30の相対位置を維持できることに加え、光源基板22の反り及び光学部材30の反りを抑制できる。光源基板22及び光学部材30の少なくとも一方にスペーサや機能層が接合することにより、光源基板22の反り及び光学部材30の反りをより効果的に抑制できる。
By providing spacers and functional layers, the relative positions of the
本実施の形態において、光学積層体21から、第1光制御シート81、第2光制御シート82および反射型偏光板85の一以上を省略してもよい。
In the present embodiment, one or more of the first
本実施の形態において、光学部材30又は光学積層体21が、更に他の構成要素を含んでもよい。例えば、光学部材又は光学積層体21が、光を拡散させる光拡散シートを更に有してもよい。光拡散シートは、母材と、母材中に分散した光拡散成分と、を含んでもよい。光拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。光拡散シートは、表面に凹凸を有してもよい。光拡散シートは、第3方向D3において、波長変換シート60及び第1光制御シート81の間に位置してもよい。波長変換シート60は、第3方向D3において光拡散シート及び選択透過シート40の間に位置してもよい。
In this embodiment, the
10:表示装置、15:表示パネル、15a:表示面、20:面光源装置、20a:発光面、21:光学積層体、22:光源基板、23:光源、25:支持基板、26:基板本体、27:反射層、29:配線、30:光学部材、30a:入光側面、30b:出光側面、35:接合層、40:選択透過シート、40a:第1面、40b:第2面40b、45:選択透過部、45a:第1面、45b:第2面、46:誘電体多層膜、50:光拡散シート、50a:第1面、50b:第2面、51:凹凸面、52:本体部、53:凸部、55:単位拡散要素、56:要素面、60:波長変換シート、60a:第1面、60b:第2面、61:凹凸面、63:第1バリア層、64:第2バリア層、65:波長変換部、65a:第1面、65b:第2面、66:母材部、67:波長変換剤、67A:第1変換剤、67B:第2変換剤、70:光学要素部、70S:光学シート、70a:第1面、70b:第2面、71:凹凸面、72:本体部、73:凸部、74:凹部、75:単位光学要素、76:要素面、76A:第1要素面、76B:第2要素面、81:第1光制御シート、82:第2光制御シート、83:本体部、84:単位プリズム、85:反射型偏光板、D1:第1方向、D2:第2方向、D3:第3方向、LA:一次光、LB:二次光、LB1:第1二次光、LB2:第2二次光 10: display device, 15: display panel, 15a: display surface, 20: surface light source device, 20a: light emitting surface, 21: optical laminate, 22: light source substrate, 23: light source, 25: support substrate, 26: substrate body , 27: reflective layer, 29: wiring, 30: optical member, 30a: light input side surface, 30b: light output side surface, 35: bonding layer, 40: selective transmission sheet, 40a: first surface, 40b: second surface 40b, 45: selective transmission part, 45a: first surface, 45b: second surface, 46: dielectric multilayer film, 50: light diffusion sheet, 50a: first surface, 50b: second surface, 51: uneven surface, 52: Body part 53: Convex part 55: Unit diffusion element 56: Element surface 60: Wavelength conversion sheet 60a: First surface 60b: Second surface 61: Concavo-convex surface 63: First barrier layer 64 : second barrier layer 65: wavelength conversion part 65a: first surface 65b: second surface 66: base material part 67: wavelength conversion agent 67A: first conversion agent 67B: second conversion agent 70: optical element portion, 70S: optical sheet, 70a: first surface, 70b: second surface, 71: uneven surface, 72: body portion, 73: convex portion, 74: concave portion, 75: unit optical element, 76: Element surface 76A: First element surface 76B: Second element surface 81: First light control sheet 82: Second light control sheet 83: Main body 84: Unit prism 85: Reflective polarizing plate D1: first direction, D2: second direction, D3: third direction, LA: primary light, LB: secondary light, LB1: first secondary light, LB2: second secondary light
Claims (50)
前記選択透過シートと重ねられた波長変換シートと、を備え、
0°より大きい或る入射角で前記選択透過部に入射する特定波長の光についての前記選択透過部の透過率は、0°の入射角で前記選択透過部に入射する前記特定波長の光についての前記選択透過部の透過率より大きく、
前記波長変換シートは、第1面と、前記第1面と対向する第2面と、を含み、
前記第1面および前記第2面の少なくとも一方は凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有する、光学部材。 a selectively transmitting sheet including a selectively transmitting portion;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The transmittance of the selective transmission section for the light of the specific wavelength incident on the selective transmission section at an incident angle greater than 0° is the transmittance of the light of the specific wavelength incident on the selective transmission section at an incident angle of 0°. is greater than the transmittance of the selective transmission portion of
The wavelength conversion sheet includes a first surface and a second surface facing the first surface,
at least one of the first surface and the second surface includes an uneven surface;
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
The optical member, wherein the secondary light has a wavelength different from that of the primary light.
前記第2面は前記凹凸面を含む、請求項1に記載の光学部材。 the first surface is positioned between the selectively permeable sheet and the second surface;
2. The optical member according to claim 1, wherein said second surface includes said uneven surface.
前記選択透過シートは、前記光拡散シートおよび前記波長変換シートの間に位置する、請求項2に記載の光学部材。 further comprising a light diffusion sheet joined to the selective transmission sheet,
3. The optical member according to claim 2, wherein the selective transmission sheet is positioned between the light diffusion sheet and the wavelength conversion sheet.
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第2バリア層は前記波長変換部および前記光学要素部の間に位置する、請求項2に記載の光学部材。 The wavelength conversion sheet includes a wavelength conversion portion containing the wavelength conversion agent, a first barrier layer and a second barrier layer superimposed on the wavelength conversion portion, and an optical disc layer superimposed on the second barrier layer and including the uneven surface. including an element part and
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
3. The optical member according to claim 2, wherein said second barrier layer is positioned between said wavelength conversion section and said optical element section.
前記第1面は前記凹凸面を含む、請求項1に記載の光学部材。 the first surface is positioned between the selectively permeable sheet and the second surface;
2. The optical member according to claim 1, wherein said first surface includes said uneven surface.
sin-1(1/np)≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度である、請求項6に記載の光学部材。 The inclination angle θp (°) of the element surface that constitutes the uneven surface and the refractive index np of the portion that constitutes the element surface of the wavelength conversion sheet satisfy the following formula,
sin −1 (1/np)≦90−θp
7. The optical member according to claim 6, wherein said inclination angle θp (°) is an angle between said element plane and a plane perpendicular to the stacking direction of said selective transmission sheet and said wavelength conversion sheet.
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/2となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、請求項6に記載の光学部材。 The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the light incident on the selective transmission portion from the selective transmission sheet at an incident angle at which the transmittance of the light of the specific wavelength in the selective transmission portion is 1/2 of the maximum value. 7. The optical member according to claim 6, which is an angle between the emitting direction and the stacking direction.
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過部での前記特定波長の光の透過率が最大値の1/10となる入射角で前記選択透過部に入射した光の前記選択透過シートからのピーク出射方向と、前記積層方向との間の角度である、請求項6に記載の光学部材。 The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak from the selective transmission sheet of the light incident on the selective transmission section at an incident angle at which the transmittance of the light of the specific wavelength at the selective transmission section is 1/10 of the maximum value. 7. The optical member according to claim 6, which is an angle between the emitting direction and the stacking direction.
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第1バリア層は前記波長変換部および前記光学要素部の間に位置する、請求項6~11のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, a first barrier layer and a second barrier layer superimposed on the wavelength conversion section, and an optical disc including the uneven surface superimposed on the first barrier layer. including an element part and
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
The optical member according to any one of claims 6 to 11, wherein the first barrier layer is positioned between the wavelength converting section and the optical element section.
前記光拡散シートと重ねられた波長変換シートと、を備え、
前記波長変換シートは、第1面と、前記第1面と対向する第2面と、を含み、
前記第1面は、前記光拡散シートと前記第2面との間に位置し、
前記第2面は凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有する、光学部材。 a light diffusion sheet;
and a wavelength conversion sheet superimposed on the light diffusion sheet,
The wavelength conversion sheet includes a first surface and a second surface facing the first surface,
The first surface is located between the light diffusion sheet and the second surface,
the second surface includes an uneven surface;
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
The optical member, wherein the secondary light has a wavelength different from that of the primary light.
前記選択透過シートと重ねられた波長変換シートと、を備え、
前記選択透過部は、入射角に応じて透過率が変化する透過特性を有し、
前記波長変換シートは凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記一次光と異なる波長の光についての前記波長変換シートの透過内部ヘイズは、45%以下である、光学部材。 a selectively transmitting sheet including a selectively transmitting portion;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The wavelength conversion sheet includes an uneven surface,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the transmission internal haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
前記選択透過シートと重ねられた波長変換シートと、を備え、
前記選択透過部は、入射角に応じて透過率が変化する透過特性を有し、
前記波長変換シートは凹凸面を含み、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記波長変換シートの透過内部ヘイズは、50%以下である、光学部材。 a selectively transmitting sheet including a selectively transmitting portion;
and a wavelength conversion sheet superimposed on the selective transmission sheet,
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The wavelength conversion sheet includes an uneven surface,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the transmission internal haze of the wavelength conversion sheet is 50% or less.
前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第1面は前記凹凸面を含む、請求項14~19のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes a first surface and a second surface opposite to the first surface,
the first surface is positioned between the selectively permeable sheet and the second surface;
The optical member according to any one of claims 14 to 19, wherein the first surface includes the uneven surface.
前記第1面は、前記選択透過シートと前記第2面との間に位置し、
前記第2面は前記凹凸面を含む、請求項14~19のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes a first surface and a second surface opposite to the first surface,
the first surface is positioned between the selectively permeable sheet and the second surface;
The optical member according to any one of claims 14 to 19, wherein the second surface includes the uneven surface.
前記光学要素部は、複数の単位光学要素を含み、
各単位光学要素は、前記凹凸面を構成する要素面を含む、請求項1、13、16、及び18のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes an optical element portion including the uneven surface,
The optical element section includes a plurality of unit optical elements,
19. The optical member according to any one of claims 1, 13, 16, and 18, wherein each unit optical element includes an element surface that constitutes the uneven surface.
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置し、
前記第1バリア層及び前記第2バリア層の一方が、前記波長変換部および前記光学要素部の間に位置する、請求項16~19のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, a first barrier layer and a second barrier layer superimposed on the wavelength conversion section, and an optical disc including the uneven surface superimposed on the first barrier layer. including an element part and
the wavelength conversion part is located between the first barrier layer and the second barrier layer,
The optical member according to any one of claims 16 to 19, wherein one of said first barrier layer and said second barrier layer is positioned between said wavelength converting section and said optical element section.
凹凸面を有する光学シートと、
前記選択透過シート及び前記光学シートの間に位置する波長変換シートと、を備え、
前記選択透過部は、入射角度に応じて透過率が変化する透過特性を有し、
前記凹凸面は、前記波長変換シートに対面し、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記一次光と異なる波長の光についての前記波長変換シートの透過ヘイズは、45%以下である、光学部材。 a selectively transmitting sheet including a selectively transmitting portion;
an optical sheet having an uneven surface;
a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The uneven surface faces the wavelength conversion sheet,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein a transmission haze of the wavelength conversion sheet for light having a wavelength different from that of the primary light is 45% or less.
凹凸面を有する光学シートと、
前記選択透過シート及び前記光学シートの間に位置する波長変換シートと、を備え、
前記選択透過部は、入射角度に応じて透過率が変化する透過特性を有し、
前記凹凸面は、前記波長変換シートに対面し、
前記波長変換シートは、一次光を吸収して二次光を放出する波長変換剤を含み、
前記二次光は前記一次光の波長と異なる波長を有し、
前記波長変換シートの透過ヘイズは、50%以下である、光学部材。 a selectively transmitting sheet including a selectively transmitting portion;
an optical sheet having an uneven surface;
a wavelength conversion sheet positioned between the selective transmission sheet and the optical sheet;
The selective transmission part has a transmission characteristic in which the transmittance changes according to the incident angle,
The uneven surface faces the wavelength conversion sheet,
The wavelength conversion sheet contains a wavelength conversion agent that absorbs primary light and emits secondary light,
the secondary light has a wavelength different from the wavelength of the primary light;
The optical member, wherein the wavelength conversion sheet has a transmission haze of 50% or less.
各単位光学要素は、前記凹凸面を構成する要素面を含む、請求項27~30のいずれか一項に記載の光学部材。 The optical sheet includes a plurality of unit optical elements,
31. The optical member according to any one of claims 27 to 30, wherein each unit optical element includes an element surface forming said uneven surface.
前記波長変換部は前記第1バリア層および前記第2バリア層の間に位置する、請求項27~30のいずれか一項に記載の光学部材。 The wavelength conversion sheet includes a wavelength conversion section containing the wavelength conversion agent, and a first barrier layer and a second barrier layer superimposed on the wavelength conversion section,
31. The optical member according to any one of claims 27 to 30, wherein said wavelength converting portion is located between said first barrier layer and said second barrier layer.
前記第2二次光の波長は前記第1二次光の波長よりも長く、
前記第1二次光の波長は前記一次光の波長よりも長い、請求項1、13、16、18、27、及び29のいずれか一項に記載の光学部材。 The wavelength conversion agent includes a first conversion agent that absorbs the primary light and emits first secondary light, and a second conversion agent that absorbs the primary light and emits second secondary light. ,
the wavelength of the second secondary light is longer than the wavelength of the first secondary light;
30. The optical member according to any one of claims 1, 13, 16, 18, 27, and 29, wherein the wavelength of the first secondary light is longer than the wavelength of the primary light.
前記光学部材に対面する光源と、を備える、面光源装置。 an optical member according to any one of claims 1, 13, 16, 18, 27, and 29;
and a light source facing the optical member.
前記光学部材に対面する反射層と、前記光学部材に入射する光を射出する光源と、を有する光源基板と、を備える、面光源装置。 an optical member according to any one of claims 1, 13, 16, 18, 27, and 29;
A surface light source device comprising a light source substrate having a reflective layer facing the optical member and a light source for emitting light incident on the optical member.
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(1/np)≦sin-1(sin(θx-θp)/np)+θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/2の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。 an optical member according to any one of claims 6 to 11, 16, and 18;
a light source facing the optical member,
The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (1/np) ≤ sin -1 (sin(θx-θp)/np)+θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which half the luminance is obtained and the lamination direction.
前記光学部材に対面する光源と、を備え、
前記凹凸面を構成する要素面の傾斜角θp(°)、前記波長変換シートの前記要素面を構成する部分の屈折率npおよび前記波長変換シートへの入射方向に関する角度θx(°)は、次の式を満たし、
sin-1(sin(θx-θp)/np)+θp≦90-θp
前記傾斜角θp(°)は、前記選択透過シートおよび前記波長変換シートの積層方向に直交する面と、前記要素面との間の角度であり、
前記角度θx(°)は、前記選択透過シートよりも前記波長変換シート側の構成要素を取り除いた状態で得た前記選択透過シートの前記波長変換シートに対面する面上での輝度角度分布におけるピーク輝度の1/10の輝度が得られる方向と、前記積層方向と、の間の角度である、面光源装置。 an optical member according to any one of claims 6 to 11, 16, and 18;
a light source facing the optical member,
The inclination angle θp (°) of the element surface forming the uneven surface, the refractive index np of the portion forming the element surface of the wavelength conversion sheet, and the angle θx (°) with respect to the incident direction to the wavelength conversion sheet are as follows. satisfies the formula of
sin -1 (sin(θx-θp)/np)+θp≦90-θp
The inclination angle θp (°) is an angle between a plane orthogonal to the lamination direction of the selective transmission sheet and the wavelength conversion sheet and the element plane,
The angle θx (°) is the peak of the luminance angular distribution on the surface of the selective transmission sheet facing the wavelength conversion sheet obtained in a state where the constituent elements closer to the wavelength conversion sheet than the selective transmission sheet are removed. A surface light source device, which is an angle between a direction in which luminance of 1/10 of luminance is obtained and the lamination direction.
前記光学部材は、前記光源および前記反射型偏光板の間に位置する、請求項36に記載の面光源装置。 Further comprising a reflective polarizing plate superimposed on the optical member,
37. The surface light source device of claim 36, wherein the optical member is positioned between the light source and the reflective polarizing plate.
前記光学部材は、前記光源および前記光制御シートの間に位置する、請求項36に記載の面光源装置。 further comprising a light control sheet superimposed on the optical member,
37. The surface light source device according to claim 36, wherein said optical member is positioned between said light source and said light control sheet.
前記面光源装置と重ねられた表示パネルと、を備える、表示装置。 a surface light source device according to claim 36;
A display device comprising: a display panel stacked on the surface light source device.
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記第1面および前記第2面の少なくとも一方を構成する光学要素部が設けられ、
前記光学要素部は複数の単位光学要素を含み、
前記第1面および前記第2面の前記少なくとも一方は、複数の単位光学要素によって構成された凹凸面を含み、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有する、波長変換シート。 a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
An optical element portion that constitutes at least one of the first surface and the second surface is provided,
The optical element section includes a plurality of unit optical elements,
at least one of the first surface and the second surface includes an uneven surface configured by a plurality of unit optical elements;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
The wavelength conversion sheet, wherein the secondary light has a wavelength different from the specific wavelength.
前記第2面は前記凹凸面を含む、請求項43に記載の波長変換シート。 the first surface is located between the light source emitting light of the specific wavelength and the second surface;
44. The wavelength conversion sheet according to claim 43, wherein said second surface includes said uneven surface.
前記第1面は前記凹凸面を含む、請求項43に記載の波長変換シート。 the first surface is located between the light source emitting light of the specific wavelength and the second surface;
44. The wavelength conversion sheet according to claim 43, wherein said first surface includes said uneven surface.
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有し、
前記一次光と異なる波長の光についての透過ヘイズは、45%以下である、波長変換シート。 a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
the secondary light has a wavelength different from the specific wavelength;
A wavelength conversion sheet, wherein a transmission haze of light having a wavelength different from that of the primary light is 45% or less.
前記第1面と対向する第2面と、
前記第1面および前記第2面の間に位置する波長変換剤と、を備え、
前記波長変換剤は、特定波長の一次光を吸収して二次光を放出し、
前記二次光は前記特定波長と異なる波長を有し、
透過ヘイズは、50%以下である、波長変換シート。 a first surface;
a second surface facing the first surface;
a wavelength converting agent positioned between the first surface and the second surface;
The wavelength conversion agent absorbs primary light of a specific wavelength and emits secondary light,
the secondary light has a wavelength different from the specific wavelength;
A wavelength conversion sheet having a transmission haze of 50% or less.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-194943 | 2021-11-30 | ||
JP2021-194950 | 2021-11-30 | ||
JP2021194950A JP2023081197A (en) | 2021-11-30 | 2021-11-30 | Optical member, plane light source device, display device and wavelength conversion sheet |
JP2021194943A JP7615500B2 (en) | 2021-11-30 | 2021-11-30 | Optical member, surface light source device, display device and wavelength conversion sheet |
JP2022-061088 | 2022-03-31 | ||
JP2022-060855 | 2022-03-31 | ||
JP2022060855A JP2023151301A (en) | 2022-03-31 | 2022-03-31 | Optical member, surface light source device, display device and wavelength conversion sheet |
JP2022061088A JP2023151472A (en) | 2022-03-31 | 2022-03-31 | Optical member, surface light source device, display device and wavelength conversion sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023100959A1 true WO2023100959A1 (en) | 2023-06-08 |
Family
ID=86612293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044297 WO2023100959A1 (en) | 2021-11-30 | 2022-11-30 | Optical member, surface light source device, display device, and wavelength conversion sheet |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202338256A (en) |
WO (1) | WO2023100959A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017222043A (en) * | 2016-06-13 | 2017-12-21 | 凸版印刷株式会社 | Wavelength conversion sheet and display device |
JP2018128590A (en) * | 2017-02-09 | 2018-08-16 | 大日本印刷株式会社 | Optical wavelength conversion composition, optical wavelength conversion member, optical wavelength conversion sheet, backlight device, and image display device |
WO2021002247A1 (en) * | 2019-07-01 | 2021-01-07 | 大日本印刷株式会社 | Diffusion member, laminate, diffusion member set, led backlight, and display device |
-
2022
- 2022-11-30 TW TW111145952A patent/TW202338256A/en unknown
- 2022-11-30 WO PCT/JP2022/044297 patent/WO2023100959A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017222043A (en) * | 2016-06-13 | 2017-12-21 | 凸版印刷株式会社 | Wavelength conversion sheet and display device |
JP2018128590A (en) * | 2017-02-09 | 2018-08-16 | 大日本印刷株式会社 | Optical wavelength conversion composition, optical wavelength conversion member, optical wavelength conversion sheet, backlight device, and image display device |
WO2021002247A1 (en) * | 2019-07-01 | 2021-01-07 | 大日本印刷株式会社 | Diffusion member, laminate, diffusion member set, led backlight, and display device |
Also Published As
Publication number | Publication date |
---|---|
TW202338256A (en) | 2023-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6575100B2 (en) | Light guide member, surface light source device, and display device | |
EP2160644B1 (en) | Semi-specular components in hollow cavity light recycling backlights | |
US20160327717A1 (en) | Light-emitting apparatus including photoluminescent layer | |
US20230152626A1 (en) | Diffusing member, manufacturing method of diffusing member, planar light source device, display device, and dielectric multilayer film | |
US10877316B2 (en) | Lighting device and display device | |
US11048121B2 (en) | Lighting device and display device | |
US11874560B2 (en) | Backlight for uniform illumination | |
WO2022265068A1 (en) | Optical member, planar light source device, and display device | |
WO2023100959A1 (en) | Optical member, surface light source device, display device, and wavelength conversion sheet | |
JP7615500B2 (en) | Optical member, surface light source device, display device and wavelength conversion sheet | |
JP2011054443A (en) | Diffusion material, light guide body unit, and surface light source device | |
JP2023003825A (en) | Surface light source device and display device | |
JP2023151301A (en) | Optical member, surface light source device, display device and wavelength conversion sheet | |
JP2023151472A (en) | Optical member, surface light source device, display device and wavelength conversion sheet | |
JP2023081197A (en) | Optical member, plane light source device, display device and wavelength conversion sheet | |
JP7188666B1 (en) | Optical member, surface light source device and display device | |
JP2025002467A (en) | Optical member, surface light source device, and display device | |
JP2024036235A (en) | Surface light source device and display device | |
JP7610789B2 (en) | Optical member, surface light source device and display device | |
JP7559518B2 (en) | Surface light source device and display device | |
JP2012089304A (en) | Surface light source device and liquid crystal display device | |
US20230244107A1 (en) | Optical film stack for direct backlight unit | |
JP2022086370A (en) | Lighting and display devices | |
JP7005916B2 (en) | Light wavelength conversion composition, light wavelength conversion member, light emitting device, backlight device, and image display device | |
JP2024054761A (en) | Optical member, surface light source and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22901390 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22901390 Country of ref document: EP Kind code of ref document: A1 |