WO2023100710A1 - Glass substrate equipped with film - Google Patents

Glass substrate equipped with film Download PDF

Info

Publication number
WO2023100710A1
WO2023100710A1 PCT/JP2022/043077 JP2022043077W WO2023100710A1 WO 2023100710 A1 WO2023100710 A1 WO 2023100710A1 JP 2022043077 W JP2022043077 W JP 2022043077W WO 2023100710 A1 WO2023100710 A1 WO 2023100710A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
glass substrate
coated glass
layer
substrate according
Prior art date
Application number
PCT/JP2022/043077
Other languages
French (fr)
Japanese (ja)
Inventor
直己 上村
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023100710A1 publication Critical patent/WO2023100710A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a film-coated glass substrate.
  • Film-coated glass substrates which are laminated with functional films on glass substrates, are widely used in various fields as materials that satisfy various required properties.
  • Low-emissivity glass With heat insulation and heat shielding properties is used due to the recent heightened awareness of energy conservation.
  • Low-emissivity glass is constructed by laminating one or more functional layers made of metal oxide or the like on a glass substrate. It has a light absorption layer, an optical adjustment layer, and the like.
  • Patent Document 1 discloses that the glass plate is coated with a tin oxide film, and the surface Ra of the tin oxide film is set to 3 nm or less. A top plate glass for a copier is described. Patent Document 1 describes that when a lubricant is applied to the surface of a tin oxide film having an Ra of 3 nm or less, a top plate glass for a copying machine having a very small coefficient of friction can be obtained.
  • an object of the present invention is to provide a film-coated glass substrate that has excellent stain resistance, particularly against stains caused by adhesion of fibers and the like.
  • a film-coated glass substrate comprising a glass substrate and a film disposed on the glass substrate, the glass substrate has a first surface and a second surface facing each other; the film is disposed on the first surface of the glass substrate; A film-coated glass substrate, wherein the skewness of the outermost surface of the film is 0 or less.
  • 3. The film-coated glass substrate according to 1 above, wherein adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth. 4. 2.
  • the film comprises a crystalline infrared reflective layer. 6.
  • the infrared reflective layer contains a doped metal oxide in which at least one metal oxide of tin oxide and titanium oxide is doped with another element. 8. 6.
  • the crystal growth base layer comprises an antimony-doped tin oxide film
  • the infrared reflective layer comprises a fluorine-doped tin oxide film.
  • the film further includes an overcoat layer, and the overcoat layer is disposed on the outermost surface of the film. 12. 6.
  • the film-coated glass substrate of the present invention has excellent stain resistance because the skewness of the outermost surface of the film is 0 or less. According to the film-coated glass substrate of the present invention, contamination of the film surface, particularly due to adhesion of fibers, can be suitably suppressed.
  • FIG. 1 is a diagram showing a configuration example of a film-coated glass substrate according to this embodiment.
  • FIG. 2 is a diagram showing a configuration example of the film-coated glass substrate according to this embodiment.
  • FIG. 3 shows the film-coated glass substrate of Example 12 after the stain resistance test.
  • FIG. 4 shows the film-coated glass substrate of Example 23 after the stain resistance test.
  • FIG. 5 is a diagram showing the relationship between Sa and Ssk of a film-coated glass substrate and stain resistance.
  • a film-coated glass substrate according to the present embodiment is a glass substrate with a film provided with a glass substrate and a film disposed on the glass substrate, wherein the glass substrate has a first surface and a second surface facing each other.
  • the film has a surface, the film is placed on the first surface of the glass substrate, and the skewness of the outermost surface of the film is 0 or less.
  • FIG. 1 is a diagram showing a configuration example of a film-coated glass substrate according to this embodiment.
  • the film-coated glass substrate 10 includes a glass substrate 1 and a film 2 placed on the glass substrate 1 .
  • the glass substrate has a first surface 1a and a second surface 1b facing each other, and a film 2 is placed on the first surface 1a of the glass substrate 1.
  • the membrane 2 may consist of one layer or may consist of a plurality of layers.
  • the film 2 is a laminated film composed of a plurality of layers.
  • the skewness (Ssk) of the outermost surface of the film is 0 or less.
  • the outermost surface of the film means the surface of the film 2 opposite to the glass substrate, and hereinafter this is also referred to as the film surface.
  • Skewness is a parameter relating to the height distribution of a target surface, and refers to the value of Ssk (skewness of the scale-limited surface) defined in ISO25178.
  • Ssk is obtained by processing surface analysis data measured with an atomic force microscope (AFM) using image analysis software (for example, SPIP manufactured by Image Metrology), and in this case is calculated from the following formula: . More specific measurement and processing methods will be described later in Examples.
  • AFM atomic force microscope
  • SPIP manufactured by Image Metrology
  • M is the number of measurement points in the X-axis direction
  • N is the number of measurement points in the Y-axis direction
  • Sq is the root mean square roughness
  • z (x k , y l ) is the coordinate (x k , y l ) at Represents height (where x k represents the kth x coordinate and y l represents the lth y coordinate).
  • Sq is defined by the following formula.
  • M, N, z(x k , y l ) are the same as above.
  • a skewness greater than 0 means that the distribution is biased toward areas with relatively low heights.
  • a skewness of 0 means that relatively high and relatively low height portions are symmetrically distributed, and a skewness of less than 0 means that the distribution is biased toward relatively high height portions.
  • a surface with a skewness greater than 0 tends to have relatively sharp protrusions and relatively flat recesses.
  • dirt tends to adhere because the contacting object is easily scraped off by the uneven shape, and dirt is likely to be trapped by the uneven shape, making it difficult to remove the dirt.
  • the skewness is 0 or less, so that the number of protrusions with relatively sharp shapes is reduced, thereby suppressing scraping of contact objects and trapping of dirt due to uneven shapes. can.
  • the skewness is preferably less than 0, more preferably -0.10 or less, and even more preferably -0.15 or less from the viewpoint of further improving stain resistance.
  • the lower limit of the skewness is not particularly limited, but from the viewpoint of ensuring productivity, it is preferably -2.0 or more, for example.
  • the skewness may be -2.0 to 0, for example.
  • the method for reducing the skewness to 0 or less is not particularly limited, but an example thereof includes a method of polishing the film surface as described later.
  • stain resistance means resistance to stain adhesion.
  • the type of dirt is not particularly limited, but the film-coated glass substrate according to the present embodiment is particularly excellent in resistance to adherence of fibers, etc. when in contact with articles containing fibers, such as clothes, cloth products, and paper products. is.
  • the stain resistance can be evaluated, for example, by a stain resistance test in which the outermost surface of the film is rubbed with a cloth. In the film-coated glass substrate according to the present embodiment, it is preferable that adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth.
  • the procedure and conditions for the stain resistance test for example, the procedures and conditions described later in Examples can be adopted.
  • the present inventors found the relationship between skewness and stain resistance as described above, and at the same time found that the degree of stain resistance does not depend on the value of surface roughness (Sa). That is, from the viewpoint of improving the stain resistance, it is sufficient that the skewness is 0 or less, and for example, it is not essential to make the surface roughness relatively small. Attempting to excessively reduce the surface roughness may increase the production cost or make the production difficult depending on the required film properties. On the other hand, setting the surface roughness to a relatively large value is preferable because it facilitates the production of the film-coated glass substrate and improves the productivity.
  • Sa surface roughness
  • the surface roughness of the outermost surface of the film is preferably greater than 0.4 nm, more preferably 3 nm or more, even more preferably 5 nm or more, and particularly preferably 10 nm or more.
  • the surface roughness is preferably 30 nm or less, more preferably 28 nm or less, even more preferably 25 nm or less, and particularly preferably 20 nm or less.
  • the surface roughness may be, for example, 0.4-30 nm.
  • the surface roughness refers to the value of Sa (arithmetic mean height of the scale limited surface) defined in ISO25178.
  • Sa is obtained, for example, by processing surface analysis data measured with an atomic force microscope (AFM) using image analysis software (for example, SPIP manufactured by Image Metrology), in which case it is calculated from the following formula: . More specific measurement and processing methods will be described later in Examples.
  • AFM atomic force microscope
  • SPIP manufactured by Image Metrology
  • the glass substrate 1 serves as a framework for the film-coated glass substrate 10 and has self-supporting properties.
  • glass constituting the glass substrate include soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, and the like.
  • the glass substrate may be subjected to a known treatment such as air-cooling tempering or chemical strengthening as long as the effects of the present invention are not impaired.
  • the glass substrate can be transparent, translucent, or opaque, depending on the intended use and purpose of the film-coated glass substrate. Further, the glass substrate may be colorless or colored.
  • the shape of the glass substrate is not particularly limited, and any shape is possible depending on the intended use. For example, it is preferably plate-shaped for use in vehicle members and construction members.
  • the glass substrate may have a flat plate shape, or may have a plate shape having a curved surface by bending or the like.
  • the size of the glass substrate is not particularly limited, and may be appropriately adjusted according to the application and purpose of use of the film-coated glass substrate.
  • the glass substrate when a film-coated glass substrate is used in a vehicle, the glass substrate preferably has a thickness of 1 mm to 5 mm and a main surface area of 0.5 to 5 m 2 .
  • the glass substrate when the film-coated glass substrate is used for a building, the glass substrate preferably has a thickness of 4 mm to 8 mm and a main surface area of 0.5 to 10 m 2 .
  • the type of film is not particularly limited, and the film may be various functional films.
  • the film is preferably a functional film comprising a layer containing metal oxide as a main component, for example.
  • a preferred configuration example of the film when the film-coated glass substrate is used as low-emissivity glass (Low-E glass) imparted with heat insulating properties and heat shielding properties will be described below.
  • the film 2 placed on the glass substrate 1 preferably includes a crystalline infrared reflective layer 5 .
  • the film 2 preferably further includes at least one or more of a crystalline crystal growth base layer 3, an optical adjustment layer 7 and an overcoat layer (not shown).
  • FIG. 1 is a diagram showing a configuration example in which the film 2 includes an optical adjustment layer 7 and an infrared reflective layer 5 from the side closer to the glass substrate 1.
  • FIG. 2 is a diagram showing a configuration example in which the film 2 includes the optical adjustment layer 7, the crystal growth base layer 3, and the infrared reflecting layer 5 from the side closer to the glass substrate 1.
  • FIG. 1 is a diagram showing a configuration example in which the film 2 includes the optical adjustment layer 7, the crystal growth base layer 3, and the infrared reflecting layer 5 from the side closer to the glass substrate 1.
  • the infrared reflective layer 5 is a layer that reflects infrared rays, imparts heat insulation to the film-coated glass substrate, and has crystallinity.
  • Materials for forming the infrared reflective layer include, for example, at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide, titanium oxide, tantalum oxide, and niobium oxide, and other elements (impurity elements). doped metal oxides. Impurity elements to be doped include, for example, fluorine, antimony, tin, potassium, aluminum, tantalum, niobium, nitrogen, boron, and indium.
  • Specific doped metal oxides include, for example, fluorine-doped tin oxide (FTO, a metal oxide in which F is added to SnO2 ), antimony-doped tin oxide (ATO, a metal oxide in which Sb is added to SnO2 ).
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • ITO metal oxide in which Sn is added to In 2 O 3
  • gallium-doped zinc oxide GZO, metal oxide in which Ga is added to ZnO
  • aluminum-doped zinc oxide AZO, ZnO to which Al is added doped metal oxide
  • tantalum-doped tin oxide metal oxide in which Ta is added to SnO2
  • niobium-doped tin oxide metal oxide in which Nb is added to SnO2
  • tantalum-doped titanium oxide Ti added with Ta niobium-doped titanium oxide (metal oxide in which Nb is added to Ti
  • aluminum-doped tin oxide metal oxide in which Al is added to SnO2
  • fluorine-doped titanium oxide metal oxide in which F is added to Ti
  • nitrogen-doped titanium oxide a metal oxide in which N is added to Ti
  • the infrared reflective layer preferably contains a doped metal oxide in which at least one metal oxide of tin oxide and titanium oxide is doped with another element, and the other element is fluorine, tantalum, niobium and At least one selected from the group consisting of aluminum is preferred.
  • the infrared reflective layer contains at least one dope selected from the group consisting of fluorine-doped tin oxide (FTO), tantalum-doped tin oxide, niobium-doped tin oxide, tantalum-doped titanium oxide, niobium-doped titanium oxide, and aluminum-doped tin oxide.
  • FTO fluorine-doped tin oxide
  • the infrared reflective layer may consist of a single layer film, or may consist of two or more layers of films with different materials, element contents, and the like.
  • the content of impurity elements contained in the infrared reflective layer is preferably 0.01 to 20 mol % in concentration.
  • concentration of the impurity element contained in the infrared reflective layer is 0.01 mol % or more, more preferably 0.1 mol % or more, still more preferably 0.5 mol % or more, and more preferably 10 mol % or less. It is preferably 8 mol % or less, more preferably 5 mol % or less.
  • the concentration of the impurity element is the total amount when the infrared reflective layer contains a plurality of impurity elements.
  • the composition of the infrared reflective layer and the concentration of impurity elements can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectroscopy (SIMS).
  • XPS X-ray photoelectron spectroscopy
  • SIMS secondary ion mass spectrometry
  • F fluorine-added tin SnO 2 with a known concentration is measured, and a coefficient for converting the intensity ratio of F/Sn into concentration is obtained.
  • the thickness of the infrared reflective layer is preferably 50-1000 nm.
  • the thickness of the infrared reflective layer is preferably 50 nm or more, more preferably 80 nm or more, still more preferably 130 nm or more, and preferably 1000 nm or less, more preferably 500 nm or less, and 450 nm or less. More preferably, 400 nm or less is particularly preferable.
  • the thickness of the infrared reflective layer can be measured by depth direction analysis by X-ray photoelectron spectroscopy.
  • the "thickness" of the infrared reflective layer is represented by the total thickness of each layer.
  • the maximum thickness of the infrared reflective layer in the measurement area shall be indicated in the present embodiment.
  • the infrared reflective layer is formed from metal oxide crystal grains.
  • the size of the crystal grains in the infrared reflective layer is preferably 30 nm or more. When the crystal grain size is 30 nm or more, the grain boundary scattering of electrons is reduced and the electrical conductivity is increased, so that the emissivity can be lowered.
  • the size of the crystal grain is more preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 80 nm or more. Since the larger the crystal grain shape, the better, there is no particular upper limit, but it is generally 1000 nm. It is more preferably 800 nm or less, particularly preferably 500 nm or less.
  • the size of the crystal grains in the infrared reflective layer may be 30-1000 nm.
  • the size of the crystal grains can be measured by observing a cross section obtained by cutting the film-coated glass substrate in the thickness direction with a scanning electron microscope (SEM).
  • the crystal growth base layer 3 is a layer that accelerates the crystal growth in the infrared reflective layer 5 laminated on the crystal growth base layer 3 to grow large crystal grains, and has crystallinity.
  • a crystal growth base layer is not essential, but when the film includes a crystal growth base layer, as shown in FIG. preferable.
  • the infrared reflective layer 5 is formed of metal oxide crystal grains. Since the crystal grains grown in the infrared reflective layer 5 are grown based on the crystal grains 3, the crystal grains in the infrared reflective layer 5 can be grown large. This makes it easier to reduce the emissivity of the outermost surface of the film.
  • Materials forming the crystal growth base layer include, for example, at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide, titanium oxide, niobium oxide, and tantalum oxide.
  • the crystal growth underlayer is preferably formed from the same type of metal oxide as the metal oxide contained in the infrared reflective layer.
  • the infrared reflective layer comprises a fluorine-doped tin oxide (FTO) film
  • the crystal growth substrate is preferably a tin oxide film.
  • the metal oxide is of the same type as the metal oxide contained in the infrared reflective layer, the crystal grains in the infrared reflective layer can grow large without discontinuing the growth of the crystal grains when forming the infrared reflective layer.
  • the metal oxide forming the crystal growth base layer may be a doped metal oxide doped with another element (impurity element).
  • the crystal growth base layer By forming the crystal growth base layer from a doped metal oxide, the crystal growth base layer can be given a desired function.
  • the impurity metal with which the doped metal oxide is doped is the same as described above, and examples thereof include fluorine, antimony, tin, potassium, aluminum, tantalum, niobium, nitrogen, boron, and indium.
  • antimony-doped tin oxide ATO, a metal oxide obtained by adding Sb to SnO 2
  • a glass substrate with a heat shield is provided. That is, it is more preferable that the crystal growth base layer comprises an antimony-doped tin oxide film and the infrared reflecting film comprises a fluorine-doped tin oxide film.
  • the concentration of the impurity element to be doped is preferably 30 mol % or less.
  • the concentration of the metal to be doped is 30 mol % or less, the crystal structure before doping can be maintained.
  • the concentration of the doped metal is preferably 30 mol % or less, more preferably 25 mol % or less, even more preferably 20 mol % or less.
  • composition of the crystal growth base layer and the concentration of the impurity element to be doped can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS), as described above.
  • XPS X-ray photoelectron spectroscopy
  • SIMS secondary ion mass spectrometry
  • the crystal growth base layer may consist of a single-layer film, or may consist of two or more layers of films with different materials, metal contents, and the like.
  • the thickness of the crystal growth base layer is preferably 200 nm or more.
  • the thickness of the crystal growth base layer is 200 m or more, the crystal grain size of the infrared reflective layer can be easily grown, and the crystal grains of the infrared reflective layer can be grown to a desired size. Crystal growth of the metal oxide is ensured during film formation, and the crystal grains of the infrared reflective layer become large.
  • the thickness of the crystal growth base layer is more preferably 250 nm or more, more preferably 300 nm or more. From the viewpoint of surface flatness, the thickness of the crystal growth base layer is preferably 1000 nm or less, more preferably 900 nm or less, and even more preferably 700 nm or less.
  • the thickness of the crystal growth underlayer may be, for example, 200-1000 nm.
  • the thickness of the crystal growth base layer can be measured by analysis in the depth direction by X-ray photoelectron spectroscopy. Since the crystal growth base layer is formed of metal oxide crystal grains, the surface opposite to the glass substrate side has an uneven shape. Therefore, although the "thickness" of the crystal growth base layer varies depending on the location, in this embodiment, it represents the maximum thickness of the crystal growth base layer in the measurement region.
  • the crystal grain size in the crystal growth base layer is preferably 30 to 1500 nm.
  • the crystal grain shape of the infrared reflective layer formed on the crystal growth base layer can be made sufficiently large.
  • the size of the crystal grains is more preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 80 nm or more. Since the larger the crystal grain shape, the better, there is no particular upper limit, but generally 1500 nm. It is more preferably 1200 nm or less, particularly preferably 1000 nm or less.
  • the size of the crystal grains is the same as above, and can be measured by cross-sectional observation with a scanning electron microscope.
  • the total thickness of the infrared reflective layer and the crystal growth underlayer is preferably 250-1500 nm.
  • the total thickness of each layer is 250 nm or more, the crystal grains in the infrared reflective layer can be sufficiently grown, and when it is 1500 nm or less, the film-coated glass substrate does not become too thick.
  • the total thickness of the infrared reflecting layer and the crystal growth base layer is preferably 300 nm or more, more preferably 400 nm or more, particularly preferably 500 nm or more, and preferably 1500 nm or less, more preferably 1100 nm or less. , 900 nm or less.
  • the film may further include an optical adjustment layer 7 .
  • the optical adjustment layer 7 is preferably arranged at a position in contact with the first surface 1 a of the glass substrate 1 .
  • optical adjustment layer Materials constituting the optical adjustment layer include, for example, silicon carbide oxide (SiOC), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), tin oxide (SnO 2 ), silicon nitride oxide (SiON), and the like. .
  • the optical adjustment layer may consist of one layer, or may consist of two or more layers. It may also be a mixture of any two or more of the above materials.
  • the optical adjustment layer includes a SiOC film, a SiOC/ SiO2 laminated film in which the SiOC film and the SiO2 film are laminated in this order from the glass substrate side, and a TiO2 film and a SiO2 film in this order from the glass substrate side. and a SnO 2 /SiO 2 laminated film in which the SnO 2 film and the SiO 2 film are laminated in this order from the glass substrate side.
  • the optical adjustment layer preferably contains silicon, and is a group consisting of a SiOC film, a SiOC/SiO 2 laminated film, a TiO 2 /SiO 2 laminated film, and a SnO 2 /SiO 2 laminated film. and more preferably comprising a SiOC film.
  • the amount of silicon contained in the entire optical adjustment layer is preferably in the range of 5 to 40 mol%, more preferably 10 to 33 mol%.
  • the thickness of the optical adjustment layer is preferably 20-100 nm. When the thickness of the optical adjustment layer is 20 nm or more, the glass substrate surface can be uniformly coated. A desired effect can be exhibited.
  • the thickness of the optical adjustment layer is preferably 20 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, and preferably 100 nm or less, more preferably 90 nm or less, and even more preferably 80 nm or less.
  • the "thickness" of the optical adjustment layer is represented by the total thickness of each layer.
  • the film may further include other layers as long as the effects of the present invention are not impaired.
  • Other layers include, for example, an overcoat layer.
  • the overcoat layer is typically a layer provided to adjust the reflectance of light on the side having the film. That is, by adjusting the refractive index difference between the overcoat layer and the layer adjacent thereto, the reflectance of light on the surface of the film-coated glass substrate on the side having the film can be adjusted. More specifically, the reflectance can be reduced by providing a layer having a smaller refractive index than the infrared reflective layer on the infrared reflective layer. For glass used in vehicles and the like, it is preferable to keep the reflectance low so that the outside of the vehicle can be clearly seen.
  • an overcoat layer examples of materials for forming a layer having a lower refractive index than the infrared reflective layer include silicon oxide (SiO 2 ), silicon nitride, a mixture of silicon oxide and titanium oxide, a mixture of silicon oxide and tin oxide, and a mixture of silicon oxide and alumina oxide. , SiOC, etc., and silicon oxide (SiO 2 ) is preferable from the viewpoint of ease of film formation. Specifically, it is preferable to include a SiO 2 film as the overcoat layer.
  • the overcoat layer may consist of one layer, or may consist of a film of two or more layers. It may also be a mixture of any two or more of the above materials.
  • the film further comprises an overcoat layer
  • its thickness is preferably between 20 and 1000 nm.
  • the overcoat layer has a thickness of 30 nm or more, more preferably 50 nm or more.
  • the thickness is more preferably 300 nm or less, and even more preferably 200 nm or less.
  • the skewness of the outermost surface of the film being 0 or less means that the skewness of the surface of the layer disposed on the outermost surface of the film is 0 or less.
  • the infrared reflective layer is disposed on the topmost surface of the film.
  • the overcoat layer is preferably arranged on the outermost surface of the film.
  • the emissivity of the outermost surface of the film is preferably 0.3 or less.
  • the emissivity is more preferably 0.25 or less, even more preferably 0.2 or less.
  • the lower limit of the emissivity is not particularly limited, but it is preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.10 or more.
  • the emissivity may be, for example, 0.01-0.3.
  • Emissivity is the reflectance for visible light measured according to ISO9050:2003.
  • the sheet resistance value of the film-coated glass substrate is preferably 30 ohm/square (ohm/sq.) or less.
  • the sheet resistance is 30 ohm/sq.
  • the value of sheet resistance is 30 ohm/sq. below, preferably 25 ohm/sq. The following is more preferable, and 20 ohm/sq. More preferred are:
  • the lower the sheet resistance value the easier the flow of electricity and the lower the emissivity. Therefore, the lower limit of the sheet resistance value is not particularly limited. 2 ohm/sq. 3 ohm/sq. The above is more preferable.
  • the sheet resistance value is, for example, 1 to 30 ohm/sq. may be The sheet resistance value can be measured by Hall measurement.
  • the method for manufacturing the film-coated glass substrate according to the present embodiment is not particularly limited, but for example, a film forming step of forming the film 2 on the glass substrate 1 by a known method, and a polishing step of polishing the film after the film forming step. is preferred.
  • a film forming step of forming the film 2 on the glass substrate 1 by a known method and a polishing step of polishing the film after the film forming step.
  • An example of obtaining the film-coated glass substrate 20 having the configuration shown in FIG. 2 by this method will be described below.
  • Film formation process In the film forming process, a film is formed on the glass substrate.
  • the film is a laminated film, it is preferable to form each layer in order from the one closest to the glass substrate, although it depends on the film formation method.
  • Each layer included in the film can be formed using various film formation methods such as chemical vapor deposition (CVD), electron beam deposition, vacuum deposition, sputtering, and spraying.
  • CVD chemical vapor deposition
  • the thermal CVD method is preferable as the film forming method because, as will be described later, it is easy to improve the performance of the layer formed of the doped metal oxide.
  • the film formation may be performed by an on-line method during the process of producing the glass substrate with a float facility.
  • film formation may be performed by reheating the glass substrate manufactured by the float method by an off-line method. From the viewpoint of manufacturing efficiency, it is preferable to form the film by a thermal CVD method on a glass substrate manufacturing line.
  • the optical adjustment layer is first deposited on the first surface of the glass substrate.
  • the optical adjustment layer includes a silicon carbide oxide (SiOC) layer
  • the optical adjustment layer may be deposited by a thermal CVD method.
  • a mixed gas containing monosilane (SiH 4 ), ethylene and carbon dioxide can be used as the raw material.
  • SiH 4 monosilane
  • carbon dioxide can be used as the raw material.
  • the raw material can be, for example, monosilane (SiH 4 ), tetraethoxysilane, mixed gas such as ethylene and oxygen.
  • a crystal growth base layer is deposited, and then an infrared reflective layer is deposited.
  • doped metal oxides are sometimes used as materials for forming the crystal growth base layer and the infrared reflective layer. Therefore, it is preferable that the impurity element is incorporated into the crystal structure.
  • the crystal growth base layer and the infrared reflective layer are preferably formed by thermal CVD. Furthermore, if it can be formed by the atmospheric pressure thermal CVD method, a large-scale vacuum apparatus becomes unnecessary, and productivity can be improved.
  • the infrared reflective layer is composed of fluorine-doped tin oxide (FTO), and the crystal growth base layer is composed of antimony-doped tin oxide (ATO) containing tin oxide, which is the same material as the metal oxide forming the infrared reflective layer. , and a case where each layer is formed by thermal CVD.
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • the crystal growth base layer is composed of antimony-doped tin oxide (ATO), a mixture of an inorganic or organic tin compound and an antimony compound is used as a raw material.
  • ATO antimony-doped tin oxide
  • Tin compounds include monobutyltin trichloride ( C4H9SnCl3 ) and tin tetrachloride ( SnCl4 ).
  • Antimony compounds include antimony trichloride (SbCl 3 ) and antimony pentachloride (SbCl 5 ).
  • the infrared reflective layer is composed of fluorine-doped tin oxide (FTO)
  • FTO fluorine-doped tin oxide
  • Tin compounds include monobutyltin trichloride (C 4 H 9 SnCl 3 ) and tin tetrachloride (SnCl 4 ), as described above.
  • Fluorine compounds include hydrogen fluoride and trifluoroacetic acid.
  • the source gas containing the above-described source material is blown onto a heated object to be deposited, thereby allowing the source gas to react and form the film.
  • the raw material gases may be mixed in advance before being conveyed.
  • the source gases may be mixed on the surface of the object to be deposited.
  • the raw material is liquid, the raw material may be vaporized into a gas by using a bubbling method, a vaporizer, or the like.
  • an overcoat layer may be further formed.
  • the film may be formed by the various film forming methods described above.
  • the overcoat layer may be formed by a thermal CVD method using the same raw material gas as that for the optical adjustment layer described above.
  • a film may be formed by a wet method including preparing a coating solution for the overcoat layer, applying it by a method such as spin coating, and heat-treating.
  • the coating solution includes a silica precursor, an organic solvent, and water that forms a layer containing SiO 2 by heat treatment.
  • polishing process By polishing the unpolished film-coated glass substrate obtained by the above method, the skewness of the outermost surface of the film can be reduced to 0 or less.
  • the polishing method is not particularly limited, but from the viewpoint of productivity, a method including polishing the outermost surface of the film using a polishing slurry and a polishing pad is preferred.
  • the polishing slurry contains abrasive grains and a dispersion medium for the abrasive grains, and known abrasive grains and dispersion media can be used.
  • oxide particles such as cerium oxide, silicon oxide, iron oxide, manganese oxide, titanium oxide, zirconium oxide, and aluminum oxide, and diamond can be used.
  • Oxide particles are preferable from the viewpoint of productivity. , silicon oxide is more preferred.
  • colloidal silica or fumed silica can be used as silicon oxide, and it is preferable that the solid content concentration in the polishing slurry is 1% by mass or more and 20% by mass or less.
  • the solid content concentration is 1% by mass or more, sufficient polishing can be performed, and when it is 20% by mass or less, aggregation of particles can be suppressed.
  • the average particle diameter of the abrasive grains is preferably 10 nm or more and preferably 200 nm or less when the solid content concentration is 1% by mass or more and 20% by mass or less. When the average particle diameter is 10 nm or more, it is possible to suppress the increase in the viscosity of the polishing slurry due to gelation of the solid content.
  • the average particle diameter is preferably 0.1 ⁇ m or more, and preferably 10 ⁇ m or less.
  • the average particle size is 0.1 ⁇ m or more, the fired powder can be easily pulverized, and when the average particle size is 10 ⁇ m or less, it becomes easy to maintain the dispersion stability of the particles in the slurry.
  • the average particle size means the median value of the volume-based particle size distribution.
  • the dispersion medium can be appropriately selected from, for example, water, organic solvents, mixtures thereof, and the like. Further, a dispersant such as an organic acid salt or a cationic surfactant may be added to the dispersion medium.
  • the pH of the polishing slurry is preferably 1 to 12 from the viewpoint of suppressing deterioration of the polishing pad. This is because if the pH is less than 1 or greater than 12, the urethane or epoxy polymer constituting the polishing pad may decompose. Further, it is more preferable to use an acidic slurry, since it is easier to reduce the skewness of the film surface in a shorter time.
  • the skewness of the film surface tends to decrease as the polishing time increases.
  • the specific polishing time can be appropriately adjusted depending on the polishing conditions, the composition of the film surface, and the like. minutes or more is preferable, 0.4 minutes or more is more preferable, 0.6 minutes or more is still more preferable, and 1.8 minutes or more is even more preferable.
  • the polishing time is preferably 30 minutes or less, more preferably 15 minutes or less, from the viewpoint of suppressing fluctuations in film properties due to an excessive amount of polishing.
  • the polishing time in this case may be, for example, 0.3 to 30 minutes.
  • the polishing time is preferably 1 minute or longer, more preferably 1.8 minutes or longer, and even more preferably 5.4 minutes or longer.
  • the polishing time is preferably 100 minutes or less, more preferably 50 minutes or less, from the viewpoint of suppressing fluctuations in film properties due to an excessive amount of polishing.
  • the polishing time in this case may be, for example, 1 to 100 minutes.
  • the polishing pad is not particularly limited, and known materials such as non-woven fabric, hard urethane, and suede can be used.
  • a polishing pad mainly composed of suede or nonwoven fabric a soft suede or nonwoven fabric having a Shore A hardness of 40 to 60° may be used, or a hard nonwoven fabric having a Shore A hardness of 60 to 80° may be used.
  • a hard urethane pad having a Shore D hardness of 20 to 80° may be used.
  • the polishing load is preferably 50 g/cm 2 to 150 g/cm 2
  • the pad rotation speed is preferably 10 rpm to 60 rpm in the case of a double-sided polisher or an Oscar type polisher, and 100 rpm to 500 rpm in the case of a disc brush polisher. preferable.
  • the device used for polishing is also not particularly limited, and known devices such as a double-sided polishing machine, a disk brush polishing machine, and an Oscar type polishing machine can be used.
  • the film-coated glass substrate according to the present embodiment is obtained through the film-forming process and the polishing process as described above.
  • the method for manufacturing a film-coated glass substrate according to the present embodiment may further include a step (strengthening step) of air-cooling or chemically tempering the glass substrate.
  • This strengthening step may be performed in any order, for example, before forming a film on the glass substrate, after manufacturing the film-coated glass substrate, or the like. By carrying out the strengthening step, the strength of the glass substrate and the obtained film-coated glass substrate can be increased.
  • the obtained glass substrate with the film may be subjected to bending.
  • a step of bonding another glass substrate to the second main surface side of the glass substrate may be performed.
  • the film-coated glass substrate according to the present embodiment includes, for example, vehicle window glass (front glass, rear glass, side glass, roof glass, etc.), laminated glass for vehicle window glass, building window glass, and laminated glass for building use. It can be suitably used for glass and the like.
  • Examples 1 to 19 are working examples, and examples 20 to 32 are comparative examples.
  • a glass substrate having a thickness of 2.1 mm (soda lime silicate glass: manufactured by AGC Co., Ltd.) was used as a glass substrate, and one of the following films A to C was formed as a film to produce a glass substrate with a film.
  • Films A to C are laminated films each composed of a plurality of layers.
  • a SiOC layer was formed as an optical adjustment layer on a glass substrate by a thermal CVD method. Monosilane, ethylene, and carbon dioxide were used as raw material gases, and nitrogen was used as a carrier gas. The target thickness of the SiOC layer was set to 70 nm. Next, an infrared reflective layer was formed on the SiOC layer. The infrared reflective layer was a fluorine-doped tin oxide layer (SnO 2 :F, FTO) and was deposited by thermal CVD.
  • SnO 2 :F, FTO fluorine-doped tin oxide layer
  • Monobutyltin trichloride (C 4 H 9 SnCl 3 , MBTC), water, air, trifluoroacetic acid (TFA), and nitric acid were used as source gases, and nitrogen was used as carrier gas.
  • the target thickness (maximum thickness) of the infrared reflective layer was 300 nm.
  • a SiO 2 layer was formed as an optical adjustment layer on a glass substrate by a thermal CVD method. Monosilane, ethylene, and oxygen were used as raw material gases, and nitrogen was used as a carrier gas. The target thickness of the SiO2 layer was set to 30 nm. Next, a SnO 2 layer was formed on the SiO 2 layer by a thermal CVD method. Tributyltin (C 12 H 28 Sn, TBT), water, air and oxygen were used as raw material gases, and nitrogen was used as carrier gas. The target thickness (maximum thickness) of the SnO 2 layer was set to 50 nm.
  • polishing process The outermost surface of the film of the obtained film-coated glass substrate was polished using a polishing slurry and a polishing pad to obtain film-coated glass substrates of Examples 1 to 28. Polishing conditions are shown below. Table 1 shows the types of films, combinations of polishing conditions, and processing times in each example. In Examples 29 to 32, no polishing was performed, and the film-coated glass substrates obtained in the above production examples were used as they were. In the example using the disk brush polishing machine, polishing was performed by passing the film-coated glass substrate to be polished through the portion to be polished. x Calculated by the number of passes.
  • Slurry An acidic slurry containing oxide particles with an average particle size of 0.1 ⁇ m or an alkaline slurry containing oxide particles with an average particle size of 0.1 ⁇ m was used.
  • Polishing pad A soft nonwoven fabric with a Shore A hardness of 50.5 or a hard nonwoven fabric with a Shore A hardness of 73.7 was used.
  • Polishing device A double-sided polishing machine (manufactured by Speedfam Co., Ltd.) or a disk brush polishing machine (manufactured by Hiraga Kikai Kogyo Co., Ltd.) was used.
  • the double-side polishing machine was used with a polishing load of 100 g/cm 2 , a pad diameter of 640 mm ⁇ , and a pad rotation speed of 30 rpm.
  • the disk brush polishing machine was used with a polishing load of 100 g/cm 2 , a pad diameter of 94 mm ⁇ , and a pad rotation speed of 300 rpm.
  • Stain resistance test A test was conducted by rubbing the outermost surface of the film with a cloth under the following conditions. Then, under a fluorescent lamp of 3000 lux, the area near the rubbed center was visually observed with reflected light, and the stain resistance was evaluated according to the following criteria. Table 1 shows the evaluation results.
  • Test condition Apparatus: Surface wear tester (PA-300, manufactured by Daiei Kagaku Seiki Seisakusho) Friction element: Cloth (No. 300 flannel cloth, white) Scraping speed: 5.6m/min Number of times of rubbing: 1000 times Load: 4.9 N/cm 2 (evaluation) Good: Cloth fibers were not adhered at all. Acceptable: Almost no fibers of the cloth adhered. Poor: Cloth fibers were clearly attached.
  • FIG. 3 is the glass substrate of Example 12 after the stain resistance test
  • FIG. 4 is the glass substrate of Example 23 after the stain resistance test.
  • a region A surrounded by a dotted line includes a region rubbed with a cloth in the test, and the vicinity of the center of the region A was visually evaluated in the test.
  • the white area below area A is the reflection of the fluorescent lamp used during observation.
  • Example 23 which is rated “poor”
  • the entire rubbed area is whitish, indicating that the fibers of the cloth are clearly attached.
  • Example 12 which was evaluated as "good”, no fabric fibers adhered to the rubbed area.
  • FIG. 5 is a graph showing the relationship between the film-coated glass substrates of Examples 1 to 32, Sa on the horizontal axis and Ssk on the vertical axis, and the stain resistance. From FIG. 5, it was confirmed that the value of Ssk correlated with the stain resistance regardless of the value of Sa, and that the stain resistance was excellent when the skewness was 0 or less.
  • a film-coated glass substrate comprising a glass substrate and a film disposed on the glass substrate, the glass substrate has a first surface and a second surface facing each other; the film is disposed on the first surface of the glass substrate; A film-coated glass substrate, wherein the skewness of the outermost surface of the film is 0 or less. 2.
  • 3. The film-coated glass substrate according to 1 or 2 above, wherein adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth. 4. 4.
  • the infrared reflective layer contains a doped metal oxide obtained by doping at least one metal oxide of tin oxide and titanium oxide with another element. 8.
  • the crystal growth base layer comprises an antimony-doped tin oxide film
  • the infrared reflective layer comprises a fluorine-doped tin oxide film.
  • the film further comprises an overcoat layer, and the overcoat layer is arranged on the outermost surface of the film. 12.

Abstract

The present invention relates to a glass substrate equipped with a film, comprising a glass substrate and a film positioned on the glass substrate, wherein the glass substrate has a first surface and a second surface facing each other, the film is installed on the first surface of the glass substrate, and the skewness of the outermost surface of the film is 0 or less.

Description

膜付きガラス基板glass substrate with film
 本発明は、膜付きガラス基板に関する。 The present invention relates to a film-coated glass substrate.
 ガラス基板に機能性膜を積層した膜付きガラス基板は、各種要求特性を満たす素材として種々の分野に汎用されている。 Film-coated glass substrates, which are laminated with functional films on glass substrates, are widely used in various fields as materials that satisfy various required properties.
 例えば、車両や建築物に使用される窓ガラス等において、近年の省エネルギー意識の高まりから、断熱性や遮熱性が付与された低放射ガラス(Low-Eガラス)が用いられている。低放射ガラスは、ガラス基板上に金属酸化物等からなる機能層を1層あるいは複数層積層することにより構成され、機能層として、例えば、熱線反射層、熱線吸収層、可視光反射層、可視光吸収層、光学調整層等を備えている。 For example, in the window glass used in vehicles and buildings, low-emissivity glass (Low-E glass) with heat insulation and heat shielding properties is used due to the recent heightened awareness of energy conservation. Low-emissivity glass is constructed by laminating one or more functional layers made of metal oxide or the like on a glass substrate. It has a light absorption layer, an optical adjustment layer, and the like.
 また、これらと同様に金属酸化物等からなる機能層を備える膜付きガラス基板について、特許文献1には、ガラス板を酸化錫膜で被覆し、この酸化錫膜の表面のRaを3nm以下にしたことを特徴とする複写機用天板ガラスが記載されている。特許文献1には、Raが3nm以下の酸化錫膜の表面に潤滑剤を塗布した場合に、摩擦係数が非常に小さい複写機用天板ガラスが得られることが記載されている。 In addition, regarding a film-coated glass substrate provided with a functional layer made of a metal oxide or the like similarly to these, Patent Document 1 discloses that the glass plate is coated with a tin oxide film, and the surface Ra of the tin oxide film is set to 3 nm or less. A top plate glass for a copier is described. Patent Document 1 describes that when a lubricant is applied to the surface of a tin oxide film having an Ra of 3 nm or less, a top plate glass for a copying machine having a very small coefficient of friction can be obtained.
日本国特開平9-208264号公報Japanese Patent Laid-Open No. 9-208264
 しかしながら、従来の膜付きガラス基板においては、膜表面に指紋等の汚れが付いた際に衣服や布製品、紙製品等の繊維を含む物品等で擦るとその繊維等が付着する場合があり、このような汚れに対する耐汚れ性の向上が求められている。 However, in conventional film-coated glass substrates, when the film surface is stained with fingerprints or the like, rubbing it with an article containing fibers such as clothes, cloth products, paper products, etc. may cause the fibers to adhere. There is a demand for improved stain resistance against such stains.
 そこで本発明は、特に繊維等の付着による汚れに対し、耐汚れ性に優れる膜付きガラス基板を提供することを課題とする。 Therefore, an object of the present invention is to provide a film-coated glass substrate that has excellent stain resistance, particularly against stains caused by adhesion of fibers and the like.
 本発明者らは、鋭意検討の結果、膜付きガラス基板における膜の最表面の性状を特定のものとすることで上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of extensive studies, the present inventors have found that the above problems can be solved by specifying the properties of the outermost surface of the film in the film-coated glass substrate, and have completed the present invention.
 すなわち、本発明は以下の1~16に関する。
1.ガラス基板と前記ガラス基板上に配置される膜とを備える膜付きガラス基板であって、
 前記ガラス基板は相互に対向する第1の面及び第2の面を有し、
 前記ガラス基板の前記第1の面に前記膜が設置され、
 前記膜の最表面のスキューネスが0以下である膜付きガラス基板。
2.前記膜の最表面の表面粗さが0.4nmより大きい、前記1に記載の膜付きガラス基板。
3.前記膜の最表面を布で擦った際に繊維の付着が確認されない、前記1に記載の膜付きガラス基板。
4.前記膜の最表面の放射率が0.3以下である、前記1に記載の膜付きガラス基板。
5.前記膜が結晶性の赤外線反射層を含む、前記1に記載の膜付きガラス基板。
6.前記膜は、前記ガラス基板に近い側から、結晶性の結晶成長基層と、前記赤外線反射層を含む、前記5に記載の膜付きガラス基板。
7.前記赤外線反射層が、酸化スズ及び酸化チタンのうちの少なくとも1つの金属酸化物に他の元素をドープしたドープ型金属酸化物を含む、前記5に記載の膜付きガラス基板。
8.前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、前記5に記載の膜付きガラス基板。
9.前記結晶成長基層がアンチモンドープ酸化スズ膜を備え、かつ前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、前記6に記載の膜付きガラス基板。
10.前記赤外線反射層が前記膜の最表面に配置される、前記5に記載の膜付きガラス基板。
11.前記膜がオーバーコート層をさらに含み、前記オーバーコート層は前記膜の最表面に配置される、前記5に記載の膜付きガラス基板。
12.前記膜が光学調整層をさらに含み、前記光学調整層は、前記第1の面に接する位置に配置される、前記5に記載の膜付きガラス基板。
13.前記光学調整層がSiOC膜を備える、前記12に記載の膜付きガラス基板。
14.前記膜が熱CVD法により形成された層を含む、前記1に記載の膜付きガラス基板。
15.前記膜がガラス基板の製造ライン上で熱CVD法により形成された層を含む、前記1に記載の膜付きガラス基板。
16.車両の窓ガラス、または車両の窓ガラス用途の合わせガラスに用いられる、前記1~15のいずれか1に記載の膜付きガラス基板。
That is, the present invention relates to 1 to 16 below.
1. A film-coated glass substrate comprising a glass substrate and a film disposed on the glass substrate,
the glass substrate has a first surface and a second surface facing each other;
the film is disposed on the first surface of the glass substrate;
A film-coated glass substrate, wherein the skewness of the outermost surface of the film is 0 or less.
2. 2. The film-coated glass substrate according to 1 above, wherein the surface roughness of the outermost surface of the film is greater than 0.4 nm.
3. 2. The film-coated glass substrate according to 1 above, wherein adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth.
4. 2. The film-coated glass substrate according to 1 above, wherein the outermost surface of the film has an emissivity of 0.3 or less.
5. 2. The film-coated glass substrate according to 1 above, wherein the film comprises a crystalline infrared reflective layer.
6. 6. The film-coated glass substrate according to 5 above, wherein the film includes a crystalline crystal growth base layer and the infrared reflective layer from the side closer to the glass substrate.
7. 6. The film-coated glass substrate according to 5 above, wherein the infrared reflective layer contains a doped metal oxide in which at least one metal oxide of tin oxide and titanium oxide is doped with another element.
8. 6. The film-coated glass substrate according to 5 above, wherein the infrared reflective layer comprises a fluorine-doped tin oxide film.
9. 7. The film-coated glass substrate according to 6 above, wherein the crystal growth base layer comprises an antimony-doped tin oxide film, and the infrared reflective layer comprises a fluorine-doped tin oxide film.
10. 6. The film-coated glass substrate according to 5 above, wherein the infrared reflective layer is arranged on the outermost surface of the film.
11. 6. The film-coated glass substrate according to 5 above, wherein the film further includes an overcoat layer, and the overcoat layer is disposed on the outermost surface of the film.
12. 6. The film-coated glass substrate according to 5 above, wherein the film further includes an optical adjustment layer, and the optical adjustment layer is arranged at a position in contact with the first surface.
13. 13. The film-coated glass substrate according to 12 above, wherein the optical adjustment layer comprises a SiOC film.
14. 2. The film-coated glass substrate according to 1 above, wherein the film includes a layer formed by a thermal CVD method.
15. 2. The film-coated glass substrate according to 1 above, wherein the film includes a layer formed by a thermal CVD method on a glass substrate production line.
16. 16. The film-coated glass substrate according to any one of 1 to 15 above, which is used for vehicle window glass or laminated glass for vehicle window glass.
 本発明の膜付きガラス基板は、膜の最表面のスキューネスが0以下であることで、耐汚れ性に優れる。本発明の膜付きガラス基板によれば、特に繊維の付着による膜表面の汚れを好適に抑制できる。 The film-coated glass substrate of the present invention has excellent stain resistance because the skewness of the outermost surface of the film is 0 or less. According to the film-coated glass substrate of the present invention, contamination of the film surface, particularly due to adhesion of fibers, can be suitably suppressed.
図1は、本実施形態に係る膜付きガラス基板の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a film-coated glass substrate according to this embodiment. 図2は、本実施形態に係る膜付きガラス基板の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of the film-coated glass substrate according to this embodiment. 図3は、耐汚れ性試験後の例12の膜付きガラス基板を示す図である。FIG. 3 shows the film-coated glass substrate of Example 12 after the stain resistance test. 図4は、耐汚れ性試験後の例23の膜付きガラス基板を示す図である。FIG. 4 shows the film-coated glass substrate of Example 23 after the stain resistance test. 図5は、膜付きガラス基板のSa及びSskと、耐汚れ性との関係を示す図である。FIG. 5 is a diagram showing the relationship between Sa and Ssk of a film-coated glass substrate and stain resistance.
 以下、本発明の実施形態について説明するが、本発明はこれらに限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these.
 本実施形態に係る膜付きガラス基板は、ガラス基板と前記ガラス基板上に配置される膜とを備える膜付きガラス基板であって、前記ガラス基板は相互に対向する第1の面及び第2の面を有し、前記ガラス基板の前記第1の面に前記膜が設置され、前記膜の最表面のスキューネスが0以下である。 A film-coated glass substrate according to the present embodiment is a glass substrate with a film provided with a glass substrate and a film disposed on the glass substrate, wherein the glass substrate has a first surface and a second surface facing each other. The film has a surface, the film is placed on the first surface of the glass substrate, and the skewness of the outermost surface of the film is 0 or less.
 図1は、本実施形態に係る膜付きガラス基板の構成例を示す図である。図1に示すように、膜付きガラス基板10は、ガラス基板1と、ガラス基板1上に配置される膜2とを備える。ガラス基板は相互に対向する第1の面1a及び第2の面1bを有し、ガラス基板1の第1の面1a上に膜2が設置される。膜2は1層で構成されてもよく、複数の層で構成されてもよい。図1において、膜2は複数の層で構成される積層膜である。 FIG. 1 is a diagram showing a configuration example of a film-coated glass substrate according to this embodiment. As shown in FIG. 1 , the film-coated glass substrate 10 includes a glass substrate 1 and a film 2 placed on the glass substrate 1 . The glass substrate has a first surface 1a and a second surface 1b facing each other, and a film 2 is placed on the first surface 1a of the glass substrate 1. As shown in FIG. The membrane 2 may consist of one layer or may consist of a plurality of layers. In FIG. 1, the film 2 is a laminated film composed of a plurality of layers.
 本実施形態に係る膜付きガラス基板において、膜の最表面のスキューネス(Ssk)は0以下である。ここで、膜の最表面とは、膜2の、ガラス基板と反対側の表面を意味し、以下これを膜表面ともいう。本発明者らは鋭意検討の結果、膜の最表面のスキューネスを0以下とすることで、膜付きガラス基板の膜表面への汚れ付着を抑制できることを見出した。スキューネスとは、対象となる面の高さ分布に関するパラメータであり、ISO25178に規定されるSsk(skewness of the scale-limited surface)の値をいう。Sskは例えば、原子間力顕微鏡(AFM)にて測定した表面分析データを、画像解析ソフトウェア(例えば、Image Metrology社製SPIP)を用いて処理することで求められ、この場合下記式から算出される。より具体的な測定及び処理の方法は実施例において後述する。 In the film-coated glass substrate according to this embodiment, the skewness (Ssk) of the outermost surface of the film is 0 or less. Here, the outermost surface of the film means the surface of the film 2 opposite to the glass substrate, and hereinafter this is also referred to as the film surface. As a result of intensive studies, the present inventors have found that by setting the skewness of the outermost surface of the film to 0 or less, it is possible to suppress the adhesion of dirt to the film surface of the film-coated glass substrate. Skewness is a parameter relating to the height distribution of a target surface, and refers to the value of Ssk (skewness of the scale-limited surface) defined in ISO25178. For example, Ssk is obtained by processing surface analysis data measured with an atomic force microscope (AFM) using image analysis software (for example, SPIP manufactured by Image Metrology), and in this case is calculated from the following formula: . More specific measurement and processing methods will be described later in Examples.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式中、MはX軸方向の測定点数を、NはY軸方向の測定点数を、Sqは二乗平均平方根粗さを、z(x,y)は座標(x,y)における高さ(ここで、xはk番目のx座標、yはl番目のy座標を表す)を表す。ここでSqは次の式で定義される。下記式中、M,N,z(x,y)は上記と同一である。 In the formula, M is the number of measurement points in the X-axis direction, N is the number of measurement points in the Y-axis direction, Sq is the root mean square roughness, and z (x k , y l ) is the coordinate (x k , y l ) at Represents height (where x k represents the kth x coordinate and y l represents the lth y coordinate). Here, Sq is defined by the following formula. In the following formula, M, N, z(x k , y l ) are the same as above.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 スキューネスが0より大きいことは、高さが比較的低い部分に分布が偏っていることを意味する。一方、スキューネスが0であることは、高さが比較的高い部分と比較的低い部分とが対称に分布することを意味し、0より小さいことは、高さが比較的高い部分に分布が偏っていることを意味する。 A skewness greater than 0 means that the distribution is biased toward areas with relatively low heights. On the other hand, a skewness of 0 means that relatively high and relatively low height portions are symmetrically distributed, and a skewness of less than 0 means that the distribution is biased toward relatively high height portions. means that
 すなわち、スキューネスが0より大きい面には比較的鋭い形状の凸部と、比較的平坦な形状の凹部が存在する傾向がある。かかる面においては、接触物が凹凸形状に掻き取られやすいために汚れが付着しやすく、また凹凸形状に汚れが捕捉されやすいため、汚れを除去し難くなると考えられる。これに対し、本実施形態においては、スキューネスが0以下であることで、比較的鋭い形状の凸部が少なくなり、接触物が凹凸形状により掻き取られたり、汚れが捕捉されたりするのを抑制できる。 In other words, a surface with a skewness greater than 0 tends to have relatively sharp protrusions and relatively flat recesses. On such a surface, dirt tends to adhere because the contacting object is easily scraped off by the uneven shape, and dirt is likely to be trapped by the uneven shape, making it difficult to remove the dirt. On the other hand, in the present embodiment, the skewness is 0 or less, so that the number of protrusions with relatively sharp shapes is reduced, thereby suppressing scraping of contact objects and trapping of dirt due to uneven shapes. can.
 スキューネスは、耐汚れ性をより向上する観点から0より小さいことが好ましく、-0.10以下がより好ましく、-0.15以下がさらに好ましい。スキューネスの下限値は特に限定されないが、生産性を確保する観点からは、例えば-2.0以上が好ましい。スキューネスは、例えば-2.0~0であってもよい。スキューネスを0以下とする方法は特に限定されないが、例えば、後述するように膜表面を研磨する方法が挙げられる。 The skewness is preferably less than 0, more preferably -0.10 or less, and even more preferably -0.15 or less from the viewpoint of further improving stain resistance. The lower limit of the skewness is not particularly limited, but from the viewpoint of ensuring productivity, it is preferably -2.0 or more, for example. The skewness may be -2.0 to 0, for example. The method for reducing the skewness to 0 or less is not particularly limited, but an example thereof includes a method of polishing the film surface as described later.
 本明細書において、耐汚れ性とは汚れの付着に対する耐性を意味する。汚れの種類は特に限定されないが、本実施形態に係る膜付きガラス基板は、衣服や布製品、紙製品等の繊維を含む物品等と接触した際の、繊維等の付着に対する耐性に特に優れるものである。耐汚れ性は、例えば膜の最表面を布で擦る耐汚れ性試験により評価できる。本実施形態に係る膜付きガラス基板は、膜の最表面を布で擦った際に繊維の付着が確認されないことが好ましい。耐汚れ性試験の手順や条件としては、例えば実施例において後述する手順や条件を採用できる。 In this specification, stain resistance means resistance to stain adhesion. The type of dirt is not particularly limited, but the film-coated glass substrate according to the present embodiment is particularly excellent in resistance to adherence of fibers, etc. when in contact with articles containing fibers, such as clothes, cloth products, and paper products. is. The stain resistance can be evaluated, for example, by a stain resistance test in which the outermost surface of the film is rubbed with a cloth. In the film-coated glass substrate according to the present embodiment, it is preferable that adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth. As the procedure and conditions for the stain resistance test, for example, the procedures and conditions described later in Examples can be adopted.
 本発明者らは、上述のようにスキューネスと耐汚れ性との関係を見出すと同時に、耐汚れ性の程度は表面粗さ(Sa)の値によらないことも見出した。すなわち、耐汚れ性を向上する観点では、スキューネスが0以下であればよく、例えば表面粗さを比較的小さくすること等は必須でないことがわかった。表面粗さを過剰に小さくしようとすると、製造コストが増大する場合や、求められる膜の特性によっては製造が困難となる場合がある。これに対し、表面粗さをある程度大きい値とすることで、膜付きガラス基板を製造しやすくなり、生産性を向上できるため好ましい。すなわち、膜の最表面の表面粗さは0.4nmより大きいことが好ましく、3nm以上がより好ましく、5nm以上がさらに好ましく、10nm以上が特に好ましい。一方で、外観を向上する観点から、表面粗さは30nm以下が好ましく、28nm以下がより好ましく、25nm以下がさらに好ましく、20nm以下が特に好ましい。表面粗さは例えば0.4~30nmであってもよい。表面粗さは、ISO25178に規定されるSa(arithmetical mean height of the scale limited surface)の値をいう。Saは例えば、原子間力顕微鏡(AFM)にて測定した表面分析データを、画像解析ソフトウェア(例えば、Image Metrology社製SPIP)を用いて処理することで求められ、この場合下記式から算出される。より具体的な測定及び処理の方法は実施例において後述する。下記式中、M,N,z(x,y)は上記と同一である。 The present inventors found the relationship between skewness and stain resistance as described above, and at the same time found that the degree of stain resistance does not depend on the value of surface roughness (Sa). That is, from the viewpoint of improving the stain resistance, it is sufficient that the skewness is 0 or less, and for example, it is not essential to make the surface roughness relatively small. Attempting to excessively reduce the surface roughness may increase the production cost or make the production difficult depending on the required film properties. On the other hand, setting the surface roughness to a relatively large value is preferable because it facilitates the production of the film-coated glass substrate and improves the productivity. That is, the surface roughness of the outermost surface of the film is preferably greater than 0.4 nm, more preferably 3 nm or more, even more preferably 5 nm or more, and particularly preferably 10 nm or more. On the other hand, from the viewpoint of improving the appearance, the surface roughness is preferably 30 nm or less, more preferably 28 nm or less, even more preferably 25 nm or less, and particularly preferably 20 nm or less. The surface roughness may be, for example, 0.4-30 nm. The surface roughness refers to the value of Sa (arithmetic mean height of the scale limited surface) defined in ISO25178. Sa is obtained, for example, by processing surface analysis data measured with an atomic force microscope (AFM) using image analysis software (for example, SPIP manufactured by Image Metrology), in which case it is calculated from the following formula: . More specific measurement and processing methods will be described later in Examples. In the following formula, M, N, z(x k , y l ) are the same as above.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 以下、本実施形態に係る膜付きガラス基板の具体的な構成についてより詳細に説明する。 A specific configuration of the film-coated glass substrate according to the present embodiment will be described in more detail below.
 (ガラス基板)
 ガラス基板1は、膜付きガラス基板10の骨格となり、自己支持性を有するものである。ガラス基板を構成するガラスとしては、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、無アルカリガラス等が挙げられる。ガラス基板は、本発明の効果を阻害しない範囲において、風冷強化や化学強化など公知の処理が施されたものであってもよい。
(glass substrate)
The glass substrate 1 serves as a framework for the film-coated glass substrate 10 and has self-supporting properties. Examples of glass constituting the glass substrate include soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, and the like. The glass substrate may be subjected to a known treatment such as air-cooling tempering or chemical strengthening as long as the effects of the present invention are not impaired.
 ガラス基板は、膜付きガラス基板の使用用途や使用目的に応じて、透明、半透明、不透明のいずれも選択できる。また、ガラス基板は、無色であっても、着色がされていてもよい。 The glass substrate can be transparent, translucent, or opaque, depending on the intended use and purpose of the film-coated glass substrate. Further, the glass substrate may be colorless or colored.
 ガラス基板の形状は特に限定されず、使用用途に応じて任意の形状が可能である。例えば、車両用部材、建築用部材に使用するためには板状であるのが好ましい。なお、ガラス基板は平板状であってもよく、曲げ加工等により曲面を有する板状であってもよい。 The shape of the glass substrate is not particularly limited, and any shape is possible depending on the intended use. For example, it is preferably plate-shaped for use in vehicle members and construction members. The glass substrate may have a flat plate shape, or may have a plate shape having a curved surface by bending or the like.
 ガラス基板の大きさは特に限定されず、膜付きガラス基板の使用用途や使用目的に応じて適宜調整すればよい。例えば、膜付きガラス基板を車両に利用する場合、ガラス基板の厚さは1mm~5mm、主面の面積は0.5~5mであるのが好ましい。また、膜付きガラス基板を建築物に利用する場合、ガラス基板の厚さは4mm~8mm、主面の面積は0.5~10mであるのが好ましい。 The size of the glass substrate is not particularly limited, and may be appropriately adjusted according to the application and purpose of use of the film-coated glass substrate. For example, when a film-coated glass substrate is used in a vehicle, the glass substrate preferably has a thickness of 1 mm to 5 mm and a main surface area of 0.5 to 5 m 2 . When the film-coated glass substrate is used for a building, the glass substrate preferably has a thickness of 4 mm to 8 mm and a main surface area of 0.5 to 10 m 2 .
 (膜)
 膜付きガラス基板において、膜の種類は特に限定されず、膜は種々の機能性膜であってよい。膜は、例えば金属酸化物を主成分とする層を含んで構成される機能性膜が好ましい。一例として、膜付きガラス基板を断熱性や遮熱性が付与された低放射ガラス(Low-Eガラス)として用いる場合の膜の好ましい構成例を以下に説明する。
(film)
In the film-coated glass substrate, the type of film is not particularly limited, and the film may be various functional films. The film is preferably a functional film comprising a layer containing metal oxide as a main component, for example. As an example, a preferred configuration example of the film when the film-coated glass substrate is used as low-emissivity glass (Low-E glass) imparted with heat insulating properties and heat shielding properties will be described below.
 膜付きガラス基板を低放射ガラスとして用いる場合、ガラス基板1上に配置される膜2は、結晶性の赤外線反射層5を含むことが好ましい。また、膜2は、結晶性の結晶成長基層3、光学調整層7及びオーバーコート層(図示なし)のうちの少なくとも1つ以上をさらに含むことも好ましい。図1は、膜2がガラス基板1に近い方から光学調整層7及び赤外線反射層5を含む場合の構成例を示す図である。図2は、膜2がガラス基板1に近い方から光学調整層7、結晶成長基層3及び赤外線反射層5を含む場合の構成例を示す図である。 When the film-coated glass substrate is used as low-emissivity glass, the film 2 placed on the glass substrate 1 preferably includes a crystalline infrared reflective layer 5 . Also, the film 2 preferably further includes at least one or more of a crystalline crystal growth base layer 3, an optical adjustment layer 7 and an overcoat layer (not shown). FIG. 1 is a diagram showing a configuration example in which the film 2 includes an optical adjustment layer 7 and an infrared reflective layer 5 from the side closer to the glass substrate 1. As shown in FIG. FIG. 2 is a diagram showing a configuration example in which the film 2 includes the optical adjustment layer 7, the crystal growth base layer 3, and the infrared reflecting layer 5 from the side closer to the glass substrate 1. As shown in FIG.
 (赤外線反射層)
 赤外線反射層5は、赤外線を反射し、膜付きガラス基板に断熱性を付与する層であり、結晶性を有している。
(Infrared reflective layer)
The infrared reflective layer 5 is a layer that reflects infrared rays, imparts heat insulation to the film-coated glass substrate, and has crystallinity.
 赤外線反射層を形成する材料としては、例えば、酸化スズ、酸化インジウム、酸化亜鉛、酸化チタン、酸化タンタル及び酸化ニオブからなる群から選択される少なくとも1つの金属酸化物に他の元素(不純物元素)をドープしたドープ型金属酸化物が挙げられる。
 ドープさせる不純物元素としては、例えば、フッ素、アンチモン、スズ、カリウム、アルミニウム、タンタル、ニオブ、窒素、ホウ素、インジウム等が挙げられる。
Materials for forming the infrared reflective layer include, for example, at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide, titanium oxide, tantalum oxide, and niobium oxide, and other elements (impurity elements). doped metal oxides.
Impurity elements to be doped include, for example, fluorine, antimony, tin, potassium, aluminum, tantalum, niobium, nitrogen, boron, and indium.
 具体的なドープ型金属酸化物としては、例えば、フッ素ドープ酸化スズ(FTO、SnOにFを添加した金属酸化物)、アンチモンドープ酸化スズ(ATO、SnOにSbを添加した金属酸化物)、スズドープ酸化インジウム(ITO、InにSnを添加した金属酸化物)、ガリウムドープ酸化亜鉛(GZO、ZnOにGaを添加した金属酸化物)、アルミニウムドープ酸化亜鉛(AZO、ZnOにAlを添加した金属酸化物)、タンタルドープ酸化スズ(SnOにTaを添加した金属酸化物)、ニオブドープ酸化スズ(SnOにNbを添加した金属酸化物)、タンタルドープ酸化チタン(TiにTaを添加した金属酸化物)、ニオブドープ酸化チタン(TiにNbを添加した金属酸化物)、アルミニウムドープ酸化スズ(SnOにAlを添加した金属酸化物)、フッ素ドープ酸化チタン(TiにFを添加した金属酸化物)、窒素ドープ酸化チタン(TiにNを添加した金属酸化物)等が挙げられる。 Specific doped metal oxides include, for example, fluorine-doped tin oxide (FTO, a metal oxide in which F is added to SnO2 ), antimony-doped tin oxide (ATO, a metal oxide in which Sb is added to SnO2 ). , tin-doped indium oxide (ITO, metal oxide in which Sn is added to In 2 O 3 ), gallium-doped zinc oxide (GZO, metal oxide in which Ga is added to ZnO), aluminum-doped zinc oxide (AZO, ZnO to which Al is added doped metal oxide), tantalum-doped tin oxide (metal oxide in which Ta is added to SnO2 ), niobium-doped tin oxide (metal oxide in which Nb is added to SnO2 ), tantalum-doped titanium oxide (Ti added with Ta niobium-doped titanium oxide (metal oxide in which Nb is added to Ti), aluminum-doped tin oxide (metal oxide in which Al is added to SnO2 ), fluorine-doped titanium oxide (metal oxide in which F is added to Ti) oxide), nitrogen-doped titanium oxide (a metal oxide in which N is added to Ti), and the like.
 中でも、赤外線反射層が、酸化スズ及び酸化チタンのうちの少なくとも1つの金属酸化物に他の元素をドープしたドープ型金属酸化物を含むのが好ましく、他の元素は、フッ素、タンタル、ニオブ及びアルミニウムからなる群から選択される少なくとも1つであるのが好ましい。
 具体的に、赤外線反射層が、フッ素ドープ酸化スズ(FTO)、タンタルドープ酸化スズ、ニオブドープ酸化スズ、タンタルドープ酸化チタン、ニオブドープ酸化チタン及びアルミニウムドープ酸化スズからなる群から選択される少なくとも1つのドープ型金属酸化物から形成されるのがより好ましく、より高い断熱性を得るという観点から、フッ素ドープ酸化スズ(FTO)膜を備えるのがさらに好ましい。
Among them, the infrared reflective layer preferably contains a doped metal oxide in which at least one metal oxide of tin oxide and titanium oxide is doped with another element, and the other element is fluorine, tantalum, niobium and At least one selected from the group consisting of aluminum is preferred.
Specifically, the infrared reflective layer contains at least one dope selected from the group consisting of fluorine-doped tin oxide (FTO), tantalum-doped tin oxide, niobium-doped tin oxide, tantalum-doped titanium oxide, niobium-doped titanium oxide, and aluminum-doped tin oxide. It is more preferable to be formed from a type metal oxide, and from the viewpoint of obtaining higher heat insulation properties, it is further preferable to have a fluorine-doped tin oxide (FTO) film.
 赤外線反射層は、1層の膜からなるものであってもよいし、材料や元素含有量等が異なる2層以上の膜からなるものであってもよい。 The infrared reflective layer may consist of a single layer film, or may consist of two or more layers of films with different materials, element contents, and the like.
 赤外線反射層に含まれる不純物元素の含有量は、その濃度が0.01~20mol%であるのが好ましい。赤外線反射層に含まれる不純物元素の濃度が0.01mol%以上であると、断熱効果を発現でき、20mol%以下であると良好な結晶性を維持できる。
 赤外線反射層に含まれる不純物元素の濃度は、0.01mol%以上であるのが好ましく、0.1mol%以上がより好ましく、0.5mol%以上がさらに好ましく、また10mol%以下であるのがより好ましく、8mol%以下がさらに好ましく、5mol%以下が特に好ましい。
 なお、不純物元素の濃度は、赤外線反射層中に複数の不純物元素を含む場合は、その総量である。
The content of impurity elements contained in the infrared reflective layer is preferably 0.01 to 20 mol % in concentration. When the concentration of the impurity element contained in the infrared reflective layer is 0.01 mol % or more, a heat insulating effect can be exhibited, and when it is 20 mol % or less, good crystallinity can be maintained.
The concentration of the impurity element contained in the infrared reflective layer is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, still more preferably 0.5 mol % or more, and more preferably 10 mol % or less. It is preferably 8 mol % or less, more preferably 5 mol % or less.
In addition, the concentration of the impurity element is the total amount when the infrared reflective layer contains a plurality of impurity elements.
 なお、赤外線反射層の組成や不純物元素の濃度は、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。
 例えば、アンチモン(Sb)濃度は、X線光電子分光法(XPS)による深さ方向の分析を行い、SbとSnの強度比から調べられる。フッ素(F)濃度は、二次イオン質量分析法(SIMS)による深さ方向の分析を行い、FとSnの強度比から調べられる。なお、SIMSについては、濃度既知のフッ素添加錫SnOを測定し、F/Snの強度比から濃度に変換する係数を求める。
The composition of the infrared reflective layer and the concentration of impurity elements can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectroscopy (SIMS).
For example, the antimony (Sb) concentration can be examined from the intensity ratio of Sb and Sn by analyzing the depth direction by X-ray photoelectron spectroscopy (XPS). The fluorine (F) concentration is analyzed in the depth direction by secondary ion mass spectrometry (SIMS), and can be examined from the intensity ratio of F and Sn. For SIMS, fluorine-added tin SnO 2 with a known concentration is measured, and a coefficient for converting the intensity ratio of F/Sn into concentration is obtained.
 赤外線反射層の厚さは、50~1000nmであるのが好ましい。赤外線反射層の厚さが50nm以上であると、膜付きガラス基板における断熱性能が向上し、1000nm以下であると、断熱性を維持しつつガラス基板の可視光域における透過性を確保できる。
 赤外線反射層の厚さは、50nm以上であるのが好ましく、80nm以上がより好ましく、130nm以上がさらに好ましく、また、1000nm以下であるのが好ましく、500nm以下であるのがより好ましく、450nm以下がさらに好ましく、400nm以下が特に好ましい。
The thickness of the infrared reflective layer is preferably 50-1000 nm. When the thickness of the infrared reflective layer is 50 nm or more, the heat insulation performance of the film-coated glass substrate is improved, and when it is 1000 nm or less, the transparency of the glass substrate in the visible light region can be secured while maintaining heat insulation.
The thickness of the infrared reflective layer is preferably 50 nm or more, more preferably 80 nm or more, still more preferably 130 nm or more, and preferably 1000 nm or less, more preferably 500 nm or less, and 450 nm or less. More preferably, 400 nm or less is particularly preferable.
 赤外線反射層の厚さは、X線光電子分光測定による深さ方向分析等により測定できる。
 赤外線反射層が異種材料の複層で構成される場合、赤外線反射層の「厚さ」は、各層の厚さの合計で表される。
 なお、赤外線反射層の「厚さ」が場所によって異なる場合、本実施形態においては測定領域における赤外線反射層の最大厚さを表すものとする。
The thickness of the infrared reflective layer can be measured by depth direction analysis by X-ray photoelectron spectroscopy.
When the infrared reflective layer is composed of multiple layers of different materials, the "thickness" of the infrared reflective layer is represented by the total thickness of each layer.
In addition, when the "thickness" of the infrared reflective layer differs depending on the location, the maximum thickness of the infrared reflective layer in the measurement area shall be indicated in the present embodiment.
 赤外線反射層は、金属酸化物の結晶粒により成膜される。赤外線反射層における結晶粒の大きさは、30nm以上であるのが好ましい。結晶粒の大きさが30nm以上であると、電子の粒界散乱が小さくなり、電気伝導性が高くなるため、放射率を低くできる。
 結晶粒の大きさは、30nm以上であるのがより好ましく、50nm以上がさらに好ましく、80nm以上が特に好ましく、また、結晶粒形は大きいほど良いため、特に上限値はないが、一般的に1000nm以下であるのがより好ましく、800nm以下がさらに好ましく、500nm以下が特に好ましい。例えば、赤外線反射層における結晶粒の大きさは、30~1000nmであってもよい。
The infrared reflective layer is formed from metal oxide crystal grains. The size of the crystal grains in the infrared reflective layer is preferably 30 nm or more. When the crystal grain size is 30 nm or more, the grain boundary scattering of electrons is reduced and the electrical conductivity is increased, so that the emissivity can be lowered.
The size of the crystal grain is more preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 80 nm or more. Since the larger the crystal grain shape, the better, there is no particular upper limit, but it is generally 1000 nm. It is more preferably 800 nm or less, particularly preferably 500 nm or less. For example, the size of the crystal grains in the infrared reflective layer may be 30-1000 nm.
 なお、結晶粒の大きさは、膜付きガラス基板を厚み方向に切断した断面を、走査型電子顕微鏡(SEM)観察することで測定できる。 The size of the crystal grains can be measured by observing a cross section obtained by cutting the film-coated glass substrate in the thickness direction with a scanning electron microscope (SEM).
 (結晶成長基層)
 結晶成長基層3は、当該結晶成長基層3に積層される赤外線反射層5における結晶成長を加速させて結晶粒を大きく成長させる層であり、結晶性を有している。結晶成長基層は必須ではないが、膜が結晶成長基層を含む場合、図2に示すように、膜2はガラス基板1に近い側から、結晶成長基層3と、赤外線反射層5を含む構成が好ましい。上記したように、赤外線反射層5は金属酸化物の結晶粒により成膜されるが、結晶成長基層3を介して赤外線反射層5を成膜すると、赤外線反射層5の結晶粒は結晶成長基層3内で成長した結晶粒をベースに成長するので、赤外線反射層5内の結晶粒を大きく成長させられる。これにより、膜の最表面の放射率をより小さくしやすい。
(Crystal growth base layer)
The crystal growth base layer 3 is a layer that accelerates the crystal growth in the infrared reflective layer 5 laminated on the crystal growth base layer 3 to grow large crystal grains, and has crystallinity. A crystal growth base layer is not essential, but when the film includes a crystal growth base layer, as shown in FIG. preferable. As described above, the infrared reflective layer 5 is formed of metal oxide crystal grains. Since the crystal grains grown in the infrared reflective layer 5 are grown based on the crystal grains 3, the crystal grains in the infrared reflective layer 5 can be grown large. This makes it easier to reduce the emissivity of the outermost surface of the film.
 結晶成長基層を形成する材料としては、例えば、酸化スズ、酸化インジウム、酸化亜鉛、酸化チタン、酸化ニオブ及び酸化タンタルからなる群から選択される少なくとも1つの金属酸化物が挙げられる。
 結晶成長基層は、赤外線反射層に含まれる金属酸化物と同じ種類の金属酸化物から形成されるのが好ましい。例えば、赤外線反射層がフッ素ドープ酸化スズ(FTO)膜を備える場合、結晶成長基層は酸化スズ膜であるのが好ましい。
 赤外線反射層に含まれる金属酸化物と同じ種類の金属酸化物であると、赤外線反射層を形成する際に結晶粒の成長が途切れることがなく、赤外線反射層における結晶粒を大きく成長させられる。
Materials forming the crystal growth base layer include, for example, at least one metal oxide selected from the group consisting of tin oxide, indium oxide, zinc oxide, titanium oxide, niobium oxide, and tantalum oxide.
The crystal growth underlayer is preferably formed from the same type of metal oxide as the metal oxide contained in the infrared reflective layer. For example, if the infrared reflective layer comprises a fluorine-doped tin oxide (FTO) film, the crystal growth substrate is preferably a tin oxide film.
If the metal oxide is of the same type as the metal oxide contained in the infrared reflective layer, the crystal grains in the infrared reflective layer can grow large without discontinuing the growth of the crystal grains when forming the infrared reflective layer.
 また、結晶成長基層を形成する金属酸化物は、他の元素(不純物元素)をドープしたドープ型金属酸化物であってもよい。結晶成長基層をドープ型金属酸化物により形成することで、結晶成長基層にも所望の機能を付与できる。
 ドープ型金属酸化物にドープさせる不純物金属としては、上記と同様であり、例えば、フッ素、アンチモン、スズ、カリウム、アルミニウム、タンタル、ニオブ、窒素、ホウ素、インジウム等が挙げられる。中でも、アンチモンドープ酸化スズ(ATO、SnOにSbを添加した金属酸化物)により結晶成長基層を形成すると(アンチモンドープ酸化スズ膜)、ガラス基板の内部に伝わる熱の量を小さくして、膜付きガラス基板に遮熱性を与えられる。すなわち、結晶成長基層がアンチモンドープ酸化スズ膜を備え、かつ赤外線反射膜がフッ素ドープ酸化スズ膜を備えることがより好ましい。
Also, the metal oxide forming the crystal growth base layer may be a doped metal oxide doped with another element (impurity element). By forming the crystal growth base layer from a doped metal oxide, the crystal growth base layer can be given a desired function.
The impurity metal with which the doped metal oxide is doped is the same as described above, and examples thereof include fluorine, antimony, tin, potassium, aluminum, tantalum, niobium, nitrogen, boron, and indium. Among others, antimony-doped tin oxide (ATO, a metal oxide obtained by adding Sb to SnO 2 ) forms the base layer for crystal growth (antimony-doped tin oxide film). A glass substrate with a heat shield is provided. That is, it is more preferable that the crystal growth base layer comprises an antimony-doped tin oxide film and the infrared reflecting film comprises a fluorine-doped tin oxide film.
 結晶成長基層の形成にドープ型金属酸化物を用いる場合、ドープされる不純物元素の濃度は30mol%以下であるのが好ましい。ドープされる金属の濃度が30mol%以下であると、ドープ前の結晶構造を維持できる。
 ドープされる金属の濃度は、30mol%以下であるのが好ましく、25mol%以下がより好ましく、20mol%以下がさらに好ましい。
When a doped metal oxide is used to form the crystal growth base layer, the concentration of the impurity element to be doped is preferably 30 mol % or less. When the concentration of the metal to be doped is 30 mol % or less, the crystal structure before doping can be maintained.
The concentration of the doped metal is preferably 30 mol % or less, more preferably 25 mol % or less, even more preferably 20 mol % or less.
 なお、結晶成長基層の組成やドープされる不純物元素の濃度は、上記したように、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。 The composition of the crystal growth base layer and the concentration of the impurity element to be doped can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS), as described above.
 結晶成長基層は、1層の膜からなるものであってもよいし、材料や金属含有量等が異なる2層以上の膜からなるものであってもよい。 The crystal growth base layer may consist of a single-layer film, or may consist of two or more layers of films with different materials, metal contents, and the like.
 本実施形態において、結晶成長基層の厚さは200nm以上であることが好ましい。結晶成長基層の厚さが200m以上であると赤外線反射層の結晶粒径を成長させやすくなり、赤外線反射層の結晶粒を所望の大きさに成長させることが可能となるので、赤外線反射層を成膜する際に金属酸化物の結晶成長が担保され、赤外線反射層の結晶粒が大きくなる。
 結晶成長基層の厚さは、250nm以上であるのがより好ましく、300nm以上がより好ましい。また、結晶成長基層の厚さは、表面平坦性の観点から、1000nm以下であるのが好ましく、900nm以下がより好ましく、700nm以下がさらに好ましい。結晶成長基層の厚さは例えば200~1000nmであってもよい。
In this embodiment, the thickness of the crystal growth base layer is preferably 200 nm or more. When the thickness of the crystal growth base layer is 200 m or more, the crystal grain size of the infrared reflective layer can be easily grown, and the crystal grains of the infrared reflective layer can be grown to a desired size. Crystal growth of the metal oxide is ensured during film formation, and the crystal grains of the infrared reflective layer become large.
The thickness of the crystal growth base layer is more preferably 250 nm or more, more preferably 300 nm or more. From the viewpoint of surface flatness, the thickness of the crystal growth base layer is preferably 1000 nm or less, more preferably 900 nm or less, and even more preferably 700 nm or less. The thickness of the crystal growth underlayer may be, for example, 200-1000 nm.
 結晶成長基層の厚さは、X線光電子分光測定による深さ方向の分析等により測定できる。
 なお、結晶成長基層は、金属酸化物の結晶粒により成膜されるので、ガラス基板側とは反対側の面に凹凸形状を有する。よって、結晶成長基層の「厚さ」は場所によって異なるが、本実施形態においては測定領域における結晶成長基層の最大厚さを表すものとする。
The thickness of the crystal growth base layer can be measured by analysis in the depth direction by X-ray photoelectron spectroscopy.
Since the crystal growth base layer is formed of metal oxide crystal grains, the surface opposite to the glass substrate side has an uneven shape. Therefore, although the "thickness" of the crystal growth base layer varies depending on the location, in this embodiment, it represents the maximum thickness of the crystal growth base layer in the measurement region.
 結晶成長基層における結晶粒の大きさは、30~1500nmであるのが好ましい。結晶粒の大きさが30nm以上であると、結晶成長基層上に成膜される赤外線反射層の結晶粒形を十分に大きくできる。
 結晶粒の大きさは、30nm以上であるのがより好ましく、50nm以上がさらに好ましく、80nm以上が特に好ましく、また、結晶粒形は大きいほど良いため、特に上限値はないが、一般的に1500nm以下であるのがより好ましく、1200nm以下がさらに好ましく、1000nm以下が特に好ましい。
The crystal grain size in the crystal growth base layer is preferably 30 to 1500 nm. When the crystal grain size is 30 nm or more, the crystal grain shape of the infrared reflective layer formed on the crystal growth base layer can be made sufficiently large.
The size of the crystal grains is more preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 80 nm or more. Since the larger the crystal grain shape, the better, there is no particular upper limit, but generally 1500 nm. It is more preferably 1200 nm or less, particularly preferably 1000 nm or less.
 なお、結晶粒の大きさは、上記と同様であり、走査型電子顕微鏡による断面観察により測定できる。 The size of the crystal grains is the same as above, and can be measured by cross-sectional observation with a scanning electron microscope.
 本実施形態において、膜が結晶成長基層を含む場合、赤外線反射層と結晶成長基層の厚さの合計は、250~1500nmであるのが好ましい。各層の合計が250nm以上であると、赤外線反射層における結晶粒を十分に成長させることができ、1500nm以下であると、膜付きガラス基板の厚みが厚くなり過ぎることがない。
 赤外線反射層と結晶成長基層の厚さの合計は、300nm以上であるのがより好ましく、400nm以上がさらに好ましく、500nm以上が特に好ましく、また、1500nm以下であるのが好ましく、1100nm以下がより好ましく、900nm以下がさらに好ましい。
In this embodiment, when the film includes a crystal growth underlayer, the total thickness of the infrared reflective layer and the crystal growth underlayer is preferably 250-1500 nm. When the total thickness of each layer is 250 nm or more, the crystal grains in the infrared reflective layer can be sufficiently grown, and when it is 1500 nm or less, the film-coated glass substrate does not become too thick.
The total thickness of the infrared reflecting layer and the crystal growth base layer is preferably 300 nm or more, more preferably 400 nm or more, particularly preferably 500 nm or more, and preferably 1500 nm or less, more preferably 1100 nm or less. , 900 nm or less.
 (光学調整層)
 本実施形態に係る膜付きガラス基板において、膜は光学調整層7をさらに含んでもよい。膜2が光学調整層7を含む場合、光学調整層7は、ガラス基板1の第1の面1aに接する位置に配置されることが好ましい。
(Optical adjustment layer)
In the film-coated glass substrate according to this embodiment, the film may further include an optical adjustment layer 7 . When the film 2 includes the optical adjustment layer 7 , the optical adjustment layer 7 is preferably arranged at a position in contact with the first surface 1 a of the glass substrate 1 .
 光学調整層を構成する材料としては、例えば、炭化酸化ケイ素(SiOC)、酸化ケイ素(SiO)、酸化チタン(TiO)、酸化スズ(SnO)、窒化酸化ケイ素(SiON)等が挙げられる。光学調整層は1層からなるものであってもよいし、2層以上の膜からなるものであってもよい。また、上記材料いずれか2つ以上の混合物であってもよい。 Materials constituting the optical adjustment layer include, for example, silicon carbide oxide (SiOC), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), tin oxide (SnO 2 ), silicon nitride oxide (SiON), and the like. . The optical adjustment layer may consist of one layer, or may consist of two or more layers. It may also be a mixture of any two or more of the above materials.
 具体的に、光学調整層としては、SiOC膜、ガラス基板側からSiOC膜及びSiO膜の順に積層されるSiOC/SiO積層膜、ガラス基板側からTiO膜及びSiO膜の順に積層されるTiO/SiO積層膜、ガラス基板側からSnO膜及びSiO膜の順に積層されるSnO/SiO積層膜等が挙げられる。
 中でも、アルカリバリア性の観点から、光学調整層にはケイ素が含まれることが好ましく、SiOC膜、SiOC/SiO積層膜、TiO/SiO積層膜及びSnO/SiO積層膜からなる群から選択される少なくとも1つの膜を有するのがより好ましく、SiOC膜を備えているのがさらに好ましい。
Specifically, the optical adjustment layer includes a SiOC film, a SiOC/ SiO2 laminated film in which the SiOC film and the SiO2 film are laminated in this order from the glass substrate side, and a TiO2 film and a SiO2 film in this order from the glass substrate side. and a SnO 2 /SiO 2 laminated film in which the SnO 2 film and the SiO 2 film are laminated in this order from the glass substrate side.
Above all, from the standpoint of alkali barrier properties, the optical adjustment layer preferably contains silicon, and is a group consisting of a SiOC film, a SiOC/SiO 2 laminated film, a TiO 2 /SiO 2 laminated film, and a SnO 2 /SiO 2 laminated film. and more preferably comprising a SiOC film.
 光学調整層全体に含まれるケイ素の量は、5~40モル%の範囲であるのが好ましく、10~33モル%がより好ましい。 The amount of silicon contained in the entire optical adjustment layer is preferably in the range of 5 to 40 mol%, more preferably 10 to 33 mol%.
 光学調整層の厚さは、20~100nmであるのが好ましい。光学調整層の厚さが20nm以上であると、ガラス基板表面を一様に被覆でき、100nm以下であると、光学調整層内で新たな光干渉が発生するのを抑制し、光学調整層として所望の効果を発揮できる。
 光学調整層の厚さは、20nm以上であるのが好ましく、25nm以上がより好ましく、30nm以上がさらに好ましく、また、100nm以下であるのが好ましく、90nm以下がより好ましく、80nm以下がさらに好ましい。
The thickness of the optical adjustment layer is preferably 20-100 nm. When the thickness of the optical adjustment layer is 20 nm or more, the glass substrate surface can be uniformly coated. A desired effect can be exhibited.
The thickness of the optical adjustment layer is preferably 20 nm or more, more preferably 25 nm or more, still more preferably 30 nm or more, and preferably 100 nm or less, more preferably 90 nm or less, and even more preferably 80 nm or less.
 なお、光学調整層が異種材料の複層で構成される場合、光学調整層の「厚さ」は、各層の厚さの合計で表される。 When the optical adjustment layer is composed of multiple layers of different materials, the "thickness" of the optical adjustment layer is represented by the total thickness of each layer.
 (その他の層)
 本発明の効果を損なわない範囲において、膜はその他の層をさらに含んでもよい。その他の層としては、例えばオーバーコート層等が挙げられる。
 オーバーコート層は、典型的には、膜を有する側の面での光の反射率を調整するために設けられる層である。すなわち、オーバーコート層と、これに隣接する層との屈折率差を調整することにより、膜付きガラス基板の、膜を有する側の面での光の反射率を調整できる。より具体的には、赤外線反射層上に赤外線反射層より屈折率が小さい層を設けることで、反射率を小さくできる。車両等に用いられるガラスでは、車外が良く見えるようにするために、反射率を低く抑えることが好ましく、かかる観点からは、オーバーコート層を設けることが好適である。赤外線反射層より屈折率が小さい層を形成する材料としては、例えば酸化ケイ素(SiO)、窒化ケイ素、酸化ケイ素と酸化チタンの混合物、酸化ケイ素と酸化スズの混合物、酸化ケイ素と酸化アルミナの混合物、SiOC等が挙げられ、成膜しやすさの観点から、酸化ケイ素(SiO)が好ましい。具体的に、オーバーコート層としてSiO膜を含むことが好ましい。オーバーコート層は1層からなるものであってもよいし、2層以上の膜からなるものであってもよい。また、上記材料いずれか2つ以上の混合物であってもよい。
(Other layers)
The film may further include other layers as long as the effects of the present invention are not impaired. Other layers include, for example, an overcoat layer.
The overcoat layer is typically a layer provided to adjust the reflectance of light on the side having the film. That is, by adjusting the refractive index difference between the overcoat layer and the layer adjacent thereto, the reflectance of light on the surface of the film-coated glass substrate on the side having the film can be adjusted. More specifically, the reflectance can be reduced by providing a layer having a smaller refractive index than the infrared reflective layer on the infrared reflective layer. For glass used in vehicles and the like, it is preferable to keep the reflectance low so that the outside of the vehicle can be clearly seen. From this point of view, it is preferable to provide an overcoat layer. Examples of materials for forming a layer having a lower refractive index than the infrared reflective layer include silicon oxide (SiO 2 ), silicon nitride, a mixture of silicon oxide and titanium oxide, a mixture of silicon oxide and tin oxide, and a mixture of silicon oxide and alumina oxide. , SiOC, etc., and silicon oxide (SiO 2 ) is preferable from the viewpoint of ease of film formation. Specifically, it is preferable to include a SiO 2 film as the overcoat layer. The overcoat layer may consist of one layer, or may consist of a film of two or more layers. It may also be a mixture of any two or more of the above materials.
 膜がオーバーコート層をさらに含む場合、その厚さは20~1000nmであるのが好ましい。厚さが20nm以上であると、反射率を小さくする効果を十分なものとでき、1000nm以下であると、赤外線反射率の低下を防ぐことができる。
 オーバーコート層の厚さは30nm以上であるのがより好ましく、50nm以上がさらに好ましい。また、厚さは300nm以下であるのがより好ましく、200nm以下がさらに好ましい。
If the film further comprises an overcoat layer, its thickness is preferably between 20 and 1000 nm. When the thickness is 20 nm or more, the effect of reducing the reflectance can be made sufficient, and when the thickness is 1000 nm or less, a decrease in infrared reflectance can be prevented.
More preferably, the overcoat layer has a thickness of 30 nm or more, more preferably 50 nm or more. Also, the thickness is more preferably 300 nm or less, and even more preferably 200 nm or less.
 (膜の層構成)
 膜が積層膜である場合、膜の最表面のスキューネスが0以下であることは、膜の最表面に配置される層の表面のスキューネスが0以下であることを意味する。
 上述した各層の好ましい構成を考慮すると、膜がオーバーコート層を含まない場合、赤外線反射層が膜の最表面に配置されることが好ましい。また、膜がオーバーコート層を含む場合、オーバーコート層が膜の最表面に配置されることが好ましい。
(Layer structure of film)
When the film is a laminated film, the skewness of the outermost surface of the film being 0 or less means that the skewness of the surface of the layer disposed on the outermost surface of the film is 0 or less.
Considering the preferred configurations of each layer described above, when the film does not include an overcoat layer, it is preferred that the infrared reflective layer is disposed on the topmost surface of the film. Moreover, when the film includes an overcoat layer, the overcoat layer is preferably arranged on the outermost surface of the film.
 (膜付きガラス基板の物性)
 本実施形態に係る膜付きガラス基板は、膜の最表面の放射率が0.3以下であることが好ましい。かかる放射率が0.3以下であると、優れた断熱性を得られる。
 放射率は、0.25以下であるのがより好ましく、0.2以下がさらに好ましい。また、放射率は低いほど断熱性に優れるため放射率の下限は特に限定されないが、0.01以上であるのが好ましく、0.03以上がより好ましく、0.10以上がさらに好ましい。放射率は、例えば0.01~0.3であってもよい。
 放射率は、ISO9050:2003に準拠して測定される可視光に対する反射率である。
(Physical properties of film-coated glass substrate)
In the film-coated glass substrate according to the present embodiment, the emissivity of the outermost surface of the film is preferably 0.3 or less. When the emissivity is 0.3 or less, excellent heat insulation can be obtained.
The emissivity is more preferably 0.25 or less, even more preferably 0.2 or less. In addition, since the lower the emissivity, the better the heat insulating property, the lower limit of the emissivity is not particularly limited, but it is preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.10 or more. The emissivity may be, for example, 0.01-0.3.
Emissivity is the reflectance for visible light measured according to ISO9050:2003.
 また、膜付きガラス基板のシート抵抗の値は、30ohm/square(ohm/sq.)以下であるのが好ましい。放射率とシート抵抗は相関があり、シート抵抗が30ohm/sq.以下であると、電気が流れやすいため放射率が低くなり、よって優れた断熱性を得られる。
 シート抵抗の値は、30ohm/sq.以下であるのが好ましく、25ohm/sq.以下がより好ましく、20ohm/sq.以下がさらに好ましい。また、シート抵抗の値が低いほど電気が流れやすくなり放射率が低くなるため、シート抵抗の値の下限は特に限定されないが、例えば1ohm/sq.以上であるのが好ましく、2ohm/sq.以上がより好ましく、3ohm/sq.以上がさらに好ましい。シート抵抗の値は、例えば1~30ohm/sq.であってもよい。
 シート抵抗の値は、ホール測定により測定できる。
Moreover, the sheet resistance value of the film-coated glass substrate is preferably 30 ohm/square (ohm/sq.) or less. There is a correlation between emissivity and sheet resistance, and the sheet resistance is 30 ohm/sq. When it is less than that, electricity flows easily, so the emissivity is low, and therefore excellent heat insulation can be obtained.
The value of sheet resistance is 30 ohm/sq. below, preferably 25 ohm/sq. The following is more preferable, and 20 ohm/sq. More preferred are: Also, the lower the sheet resistance value, the easier the flow of electricity and the lower the emissivity. Therefore, the lower limit of the sheet resistance value is not particularly limited. 2 ohm/sq. 3 ohm/sq. The above is more preferable. The sheet resistance value is, for example, 1 to 30 ohm/sq. may be
The sheet resistance value can be measured by Hall measurement.
 (膜付きガラス基板の製造方法)
 本実施形態に係る膜付きガラス基板の製造方法は特に限定されないが、例えば公知の方法でガラス基板1上に膜2を成膜する成膜工程と、成膜工程後に膜を研磨する研磨工程とを含む方法が好ましい。以下、この方法で、図2に示す構成の膜付きガラス基板20を得る場合を例に説明する。
(Manufacturing method of film-coated glass substrate)
The method for manufacturing the film-coated glass substrate according to the present embodiment is not particularly limited, but for example, a film forming step of forming the film 2 on the glass substrate 1 by a known method, and a polishing step of polishing the film after the film forming step. is preferred. An example of obtaining the film-coated glass substrate 20 having the configuration shown in FIG. 2 by this method will be described below.
 (成膜工程)
 成膜工程では、ガラス基板上に膜を成膜する。膜が積層膜である場合は、成膜方法にもよるが、各層をガラス基板に近い方から順に成膜することが好ましい。
(Film formation process)
In the film forming process, a film is formed on the glass substrate. When the film is a laminated film, it is preferable to form each layer in order from the one closest to the glass substrate, although it depends on the film formation method.
 膜に含まれる各層は、化学気相成膜(CVD)法、電子ビーム蒸層法、真空蒸着法、スパッタ法、およびスプレー法等、各種成膜方法を用いて形成できる。なかでも、後述するように、ドープ型金属酸化物で形成される層が有する性能をより優れたものとしやすいこと等から、成膜方法としては熱CVD法が好ましい。また、成膜は、フロート設備でガラス基板を作製する過程で、オンライン法によって実施されてもよい。あるいは、オフライン法により、フロート法で製造されたガラス基板を再加熱して、成膜を実施してもよい。製造効率の観点から、ガラス基板の製造ライン上で熱CVD法により膜を形成するのが好ましい。 Each layer included in the film can be formed using various film formation methods such as chemical vapor deposition (CVD), electron beam deposition, vacuum deposition, sputtering, and spraying. Among them, the thermal CVD method is preferable as the film forming method because, as will be described later, it is easy to improve the performance of the layer formed of the doped metal oxide. Alternatively, the film formation may be performed by an on-line method during the process of producing the glass substrate with a float facility. Alternatively, film formation may be performed by reheating the glass substrate manufactured by the float method by an off-line method. From the viewpoint of manufacturing efficiency, it is preferable to form the film by a thermal CVD method on a glass substrate manufacturing line.
 例えば、膜が光学調整層を含む場合、まずはガラス基板の第1の面上に光学調整層が成膜される。光学調整層が炭化酸化ケイ素(SiOC)層を含む場合、光学調整層は、熱CVD法によって成膜されてもよい。この場合、原料としては、例えば、モノシラン(SiH)、エチレン及び二酸化炭素を含む混合ガスを用いることができる。このような炭素含有ガスを用いた場合、膜状のケイ素化合物とともに、粒子状のケイ素化合物が形成しやすくなり、ヘイズ率を高めることができる。 For example, when the film includes an optical adjustment layer, the optical adjustment layer is first deposited on the first surface of the glass substrate. When the optical adjustment layer includes a silicon carbide oxide (SiOC) layer, the optical adjustment layer may be deposited by a thermal CVD method. In this case, for example, a mixed gas containing monosilane (SiH 4 ), ethylene and carbon dioxide can be used as the raw material. When such a carbon-containing gas is used, a particulate silicon compound is easily formed together with a film-like silicon compound, and the haze ratio can be increased.
 光学調整層が酸化ケイ素(SiO)層を含む場合、原料としては、例えば、モノシラン(SiH)、テトラエトキシシラン、エチレンおよび酸素などの混合ガスを用いることができる。 When the optical adjustment layer includes a silicon oxide (SiO 2 ) layer, the raw material can be, for example, monosilane (SiH 4 ), tetraethoxysilane, mixed gas such as ethylene and oxygen.
 次いで、所望により結晶成長基層を成膜し、さらにその次に、赤外線反射層を成膜する。ここで、結晶成長基層や赤外線反射層を形成する材料としてドープ型金属酸化物が用いられる場合があるが、各層が不純物元素を含むことで付与される断熱効果等をより優れたものとするためには、不純物元素が結晶構造の中に取り込まれることが好ましい。そして、そのためには高温プロセスで成膜することが好ましいため、結晶成長基層や赤外線反射層はそれぞれ熱CVD法で形成されるのが好ましい。さらに、大気圧熱CVD法で形成することができると、大掛かりな真空装置が不要となり、生産性を高めることができる。例えば、赤外線反射層をフッ素ドープ酸化スズ(FTO)で構成し、結晶成長基層を、赤外線反射層を形成する金属酸化物と同じ材料である酸化スズを含むアンチモンドープ酸化スズ(ATO)で構成し、各層を熱CVD法によって成膜する場合について説明する。 Then, if desired, a crystal growth base layer is deposited, and then an infrared reflective layer is deposited. Here, doped metal oxides are sometimes used as materials for forming the crystal growth base layer and the infrared reflective layer. Therefore, it is preferable that the impurity element is incorporated into the crystal structure. For this purpose, it is preferable to form the film by a high-temperature process. Therefore, the crystal growth base layer and the infrared reflective layer are preferably formed by thermal CVD. Furthermore, if it can be formed by the atmospheric pressure thermal CVD method, a large-scale vacuum apparatus becomes unnecessary, and productivity can be improved. For example, the infrared reflective layer is composed of fluorine-doped tin oxide (FTO), and the crystal growth base layer is composed of antimony-doped tin oxide (ATO) containing tin oxide, which is the same material as the metal oxide forming the infrared reflective layer. , and a case where each layer is formed by thermal CVD.
 結晶成長基層をアンチモンドープ酸化スズ(ATO)で構成する場合、原料として、無機系または有機系のスズ化合物と、アンチモン化合物との混合物が使用される。 When the crystal growth base layer is composed of antimony-doped tin oxide (ATO), a mixture of an inorganic or organic tin compound and an antimony compound is used as a raw material.
 スズ化合物としては、モノブチルティントリクロライド(CSnCl)および四塩化スズ(SnCl)などが挙げられる。
 アンチモン化合物としては、三塩化アンチモン(SbCl)および五塩化アンチモン(SbCl)などが挙げられる。
Tin compounds include monobutyltin trichloride ( C4H9SnCl3 ) and tin tetrachloride ( SnCl4 ).
Antimony compounds include antimony trichloride (SbCl 3 ) and antimony pentachloride (SbCl 5 ).
 赤外線反射層をフッ素ドープ酸化スズ(FTO)で構成する場合、原料として、無機系または有機系のスズ化合物と、フッ素化合物との混合物が使用される。 When the infrared reflective layer is composed of fluorine-doped tin oxide (FTO), a mixture of an inorganic or organic tin compound and a fluorine compound is used as a raw material.
 スズ化合物としては、上記したように、モノブチルティントリクロライド(CSnCl)および四塩化スズ(SnCl)などが挙げられる。
 フッ素化合物としては、フッ化水素およびトリフルオロ酢酸などが挙げられる。
Tin compounds include monobutyltin trichloride (C 4 H 9 SnCl 3 ) and tin tetrachloride (SnCl 4 ), as described above.
Fluorine compounds include hydrogen fluoride and trifluoroacetic acid.
 熱CVD法で各層を成膜する場合、加熱された被成膜対象に対し、上述の原料を含む原料ガスを吹き付けることで原料ガスを反応させて成膜できる。熱CVD法による各層の成膜において、原料ガスは、予め混合してから搬送されてもよい。あるいは、原料ガスは、被成膜対象の表面上で混合してもよい。原料物質が液体の場合は、バブリング法や気化装置などを用いて、原料物質を気化させてガス状としてもよい。 When depositing each layer by the thermal CVD method, the source gas containing the above-described source material is blown onto a heated object to be deposited, thereby allowing the source gas to react and form the film. In the film formation of each layer by the thermal CVD method, the raw material gases may be mixed in advance before being conveyed. Alternatively, the source gases may be mixed on the surface of the object to be deposited. When the raw material is liquid, the raw material may be vaporized into a gas by using a bubbling method, a vaporizer, or the like.
 また、さらにオーバーコート層を成膜してもよい。その場合、上述した各種成膜方法で成膜してもよい。例えば、上述の光学調整層と同様の原料ガス等を用いて熱CVD法にてオーバーコート層を成膜してもよい。または、例えばオーバーコート層用のコーティング溶液を調製し、スピンコート等の方法で塗布し、加熱処理することを含む湿式法で成膜してもよい。湿式法により例えばSiOを含む層を成膜する場合、コーティング溶液としては、例えば加熱処理によりSiOを含む層を形成するシリカ前駆体、有機溶媒、および水を含むものが挙げられる。 Also, an overcoat layer may be further formed. In that case, the film may be formed by the various film forming methods described above. For example, the overcoat layer may be formed by a thermal CVD method using the same raw material gas as that for the optical adjustment layer described above. Alternatively, for example, a film may be formed by a wet method including preparing a coating solution for the overcoat layer, applying it by a method such as spin coating, and heat-treating. When forming a layer containing SiO 2 by a wet method, for example, the coating solution includes a silica precursor, an organic solvent, and water that forms a layer containing SiO 2 by heat treatment.
 (研磨工程)
 上記の方法で得られた未研磨の膜付きガラス基板に対し、研磨を行うことで膜の最表面のスキューネスを0以下にできる。研磨の方法は特に限定されないが、生産性の観点から、研磨スラリーと研磨パッドとを用いて膜の最表面を研磨することを含む方法が好ましい。
(polishing process)
By polishing the unpolished film-coated glass substrate obtained by the above method, the skewness of the outermost surface of the film can be reduced to 0 or less. The polishing method is not particularly limited, but from the viewpoint of productivity, a method including polishing the outermost surface of the film using a polishing slurry and a polishing pad is preferred.
 研磨スラリーは砥粒と砥粒の分散媒体とを含むものであり、砥粒及び分散媒体はそれぞれ公知のものを使用できる。 The polishing slurry contains abrasive grains and a dispersion medium for the abrasive grains, and known abrasive grains and dispersion media can be used.
 砥粒としては具体的に酸化セリウム、酸化ケイ素、酸化鉄、酸化マンガン、酸化チタン、酸化ジルコニウム、酸化アルミニウム等の酸化物粒子や、ダイヤモンド等を使用でき、生産性の観点から酸化物粒子が好ましく、酸化ケイ素がより好ましい。 As abrasive grains, oxide particles such as cerium oxide, silicon oxide, iron oxide, manganese oxide, titanium oxide, zirconium oxide, and aluminum oxide, and diamond can be used. Oxide particles are preferable from the viewpoint of productivity. , silicon oxide is more preferred.
 酸化ケイ素としては例えばコロイダルシリカやフュームドシリカを用いることができ、研磨スラリー中に固形分濃度として1質量%以上20質量%以下含まれることが好ましい。固形分濃度が1質量%以上であることで十分な研磨ができ、20質量%以下であることで、粒子同士の凝集を抑制できる。また、砥粒の平均粒子径は、固形分濃度が1質量%以上20質量%以下の場合、10nm以上が好ましく、200nm以下が好ましい。平均粒子径が10nm以上であることで、固形分がゲル化して研磨スラリーの粘性が上がるのを抑制でき、200nm以下であることで、砥粒の製造コストを抑制でき、またスラリー中の粒子の分散性を維持しやすくなる。なお、その他の酸化物粒子を用いる場合、焼成粉を分級、粉砕した粒子を用いる場合が多く、平均粒子径は0.1μm以上が好ましく、10μm以下が好ましい。平均粒子径が0.1μm以上であることで、焼成粉を粉砕しやすく、10μm以下であることで、スラリー中の粒子の分散安定性を維持しやすくなる。ここで、平均粒子径とは体積基準粒度分布の中央値を意味する。 For example, colloidal silica or fumed silica can be used as silicon oxide, and it is preferable that the solid content concentration in the polishing slurry is 1% by mass or more and 20% by mass or less. When the solid content concentration is 1% by mass or more, sufficient polishing can be performed, and when it is 20% by mass or less, aggregation of particles can be suppressed. The average particle diameter of the abrasive grains is preferably 10 nm or more and preferably 200 nm or less when the solid content concentration is 1% by mass or more and 20% by mass or less. When the average particle diameter is 10 nm or more, it is possible to suppress the increase in the viscosity of the polishing slurry due to gelation of the solid content. Easier to maintain dispersibility. When other oxide particles are used, particles obtained by classifying and pulverizing fired powder are often used, and the average particle diameter is preferably 0.1 μm or more, and preferably 10 μm or less. When the average particle size is 0.1 µm or more, the fired powder can be easily pulverized, and when the average particle size is 10 µm or less, it becomes easy to maintain the dispersion stability of the particles in the slurry. Here, the average particle size means the median value of the volume-based particle size distribution.
 分散媒体としては例えば水、有機溶媒、これらの混合物等から適宜選択できる。また、分散媒体の中に有機酸塩やカチオン界面活性剤などの分散剤を入れてもよい。 The dispersion medium can be appropriately selected from, for example, water, organic solvents, mixtures thereof, and the like. Further, a dispersant such as an organic acid salt or a cationic surfactant may be added to the dispersion medium.
 研磨スラリーにおいて、研磨パッドの劣化を抑制する観点からpHは1~12が好ましい。pHが1より小さい、または12より大きい場合、研磨パッドを構成するウレタンやエポキシポリマーが分解するおそれがあるためである。また、より短時間で膜表面のスキューネス小さくしやすいことから、酸性のスラリーを用いることがより好ましい。 The pH of the polishing slurry is preferably 1 to 12 from the viewpoint of suppressing deterioration of the polishing pad. This is because if the pH is less than 1 or greater than 12, the urethane or epoxy polymer constituting the polishing pad may decompose. Further, it is more preferable to use an acidic slurry, since it is easier to reduce the skewness of the film surface in a shorter time.
 膜表面のスキューネスは、研磨時間が長いほど小さくなる傾向がある。ここで、研磨条件や膜表面の組成等により具体的な研磨時間は適宜調整できるが、例えば酸性スラリーを用い、フッ素ドープ酸化スズ(FTO)層の表面を研磨する場合の研磨時間は0.3分以上が好ましく、0.4分以上がより好ましく、0.6分以上がさらに好ましく、1.8分以上がよりさらに好ましい。研磨量が過剰となって膜特性が変動してしまうのを抑制する観点からは、研磨時間は30分以下が好ましく、15分以下がより好ましい。この場合の研磨時間は、例えば0.3~30分であってもよい。一方で、アルカリ性スラリーを用い、フッ素ドープ酸化スズ(FTO)層の表面を研磨する場合の研磨時間は1分以上が好ましく、1.8分以上がより好ましく、5.4分以上がさらに好ましい。酸性スラリーの場合と同様、研磨量が過剰となって膜特性が変動してしまうのを抑制する観点からは、研磨時間は100分以下が好ましく、50分以下がより好ましい。この場合の研磨時間は、例えば1~100分であってもよい。 The skewness of the film surface tends to decrease as the polishing time increases. Here, the specific polishing time can be appropriately adjusted depending on the polishing conditions, the composition of the film surface, and the like. minutes or more is preferable, 0.4 minutes or more is more preferable, 0.6 minutes or more is still more preferable, and 1.8 minutes or more is even more preferable. The polishing time is preferably 30 minutes or less, more preferably 15 minutes or less, from the viewpoint of suppressing fluctuations in film properties due to an excessive amount of polishing. The polishing time in this case may be, for example, 0.3 to 30 minutes. On the other hand, when an alkaline slurry is used to polish the surface of a fluorine-doped tin oxide (FTO) layer, the polishing time is preferably 1 minute or longer, more preferably 1.8 minutes or longer, and even more preferably 5.4 minutes or longer. As in the case of the acid slurry, the polishing time is preferably 100 minutes or less, more preferably 50 minutes or less, from the viewpoint of suppressing fluctuations in film properties due to an excessive amount of polishing. The polishing time in this case may be, for example, 1 to 100 minutes.
 研磨パッドとしては特に限定されず、不織布、硬質ウレタン、スエード等公知のものを使用できる。スエードや不織布を主成分とした研磨パッドを用いる場合、ショアA硬度として40~60°の軟質なスエードや不織布を用いてもよく、ショアA硬度60~80°の硬質不織布を用いてもよい。また、これらのパッドを重ねて使用してもよい。硬質ウレタンパッドの場合は、ショアD硬度として20~80°のものを用いてもよい。 The polishing pad is not particularly limited, and known materials such as non-woven fabric, hard urethane, and suede can be used. When using a polishing pad mainly composed of suede or nonwoven fabric, a soft suede or nonwoven fabric having a Shore A hardness of 40 to 60° may be used, or a hard nonwoven fabric having a Shore A hardness of 60 to 80° may be used. Moreover, you may use these pads in piles. A hard urethane pad having a Shore D hardness of 20 to 80° may be used.
 また、その他の条件として、研磨荷重、パッド回転数等も適宜調整できる。一例として、研磨荷重は50g/cm~150g/cmが好ましく、パッド回転数は両面研磨機やオスカー式研磨機の場合、10rpm~60rpmが好ましく、ディスクブラシ研磨機の場合、100rpm~500rpmが好ましい。 In addition, as other conditions, the polishing load, the number of revolutions of the pad, and the like can be adjusted as appropriate. For example, the polishing load is preferably 50 g/cm 2 to 150 g/cm 2 , the pad rotation speed is preferably 10 rpm to 60 rpm in the case of a double-sided polisher or an Oscar type polisher, and 100 rpm to 500 rpm in the case of a disc brush polisher. preferable.
 研磨に用いる装置も特に限定されず、両面研磨機、ディスクブラシ研磨機、オスカー式研磨機等公知の装置を使用できる。 The device used for polishing is also not particularly limited, and known devices such as a double-sided polishing machine, a disk brush polishing machine, and an Oscar type polishing machine can be used.
 上述のような成膜工程及び研磨工程を経ることにより、本実施形態に係る膜付きガラス基板が得られる。 The film-coated glass substrate according to the present embodiment is obtained through the film-forming process and the polishing process as described above.
 本実施形態に係る膜付きガラス基板の製造方法には、さらに、ガラス基板を風冷強化あるいは化学強化する工程(強化工程)が含まれてもよい。この強化工程は、例えば、ガラス基板に成膜する前の段階や、膜付きガラス基板を製造した後等、いかなる順番で実施されてもよい。強化工程を実施することにより、ガラス基板、さらには得られる膜付きガラス基板の強度を高められる。 The method for manufacturing a film-coated glass substrate according to the present embodiment may further include a step (strengthening step) of air-cooling or chemically tempering the glass substrate. This strengthening step may be performed in any order, for example, before forming a film on the glass substrate, after manufacturing the film-coated glass substrate, or the like. By carrying out the strengthening step, the strength of the glass substrate and the obtained film-coated glass substrate can be increased.
 また、ガラス基板上に膜を配置した後などに、得られた膜付きガラス基板に対して曲げ加工を実施してもよい。あるいは、膜付きガラス基板から合わせガラスを製造する場合、ガラス基板の第2の主面側に別のガラス基板を貼り合わせる工程が実施されてもよい。 In addition, after placing the film on the glass substrate, the obtained glass substrate with the film may be subjected to bending. Alternatively, when manufacturing laminated glass from a film-coated glass substrate, a step of bonding another glass substrate to the second main surface side of the glass substrate may be performed.
 この他にも各種変更が可能であることは、当業者には明らかである。 It is obvious to those skilled in the art that various other modifications are possible.
 本実施形態に係る膜付きガラス基板は、例えば、車両の窓ガラス(フロントガラス、リアガラス、サイドガラス、ルーフガラス等)、車両の窓ガラス用途の合わせガラス、建築物の窓ガラス、建築物用途の合わせガラス等に好適に使用できる。 The film-coated glass substrate according to the present embodiment includes, for example, vehicle window glass (front glass, rear glass, side glass, roof glass, etc.), laminated glass for vehicle window glass, building window glass, and laminated glass for building use. It can be suitably used for glass and the like.
 以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。例1~例19は実施例であり、例20~例32は比較例である。 The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these. Examples 1 to 19 are working examples, and examples 20 to 32 are comparative examples.
 (成膜工程)
 ガラス基板として厚さ2.1mmのガラス基板(ソーダライムシリケートガラス:AGC株式会社製)を用い、以下の膜A~Cのいずれかを膜として成膜し、膜付きガラス基板を製造した。膜A~Cはそれぞれ複数の層から構成される積層膜である。
(Film formation process)
A glass substrate having a thickness of 2.1 mm (soda lime silicate glass: manufactured by AGC Co., Ltd.) was used as a glass substrate, and one of the following films A to C was formed as a film to produce a glass substrate with a film. Films A to C are laminated films each composed of a plurality of layers.
 (製造例1:膜A)
 ガラス基板の上に、光学調整層として、SiOC層を熱CVD法により成膜した。原料ガスとして、モノシラン、エチレン、二酸化炭素を使用し、キャリアガスとして窒素を使用した。SiOC層の目標厚さは、70nmとした。
 次に、SiOC層の上に赤外線反射層を形成した。赤外線反射層は、フッ素ドープされた酸化スズ層(SnO:F、FTO)とし、熱CVD法により成膜した。原料ガスとして、モノブチルティントリクロライド(CSnCl、MBTC)、水、空気、トリフルオロ酢酸(TFA)、硝酸を使用し、キャリアガスとして窒素を使用した。赤外線反射層の目標厚さ(最大厚さ)は、300nmとした。
(Production Example 1: Membrane A)
A SiOC layer was formed as an optical adjustment layer on a glass substrate by a thermal CVD method. Monosilane, ethylene, and carbon dioxide were used as raw material gases, and nitrogen was used as a carrier gas. The target thickness of the SiOC layer was set to 70 nm.
Next, an infrared reflective layer was formed on the SiOC layer. The infrared reflective layer was a fluorine-doped tin oxide layer (SnO 2 :F, FTO) and was deposited by thermal CVD. Monobutyltin trichloride (C 4 H 9 SnCl 3 , MBTC), water, air, trifluoroacetic acid (TFA), and nitric acid were used as source gases, and nitrogen was used as carrier gas. The target thickness (maximum thickness) of the infrared reflective layer was 300 nm.
 (製造例2:膜B)
 製造例1と同様にして、ガラス基板の上に光学調整層として、SiOC層を成膜した。
 次に、SiOC層の上に結晶成長基層を形成した。結晶成長基層はアンチモンドープ酸化スズ(SnO:Sb、ATO)とし、熱CVD法により成膜した。原料ガスとして、モノブチルティントリクロライド(CSnCl、MBTC)、三塩化アンチモン(SbCl)、水、空気、塩化水素を使用し、キャリアガスとして窒素を使用した。結晶成長基層の目標厚さ(最大厚さ)は、500nmとした。
 次に、結晶成長基層の上に、目標厚さ(最大厚さ)を200nmに変更したこと以外は製造例1と同様にして、赤外線反射層としてFTOを成膜した。
(Production Example 2: Film B)
In the same manner as in Production Example 1, a SiOC layer was formed as an optical adjustment layer on a glass substrate.
Next, a crystal growth base layer was formed on the SiOC layer. Antimony-doped tin oxide (SnO 2 :Sb, ATO) was used as the crystal growth base layer, and was deposited by a thermal CVD method. Monobutyltin trichloride (C 4 H 9 SnCl 3 , MBTC), antimony trichloride (SbCl 3 ), water, air, and hydrogen chloride were used as raw material gases, and nitrogen was used as carrier gas. The target thickness (maximum thickness) of the crystal growth base layer was set to 500 nm.
Next, FTO was formed as an infrared reflective layer on the crystal growth base layer in the same manner as in Production Example 1 except that the target thickness (maximum thickness) was changed to 200 nm.
 (製造例3:膜C)
 ガラス基板の上に、光学調整層として、SiO層を熱CVD法により成膜した。原料ガスとして、モノシラン、エチレン、酸素を使用し、キャリアガスとして窒素を使用した。SiO層の目標厚さは、30nmとした。
 次に、SiO層の上に、熱CVD法によりSnO層を成膜した。原料ガスとして、トリブチルスズ(C1228Sn、TBT)、水、空気、酸素を使用し、キャリアガスとして窒素を使用した。SnO層の目標厚さ(最大厚さ)は50nmとした。
(Production Example 3: Membrane C)
A SiO 2 layer was formed as an optical adjustment layer on a glass substrate by a thermal CVD method. Monosilane, ethylene, and oxygen were used as raw material gases, and nitrogen was used as a carrier gas. The target thickness of the SiO2 layer was set to 30 nm.
Next, a SnO 2 layer was formed on the SiO 2 layer by a thermal CVD method. Tributyltin (C 12 H 28 Sn, TBT), water, air and oxygen were used as raw material gases, and nitrogen was used as carrier gas. The target thickness (maximum thickness) of the SnO 2 layer was set to 50 nm.
 (研磨工程)
 得られた膜付きガラス基板について、膜の最表面を研磨スラリー及び研磨パッドを用いて研磨することで、例1~28の膜付きガラス基板を得た。研磨条件を以下に示す。また、各例における膜の種類、研磨条件の組み合わせ及び処理時間を表1に示す。なお、例29~例32においては研磨を行わず、上記製造例で得た膜付きガラス基板をそのまま使用した。なおディスクブラシ研磨機を用いた例では、研磨が行われる部分に対象の膜付きガラス基板を通過させることで研磨を行ったが、その場合の処理時間は(基板搬送方向長さ/搬送速度)×通過回数で算出した。
 (研磨条件)
 スラリー:平均粒子径0.1μmの酸化物粒子を含む酸性スラリー又は平均粒子径0.1μmの酸化物粒子を含むアルカリ性スラリーを使用した。
 研磨パッド:ショアA硬度50.5の軟質不織布又はショアA硬度73.7の硬質不織布を使用した。
 研磨装置:両面研磨機(スピードファム社製)又はディスクブラシ研磨機(平賀機械工業社製)を使用した。両面研磨機では研磨荷重:100g/cm、パッド径:640mmφ、パッド回転数:30rpmとした。また、ディスクブラシ研磨機では研磨荷重:100g/cm、パッド径:94mmφ、パッド回転数:300rpmとした。
(polishing process)
The outermost surface of the film of the obtained film-coated glass substrate was polished using a polishing slurry and a polishing pad to obtain film-coated glass substrates of Examples 1 to 28. Polishing conditions are shown below. Table 1 shows the types of films, combinations of polishing conditions, and processing times in each example. In Examples 29 to 32, no polishing was performed, and the film-coated glass substrates obtained in the above production examples were used as they were. In the example using the disk brush polishing machine, polishing was performed by passing the film-coated glass substrate to be polished through the portion to be polished. x Calculated by the number of passes.
(polishing conditions)
Slurry: An acidic slurry containing oxide particles with an average particle size of 0.1 μm or an alkaline slurry containing oxide particles with an average particle size of 0.1 μm was used.
Polishing pad: A soft nonwoven fabric with a Shore A hardness of 50.5 or a hard nonwoven fabric with a Shore A hardness of 73.7 was used.
Polishing device: A double-sided polishing machine (manufactured by Speedfam Co., Ltd.) or a disk brush polishing machine (manufactured by Hiraga Kikai Kogyo Co., Ltd.) was used. The double-side polishing machine was used with a polishing load of 100 g/cm 2 , a pad diameter of 640 mmφ, and a pad rotation speed of 30 rpm. The disk brush polishing machine was used with a polishing load of 100 g/cm 2 , a pad diameter of 94 mmφ, and a pad rotation speed of 300 rpm.
 (表面粗さSa、スキューネスSsk)
 各例の膜付きガラス基板について、膜表面の表面粗さSa及びスキューネスSskを測定した。
 原子間力顕微鏡(Bruker社製、DIMENSION ICON)を用いて、5μm×5μmの範囲を1Hz、256lineの条件で測定した。得られたデータについて、Image Metrology社製SPIP6.7.3を用いて解析した。具体的には、得られたデータに対し2次の多項式平面フィットにより傾きを補正した後に、粗さ平面補正オプション(the roughness plane correction option)を「平均を差し引く」(Subtract Mean)に設定し表面粗さSa及びスキューネスSskを算出した。算出結果を表1に示す。
(Surface roughness Sa, skewness Ssk)
The film surface roughness Sa and skewness Ssk of the film-coated glass substrate of each example were measured.
Using an atomic force microscope (manufactured by Bruker, DIMENSION ICON), a range of 5 μm×5 μm was measured under conditions of 1 Hz and 256 lines. The obtained data was analyzed using SPIP6.7.3 manufactured by Image Metrology. Specifically, the resulting data were tilt-corrected by a second-order polynomial plane fit, then the roughness plane correction option was set to "Subtract Mean." Roughness Sa and skewness Ssk were calculated. Table 1 shows the calculation results.
 (耐汚れ性試験)
 以下の条件で、膜の最表面を布で擦る試験を行った。その後、3000luxの蛍光灯下で、反射光目視にて擦った中央付近を観察し、以下の基準で耐汚れ性を評価した。評価結果を表1に示す。
 (試験条件)
 装置:平面摩耗試験機(大栄科学精器製作所製、PA-300)
 摩擦子:布(ネル布300番、白色)
 擦り速度:5.6m/min
 擦り回数:1000回
 荷重:4.9N/cm
 (評価)
 良:布の繊維が全く付着していなかった。
 可:布の繊維がほぼ付着していなかった。
 不可:布の繊維が明らかに付着していた。
(Stain resistance test)
A test was conducted by rubbing the outermost surface of the film with a cloth under the following conditions. Then, under a fluorescent lamp of 3000 lux, the area near the rubbed center was visually observed with reflected light, and the stain resistance was evaluated according to the following criteria. Table 1 shows the evaluation results.
(Test condition)
Apparatus: Surface wear tester (PA-300, manufactured by Daiei Kagaku Seiki Seisakusho)
Friction element: Cloth (No. 300 flannel cloth, white)
Scraping speed: 5.6m/min
Number of times of rubbing: 1000 times Load: 4.9 N/cm 2
(evaluation)
Good: Cloth fibers were not adhered at all.
Acceptable: Almost no fibers of the cloth adhered.
Poor: Cloth fibers were clearly attached.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、耐汚れ性試験後の例12のガラス基板であり、図4は、耐汚れ性試験後の例23のガラス基板である。点線で囲まれた領域Aは試験において布で擦った領域を含むものであり、試験においては領域Aの中央付近を目視で評価した。なお、領域Aの下部の白い領域は観察時に用いた蛍光灯の映り込みである。評価が「不可」である例23では、擦った領域全体が白みがかって、布の繊維が明らかに付着していることがわかる。一方で、評価が「良」である例12では、擦った領域に布の繊維が付着していない。 3 is the glass substrate of Example 12 after the stain resistance test, and FIG. 4 is the glass substrate of Example 23 after the stain resistance test. A region A surrounded by a dotted line includes a region rubbed with a cloth in the test, and the vicinity of the center of the region A was visually evaluated in the test. The white area below area A is the reflection of the fluorescent lamp used during observation. In Example 23, which is rated "poor", the entire rubbed area is whitish, indicating that the fibers of the cloth are clearly attached. On the other hand, in Example 12, which was evaluated as "good", no fabric fibers adhered to the rubbed area.
 表1より、スキューネスが0以下である例1~例19の膜付きガラス基板においては、耐汚れ性に優れる結果となった。一方で、スキューネスが0より大きい例20~32の膜付きガラス基板は膜汚れ性に劣っていた。ここで、例1~例32の膜付きガラス基板について、横軸をSa、縦軸をSskとし、これらと耐汚れ性との関係を示すグラフを図5に示す。図5より、Saの値によらず、Sskの値と耐汚れ性とが相関し、スキューネスが0以下である場合に耐汚れ性に優れることが確認された。 From Table 1, the film-coated glass substrates of Examples 1 to 19 with a skewness of 0 or less exhibited excellent stain resistance. On the other hand, the film-coated glass substrates of Examples 20 to 32 with a skewness greater than 0 were inferior in film contamination resistance. FIG. 5 is a graph showing the relationship between the film-coated glass substrates of Examples 1 to 32, Sa on the horizontal axis and Ssk on the vertical axis, and the stain resistance. From FIG. 5, it was confirmed that the value of Ssk correlated with the stain resistance regardless of the value of Sa, and that the stain resistance was excellent when the skewness was 0 or less.
 以上説明したように、本明細書には次の事項が開示されている。
1.ガラス基板と前記ガラス基板上に配置される膜とを備える膜付きガラス基板であって、
 前記ガラス基板は相互に対向する第1の面及び第2の面を有し、
 前記ガラス基板の前記第1の面に前記膜が設置され、
 前記膜の最表面のスキューネスが0以下である膜付きガラス基板。
2.前記膜の最表面の表面粗さが0.4nmより大きい、前記1に記載の膜付きガラス基板。
3.前記膜の最表面を布で擦った際に繊維の付着が確認されない、前記1又は2に記載の膜付きガラス基板。
4.前記膜の最表面の放射率が0.3以下である、前記1~3のいずれか1に記載の膜付きガラス基板。
5.前記膜が結晶性の赤外線反射層を含む、前記1~4のいずれか1に記載の膜付きガラス基板。
6.前記膜は、前記ガラス基板に近い側から、結晶性の結晶成長基層と、前記赤外線反射層を含む、前記5に記載の膜付きガラス基板。
7.前記赤外線反射層が、酸化スズ及び酸化チタンのうちの少なくとも1つの金属酸化物に他の元素をドープしたドープ型金属酸化物を含む、前記5又は6に記載の膜付きガラス基板。
8.前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、前記5~7のいずれか1に記載の膜付きガラス基板。
9.前記結晶成長基層がアンチモンドープ酸化スズ膜を備え、かつ前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、前記6に記載の膜付きガラス基板。
10.前記赤外線反射層が前記膜の最表面に配置される、前記5~9のいずれか1に記載の膜付きガラス基板。
11.前記膜がオーバーコート層をさらに含み、前記オーバーコート層は前記膜の最表面に配置される、前記5~9のいずれか1に記載の膜付きガラス基板。
12.前記膜が光学調整層をさらに含み、前記光学調整層は、前記第1の面に接する位置に配置される、前記5~11のいずれか1に記載の膜付きガラス基板。
13.前記光学調整層がSiOC膜を備える、前記12に記載の膜付きガラス基板。
14.前記膜が熱CVD法により形成された層を含む、前記1~13のいずれか1に記載の膜付きガラス基板。
15.前記膜がガラス基板の製造ライン上で熱CVD法により形成された層を含む、前記1~14のいずれか1に記載の膜付きガラス基板。
16.車両の窓ガラス、または車両の窓ガラス用途の合わせガラスに用いられる、前記1~15のいずれか1に記載の膜付きガラス基板。
As described above, this specification discloses the following matters.
1. A film-coated glass substrate comprising a glass substrate and a film disposed on the glass substrate,
the glass substrate has a first surface and a second surface facing each other;
the film is disposed on the first surface of the glass substrate;
A film-coated glass substrate, wherein the skewness of the outermost surface of the film is 0 or less.
2. 2. The film-coated glass substrate according to 1 above, wherein the surface roughness of the outermost surface of the film is greater than 0.4 nm.
3. 3. The film-coated glass substrate according to 1 or 2 above, wherein adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth.
4. 4. The film-coated glass substrate according to any one of 1 to 3 above, wherein the outermost surface of the film has an emissivity of 0.3 or less.
5. 5. The film-coated glass substrate according to any one of 1 to 4 above, wherein the film comprises a crystalline infrared reflective layer.
6. 6. The film-coated glass substrate according to 5 above, wherein the film includes a crystalline crystal growth base layer and the infrared reflective layer from the side closer to the glass substrate.
7. 7. The film-coated glass substrate according to 5 or 6 above, wherein the infrared reflective layer contains a doped metal oxide obtained by doping at least one metal oxide of tin oxide and titanium oxide with another element.
8. 8. The film-coated glass substrate according to any one of 5 to 7 above, wherein the infrared reflective layer comprises a fluorine-doped tin oxide film.
9. 7. The film-coated glass substrate according to 6 above, wherein the crystal growth base layer comprises an antimony-doped tin oxide film, and the infrared reflective layer comprises a fluorine-doped tin oxide film.
10. 10. The film-coated glass substrate according to any one of 5 to 9 above, wherein the infrared reflective layer is arranged on the outermost surface of the film.
11. 10. The film-coated glass substrate according to any one of 5 to 9 above, wherein the film further comprises an overcoat layer, and the overcoat layer is arranged on the outermost surface of the film.
12. 12. The film-coated glass substrate according to any one of 5 to 11 above, wherein the film further includes an optical adjustment layer, and the optical adjustment layer is arranged at a position in contact with the first surface.
13. 13. The film-coated glass substrate according to 12 above, wherein the optical adjustment layer comprises a SiOC film.
14. 14. The film-coated glass substrate according to any one of 1 to 13 above, wherein the film includes a layer formed by a thermal CVD method.
15. 15. The film-coated glass substrate according to any one of 1 to 14 above, wherein the film includes a layer formed by a thermal CVD method on a glass substrate production line.
16. 16. The film-coated glass substrate according to any one of 1 to 15 above, which is used for vehicle window glass or laminated glass for vehicle window glass.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2021年11月30日出願の日本特許出願(特願2021-194731)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2021-194731) filed on November 30, 2021, the contents of which are incorporated herein by reference.
10、20 膜付きガラス基板
1 ガラス基板
1a 第1の面
1b 第2の面
2 膜
3 結晶成長基層
5 赤外線反射層
7 光学調整層
10, 20 film-coated glass substrate 1 glass substrate 1a first surface 1b second surface 2 film 3 crystal growth base layer 5 infrared reflecting layer 7 optical adjustment layer

Claims (16)

  1.  ガラス基板と前記ガラス基板上に配置される膜とを備える膜付きガラス基板であって、
     前記ガラス基板は相互に対向する第1の面及び第2の面を有し、
     前記ガラス基板の前記第1の面に前記膜が設置され、
     前記膜の最表面のスキューネスが0以下である膜付きガラス基板。
    A film-coated glass substrate comprising a glass substrate and a film disposed on the glass substrate,
    the glass substrate has a first surface and a second surface facing each other;
    the film is disposed on the first surface of the glass substrate;
    A film-coated glass substrate, wherein the skewness of the outermost surface of the film is 0 or less.
  2.  前記膜の最表面の表面粗さが0.4nmより大きい、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the surface roughness of the outermost surface of the film is greater than 0.4 nm.
  3.  前記膜の最表面を布で擦った際に繊維の付着が確認されない、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein adhesion of fibers is not confirmed when the outermost surface of the film is rubbed with a cloth.
  4.  前記膜の最表面の放射率が0.3以下である、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the outermost surface of the film has an emissivity of 0.3 or less.
  5.  前記膜が結晶性の赤外線反射層を含む、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the film includes a crystalline infrared reflective layer.
  6.  前記膜は、前記ガラス基板に近い側から、結晶性の結晶成長基層と、前記赤外線反射層を含む、請求項5に記載の膜付きガラス基板。 6. The film-coated glass substrate according to claim 5, wherein the film includes a crystalline crystal growth base layer and the infrared reflective layer from the side closer to the glass substrate.
  7.  前記赤外線反射層が、酸化スズ及び酸化チタンのうちの少なくとも1つの金属酸化物に他の元素をドープしたドープ型金属酸化物を含む、請求項5に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 5, wherein the infrared reflective layer contains a doped metal oxide in which at least one metal oxide of tin oxide and titanium oxide is doped with another element.
  8.  前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、請求項5に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 5, wherein the infrared reflective layer comprises a fluorine-doped tin oxide film.
  9.  前記結晶成長基層がアンチモンドープ酸化スズ膜を備え、かつ前記赤外線反射層がフッ素ドープ酸化スズ膜を備える、請求項6に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 6, wherein the crystal growth base layer comprises an antimony-doped tin oxide film, and the infrared reflective layer comprises a fluorine-doped tin oxide film.
  10.  前記赤外線反射層が前記膜の最表面に配置される、請求項5に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 5, wherein the infrared reflective layer is arranged on the outermost surface of the film.
  11.  前記膜がオーバーコート層をさらに含み、前記オーバーコート層は前記膜の最表面に配置される、請求項5に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 5, wherein the film further comprises an overcoat layer, and the overcoat layer is arranged on the outermost surface of the film.
  12.  前記膜が光学調整層をさらに含み、前記光学調整層は、前記第1の面に接する位置に配置される、請求項5に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 5, wherein the film further includes an optical adjustment layer, and the optical adjustment layer is arranged at a position in contact with the first surface.
  13.  前記光学調整層がSiOC膜を備える、請求項12に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 12, wherein the optical adjustment layer comprises an SiOC film.
  14.  前記膜が熱CVD法により形成された層を含む、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the film includes a layer formed by a thermal CVD method.
  15.  前記膜がガラス基板の製造ライン上で熱CVD法により形成された層を含む、請求項1に記載の膜付きガラス基板。 The film-coated glass substrate according to claim 1, wherein the film includes a layer formed by a thermal CVD method on a glass substrate manufacturing line.
  16.  車両の窓ガラス、または車両の窓ガラス用途の合わせガラスに用いられる、請求項1~15のいずれか1項に記載の膜付きガラス基板。 The film-coated glass substrate according to any one of claims 1 to 15, which is used for vehicle window glass or laminated glass for vehicle window glass.
PCT/JP2022/043077 2021-11-30 2022-11-21 Glass substrate equipped with film WO2023100710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194731 2021-11-30
JP2021194731 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100710A1 true WO2023100710A1 (en) 2023-06-08

Family

ID=86612032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043077 WO2023100710A1 (en) 2021-11-30 2022-11-21 Glass substrate equipped with film

Country Status (1)

Country Link
WO (1) WO2023100710A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242725A (en) * 2012-05-21 2013-12-05 Hoya Corp Cover glass for track pad and method of manufacturing the same
JP2019167262A (en) * 2018-03-23 2019-10-03 Agc株式会社 Glass article
WO2020009081A1 (en) * 2018-07-04 2020-01-09 Agc株式会社 Glass plate, glass plate having anti-reflection layer, and method for producing glass plate
WO2022131154A1 (en) * 2020-12-17 2022-06-23 日本電気硝子株式会社 Inorganic member, and method for manufacturing inorganic member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242725A (en) * 2012-05-21 2013-12-05 Hoya Corp Cover glass for track pad and method of manufacturing the same
JP2019167262A (en) * 2018-03-23 2019-10-03 Agc株式会社 Glass article
WO2020009081A1 (en) * 2018-07-04 2020-01-09 Agc株式会社 Glass plate, glass plate having anti-reflection layer, and method for producing glass plate
WO2022131154A1 (en) * 2020-12-17 2022-06-23 日本電気硝子株式会社 Inorganic member, and method for manufacturing inorganic member

Similar Documents

Publication Publication Date Title
US8003194B2 (en) Touch screen comprising antiglare coating articles
TW201532997A (en) Scratch-resistant liquid-based coatings for glass
US20060046071A1 (en) Antiglare coating and articles
JP5475461B2 (en) Glass substrate coated with a layer having improved mechanical strength
JPH08175850A (en) Hydrophobic multi-layer sheet glass
JP5784528B2 (en) Antiglare glass substrate and method for producing the same
CN106348579A (en) Asymmetrically structured thin glass sheet that is chemically strengthened on both surface sides, method for its manufacture as well as use of same
US20110132442A1 (en) Transparent conductive film substrate and solar cell using the substrate
AU1982692A (en) Window coating with low haze
JP2007121786A (en) Method of manufacturing coating liquid, and method of manufacturing antireflection film using the coating liquid
JP2006206400A (en) Method for manufacturing glass substrate, and glass substrate manufactured with the method
TWI401230B (en) Anti-dazzling glass and method for producing anti-dazzling glass
JP6468195B2 (en) Thin film forming method and coating glass
WO2023100710A1 (en) Glass substrate equipped with film
EP1315681A1 (en) Process for coating glass
WO2003017377A1 (en) Glass plate having electroconductive film formed thereon
JP2004352524A (en) Low reflective article and manufacturing method therefor
TW201637858A (en) Glass article
JP2005330172A (en) Glass sheet, its production method, low reflective transparent glass sheet, low reflective transparent electroconductive substrate, its production method, and photoelectric transfer element using low reflective transparent electroconductive substrate
WO2022255200A1 (en) Substrate with laminated film
JP7153638B2 (en) Glass articles with low reflection coating
WO2020171091A1 (en) Contamination prevention layer-attched glass substrate and method for manufacturing contamination prevention layer-attached glass substrate
JP2003054996A (en) Reflection suppressing film and transparent base body provided with the same thereon
WO2022255201A1 (en) Substrate with laminated film
CN116724010A (en) Substrate with film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901143

Country of ref document: EP

Kind code of ref document: A1