WO2023100533A1 - Image display system, remote operation assistance system, and image display method - Google Patents

Image display system, remote operation assistance system, and image display method Download PDF

Info

Publication number
WO2023100533A1
WO2023100533A1 PCT/JP2022/039550 JP2022039550W WO2023100533A1 WO 2023100533 A1 WO2023100533 A1 WO 2023100533A1 JP 2022039550 W JP2022039550 W JP 2022039550W WO 2023100533 A1 WO2023100533 A1 WO 2023100533A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
index
image display
display system
working
Prior art date
Application number
PCT/JP2022/039550
Other languages
French (fr)
Japanese (ja)
Inventor
卓 伊藤
洋一郎 山▲崎▼
誠司 佐伯
佑介 上村
友鷹 三谷
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Publication of WO2023100533A1 publication Critical patent/WO2023100533A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to a technique for supporting remote control by an operator of a work machine such as a hydraulic excavator.
  • the position of the work device is represented by an image formed along the terrain. Therefore, since unnecessary positional information other than the predetermined part of the working device is also displayed at the same time, it is difficult to grasp the position of the working device with respect to the work target, which may make it difficult to perform the work efficiently. have a nature.
  • an object of the present invention is to provide a system and the like that can improve the accuracy of recognition by an operator of the positional relationship between a working mechanism that constitutes a working machine and a target object that exists around the working machine.
  • the image display system of the present invention is In a working environment image representing the situation of a working mechanism that constitutes a working machine and a target object that exists around the working machine, a second index point obtained as a result of projecting a first index point in the working mechanism onto the surface of the target object
  • the second index points on the surface of the working mechanism and the target object that constitute the working machine are displayed through the working environment image output to the output interface of the remote control device and the index image superimposed thereon. can be made to grasp the position of the operator.
  • the second index point is the result of projecting the first index point onto the surface of the target object and does not follow the surface shape of the target object. Therefore, it is possible to avoid providing the operator with unnecessary positional information of the working mechanism other than the first index point, thereby improving the operator's recognition accuracy of the positional relationship between the working mechanism and the target object.
  • FIG. 2 is an explanatory diagram regarding the configuration of an image display composite system and an image display system; Explanatory drawing about the structure of a remote control. Explanatory drawing about the structure of a working machine. Explanatory drawing about the function of an image display system.
  • FIG. 4 is an explanatory diagram of one display form of a work environment image and index images; FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; FIG.
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image;
  • FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index
  • FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image
  • FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image
  • FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point
  • FIG. 11 is an explanatory diagram of another display form of the working environment image and the index image
  • FIG. 4 is an explanatory diagram regarding the relationship between the operation mode of the working mechanism and the display mode of the index image;
  • FIG. 4 is an explanatory diagram regarding the relationship between the operation mode of the working mechanism and the display mode of the index image;
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point;
  • FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point;
  • the composite image display system shown in FIG. 1 includes an image display system 10, a remote control device 20, and/or a work machine 40 to be remotely controlled by the remote control device 20. As shown in FIG.
  • the image display system 10, the remote controller 20 and the work machine 40 are configured to be able to communicate with each other through a network.
  • the mutual communication network of image display system 10 and remote control device 20 and the mutual communication network of image display system 10 and work machine 40 may be the same or different.
  • the image display system 10 is configured by a computer that exists separately from the remote control device 20 and the work machine 40, and includes a database 102, a communication function element 121, and an image processing function element 122.
  • the database 102 stores and holds captured image data and the like.
  • the database 102 may be composed of a database server capable of mutual communication with the image display system 10 .
  • Each functional element is composed of an arithmetic processing unit (for example, a single-core processor and/or a multi-core processor or a processor core that constitutes this), reads necessary data and software from a storage device such as a memory, and targets the data Calculation processing, which will be described later, is executed according to the software.
  • the remote control device 20 includes a remote control device 200 , a remote input interface 210 , a remote output interface 220 and a remote wireless communication device 224 .
  • the remote control device 200 is configured by an arithmetic processing device (for example, a single-core processor and/or a multi-core processor or a processor core constituting this), reads necessary data and software from a storage device such as a memory, and processes the data. , the arithmetic processing according to the software is executed.
  • the remote input interface 210 includes a remote control mechanism 211.
  • Remote output interface 220 includes a remote image output device 221 .
  • the remote control mechanism 211 includes a traveling operating device, a turning operating device, a boom operating device, an arm operating device, and a bucket operating device.
  • Each operating device has an operating lever that receives a rotating operation.
  • An operating lever (running lever) of the operating device for running is operated to move the lower running body 410 of the work machine 40 .
  • the travel lever may also serve as a travel pedal.
  • a traction pedal may be provided that is fixed to the base or lower end of the traction lever.
  • An operation lever (swing lever) of the swing operation device is operated to move a hydraulic swing motor that constitutes the swing mechanism 430 of the work machine 40 .
  • An operating lever (boom lever) of the boom operating device is operated to move the boom cylinder 442 of the work machine 40 .
  • An operating lever (arm lever) of the arm operating device is operated to move the arm cylinder 444 of the work machine 40 .
  • An operating lever (bucket lever) of the bucket operating device is operated to move the bucket cylinder 446 of
  • each control lever that constitutes the remote control mechanism 211 is arranged around the seat St on which the operator sits.
  • the seat St is in the form of a high-back chair with armrests, a low-back chair without a headrest, or a chair without a backrest. may be
  • a pair of left and right travel levers 2110 corresponding to the left and right crawlers are arranged side by side in front of the seat St.
  • One operating lever may serve as a plurality of operating levers.
  • the left operation lever 2111 provided in front of the left frame of the seat St shown in FIG. 2 functions as an arm lever when operated in the longitudinal direction, and when operated in the lateral direction. function as a pivot lever.
  • the right operation lever 2112 provided in front of the right frame of the seat St shown in FIG. It may function as a bucket lever in some cases.
  • the lever pattern may be arbitrarily changed by an operator's operation instruction.
  • the remote image output device 221 includes a central remote image output device 2210 having substantially rectangular screens arranged in front, diagonally forward left, and diagonally forward right of the sheet St. It consists of a left remote image output device 2211 and a right remote image output device 2212 .
  • the shapes and sizes of the respective screens (image display areas) of the central remote image output device 2210, the left remote image output device 2211 and the right remote image output device 2212 may be the same or different.
  • the left remote image is tilted such that the screen of the central remote image output device 2210 and the screen of the left remote image output device 2211 form an inclination angle ⁇ 1 (for example, 120° ⁇ 1 ⁇ 150°).
  • the right edge of output device 2211 is adjacent to the left edge of central remote image output device 2210 .
  • the right remote image is tilted such that the screen of the central remote image output device 2210 and the screen of the right remote image output device 2212 form an inclination angle ⁇ 2 (eg, 120° ⁇ 2 ⁇ 150°).
  • the left edge of output device 2212 is adjacent to the right edge of central remote image output device 2210 .
  • the tilt angles ⁇ 1 and ⁇ 2 may be the same or different.
  • the respective screens of the central remote image output device 2210, the left remote image output device 2211, and the right remote image output device 2212 may be parallel to the vertical direction or may be inclined with respect to the vertical direction. At least one of the central remote image output device 2210, the left remote image output device 2211 and the right remote image output device 2212 may be composed of a plurality of divided image output devices.
  • the central remote image output device 2210 may comprise a pair of vertically adjacent image output devices having substantially rectangular screens.
  • the remote image output device 221 may be composed of a single image output device curved or bent to surround the sheet St.
  • a single image output device may be constituted by, for example, the central remote image output device 2210 .
  • the remote image output device 221 may consist of two image output devices (eg, a central remote image output device 2210 and a left remote image output device 2211 or a right remote image output device 2212).
  • the working machine 40 includes a real machine control device 400 , a real machine input interface 41 , a real machine output interface 42 , a real machine wireless communication device 422 , and a working mechanism 440 .
  • the actual device control device 400 is composed of an arithmetic processing device (single-core processor or multi-core processor or a processor core that constitutes it), reads necessary data and software from a storage device such as a memory, and processes the data into the software. Execute the arithmetic processing accordingly.
  • the work machine 40 is, for example, a crawler excavator (construction machine), and as shown in FIG. and an upper revolving body 420 .
  • a cab 424 (driver's cab) is provided on the front left side of the upper swing body 420 .
  • a work mechanism 440 is provided in the front central portion of the upper swing body 420 .
  • the real machine input interface 41 includes a real machine operating mechanism 411 , a real machine imaging device 412 , a real machine distance measuring device 414 , and a real machine sensor group 416 .
  • the actual machine operating mechanism 411 includes a plurality of operating levers arranged around a seat arranged inside the cab 424 in the same manner as the remote operating mechanism 211 .
  • the cab 424 is provided with a drive mechanism or a robot that receives a signal corresponding to the operation mode of the remote control lever and moves the actual machine control lever based on the received signal.
  • the actual machine imaging device 412 is installed inside the cab 424, for example, and images the environment including at least part of the working mechanism 440 (for example, the attachment 445) through the front window.
  • the real machine range finder 414 is a device for measuring the real space distance to a target object existing around the work machine 40, and thus the real space position, and is composed of, for example, a LiDAR and a TOF sensor.
  • the actual machine sensor group 416 includes a turning angle sensor for measuring the turning angle of the upper turning body 420 with respect to the lower traveling body 410, an attitude angle sensor for measuring the attitude angle representing the attitude of the working mechanism 440, and the like. It consists of various sensors for measuring 40 operating conditions.
  • the real machine output interface 42 includes a real machine wireless communication device 422 .
  • a working mechanism 440 as a working mechanism includes a boom 441 attached to the upper rotating body 420 so as to be able to rise and fall, and an arm 443 rotatably connected to the tip of the boom 441. and an attachment 445 (for example, a bucket) rotatably connected to the tip of the arm 443 .
  • the working mechanism 440 is equipped with a boom cylinder 442, an arm cylinder 444, and a bucket cylinder 446, which are configured by telescopic hydraulic cylinders.
  • the boom cylinder 442 is interposed between the boom 441 and the upper slewing body 420 so as to expand and contract when supplied with hydraulic oil and rotate the boom 441 in the hoisting direction.
  • the arm cylinder 444 is interposed between the arm 443 and the boom 441 so as to expand and contract when supplied with hydraulic oil to rotate the arm 443 about the horizontal axis with respect to the boom 441 .
  • the bucket cylinder 446 is interposed between the attachment 445 and the arm 443 so as to expand and contract when supplied with hydraulic oil to rotate the attachment 445 with respect to the arm 443 about the horizontal axis.
  • FIG. 4 is a flow chart for explaining the image display system having the above configuration and the function of the image display system.
  • the block "C ⁇ " is used for simplification of the description, means transmission and/or reception of data, and processing in the branch direction is executed on the condition of transmission and/or reception of the data. It means a conditional branch.
  • the flowchart is repeated for each control cycle, and after reaching "END", the process returns to "START" and the subsequent processes are executed.
  • an environment confirmation request operation is, for example, an operation such as a tap on the remote input interface 210 for the operator to instruct the work machine 40 intended to be remotely operated to perform an environment confirmation request operation. If the determination result is negative (FIG. 4/STEP 210 . . . NO), return to START. On the other hand, if the determination result is affirmative (FIG. 4/STEP 210 . . . YES), an environment confirmation request is transmitted to the image display system 10 through the remote wireless communication device 224 (FIG. 4/STEP 211).
  • the communication function element 121 transmits the environment confirmation request to the relevant work machine 40 (FIG. 4/C10).
  • the environment confirmation request may be transmitted to work machine 40 without going through image display system 10 .
  • the actual machine imaging device 412 detects the work object Obj (for example, the ground, earth and sand, materials and/or buildings) are acquired, a three-dimensional image of the work object Obj is acquired by the actual machine distance measuring device 414, and three-dimensional image data representing the three-dimensional image is transmitted to the actual machine wirelessly. It is transmitted to the image display system 10 through the communication device 422 (FIG. 4/STEP 410).
  • the work object Obj for example, the ground, earth and sand, materials and/or buildings
  • a three-dimensional image is an image having the direction and distance to the work object Obj or the real space position of the work object Obj acquired through the actual rangefinder 414 .
  • a “real space position” is defined by coordinate values (for example, latitude, longitude and altitude) in a real space coordinate system or coordinate values in a real machine coordinate system (a coordinate system whose position or orientation is fixed with respect to the work machine 40). be.
  • the real space position of each point forming the point group on the surface of the work object Obj corresponding to each pixel of the three-dimensional image is the pixel value of each pixel. included as
  • the three-dimensional image data consists of data of a captured image obtained through the actual imaging device 412 or a model image equivalent thereto, distance or real space position data obtained through the actual ranging device 414, and may be acquired and transmitted as a combination of
  • a captured image including at least the work object Obj is not captured by the actual imaging device 412, but is captured by an imaging device installed around the working machine 40, an imaging device mounted on an unmanned airplane, and/or carried by a field worker. It may be acquired through an imaging device of the equipment that is being used.
  • the distance or real space position which is the pixel value of the three-dimensional image, may be obtained through a rangefinder installed around work machine 40 and/or a rangefinder mounted on an unmanned aerial vehicle.
  • a stereo camera (a pair of left and right actual imaging devices 412) mounted on the work machine 40 is used to acquire a captured image and a three-dimensional image of the work object Obj.
  • the image processing function element 122 when three-dimensional image data is received by the communication function element 121 (FIG. 4/C11), the image processing function element 122 outputs work environment image data corresponding to the three-dimensional image data to the remote control device 20. (FIG. 4/STEP 110).
  • the work environment image data includes the captured image data itself (which does not include the real space position and distance information as pixel values) that is the basis of the 3D image data, as well as the simulated image data generated based on the captured image data. This is image data representing a working environment image.
  • the remote control device 200 When the remote operation device 20 receives the working environment image data through the remote wireless communication device 224 (FIG. 4/C21), the remote control device 200 outputs the working environment image corresponding to the working environment image data to the remote image output device 221. (FIG. 4/STEP 212).
  • a work environment image in which earth and sand, which are objects Obj, are reflected is output to the remote image output device 221 .
  • real machine sensor group 416 acquires the real space position of first index point p1 of working mechanism 440, and data representing the real space position of first index point p1 is transmitted to the real machine wireless communication device. 422 to the image display system 10 (FIG. 4/STEP 412).
  • the process of transmitting three-dimensional image data (see STEP 410 in FIG. 4) and the process of transmitting data representing the real space position of the first index point p 1 (see STEP 412 in FIG. 4) are simultaneously executed as a process of transmitting a set of data. may be
  • a point corresponding to the tip (arm top) of the arm 443 is defined as the first index point p1 .
  • the real space position of the first index point p 1 defined in the working mechanism 440 is the output signal of the attitude angle sensor that constitutes the real machine sensor group 416 mounted on the working machine 40, and the output signal of each working mechanism 440. Calculated forward kinematics based on component sizes.
  • the attitude angle sensor detects at least part of the hoisting angle of the boom 441 with respect to the upper swing body 420, the rotation angle of the arm 443 at the joint with the boom 441, and the rotation angle of the attachment 445 at the joint with the arm 443. is configured to output a signal corresponding to An arbitrary point such as the boom 441, the arm 443 and the attachment 445 that constitute the working mechanism 440 may be defined as the first index point p1 .
  • the real space position of the first index point p 1 may be recognized by the actual machine control device 400 based on the three-dimensional image.
  • image analysis processing grayscaling processing, edge extraction processing, and/or pattern matching processing, etc.
  • the average value of the pixel values is recognized as the real space position of the first index point p1 .
  • the other may be corrected.
  • the real space position of the first index point p 1 and the three-dimensional image include
  • the real space position of the second index point p 2 is recognized by the image processing functional element 122 based on the real space position or three-dimensional shape of each point forming the point group on the surface of the target object Obj (FIG. 4/STEP 112 ).
  • the second index point p2 is a point resulting from projection of the first index point p1 onto the surface of the target object Obj.
  • the projection direction of the first index point p 1 with respect to the surface of the target object Obj is, for example, the vertical direction.
  • the projection direction of the first index point p1 with respect to the surface of the target object Obj is similarly with respect to the vertical axis of the real space. It may be defined in an oblique direction.
  • the tilt angle of the work machine 40 with respect to the vertical axis is measured by a body tilt angle sensor (for example, a gyro sensor) that constitutes the actual machine sensor group 416 .
  • the recognition of the real space position of the first index point p 1 by the real machine control device 400 and the transmission of data May be omitted.
  • the image processing functional element 122 performs image analysis processing (such as grayscaling, edge extraction, and/or pattern matching) on the three-dimensional image to define the first index point p 1 in the working mechanism 440.
  • image analysis processing such as grayscaling, edge extraction, and/or pattern matching
  • One or more pixels corresponding to the point are recognized, and the pixel value of the pixels or the average value thereof is recognized as the real space position of the first index point p1 .
  • the index image data in which the index image M indicating the second index point p2 is superimposed on the working environment image is transmitted to the remote control device 20 by the image processing functional element 122 (Fig. 4/STEP 114).
  • the command includes the real space position of the second index point p2 and/or the pixel position (u, v) corresponding to the second index point p2 in the three-dimensional image or work environment image.
  • the remote control device 20 When the remote control device 20 receives the index image data through the remote wireless communication device 224 (FIG. 4/C22), the remote control device 200 superimposes the index image M corresponding to the command on the working environment image. is output to the remote image output device 221 (FIG. 4/STEP 214).
  • the process of transmitting work environment image data (see FIG. 4/STEP 110) and the process of transmitting index image data (see FIG. 4/STEP 114) from the image display system 10 to the remote control device 20 are simultaneously executed as a batch of data transmission process.
  • the remote control device 20 output processing of the work environment image (see FIG. 4/STEP 212) and output processing of the index image superimposed on the work environment image (see FIG. 4/STEP 214) are performed as a single image output. They may be executed simultaneously as processes.
  • a second index is obtained as a result of projecting the first index point p 1 onto the surface of the target object Obj (for example, earth and sand around the working machine 40).
  • the index image M indicating the point p2 is output to the remote image output device 221 in a form superimposed on the working environment image.
  • the index image M is an image of a triangular or arrow-shaped figure pointing toward the second index point p2 in the vertical direction in real space.
  • the first index point p1 and the second index point p2 may be superimposed on the captured image, and the first index point p1 and/or the second index point p2 The superimposed display may be omitted.
  • the remote control device 200 recognizes the operation mode of the remote control mechanism 211, and transmits a remote control command corresponding to the operation mode to the image display system 10 through the remote wireless communication device 224. (FIG. 4/STEP 220).
  • the communication functional element 121 transmits the remote operation instruction to the working machine 40 (FIG. 4/C14).
  • the remote control command may be transmitted to work machine 40 without going through image display system 10 .
  • the actual machine control device 400 receives an operation command through the actual machine wireless communication device 422 (FIG. 4/C44), the operation of the working mechanism 440 and the like is controlled (FIG. 4/STEP 420).
  • the attachment 445 scoops up earth and sand, which is the target object Obj in front of the working machine 40 , rotates the upper revolving body 420 , and then removes the earth and sand from the attachment 445 .
  • the work machine 40 can be viewed through the work environment image output to the remote image output device 221 that constitutes the remote output interface 220 and the index image M superimposed thereon.
  • the operator can grasp the working mechanism 440 (attachment 445) and the position of the second index point p2 on the surface of the target object Obj (see FIG. 5).
  • the second index point p2 is the result of projecting the first index point p1 onto the surface of the target object Obj. This prevents the operator from being provided with the information, thereby improving the recognition accuracy by the operator of the positional relationship between the working mechanism 440 and the target object Obj.
  • FIGS. 6A to 6C each show the positional relationship between the arm top and the attachment 445 when excavating the ground.
  • Working mechanism 440 can exert the strongest force under the arm top, which is the connection point for attachment 445 .
  • the operator usually contacts the tip of the attachment 445 with the ground below or farther from the arm top, and then moves the attachment 445 so that the tip is below the arm top.
  • operate so that the tip is closer to you than the arm top.
  • the arm top is often more suitable than the tip of the attachment 445 as the position index of the working mechanism 440 .
  • attachment 445 can be replaced with a breaker, grapple, lifting magnet, etc. in addition to the bucket described above, but since the position of the "arm top" does not change even if the attachment 445 is replaced, the same image display can be applied.
  • the index image M is an image that has directivity with respect to the second index point p2 on the surface of the target object Obj, or that indicates the position by a substantially triangular vertex or an arrow (see FIG. 5). Therefore, while avoiding the operator's mistake regarding the three-dimensional shape of the surface of the target object Obj, the operator can determine the positional relationship between the working mechanism 440, particularly the attachment 445 in which the first index point p1 is defined, and the target object Obj. The ease of recognition is improved by
  • the image display system 10 and the communication function element 121 and the image processing function element 122 that constitute it are configured by a computer that exists separately from the remote control device 20 and the work machine 40, but other embodiments , an image display system is mounted on the remote control device 20 and/or the work machine 40, and the communication function element 121 and/or the image processing function element 122 are configured by the remote control device 200 and/or the actual machine control device 400. good. In that case, the communication function in the image display system 10 can be omitted.
  • the first index point p 1 was defined as the arm top in the above embodiment, it may be defined at the tip of the attachment 445 .
  • the index image M showing the second index point p 2 as a result of projecting the first index point p 1 onto the surface of the target object Obj allows the operator to determine the position of the attachment 445 with respect to the contact of the target object Obj. It is possible to improve the recognition accuracy of the relationship.
  • the first index point p 1 moves toward the target object Obj in a direction corresponding to the displacement mode of the attachment (for example, the attachment 445) on which the first index point p 1 is arranged in the working mechanism 440.
  • An index image M showing the second index point p 2 as a result of being projected onto the surface may be superimposed on the working environment image and output to the remote image output device 221 .
  • the displacement mode of the working mechanism 440 or the attachment is recognized based on the attitude angle sensor and/or the turning angle sensor that constitute the actual machine sensor group 416 .
  • the displacement mode of the working mechanism 440 or the attachment may be recognized based on the operation mode of the control lever that constitutes the remote control mechanism 211 .
  • FIG. 7A when the attachment 445 is displaced vertically downward, the first index point p 1 is projected vertically downward onto the surface of the target object Obj, resulting in the second An index image M indicating the index point p 2 is superimposed on the work environment image and output to the remote image output device 221 .
  • FIG. 7B when the attachment 445 is displaced forward and downward as viewed from the work machine 40, the first index point p1 is forward and downward of the work machine 40 with respect to the surface of the target object Obj.
  • An index image M indicating the second index point p 2 as a result of the projection is superimposed on the working environment image and output to the remote image output device 221 .
  • FIG. 7A when the attachment 445 is displaced vertically downward, the first index point p 1 is projected vertically downward onto the surface of the target object Obj, resulting in the second An index image M indicating the index point p 2 is superimposed on the work environment image and output to the remote image output device 221 .
  • the displacement mode of the working mechanism 440 constituting the working machine 40 is displayed through the working environment image output to the remote image output device 221 of the remote controller 20 and the index image M superimposed thereon.
  • a second index point p 2 as a result of projecting the first index point p 1 onto the surface of the target object Obj in a direction corresponding to the posture mode of the working mechanism 440 or the attachment 445 according to the index image output command. may be superimposed on the working environment image and output to the remote image output device 221 .
  • An index image M indicating the second index point p 2 as a result of downward projection is superimposed on the work environment image and output to the remote image output device 221 .
  • first index point p1 is positioned rearward of work machine 40 with respect to the surface of target object Obj.
  • An index image M indicating the second index point p 2 as a result of downward projection is superimposed on the work environment image and output to the remote image output device 221 .
  • the work mechanism 440 or the attachment 445 constituting the work machine 40 is displayed through the work environment image output to the remote image output device 221 of the remote operation device 20 and the index image M superimposed thereon. Since the operator can easily recognize the position and direction acting on the object according to the posture of the operator, the recognition accuracy of the operator can be improved, and the work efficiency can be improved.
  • the first index point is defined in the attachment 445, and while the transmission of a specific remote control command is started and continues (the specific operation continues), the position information of the first index point is The position of the first index point p1 immediately before the operation command is transmitted may be maintained without being updated.
  • an operation switch that operates a breaker 445 that is an attachment 445 is provided on the lever of the remote control mechanism, and when the breaker 445 is operated by the remote control mechanism 211, the working machine 40 is controlled by the remote control device 20.
  • a remote control command to operate the breaker 445 is sent to the image display system 10, and an update stop signal is sent to the image display system 10 so as not to update the position information of the first index point p1 .
  • the update stop signal is continuously transmitted while the operation switch is being pressed. As a result, the positional information of the first index point p1 is maintained while the positional information immediately before the operation switch is operated continues.
  • the update stop signal is no longer sent to the image display system 10 . As a result, updating of the position information of the first index point p1 is resumed.
  • the position information of the first index point is not updated while the attachment 445 is being operated. Therefore, the work environment image output to the remote image output device 221 of the remote control device 20 and the index image M superimposed thereon are vibrated at the first index point by the vibration of the attachment 445 caused by the operation of the attachment 445. vibrate by doing As a result, it is possible to prevent a phenomenon in which the operator, who is performing remote control while gazing at the index image M, becomes sick.
  • the second index point p2 is defined as a result of projecting the first index point p1 onto the surface of the target object Obj in a direction corresponding to the displacement mode or posture mode of the working mechanism 440 or attachment.
  • a stereoscopic index image M may be output to the remote image output device 221 of the remote control device 20 in the work environment image.
  • FIG. 7A and 8A when the second index point p 2 is defined as a result of projecting the first index point p 1 vertically downward onto the surface of the target object Obj (see FIGS. 7A and 8A), FIG. As shown, a substantially conical index image M with a central axis parallel to the vertical direction of the real space and with the apex directed downward in the real space is superimposed on the work environment image and output to the remote image output device 221. be done.
  • the second index point p 2 is defined as a result of projecting the first index point p 1 onto the surface of the target object Obj to the front and lower side of the work machine 40 (see FIGS.
  • FIG. 9B a substantially conical index image M whose apex is directed forward and downward in real space is superimposed on the work environment image and output to the remote image output device 221 .
  • the second index point p 2 is defined as a result of projecting the first index point p 1 on the surface of the target object Obj to the rear and downward direction of the work machine 40 (see FIGS. 7C and 8C)
  • FIG. 9C 2 a substantially conical index image M whose apex is directed backward and downward in the real space is superimposed on the work environment image and output to the remote image output device 221 .
  • the index image M output to the remote image output device 221 of the remote control device 20 is a three-dimensional image.
  • the operator can easily grasp the positional relationship between the first index point p1 and the second index point p2 on the surface of the target object Obj.
  • An index image M showing a second index point p2 as a result of projecting the first index point p1 whose position differs according to the displacement mode of the working mechanism 440 onto the surface of the target object Obj is superimposed on the work environment image. and output to the remote image output device 221 of the remote operation device 20 .
  • the tip center point of the bucket 445 is defined as the first index point p1 , as shown in FIG. 10A.
  • the upper revolving body 420 is turned against the lower traveling body 410 as viewed from above. If a clockwise turn is estimated or predicted or measured (see leftward white arrow), the point to the left of the tip of bucket 445 is defined as first index point p 1 , as shown in FIG. 10B. be.
  • the upper rotating body 420 rotates clockwise with respect to the lower traveling body 410 when viewed from above. 10C, the point to the right of the tip of bucket 445 is defined as first index point p 1 , as shown in FIG. 10C.
  • an index image M showing a second index point p2 as a result of projecting the first index point p1 onto the surface of the target object Obj is superimposed on the work environment image to form a remote image. It is output to the output device 221 .
  • the part to be observed in the working mechanism 440 changes according to the changing mode of the position and/or posture of the working mechanism 440. For example, if the operation is for rotating the upper rotating body 420 with respect to the lower traveling body 410, the part is the leading edge in the rotating direction, and if the operation is for moving the working mechanism 440 away from the center of the machine, the working mechanism 440 It is the leading edge in the direction away from the machine center.
  • the position and position of the working mechanism 440 constituting the working machine 40 can be displayed through the working environment image output to the remote image output device 221 of the remote control device 20 and the index image M superimposed thereon. / Alternatively, it becomes easier to grasp the positional relationship between the part to be watched and the target object Obj according to the posture change mode, and the recognition accuracy of the operator can be improved.
  • a plurality of index images M each showing a plurality of second index points p2 as a result of projecting the plurality of first index points p1 onto the surface of the target object Obj are superimposed on the work environment image. It may be output to the remote image output device 221 of the remote operation device 20 .
  • the left and right endpoints of the tip of attachment 445 are defined as first index points p 11 and p 12 , respectively, and the first index points p 11 and p
  • a plurality of index images M 1 and M 2 representing second index points p 21 and p 22 , respectively, as a result of projecting each of 12 vertically downward onto the surface of the target object Obj are superimposed on the work environment image. may be output to the remote image output device 221 of the remote operation device 20.
  • the number of each of the first index points p 1 and the corresponding second index points p 2 may be 3 or more.
  • the plurality of first index points p The operator can grasp the position of each of the plurality of second index points p21 and p22 as a result of projecting each of 11 and p12 onto the surface of the target object Obj.
  • the operator's recognition accuracy of the positional relationship between the working mechanism 440 and the target object Obj is improved.
  • a plurality of index images oriented with respect to each of a plurality of second index points p2 corresponding to each of a plurality of first index points p1 whose relative positions change as the posture of the working mechanism 440 changes. M may be superimposed on the work environment image and output to the remote image output device 221 of the remote operation device 20 .
  • FIG. 12A when a pair of members 4451 and 4452 that make up attachment 445 (eg, a grapple or crusher) are closed, the ends of the respective members 4451 and 4452 of the pair are closed.
  • the image is superimposed on the environment image and output to the remote image output device 221 of the remote operation device 20 .
  • FIG. 12B when the pair of constituent members 4451 and 4452 that constitute the attachment 445 are opened, the distal ends of the pair of constituent members 4451 and 4452 are positioned at the first designated point.
  • M 1 a plurality of index images M 1 defined as p 11 and p 12 and showing second index points p 21 and p 22 as a result of projecting the first index points p 11 and p 12 onto the surface of the target object Obj; M 2 is superimposed on the work environment image and output to the remote image output device 221 of the remote controller 20 .
  • the working mechanism 440 (for example, the pair of constituent members 4451 and 4452 of the attachment 445) is displayed through the working environment image and the plurality of index images output to the remote image output device of the remote operation device 20.
  • a plurality of second index points p21 and p22 as a result of projecting the plurality of first index points p11 and p12 , whose relative positions change with the change in posture, onto the surface of the target object.
  • the operator can grasp each position. As a result, it is possible to improve the recognition accuracy by the operator of the positional relationship between the plurality of parts of the working mechanism 440 and the target object Obj according to the posture change mode.
  • the plurality of parts may be configured by, for example, one part of the attachment 445 and another part of the arm 443 and/or the boom 441 .
  • the center point of the tip of the attachment 445 and the center point of the tip of the arm 443 may be defined as the first index points p 11 and p 12 , respectively.
  • the indicator images M1 and M2 superimposed on the work environment image are identifiably represented by colors, shapes, patterns, or a combination thereof, so that the indicator images M1 and M2 are displayed in real space.
  • the operator can be made aware of the directional arrangement and thus the attitude of the attachment 445 (eg, bucket).
  • the index image M having directivity with respect to the second index point p2 was output to the remote image output device 221 (see FIG. 5 ).
  • the index image M having no directivity with respect to may be output to the remote image output device 221 .
  • the index image M is output to the remote image output device 221, in which a two-dimensional figure of a designated shape such as a circle or square centered or centered on the second index point p2 is arranged in a posture parallel to the horizontal plane. good too.
  • An index image M is output to the remote image output device 221, in which a three-dimensional figure of a designated shape such as a sphere, cube, or polyhedron centered or centered on the second index point p2 is arranged in a posture parallel to the horizontal plane. good too.
  • the upper rotating body 420 rotates counterclockwise relative to the lower traveling body 410 when viewed from above.
  • a central point is defined as the first index point p 1 .
  • the following description is based on the operation mode of the remote control mechanism 211 and/or the actual machine operating mechanism 411, or based on the output signal of the actual machine sensor group 416, so that the upper swing body 420 is raised with respect to the lower traveling body 410.
  • a central point is defined as the first index point p 1 .
  • an index image M showing a second index point p2 as a result of projecting the first index point p1 onto the surface of the target object Obj is superimposed on the work environment image to form a remote image. It is output to the output device 221 .
  • communication delay of the working mechanism 440 constituting the working machine 40 can be detected through the working environment image output to the remote image output device 221 of the remote controller 20 and the index image M superimposed thereon. Since the operator can recognize changes in the position and/or posture taking into consideration part or all of the time and response delay time, the positional relationship of the working mechanism 440 with respect to the target object Obj can be determined in consideration of the operating environment unique to remote control. The recognition accuracy of is improved, and operations can be performed more efficiently.
  • the index image having directivity with respect to the second index point is superimposed on the work environment image and output to the output interface of the remote control device.
  • the index image output to the output interface of the remote control device has directivity with respect to the second index point (the index image indicates the position of the second index point). Therefore, the operator can easily grasp the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object.
  • the working environment image output to the output interface of the remote control device and the index image superimposed thereon are used to display the direction corresponding to the displacement mode or attitude mode of the working mechanism that constitutes the working machine. , it is possible to improve the recognition accuracy of the operator regarding the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object in the working environment image.
  • the image display system of the present invention superimposing the index image showing the second index point as a result of projecting the first index point having a different position according to the displacement mode of the working mechanism onto the surface of the target object, on the working environment image; preferably output to the output interface of the remote control device.
  • the working environment image output to the output interface of the remote control device and the index image superimposed thereon are displaced to a position corresponding to the displacement mode of the working mechanism constituting the working machine. Further, it is possible to improve the recognition accuracy of the operator regarding the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object in the working environment image.
  • the index image indicating the second index point is superimposed on the working environment image and output to the output interface of the remote control device.
  • the index is output to the output interface of the remote control device.
  • the operator can easily comprehend or guess the positional relationship between the first index point and the second index point as a result of the projection of the first index point onto the surface of the target object.
  • the first index point is set on the arm top.
  • the position of the tip of the attachment is manipulated with respect to the position of the arm top.
  • an arm top is suitable. Furthermore, since the position of the arm top does not change even if the attachment is replaced, there is an advantage that the same image display can be applied.
  • a plurality of index images each showing a plurality of the plurality of second index points as a result of each of the plurality of first index points being projected onto the surface of the target object are superimposed on the work environment image. It is preferable to output to the output interface of the remote control device.
  • each of the plurality of first index points of the working mechanism is projected onto the surface of the target object through the working environment image and the plurality of index images output to the output interface of the remote control device.
  • the operator can grasp the position of each of the plurality of second index points.
  • it is possible to improve the recognition accuracy by the operator of the positional relationship between the working mechanism and the target object.
  • a plurality of index images pointing toward each of the plurality of second index points corresponding to each of the plurality of first index points whose relative positions change as the posture of the working mechanism changes; It is preferable that the image is superimposed on the work environment image and output to the output interface of the remote control device.
  • a plurality of first indices whose relative positions change as the posture of the working mechanism changes through the work environment image and the plurality of index images output to the output interface of the remote control device.
  • the operator can grasp the position of each of the plurality of second index points as a result of each point being projected onto the surface of the target object.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computer Graphics (AREA)
  • Mining & Mineral Resources (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Manipulator (AREA)
  • Processing Or Creating Images (AREA)

Abstract

Provided are a system and the like that can improve accuracy of recognition, by an operator, for the positional relationship between a work mechanism constituting a work machine and an object located in the vicinity of the work machine. According to the present invention, an operator can grasp the position of a second index point p2 on the surface of an object Obj and the position of a work mechanism 440 (attachment 445) constituting a work machine 40, by means of a work environment image outputted to a remote image output device 221 constituting a remote output interface 220 and an index image M superimposed on the work environment image. The second index point p2 is a result obtained by projecting a first index point p1 on the surface of the object Obj.

Description

画像表示システム、遠隔操作支援システムおよび画像表示方法Image display system, remote control support system and image display method
 本発明は、油圧ショベル等の作業機械のオペレータによる遠隔操作を支援するための技術に関する。 The present invention relates to a technique for supporting remote control by an operator of a work machine such as a hydraulic excavator.
 作業機の姿勢を用いて得られた作業具の位置の情報と、距離検出装置が求めた作業機械の作業対象までの距離の情報から得られた作業対象である地面の位置の情報とを用いて、作業具と対向する作業対象の表面に沿って当該作業具に対応する部分の画像を生成し、撮像装置によって撮像された作業対象の画像と合成して、表示装置に表示させる技術が提案されている(例えば、特許文献1参照)。これにより、作業具を有する作業機を備えた作業機械を用いて作業する際の作業効率の低下が抑制される。 Using information on the position of the work implement obtained using the attitude of the work machine and information on the position of the ground, which is the work target, obtained from the information on the distance to the work target of the work machine obtained by the distance detection device. proposed a technique for generating an image of a portion corresponding to the work tool along the surface of the work object facing the work tool, synthesizing it with the image of the work object captured by an imaging device, and displaying the image on a display device. (See Patent Document 1, for example). This suppresses a decrease in work efficiency when working with a work machine having a work implement having a work implement.
特許第6777375号公報Japanese Patent No. 6777375
 しかし、作業装置と作業対象との位置合わせが行われる際、従来技術によれば、作業装置の位置が地形に沿って形成される画像によって表わされる。したがって、作業装置の所定の部位以外の不必要な位置情報も同時に表示されるため、作業装置が作業対象に対してどの位置にあるか把握しづらく、効率よく作業を行うことが困難になる可能性がある。 However, when the work device and the work target are aligned, according to the prior art, the position of the work device is represented by an image formed along the terrain. Therefore, since unnecessary positional information other than the predetermined part of the working device is also displayed at the same time, it is difficult to grasp the position of the working device with respect to the work target, which may make it difficult to perform the work efficiently. have a nature.
 そこで、本発明は、作業機械を構成する作業機構と当該作業機械の周辺に存在する対象物体との位置関係のオペレータによる認識精度の向上を図りうるシステム等を提供することを目的とする。 Therefore, an object of the present invention is to provide a system and the like that can improve the accuracy of recognition by an operator of the positional relationship between a working mechanism that constitutes a working machine and a target object that exists around the working machine.
 本発明の画像表示システムは、
 作業機械を構成する作業機構および当該作業機械の周囲に存在する対象物体の状況を表わす作業環境画像において、前記作業機構における第1指標点が前記対象物体の表面に投影された結果としての第2指標点を示す指標画像を重畳させて前記作業機械を遠隔操作するための遠隔操作装置の出力インターフェースに出力させる画像表示システムである。
The image display system of the present invention is
In a working environment image representing the situation of a working mechanism that constitutes a working machine and a target object that exists around the working machine, a second index point obtained as a result of projecting a first index point in the working mechanism onto the surface of the target object An image display system for superimposing index images indicating index points and outputting them to an output interface of a remote control device for remotely controlling the working machine.
 当該構成の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力される作業環境画像およびこれに重畳された指標画像を通じて、作業機械を構成する作業機構と対象物体の表面における第2指標点の位置をオペレータに把握させることができる。第2指標点は、第1指標点が対象物体の表面に投影された結果であり、当該対象物体の表面形状に沿ったものではない。このため、作業機構の第1指標点を除く不要な部位の位置情報がオペレータに提供されることが回避され、作業機構と対象物体との位置関係の当該オペレータによる認識精度の向上が図られる。 According to the image display system having this configuration, the second index points on the surface of the working mechanism and the target object that constitute the working machine are displayed through the working environment image output to the output interface of the remote control device and the index image superimposed thereon. can be made to grasp the position of the operator. The second index point is the result of projecting the first index point onto the surface of the target object and does not follow the surface shape of the target object. Therefore, it is possible to avoid providing the operator with unnecessary positional information of the working mechanism other than the first index point, thereby improving the operator's recognition accuracy of the positional relationship between the working mechanism and the target object.
画像表示複合システムおよび画像表示システムの構成に関する説明図。FIG. 2 is an explanatory diagram regarding the configuration of an image display composite system and an image display system; 遠隔操作装置の構成に関する説明図。Explanatory drawing about the structure of a remote control. 作業機械の構成に関する説明図。Explanatory drawing about the structure of a working machine. 画像表示システムの機能に関する説明図。Explanatory drawing about the function of an image display system. 作業環境画像および指標画像の一表示形態に関する説明図。FIG. 4 is an explanatory diagram of one display form of a work environment image and index images; アームトップ位置と指標画像の表示態様との関係に関する説明図。FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; アームトップ位置と指標画像の表示態様との関係に関する説明図。FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; アームトップ位置と指標画像の表示態様との関係に関する説明図。FIG. 4 is an explanatory diagram regarding the relationship between the arm top position and the display mode of the index image; 作業機構の変位態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image; 作業機構の変位態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image; 作業機構の変位態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the directivity of the index image; 作業機構の姿勢態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image; 作業機構の姿勢態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image; 作業機構の姿勢態様と指標画像の指向性との関係に関する説明図。FIG. 5 is an explanatory diagram relating to the relationship between the posture mode of the working mechanism and the directivity of the index image; 立体的な指標画像の表示形態に関する説明図。FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image; 立体的な指標画像の表示形態に関する説明図。FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image; 立体的な指標画像の表示形態に関する説明図。FIG. 4 is an explanatory diagram of a display form of a three-dimensional index image; 作業機構の変位態様と第1指標点の位置との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point; 作業機構の変位態様と第1指標点の位置との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point; 作業機構の変位態様と第1指標点の位置との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point; 作業環境画像および指標画像の他の表示形態に関する説明図。FIG. 11 is an explanatory diagram of another display form of the working environment image and the index image; 作業機構の動作態様と指標画像の表示形態との関係に関する説明図。FIG. 4 is an explanatory diagram regarding the relationship between the operation mode of the working mechanism and the display mode of the index image; 作業機構の動作態様と指標画像の表示形態との関係に関する説明図。FIG. 4 is an explanatory diagram regarding the relationship between the operation mode of the working mechanism and the display mode of the index image; 作業機構の変位態様と第1指標点の位置との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point; 作業機構の変位態様と第1指標点の位置との関係に関する説明図。FIG. 5 is an explanatory diagram regarding the relationship between the displacement mode of the working mechanism and the position of the first index point;
 (画像表示複合システムの構成)
 図1に示されている画像表示複合システムは、画像表示システム10と、遠隔操作装置20および/または当該遠隔操作装置20による遠隔操作対象である作業機械40と、により構成されている。画像表示システム10、遠隔操作装置20および作業機械40は相互にネットワーク通信可能に構成されている。画像表示システム10および遠隔操作装置20の相互通信ネットワークと、画像表示システム10および作業機械40の相互通信ネットワークと、は同一であってもよく相違していてもよい。
(Configuration of image display complex system)
The composite image display system shown in FIG. 1 includes an image display system 10, a remote control device 20, and/or a work machine 40 to be remotely controlled by the remote control device 20. As shown in FIG. The image display system 10, the remote controller 20 and the work machine 40 are configured to be able to communicate with each other through a network. The mutual communication network of image display system 10 and remote control device 20 and the mutual communication network of image display system 10 and work machine 40 may be the same or different.
 (画像表示システムの構成)
 画像表示システム10は、本実施形態では、遠隔操作装置20および作業機械40とは別個に存在するコンピュータにより構成されており、データベース102と、通信機能要素121と、画像処理機能要素122と、を備えている。データベース102は、撮像画像データ等を記憶保持する。データベース102は、画像表示システム10と相互通信可能なデータベースサーバにより構成されていてもよい。各機能要素は、演算処理装置(例えば、シングルコアプロセッサおよび/またはマルチコアプロセッサもしくはこれを構成するプロセッサコア)により構成され、メモリなどの記憶装置から必要なデータおよびソフトウェアを読み取り、当該データを対象として当該ソフトウェアにしたがった後述の演算処理を実行する。
(Configuration of image display system)
In this embodiment, the image display system 10 is configured by a computer that exists separately from the remote control device 20 and the work machine 40, and includes a database 102, a communication function element 121, and an image processing function element 122. I have. The database 102 stores and holds captured image data and the like. The database 102 may be composed of a database server capable of mutual communication with the image display system 10 . Each functional element is composed of an arithmetic processing unit (for example, a single-core processor and/or a multi-core processor or a processor core that constitutes this), reads necessary data and software from a storage device such as a memory, and targets the data Calculation processing, which will be described later, is executed according to the software.
 (遠隔操作装置の構成)
 遠隔操作装置20は、遠隔制御装置200と、遠隔入力インターフェース210と、遠隔出力インターフェース220と、遠隔無線通信機器224と、を備えている。遠隔制御装置200は、演算処理装置(例えば、シングルコアプロセッサおよび/またはマルチコアプロセッサもしくはこれを構成するプロセッサコア)により構成され、メモリなどの記憶装置から必要なデータおよびソフトウェアを読み取り、当該データを対象として当該ソフトウェアにしたがった演算処理を実行する。
(Configuration of remote control device)
The remote control device 20 includes a remote control device 200 , a remote input interface 210 , a remote output interface 220 and a remote wireless communication device 224 . The remote control device 200 is configured by an arithmetic processing device (for example, a single-core processor and/or a multi-core processor or a processor core constituting this), reads necessary data and software from a storage device such as a memory, and processes the data. , the arithmetic processing according to the software is executed.
 遠隔入力インターフェース210は、遠隔操作機構211を備えている。遠隔出力インターフェース220は、遠隔画像出力装置221と、を備えている。 The remote input interface 210 includes a remote control mechanism 211. Remote output interface 220 includes a remote image output device 221 .
 遠隔操作機構211には、走行用操作装置と、旋回用操作装置と、ブーム用操作装置と、アーム用操作装置と、バケット用操作装置と、が含まれている。各操作装置は、回動操作を受ける操作レバーを有している。走行用操作装置の操作レバー(走行レバー)は、作業機械40の下部走行体410を動かすために操作される。走行レバーは、走行ペダルを兼ねていてもよい。例えば、走行レバーの基部または下端部に固定されている走行ペダルが設けられていてもよい。旋回用操作装置の操作レバー(旋回レバー)は、作業機械40の旋回機構430を構成する油圧式の旋回モータを動かすために操作される。ブーム用操作装置の操作レバー(ブームレバー)は、作業機械40のブームシリンダ442を動かすために操作される。アーム用操作装置の操作レバー(アームレバー)は、作業機械40のアームシリンダ444を動かすために操作される。バケット用操作装置の操作レバー(バケットレバー)は、作業機械40のバケットシリンダ446を動かすために操作される。 The remote control mechanism 211 includes a traveling operating device, a turning operating device, a boom operating device, an arm operating device, and a bucket operating device. Each operating device has an operating lever that receives a rotating operation. An operating lever (running lever) of the operating device for running is operated to move the lower running body 410 of the work machine 40 . The travel lever may also serve as a travel pedal. For example, a traction pedal may be provided that is fixed to the base or lower end of the traction lever. An operation lever (swing lever) of the swing operation device is operated to move a hydraulic swing motor that constitutes the swing mechanism 430 of the work machine 40 . An operating lever (boom lever) of the boom operating device is operated to move the boom cylinder 442 of the work machine 40 . An operating lever (arm lever) of the arm operating device is operated to move the arm cylinder 444 of the work machine 40 . An operating lever (bucket lever) of the bucket operating device is operated to move the bucket cylinder 446 of the work machine 40 .
 遠隔操作機構211を構成する各操作レバーは、例えば、図2に示されているように、オペレータが着座するためのシートStの周囲に配置されている。シートStは、アームレスト付きのハイバックチェアのような形態であるが、ヘッドレストがないローバックチェアのような形態、または、背もたれがないチェアのような形態など、オペレータが着座できる任意の形態の着座部であってもよい。 For example, as shown in FIG. 2, each control lever that constitutes the remote control mechanism 211 is arranged around the seat St on which the operator sits. The seat St is in the form of a high-back chair with armrests, a low-back chair without a headrest, or a chair without a backrest. may be
 シートStの前方に左右のクローラに応じた左右一対の走行レバー2110が左右横並びに配置されている。一つの操作レバーが複数の操作レバーを兼ねていてもよい。例えば、図2に示されているシートStの左側フレームの前方に設けられている左側操作レバー2111が、前後方向に操作された場合にアームレバーとして機能し、かつ、左右方向に操作された場合に旋回レバーとして機能してもよい。同様に、図2に示されているシートStの右側フレームの前方に設けられている右側操作レバー2112が、前後方向に操作された場合にブームレバーとして機能し、かつ、左右方向に操作された場合にバケットレバーとして機能してもよい。レバーパターンは、オペレータの操作指示によって任意に変更されてもよい。 A pair of left and right travel levers 2110 corresponding to the left and right crawlers are arranged side by side in front of the seat St. One operating lever may serve as a plurality of operating levers. For example, the left operation lever 2111 provided in front of the left frame of the seat St shown in FIG. 2 functions as an arm lever when operated in the longitudinal direction, and when operated in the lateral direction. function as a pivot lever. Similarly, the right operation lever 2112 provided in front of the right frame of the seat St shown in FIG. It may function as a bucket lever in some cases. The lever pattern may be arbitrarily changed by an operator's operation instruction.
 遠隔画像出力装置221は、例えば図2に示されているように、シートStの前方、左斜め前方および右斜め前方のそれぞれに配置された略矩形状の画面を有する中央遠隔画像出力装置2210、左側遠隔画像出力装置2211および右側遠隔画像出力装置2212により構成されている。中央遠隔画像出力装置2210、左側遠隔画像出力装置2211および右側遠隔画像出力装置2212のそれぞれの画面(画像表示領域)の形状およびサイズは同じであってもよく相違していてもよい。 For example, as shown in FIG. 2, the remote image output device 221 includes a central remote image output device 2210 having substantially rectangular screens arranged in front, diagonally forward left, and diagonally forward right of the sheet St. It consists of a left remote image output device 2211 and a right remote image output device 2212 . The shapes and sizes of the respective screens (image display areas) of the central remote image output device 2210, the left remote image output device 2211 and the right remote image output device 2212 may be the same or different.
 図2に示されているように、中央遠隔画像出力装置2210の画面および左側遠隔画像出力装置2211の画面が傾斜角度θ1(例えば、120°≦θ1≦150°)をなすように、左側遠隔画像出力装置2211の右縁が、中央遠隔画像出力装置2210の左縁に隣接している。図2に示されているように、中央遠隔画像出力装置2210の画面および右側遠隔画像出力装置2212の画面が傾斜角度θ2(例えば、120°≦θ2≦150°)をなすように、右側遠隔画像出力装置2212の左縁が、中央遠隔画像出力装置2210の右縁に隣接している。当該傾斜角度θ1およびθ2は同じであっても相違していてもよい。 As shown in FIG. 2, the left remote image is tilted such that the screen of the central remote image output device 2210 and the screen of the left remote image output device 2211 form an inclination angle θ1 (for example, 120°≦θ1≦150°). The right edge of output device 2211 is adjacent to the left edge of central remote image output device 2210 . As shown in FIG. 2, the right remote image is tilted such that the screen of the central remote image output device 2210 and the screen of the right remote image output device 2212 form an inclination angle θ2 (eg, 120°≦θ2≦150°). The left edge of output device 2212 is adjacent to the right edge of central remote image output device 2210 . The tilt angles θ1 and θ2 may be the same or different.
 中央遠隔画像出力装置2210、左側遠隔画像出力装置2211および右側遠隔画像出力装置2212のそれぞれの画面は、鉛直方向に対して平行であってもよく、鉛直方向に対して傾斜していてもよい。中央遠隔画像出力装置2210、左側遠隔画像出力装置2211および右側遠隔画像出力装置2212のうち少なくとも1つの画像出力装置が、複数に分割された画像出力装置により構成されていてもよい。例えば、中央遠隔画像出力装置2210が、略矩形状の画面を有する上下に隣接する一対の画像出力装置により構成されていてもよい。 The respective screens of the central remote image output device 2210, the left remote image output device 2211, and the right remote image output device 2212 may be parallel to the vertical direction or may be inclined with respect to the vertical direction. At least one of the central remote image output device 2210, the left remote image output device 2211 and the right remote image output device 2212 may be composed of a plurality of divided image output devices. For example, the central remote image output device 2210 may comprise a pair of vertically adjacent image output devices having substantially rectangular screens.
 遠隔画像出力装置221が、シートStを取り囲むように湾曲または屈曲した単一の画像出力装置によって構成されていてもよい。単一の画像出力装置が、例えば、中央遠隔画像出力装置2210により構成されていてもよい。遠隔画像出力装置221が、2つの画像出力装置(例えば、中央遠隔画像出力装置2210および左側遠隔画像出力装置2211または右側遠隔画像出力装置2212)によって構成されていてもよい。 The remote image output device 221 may be composed of a single image output device curved or bent to surround the sheet St. A single image output device may be constituted by, for example, the central remote image output device 2210 . The remote image output device 221 may consist of two image output devices (eg, a central remote image output device 2210 and a left remote image output device 2211 or a right remote image output device 2212).
 (作業機械の構成)
 作業機械40は、実機制御装置400と、実機入力インターフェース41と、実機出力インターフェース42と、実機無線通信機器422と、作業機構440と、を備えている。実機制御装置400は、演算処理装置(シングルコアプロセッサまたはマルチコアプロセッサもしくはこれを構成するプロセッサコア)により構成され、メモリなどの記憶装置から必要なデータおよびソフトウェアを読み取り、当該データを対象として当該ソフトウェアにしたがった演算処理を実行する。
(Configuration of working machine)
The working machine 40 includes a real machine control device 400 , a real machine input interface 41 , a real machine output interface 42 , a real machine wireless communication device 422 , and a working mechanism 440 . The actual device control device 400 is composed of an arithmetic processing device (single-core processor or multi-core processor or a processor core that constitutes it), reads necessary data and software from a storage device such as a memory, and processes the data into the software. Execute the arithmetic processing accordingly.
 作業機械40は、例えばクローラショベル(建設機械)であり、図3に示されているように、クローラ式の下部走行体410と、下部走行体410に旋回機構430を介して旋回可能に搭載されている上部旋回体420と、を備えている。上部旋回体420の前方左側部にはキャブ424(運転室)が設けられている。上部旋回体420の前方中央部には作業機構440が設けられている。 The work machine 40 is, for example, a crawler excavator (construction machine), and as shown in FIG. and an upper revolving body 420 . A cab 424 (driver's cab) is provided on the front left side of the upper swing body 420 . A work mechanism 440 is provided in the front central portion of the upper swing body 420 .
 実機入力インターフェース41は、実機操作機構411と、実機撮像装置412と、実機測距装置414と、実機センサ群416と、を備えている。実機操作機構411は、キャブ424の内部に配置されたシートの周囲に遠隔操作機構211と同様に配置された複数の操作レバーを備えている。遠隔操作レバーの操作態様に応じた信号を受信し、当該受信信号に基づいて実機操作レバーを動かす駆動機構またはロボットがキャブ424に設けられている。実機撮像装置412は、例えば、キャブ424の内部に設置され、フロントウィンドウ越しに作業機構440の少なくとも一部(例えば、アタッチメント445)を含む環境を撮像する。フロントウィンドウおよびサイドウィンドウのうち一部または全部が省略されていてもよい。実機測距装置414は、作業機械40の周囲に存在する対象物体までの実空間距離、ひいては実空間位置を測定するための装置であり、例えば、LiDARおよびTOFセンサなどにより構成されている。実機センサ群416は、下部走行体410に対する上部旋回体420の旋回角度を測定するための旋回角度センサ、および、作業機構440の姿勢を表わす姿勢角度を測定するための姿勢角度センサなど、作業機械40の動作状況を測定するためのさまざまなセンサにより構成されている。 The real machine input interface 41 includes a real machine operating mechanism 411 , a real machine imaging device 412 , a real machine distance measuring device 414 , and a real machine sensor group 416 . The actual machine operating mechanism 411 includes a plurality of operating levers arranged around a seat arranged inside the cab 424 in the same manner as the remote operating mechanism 211 . The cab 424 is provided with a drive mechanism or a robot that receives a signal corresponding to the operation mode of the remote control lever and moves the actual machine control lever based on the received signal. The actual machine imaging device 412 is installed inside the cab 424, for example, and images the environment including at least part of the working mechanism 440 (for example, the attachment 445) through the front window. Some or all of the front window and side windows may be omitted. The real machine range finder 414 is a device for measuring the real space distance to a target object existing around the work machine 40, and thus the real space position, and is composed of, for example, a LiDAR and a TOF sensor. The actual machine sensor group 416 includes a turning angle sensor for measuring the turning angle of the upper turning body 420 with respect to the lower traveling body 410, an attitude angle sensor for measuring the attitude angle representing the attitude of the working mechanism 440, and the like. It consists of various sensors for measuring 40 operating conditions.
 実機出力インターフェース42は、実機無線通信機器422を備えている。  The real machine output interface 42 includes a real machine wireless communication device 422 . 
 図3に示されているように、作業機構としての作業機構440は、上部旋回体420に起伏可能に装着されているブーム441と、ブーム441の先端に回動可能に連結されているアーム443と、アーム443の先端に回動可能に連結されているアタッチメント445(例えば、バケット)と、を備えている。作業機構440には、伸縮可能な油圧シリンダにより構成されているブームシリンダ442、アームシリンダ444およびバケットシリンダ446が装着されている。 As shown in FIG. 3, a working mechanism 440 as a working mechanism includes a boom 441 attached to the upper rotating body 420 so as to be able to rise and fall, and an arm 443 rotatably connected to the tip of the boom 441. and an attachment 445 (for example, a bucket) rotatably connected to the tip of the arm 443 . The working mechanism 440 is equipped with a boom cylinder 442, an arm cylinder 444, and a bucket cylinder 446, which are configured by telescopic hydraulic cylinders.
 ブームシリンダ442は、作動油の供給を受けることにより伸縮してブーム441を起伏方向に回動させるように当該ブーム441と上部旋回体420との間に介在する。アームシリンダ444は、作動油の供給を受けることにより伸縮してアーム443をブーム441に対して水平軸回りに回動させるように当該アーム443と当該ブーム441との間に介在する。バケットシリンダ446は、作動油の供給を受けることにより伸縮してアタッチメント445をアーム443に対して水平軸回りに回動させるように当該アタッチメント445と当該アーム443との間に介在する。 The boom cylinder 442 is interposed between the boom 441 and the upper slewing body 420 so as to expand and contract when supplied with hydraulic oil and rotate the boom 441 in the hoisting direction. The arm cylinder 444 is interposed between the arm 443 and the boom 441 so as to expand and contract when supplied with hydraulic oil to rotate the arm 443 about the horizontal axis with respect to the boom 441 . The bucket cylinder 446 is interposed between the attachment 445 and the arm 443 so as to expand and contract when supplied with hydraulic oil to rotate the attachment 445 with respect to the arm 443 about the horizontal axis.
 (機能)
 図4は前記構成の画像表示システムおよび画像表示システムの機能について説明するフローチャートである。当該フローチャートにおいて「C●」というブロックは、記載の簡略のために用いられ、データの送信および/または受信を意味し、当該データの送信および/または受信を条件として分岐方向の処理が実行される条件分岐を意味している。当該フローチャートは制御周期ごとに繰り返され、「END」に至った後で「START」に戻って以後の処理が実行される。
(function)
FIG. 4 is a flow chart for explaining the image display system having the above configuration and the function of the image display system. In the flowchart, the block "C●" is used for simplification of the description, means transmission and/or reception of data, and processing in the branch direction is executed on the condition of transmission and/or reception of the data. It means a conditional branch. The flowchart is repeated for each control cycle, and after reaching "END", the process returns to "START" and the subsequent processes are executed.
 遠隔操作装置20において、オペレータにより遠隔入力インターフェース210を通じた環境確認要求操作(第2指定操作)の有無が判定される(図4/STEP210)。「環境確認要求」は、例えば、オペレータが遠隔操作を意図する作業機械40に環境確認要求操作を指示するための遠隔入力インターフェース210におけるタップなどの操作である。当該判定結果が否定的である場合(図4/STEP210‥NO)、STARTに戻る。その一方、当該判定結果が肯定的である場合(図4/STEP210‥YES)、遠隔無線通信機器224を通じて、画像表示システム10に対して環境確認要求が送信される(図4/STEP211)。 In the remote operation device 20, it is determined whether or not the operator has performed an environment confirmation request operation (second specified operation) through the remote input interface 210 (FIG. 4/STEP 210). An "environment confirmation request" is, for example, an operation such as a tap on the remote input interface 210 for the operator to instruct the work machine 40 intended to be remotely operated to perform an environment confirmation request operation. If the determination result is negative (FIG. 4/STEP 210 . . . NO), return to START. On the other hand, if the determination result is affirmative (FIG. 4/STEP 210 . . . YES), an environment confirmation request is transmitted to the image display system 10 through the remote wireless communication device 224 (FIG. 4/STEP 211).
 画像表示システム10において、環境確認要求が受信された場合、通信機能要素121により当該環境確認要求が該当する作業機械40に対して送信される(図4/C10)。環境確認要求が、作業機械40に対して画像表示システム10を経由せずに送信されてもよい。 When the image display system 10 receives an environment confirmation request, the communication function element 121 transmits the environment confirmation request to the relevant work machine 40 (FIG. 4/C10). The environment confirmation request may be transmitted to work machine 40 without going through image display system 10 .
 作業機械40において、実機無線通信機器422を通じて環境確認要求が受信された場合(図4/C40)、実機撮像装置412により作業対象物Obj(例えば、作業機械40の周囲に存在する地面、土砂、資材および/または建造物など)の撮像画像が取得されるとともに、実機測距装置414により作業対象物Objの3次元画像が取得され、かつ、当該3次元画像を表わす3次元画像データが実機無線通信機器422を通じて画像表示システム10に対して送信される(図4/STEP410)。 When the work machine 40 receives an environment confirmation request through the actual machine wireless communication device 422 (FIG. 4/C40), the actual machine imaging device 412 detects the work object Obj (for example, the ground, earth and sand, materials and/or buildings) are acquired, a three-dimensional image of the work object Obj is acquired by the actual machine distance measuring device 414, and three-dimensional image data representing the three-dimensional image is transmitted to the actual machine wirelessly. It is transmitted to the image display system 10 through the communication device 422 (FIG. 4/STEP 410).
 3次元画像は、実機測距装置414を通じて取得された作業対象物Objまでの方向と距離または作業対象物Objの実空間位置を有する画像である。「実空間位置」は、実空間座標系における座標値(例えば、緯度、経度および高度)または実機座標系(作業機械40に対して位置または姿勢が固定された座標系)における座標値により定義される。撮像画像に作業対象物Objが映り込んでいる場合、3次元画像の各画素に対応する当該作業対象物Objの表面の点群を構成する各点の実空間位置が、当該各画素の画素値として含まれている。 A three-dimensional image is an image having the direction and distance to the work object Obj or the real space position of the work object Obj acquired through the actual rangefinder 414 . A “real space position” is defined by coordinate values (for example, latitude, longitude and altitude) in a real space coordinate system or coordinate values in a real machine coordinate system (a coordinate system whose position or orientation is fixed with respect to the work machine 40). be. When the work object Obj is reflected in the captured image, the real space position of each point forming the point group on the surface of the work object Obj corresponding to each pixel of the three-dimensional image is the pixel value of each pixel. included as
 3次元画像データは、別個のデータである実機撮像装置412を通じて取得された撮像画像またはこれに相当するモデル画像のデータと、実機測距装置414を通じて取得された距離または実空間位置のデータと、の組み合わせとして取得され、送信されてもよい。 The three-dimensional image data consists of data of a captured image obtained through the actual imaging device 412 or a model image equivalent thereto, distance or real space position data obtained through the actual ranging device 414, and may be acquired and transmitted as a combination of
 少なくとも作業対象物Objが映り込んでいる撮像画像は、実機撮像装置412ではなく、作業機械40の周囲に設置された撮像装置、無人飛行機に搭載されている撮像装置および/または現場作業員により携帯されている機器の撮像装置を通じて取得されてもよい。3次元画像の画素値である距離または実空間位置は、作業機械40の周囲に設置された測距装置および/または無人飛行機に搭載されている測距装置を通じて取得されてもよい。 A captured image including at least the work object Obj is not captured by the actual imaging device 412, but is captured by an imaging device installed around the working machine 40, an imaging device mounted on an unmanned airplane, and/or carried by a field worker. It may be acquired through an imaging device of the equipment that is being used. The distance or real space position, which is the pixel value of the three-dimensional image, may be obtained through a rangefinder installed around work machine 40 and/or a rangefinder mounted on an unmanned aerial vehicle.
 実機撮像装置412および実機測距装置414の組み合わせに代えて、作業機械40に搭載されているステレオカメラ(左右一対の実機撮像装置412)を通じて作業対象物Objの撮像画像および3次元画像が取得されてもよい。 Instead of the combination of the actual imaging device 412 and the actual distance measuring device 414, a stereo camera (a pair of left and right actual imaging devices 412) mounted on the work machine 40 is used to acquire a captured image and a three-dimensional image of the work object Obj. may
 画像表示システム10において、通信機能要素121により3次元画像データが受信された場合(図4/C11)、画像処理機能要素122により当該3次元画像データに応じた作業環境画像データが遠隔操作装置20に対して送信される(図4/STEP110)。作業環境画像データは、3次元画像データの基礎となった撮像画像データ(画素値として実空間位置および距離情報が含まれていない)そのもののほか、撮像画像データに基づいて生成された模擬的な作業環境画像を表わす画像データである。 In the image display system 10, when three-dimensional image data is received by the communication function element 121 (FIG. 4/C11), the image processing function element 122 outputs work environment image data corresponding to the three-dimensional image data to the remote control device 20. (FIG. 4/STEP 110). The work environment image data includes the captured image data itself (which does not include the real space position and distance information as pixel values) that is the basis of the 3D image data, as well as the simulated image data generated based on the captured image data. This is image data representing a working environment image.
 遠隔操作装置20において、遠隔無線通信機器224を通じて作業環境画像データが受信された場合(図4/C21)、遠隔制御装置200により、作業環境画像データに応じた作業環境画像が遠隔画像出力装置221に出力される(図4/STEP212)。 When the remote operation device 20 receives the working environment image data through the remote wireless communication device 224 (FIG. 4/C21), the remote control device 200 outputs the working environment image corresponding to the working environment image data to the remote image output device 221. (FIG. 4/STEP 212).
 これにより、例えば、図5に示されているように、キャブ424を画定する窓枠を通じて、キャブ424の前方において、作業機構440の一部であるブーム441、アーム443およびアタッチメント445、ならびに、対象物体Objである土砂などが映り込んでいる作業環境画像が遠隔画像出力装置221に出力される。 This allows, for example, as shown in FIG. A work environment image in which earth and sand, which are objects Obj, are reflected is output to the remote image output device 221 .
 作業機械40において、実機センサ群416により、作業機構440の第1指標点p1の実空間位置が取得され、かつ、当該第1指標点p1の実空間位置を表わすデータが実機無線通信機器422を通じて画像表示システム10に対して送信される(図4/STEP412)。 In working machine 40, real machine sensor group 416 acquires the real space position of first index point p1 of working mechanism 440, and data representing the real space position of first index point p1 is transmitted to the real machine wireless communication device. 422 to the image display system 10 (FIG. 4/STEP 412).
 3次元画像データの送信処理(図4/STEP410参照)および第1指標点p1の実空間位置を表わすデータの送信処理(図4/STEP412参照)は、ひとまとまりのデータの送信処理として同時に実行されてもよい。 The process of transmitting three-dimensional image data (see STEP 410 in FIG. 4) and the process of transmitting data representing the real space position of the first index point p 1 (see STEP 412 in FIG. 4) are simultaneously executed as a process of transmitting a set of data. may be
 具体的には、アーム443の先端部(アームトップ)に該当する点が第1指標点p1として定義されている。作業機構440において定義されている第1指標点p1の実空間位置が、作業機械40に搭載されている実機センサ群416を構成する姿勢角度センサの出力信号、ならびに、当該作業機構440の各構成要素のサイズに基づいて順運動学的に計算される。姿勢角度センサは、上部旋回体420に対するブーム441の起伏角度、ブーム441との連結部におけるアーム443の回動角度、および、アーム443との連結部におけるアタッチメント445の回動角度のうち少なくとも一部に応じた信号を出力するように構成されている。作業機構440を構成するブーム441、アーム443およびアタッチメント445などの任意の点が第1指標点p1として定義されていてもよい。 Specifically, a point corresponding to the tip (arm top) of the arm 443 is defined as the first index point p1 . The real space position of the first index point p 1 defined in the working mechanism 440 is the output signal of the attitude angle sensor that constitutes the real machine sensor group 416 mounted on the working machine 40, and the output signal of each working mechanism 440. Calculated forward kinematics based on component sizes. The attitude angle sensor detects at least part of the hoisting angle of the boom 441 with respect to the upper swing body 420, the rotation angle of the arm 443 at the joint with the boom 441, and the rotation angle of the attachment 445 at the joint with the arm 443. is configured to output a signal corresponding to An arbitrary point such as the boom 441, the arm 443 and the attachment 445 that constitute the working mechanism 440 may be defined as the first index point p1 .
 3次元画像に作業機構440の第1指標点p1が映り込んでいる場合、実機制御装置400により当該3次元画像に基づいて当該第1指標点p1の実空間位置が認識されてもよい。具体的には、3次元画像の画像解析処理(グレースケール化処理、エッジ抽出処理および/またはパターンマッチング処理など)により、作業機構440において第1指標点p1に該当する一または複数の画素の画素値の平均値が、当該第1指標点p1の実空間位置として認識される。姿勢角度センサを用いて認識された作業機構440の各点の実空間位置および3次元画像の画素値である実空間位置のうち一方に基づき、他方が補正されてもよい。 When the first index point p 1 of the work mechanism 440 is reflected in the three-dimensional image, the real space position of the first index point p 1 may be recognized by the actual machine control device 400 based on the three-dimensional image. . Specifically, image analysis processing (grayscaling processing, edge extraction processing, and/or pattern matching processing, etc.) of the three-dimensional image causes one or more pixels corresponding to the first index point p 1 in the working mechanism 440 to be The average value of the pixel values is recognized as the real space position of the first index point p1 . Based on one of the real space position of each point of working mechanism 440 recognized using the attitude angle sensor and the real space position that is the pixel value of the three-dimensional image, the other may be corrected.
 画像表示システム10において、第1指標点p1の実空間位置を表わすデータが受信された場合(図4/C12)、当該第1指標点p1の実空間位置および3次元画像に含まれている対象物体Objの表面の点群を構成する各点の実空間位置または3次元形状に基づき、第2指標点p2の実空間位置が画像処理機能要素122により認識される(図4/STEP112)。第2指標点p2は、第1指標点p1が対象物体Objの表面に対して投影された結果としての点である。対象物体Objの表面に対する第1指標点p1の投影方向は、例えば鉛直方向である。この場合、対象物体Objの表面の各点のうち、第1指標点p1と水平位置(x(経度)、y(経度))が同じまたは最も近い一の点の実空間位置、または、第1指標点p1と水平位置が近い複数の点の重心が第2指標点p2として認識される。 When the image display system 10 receives the data representing the real space position of the first index point p 1 (FIG. 4/C12), the real space position of the first index point p 1 and the three-dimensional image include The real space position of the second index point p 2 is recognized by the image processing functional element 122 based on the real space position or three-dimensional shape of each point forming the point group on the surface of the target object Obj (FIG. 4/STEP 112 ). The second index point p2 is a point resulting from projection of the first index point p1 onto the surface of the target object Obj. The projection direction of the first index point p 1 with respect to the surface of the target object Obj is, for example, the vertical direction. In this case, among the points on the surface of the target object Obj, the real space position of one point whose horizontal position (x (longitude), y (longitude)) is the same as or closest to the first index point p 1 , or The center of gravity of a plurality of points horizontally close to the first index point p 1 is recognized as the second index point p 2 .
 作業機械40または上部旋回体420が実空間の鉛直軸線に対して傾斜している場合、対象物体Objの表面に対する第1指標点p1の投影方向が、実空間の鉛直軸線に対して同様に傾斜した方向に定義されていてもよい。作業機械40の鉛直軸線に対する傾斜角度は、実機センサ群416を構成する機体傾斜角度センサ(例えば、ジャイロセンサ)により計測される。 When the work machine 40 or the upper revolving body 420 is tilted with respect to the vertical axis of the real space, the projection direction of the first index point p1 with respect to the surface of the target object Obj is similarly with respect to the vertical axis of the real space. It may be defined in an oblique direction. The tilt angle of the work machine 40 with respect to the vertical axis is measured by a body tilt angle sensor (for example, a gyro sensor) that constitutes the actual machine sensor group 416 .
 3次元画像に作業機構440の第1指標点p1が映り込んでいる場合、実機制御装置400による当該第1指標点p1の実空間位置の認識およびデータの送信(図4/STEP412)が省略されてもよい。この場合、画像処理機能要素122により、3次元画像の画像解析処理(グレースケール化処理、エッジ抽出処理および/またはパターンマッチング処理など)により、作業機構440において第1指標点p1として定義されている点に該当する一または複数の画素が認識され、当該画素の画素値またはその平均値が、当該第1指標点p1の実空間位置として認識される。 When the first index point p 1 of the working mechanism 440 is reflected in the three-dimensional image, the recognition of the real space position of the first index point p 1 by the real machine control device 400 and the transmission of data (FIG. 4/STEP 412) May be omitted. In this case, the image processing functional element 122 performs image analysis processing (such as grayscaling, edge extraction, and/or pattern matching) on the three-dimensional image to define the first index point p 1 in the working mechanism 440. One or more pixels corresponding to the point are recognized, and the pixel value of the pixels or the average value thereof is recognized as the real space position of the first index point p1 .
 さらに、画像表示システム10において、画像処理機能要素122により、第2指標点p2を示す指標画像Mを作業環境画像に重畳させた指標画像データが遠隔操作装置20に対して送信される(図4/STEP114)。当該指令には、第2指標点p2の実空間位置および/または3次元画像もしくは作業環境画像における第2指標点p2に相当する画素位置(u,v)が含まれている。 Further, in the image display system 10, the index image data in which the index image M indicating the second index point p2 is superimposed on the working environment image is transmitted to the remote control device 20 by the image processing functional element 122 (Fig. 4/STEP 114). The command includes the real space position of the second index point p2 and/or the pixel position (u, v) corresponding to the second index point p2 in the three-dimensional image or work environment image.
 遠隔操作装置20において、遠隔無線通信機器224を通じて指標画像データが受信された場合(図4/C22)、遠隔制御装置200により、当該指令に応じた指標画像Mが作業環境画像に重畳された形態で遠隔画像出力装置221に出力される(図4/STEP214)。 When the remote control device 20 receives the index image data through the remote wireless communication device 224 (FIG. 4/C22), the remote control device 200 superimposes the index image M corresponding to the command on the working environment image. is output to the remote image output device 221 (FIG. 4/STEP 214).
 画像表示システム10から遠隔操作装置20に対する作業環境画像データの送信処理(図4/STEP110参照)および指標画像データの送信処理(図4/STEP114参照)は、ひとまとまりのデータの送信処理として同時に実行されてもよい。この場合、遠隔操作装置20において、作業環境画像の出力処理(図4/STEP212参照)および当該作業環境画像に重畳される指標画像の出力処理(図4/STEP214参照)が、単一の画像出力処理として同時に実行されてもよい。 The process of transmitting work environment image data (see FIG. 4/STEP 110) and the process of transmitting index image data (see FIG. 4/STEP 114) from the image display system 10 to the remote control device 20 are simultaneously executed as a batch of data transmission process. may be In this case, in the remote control device 20, output processing of the work environment image (see FIG. 4/STEP 212) and output processing of the index image superimposed on the work environment image (see FIG. 4/STEP 214) are performed as a single image output. They may be executed simultaneously as processes.
 これにより、例えば、図5に示されているように、第1指標点p1が対象物体Obj(例えば、作業機械40の周囲にある土砂等)の表面に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳された形態で遠隔画像出力装置221に出力される。ここで、指標画像Mは、実空間における鉛直方向について第2指標点p2に対して向かう三角形状または矢印形状の図形の画像である。図5に示されているように、撮像画像に第1指標点p1および第2指標点p2が重畳表示されてもよく、第1指標点p1および/または第2指標点p2の重畳表示が省略されていてもよい。 As a result, for example, as shown in FIG. 5, a second index is obtained as a result of projecting the first index point p 1 onto the surface of the target object Obj (for example, earth and sand around the working machine 40). The index image M indicating the point p2 is output to the remote image output device 221 in a form superimposed on the working environment image. Here, the index image M is an image of a triangular or arrow-shaped figure pointing toward the second index point p2 in the vertical direction in real space. As shown in FIG. 5, the first index point p1 and the second index point p2 may be superimposed on the captured image, and the first index point p1 and/or the second index point p2 The superimposed display may be omitted.
 遠隔操作装置20において、遠隔制御装置200により遠隔操作機構211の操作態様が認識され、かつ、遠隔無線通信機器224を通じて、当該操作態様に応じた遠隔操作指令が画像表示システム10に対して送信される(図4/STEP220)。 In the remote control device 20, the remote control device 200 recognizes the operation mode of the remote control mechanism 211, and transmits a remote control command corresponding to the operation mode to the image display system 10 through the remote wireless communication device 224. (FIG. 4/STEP 220).
 画像表示システム10において、画像処理機能要素122により当該遠隔操作指令が受信された場合、通信機能要素121により、当該遠隔操作指令が作業機械40に対して送信される(図4/C14)。遠隔操作指令は、画像表示システム10を経由せずに作業機械40に対して送信されてもよい。 In the image display system 10, when the image processing functional element 122 receives the remote operation instruction, the communication functional element 121 transmits the remote operation instruction to the working machine 40 (FIG. 4/C14). The remote control command may be transmitted to work machine 40 without going through image display system 10 .
 作業機械40において、実機制御装置400により、実機無線通信機器422を通じて操作指令が受信された場合(図4/C44)、作業機構440等の動作が制御される(図4/STEP420)。例えば、アタッチメント445により作業機械40の前方の対象物体Objである土砂をすくい、上部旋回体420を旋回させたうえでアタッチメント445から当該土砂を落とす作業が実行される。 In the work machine 40, when the actual machine control device 400 receives an operation command through the actual machine wireless communication device 422 (FIG. 4/C44), the operation of the working mechanism 440 and the like is controlled (FIG. 4/STEP 420). For example, the attachment 445 scoops up earth and sand, which is the target object Obj in front of the working machine 40 , rotates the upper revolving body 420 , and then removes the earth and sand from the attachment 445 .
(作用効果)
 当該構成の画像表示システムを構成する画像表示システムによれば、遠隔出力インターフェース220を構成する遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mを通じて、作業機械40を構成する作業機構440(アタッチメント445)と対象物体Objの表面における第2指標点p2の位置をオペレータに把握させることができる(図5参照)。第2指標点p2は、第1指標点p1が対象物体Objの表面に投影された結果であり、このため、作業機構440の第1指標点p1を除く不要な部位の位置情報がオペレータに提供されることが回避され、作業機構440と対象物体Objとの位置関係の当該オペレータによる認識精度の向上が図られる。
(Effect)
According to the image display system that constitutes the image display system with this configuration, the work machine 40 can be viewed through the work environment image output to the remote image output device 221 that constitutes the remote output interface 220 and the index image M superimposed thereon. The operator can grasp the working mechanism 440 (attachment 445) and the position of the second index point p2 on the surface of the target object Obj (see FIG. 5). The second index point p2 is the result of projecting the first index point p1 onto the surface of the target object Obj. This prevents the operator from being provided with the information, thereby improving the recognition accuracy by the operator of the positional relationship between the working mechanism 440 and the target object Obj.
 図6A~図6Cのそれぞれには、地面を掘削する場合のアームトップとアタッチメント445の位置関係が示されている。作業機構440は、アタッチメント445の接続点であるアームトップの下に最も強い力をかけることができる。そのことを考慮して、通常、オペレータは、アタッチメント445の先端をアームトップ下またはそれよりも遠方側における地面に接触させた後、先端がアームトップ下側に来るようにアタッチメント445を動かし、最終的には先端部がアームトップより手前側になるように操作する。つまり、アタッチメント445による掘削の一連の動作を考えた場合、作業機構440の位置指標としては、アタッチメント445の先端部よりアームトップの方が適している場合が多い。 6A to 6C each show the positional relationship between the arm top and the attachment 445 when excavating the ground. Working mechanism 440 can exert the strongest force under the arm top, which is the connection point for attachment 445 . Taking this into account, the operator usually contacts the tip of the attachment 445 with the ground below or farther from the arm top, and then moves the attachment 445 so that the tip is below the arm top. Ideally, operate so that the tip is closer to you than the arm top. In other words, when considering a series of excavation operations by the attachment 445 , the arm top is often more suitable than the tip of the attachment 445 as the position index of the working mechanism 440 .
 さらに、アタッチメント445を上述のバケットの他に、ブレーカ、グラップル、リフティングマグネットなどに取り替えることができるが、アタッチメント445を取り替えても「アームトップ」の位置が変わらないため、同じ画像表示が適用できるという利点がある。 In addition, the attachment 445 can be replaced with a breaker, grapple, lifting magnet, etc. in addition to the bucket described above, but since the position of the "arm top" does not change even if the attachment 445 is replaced, the same image display can be applied. There are advantages.
 また、指標画像Mは、対象物体Objの表面における第2指標点p2に対して指向性を有する、あるいは略三角形の頂点あるいは矢印などによりその位置を指し示す画像である(図5参照)。このため、対象物体Objの表面の3次元形状に関してオペレータの錯誤を回避しながら、作業機構440、特に第1指標点p1が定義されているアタッチメント445と対象物体Objとの位置関係の当該オペレータによる認識の容易性の向上が図られる。 Also, the index image M is an image that has directivity with respect to the second index point p2 on the surface of the target object Obj, or that indicates the position by a substantially triangular vertex or an arrow (see FIG. 5). Therefore, while avoiding the operator's mistake regarding the three-dimensional shape of the surface of the target object Obj, the operator can determine the positional relationship between the working mechanism 440, particularly the attachment 445 in which the first index point p1 is defined, and the target object Obj. The ease of recognition is improved by
 (本発明の他の実施形態)
 前記実施形態では、画像表示システム10およびこれ構成する通信機能要素121および画像処理機能要素122が遠隔操作装置20および作業機械40とは別個に存在するコンピュータにより構成されていたが、他の実施形態として、遠隔操作装置20および/または作業機械40に画像表示システムが搭載され、遠隔制御装置200および/または実機制御装置400により通信機能要素121および/または画像処理機能要素122が構成されていてもよい。その場合、画像表示システム10における通信機能を省略することができる。
(Another embodiment of the present invention)
In the above-described embodiment, the image display system 10 and the communication function element 121 and the image processing function element 122 that constitute it are configured by a computer that exists separately from the remote control device 20 and the work machine 40, but other embodiments , an image display system is mounted on the remote control device 20 and/or the work machine 40, and the communication function element 121 and/or the image processing function element 122 are configured by the remote control device 200 and/or the actual machine control device 400. good. In that case, the communication function in the image display system 10 can be omitted.
 前記実施形態では、第1指標点p1がアームトップとして定義されていたが、アタッチメント445の先端部に定義されていてもよい。その場合、第1指標点p1が対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mによって、オペレータはアタッチメント445と対象物体Objとの接触に対する位置関係の認識精度の向上を図ることができる。 Although the first index point p 1 was defined as the arm top in the above embodiment, it may be defined at the tip of the attachment 445 . In that case, the index image M showing the second index point p 2 as a result of projecting the first index point p 1 onto the surface of the target object Obj allows the operator to determine the position of the attachment 445 with respect to the contact of the target object Obj. It is possible to improve the recognition accuracy of the relationship.
 指標画像出力指令に応じて、作業機構440において第1指標点p1が配置されているアタッチメント(例えば、アタッチメント445)の変位態様に応じた方向に、第1指標点p1が対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力されてもよい。作業機構440またはアタッチメントの変位態様は、実機センサ群416を構成する姿勢角度センサおよび/または旋回角度センサに基づいて認識される。作業機構440またはアタッチメントの変位態様は、遠隔操作機構211を構成する操作レバーの操作態様に基づいて認識されてもよい。 In response to the index image output command, the first index point p 1 moves toward the target object Obj in a direction corresponding to the displacement mode of the attachment (for example, the attachment 445) on which the first index point p 1 is arranged in the working mechanism 440. An index image M showing the second index point p 2 as a result of being projected onto the surface may be superimposed on the working environment image and output to the remote image output device 221 . The displacement mode of the working mechanism 440 or the attachment is recognized based on the attitude angle sensor and/or the turning angle sensor that constitute the actual machine sensor group 416 . The displacement mode of the working mechanism 440 or the attachment may be recognized based on the operation mode of the control lever that constitutes the remote control mechanism 211 .
 例えば、図7Aに示されているように、アタッチメント445が鉛直下方に変位している場合、第1指標点p1が対象物体Objの表面に対して鉛直下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。図7Bに示されているように、アタッチメント445が作業機械40から見て前方下方に変位している場合、第1指標点p1が対象物体Objの表面に対して作業機械40の前方下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。図7Cに示されているように、アタッチメント445が作業機械40から見て後方下方に変位している場合、第1指標点p1が対象物体Objの表面に対して作業機械40の後方下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。 For example, as shown in FIG. 7A, when the attachment 445 is displaced vertically downward, the first index point p 1 is projected vertically downward onto the surface of the target object Obj, resulting in the second An index image M indicating the index point p 2 is superimposed on the work environment image and output to the remote image output device 221 . As shown in FIG. 7B, when the attachment 445 is displaced forward and downward as viewed from the work machine 40, the first index point p1 is forward and downward of the work machine 40 with respect to the surface of the target object Obj. An index image M indicating the second index point p 2 as a result of the projection is superimposed on the working environment image and output to the remote image output device 221 . As shown in FIG. 7C, when the attachment 445 is displaced rearward and downward as viewed from the work machine 40, the first index point p 1 is rearward and downward of the work machine 40 with respect to the surface of the target object Obj. An index image M indicating the second index point p 2 as a result of the projection is superimposed on the working environment image and output to the remote image output device 221 .
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mを通じて、作業機械40を構成する作業機構440の変位態様に応じた方向について、当該作業機構440の第1指標点p1と当該作業環境画像における対象物体Objの表面における第2指標点p2との位置関係について、オペレータの認識精度の向上を図ることができる。 According to the image display system having this configuration, the displacement mode of the working mechanism 440 constituting the working machine 40 is displayed through the working environment image output to the remote image output device 221 of the remote controller 20 and the index image M superimposed thereon. To improve the operator's recognition accuracy for the positional relationship between the first index point p1 of the working mechanism 440 and the second index point p2 on the surface of the target object Obj in the working environment image in the direction corresponding to can be done.
 指標画像出力指令に応じて、第1指標点p1が作業機構440またはアタッチメント445の姿勢態様に応じた方向に、対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力されてもよい。 A second index point p 2 as a result of projecting the first index point p 1 onto the surface of the target object Obj in a direction corresponding to the posture mode of the working mechanism 440 or the attachment 445 according to the index image output command. may be superimposed on the working environment image and output to the remote image output device 221 .
 例えば、図8Aに示されているように、対象物への作用に指向性を有するアタッチメント445であるブレーカ445の対象物を打突する打突部位であるチゼルが鉛直下方に指向している場合、第1指標点p1が対象物体Objの表面に対して鉛直下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。図8Bに示されているように、ブレーカ445のチゼルが作業機械40から見て前方下方に指向している場合、第1指標点p1が対象物体Objの表面に対して作業機械40の前方下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。図8Cに示されているように、ブレーカ445のチゼルが作業機械40から見て後方下方に指向している場合、第1指標点p1が対象物体Objの表面に対して作業機械40の後方下方に投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。 For example, as shown in FIG. 8A, when the chisel, which is the hitting portion of the breaker 445, which is the attachment 445 having directivity to the target, is oriented vertically downward. , the index image M showing the second index point p2 as a result of projecting the first index point p1 vertically downward onto the surface of the target object Obj is superimposed on the work environment image, and is output to the remote image output device 221. output. As shown in FIG. 8B, when the chisel of breaker 445 is oriented forward and downward as viewed from work machine 40, first index point p 1 is in front of work machine 40 with respect to the surface of target object Obj. An index image M indicating the second index point p 2 as a result of downward projection is superimposed on the work environment image and output to the remote image output device 221 . As shown in FIG. 8C, when the chisel of breaker 445 is oriented rearward and downward as viewed from work machine 40, first index point p1 is positioned rearward of work machine 40 with respect to the surface of target object Obj. An index image M indicating the second index point p 2 as a result of downward projection is superimposed on the work environment image and output to the remote image output device 221 .
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mを通じて、作業機械40を構成する作業機構440またはアタッチメント445の姿勢態様に応じた対象物へ作用する位置と方向をオペレータが容易に認識できるため、オペレータの認識精度を向上させることができ、作業の効率を向上させることができる。 According to the image display system having this configuration, the work mechanism 440 or the attachment 445 constituting the work machine 40 is displayed through the work environment image output to the remote image output device 221 of the remote operation device 20 and the index image M superimposed thereon. Since the operator can easily recognize the position and direction acting on the object according to the posture of the operator, the recognition accuracy of the operator can be improved, and the work efficiency can be improved.
 第1指標点はアタッチメント445に定義され、特定の遠隔操作指令の送信が開始されてから送信が継続されている(特定の操作が継続されている)間は、第1指標点の位置情報を更新せず操作指令が送信される直前の第1指標点p1の位置のまま維持されてもよい。 The first index point is defined in the attachment 445, and while the transmission of a specific remote control command is started and continues (the specific operation continues), the position information of the first index point is The position of the first index point p1 immediately before the operation command is transmitted may be maintained without being updated.
 例えば、遠隔操作機構のレバーにアタッチメント445であるブレーカ445を作動させるプッシュ推知である操作スイッチを設け、遠隔操作機構211によってブレーカ445が作動するよう操作されると、遠隔操作装置20より作業機械40にブレーカ445を作動させる遠隔操作指令が送信されると共に、画像表示システム10に第1指標点p1の位置情報の更新を行わないよう更新停止信号が送信される。また、更新停止信号は操作スイッチが押されている間、継続して送信される。これにより、第1指標点p1の位置情報は、操作スイッチが操作される直前の位置情報が操作を継続している間維持される。操作スイッチが押されなくなると、画像表示システム10に対する更新停止信号は送信されなくなる。これにより、第1指標点p1の位置情報の更新が再開される。 For example, an operation switch that operates a breaker 445 that is an attachment 445 is provided on the lever of the remote control mechanism, and when the breaker 445 is operated by the remote control mechanism 211, the working machine 40 is controlled by the remote control device 20. A remote control command to operate the breaker 445 is sent to the image display system 10, and an update stop signal is sent to the image display system 10 so as not to update the position information of the first index point p1 . Also, the update stop signal is continuously transmitted while the operation switch is being pressed. As a result, the positional information of the first index point p1 is maintained while the positional information immediately before the operation switch is operated continues. When the operation switch is no longer pressed, the update stop signal is no longer sent to the image display system 10 . As a result, updating of the position information of the first index point p1 is resumed.
 当該構成の画像表示システムによれば、アタッチメント445を作動させている間、第1指標点の位置情報の更新を行わない。したがって、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mが、アタッチメント445が作動することで発生するアタッチメント445の振動によって第1指標点が振動することで振動する。このことにより、指標画像Mを注視して遠隔操作しているオペレータに酔いを発生させる現象を防止することができる。 According to the image display system with this configuration, the position information of the first index point is not updated while the attachment 445 is being operated. Therefore, the work environment image output to the remote image output device 221 of the remote control device 20 and the index image M superimposed thereon are vibrated at the first index point by the vibration of the attachment 445 caused by the operation of the attachment 445. vibrate by doing As a result, it is possible to prevent a phenomenon in which the operator, who is performing remote control while gazing at the index image M, becomes sick.
 前記のように、作業機構440またはアタッチメントの変位態様または姿勢態様に応じた方向に、第1指標点p1が対象物体Objの表面に対して投影された結果として第2指標点p2が定義される場合、作業環境画像において立体的な指標画像Mが遠隔操作装置20の遠隔画像出力装置221に出力されてもよい。 As described above, the second index point p2 is defined as a result of projecting the first index point p1 onto the surface of the target object Obj in a direction corresponding to the displacement mode or posture mode of the working mechanism 440 or attachment. In this case, a stereoscopic index image M may be output to the remote image output device 221 of the remote control device 20 in the work environment image.
 例えば、第1指標点p1が対象物体Objの表面に対して鉛直下方に投影された結果として第2指標点p2が定義されている場合(図7Aおよび図8A参照)、図9Aに示されているように実空間鉛直方向に平行な中心軸線を有する、実空間下方に頂点が向けられたような略円錐状の指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。第1指標点p1が対象物体Objの表面に対して作業機械40の前方下方に投影された結果としての第2指標点p2が定義されている場合(図7Bおよび図8B参照)、図9Bに示されているように頂点を実空間前方下方に向けたような略円錐状の指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。第1指標点p1が対象物体Objの表面に対して作業機械40の後方下方に投影された結果として第2指標点p2が定義されている場合(図7Cおよび図8C参照)、図9Cに示されているように頂点を実空間後方下方に向けたような略円錐状の指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。 For example, when the second index point p 2 is defined as a result of projecting the first index point p 1 vertically downward onto the surface of the target object Obj (see FIGS. 7A and 8A), FIG. As shown, a substantially conical index image M with a central axis parallel to the vertical direction of the real space and with the apex directed downward in the real space is superimposed on the work environment image and output to the remote image output device 221. be done. When the second index point p 2 is defined as a result of projecting the first index point p 1 onto the surface of the target object Obj to the front and lower side of the work machine 40 (see FIGS. 7B and 8B), the figure As shown in 9B, a substantially conical index image M whose apex is directed forward and downward in real space is superimposed on the work environment image and output to the remote image output device 221 . When the second index point p 2 is defined as a result of projecting the first index point p 1 on the surface of the target object Obj to the rear and downward direction of the work machine 40 (see FIGS. 7C and 8C), FIG. 9C 2, a substantially conical index image M whose apex is directed backward and downward in the real space is superimposed on the work environment image and output to the remote image output device 221 .
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される指標画像Mが立体的な画像であるため、当該指標画像Mの出力形態を通じて、作業機構440の第1指標点p1と対象物体Objの表面における第2指標点p2との位置関係をオペレータにより容易に把握させることができる。 According to the image display system having this configuration, the index image M output to the remote image output device 221 of the remote control device 20 is a three-dimensional image. The operator can easily grasp the positional relationship between the first index point p1 and the second index point p2 on the surface of the target object Obj.
 作業機構440の変位態様に応じて位置が異なる第1指標点p1が対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力されてもよい。 An index image M showing a second index point p2 as a result of projecting the first index point p1 whose position differs according to the displacement mode of the working mechanism 440 onto the surface of the target object Obj is superimposed on the work environment image. and output to the remote image output device 221 of the remote operation device 20 .
 例えば、下部走行体410に対して上部旋回体420の旋回していない場合、図10Aに示されているように、バケット445の先端部中央点が第1指標点p1として定義される。その一方、遠隔操作機構211および/または実機操作機構411の操作態様に応じて、あるいは、実機センサ群416の出力信号に基づき、下部走行体410に対して上部旋回体420が上から見て反時計回りに旋回すると推定もしくは予測されるまたは計測された場合(左向きの白矢印参照)、図10Bに示されているようにバケット445の先端部左寄りの点が第1指標点p1として定義される。また、遠隔操作機構211および/または実機操作機構411の操作態様に応じて、あるいは、実機センサ群416の出力信号に基づき、下部走行体410に対して上部旋回体420が上から見て時計回りに旋回すると推定もしくは予測されるまたは計測された場合(右向きの白矢印参照)、図10Cに示されているようにバケット445の先端部右寄りの点が第1指標点p1として定義される。そして、それぞれの場合において、当該第1指標点p1が対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。 For example, when the upper swing structure 420 is not swinging relative to the lower carrier structure 410, the tip center point of the bucket 445 is defined as the first index point p1 , as shown in FIG. 10A. On the other hand, according to the operation mode of the remote control mechanism 211 and/or the actual machine operating mechanism 411, or based on the output signal of the actual machine sensor group 416, the upper revolving body 420 is turned against the lower traveling body 410 as viewed from above. If a clockwise turn is estimated or predicted or measured (see leftward white arrow), the point to the left of the tip of bucket 445 is defined as first index point p 1 , as shown in FIG. 10B. be. Further, according to the operation mode of the remote control mechanism 211 and/or the actual machine operating mechanism 411, or based on the output signal of the actual machine sensor group 416, the upper rotating body 420 rotates clockwise with respect to the lower traveling body 410 when viewed from above. 10C, the point to the right of the tip of bucket 445 is defined as first index point p 1 , as shown in FIG. 10C. In each case, an index image M showing a second index point p2 as a result of projecting the first index point p1 onto the surface of the target object Obj is superimposed on the work environment image to form a remote image. It is output to the output device 221 .
 作業機械40を操作する上で、作業機構440の位置および/または姿勢の変化態様に応じて、作業機構440における注視すべき部位は変化する。例えば、当該部位は、下部走行体410に対して上部旋回体420を旋回させるための操作であれば旋回方向の最先端であり、作業機構440が機械中心から遠ざかる操作であれば作業機構440が機械中心から遠ざかる方向の最先端である。 When operating the working machine 40, the part to be observed in the working mechanism 440 changes according to the changing mode of the position and/or posture of the working mechanism 440. For example, if the operation is for rotating the upper rotating body 420 with respect to the lower traveling body 410, the part is the leading edge in the rotating direction, and if the operation is for moving the working mechanism 440 away from the center of the machine, the working mechanism 440 It is the leading edge in the direction away from the machine center.
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mを通じて、作業機械40を構成する作業機構440の位置および/または姿勢の変化態様に応じて注視すべき部位と対象物体Objとの位置関係が把握しやすくなり、オペレータの認識精度の向上を図ることができる。 According to the image display system having this configuration, the position and position of the working mechanism 440 constituting the working machine 40 can be displayed through the working environment image output to the remote image output device 221 of the remote control device 20 and the index image M superimposed thereon. / Alternatively, it becomes easier to grasp the positional relationship between the part to be watched and the target object Obj according to the posture change mode, and the recognition accuracy of the operator can be improved.
 複数の第1指標点p1のそれぞれが対象物体Objの表面に対して投影された結果としての複数の第2指標点p2のそれぞれを示す複数の指標画像Mが作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力されてもよい。 A plurality of index images M each showing a plurality of second index points p2 as a result of projecting the plurality of first index points p1 onto the surface of the target object Obj are superimposed on the work environment image. It may be output to the remote image output device 221 of the remote operation device 20 .
 例えば、図11に示されているように、アタッチメント445の先端部の左端点および右端点のそれぞれが第1指標点p11およびp12のそれぞれとして定義され、当該第1指標点p11およびp12のそれぞれが対象物体Objの表面に対して鉛直下方に投影された結果としての第2指標点p21およびp22のそれぞれを示す複数の指標画像M1およびM2が作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力されてもよい。第1指標点p1およびこれに対応する第2指標点p2のそれぞれの数は3以上であってもよい。 For example, as shown in FIG. 11, the left and right endpoints of the tip of attachment 445 are defined as first index points p 11 and p 12 , respectively, and the first index points p 11 and p A plurality of index images M 1 and M 2 representing second index points p 21 and p 22 , respectively, as a result of projecting each of 12 vertically downward onto the surface of the target object Obj are superimposed on the work environment image. may be output to the remote image output device 221 of the remote operation device 20. The number of each of the first index points p 1 and the corresponding second index points p 2 may be 3 or more.
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像および複数の指標画像M1およびM2を通じて、作業機構440の複数の第1指標点p11およびp12のそれぞれが対象物体Objの表面に投影された結果としての複数の第2指標点p21およびp22のそれぞれの位置をオペレータに把握させることができる。これにより、単一の指標画像のみが遠隔画像出力装置221に出力される場合と比較して、作業機構440と対象物体Objとの位置関係の当該オペレータによる認識精度の向上が図られる。 According to the image display system with this configuration, the plurality of first index points p The operator can grasp the position of each of the plurality of second index points p21 and p22 as a result of projecting each of 11 and p12 onto the surface of the target object Obj. As a result, compared to the case where only a single index image is output to the remote image output device 221, the operator's recognition accuracy of the positional relationship between the working mechanism 440 and the target object Obj is improved.
 作業機構440の姿勢変化に伴って相対的な位置が変化する複数の第1指標点p1のそれぞれに対応する複数の第2指標点p2のそれぞれに対して指向している複数の指標画像Mが作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力されてもよい。 A plurality of index images oriented with respect to each of a plurality of second index points p2 corresponding to each of a plurality of first index points p1 whose relative positions change as the posture of the working mechanism 440 changes. M may be superimposed on the work environment image and output to the remote image output device 221 of the remote operation device 20 .
 例えば、図12Aに示されているように、アタッチメント445(例えば、グラップルまたはクラッシャー)を構成する一対の構成部材4451および4452が閉じられている場合、当該一対の構成部材4451および4452のそれぞれの先端部の重心が第1指定点p1として定義され、当該第1指標点p1が対象物体Objの表面に投影された結果としての第2指標点p2を示す単一の指標画像Mが作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力される。その一方、図12Bに示されているように、アタッチメント445を構成する一対の構成部材4451および4452が開かれている場合、当該一対の構成部材4451および4452のそれぞれの先端部が第1指定点p11およびp12として定義され、当該第1指標点p11およびp12が対象物体Objの表面に投影された結果としての第2指標点p21およびp22を示す複数の指標画像M1およびM2が作業環境画像に重畳されて遠隔操作装置20の遠隔画像出力装置221に出力される。 For example, as shown in FIG. 12A, when a pair of members 4451 and 4452 that make up attachment 445 (eg, a grapple or crusher) are closed, the ends of the respective members 4451 and 4452 of the pair are closed. A single index image M showing a second index point p2 as a result of projecting the first index point p1 onto the surface of the target object Obj is defined as the first designated point p1 . The image is superimposed on the environment image and output to the remote image output device 221 of the remote operation device 20 . On the other hand, as shown in FIG. 12B, when the pair of constituent members 4451 and 4452 that constitute the attachment 445 are opened, the distal ends of the pair of constituent members 4451 and 4452 are positioned at the first designated point. a plurality of index images M 1 defined as p 11 and p 12 and showing second index points p 21 and p 22 as a result of projecting the first index points p 11 and p 12 onto the surface of the target object Obj; M 2 is superimposed on the work environment image and output to the remote image output device 221 of the remote controller 20 .
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置に出力される作業環境画像および複数の指標画像を通じて、作業機構440(例えば、アタッチメント445の一対の構成部材4451および4452)の姿勢変化に伴って相対的な位置が変化する複数の第1指標点p11およびp12のそれぞれが対象物体の表面に投影された結果としての複数の第2指標点p21およびp22のそれぞれの位置をオペレータに把握させることができる。これにより、姿勢変化態様に応じた作業機構440の複数の部位と対象物体Objとの位置関係の当該オペレータによる認識精度の向上が図られる。 According to the image display system having this configuration, the working mechanism 440 (for example, the pair of constituent members 4451 and 4452 of the attachment 445) is displayed through the working environment image and the plurality of index images output to the remote image output device of the remote operation device 20. A plurality of second index points p21 and p22 as a result of projecting the plurality of first index points p11 and p12 , whose relative positions change with the change in posture, onto the surface of the target object. The operator can grasp each position. As a result, it is possible to improve the recognition accuracy by the operator of the positional relationship between the plurality of parts of the working mechanism 440 and the target object Obj according to the posture change mode.
 当該複数の部位は、例えば、アタッチメント445における一の部位と、アーム443および/またはブーム441における他の部位と、により構成されていてもよい。例えば、アタッチメント445の先端部中央点およびアーム443の先端部(アタッチメント445との連結部)中央点のそれぞれが第1指標点p11およびp12のそれぞれとして定義されてもよい。この場合、作業環境画像に重畳された指標画像M1およびM2が色、形状もしくは模様またはこれらの組み合わせによって識別可能に表現されることにより、当該指標画像M1およびM2の実空間における前後方向の配置態様、ひいてはアタッチメント445(例えば、バケット)の姿勢をオペレータに認識させることができる。 The plurality of parts may be configured by, for example, one part of the attachment 445 and another part of the arm 443 and/or the boom 441 . For example, the center point of the tip of the attachment 445 and the center point of the tip of the arm 443 (the connection with the attachment 445) may be defined as the first index points p 11 and p 12 , respectively. In this case, the indicator images M1 and M2 superimposed on the work environment image are identifiably represented by colors, shapes, patterns, or a combination thereof, so that the indicator images M1 and M2 are displayed in real space. The operator can be made aware of the directional arrangement and thus the attitude of the attachment 445 (eg, bucket).
 前記実施形態では、第2指標点p2に対して指向性を有する指標画像Mが遠隔画像出力装置221に出力されたが(図5参照)、他の実施形態として、第2指標点p2に対して指向性を有しない指標画像Mが遠隔画像出力装置221に出力されてもよい。例えば、第2指標点p2を中心または重心とする円または正方形などの指定形状の2次元図形が水平面に平行な姿勢で配置されたような指標画像Mが遠隔画像出力装置221に出力されてもよい。第2指標点p2を中心または重心とする球、立方体または多面体などの指定形状の3次元図形が水平面に平行な姿勢で配置されたような指標画像Mが遠隔画像出力装置221に出力されてもよい。 In the above embodiment, the index image M having directivity with respect to the second index point p2 was output to the remote image output device 221 (see FIG. 5 ). The index image M having no directivity with respect to may be output to the remote image output device 221 . For example, the index image M is output to the remote image output device 221, in which a two-dimensional figure of a designated shape such as a circle or square centered or centered on the second index point p2 is arranged in a posture parallel to the horizontal plane. good too. An index image M is output to the remote image output device 221, in which a three-dimensional figure of a designated shape such as a sphere, cube, or polyhedron centered or centered on the second index point p2 is arranged in a posture parallel to the horizontal plane. good too.
 遠隔操作装置20において、遠隔制御装置200により認識された第1時点t=t1における遠隔操作機構211の操作態様に基づき、作業機構440の第1時点t=t1またはこれよりも後の第2時点t=t2における空間占有態様が推定または予測され、当該第2時点t=t2における作業機構440において第1指標点p1が定義されてもよい。第1時点t=t1および第2時点t=t2の時間差は、実空間における作業機構440の位置および/または姿勢の変化速度に応じた第1指標点p1の変位速度に応じて設定されてもよい。 In the remote operation device 20, based on the operation mode of the remote operation mechanism 211 at the first time point t= t1 recognized by the remote control device 200, the operation mechanism 440 is operated at the first time point t= t1 or later. A space occupation pattern at two time points t=t 2 may be estimated or predicted, and a first index point p 1 may be defined at the working mechanism 440 at the second time point t=t 2 . The time difference between the first time point t= t1 and the second time point t= t2 is set according to the displacement speed of the first index point p1 according to the change speed of the position and/or posture of the work mechanism 440 in real space. may be
 例えば、遠隔操作機構211および/または実機操作機構411の操作態様に応じて、あるいは、実機センサ群416の出力信号に基づき、下部走行体410に対して上部旋回体420が上から見て反時計回りに旋回すると第1時点t=t1において推定もしくは予測されるまたは計測された場合について考察する(図13Aの左向きの白矢印参照)。この場合、図13Aに実線で示されている第1時点t=t1におけるバケット445よりも左側に変位した、図13Aに破線で示されている第2時点t=t2におけるバケット445の先端部中央点が第1指標点p1として定義される。 For example, according to the operation mode of the remote control mechanism 211 and/or the actual machine operating mechanism 411, or based on the output signal of the actual machine sensor group 416, the upper rotating body 420 rotates counterclockwise relative to the lower traveling body 410 when viewed from above. Consider the case where turning around is estimated or predicted or measured at a first time point t=t 1 (see left pointing white arrow in FIG. 13A). In this case, the tip of the bucket 445 at the second time t=t 2 indicated by the dashed line in FIG. 13A is displaced to the left of the bucket 445 at the first time t=t 1 indicated by the solid line in FIG. 13A. A central point is defined as the first index point p 1 .
 また、以下の説明は、遠隔操作機構211および/または実機操作機構411の操作態様に応じて、あるいは、実機センサ群416の出力信号に基づき、下部走行体410に対して上部旋回体420が上から見て時計回りに旋回すると第1時点t=t1において推定もしくは予測されるまたは計測された場合について考察するものである(図13Bの右向きの白矢印参照)。この場合、図13Bに実線で示されている第1時点t=t1におけるバケット445よりも右側に変位した、図13Bに破線で示されている第2時点t=t2におけるバケット445の先端部中央点が第1指標点p1として定義される。 Further, the following description is based on the operation mode of the remote control mechanism 211 and/or the actual machine operating mechanism 411, or based on the output signal of the actual machine sensor group 416, so that the upper swing body 420 is raised with respect to the lower traveling body 410. Consider the case where a clockwise turn is estimated or predicted or measured at a first time point t=t 1 (see right pointing white arrow in FIG. 13B). In this case, the tip of the bucket 445 at the second time t=t 2 indicated by the dashed line in FIG. 13B is displaced to the right of the bucket 445 at the first time t=t 1 indicated by the solid line in FIG. 13B. A central point is defined as the first index point p 1 .
 そして、それぞれの場合において、当該第1指標点p1が対象物体Objの表面に対して投影された結果としての第2指標点p2を示す指標画像Mが作業環境画像に重畳されて遠隔画像出力装置221に出力される。 In each case, an index image M showing a second index point p2 as a result of projecting the first index point p1 onto the surface of the target object Obj is superimposed on the work environment image to form a remote image. It is output to the output device 221 .
 当該構成の画像表示システムによれば、遠隔操作装置20の遠隔画像出力装置221に出力される作業環境画像およびこれに重畳された指標画像Mを通じて、作業機械40を構成する作業機構440の通信遅れ時間、応答遅れ時間の一部または全部が勘案された位置および/または姿勢の変化態様をオペレータが認識できるため、遠隔操作特有の操作環境を考慮した上で対象物体Objに対する作業機構440の位置関係の認識精度が向上し、より効率的に操作を行うことができる。 According to the image display system having this configuration, communication delay of the working mechanism 440 constituting the working machine 40 can be detected through the working environment image output to the remote image output device 221 of the remote controller 20 and the index image M superimposed thereon. Since the operator can recognize changes in the position and/or posture taking into consideration part or all of the time and response delay time, the positional relationship of the working mechanism 440 with respect to the target object Obj can be determined in consideration of the operating environment unique to remote control. The recognition accuracy of is improved, and operations can be performed more efficiently.
 本発明の画像表示システムにおいて、
 前記第2指標点に対する指向性を有する前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
ことが好ましい。
In the image display system of the present invention,
Preferably, the index image having directivity with respect to the second index point is superimposed on the work environment image and output to the output interface of the remote control device.
 当該構成の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力された指標画像が第2指標点に対して指向性を有している(指標画像が第2指標点の位置を指し示している)ため、作業機構の第1指標点と対象物体の表面における第2指標点との位置関係をオペレータにより容易に把握させることができる。 According to the image display system having this configuration, the index image output to the output interface of the remote control device has directivity with respect to the second index point (the index image indicates the position of the second index point). Therefore, the operator can easily grasp the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object.
 本発明の画像表示システムにおいて、
 前記作業機構の変位態様または前記作業機構の姿勢態様に応じた方向に、前記第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
ことが好ましい。
In the image display system of the present invention,
The index image showing the second index point as a result of projecting the first index point onto the surface of the target object in a direction corresponding to the displacement mode or the posture mode of the working mechanism. It is preferable that the image is superimposed on the work environment image and output to the output interface of the remote control device.
 当該構成の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力される作業環境画像およびこれに重畳された指標画像を通じて、作業機械を構成する作業機構の変位態様または姿勢態様に応じた方向について、当該作業機構の第1指標点と当該作業環境画像における対象物体の表面における第2指標点との位置関係について、オペレータの認識精度の向上を図ることができる。 According to the image display system having this configuration, the working environment image output to the output interface of the remote control device and the index image superimposed thereon are used to display the direction corresponding to the displacement mode or attitude mode of the working mechanism that constitutes the working machine. , it is possible to improve the recognition accuracy of the operator regarding the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object in the working environment image.
 本発明の画像表示システムにおいて、
 前記作業機構の変位態様に応じて位置が異なる前記第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
ことが好ましい。
In the image display system of the present invention,
superimposing the index image showing the second index point as a result of projecting the first index point having a different position according to the displacement mode of the working mechanism onto the surface of the target object, on the working environment image; preferably output to the output interface of the remote control device.
 本発明の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力される作業環境画像およびこれに重畳された指標画像を通じて、作業機械を構成する作業機構の変位態様に応じた位置に変位された、当該作業機構の第1指標点と当該作業環境画像における対象物体の表面における第2指標点との位置関係について、オペレータの認識精度の向上を図ることができる。 According to the image display system of the present invention, the working environment image output to the output interface of the remote control device and the index image superimposed thereon are displaced to a position corresponding to the displacement mode of the working mechanism constituting the working machine. Further, it is possible to improve the recognition accuracy of the operator regarding the positional relationship between the first index point of the working mechanism and the second index point on the surface of the target object in the working environment image.
 本発明の画像表示システムにおいて、
 前記作業機械に搭載されているセンサの出力に基づいて定まる前記作業機構の前記第1指標点の位置を認識したうえで、当該第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
ことが好ましい。
In the image display system of the present invention,
After recognizing the position of the first index point of the working mechanism determined based on the output of the sensor mounted on the working machine, the result of projecting the first index point onto the surface of the target object It is preferable that the index image indicating the second index point is superimposed on the working environment image and output to the output interface of the remote control device.
 当該構成の画像表示システムによれば、例えば、作業機械に搭載されている測距装置によって第1指標点の実空間位置が認識困難である場合でも、遠隔操作装置の出力インターフェースに出力される指標画像を通じて、当該第1指標点と、これが対象物体の表面に投影された結果としての第2指標点との位置関係をオペレータに容易に把握または推察させることができる。 According to the image display system having this configuration, for example, even if it is difficult to recognize the real space position of the first index point by the distance measuring device mounted on the work machine, the index is output to the output interface of the remote control device. Through the image, the operator can easily comprehend or guess the positional relationship between the first index point and the second index point as a result of the projection of the first index point onto the surface of the target object.
 本発明の画像表示システムにおいて、
 前記第1指標点はアームトップに設定される
ことが好ましい。
In the image display system of the present invention,
Preferably, the first index point is set on the arm top.
 当該構成の画像表示システムによれば、作業機構によって地面を掘削する場合、掘削の一連の動作においては、強い力をかけるためアームトップの位置に対してアタッチメント先端の位置を操作するため、位置指標としてアームトップが適している。さらに、アタッチメントを取り換えてもアームトップの位置は変わらないため、同じ画像表示が適用できる利点がある。 According to the image display system having this configuration, when the ground is excavated by the working mechanism, in order to apply a strong force in a series of excavation operations, the position of the tip of the attachment is manipulated with respect to the position of the arm top. As an arm top is suitable. Furthermore, since the position of the arm top does not change even if the attachment is replaced, there is an advantage that the same image display can be applied.
 本発明の画像表示システムにおいて、
 複数の前記第1指標点のそれぞれが前記対象物体の表面に対して投影された結果としての複数の前記第2指標点のそれぞれを示す複数の前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
ことが好ましい。
In the image display system of the present invention,
A plurality of index images each showing a plurality of the plurality of second index points as a result of each of the plurality of first index points being projected onto the surface of the target object are superimposed on the work environment image. It is preferable to output to the output interface of the remote control device.
 当該構成の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力される作業環境画像および複数の指標画像を通じて、作業機構の複数の第1指標点のそれぞれが対象物体の表面に投影された結果としての複数の第2指標点のそれぞれの位置をオペレータに把握させることができる。これにより、単一の指標画像のみが遠隔操作装置の出力インターフェースに出力される場合と比較して、作業機構と対象物体との位置関係の当該オペレータによる認識精度の向上が図られる。 According to the image display system having this configuration, each of the plurality of first index points of the working mechanism is projected onto the surface of the target object through the working environment image and the plurality of index images output to the output interface of the remote control device. As a result, the operator can grasp the position of each of the plurality of second index points. As a result, compared to the case where only a single index image is output to the output interface of the remote control device, it is possible to improve the recognition accuracy by the operator of the positional relationship between the working mechanism and the target object.
 本発明の画像表示システムにおいて、
 前記作業機構の姿勢変化に伴って相対的な位置が変化する複数の前記第1指標点のそれぞれに対応する複数の前記第2指標点のそれぞれに対して指向している複数の前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させることが好ましい。
In the image display system of the present invention,
a plurality of index images pointing toward each of the plurality of second index points corresponding to each of the plurality of first index points whose relative positions change as the posture of the working mechanism changes; It is preferable that the image is superimposed on the work environment image and output to the output interface of the remote control device.
 当該構成の画像表示システムによれば、遠隔操作装置の出力インターフェースに出力される作業環境画像および複数の指標画像を通じて、作業機構の姿勢変化に伴って相対的な位置が変化する複数の第1指標点のそれぞれが対象物体の表面に投影された結果としての複数の第2指標点のそれぞれの位置をオペレータに把握させることができる。これにより、姿勢変化態様に応じた作業機構の複数の部位と対象物体との位置関係の当該オペレータによる認識精度の向上が図られる。 According to the image display system having this configuration, a plurality of first indices whose relative positions change as the posture of the working mechanism changes through the work environment image and the plurality of index images output to the output interface of the remote control device. The operator can grasp the position of each of the plurality of second index points as a result of each point being projected onto the surface of the target object. As a result, it is possible to improve the recognition accuracy by the operator of the positional relationship between the plurality of parts of the working mechanism and the target object according to the posture change mode.
10‥画像表示システム、20‥遠隔操作装置、40‥作業機械、41‥実機入力インターフェース、42‥実機出力インターフェース、102‥データベース、121‥通信機能要素、122‥画像処理機能要素、200‥遠隔制御装置、210‥遠隔入力インターフェース、211‥遠隔操作機構、220‥遠隔出力インターフェース、221‥遠隔画像出力装置、222‥遠隔音響出力装置、400‥実機制御装置、410‥下部走行体、420‥上部旋回体、424‥キャブ(運転室)、440‥作業機構、445‥アタッチメント(ブレーカ、バケットなど)、M、M1、M2‥指標画像、Obj‥対象物体、p1、p11、p12‥第1指標点、p2、p21、p22‥第2指標点。 10... Image display system 20... Remote control device 40... Working machine 41... Actual machine input interface 42... Actual machine output interface 102... Database 121... Communication function element 122... Image processing function element 200... Remote control Device 210 Remote input interface 211 Remote control mechanism 220 Remote output interface 221 Remote image output device 222 Remote sound output device 400 Actual machine control device 410 Lower running body 420 Upper turning body, 424... cab (driver's cab), 440... work mechanism, 445... attachment (breaker, bucket, etc.), M, M1 , M2 ... index image, Obj... target object, p1 , p11 , p12 ... First index point, p 2 , p 21 , p 22 . . . second index point.

Claims (10)

  1.  作業機械を構成する作業機構および当該作業機械の周囲に存在する対象物体の状況を表わす作業環境画像に、実空間において前記作業機構における第1指標点が前記対象物体の表面に対して投影された結果としての第2指標点を示す指標画像を重畳させて前記作業機械を遠隔操作するための遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    A first index point in the working mechanism is projected onto the surface of the target object in real space on a working environment image representing the situation of the working mechanism constituting the working machine and the target object existing around the working machine. An image display system for superimposing an index image showing a second index point as a result and outputting it to an output interface of a remote control device for remotely controlling the working machine.
  2.  請求項1に記載の画像表示システムにおいて、
     前記第2指標点に対する指向性を有する前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 1,
    An image display system for superimposing the index image having directivity with respect to the second index point on the work environment image and outputting the image to an output interface of the remote control device.
  3.  請求項1に記載の画像表示システムにおいて、
     前記作業機構の変位態様または前記作業機構の姿勢態様に応じた方向に、前記第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 1,
    The index image showing the second index point as a result of projecting the first index point onto the surface of the target object in a direction corresponding to the displacement mode or the posture mode of the working mechanism. An image display system that superimposes the work environment image and outputs the image to an output interface of the remote control device.
  4.  請求項1に記載の画像表示システムにおいて、
     前記作業機構の変位態様に応じて位置が異なる前記第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 1,
    superimposing the index image showing the second index point as a result of projecting the first index point having a different position according to the displacement mode of the working mechanism onto the surface of the target object, on the working environment image; and an image display system for outputting to the output interface of the remote control device.
  5.  請求項1に記載の画像表示システムにおいて、
     前記作業機械に搭載されているセンサの出力に基づいて定まる前記作業機構の前記第1指標点の位置を認識したうえで、当該第1指標点が前記対象物体の表面に対して投影された結果としての前記第2指標点を示す前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 1,
    After recognizing the position of the first index point of the working mechanism determined based on the output of the sensor mounted on the working machine, the result of projecting the first index point onto the surface of the target object An image display system for superimposing the index image indicating the second index point on the work environment image and outputting the index image to an output interface of the remote control device.
  6.  請求項1に記載の画像表示システムにおいて、
     前記第1指標点はアームトップに設定される
    画像表示システム。
    In the image display system according to claim 1,
    The image display system, wherein the first index point is set on the arm top.
  7.  請求項1に記載の画像表示システムにおいて、
     複数の前記第1指標点のそれぞれが前記対象物体の表面に対して投影された結果としての複数の前記第2指標点のそれぞれを示す複数の前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 1,
    A plurality of index images each showing a plurality of the plurality of second index points as a result of each of the plurality of first index points being projected onto the surface of the target object are superimposed on the work environment image. An image display system that outputs to the output interface of the remote control device.
  8.  請求項7に記載の画像表示システムにおいて、
     前記作業機構の動作に伴って相対的な位置が変化する複数の前記第1指標点のそれぞれに対応する複数の前記第2指標点のそれぞれに対して指向している複数の前記指標画像を前記作業環境画像に重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示システム。
    In the image display system according to claim 7,
    a plurality of the index images pointing toward each of the plurality of second index points respectively corresponding to the plurality of first index points whose relative positions change with the operation of the working mechanism; An image display system that superimposes a work environment image and outputs the image to an output interface of the remote control device.
  9.  実機撮像装置と、実機測距装置と、作業機構と、を有する作業機械と、
     出力インターフェースを有し、前記作業機械を遠隔操作するための遠隔操作装置と、
     画像表示システムと、
    を備えている画像表示複合システムであって、
     前記画像表示システムが、前記実機撮像装置を通じて取得された前記作業機械を構成する作業機構および当該作業機械の周囲に存在する対象物体の状況を表わす作業環境画像に、実空間において前記作業機構における第1指標点が、前記実機測距装置を通じて3次元形状が測定された前記対象物体の表面に対して投影された結果としての2指標点を示す指標画像を重畳させて前記遠隔操作装置の出力インターフェースに出力させる
    画像表示複合システム。
    a working machine having a real imaging device, a real ranging device, and a working mechanism;
    a remote control device having an output interface for remotely controlling the work machine;
    an image display system;
    An image display complex system comprising:
    The image display system displays, in real space, a working environment image representing the status of a working mechanism that constitutes the working machine and target objects that exist around the working machine acquired through the actual machine imaging device. An output interface of the remote control device by superimposing an index image showing two index points as a result of one index point being projected onto the surface of the target object whose three-dimensional shape is measured by the actual rangefinder. An image display complex system that outputs to
  10.  作業機械を構成する作業機構および当該作業機械の周囲に存在する対象物体の状況を表わす作業環境画像に、実空間において前記作業機構における第1指標点が前記対象物体の表面に対して投影された結果としての2指標点を示す指標画像を重畳させて前記作業機械を遠隔操作するための遠隔操作装置の出力インターフェースに出力させる工程を含む
    画像表示方法。
    A first index point in the working mechanism is projected onto the surface of the target object in real space on a working environment image representing the situation of the working mechanism constituting the working machine and the target object existing around the working machine. An image display method comprising the step of superimposing an index image showing two index points as a result and outputting it to an output interface of a remote control device for remotely controlling the working machine.
PCT/JP2022/039550 2021-12-03 2022-10-24 Image display system, remote operation assistance system, and image display method WO2023100533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197367 2021-12-03
JP2021-197367 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100533A1 true WO2023100533A1 (en) 2023-06-08

Family

ID=86611900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039550 WO2023100533A1 (en) 2021-12-03 2022-10-24 Image display system, remote operation assistance system, and image display method

Country Status (2)

Country Link
JP (1) JP2023083245A (en)
WO (1) WO2023100533A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031908A (en) * 2018-12-04 2019-02-28 住友建機株式会社 Shovel
JP2019157569A (en) * 2018-03-15 2019-09-19 日立建機株式会社 Construction machine
JP2021038649A (en) * 2020-10-08 2021-03-11 株式会社小松製作所 Image display system for work machine, remote operation system for work machine, work machine, and image display method for work machine
JP2021050602A (en) * 2021-01-07 2021-04-01 株式会社小松製作所 Display system of construction machine and method for controlling the same
JP2021165526A (en) * 2020-09-29 2021-10-14 株式会社小松製作所 Work machine image display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157569A (en) * 2018-03-15 2019-09-19 日立建機株式会社 Construction machine
JP2019031908A (en) * 2018-12-04 2019-02-28 住友建機株式会社 Shovel
JP2021165526A (en) * 2020-09-29 2021-10-14 株式会社小松製作所 Work machine image display system
JP2021038649A (en) * 2020-10-08 2021-03-11 株式会社小松製作所 Image display system for work machine, remote operation system for work machine, work machine, and image display method for work machine
JP2021050602A (en) * 2021-01-07 2021-04-01 株式会社小松製作所 Display system of construction machine and method for controlling the same

Also Published As

Publication number Publication date
JP2023083245A (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6832548B2 (en) Work machine image display system, work machine remote control system, work machine and work machine image display method
JPWO2019244574A1 (en) Excavator, information processing equipment
WO2020003631A1 (en) Display control device and display control method
JP6867132B2 (en) Work machine detection processing device and work machine detection processing method
JP6947101B2 (en) Remote control system and main control device
JP7420733B2 (en) Display control system and display control method
JP2024052764A (en) Display control device and display method
WO2023100533A1 (en) Image display system, remote operation assistance system, and image display method
JP2023040971A (en) Remote control support device, remote control support system, and remote control support method
WO2020090898A1 (en) Display control system, display control method and remote control system
JP2021099017A (en) Remote operation device and remote operation system
JP7444094B2 (en) Remote operation support system and remote operation support method
JP7441733B2 (en) Actual machine status monitoring system and actual machine status monitoring method
WO2021124858A1 (en) Remote control device and remote control system
EP4130400A1 (en) Remote operation assistance device and remote operation assistance method
US11939744B2 (en) Display system, remote operation system, and display method
WO2021106280A1 (en) Work assist server, work assist method, and work assist system
JP7390991B2 (en) Work machines and construction support systems
JP7363560B2 (en) Remote control device, remote control support server, remote control support system, and remote control support method
WO2023026568A1 (en) Remote operation system and remote operation composite system
WO2023136070A1 (en) Remote operation support system and remote operation support method
US20210395980A1 (en) System and method for work machine
WO2021240957A1 (en) Remote operation assisting device, remote operation assisting system, and remote operation assisting method
US20220002977A1 (en) System and method for work machine
JP2021130973A (en) Information presentation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022900966

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022900966

Country of ref document: EP

Effective date: 20240517