WO2023100656A1 - 機械学習装置および推定装置 - Google Patents

機械学習装置および推定装置 Download PDF

Info

Publication number
WO2023100656A1
WO2023100656A1 PCT/JP2022/042549 JP2022042549W WO2023100656A1 WO 2023100656 A1 WO2023100656 A1 WO 2023100656A1 JP 2022042549 W JP2022042549 W JP 2022042549W WO 2023100656 A1 WO2023100656 A1 WO 2023100656A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
prediction model
unit
sensor
predicted
Prior art date
Application number
PCT/JP2022/042549
Other languages
English (en)
French (fr)
Inventor
龍彦 松本
智貴 西出
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023100656A1 publication Critical patent/WO2023100656A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a prediction model learning technique used when estimating (predicting) a predetermined physical quantity from a measured value, and an estimation technique using the prediction model.
  • Patent Document 1 describes a behavioral state learning device.
  • the behavioral state learning device described in Patent Literature 1 builds a model used for estimating a behavioral state from signals measured by a vibration detection sensor.
  • the behavioral state learning device described in Patent Document 1 learns a behavioral state model using signals measured by a vibration detection sensor and signals measured by a myoelectric potential sensor. At this time, the behavioral state learning device described in Patent Document 1 is designed so that the predicted value predicted from the signal measured by the vibration detection sensor substantially matches the actual value obtained from the signal measured by the myopotential sensor. Then, learn the behavioral state model.
  • the residual when the user performs strength training while checking the predicted value output from the behavioral state model, if the residual is positive, a predicted value higher than the measured value is output. If the time for which the residual is positive is long, the time for which the load is less than the user's recognition is longer, and the training efficiency deteriorates. On the other hand, if the residual is negative, a predicted value lower than the measured value is output. If the residual is negative for a long period of time, the user will misunderstand that the load is not as high as expected, and this may reduce motivation for training.
  • the predicted value may not meet the user's purpose.
  • an object of the present invention is to provide a learning device that can set predicted values according to the user's purpose while referring to actual measured values.
  • the machine learning device of this invention includes an estimation unit and a prediction model update unit.
  • the estimation unit estimates a predicted value from the measured value using the prediction model.
  • the predictive model updating unit learns while updating the predictive model so that the predicted values show a biased tendency with respect to the measured values, using relational data indicating the relationship between the measured values and the predicted values.
  • the tendency of the predicted value to be biased against the measured value is, for example, when the number of related data in which the predicted value is smaller than the measured value is compared with the number of related data in which the predicted value is greater than or equal to the measured value.
  • the tendency of the predicted value to be biased against the measured value is, for example, the number of related data in which the predicted value is greater than the measured value, and the number of related data in which the predicted value is less than or equal to the measured value. By comparison, it means a state of constant abundance.
  • the predicted values have a certain biased tendency to the prediction curve based on the prediction model.
  • the predicted values do not vary evenly with respect to the measured values, and are output with a specific tendency.
  • FIG. 1 is a functional block diagram of an action state learning system according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the learning section according to the embodiment of the present invention.
  • FIG. 3A is a diagram showing a first aspect of the concept of classification of a plurality of relational data
  • FIG. 3B is a diagram showing a first aspect of an example of setting loss values.
  • FIG. 4A is a diagram showing an example of a prediction model based on a conventional loss value setting method
  • FIG. 4B is a diagram showing an example of a prediction model based on the loss value setting method of the present application.
  • FIGS. 5A, 5B, and 5C are diagrams showing the relationship (relationship data) between predicted values and measured values.
  • FIG. 6 is a flow chart showing the behavior state learning method according to this embodiment.
  • FIG. 7A is a flowchart showing a method of generating input vectors
  • FIG. 7B is a flowchart showing a method of generating teacher data.
  • FIG. 8 is a flow chart for determining the end of learning of the prediction model.
  • FIG. 9A is a diagram showing a second aspect of the concept of classification of a plurality of relational data
  • FIG. 9B is a diagram showing a second aspect of an example of setting loss values.
  • FIG. 10(A) is a diagram showing a third aspect of the concept of classification of a plurality of relational data
  • FIG. 10(B) is a diagram showing a third aspect of an example of setting loss values.
  • FIG. 10(A) is a diagram showing a third aspect of the concept of classification of a plurality of relational data
  • FIG. 10(B) is a diagram showing a third aspect of an example of setting loss values.
  • FIG. 11(A) is a diagram showing a fourth aspect of the concept of classification of a plurality of relational data
  • FIG. 11(B) is a diagram showing a fourth aspect of an example of setting loss values
  • FIG. 12(A) is a diagram showing a fifth aspect of the concept of classification of a plurality of relational data
  • FIG. 12(B) is a diagram showing a fifth aspect of an example of setting loss values.
  • FIG. 13 is a functional block diagram of the behavior state estimation device according to the embodiment of the present invention.
  • FIG. 1 is a functional block diagram of an action state learning system according to an embodiment of the present invention.
  • the behavior state learning system includes a learning unit 11, a prediction model storage unit 12, a displacement detection sensor 101, and a muscle activity detection sensor 102.
  • the learning unit 11 corresponds to the "machine learning device”.
  • the displacement detection sensor 101 corresponds to the "first sensor”
  • the muscle activity detection sensor 102 corresponds to the "second sensor”.
  • the displacement detection sensor 101 is, for example, at least one of a tremor sensor, an acceleration sensor, and an angular velocity sensor.
  • the displacement detection sensor 101 detects displacement of an observation target and outputs a measurement value according to the magnitude of the displacement.
  • the muscle activity detection sensor 102 is, for example, at least one of a myoelectric sensor, a camera for determining posture, a posture sensor, and the like.
  • the muscle activity detection sensor 102 detects movement of the muscle to be observed and outputs a measured value corresponding to the magnitude of the movement.
  • the displacement detection sensor 101 when observing muscle activity in the lower limbs of a subject, the displacement detection sensor 101 is attached to the ankle of the subject.
  • the muscle activity detection sensor 102 is arranged on the skin surface or the like where the muscle to be observed exists.
  • the muscle activity of the subject's lower limbs is observed only by the displacement detection sensor 101 attached to the subject's ankle. Therefore, it is necessary to estimate the amount of muscle activity (e.g., myoelectric potential) from the measured value output by the displacement detection sensor 101. For this purpose, the following learning is performed.
  • the amount of muscle activity e.g., myoelectric potential
  • the learning unit 11 uses the measured values from the displacement detection sensor 101 and the measured values from the muscle activity detection sensor 102 to update and learn the prediction model for the above estimation. At this time, roughly speaking, the learning unit 11 estimates a predicted value from the measured value using the immediately preceding prediction model. The learning unit 11 learns while updating the prediction model so that the predicted value shows a biased tendency with respect to the measured value, using relational data indicating the relationship between the measured value and the predicted value. The learning unit 11 outputs the updated (learned) prediction model to the prediction model storage unit 12 .
  • the tendency of the predicted value to be biased against the measured value means, for example, that the number of related data in which the predicted value is smaller than the measured value is the number of related data in which the predicted value is greater than or equal to the measured value. It means a state in which there are constantly many in comparison.
  • the tendency of the predicted value to be biased against the measured value is, for example, the number of related data in which the predicted value is greater than the measured value, and the number of related data in which the predicted value is less than or equal to the measured value. By comparison, it means a state of constant abundance.
  • the tendency of the predicted values to be biased against the measured values means, for example, that most of the relational data in which the predicted values are smaller than the measured values occupies all the relational data.
  • the tendency of the predicted value to be biased against the measured value means, for example, a state in which most of the relational data in which the predicted value is greater than the measured value occupies all of the relational data.
  • the tendency of the predicted values to be biased against the measured values means, for example, a state in which the predicted values are smaller than the measured values in all the relational data.
  • the tendency of the predicted values to be biased with respect to the measured values means, for example, a state in which the predicted values are larger than the measured values in all the relational data.
  • the number of relational data in which the predicted value is smaller than the measured value is steadily larger than the number of relational data in which the predicted value is greater than or equal to the measured value.
  • most of the relational data has a relation in which the predicted value is smaller than the measured value, or a state in which all the relational data have a relation in which the predicted value is smaller than the measured value.
  • the prediction model storage unit 12 stores the prediction model learned by the learning unit 11. A prediction model that has finished learning is used for the above estimation.
  • FIG. 2 is a functional block diagram of the learning section according to the embodiment of the present invention.
  • the learning unit 11 includes a learning data generation unit 111 , an estimation unit 112 , a data acquisition unit 113 , a learning condition setting unit 114 and a prediction model update unit 115 .
  • the learning unit 11 is realized by a hardware arithmetic processing unit such as a CPU, a program for executing each function of the learning unit 11, and a storage unit for storing the program.
  • the storage unit is also used during processing by the arithmetic processing unit.
  • the arithmetic processing unit executes this program, so that the learning unit 11 realizes each function described above.
  • the learning data generation unit 111 receives measured values from the displacement detection sensor 101 and receives measured values from the muscle activity detection sensor 102 .
  • the learning data generation unit 111 generates an input vector for the prediction model from the measured values. For example, the learning data generation unit 111 detects the feature amount of the measured value and generates the feature amount as an input vector.
  • the feature quantity is, for example, a feature of the time waveform of the measured value (maximum value, average value, etc.) or a feature of the frequency spectrum of the measured value (maximum spectrum value, frequency of the maximum spectrum, etc.). Note that the feature amount is not limited to this, as long as it can be associated with the movement of the observation target portion of the subject.
  • the learning data generation unit 111 generates teacher data for the prediction model from measured values. For example, the learning data generating unit 111 detects behavioral state components from the measured values and generates the behavioral state components as input vectors.
  • the action state component is a component that can be associated with the movement of the observation target location of the subject in the actual measurement value.
  • the learning data generation unit 111 outputs the input vector and the action state component to the prediction model update unit 115 . At this time, the learning data generation unit 111 pairs the input vector and the action state component obtained from the measured value and the actual measured value at approximately the same time and outputs them. Note that the measured value and actual measured value at approximately the same time refer to the measured value and actual measured value obtained at synchronized sampling timings. Also, the learning data generation unit 111 outputs the input vector to the estimation unit 112 .
  • the estimation unit 112 estimates the predicted value from the input vector using the prediction model.
  • the prediction model used at this time is the prediction model obtained by the last update.
  • Estimating section 112 outputs the predicted value to data acquiring section 113 .
  • a measured value and a predicted value are input to the data acquisition unit 113 .
  • the data acquisition unit 113 generates relationship data indicating the relationship between the measured values and the predicted values.
  • the relational data has the measured values and predicted values as the first component and the second component of the data, respectively.
  • the predicted value at this time is estimated from the measured value detected at approximately the same time as the actual measured value. Note that the time of this detection is also associated with the relationship data.
  • the data acquisition unit 113 sequentially generates relational data at a predetermined cycle from the sequentially input measured values and predicted values. Thereby, the data acquisition unit 113 generates a plurality of pieces of relational data (relationship data of a plurality of times). Data acquisition section 113 outputs a plurality of relational data to learning condition setting section 114 .
  • the learning condition setting unit 114 classifies a plurality of relational data, and uses the learning loss value set for each classification to set learning conditions used for updating and learning the prediction model.
  • the learning condition setting unit 114 includes an area setting unit 141, a loss value setting unit 142, a number detection unit 143, an evaluation value calculation unit 144, and a total value calculation unit 145.
  • the area setting unit 141 sets areas for classifying a plurality of relational data.
  • FIG. 3A is a diagram showing a first aspect of the concept of classification of a plurality of relational data
  • FIG. 3B is a diagram showing a first aspect of an example of setting loss values.
  • the region setting unit 141 sets an orthogonal coordinate system having measured values and predicted values as two orthogonal axes.
  • the area setting unit 141 sets a reference line 90 for the orthogonal coordinate system of the measured values and predicted values.
  • the reference line 90 is set by a set of points where the actual measured value and the predicted value match, that is, a set of points where the residual (predicted value ⁇ actual value) is zero.
  • the area setting unit 141 sets an area 91 closer to the actual measurement value than the reference line 90 and an area 92 closer to the predicted value than the reference line 90 .
  • the region setting unit 141 sets a region 91 in which the residual is a negative value and a region 92 in which the residual is a positive value.
  • the loss value setting unit 142 sets loss values for the multiple areas 91 and the multiple areas 92 . For example, as shown in FIG. 3B, the loss value setting unit 142 sets the loss value ⁇ 1 for the relational data of the region 91 and sets the loss value ⁇ 2 for the relational data of the region 92 . Loss value ⁇ 1 and loss value ⁇ 2 are positive values. The loss value ⁇ 2 is greater than the loss value ⁇ 1 ( ⁇ 2> ⁇ 1). Note that the loss value setting unit 142 sets a loss value of 0 for relational data on the reference line 90 .
  • the number detection unit 143 calculates residuals for each of the plurality of relational data and classifies them into regions 91 and 92 . Specifically, the number detection unit 143 determines that the relationship data belongs to the region 91 if the residual between the predicted value and the actual measurement value of the relationship data is a negative value. The number detection unit 143 determines that the relational data belongs to the area 92 if the residual between the predicted value and the measured value of the relational data is a positive value.
  • the number detection unit 143 detects the number of relational data belonging to the area 91 (first number n1) and the number of relational data belonging to the area 92 (second number n2). The number detection unit 143 outputs the first number n1 and the second number n2 to the evaluation value calculation unit 144 .
  • the evaluation value calculation unit 144 calculates the evaluation value L1 using the loss value ⁇ 1, the loss value ⁇ 2, the first number n1, and the second number n2. Specifically, the evaluation value calculator 144 calculates the evaluation value L1 for the region 91 (relational data with a negative residual value) by multiplying the first number n1 by the loss value ⁇ 1 (n1 ⁇ 1). The evaluation value calculator 144 calculates the evaluation value L2 for the region 92 (relational data with a positive residual value) by multiplying the second number n2 by the loss value ⁇ 2 (n1 ⁇ 1). Evaluation value calculation unit 144 outputs evaluation value L1 and evaluation value L2 to total value calculation unit 145 .
  • the learning condition setting unit 114 does not set the loss value individually for each relational data according to the magnitude of the residual, but only according to the positive or negative of the residual regardless of the absolute value of the residual. to set the loss value for the relational data.
  • An input vector based on measured values and teacher data based on actual measured values are input to the prediction model updating unit 115 . Also, a learning condition (total value L) is input to the prediction model updating unit 115 .
  • the prediction model update unit 115 updates and learns the prediction model so that the learning condition (total value L) is low.
  • Learning of the prediction model is a known method, and is performed using, for example, recognizers such as SVMs, GMMs, HMMs, neural networks, learning Bayesian networks, etc. capable of multi-class classification, or configurations of a plurality of recognizers.
  • recognizers such as SVMs, GMMs, HMMs, neural networks, learning Bayesian networks, etc. capable of multi-class classification, or configurations of a plurality of recognizers.
  • a plurality of recognizers may be combined, and a method such as boosting represented by a method such as AdaBoost may be used.
  • one recognition method may be configured by configuring multiple stages of recognizers capable of classifying only one class or recognizers capable of classifying into multiple classes.
  • the predictive model update unit 115 updates the predictive model while repeating learning, and upon detecting the end of learning, outputs the predictive model at that time to the predictive model storage unit 12 .
  • the learning condition setting unit 114 sets the loss value ⁇ 2 to be larger than the loss value ⁇ 1.
  • the prediction model has the following shape, and the relationship between the predicted value and the measured value also changes as follows.
  • FIG. 4(A) is a diagram showing an example of a prediction model based on a conventional loss value setting method
  • FIG. 4(B) is a diagram showing an example of a prediction model based on the loss value setting method of the present application.
  • the conventional loss value setting method shown in FIG. 4A is a method of individually setting the loss value of the relational data according to the magnitude of the residual.
  • a plurality of points defined by the input vector and the teacher data exist on both sides of the predictive model curve 80 substantially evenly. That is, there are points where the teacher data is higher than the input vector and points where the teacher data is lower than the input vector.
  • FIGS. 5A, 5B, and 5C are diagrams showing the relationship (relationship data) between predicted values and measured values. Learning progresses in the order of FIG. 5(A), FIG. 5(B), and FIG. 5(C).
  • the number of points (relational data) where the predicted value is greater than the measured value decreases as learning progresses. Ultimately, regardless of the magnitude of the predicted value and the magnitude of the measured value, in most cases the predicted value is smaller than the measured value.
  • the predicted value is estimated from the measured value using this prediction model, the predicted value will be smaller than the measured value.
  • the time during which the load is greater than the user's (subject's) recognition becomes longer, and the training efficiency can be increased.
  • the predicted value will be larger than the measured value.
  • the time during which the user feels that the load is being applied is longer than expected, and motivation for training can be improved.
  • FIG. 6 is a flow chart showing the behavior state learning method according to this embodiment.
  • FIG. 7A is a flowchart showing a method of generating input vectors
  • FIG. 7B is a flowchart showing a method of generating teacher data.
  • FIG. 8 is a flow chart for determining the end of learning of the prediction model. It should be noted that the specific contents of each process are performed in the above-described configuration, and the description will be omitted below except where additional description is required.
  • the learning unit 11 of the behavior state learning system generates an input vector from the measured values and generates teacher data from the measured values (S11). More specifically, the learning unit 11 acquires the measured value (S21) and extracts the feature amount of the measured value (S22). The learning unit 11 generates an input vector using the feature amount of the measured values (S23). Further, the learning unit 11 acquires the measured values (S31), and calculates the behavioral state component amounts from the measured values (S32). The learning unit 11 generates teacher data from the behavioral state component amounts (S33).
  • the learning unit 11 generates relationship data between predicted values and measured values (S12).
  • the learning unit 11 calculates the numbers n1 and n2 of relational data for each of the regions 91 and 92 (S13).
  • the learning unit 11 calculates evaluation values L1 and L2 for each of the regions 91 and 92 using the loss values ⁇ 1 and ⁇ 2 set for each of the regions 91 and 92 and the numbers n1 and n2 (S14).
  • the learning unit 11 calculates the total value L using the evaluation values L1 and L2 (S15).
  • the learning unit 11 updates (learns) the prediction model using the total value L as a learning condition (S16).
  • the learning unit 11 When the learning end condition is cleared (S17: YES), the learning unit 11 outputs a prediction model (S18). If the learning end condition is not cleared (S17: NO), the learning unit 11 repeats learning of the prediction model.
  • the learning unit 11 compares the previous total value (learning condition) with the current total value (learning condition) (S41). If the current total value is smaller than the previous total value (S42: YES), the prediction model learned this time is updated (S43), and learning of the prediction model is repeated. If the current total value is not smaller than the previous total value (S42: NO), the learning unit 11 maintains the prediction model at the time of the previous learning (S44). If the number of times the prediction model is maintained is less than the threshold number of times (S45: YES), the learning unit 11 continues learning (S46). When the number of times the prediction model is maintained reaches the threshold number of times (S45: NO), the learning unit 11 ends learning (S47).
  • FIG. 9A is a diagram showing a second aspect of the concept of classification of a plurality of relational data
  • FIG. 9B is a diagram showing a second aspect of an example of setting loss values.
  • a region 91A, a region 92A, and a region 93A are set as the second aspect of the region and loss value.
  • a region 91A is a region in which the residual is a negative value and the absolute value thereof is equal to or greater than the region determination threshold.
  • a region 92A is a region in which the residual is a positive value and the absolute value thereof is equal to or greater than the region determination threshold.
  • a region 93A is a region in which the absolute value of the residual is less than the region determination threshold.
  • a loss value ⁇ 1 is set in the area 91A, and a loss value ⁇ 2 is set in the area 92A.
  • the loss value ⁇ 1 is smaller than the loss value ⁇ 2.
  • the loss value for area 93A is set to zero.
  • FIG. 10(A) is a diagram showing a third aspect of the concept of classification of a plurality of relational data
  • FIG. 10(B) is a diagram showing a third aspect of a loss value setting example.
  • a region 91B, a region 92B, and a region 93B are set as the third aspect of the region and loss value.
  • a region 91B is a region in which the residual is a negative value and the absolute value thereof is equal to or greater than the first threshold value for region determination.
  • a region 92B is a region in which the residual is a positive value and the absolute value thereof is equal to or greater than the second threshold value for region determination.
  • the region 93A is a region in which the residual is negative and its absolute value is less than the first threshold for region determination, or the residual is positive and its absolute value is less than the second threshold for region determination.
  • a loss value ⁇ 1 is set in the area 91B, and a loss value ⁇ 2 is set in the area 92B.
  • the loss value ⁇ 1 is smaller than the loss value ⁇ 2.
  • the loss value for area 93B is set to zero.
  • FIG. 11(A) is a diagram showing a fourth aspect of the concept of classification of a plurality of relational data
  • FIG. 11(B) is a diagram showing a fourth aspect of a loss value setting example.
  • an area 91C, an area 92C, and an area 93C are set.
  • a region 91C is a region in which the residual is a negative value and the measured value is equal to or greater than the third threshold value for region determination.
  • a region 92C is a region in which the residual is a positive value and the measured value is equal to or greater than the third threshold value for region determination.
  • a region 93C is a region in which the absolute value of the residual is less than the threshold value for region determination or the measured value is less than the third threshold value for region determination.
  • a loss value ⁇ 1 is set in the area 91C, and a loss value ⁇ 2 is set in the area 92C.
  • the loss value ⁇ 1 is smaller than the loss value ⁇ 2.
  • the loss value for area 93C is set to zero.
  • the prediction model can be learned only assuming that the estimated prediction value is within the range of actual use.
  • FIG. 12(A) is a diagram showing a fifth aspect of the concept of classification of a plurality of relational data
  • FIG. 12(B) is a diagram showing a fifth aspect of a loss value setting example.
  • an area 91D and an area 92D are set as the fifth aspect of the area and loss value.
  • a region 91D is a region in which the residual is a negative value and the absolute value thereof is equal to or greater than the region determination threshold.
  • a region 92D is a region in which the residual is a positive value or a negative value, and the absolute value thereof is less than the region determination threshold.
  • a loss value ⁇ 1 is set in the area 91D, and a loss value ⁇ 2 is set in the area 92D.
  • the loss value ⁇ 1 is smaller than the loss value ⁇ 2.
  • the area 92D includes the area of the reference line 90 and is wider than the area 91D. This makes it possible to set a prediction model in which the predicted value is more reliably smaller than the measured value.
  • the predicted value is made smaller than the measured value. is also possible.
  • FIG. 13 is a functional block diagram of the behavior state estimation device according to the embodiment of the present invention. As shown in FIG. 13 , the behavioral state estimation device 16 includes an input vector generator 161 and an estimation calculator 162 .
  • the input vector generation unit 161 uses the measured values from the displacement detection sensor 101 to generate input vectors.
  • the input vector generation method is the same as that of the learning data generation unit 111 described above.
  • Input vector generation section 161 outputs the generated input vector to estimation calculation section 162 .
  • the estimation calculation unit 162 uses the prediction model stored in the prediction model storage unit 12 to estimate the prediction value from the input vector. At this time, the estimation calculation unit 162 uses the prediction model learned as described above.
  • the behavioral state estimating device 16 can estimate the predicted value so as to show a biased tendency with respect to the actual measured value. For example, the behavioral state estimation device 16 can estimate the predicted value so that the predicted value is smaller than the measured value. More specifically, the behavioral state estimation device 16 can estimate the predicted values so that all of the predicted values are smaller than the measured values. Alternatively, the behavioral state estimation device 16 can estimate the predicted value such that the number of times the predicted value is smaller than the measured value is less than the number of times the predicted value is greater than the measured value.
  • the behavioral state estimation device 16 can estimate the predicted value so that the predicted value is larger than the measured value.
  • the behavioral state estimation device 16 can select whether the predicted value should be smaller or larger than the measured value.
  • the behavioral state estimation system includes an operation input unit such as a switch. A user operates the operation input unit according to his or her purpose. Thereby, the behavioral state estimation device 16 can select whether the predicted value is made smaller than the measured value or the predicted value is made larger than the measured value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Software Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Physiology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

行動状態学習システムの学習部(11)は、推定部(112)と予測モデル更新部(115)とを備える。推定部(112)は、予測モデルを用いて計測値から予測値を推定する。予測モデル更新部(115)は、実測値と予測値との関係を示す関係データを用いて、予測値が実測値に対して偏った傾向を示すように予測モデルを更新しながら学習する。

Description

機械学習装置および推定装置
 本発明は、計測値から所定物理量を推定(予測)するときに利用する予測モデルの学習技術、および、当該予測モデルを用いた推定技術に関する。
 特許文献1には、行動状態学習装置が記載されている。特許文献1に記載の行動状態学習装置は、振動検知センサによって測定された信号から行動状態を推定するために用いるモデルを構築する。
 特許文献1に記載の行動状態学習装置は、振動検知センサによって測定された信号と、筋電位センサによって測定された信号とを用いて、行動状態モデルを学習する。この際、特許文献1に記載の行動状態学習装置は、振動検知センサによって測定された信号から予測される予測値と、筋電位センサによって測定された信号から得られる実測値とが略一致するように、行動状態モデルを学習する。
特開2011-182824号公報
 しかしながら、特許文献1に示すような従来の学習装置では、残差(予測値から実装値を減算した値)が正となった場合、同じ入力に対して低い予測値が出力されるように行動状態モデルの更新が行われる。また、特許文献1に示すような従来の学習装置では、残差が負となった場合、同じ入力に対して高い予測値が出力されるように行動状態モデルの更新が行われる。したがって、最終的に完成する学習済の行動状態モデルを用いた場合、残差の正負は、平均的にばらつく。
 この場合、例えば、上記行動状態モデルから出力された予測値を確認しながら、使用者が筋力トレーニングを行う場合、残差が正であると実測値よりも高い予測値が出力される。残差が正となる時間が長いと、使用者の認識よりも負荷が少ない時間が長くなり、トレーニング効率が悪くなる。一方、残差が負であると実測値よりも低い予測値が出力される。残差が負となる時間が長いと、使用者の想定よりも負荷をかけていないと誤認識する時間が長くなり、トレーニングに対するモチベーションが低下してしまうことがある。
 すなわち、予測値は、使用者の目的に合わないものとなってしまうことがある。
 したがって、本発明の目的は、実測値を参照しながら使用者の目的に応じた予測値を設定できる学習装置を提供することにある。
 この発明の機械学習装置は、推定部と予測モデル更新部とを備える。推定部は、予測モデルを用いて計測値から予測値を推定する。予測モデル更新部は、実測値と予測値との関係を示す関係データを用いて、予測値が実測値に対して偏った傾向を示すように予測モデルを更新しながら学習する。予測値が実測値に対して偏った傾向とは、例えば、予測値が実測値よりも小さい関係にある関係データの個数が、予測値が実測値以上の関係にある関係データの個数と比較して定常的に多い状態を意味する。または、予測値が実測値に対して偏った傾向とは、例えば、予測値が実測値よりも大きい関係にある関係データの個数が、予測値が実測値以下の関係にある関係データの個数と比較して、定常的に多い状態を意味する。
 この構成では、予測値は、予測モデルに基づく予測曲線に対して特定の偏った傾向を有する。これにより、予測値は、実測値に対して均等にばらつかず、特定の傾向をもって出力される。
 この発明によれば、実測値を参照しながら使用者の目的に応じた予測値を得られる。
図1は、本発明の実施形態に係る行動状態学習システムの機能ブロック図である。 図2は、本発明の実施形態に係る学習部の機能ブロック図である。 図3(A)は、複数の関係データの分類の概念の第1態様を示す図であり、図3(B)は、損失値の設定例の第1態様を示す図である。 図4(A)は従来の損失値の設定方法による予測モデルの一例を示す図であり、図4(B)は本願の損失値の設定方法による予測モデルの一例を示す図である。 図5(A)、図5(B)、図5(C)は、予測値と実測値との関係(関係データ)を示す図である。 図6は、本実施形態に係る行動状態学習方法を示すフローチャートである。 図7(A)は、入力ベクトルの生成方法を示すフローチャートであり、図7(B)は、教師データの生成方法を示すフローチャートである。 図8は、予測モデルの学習の終了を決定するフローチャートである。 図9(A)は、複数の関係データの分類の概念の第2態様を示す図であり、図9(B)は、損失値の設定例の第2態様を示す図である。 図10(A)は、複数の関係データの分類の概念の第3態様を示す図であり、図10(B)は、損失値の設定例の第3態様を示す図である。 図11(A)は、複数の関係データの分類の概念の第4態様を示す図であり、図11(B)は、損失値の設定例の第4態様を示す図である。 図12(A)は、複数の関係データの分類の概念の第5態様を示す図であり、図12(B)は、損失値の設定例の第5態様を示す図である。 図13は、本発明の実施形態に係る行動状態推定装置の機能ブロック図である。
 [行動状態学習装置]
 本発明の実施形態に係る行動状態学習装置について、図を参照して説明する。図1は、本発明の実施形態に係る行動状態学習システムの機能ブロック図である。
 図1に示すように、行動状態学習システムは、学習部11、予測モデル記憶部12、変位検知センサ101、および、筋活動検知センサ102を備える。学習部11が「機械学習装置」に対応する。変位検知センサ101が「第1センサ」に対応し、筋活動検知センサ102が「第2センサ」に対応する。
 変位検知センサ101は、例えば、振戦センサ、加速度センサ、角速度センサの少なくとも1つである。変位検知センサ101は、観測対象の変位を検知して、変位の大きさに応じた計測値を出力する。
 筋活動検知センサ102は、例えば、筋電センサ、姿勢を判定するカメラ、姿勢センサ等の少なくとも1つである。筋活動検知センサ102は、観測対象の筋肉の動きを検知して、動きの大きさに応じた実測値を出力する。
 例えば、被検体における下肢の筋肉活動を観測する場合、変位検知センサ101は、被検体の足首に取り付けられる。筋活動検知センサ102は、観測対象の筋肉が存在する皮膚の表面等に配置される。
 下記の学習を行った後は、被検体における下肢の筋肉活動は、被検体の足首に取り付けられた変位検知センサ101のみによって観測される。したがって、変位検知センサ101の出力する計測値から筋活動量(例えば筋電位)を推定する必要があり、このために、下記の学習が実行される。
 学習部11は、変位検知センサ101からの計測値と、筋活動検知センサ102の実測値とを用いて、上記推定のための予測モデルを更新、学習する。この際、概略的には、学習部11は、直前の予測モデルを用いて計測値から予測値を推定する。学習部11は、実測値と予測値との関係を示す関係データを用いて、予測値が実測値に対して偏った傾向を示すように予測モデルを更新しながら学習する。学習部11は、更新(学習)した予測モデルを、予測モデル記憶部12に出力する。
 なお、予測値が実測値に対して偏った傾向とは、例えば、予測値が実測値よりも小さい関係にある関係データの個数が、予測値が実測値以上の関係にある関係データの個数と比較して定常的に多い状態を意味する。または、予測値が実測値に対して偏った傾向とは、例えば、予測値が実測値よりも大きい関係にある関係データの個数が、予測値が実測値以下の関係にある関係データの個数と比較して、定常的に多い状態を意味する。
 さらには、予測値が実測値に対して偏った傾向とは、例えば、全ての関係データに対して、予測値が実測値よりも小さい関係にある関係データが殆どを占める状態を意味する。または、予測値が実測値に対して偏った傾向とは、例えば、全ての関係データに対して、予測値が実測値よりも大きい関係にある関係データが殆どを占める状態を意味する。
 また、さらには、予測値が実測値に対して偏った傾向とは、例えば、全ての関係データにおいて、予測値が実測値よりも小さい関係にある状態を意味する。または、予測値が実測値に対して偏った傾向とは、例えば、全ての関係データにおいて、予測値が実測値よりも大きい関係にある状態を意味する。
 以下では、一例として、予測値が実測値よりも小さい関係にある関係データの個数が、予測値が実測値以上の関係にある関係データの個数と比較して定常的に多い状態、全ての関係データに対して予測値が実測値よりも小さい関係にある関係データが殆どを占める状態、または、全ての関係データにおいて予測値が実測値よりも小さい関係にある状態とする場合を説明する。
 予測モデル記憶部12は、学習部11で学習した予測モデルを記憶する。学習が終了した予測モデルは、上述の推定に利用される。
 (学習部11)
 図2は、本発明の実施形態に係る学習部の機能ブロック図である。図2に示すように、学習部11は、学習用データ生成部111、推定部112、データ取得部113、学習用条件設定部114、および、予測モデル更新部115を備える。学習部11は、CPU等のハードウェアの演算処理装置と、学習部11の各機能を実行するためのプログラムと、プログラムを記憶する記憶部とによって実現される。記憶部は、演算処理装置の処理時にも利用される。演算処理装置がこのプログラムを実行することで、学習部11は、上述の各機能を実現する。
 学習用データ生成部111には、変位検知センサ101から計測値が入力され、筋活動検知センサ102から実測値が入力される。
 学習用データ生成部111は、予測モデルに対する入力ベクトルを計測値から生成する。例えば、学習用データ生成部111は、計測値の特徴量を検出し、特徴量を入力ベクトルとして生成する。特徴量は、例えば、計測値の時間波形の特徴を示すもの(最大値、平均値等)や、計測値の周波数スペクトルの特徴を示すもの(最大スペクトル値、最大スペクトルの周波数等)である。なお、特徴量はこれに限るものではなく、被検体の観測対象箇所の動きに対応付け可能なものであればよい。
 学習用データ生成部111は、予測モデルに対する教師データを実測値から生成する。例えば、学習用データ生成部111は、実測値から行動状態成分を検出し、行動状態成分を入力ベクトルとして生成する。行動状態成分は、実測値における、被検体の観測対象箇所の動きに対応付け可能な成分である。
 学習用データ生成部111は、入力ベクトルと行動状態成分とを予測モデル更新部115に出力する。この際、学習用データ生成部111は、略同時刻の計測値と実測値から得られる入力ベクトルと行動状態成分とを対にして出力する。なお、略同時刻の計測値と実測値とは、同期されたサンプリングタイミングで得られた計測値と実測値とのことを示す。また、学習用データ生成部111は、入力ベクトルを推定部112に出力する。
 推定部112は、予測モデルを用いて入力ベクトルから予測値を推定する。この際に用いられる予測モデルは、直前の更新によって得られた予測モデルである。推定部112は、予測値をデータ取得部113に出力する。
 データ取得部113には、実測値と予測値とが入力される。データ取得部113は、実測値と予測値との関係を示す関係データを生成する。関係データは、実測値と予測値とをそれぞれ、データの第1構成要素および第2構成要素としたものである。この際の予測値は、実測値と略同時刻に検知された計測値から推定されたものである。なお、関係データには、この検知の時刻も関連付けられている。
 データ取得部113は、順次入力される実測値と予測値から、関係データを所定周期で順次生成する。これにより、データ取得部113は、複数の関係データ(複数時刻の関係データ)を生成する。データ取得部113は、複数の関係データを学習用条件設定部114に出力する。
 学習用条件設定部114は、複数の関係データを分類し、分類毎に設定された学習用の損失値を用いて、予測モデルの更新、学習に利用する学習用条件を設定する。
 より具体的には、学習用条件設定部114は、領域設定部141、損失値設定部142、個数検出部143、評価値算出部144、および、合計値算出部145を備える。
 領域設定部141は、複数の関係データを分類するための領域を設定する。図3(A)は、複数の関係データの分類の概念の第1態様を示す図であり、図3(B)は、損失値の設定例の第1態様を示す図である。図3(A)に示すように、領域設定部141は、実測値と予測値とを直交2軸とする直交座標系を設定する。領域設定部141は、実測値と予測値との直交座標系に対して、基準線90を設定する。基準線90は、実測値と予測値とが一致する点の集まり、すなわち、残差(予測値-実測値)が0となる点の集まりによって設定される。
 領域設定部141は、基準線90よりも実測値側の領域91と、基準線90よりも予測値側の領域92とを設定する。言い換えれば、領域設定部141は、残差が負値の領域91と、残差が正値の領域92とを設定する。
 損失値設定部142は、複数の領域91、および、複数の領域92に対して、損失値を設定する。例えば、図3(B)に示すように、損失値設定部142は、領域91の関係データ対して損失値β1を設定し、領域92の関係データに対して損失値β2を設定する。損失値β1および損失値β2は、正値である。損失値β2は損失値β1よりも大きい(β2>β1)。なお、損失値設定部142は、基準線90上の関係データについては、損失値0を設定する。
 個数検出部143は、複数の関係データのそれぞれについて、残差を算出し、領域91、領域92に分類する。具体的に、個数検出部143は、関係データの予測値と実測値との残差が負値ならば、この関係データは領域91に属すると判定する。個数検出部143は、関係データの予測値と実測値との残差が正値ならば、この関係データは領域92に属すると判定する。
 個数検出部143は、領域91に属する関係データの個数(第1個数n1)と、領域92に属する関係データの個数(第2個数n2)とを検出する。個数検出部143は、第1個数n1と第2個数n2とを評価値算出部144に出力する。
 評価値算出部144は、損失値β1、損失値β2、第1個数n1、および、第2個数n2を用いて、評価値L1を算出する。具体的には、評価値算出部144は、第1個数n1と損失値β1との乗算(n1×β1)によって、領域91(残差が負値の関係データ)に対する評価値L1を算出する。評価値算出部144は、第2個数n2と損失値β2との乗算(n1×β1)によって、領域92(残差が正値の関係データ)に対する評価値L2を算出する。評価値算出部144は、評価値L1と評価値L2とを合計値算出部145に出力する。
 合計値算出部145は、評価値L1と評価値L2とを加算して合計値Lを算出する。すなわち、合計値算出部145は、L=L1+L2=n1×β1+n2×β2の演算を行う。合計値算出部145は、合計値Lを学習用条件として予測モデル更新部115に出力する。
 このように、学習用条件設定部114は、残差の大きさに応じて関係データ毎に個別に損失値を設定するのではなく、残差の絶対値に関係なく残差の正負のみに応じて、関係データに対する損失値を設定する。
 予測モデル更新部115には、計測値に基づく入力ベクトルと、実測値の基づく教師データとが入力される。また、予測モデル更新部115には、学習用条件(合計値L)が入力される。
 予測モデル更新部115は、学習用条件(合計値L)が低くなるように、予測モデルを更新、学習する。予測モデルの学習は、既知の方法であり、例えば、多クラス分類可能なSVMやGMM、HMM、ニューラルネットワーク、学習型ベイジアンネットワーク等の認識器や複数の認識器の構成を用いて行われる。認識器については、複数の認識器を組み合わせてもよく、例えば、AdaBoostといった手法に代表されるブースティング(boosting)などの手法を用いてもよい。この他、1クラスの分類しかできない認識器や多クラス分類可能な認識器を多段に構成して一つの認識方式を構成してもよい。
 予測モデル更新部115は、学習を繰り返しながら予測モデルを更新し、学習終了を検知すると、学習の終了を検出すると、その時点での予測モデルを、予測モデル記憶部12に出力する。
 ここで、学習用条件設定部114は、損失値β2を損失値β1よりも大きく設定している。これにより、予測モデルは、以下のような形状になり、これに応じて、予測値と実測値との関係も以下のように遷移する。
 図4(A)は従来の損失値の設定方法による予測モデルの一例を示す図であり、図4(B)は本願の損失値の設定方法による予測モデルの一例を示す図である。図4(A)に示す従来の損失値の設定方法は、残差の大きさに応じて関係データの損失値を個別に設定する方法である。
 図4(A)に示すように、従来の損失値の設定方法では、入力ベクトルと教師データとによって定義される複数の点は、予測モデル曲線80の両側に略均等に存在する。すなわち、教師データが入力ベクトルよりも高い点と、教師データが入力ベクトルよりも低い点が同程度に存在する。
 しかしながら、図4(B)に示すように、本願の損失値の設定方法では、入力ベクトルと教師データとによって定義される複数の点は、予測モデル曲線80の一方側に集中する。すなわち、教師データが入力ベクトルよりも高い点の集まりとなり、教師データが入力ベクトルよりも低い点はほぼなくなる。
 これにより、予測値と実測値の関係は、図5(A)、図5(B)、図5(C)に示すように遷移する。図5(A)、図5(B)、図5(C)は、予測値と実測値との関係(関係データ)を示す図である。図5(A)、図5(B)、図5(C)の順で学習が進んでいる。
 図5(A)、図5(B)、図5(C)に示すように、学習が進むにしたがって、予測値が実測値よりも大きくなる点(関係データ)は少なくなる。そして、最終的には、予測値の大きさおよび実測値の大きさに関わらず、予測値が実測値よりも小さい場合がほとんどとなる。
 したがって、この予測モデルを用いて、計測値から予測値を推定すると、予測値は実測値よりも小さくなる。これにより、例えば、この予測値を用いてトレーニングを行う場合、ユーザ(被検体)の認識よりも負荷が大きい時間が長くなり、トレーニング効率を高くできる。
 また、損失値β1と損失値β2との関係を逆にした場合(β2<β1)、この予測モデルを用いて、計測値から予測値を推定すると、予測値は実測値よりも大きくなる。これにより、例えば、この予測値を用いてトレーニングを行う場合、ユーザの想定よりも負荷をかけていると思わせる時間が長くなり、トレーニングに対するモチベーションを向上させることができる。
 このように、本実施形態の行動状態学習システムを用いることで、計測値と実測値とを用いながら、所望とする推定結果を得られるように、予測モデルを構成できる。
 (行動状態学習方法)
 図6は、本実施形態に係る行動状態学習方法を示すフローチャートである。図7(A)は、入力ベクトルの生成方法を示すフローチャートであり、図7(B)は、教師データの生成方法を示すフローチャートである。図8は、予測モデルの学習の終了を決定するフローチャートである。なお、各処理での具体的な内容は、上述の構成において行っており、追加説明が必要な箇所を除いて、以下では説明を省略する。
 行動状態学習システムの学習部11は、計測値から入力ベクトルを生成し、実測値から教師データを生成する(S11)。より具体的には、学習部11は、計測値を取得し(S21)、計測値の特徴量を抽出する(S22)。学習部11は、計測値の特徴量を用いて入力ベクトルを生成する(S23)。また、学習部11は、実測値を取得し(S31)、実測値から行動状態成分量を算出する(S32)。学習部11は、行動状態成分量から教師データを生成する(S33)。
 学習部11は、予測値と実測値の関係データを生成する(S12)。学習部11は、領域91、92毎に関係データの個数n1、n2を算出する(S13)。学習部11は、領域91、92毎に設定された損失値β1、β2と個数n1、n2とを用いて、領域91、92毎に評価値L1、L2を算出する(S14)。
 学習部11は、評価値L1、L2を用いて合計値Lを算出する(S15)。学習部11は、合計値Lを学習用条件として、予測モデルを更新(学習)する(S16)。
 学習部11は、学習終了条件をクリアすると(S17:YES)、予測モデルを出力する(S18)。学習部11は、学習終了条件をクリアしていなければ(S17:NO)、予測モデルの学習を繰り返す。
 より具体的には、学習部11は、前回の合計値(学習用条件)と今回の合計値(学習用条件)とを比較する(S41)。今回の合計値が前回の合計値よりも小さければ(S42:YES)、今回学習した予測モデルに更新し(S43)、予測モデルの学習を繰り返す。学習部11は、今回の合計値が前回の合計値よりも小さくなければ(S42:NO)、前回の学習時の予測モデルを維持する(S44)。学習部11は、予測モデルの維持回数が閾値回数未満であれば(S45:YES)、学習を継続する(S46)。学習部11は、予測モデルの維持回数が閾値回数に達すると(S45:NO)、学習を終了する(S47)。
 (領域および損失値の設定の別態様)
 図9(A)は、複数の関係データの分類の概念の第2態様を示す図であり、図9(B)は、損失値の設定例の第2態様を示す図である。
 図9(A)に示すように、領域および損失値の第2態様としては、領域91A、領域92A、領域93Aを設定する。領域91Aは、残差が負値であり、その絶対値が領域決定用閾値以上の領域である。領域92Aは、残差が正値であり、その絶対値が領域決定用閾値以上の領域である。領域93Aは、残差の絶対値が領域決定用閾値未満の領域である。
 領域91Aには損失値β1が設定され、領域92Aには損失値β2が設定される。損失値β1は損失値β2よりも小さい。領域93Aの損失値は0に設定される。
 このような設定を行うことによって、予測モデルの学習に対する計測値と実測値との測定誤差の影響を抑制できる。
 図10(A)は、複数の関係データの分類の概念の第3態様を示す図であり、図10(B)は、損失値の設定例の第3態様を示す図である。
 図10(A)に示すように、領域および損失値の第3態様としては、領域91B、領域92B、領域93Bを設定する。領域91Bは、残差が負値であり、その絶対値が領域決定用第1閾値以上の領域である。領域92Bは、残差が正値であり、その絶対値が領域決定用第2閾値以上の領域である。領域93Aは、残差が負値で且つその絶対値が領域決定用第1閾値未満、または、残差が正値で且つその絶対値が領域決定用第2閾値未満の領域である。
 領域91Bには損失値β1が設定され、領域92Bには損失値β2が設定される。損失値β1は損失値β2よりも小さい。領域93Bの損失値は0に設定される。
 このような設定を行うことによって、予測モデルの学習に対する計測値と実測値との測定誤差の影響を抑制できる。また、この設定では、残差が負値側における損失値が0の領域は、残差が正値側における損失値が0の領域よりも広い。これにより、予測値が実測値よりもさらに確実に小さくなる予測モデルを設定できる。
 図11(A)は、複数の関係データの分類の概念の第4態様を示す図であり、図11(B)は、損失値の設定例の第4態様を示す図である。
 図11(A)に示すように、領域および損失値の第4態様としては、領域91C、領域92C、領域93Cを設定する。領域91Cは、残差が負値であり、実測値が領域決定用第3閾値以上の領域である。領域92Cは、残差が正値であり、実測値が領域決定用第3閾値以上の領域である。領域93Cは、残差の絶対値が領域決定用閾値未満か、実測値が領域決定用第3閾値未満の領域である。
 領域91Cには損失値β1が設定され、領域92Cには損失値β2が設定される。損失値β1は損失値β2よりも小さい。領域93Cの損失値は0に設定される。
 このような設定を行うことによって、予測モデルの学習に対する実測値が小さい場合の影響を抑制できる。すなわち、推定される予測値が実使用の範囲内となるよう場合だけを想定して、予測モデルを学習することができる。
 図12(A)は、複数の関係データの分類の概念の第5態様を示す図であり、図12(B)は、損失値の設定例の第5態様を示す図である。
 図12(A)に示すように、領域および損失値の第5態様としては、領域91D、領域92Dを設定する。領域91Dは、残差が負値であり、その絶対値が領域決定用閾値以上の領域である。領域92Dは、残差が正値、または、残差が負値であり、その絶対値が領域決定用閾値未満の領域である。
 領域91Dには損失値β1が設定され、領域92Dには損失値β2が設定される。損失値β1は損失値β2よりも小さい。
 このような設定を行うことによって、領域92Dは、基準線90の領域を含み、領域91Dよりも広い。これにより、予測値が実測値よりもさらに確実に小さくなる予測モデルを設定できる。
 なお、上述の各態様では、予測値を実測値よりも小さくする場合を示したが、上述の概念を適用することで、各領域を適宜設定することで、予測値を実測値よりも大きくすることも可能である。
 (行動状態推定装置)
 図13は、本発明の実施形態に係る行動状態推定装置の機能ブロック図である。図13に示すように、行動状態推定装置16は、入力ベクトル生成部161、および、推定演算部162を備える。
 入力ベクトル生成部161は、変位検知センサ101からの計測値を用いて、入力ベクトルを生成する。入力ベクトルの生成方法は、上述の学習用データ生成部111と同様である。入力ベクトル生成部161は、生成した入力ベクトルを推定演算部162に出力する。
 推定演算部162は、予測モデル記憶部12に記憶された予測モデルを用いて、入力ベクトルから予測値を推定する。この際、推定演算部162は、上述のように学習した予測モデルを用いる。
 このような構成によって、行動状態推定装置16は、実測値に対して偏った傾向を示すように予測値を推定できる。例えば、行動状態推定装置16は、予測値が実測値よりも小さくなるように、予測値を推定できる。より具体的には、行動状態推定装置16は、予測値の全てが実測値より小さくなるように、予測値を推定できる。または、行動状態推定装置16は、予測値が実測値より小さい回数が、予測値が実測値より大きい回数よりも少なくなるように、予測値を推定できる。
 または、行動状態推定装置16は、予測値が実測値よりも大きくなるように、予測値を推定することも可能である。
 また、行動状態推定装置16は、予測値が実測値よりも小さくなるようにするか、それとも大きくなるようにするか、を選択できるようにすることも可能である。この場合、例えば、行動状態推定システムは、スイッチ等の操作入力部を備える。ユーザは、自分の目的に応じて、操作入力部を操作する。これにより、行動状態推定装置16は、予測値が実測値よりも小さくなるようにするか、予測値が実測値よりも大きくなるようにするか、を選択できる。
 なお、上述の例では、筋力トレーニングに適用する場合を示したが、筋力の回復を目指すリハビリテーションにも適用できる。
11:学習部
12:予測モデル記憶部
101:変位検知センサ
102:筋活動検知センサ
111:学習用データ生成部
112:推定部
113:データ取得部
114:学習用条件設定部
115:予測モデル更新部
141:領域設定部
142:損失値設定部
143:個数検出部
144:評価値算出部
145:合計値算出部
16:行動状態推定装置
161:入力ベクトル生成部
162:推定演算部

Claims (25)

  1.  予測モデルを用いて計測値から予測値を推定する推定部と、
     実測値と前記予測値との関係を示す関係データを用いて、前記予測値が前記実測値に対して偏った傾向を示すように前記予測モデルを更新しながら学習する予測モデル更新部と、
     を備える、
     機械学習装置。
  2.  前記予測値と前記実測値との関係を示す関係データを複数回取得するデータ取得部と、
     前記複数の関係データを残差によって分類し、前記分類毎に設定された学習用の損失値を用いて、学習用条件を設定する学習用条件設定部と、を備え、
     前記予測モデル更新部は、
      前記学習用条件を用いて、前記予測モデルを更新する、
     を備える、請求項1に記載の機械学習装置。
  3.  前記学習用条件設定部は、
     前記複数の関係データの分類として、前記複数回取得した関係データの分布に対して複数の領域を設定する領域設定部と、
     前記複数の領域毎に異なる損失値を設定する損失値設定部と、
     前記残差を用いて前記複数回取得した関係データがそれぞれにいずれの領域に分類されるかを検出し、前記関係データの個数を前記複数の領域毎に検出する個数検出部と、
     前記複数の領域毎に、前記個数と前記損失値とを用いて評価値を算出する評価値算出部と、
     前記複数の領域の評価値の合計値を算出する合計値算出部と、
     を備え、
     前記予測モデル更新部は、
      前記学習用条件として前記合計値が低下するように前記予測モデルを更新する、
     請求項2に記載の機械学習装置。
  4.  前記予測モデル更新部は、
      前記予測モデルの更新後の前記合計値が前記予測モデルの更新前の前記合計値よりも小さくなるように、前記予測モデルの更新を繰り返す、
     請求項3に記載の機械学習装置。
  5.  前記予測モデル更新部は、
      前記予測モデルの更新後の前記合計値が前記予測モデルの更新前の前記合計値よりも小さければ、前記予測モデルの更新を継続する、
     請求項3または請求項4のいずれかに記載の機械学習装置。
  6.  前記予測モデル更新部は、
      前記予測モデルの更新後の前記合計値が前記予測モデルの更新前の前記合計値よりも大きければ、前記予測モデルの更新を行わない、
     請求項3乃至請求項5のいずれかに記載の機械学習装置。
  7.  前記予測モデル更新部は、
     前記予測モデルの更新を行わない回数が閾値回数に達すると、前記予測モデルの更新を停止する、
     請求項3乃至請求項6のいずれかに記載の機械学習装置。
  8.  前記推定部は、直前に更新された予測モデルを用いて前記予測値を推定する、
     請求項3乃至請求項7のいずれかに記載の機械学習装置。
  9.  前記計測値を計測する第1センサと、
     前記第1センサと異なる種類のセンサからなり、前記実測値を測定する第2センサと、
     備える、
     請求項3乃至請求項8のいずれかに記載の機械学習装置。
  10.  前記第1センサは、振戦センサを含み、
     前記第2センサは、筋電センサである、
     請求項9に記載の機械学習装置。
  11.  前記第1センサは、加速度センサおよび角速度センサの少なくとも一方を含む、
     請求項10に記載の機械学習装置。
  12.  前記第1センサは、被検体の足首に取り付けられ、
     前記予測モデルは、下肢の筋肉の活動を予測するモデルである、
     請求項9乃至請求項11のいずれかに記載の機械学習装置。
  13.  前記損失値設定部は、前記複数の領域の大きさを可変にする、
     請求項3乃至請求項12のいずれかに記載の機械学習装置。
  14.  前記損失値設定部は、前記複数の領域毎の損失値を可変にする、
     請求項3乃至請求項13のいずれかに記載の機械学習装置。
  15.  前記損失値設定部は、
     前記損失値が0でない複数の領域と、前記損失値が0の領域とを設定する、
     請求項3乃至請求項14のいずれかに記載の機械学習装置。
  16.  前記損失値設定部は、
     前記実測値が所定値以上の関係データに対してのみ前記損失値を設定する、
     請求項3乃至請求項15のいずれかに記載の機械学習装置。
  17.  計測値を計測する第1センサと、
     前記計測値と予測モデルとを用いて、予測値を推定する推定部と、
     を備え、
     前記推定部は、
      前記第1センサと異なる第2センサで実測された実測値に対して偏った傾向を示すように、前記予測値を推定する、
     推定装置。
  18.  前記推定部は、
      前記実測値に対して前記予測値が偏った傾向を示す前記予測モデルを用いて、前記予測値を推定する、
     請求項17に記載の推定装置。
  19.  前記推定部は、
      前記予測値が前記実測値より小さい回数が、前記予測値が前記実測値より大きい回数よりも多くなるように、前記予測値を推定する、
     請求項17または請求項18に記載の推定装置。
  20.  前記推定部は、
      前記予測値の全てが前記実測値より小さくなるように、前記予測値を推定する、
     請求項19に記載の推定装置。
  21.  前記推定部は、
      前記予測値が前記実測値より小さい回数が、前記予測値が前記実測値より大きい回数よりも少なくなるように、前記予測値を推定する、
     請求項17または請求項18に記載の推定装置。
  22.  前記推定部は、
      前記予測値の全てが前記実測値より大きくなるように、前記予測値を推定する、
     請求項21に記載の推定装置。
  23.  前記第1センサは、振戦センサを含む、
     請求項17乃至請求項22のいずれかに記載の推定装置。
  24.  前記第1センサは、加速度センサおよび角速度センサの少なくとも一方を含む、
     請求項23に記載の推定装置。
  25.  前記第1センサは、被検体の足首に取り付けられ、
     前記予測モデルは、下肢の筋肉の活動を予測するモデルである、
     請求項17乃至請求項24のいずれかに記載の推定装置。
PCT/JP2022/042549 2021-12-01 2022-11-16 機械学習装置および推定装置 WO2023100656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-195132 2021-12-01
JP2021195132 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100656A1 true WO2023100656A1 (ja) 2023-06-08

Family

ID=86612036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042549 WO2023100656A1 (ja) 2021-12-01 2022-11-16 機械学習装置および推定装置

Country Status (1)

Country Link
WO (1) WO2023100656A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182824A (ja) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd 行動状態推定装置、行動状態学習装置、行動状態推定方法、行動状態学習方法およびプログラム
WO2020070834A1 (ja) * 2018-10-03 2020-04-09 株式会社島津製作所 学習済みモデルの製造方法、輝度調整方法および画像処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182824A (ja) * 2010-03-04 2011-09-22 Oki Electric Industry Co Ltd 行動状態推定装置、行動状態学習装置、行動状態推定方法、行動状態学習方法およびプログラム
WO2020070834A1 (ja) * 2018-10-03 2020-04-09 株式会社島津製作所 学習済みモデルの製造方法、輝度調整方法および画像処理装置

Similar Documents

Publication Publication Date Title
US9392954B2 (en) Classification estimating system and classification estimating program
CN109297974B (zh) 信息处理装置
US10730183B2 (en) Learning device, controller, and control system
US8433663B2 (en) Method and device for computer-aided prediction of intended movements
JP5919722B2 (ja) 生体信号推定装置及びプログラム
JP7450621B2 (ja) アクティブ装用デバイス、その制御デバイス、制御方法およびコンピュータ可読媒体
WO2023100656A1 (ja) 機械学習装置および推定装置
KR102266620B1 (ko) 로봇 물체 조작 학습 시스템
JP7047990B1 (ja) 行動状態推定装置、行動状態推定方法、行動状態学習装置、および、行動状態学習方法
Garcia et al. Adaptive algorithm for gait segmentation using a single IMU in the thigh pocket
CN104392137B (zh) 基于熵的信号异常检测方法及装置
JP2017104333A (ja) 筋電信号処理方法、装置およびプログラム
Tileylioğlu et al. Application of neural based estimation algorithm for gait phases of above knee prosthesis
Singh et al. Gait phase discrimination during kinematically constrained walking on slackline
JP4858036B2 (ja) 車両の運動制御装置、及び加速期待値算出装置
WO2014141682A1 (ja) センサー端末および信号取得方法
JP7342827B2 (ja) ノイズ波形除去装置、モデル訓練装置、ノイズ波形除去方法、モデル訓練方法、及びウェアラブル機器
Favieiro et al. Self-adaptive method for sEMG movement classification based on continuous optimal electrode assortment
JP6515709B2 (ja) 生体情報検出装置
Zhang et al. Stop Repeating Yourself: Exploitation of Repetitive Signal Patterns to Reduce Communication Load in Sensor Networks
US20240000343A1 (en) Prediction system, method and computer readable medium
JP2018009815A (ja) 車両加速評価装置及びそれを備えた車両
WO2022259313A1 (ja) 誤り判定装置、誤り判定方法、及びプログラム
JP5844224B2 (ja) 認識装置、認識方法及び認識システム
US20230351175A1 (en) Method for training machine-learning model for inferring motion coordination, apparatus for inferring motion coordination using machine-learning model, and storage medium storing instructions to perform method for training machine-learning model for inferring motion coordination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901089

Country of ref document: EP

Kind code of ref document: A1