WO2023100474A1 - システム、画像処理方法およびプログラム - Google Patents
システム、画像処理方法およびプログラム Download PDFInfo
- Publication number
- WO2023100474A1 WO2023100474A1 PCT/JP2022/037531 JP2022037531W WO2023100474A1 WO 2023100474 A1 WO2023100474 A1 WO 2023100474A1 JP 2022037531 W JP2022037531 W JP 2022037531W WO 2023100474 A1 WO2023100474 A1 WO 2023100474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- roi
- learning
- enhancement
- execution program
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 6
- 238000012545 processing Methods 0.000 claims abstract description 187
- 230000002950 deficient Effects 0.000 claims description 89
- 238000003384 imaging method Methods 0.000 claims description 38
- 230000007547 defect Effects 0.000 claims description 34
- 230000002194 synthesizing effect Effects 0.000 claims description 10
- 238000010191 image analysis Methods 0.000 abstract description 18
- 238000010801 machine learning Methods 0.000 description 53
- 238000000034 method Methods 0.000 description 52
- 238000010586 diagram Methods 0.000 description 26
- 238000007689 inspection Methods 0.000 description 23
- 238000013461 design Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to a system, an image processing method and a program.
- the present invention claims priority of Japanese patent application number 2021-196428 filed on December 2, 2021, and for designated countries where incorporation by reference of documents is permitted, the content described in the application is incorporated into this application by reference.
- observation, appearance inspection, measurement, etc. are performed by analyzing the image obtained by imaging the target object. Since it is desirable to use an image with high visibility in image analysis, methods have been proposed to improve the visibility through image processing and devising an imaging system such as imaging the object at a high resolution. ing.
- Patent Literature 1 describes an image estimation method: "In image estimation of a system having a storage unit and a calculation unit, the storage unit stores a first image of a first region of a first sample and a second image of the first region.
- a computing unit estimates an estimated processing parameter based on the first image and the second image, and obtains a desired region of the first sample or the second sample under the first imaging condition.
- the computing unit performs: The difference between the first image, the estimated image during learning, and the second image is obtained as an error, and the error is compared with a preset threshold value to determine the trigger for using the estimated processing parameter during learning as an estimated processing parameter. .”
- Patent Document 1 discloses a parameter learning method for estimating a high-quality image from a degraded image, using a pair of an image with degraded image quality and a high-quality image as learning data. In such a learning method, parameters for estimating a high-quality image are learned for the entire degraded image. On the other hand, depending on the purpose of image analysis, it may be desired to improve the visibility of only a part of the attention area of the image.
- the present invention has been made in view of the above problems, and by performing learning for improving the visibility of only the attention area according to the purpose of image analysis of the object, more appropriate image analysis of the object
- the purpose is to support
- a system according to one aspect of the present invention for solving the above problems is a system having one or more processors and one or more memory resources, wherein the memory resources are a ROI emphasis engine and a learning phase execution program and an image processing phase execution program, and the processor executes the learning phase execution program to image an image processing target using a learning image obtained by imaging the learning target.
- ROI Region Of Interest
- the processor executes the learning phase execution program to image an image processing target using a learning image obtained by imaging the learning target.
- ROI Region Of Interest
- the ROI-enhanced learning image is generated inside the ROI enhancement engine. Perform training to optimize the parameters.
- the present invention it is possible to support more appropriate image analysis of the object by performing learning to improve the visibility of only the attention area according to the purpose of image analysis of the object.
- FIG. 1 is a diagram showing an example of a schematic configuration of a processor system
- FIG. FIG. 5 is a diagram showing an example of processing sequences of a learning phase and an image processing phase according to the first embodiment
- FIG. 4 is a diagram for explaining a method of designating an ROI using design data of an object
- FIG. 10 is a diagram showing an example of a GUI for designating an ROI, the type of image enhancement processing, and the degree of image enhancement
- FIG. 10 is a diagram showing an example of a processing sequence for performing machine learning on two ROI enhancement engines
- FIG. 10 is a diagram showing an example of a GUI for designating an ROI, the type of image enhancement processing, and the degree of image enhancement
- FIG. 10 is a diagram showing an example of processing sequences of a learning phase and an image processing phase according to the second embodiment;
- FIG. 10 is a diagram for explaining a method of designating an ROI based on a difference from a reference image;
- FIG. FIG. 11 is a diagram showing an example of processing sequences of a learning phase and an image processing phase according to the third embodiment;
- FIG. 10 is a diagram for explaining a method of designating an ROI based on a region in which pseudo defects are synthesized;
- FIG. 10 is a diagram showing a processing sequence relating to pass/fail determination of an inspection object using a processed image and a comparison image;
- FIG. 10 is a diagram showing an example of a processing sequence for performing machine learning on two ROI enhancement engines;
- FIG. 10 is a diagram showing a processing sequence relating to pass/fail determination of an inspection object using a processed image and a comparison image;
- a system (processor system) performs image processing such that only a region of interest (ROI), which is a predetermined region of interest, is highlighted in a processed image of an object (subject). , which outputs an ROI-enhanced image in which only the visibility of the ROI is improved.
- ROI region of interest
- This system uses learning images to generate ROI-enhanced learning images by emphasizing only ROIs corresponding to regions of interest in processed images obtained by imaging an object of image processing, and outputs ROI-enhanced learning images with the learning images as input.
- Machine learning of the ROI enhancement engine is performed as follows.
- this system inputs a processed image obtained by imaging an object to the ROI enhancement engine, and outputs an ROI-enhanced processed image in which only the ROI in the processed image is enhanced.
- an ROI is an area that a user pays attention to in image analysis, and various areas correspond to the purpose of the image analysis.
- A1 Area containing patterns to be detected such as defects (foreign matter, scratches)
- A2 Area containing parts and structures to be recognized such as shape contours (edges) *
- A3) Surface textures, etc.
- ROI is not limited to (A1) to (A4), and is used for image analysis. Any region can be used as the ROI according to the user's designation.
- ROI is not limited to (B1) to (B5), and can be specified by various methods including automatic and manual.
- the designation method (B3) is, for example, a method of designating an ROI for each divided region when the object shown in the learning image can be divided into a plurality of parts.
- the designation method of (B3) also includes, for example, a method of dividing the learning image into a plurality of equal parts and designating the divided regions therein as ROIs.
- FIG. 1 is a diagram showing an example of a schematic configuration of a processor system 100. As shown in FIG. As illustrated, the system 100 is connected to the imaging device 10 so as to be able to communicate with each other via a communication cable or a predetermined communication network (eg, the Internet, LAN (Local Area Network), WAN (Wide Area Network), etc.).
- a communication cable or a predetermined communication network eg, the Internet, LAN (Local Area Network), WAN (Wide Area Network), etc.
- the imaging device 10 is an imaging device 10 capable of capturing a digital image or video of the surface or inside of an object (subject).
- the imaging device 10 is a CCD (Charge Coupled Device) camera, an optical microscope, a charged particle microscope, an ultrasonic inspection device, an X-ray inspection device, or the like.
- the imaging device 10 images an object and outputs (or transmits) the captured image to the processor system 100 .
- a plurality of imaging devices 10 may be connected to the system 100 .
- the processor system 100 executes the processing of the learning phase and the image processing phase by reading various programs stored in the memory resource by the processor 20 .
- the processor system 100 is a computer such as a personal computer, a tablet terminal, a smart phone, a server computer, and a cloud server, and is a system including at least one or more of these computers.
- the processor system 100 has a processor 20 , a memory resource 30 , an NI (Network Interface Device) 40 and a UI (User Interface Device) 50 .
- NI Network Interface Device
- UI User Interface Device
- the processor 20 is an arithmetic device that reads various programs stored in the memory resource 30 and executes processing corresponding to each program.
- Examples of the processor 20 include a microprocessor, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), or other arithmetic semiconductor devices.
- the memory resource 30 is a storage device that stores various information.
- the memory resource 30 is a non-volatile or volatile storage medium such as RAM (Random Access Memory) or ROM (Read Only Memory).
- the memory resource may be, for example, a rewritable storage medium such as flash memory, hard disk or SSD (Solid State Drive), USB (UNI40versal Serial Bus) memory, memory card and hard disk.
- the NI 40 is a communication device that communicates information with an external device.
- the NI 40 performs information communication with an external device (for example, the imaging device 10) via a predetermined communication network such as LAN or the Internet. Note that information communication between the processor system 100 and the imaging device 10 is performed via the NI 40 unless otherwise specified below.
- the UI 50 is an input device for outputting user (operator) instructions to the processor system 100 and an output device for outputting information generated by the processor system 100 .
- Input devices include, for example, keyboards, touch panels, pointing devices such as mice, and voice input devices such as microphones.
- output devices include, for example, displays, printers, and speech synthesizers. It should be noted that user operations on the processor system 100 (for example, information input, output, processing execution instructions, etc.) are performed via the UI 50 unless otherwise specified below.
- each configuration, function, processing means, etc. of this system 100 may be implemented by hardware, for example, by designing them in an integrated circuit.
- this system 100 can realize part or all of each function by software, or can be realized by cooperation between software and hardware.
- the system 100 may use hardware having a fixed circuit, or may use hardware in which at least a part of the circuit is changeable.
- system 100 can also be realized by a user (operator) implementing some or all of the functions and processes realized by each program.
- Each DB (database) in the memory resource 30 described below may be a data structure other than a file or database as long as it is an area capable of storing data.
- the ROI enhancement engine 31 is a deep neural network typified by, for example, a CNN (Convolutional Neural Network). Note that the ROI emphasis engine 31 is not limited to a machine learning deep neural network, and for example, a rule-based engine can be used.
- the ROI enhancement engine 31 performs machine learning in the learning phase. Specifically, when the learning image is input, the ROI enhancement engine 31 performs image enhancement processing (e.g., contrast enhancement processing, histogram flattening processing, edge enhancement processing, etc.) only on the designated ROI of the learning image.
- image enhancement processing e.g., contrast enhancement processing, histogram flattening processing, edge enhancement processing, etc.
- the internal parameters are optimized to output ROI-enhanced training images.
- the ROI enhancement engine 31 generates an ROI-enhanced processed image in which only the ROI is enhanced when a captured image of an object (hereinafter sometimes referred to as a processed image) is input, and outputs this. do.
- the internal parameters of the engine include, for example, the network structure of the neural network, the activation function, the hyperparameters such as the learning rate and learning termination conditions, and the Model parameters such as weights (coupling coefficients) and biases are included.
- the internal parameters of the engine include image processing parameters such as filter coefficients for various image processing and determination thresholds.
- the ROI emphasis engine 31 may use both a machine learning engine and a rule-based engine.
- the learning image DB 32 is a database storing learning images used for machine learning in the learning phase.
- the learning image DB 32 may store the learning images in advance, or may store the learning images captured by the imaging device 10 in the learning phase.
- the processed image DB 33 is a database that stores processed images of objects captured by the imaging device 10 during execution of the image processing phase.
- the other information DB 34 is a database that stores various information used in the learning phase and the image processing phase.
- the other information DB 34 stores design data of objects used in the ROI designation method (B4).
- the other information DB 34 stores information on pseudo failures used in the ROI designation method (B5), for example.
- the GUI execution program 35 generates predetermined screen information to be output to the UI 50 (display in this case), and inputs information and instructs execution of processing via the UI 50 (in this case, a pointing device such as a keyboard and mouse). It is a program that accepts such as from the user. Specifically, the GUI execution program 35 generates screen information for accepting designation of ROI, etc., and outputs it to the display. The GUI execution program 35 also accepts input of ROI designation and other information from the user via the UI 50 .
- the learning phase execution program 36 is a program that executes various processes in the learning phase. Specifically, the learning phase execution program 36 acquires a learning image from the learning image DB 32 and generates an ROI-enhanced learning image in which only the ROI is subjected to image enhancement processing. Also, the learning phase execution program 36 inputs learning images to the ROI enhancement engine 31 and performs machine learning of the ROI enhancement engine 31 so that ROI enhancement learning images are output.
- the image processing phase execution program 37 is a program that executes various processes related to the image processing phase. Specifically, the image processing phase execution program 37 acquires the processed image of the object from the processed image DB 33 and inputs it to the ROI enhancement engine 31 to acquire an ROI-enhanced processed image in which only the ROI is enhanced. do.
- FIG. 2 is a diagram showing an example of the processing sequence of the learning phase and the image processing phase.
- the learning phase machine learning of the ROI enhancement engine 31 is performed.
- the learning phase is started at a predetermined timing, such as when the user instructs the processor system 100 to execute the learning phase via the UI 50, for example.
- the processor system 100 executes the learning phase execution program 36.
- the learning phase execution program 36 acquires the learning image 120 obtained by imaging the learning object 110 from the learning image DB 32 (step S10).
- the learning phase execution program 36 outputs an instruction for capturing a learning image 120 of the learning target object 110 to the imaging device 10 via the NI 40, and the learning image 120 of the target captured by the imaging device 10. may be obtained from the learning image DB 32 .
- the learning phase execution program 36 executes machine learning for the ROI enhancement engine 31 (step S20). Specifically, the learning phase execution program 36 designates the ROI (step S21).
- FIG. 3 is a diagram for explaining a method of specifying an ROI using design data of an object.
- the learning image 120 and the design data 160 are matched, and the region 162 where the learning image 120 is matched with the set region on the design data 160 is designated as the ROI 121 .
- the learning phase execution program 36 acquires the design data of the object from the other information DB 34, for example.
- a dashed line 161 of the illustrated design data indicates the outline of the design shape of the object.
- the learning phase execution program 36 matches the learning image 120 on the design data 160 based on each feature point of the design data and the learning image 120 . Then, the learning phase execution program 36 determines the area on the design data 160 to which the learning image 120 is matched (in FIG. 3, the area 162 to which the learning image 120 is matched) as the ROI 121, and designates the area 162 as the ROI 121. do.
- the learning phase execution program 36 generates an ROI-enhanced learning image based on the specified ROI 121 (step S022). Specifically, the learning phase execution program 36 generates an ROI-enhanced learning image in which only the ROI 121 is enhanced by performing image enhancement processing such as contrast enhancement processing on the designated ROI 121 .
- image enhancement processing such as contrast enhancement processing
- a set region 163 in which only the region 162 matched with the learning image 120 on the design data 160 is emphasized is generated as the ROI-enhanced learning image.
- the setting area 163 may be set by the user via the UI 50, or may be set according to a predetermined rule.
- the learning phase execution program 36 performs machine learning for the ROI enhancement engine 31 using the learning image 120 and the ROI-enhanced learning image (step S023). Specifically, the learning phase execution program 36 performs machine learning for optimizing the internal parameters of the ROI enhancement engine 31 so that the generated ROI-enhanced learning image is output when the learning image 120 is input. conduct.
- machine learning of the ROI enhancement engine 31 is performed by repeatedly executing the processing of steps S10 to S23 using a plurality of (eg, 10 to 100) learning images. Further, it is assumed that the ROI emphasis engine 31, which will be described later in the embodiment, also performs machine learning by performing the learning phase multiple times.
- the image processing phase a processed image 140 obtained by imaging the object 130 is used to output an ROI-enhanced processed image in which only the ROI in the processed image 140 corresponding to the ROI 121 is emphasized.
- the image processing phase is started at a predetermined timing, such as when the user outputs an instruction to execute the image processing phase to the processor system 100 via the UI 50, for example.
- the processor system 100 executes the image processing phase execution program 37.
- the image processing phase execution program 37 acquires the processed image of the target object 130 (in the example of FIG. 3, the image of the target object 130 corresponding to the setting area 163 on the design data) from the processed image DB (step S30).
- the image processing phase execution program 37 outputs an instruction for capturing a processed image of the object 130 to the imaging device 10 via the NI 40, and converts the processed image of the object captured by the imaging device 10 into a processed image. You may acquire from DB33.
- the image processing phase execution program 37 uses the ROI enhancement engine 31 to acquire an ROI-enhanced processed image in which only the ROI is enhanced (step S40). Specifically, when the processed image 140 is input by the image processing phase execution program 37, the ROI enhancement engine 31 converts the ROI corresponding to the ROI learned in the learning phase (the region 121 in the example of FIG. 3) into the processed image. (step S41).
- the ROI enhancement engine 31 performs image processing to enhance only the specified ROI, and generates the ROI-enhanced processed image 150 (step S42). Also, the image processing phase execution program 37 acquires the ROI-enhanced processed image 150 output from the ROI enhancement engine 31 .
- the ROI-enhanced processed image 150 in which only the ROI corresponding to the ROI 121 in the area 162 is emphasized in the image (processed image) of the object 130 corresponding to the set area 163 on the design data. will be output.
- ROI-enhanced image can be acquired.
- image analysis of the object can be performed more appropriately.
- the ROI enhancement engine 31 when a processed image is input to the ROI enhancement engine 31 that performs such machine learning, the ROI can be accurately specified from the processed image without being easily affected by deviations in the imaging range and imaging position of the object.
- An ROI-enhanced processed image in which only the ROI is enhanced is generated.
- Contrast enhancement processing, histogram flattening processing, and edge enhancement processing have been exemplified as types of image enhancement processing. Furthermore, depending on the purpose of image analysis, there are cases where a weaker degree of image enhancement is better, and there are cases where a stronger one is better, so it is desirable to be able to designate the degree with a high degree of freedom.
- the user designates the ROI, the type of image enhancement processing, and the degree of image enhancement via the GUI. This makes it possible to obtain an ROI-enhanced image that meets the purpose of image analysis of the object.
- FIG. 4 is a diagram showing an example of the GUI 170 for designating the ROI, the type of image enhancement processing, and the degree of image enhancement.
- the GUI 170 includes an image ID selection button 171 for selecting a learning image, an area 172 displaying the selected learning image, and an area 173 displaying an ROI designated by the user via the GUI. , an area 174 for displaying an ROI-enhanced learning image in which only the ROI is emphasized, an area 175 for specifying the type of image enhancement processing, and an area 176 for specifying the degree of image enhancement.
- the processor 20 reads the GUI execution program 35. Then, the GUI execution program 35 generates a predetermined GUI 170 shown in FIG. 4 and outputs it to the UI 50, which is a display.
- the GUI execution program 35 also accepts user's designation of the ROI, the type of image enhancement processing, and the degree of image enhancement via the GUI 170 displayed on the display. Note that the user selects, for example, the image ID of the learning image using the UI 50, which is a pointing device such as a keyboard and mouse. When acquiring the input information indicating the image ID, the GUI execution program 35 acquires the learning image with the corresponding ID from the learning image DB 32 and displays it in the area 172 of the GUI 170 (step S10).
- the GUI execution program 35 displays the specified ROI 177 in the area 173 based on the input information (step S21). Note that in the example of FIG. 4, the white pixel portion of the region 173 indicates the ROI designated by the user.
- the learning phase execution program 36 acquires such input information via the GUI execution program 35, and the ROI 177 A ROI-enhanced learning image is generated by performing a specified type of image enhancement processing at a specified degree of image enhancement (step S22).
- the GUI execution program 35 also displays the ROI-enhanced learning image generated by the learning phase execution program 36 in the GUI area 174 .
- the learning phase execution program 36 uses the ROI-enhanced learning image thus generated to perform machine learning for the ROI enhancement engine 31 (step S23).
- a ROI-enhanced image that has been subjected to the designated type of image enhancement processing is output (steps S30 and S40). That is, the ROI-enhanced processed image output through image processing by the ROI-emphasizing engine is, for example, the ROI-enhanced learning image displayed in the area 174 in FIG.
- the present system 100 it is possible to specify the ROI, the type of image enhancement processing, and the degree of image enhancement according to the purpose of image analysis with a high degree of freedom using the GUI. This makes it possible to obtain an ROI-enhanced image that meets the purpose of image analysis of the object.
- the system 100 performs machine learning on the plurality of ROI enhancement engines 31 so as to output ROI-enhanced learning images that differ in at least one of the ROI, the type of image enhancement processing, and the degree of image enhancement.
- the plurality of ROI enhancement engines 31 output ROI-enhanced images in which at least one of the ROI, the type of image enhancement processing, and the degree of image enhancement differs.
- the ROI enhancement engine 31 it may be desirable to specify the ROI, the type of image enhancement processing, and the degree of image enhancement according to the purpose. Also, in the image analysis of the target object, it may be desirable to use an image to which multiple types of ROIs, types of image enhancement processing, etc. are applied, rather than a single ROI, type of image enhancement processing, or the like.
- the present system 100 performs machine learning on a plurality of ROI enhancement engines 31, and uses the plurality of ROI enhancement engines 31 to differentiate at least one of the ROI, the type of image enhancement processing, and the degree of image enhancement.
- a plurality of types of ROI-enhanced images are acquired.
- FIG. 5 is a diagram showing an example of a processing sequence for performing machine learning on the two ROI enhancement engines E1 and E2 in the learning phase.
- the learning phase execution program 36 accepts from the user, via the GUI execution program 35, the designation of the ROI, the type of image enhancement processing, and the degree of image enhancement for the learning image 120 acquired from the learning image DB 32 (step S21). ). Further, the learning phase execution program 36 uses the input information about the ROI etc. acquired via the GUI execution program 35 to generate the ROI-enhanced learning image (step S22), the learning image 120 and the ROI-enhanced learning image 181, 184 is used to perform machine learning for the ROI enhancement engines E1 and E2 (step S23).
- FIG. 6 is a diagram showing an example of the GUI 190 for designating the ROI, the type of image enhancement processing, and the degree of image enhancement.
- the upper part 191 of the GUI is the area corresponding to the ROI enhancement engine E1
- the lower part 192 is the area corresponding to the ROI enhancement engine E2.
- the GUI 190 also displays an add button 193 that is pressed to add an ROI emphasis engine that performs machine learning.
- the basic configuration of the GUI 190 shown in FIG. 6 is similar to that of the GUI 170 shown in FIG. 4, so detailed description thereof will be omitted.
- the GUI execution program 35 receives from the user the designation of the ROI, the type of image enhancement processing, and the degree of image enhancement (step S21). Specifically, the GUI execution program 35 designates the portion 180 of the learning image as the ROI, designates “contour” as the type of image enhancement processing, and designates “strength” as the degree of image enhancement to the ROI enhancement engine E1. Get input information that specifies ".
- GUI execution program 35 designates the portion 183 of the learning image as the ROI, designates “contrast” as the type of image enhancement processing, and designates “strong” as the degree of image enhancement to the ROI enhancement engine E2. Get the input information to
- the GUI execution program 35 displays the specified ROIs in areas 172 corresponding to the ROI enhancement engines E1 and E2 based on the input information.
- the learning phase execution program 36 performs a specified type of image enhancement processing at a specified degree of image enhancement for each ROI, thereby performing ROI enhancement corresponding to the ROI enhancement engines E1 and E2.
- Learning images 181 and 184 are generated (step S22).
- the GUI execution program 35 also displays the ROI-enhanced learning images 181 and 184 generated by the learning phase execution program 36 in areas 174 corresponding to the ROI-enhancement engines E1 and E2 of the GUI 190, respectively.
- the learning phase execution program 36 uses the ROI-enhanced learning images 181 and 184 thus generated to perform machine learning for the ROI-enhancement engines E1 and E2 (step S23). Specifically, when the learning image 120 is input, the learning phase execution program 36 performs machine learning of the ROI enhancement engine E1 so that the generated ROI-enhanced learning image 181 is generated. Similarly, when the learning image 120 is input, the learning phase execution program 36 performs machine learning of the ROI enhancement engine E2 so that the generated ROI-enhanced learning image 184 is generated.
- the specified degree of image enhancement in this case, “strong”
- An ROI-enhanced image that has been subjected to the type of image enhancement processing (in this case, “outline enhancement processing”) is output.
- the processed image is input to the ROI enhancement engine E2
- only the ROI specified in the learning phase is subjected to the specified degree of image enhancement (in this case, "strong") and the specified type of image.
- An ROI-enhanced image that has been subjected to enhancement processing is output.
- the present system 100 it is possible to apply multiple types of ROIs, types of image enhancement processing, and degrees of image enhancement to acquire multiple types of ROI-enhanced images. It is possible to do it properly.
- the system 100 In the learning phase, the system 100 according to this embodiment generates a difference image using the learned non-defective product images and the learned defective product images, and designates an ROI based on the difference image. In addition, the system 100 generates an ROI-enhanced learning image in which the designated ROI is emphasized, and when a learning defective product image is input, the ROI-emphasizing engine 31 performs machine learning so that an ROI-enhanced learning image is output. .
- the system in the image processing phase, the system according to the present embodiment generates a comparison image in which the ROI is emphasized by inputting the processed image to the ROI enhancement engine 31, and compares the processed image and the comparison image. , to determine whether the object is good or bad (good/bad judgment).
- the defect portion is specified as an ROI by the method described in the first embodiment, an image in which the defect is emphasized can be obtained, so that inspection can be easily performed.
- the human load is large.
- a machine learning engine is used as the ROI enhancement engine 31
- a large number of training images are generally required. burden increases.
- the system according to the present embodiment employs a method of automatically specifying an ROI using a difference image calculated using a reference image, which is a learned good product image, and a learned defective product image. specification method).
- FIG. 7 is a diagram showing an example of the processing sequence of the learning phase and the image processing phase according to this embodiment.
- the learning phase execution program 36 acquires the learning non-defective product image 203 and the learning defective product image 204 of the learning non-defective product 200 and the learning defective product 201, respectively, from the learning image DB 32. (Step S50).
- the learning phase execution program 36 outputs an instruction to the imaging device 10 via the NI 40 to capture images of the non-defective learning product 200 and the defective learning product 201, and the learning non-defective product image captured by the imaging device 10. 203 and the learning defective product image 204 may be acquired from the learning image DB 32.
- the learning phase execution program 36 uses the learned non-defective product images 203 and the learned defective product images 204 to perform machine learning for the ROI enhancement engine 31 (step S60). Specifically, the learning phase execution program 36 uses the learned non-defective product image 203 as a reference image, and designates an ROI, which is a portion with a high probability of being defective, in the learned defective product image 204 .
- the method of obtaining the difference using the reference image and specifying the ROI based on the difference value (the method of specifying the ROI corresponding to B2 described above) will be described.
- FIG. 8 is a diagram for explaining a method of designating an ROI based on the difference from the reference image.
- an area having a large difference value from the learned non-defective product image is designated as an ROI with a high possibility of being defective.
- the learning phase execution program 36 aligns the learned non-defective product image 203 with the learned defective product image 204, and uses the learned non-defective product image 203 as a reference to create a difference image between the learned non-defective product image 203 and the learned defective product image 204.
- 214 is generated (step S61). Further, the learning phase execution program 36 designates a region (portion 215 in FIG. 8) in which the pixel value of the difference image 214, that is, the difference value is larger than a preset threshold value, as the ROI 216 .
- the learning phase execution program 36 generates an ROI-enhanced learning image based on the specified ROI 216 (step S63). Specifically, the learning phase execution program 36 generates an ROI-enhanced learning image in which only the ROI 216 is emphasized by performing image enhancement processing such as contrast enhancement processing on the designated ROI 216 in the learning defective product image 204. .
- the learning phase execution program 36 performs machine learning for the ROI enhancement engine 31 (step S64).
- the learning phase execution program 36 is a machine for optimizing the internal parameters of the ROI enhancement engine 31 so that the generated ROI-enhanced learning image is output when the learning defective product image 204 is input. do the learning.
- a comparison image (ROI-enhanced image) 212 is generated (estimated) from a processed image 211 of an object 210, thereby generating an image in which a region (ROI) with a high probability of being defective is emphasized. Also, in the image processing phase, by comparing the processed image 211 and the comparison image 212, it is determined whether the object is good or bad.
- the image processing phase execution program 37 acquires the processed image 211 of the inspection target 210 from the processed image DB 33 (step S70).
- the image processing phase execution program 37 uses the ROI enhancement engine 31 to acquire the comparison image 212, which is an ROI-enhanced image in which only the ROI is enhanced (step S80). Specifically, when the processed image 211 is input to the ROI enhancement engine 31 by the image processing phase execution program 37, the ROI enhancement engine 31 identifies the ROI in the processed image (step S81).
- the ROI enhancement engine 31 performs image processing that enhances only the specified ROI, thereby generating the comparison image 212 that is the ROI-enhanced image (step S82) and outputs it.
- the image processing phase execution program 37 uses the processed image 211 and the comparison image 212 to compare both images, thereby determining whether the object 210 to be inspected is a good product or a bad product (good/bad judgment). (Step S90). Specifically, the image processing phase execution program 37 generates a difference image between the processed image 211 and the comparison image 212, and if there is a location where the pixel value of the difference image is greater than a preset threshold value, It is determined that the object is defective.
- the image processing phase execution program 37 determines that the object 210 to be inspected is defective, it outputs a processed image (defective product image) 211 to a predetermined external device via the NI 40, for example, and sends it to the inspector. Processing such as prompting confirmation of the defective product image (step S100) may be performed.
- the system 100 it is possible to automatically designate an ROI from the defective product image based on the difference from the reference image, and efficiently execute machine learning for the ROI enhancement engine. Further, according to the present system 100, it is possible to determine the quality of the object to be inspected based on the difference between the processed image and the comparison image in which the ROI is emphasized. As a result, it is possible to automate inspections in order to deal with problems such as inspection costs, skills, and individuality.
- the system according to the present embodiment generates a pseudo-defective image by synthesizing a pseudo-defective image with a learned non-defective image, and designates an area where the pseudo-defective image is synthesized as an ROI.
- the system 100 generates an ROI-enhanced learning image in which the ROI of the pseudo-defective image is emphasized, and when the pseudo-defective image is input, the ROI-emphasizing engine 31 performs machine learning so that the ROI-enhanced learning image is output. conduct.
- the system according to the present embodiment generates a comparison image in which the ROI is emphasized by inputting the processed image to the ROI enhancement engine 31, and compares and inspects the processed image and the comparison image. Then, it is determined whether the object is good or bad (good/bad judgment).
- the system according to the second embodiment performs machine learning of the ROI enhancement engine 31 using learned defective product images. .
- the system according to the present embodiment adopts a method of designating an ROI based on an area obtained by synthesizing pseudo-defects, such as scratches and color unevenness, whose luminance values are similar to those of a non-defective product by image processing. specification method).
- FIG. 9 is a diagram showing an example of the processing sequence of the learning phase and the image processing phase according to this embodiment.
- the learning phase execution program 36 acquires the learning non-defective product image 203 of the good learning product 200 from the learning image DB 32 .
- the learning phase execution program 36 performs machine learning for the ROI enhancement engine 31 (step S120). Specifically, the learning phase execution program 36 synthesizes the pseudo defect with the learned non-defective product image 203 (step S121). More specifically, the learning phase execution program 36 synthesizes, with the learned non-defective product image, pseudo-defects in which the luminance values of defective parts such as scratches and color unevenness are close to those of the non-defective product.
- the learning phase execution program 36 designates the area where the pseudo failures are combined as the ROI (step S122).
- FIG. 10 is a diagram for explaining a method of designating an ROI based on a region in which pseudo-defects are synthesized. This method designates a region in which pseudo failures are combined as an ROI.
- the learning phase execution program 36 synthesizes a pseudo-defect 224 in which the luminance value of a defective portion such as a flaw or color unevenness is close to that of a non-defective product at a predetermined position on the learning non-defective product image 203 (step S121). to generate Also, the learning phase execution program 36 designates the region where the pseudo failures 224 are synthesized as the ROI 226 (step S122).
- the learning phase execution program 36 generates an ROI-enhanced learning image based on the designated ROI 226 (step S123). Specifically, the learning phase execution program 36 emphasizes only the ROI 226 by performing image enhancement processing such as contrast enhancement processing on the designated ROI 226 , that is, the portion of the synthesized pseudo defect 224 in the pseudo defect image 225 . Generate ROI-enhanced training images.
- the learning phase execution program 36 performs machine learning for the ROI enhancement engine 31 (step S124). Specifically, the learning phase execution program 36 performs machine learning for optimizing the internal parameters of the ROI enhancement engine 31 so that the generated ROI-enhanced learning image is output when the pseudo-defective image 225 is input. I do.
- step S130, step S140 to step S142, and step S160 are the same processes as step S70, step S80 to step S82, and step S100 according to the second embodiment, and detailed description thereof will be omitted.
- step S150 the image processing phase execution program 37 uses the processed image 221 and the comparison image 222 and compares both images to determine (determine) whether the inspection object 220 is a good product or a defective product. .
- FIG. 11 is a diagram showing a processing sequence for determining the quality of the inspection object 220 using the processed image 221 and the comparison image 222.
- the processed image 221 acquired in step S130 includes a portion 227 showing a relatively large foreign matter or defect, and a defective portion 228 such as a scratch or color unevenness that has a luminance value close to that of a non-defective product. ing.
- the image processing phase execution program 37 uses such a processed image 221, the image processing phase execution program 37 generates a comparison image 222, which is an ROI-enhanced processed image. Specifically, the image processing phase execution program 37 inputs the processed image 221 to the ROI enhancement engine 31 to acquire the ROI-enhanced processed image output from the ROI enhancement engine 31, and converts it into the comparison image 222. and
- the ROI enhancement engine 31 performs machine learning by designating a defective region whose luminance value is close to that of a non-defective product as an ROI.
- An ROI-enhanced processed image (comparative image 222) is output in which only a defective region 228 in which the luminance value of a defective portion such as color unevenness is close to that of a non-defective product is emphasized.
- an image such as the learned non-defective product image 203 is output.
- the image processing phase execution program 37 uses the processed image 221 and the comparison image 222 to compare both images to determine (determine) whether the inspection object 220 is good or bad. Specifically, the image processing phase execution program 37 generates a difference image 229 between the processed image 221 and the comparison image 222 (step S151). Also, the image processing phase execution program 37 generates a binarized image 230 by binarizing the difference image based on a preset threshold value (step S152).
- the difference image 229 is generated based on the difference between the processed image 221 and the comparison image 222. Therefore, the part 227 showing the foreign matter or defect and the luminance value of the flaw or color unevenness are close to those of the non-defective product. and ROI 228 that emphasizes the defective portion.
- a region in the example of FIG. 11, corresponding to a region 227 showing a foreign substance and the ROI 228, which is a region where the pixel value is higher than the threshold value. ) will be shown in white, and other areas below the threshold will be shown in black.
- the image processing phase execution program 37 refers to the binarized image 230 and determines that the object is defective if it detects a portion larger than a preset threshold value, ie, a white portion. do.
- the present system 100 by performing machine learning of the ROI emphasis engine using a defective product image obtained by synthesizing pseudo-defects in which luminance values of defects such as scratches and color unevenness are similar to those of a non-defective product, it is possible to When an image containing unevenness is input to the ROI enhancement engine, an ROI-enhanced processed image in which areas of flaws and color unevenness are emphasized is output. This enables the system 100 to detect defects whose brightness values are close to non-defective products by inspection.
- the ROI emphasis engine learns so that it becomes the same as the non-defective image.
- an image including a significant defect is input to the ROI enhancement engine, an image that does not include defects and looks like a good product is output as an ROI-enhanced image for regions including foreign matter and defects.
- the present system 100 generates a difference image using the processed image and the comparison image, and performs binarization processing on the difference image, thereby similarly detecting relatively large defects such as foreign matter and defects. can do.
- the system 100 designates regions obtained by synthesizing mutually different pseudo defects as ROIs, and outputs ROI-enhanced learning images having mutually different types of image enhancement processing and degrees of image enhancement. Then, machine learning is performed on the plurality of ROI enhancement engines 31 . Specifically, the system 100 generates a plurality of pseudo-defective images by synthesizing different pseudo-defects with a learned non-defective image, and designates a region where the pseudo-defects are synthesized as an ROI.
- the system 100 generates a plurality of ROI-enhanced learning images in which the ROI of each pseudo-defective image is enhanced with different image enhancement processing types and image enhancement degrees.
- the system 100 uses a plurality of ROI enhancement engines 31, and when a pseudo defective image corresponding to each ROI enhancement engine 31 is input, a plurality of ROI enhancement learning images are output. machine learning of the ROI enhancement engine 31 of .
- the system 100 inputs a processed image to a plurality of ROI enhancement engines 31, so that each ROI enhancement engine 31 outputs a comparison image in which the ROI is enhanced and processed.
- each ROI enhancement engine 31 outputs a comparison image in which the ROI is enhanced and processed.
- a ROI-enhanced learning image is generated by applying a single ROI, the type of image enhancement processing, and the degree of image enhancement to a pseudo-defective image.
- a method for training the ROI enhancement engine 31 using depending on the type of ROI, it may be possible to improve the accuracy of inspection by using ROI-enhanced images that are enhanced by mutually different types of image enhancement processing and degrees of image enhancement instead of using a single ROI. .
- the system according to the present embodiment performs machine learning on a plurality of ROI enhancement engines 31 so as to output ROI-enhanced learning images having different ROIs, types of image enhancement processing, and degrees of image enhancement.
- the quality of the object can be determined with higher accuracy.
- FIG. 12 is a diagram showing an example of a processing sequence for performing machine learning on the two ROI enhancement engines E3 and E4 in the learning phase.
- the learning phase execution program 36 acquires the learned non-defective product image 203 from the learning image DB 32 (step S110), and synthesizes the first pseudo-defective product image 231 with the learned non-defective product image (step S121) to obtain the first pseudo-defective image. 232 is generated. Also, the learning phase execution program 36 designates the region where the first pseudo failure 231 is combined as the ROI 233 (step S122).
- the learning phase execution program 36 generates the first ROI-enhanced learning image 234 based on the specified ROI 233 (step S123). Specifically, the learning phase execution program 36 generates a first ROI-enhanced learning image 234 in which the ROI 233 is enhanced by performing image processing according to the first image enhancement type and image enhancement degree.
- the learning phase execution program 36 inputs the first pseudo defect image 232 obtained by synthesizing the first pseudo defect 231, and controls the ROI enhancement engine E3 so that the first ROI-enhanced learning image 234 is output.
- Machine learning is performed (step S124).
- the learning phase execution program 36 performs machine learning for the ROI enhancement engine E2 by a similar method. Specifically, the learning phase execution program 36 acquires the learned non-defective product image 203 from the learning image DB 32 (step S110), and synthesizes the second pseudo-defect 235 different from the first pseudo-defect with the learned non-defective product image. By doing so (step S121), the second pseudo defect image 236 is generated. Also, the learning phase execution program 36 designates the region where the second pseudo failure 235 is combined as the ROI 237 (step S122).
- the learning phase execution program 36 generates a second ROI-enhanced learning image 238 based on the designated ROI 237 (step S123). Specifically, the learning phase execution program 36 emphasizes the ROI 237 by performing image processing with a second image enhancement type and image enhancement degree different from the first image enhancement type and image enhancement degree. A second ROI-enhanced training image 238 is generated.
- the learning phase execution program 36 inputs the second pseudo defect image 236 obtained by synthesizing the second pseudo defect 235, and causes the ROI enhancement engine E4 to output the second ROI-enhanced learning image 238.
- Machine learning is performed (step S124).
- the first type of image enhancement and the degree of image enhancement and the second type of image enhancement and the degree of image enhancement can be designated by the user using the GUI shown in FIG. 6, for example. Alternatively, a preset one may be used.
- a comparison image (ROI enhancement processed image) 222 is generated (estimated) from the processed image 221, and the processed image 221 and the comparison image 222 are compared. , to determine whether the object 220 to be inspected is good or bad.
- This processing is the same processing as the image processing phase of the third embodiment.
- FIG. 13 is a diagram showing a processing sequence for determining the quality of the inspection object 220 using the processed image 221 and the comparison image 222.
- the processed image 221 acquired in step S130 includes a first defect 240 and a second defect 241.
- the image processing phase execution program 37 obtains an ROI-enhanced processed image in which only the ROI is enhanced (step S140), and uses this as a comparison image 222m.
- the image processing phase execution program 37 uses the processed image 221 to determine the quality of the object 220 . Specifically, the image processing phase execution program 37 generates a difference image 229m between the processed image 221 and the comparison image 222m (step S151), and binarizes the difference image into a difference image based on a preset threshold value. By performing the processing (step S152), the binarized image 230m is generated.
- the image processing phase execution program 37 uses the ROI enhancement engine E4 to generate the binarized image 230n by performing the same processing as the processing using the ROI enhancement engine E3.
- the image processing phase execution program 37 refers to the binarized images 230m and 230n, and finds a portion larger than a preset threshold in at least one of the binarized images, that is, a portion shown in white. If detected, the object 220 is determined to be defective. Since the processing of step S160 is similar to that described above, detailed description thereof will be omitted.
- the present system 100 it is possible to inspect defects, etc., using a plurality of ROI-enhanced images generated by mutually different image enhancement types and image enhancement degrees. Therefore, according to the present system 100, it is possible to generate an appropriate ROI-enhanced processed image according to the type of ROI, and to improve the inspection accuracy.
- the same operator performs the learning phase and the image processing phase using the processor system 100, and the operator who performs only the learning phase and the image processing phase (i.e., after machine learning)
- the operator who performs only the learning phase and the image processing phase i.e., after machine learning
- the present invention is not limited to the above-described embodiments and modifications, and includes various modifications within the scope of the same technical idea.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
- control lines and information lines indicate those that are considered necessary for the explanation, and not all the control lines and information lines are necessarily indicated on the product. In reality, it can be considered that almost all configurations are interconnected.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
対象物の画像解析の目的に応じて注目領域のみの視認性を向上させる学習を行うことで、より適切な対象物の画像解析を支援することができる。 1以上のプロセッサと、1以上のメモリリソースと、を有するシステムであって、前記メモリリソースは、ROI強調エンジンと、学習フェーズ実行プログラムと、画像処理フェーズ実行プログラムと、を記憶し、前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、学習用の対象物を撮像した学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROI(Region Of Interest)のみを強調したROI強調学習画像を生成し、前記学習画像を入力した際、前記ROI強調学習画像が生成されるように前記ROI強調エンジンの内部パラメータを最適化するための学習を行う。
Description
本発明は、システム、画像処理方法およびプログラムに関する。本発明は2021年12月2日に出願された日本国特許の出願番号2021-196428の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。
例えば、機械、材料、食品、バイオ、医療等の分野においては、対象物を撮像して取得した画像を解析することで、観察、外観検査あるいは計測等が行われる。画像解析の際には、視認性の高い画像を用いることが望ましいため、従来から、対象物を高い解像度で撮像する等、撮像系による工夫や、画像処理によって視認性を向上させる方法が提案されている。
また、近年、深層ネットワークモデルの提案により機械学習の性能が飛躍的に向上しており、機械学習に基づく画像の視認性を向上させる手法が提案されている。例えば、特許文献1には、画像推定方法に関し、「記憶部と演算部を有するシステムの画像推定において、記憶部は、第1試料の第1領域の第1画像と、第1領域の第2画像とを顕微鏡で撮像し記憶する。演算部は、第1画像と第2画像とに基づいて、推定処理パラメータを推定し、第1試料又は第2試料の所望の領域について、第1撮像条件を用いた撮像された、第3画像を取得し、第3画像と推定処理パラメータとに基づいて、所望の領域に関する第4画像を推定する。推定処理パラメータの推定の時、演算部は、第1画像と学習中推定画像と、第2画像との差異を誤差として求め、誤差を予め設定したしきい値と比較することで、学習中推定処理パラメータを、推定処理パラメータとする契機を判断する。」と記載されている。
特許文献1には、画質が劣化した画像と、高画質な画像と、のペアを学習データとして、劣化画像から高画質画像を推定するパラメータの学習方法が開示されている。かかる学習方法では、劣化画像の全体について高画質画像を推定する場合のパラメータを学習している。一方で、画像解析の目的によっては、画像の一部の注目領域についてのみ、その視認性を向上させたい場合がある。
例えば、対象物の観察においては、対象物の特定の部位や画像中の特定の位置についてのみ視認性を向上させた方が観察に適した画像となる場合がある。また、対象物の外観検査を行う場合は、不良部位以外の良品部位を不良として誤認識することを防止するため、不良部位についてのみ視認性を向上させることが求められる。また、対象物の特定の部位の計測を行う際は、計測対象となる部位の輪郭についてのみ視認性を向上させることが有効な場合がある。しかしながら、特許文献1に記載の技術では、注目領域のみの視認性を向上させることは考慮されていない。
本発明は、上記課題に鑑みてなされたものであり、対象物の画像解析の目的に応じて注目領域のみの視認性を向上させるための学習を行うことで、より適切な対象物の画像解析を支援することを目的とする。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記の課題を解決する本発明の一態様に係るシステムは、1以上のプロセッサと、1以上のメモリリソースと、を有するシステムであって、前記メモリリソースは、ROI強調エンジンと、学習フェーズ実行プログラムと、画像処理フェーズ実行プログラムと、を記憶し、前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、学習用の対象物を撮像した学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROI(Region Of Interest)のみを強調したROI強調学習画像を生成し、前記学習画像を入力した際、前記ROI強調学習画像が生成されるように前記ROI強調エンジンの内部パラメータを最適化するための学習を行う。
本発明によれば、対象物の画像解析の目的に応じて注目領域のみの視認性を向上させる学習を行うことで、より適切な対象物の画像解析を支援することができる。
以下、本発明の各実施形態について図面を用いて説明する。
<第一実施形態>
本実施形態に係るシステム(プロセッサシステム)は、対象物(被写体)を撮像した処理画像において、所定の注目領域であるROI(Region Of Interest)のみが強調表示されるような画像処理を行うことで、ROIの視認性のみを向上させたROI強調処理画像を出力するシステムである。
本実施形態に係るシステム(プロセッサシステム)は、対象物(被写体)を撮像した処理画像において、所定の注目領域であるROI(Region Of Interest)のみが強調表示されるような画像処理を行うことで、ROIの視認性のみを向上させたROI強調処理画像を出力するシステムである。
本システムは、学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROIのみを強調したROI強調学習画像を生成し、学習画像を入力としてROI強調学習画像を出力するようにROI強調エンジンの機械学習を行う。
また、本システムは、対象物を撮像した処理画像をROI強調エンジンに入力することで、処理画像におけるROIのみを強調したROI強調処理画像を出力する。
その結果、本システムによれば、目的に適したROIのみを強調した画像を得ることができる。
なお、ROI強調エンジンの機械学習を行う学習フェーズ、および、ROI強調処理画像の出力を行う画像処理フェーズの詳細については後述する。
前述の通り、ROIとは、画像解析において、ユーザが注目する領域のことであり、画像解析の目的に応じて様々な領域が該当することになる。下記がROIの一例である。
*(A1):不良(異物、傷)等の検出したいパターンが含まれる領域
*(A2):形状輪郭(エッジ)等の認識したい部位、構造が含まれる領域
*(A3):表面テクスチャ等の注視したい特定領域
*(A4):陰影や材料、構造等によって暗い領域(暗部)やコントラストが低い領域
なお、ROIは、(A1)~(A4)に限定されるものではなく、画像解析の用途やユーザの指定に応じて任意の領域をROIとすることが可能である。
*(A1):不良(異物、傷)等の検出したいパターンが含まれる領域
*(A2):形状輪郭(エッジ)等の認識したい部位、構造が含まれる領域
*(A3):表面テクスチャ等の注視したい特定領域
*(A4):陰影や材料、構造等によって暗い領域(暗部)やコントラストが低い領域
なお、ROIは、(A1)~(A4)に限定されるものではなく、画像解析の用途やユーザの指定に応じて任意の領域をROIとすることが可能である。
また、ROI強調エンジンの機械学習を行う学習フェーズにおいては、(A1)~(A4)に例示したROIのみを強調し、その視認性を向上させたROI強調学習画像を生成するために、ROIを特定する必要がある。一方で、ROIはユーザの解析目的に応じて異なるため、どのような領域を強調すべきかをROI強調エンジン31に指定することが必要となる。そのため、以下にROIの指定方法の一例を示す。
*(B1)GUI(Graphical User Interface)等を用いてユーザが設定
*(B2)基準画像を用いて差分を取り、差分値に基づいて設定
*(B3)画像セグメンテーションにより得られる分割領域に基づいて設定
*(B4)対象物の設計データと画像とのマッチングにより対応関係を取得し、設計データ上で設定した領域に基づいて設定
*(B5)画像処理を適用した領域に基づいて設定
なお、ROIの指定方法は(B1)~(B5)に限定されるものではなく、自動、手動を含めて様々な方法で指定することが可能である。
*(B1)GUI(Graphical User Interface)等を用いてユーザが設定
*(B2)基準画像を用いて差分を取り、差分値に基づいて設定
*(B3)画像セグメンテーションにより得られる分割領域に基づいて設定
*(B4)対象物の設計データと画像とのマッチングにより対応関係を取得し、設計データ上で設定した領域に基づいて設定
*(B5)画像処理を適用した領域に基づいて設定
なお、ROIの指定方法は(B1)~(B5)に限定されるものではなく、自動、手動を含めて様々な方法で指定することが可能である。
また、(B1)、(B2)、(B4)および(B5)について、以下の各実施形態で詳細に説明する。なお、(B3)の指定方法は、例えば学習画像に示される物が複数の部位に分割することができる場合には各分割領域に対してROIを指定する方法である。また、(B3)の指定方法には、例えば学習画像を複数等分し、その中の分割領域をROIに指定する方法も含まれる。
以下、本システムの構成および本実施形態に係る処理の詳細について、図1~6を用いて説明する。
<プロセッサシステム(本システム)100の構成>
図1は、プロセッサシステム100の概略構成の一例を示した図である。図示するように、本システム100は、例えば通信ケーブルや所定の通信網(例えば、インターネット、LAN(Local Area Network)あるいはWAN(Wide Area Network)など)により撮像装置10と相互通信可能に接続されている。
図1は、プロセッサシステム100の概略構成の一例を示した図である。図示するように、本システム100は、例えば通信ケーブルや所定の通信網(例えば、インターネット、LAN(Local Area Network)あるいはWAN(Wide Area Network)など)により撮像装置10と相互通信可能に接続されている。
<<撮像装置10の詳細>>
撮像装置10は、対象物(被写体)の表面あるいは内部のデジタル画像やデジタル映像を撮像可能な撮像装置10である。具体的には、撮像装置10は、CCD(Charge Coupled Device)カメラ、光学顕微鏡、荷電粒子顕微鏡、超音波検査装置およびX線検査装置等である。撮像装置10は、対象物を撮像し、撮像画像をプロセッサシステム100に出力(または送信)する。なお、本システム100には、複数の撮像装置10が接続されていても良い。
撮像装置10は、対象物(被写体)の表面あるいは内部のデジタル画像やデジタル映像を撮像可能な撮像装置10である。具体的には、撮像装置10は、CCD(Charge Coupled Device)カメラ、光学顕微鏡、荷電粒子顕微鏡、超音波検査装置およびX線検査装置等である。撮像装置10は、対象物を撮像し、撮像画像をプロセッサシステム100に出力(または送信)する。なお、本システム100には、複数の撮像装置10が接続されていても良い。
<<プロセッサシステム100の詳細>>
プロセッサシステム100は、メモリリソースに格納された各種プログラムをプロセッサ20が読み込むことにより、学習フェーズおよび画像処理フェーズの処理を実行する。
プロセッサシステム100は、メモリリソースに格納された各種プログラムをプロセッサ20が読み込むことにより、学習フェーズおよび画像処理フェーズの処理を実行する。
なお、プロセッサシステム100は、例えばパーソナルコンピュータ、タブレット端末、スマートフォン、サーバ計算機およびクラウドサーバなどの計算機であり、少なくともこれら計算機を1つ以上含むシステムである。
具体的には、プロセッサシステム100は、プロセッサ20と、メモリリソース30と、NI(Network Interface Device)40と、UI(User Interface Device)50と、を有している。
プロセッサ20は、メモリリソース30に格納されている各種プログラムを読み込んで、各プログラムに対応する処理を実行する演算装置である。なお、プロセッサ20は、マイクロプロセッサ、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、あるいはその他の演算できる半導体デバイス等が一例として挙げられる。
メモリリソース30は、各種情報を記憶する記憶装置である。具体的には、メモリリソース30は、例えばRAM(Random Access Memory)やROM(Read Only Memory)などの不揮発性あるいは揮発性の記憶媒体である。なお、メモリリソースは、例えばフラッシュメモリ、ハードディスクあるいはSSD(Solid State Drive)などの書き換え可能な記憶媒体や、USB(UNI40versal Serial Bus)メモリ、メモリカードおよびハードディスクであっても良い。
NI40は、外部装置との間で情報通信を行う通信装置である。NI40は、例えばLANやインターネットなど所定の通信網を介して外部装置(例えば、撮像装置10)との間で情報通信を行う。なお、以下で特に言及しない場合、プロセッサシステム100と撮像装置10との情報通信は、NI40を介して実行されているものとする。
UI50は、ユーザ(オペレーター)の指示をプロセッサシステム100に出力する入力装置、および、プロセッサシステム100で生成した情報等を出力する出力装置である。入力装置には、例えばキーボード、タッチパネル、マウスなどのポインティングデバイスや、マイクロフォンのような音声入力装置などがある。
また、出力装置には、例えばディスプレイ、プリンター、音声合成装置などがある。なお、以下で特に言及しない場合は、プロセッサシステム100に対するユーザの操作(例えば、情報の入力、出力および処理の実行指示など)は、UI50を介して実行されているものとする。
また、本システム100の各構成、機能、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、本システム100は、各機能の一部または全部を、ソフトウェアにより実現することもできるし、ソフトウェアとハードウェアとの協働により実現することもできる。また、本システム100は、固定的な回路を有するハードウェアを用いても良いし、少なくとも一部の回路を変更可能なハードウェアを用いてもよい。
また、本システム100は、各プログラムにより実現される機能や処理の一部または全部をユーザ(オペレータ)が実施することで、システムを実現することもできる。
なお、以下で説明するメモリリソース30内の各DB(データベース)は、データを格納できる領域であれば、ファイル等やデータベース以外のデータ構造であっても良い。
<<ROI強調エンジン31>>
ROI強調エンジン31は、例えばCNN(Convolutional Neural Network)に代表される深層ニューラルネットワークである。なお、ROI強調エンジン31は、機械学習型の深層ニューラルネットワークに限定されるものではなく、例えばルールベース型のエンジンを用いることもできる。
ROI強調エンジン31は、例えばCNN(Convolutional Neural Network)に代表される深層ニューラルネットワークである。なお、ROI強調エンジン31は、機械学習型の深層ニューラルネットワークに限定されるものではなく、例えばルールベース型のエンジンを用いることもできる。
ROI強調エンジン31は、学習フェーズにおいて機械学習を行う。具体的には、ROI強調エンジン31は、学習画像を入力した際、学習画像の指定されたROIのみに画像強調処理(例えば、コントラスト強調処理、ヒストグラム平坦化処理および輪郭強調処理など)を行ったROI強調学習画像を出力するように、内部パラメータを最適化する。
また、ROI強調エンジン31は、画像処理フェーズにおいて、対象物の撮像画像(以下、処理画像という場合がある)が入力された際、ROIのみを強調したROI強調処理画像を生成し、これを出力する。
なお、ROI強調エンジン31にニューラルネットワークを用いた場合、かかるエンジンの内部パラメータには、例えばニューラルネットワークのネットワーク構造、活性化関数、学習率や学習の終了条件等のハイパーパラメータ、ネットワークのノード間の重み(結合係数)およびバイアス等のモデルパラメータなどが含まれる。
また、ROI強調エンジン31にルールベース型のエンジンを用いた場合、かかるエンジンの内部パラメータには、各種画像処理のフィルタ係数、判定しきい値等の画像処理パラメータなどが含まれる。
なお、ROI強調エンジン31には、機械学習型エンジンと、ルールベース型エンジンと、が併用されても良い。
<<学習画像DB32>>
学習画像DB32は、学習フェーズにおける機械学習に用いられる学習画像が格納されているデータベースである。学習画像DB32は、学習画像を予め格納していても良く、あるいは、学習フェーズにおいて撮像装置10により学習画像が撮像された場合、かかる学習画像を格納しても良い。
学習画像DB32は、学習フェーズにおける機械学習に用いられる学習画像が格納されているデータベースである。学習画像DB32は、学習画像を予め格納していても良く、あるいは、学習フェーズにおいて撮像装置10により学習画像が撮像された場合、かかる学習画像を格納しても良い。
<<処理画像DB33>>
処理画像DB33は、画像処理フェーズの実行時に撮像装置10により撮像された対象物の処理画像を格納するデータベースである。
処理画像DB33は、画像処理フェーズの実行時に撮像装置10により撮像された対象物の処理画像を格納するデータベースである。
<<その他情報DB34>>
その他情報DB34は、学習フェーズおよび画像処理フェーズで用いられる種々の情報を格納するデータベースでる。例えば、その他情報DB34には、ROIの指定方法(B4)で用いられる対象物の設計データが格納されている。また、その他情報DB34には、例えばROIの指定方法(B5)で用いられる擬似不良に関する情報が格納されている。
その他情報DB34は、学習フェーズおよび画像処理フェーズで用いられる種々の情報を格納するデータベースでる。例えば、その他情報DB34には、ROIの指定方法(B4)で用いられる対象物の設計データが格納されている。また、その他情報DB34には、例えばROIの指定方法(B5)で用いられる擬似不良に関する情報が格納されている。
<<GUI実行プログラム35>>
GUI実行プログラム35は、UI50(この場合、ディスプレイ)に出力される所定の画面情報を生成し、UI50(この場合、キーボードやマウスなどのポインティングデバイス)を介して、情報の入力や処理の実行指示などをユーザから受け付けるプログラムである。具体的には、GUI実行プログラム35は、ROIの指定等を受け付ける画面情報を生成し、ディスプレイに出力する。また、GUI実行プログラム35は、UI50を介して、ユーザからROIの指定やその他情報の入力を受け付ける。
GUI実行プログラム35は、UI50(この場合、ディスプレイ)に出力される所定の画面情報を生成し、UI50(この場合、キーボードやマウスなどのポインティングデバイス)を介して、情報の入力や処理の実行指示などをユーザから受け付けるプログラムである。具体的には、GUI実行プログラム35は、ROIの指定等を受け付ける画面情報を生成し、ディスプレイに出力する。また、GUI実行プログラム35は、UI50を介して、ユーザからROIの指定やその他情報の入力を受け付ける。
<<学習フェーズ実行プログラム36>>
学習フェーズ実行プログラム36は、学習フェーズにおける様々な処理を実行するプログラムである。具体的には、学習フェーズ実行プログラム36は、学習画像を学習画像DB32から取得し、ROIのみに画像強調処理を行ったROI強調学習画像を生成する。また、学習フェーズ実行プログラム36は、学習画像をROI強調エンジン31に入力し、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
学習フェーズ実行プログラム36は、学習フェーズにおける様々な処理を実行するプログラムである。具体的には、学習フェーズ実行プログラム36は、学習画像を学習画像DB32から取得し、ROIのみに画像強調処理を行ったROI強調学習画像を生成する。また、学習フェーズ実行プログラム36は、学習画像をROI強調エンジン31に入力し、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
<<画像処理フェーズ実行プログラム37>>
画像処理フェーズ実行プログラム37は、画像処理フェーズに関する様々な処理を実行するプログラムである。具体的には、画像処理フェーズ実行プログラム37は、処理画像DB33から対象物の処理画像を取得し、これをROI強調エンジン31に入力することで、ROIのみが強調されたROI強調処理画像を取得する。
画像処理フェーズ実行プログラム37は、画像処理フェーズに関する様々な処理を実行するプログラムである。具体的には、画像処理フェーズ実行プログラム37は、処理画像DB33から対象物の処理画像を取得し、これをROI強調エンジン31に入力することで、ROIのみが強調されたROI強調処理画像を取得する。
以上、プロセッサシステム100の詳細について説明した。
<学習フェーズおよび画像処理フェーズの詳細>
図2は、学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
図2は、学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
学習フェーズでは、ROI強調エンジン31の機械学習が行われる。なお、学習フェーズは、例えばユーザがUI50を介してプロセッサシステム100に学習フェーズの実行指示を行った場合など、所定のタイミングで開始される。
学習フェーズが開始されると、プロセッサシステム100は、学習フェーズ実行プログラム36を実行する。学習フェーズ実行プログラム36は、学習用対象物110を撮像した学習画像120を学習画像DB32から取得する(ステップS10)。なお、学習フェーズ実行プログラム36は、NI40を介して、学習用対象物110の学習画像120を撮像するための指示を撮像装置10に出力し、撮像装置10により撮像された対象物の学習画像120を学習画像DB32から取得しても良い。
次に、学習フェーズ実行プログラム36は、ROI強調エンジン31の機械学習を実行する(ステップS20)。具体的には、学習フェーズ実行プログラム36は、ROIを指定する(ステップS21)。
ここで、ROIの指定に関し、CAD(Computer-Aided Design)等で与えられる対象物の設計データを用いる方法(前述のB4に該当するROIの指定方法)について説明する。
図3は、対象物の設計データを用いてROIを指定する方法を説明するための図である。本方法は、学習画像120と設計データ160とをマッチングさせ、設計データ160上の設定領域に学習画像120がマッチングされた領域162をROI121に指定するものである。
具体的には、学習フェーズ実行プログラム36は、例えばその他情報DB34から対象物の設計データを取得する。なお、図示する設計データの破線161は、対象物の設計形状の輪郭線を示している。
また、学習フェーズ実行プログラム36は、設計データと、学習画像120との各々の特徴点に基づいて設計データ160上に学習画像120をマッチングする。そして、学習フェーズ実行プログラム36は、学習画像120がマッチングされた設計データ160上の領域(図3では、学習画像120がマッチングされた領域162)をROI121に決定し、かかる領域162をROI121に指定する。
次に、学習フェーズ実行プログラム36は、指定したROI121に基づくROI強調学習画像を生成する(ステップS022)。具体的には、学習フェーズ実行プログラム36は、指定したROI121にコントラスト強調処理等の画像強調処理を行うことで、ROI121のみを強調したROI強調学習画像を生成する。なお、図3に示す例では、設計データ160上に学習画像120がマッチングされた領域162のみが強調された設定領域163がROI強調学習画像として生成されることになる。なお、設定領域163は、UI50を介してユーザにより設定されれば良く、あるいは、所定のルールに従って設定されても良い。
次に、学習フェーズ実行プログラム36は、学習画像120とROI強調学習画像とを用いてROI強調エンジン31の機械学習を行う(ステップS023)。具体的には、学習フェーズ実行プログラム36は、学習画像120を入力した際、生成されたROI強調学習画像が出力されるように、ROI強調エンジン31の内部パラメータを最適化するための機械学習を行う。
なお、学習フェーズでは、複数(例えば、10個~100個)の学習画像を用いてステップS10~ステップS23の処理を繰り返し実行することで、ROI強調エンジン31の機械学習が行われる。また、後述の実施形態において説明するROI強調エンジン31についても、機械学習は、学習フェーズを複数回行うことで実施されているものとする。
次に、画像処理フェーズについて説明する。画像処理フェーズでは、対象物130を撮像した処理画像140を用いて、ROI121に対応する処理画像140中のROIのみが強調されたROI強調処理画像が出力される。なお、画像処理フェーズは、例えばユーザがUI50を介してプロセッサシステム100に画像処理フェーズの実行指示を出力した場合など、所定のタイミングで開始される。
画像処理フェーズが開始されると、プロセッサシステム100は、画像処理フェーズ実行プログラム37を実行する。画像処理フェーズ実行プログラム37は、対象物130を撮像した処理画像(図3の例では、設計データ上の設定領域163に対応する対象物130の画像)を処理画像DBから取得する(ステップS30)。なお、画像処理フェーズ実行プログラム37は、NI40を介して、対象物130の処理画像を撮像するための指示を撮像装置10に出力し、撮像装置10により撮像された対象物の処理画像を処理画像DB33から取得しても良い。
次に、画像処理フェーズ実行プログラム37は、ROI強調エンジン31を用いて、ROIのみが強調されたROI強調処理画像を取得する(ステップS40)。具体的には、画像処理フェーズ実行プログラム37により処理画像140が入力されると、ROI強調エンジン31は、学習フェーズで学習したROI(図3の例では、領域121)に対応するROIを処理画像から特定する(ステップS41)。
また、ROI強調エンジン31は、特定したROIのみを強調する画像処理を行い、ROI強調処理画像150を生成する(ステップS42)する。また、画像処理フェーズ実行プログラム37は、ROI強調エンジン31から出力されたROI強調処理画像150を取得する。なお、図3に示す例では、設計データ上の設定領域163に対応する対象物130の画像(処理画像)の中で、領域162のROI121に対応するROIのみが強調されたROI強調処理画像150が出力されることになる。
このように、本システム100によれば、対象物の画像解析の目的に応じて注目領域(ROI)のみが強調表示されるように画像処理を行うことで、ROIの視認性のみを向上させたROI強調処理画像を取得することができる。その結果、対象物の画像解析をより適切に行うことができる。
特に、ROIの指定方法に設計データによるマッチング方法を用いた場合、設計データ上に学習画像を自動的にマッチングすることができるため、複数の学習画像を用いたROI強調エンジン31の機械学習を効率的かつ容易に行うことができる。
また、このような機械学習を行ったROI強調エンジン31に処理画像が入力された場合、対象物の撮像範囲や撮像位置のずれなどの影響を受け難く、処理画像から精度良くROIが特定され、ROIのみが強調されたROI強調処理画像が生成される。
次に、ステップS21におけるROIの指定に関し、GUIを用いてユーザが学習画像中のROI、画像強調処理の種類および画像強調の度合いを指定する方法(前述のB1に該当するROIの指定方法)について説明する。
前述の通り、ROIの対象は様々であるため、目的に応じて、高い自由度でROIを指定できることが求められる。また、画像強調処理の種類としては、コントラスト強調処理、ヒストグラム平坦化処理、輪郭強調処理を例に挙げたが、これらも目的に応じて、高い自由度でその種類を指定できることが望ましい。さらに、画像解析の目的によっては、画像強調の度合いが弱い方が良い場合もあれば、強い方が良い場合もあるため、高い自由度でその度合いを指定できることが望ましい。
そこで、以下で説明するROIの指定方法では、ROI、画像強調処理の種類および画像強調の度合いを、GUIを介してユーザが指定する。これにより、対象物の画像解析の目的に応じたROI強調処理画像を得ることが可能となる。
図4は、ROI、画像強調処理の種類および画像強調の度合いを指定するGUI170の一例を示した図である。図示するように、GUI170には、学習画像を選択する画像ID選択ボタン171と、選択された学習画像が表示される領域172と、GUIを介してユーザにより指定されたROIが表示される領域173と、ROIのみを強調したROI強調学習画像が表示される領域174と、画像強調処理の種類を指定する領域175と、画像強調の度合いを指定する領域176と、が表示されている。
かかるGUIの表示にあたり、プロセッサ20は、GUI実行プログラム35を読み込む。そして、GUI実行プログラム35は、図4に示す所定のGUI170を生成し、ディスプレイであるUI50に出力する。
また、GUI実行プログラム35は、ディスプレイに表示したGUI170を介して、ROI、画像強調処理の種類および画像強調の度合いについて、ユーザからの指定を受け付ける。なお、ユーザは、キーボードやマウスなどのポインティングデバイスであるUI50を用いて、例えば学習画像の画像IDを選択する。GUI実行プログラム35は、画像IDを示す入力情報を取得すると、学習画像DB32から対応するIDの学習画像を取得し、GUI170の領域172に表示する(ステップS10)。
また、ユーザがUI50を用いてGUI170に表示された学習画像の中で、ROIに指定する箇所177を選択(図4の例では、部分177をなぞったり、矩形等の枠で囲むなど)すると、GUI実行プログラム35は、かかる入力情報に基づき、指定されたROI177を領域173に表示する(ステップS21)。なお、図4の例では、領域173の白い画素部分がユーザによって指定されたROIを示している。
また、ユーザがUI50を用いてGUI170に表示された画像強調処理の種類および画像強調の度合いを指定すると、学習フェーズ実行プログラム36は、GUI実行プログラム35を介してかかる入力情報を取得し、ROI177に対して指定された画像強調の度合いであって、指定された種類の画像強調処理を行うことで、ROI強調学習画像を生成する(ステップS22)。また、GUI実行プログラム35は、学習フェーズ実行プログラム36により生成されたROI強調学習画像をGUIの領域174に表示する。
なお、学習フェーズ実行プログラム36は、このように生成したROI強調学習画像を用いて、ROI強調エンジン31の機械学習を行う(ステップS23)。
また、画像処理フェーズにおいて、このような機械学習が行われたROI強調エンジン31に処理画像が入力されると、学習フェーズで指定されたROIについてのみ、指定された画像強調の度合いであって、指定された種類の画像強調処理が行われたROI強調処理画像が出力される(ステップS30、S40)。すなわち、ROI強調エンジンによる画像処理を経て出力されるROI強調処理画像は、例えば図4の領域174に表示されているROI強調学習画像のようなものとなる。
なお、学習フェーズおよび画像処理フェーズの他の処理については前述と同様のため、詳細な説明は省略する。
このように、本システム100によれば、GUIを用いて、高い自由度で画像解析の目的に応じたROI、画像強調処理の種類および画像強調の度合いを指定することができる。これにより、対象物の画像解析の目的に応じたROI強調処理画像を得ることが可能となる。
次に、複数のROI強調エンジン31に機械学習を行い、それら複数のROI強調エンジン31を用いて相互に異なるROI強調処理画像を出力する場合について説明する。本システム100は、学習フェーズにおいて、ROI、画像強調処理の種類または画像強調の度合いのうち、少なくともいずれか一つが異なるROI強調学習画像を出力するように複数のROI強調エンジン31の機械学習を行う。また、本システム100では、画像処理フェーズにおいて、それら複数のROI強調エンジン31がROI、画像強調処理の種類または画像強調の度合いのうち、少なくともいずれか一つが異なるROI強調処理画像を出力する。
前述の通り、ROI強調エンジン31の機械学習にあたり、ROI、画像強調処理の種類および画像強調の度合いを目的に応じて指定することが望ましい場合がある。また、対象物の画像解析においては、単一のROIや画像強調処理の種類等ではなく、複数種類のROIや画像強調処理の種類等を適用した画像を用いるのが望ましい場合もある。
そこで、本システム100は、複数のROI強調エンジン31の機械学習を行い、それら複数のROI強調エンジン31を用いてROI、画像強調処理の種類または画像強調の度合いのうち、少なくともいずれか一つが異なる複数種類のROI強調処理画像を取得する。
図5は、学習フェーズにおいて2つのROI強調エンジンE1、E2に機械学習を行う処理シーケンスの一例を示した図である。学習フェーズ実行プログラム36は、学習画像DB32から取得した学習画像120について、GUI実行プログラム35を介して、ROIの指定や、画像強調処理の種類および画像強調の度合いの指定をユーザから受け付ける(ステップS21)。また、学習フェーズ実行プログラム36は、GUI実行プログラム35を介して取得したROI等についての入力情報を用いて、ROI強調学習画像を生成し(ステップS22)、学習画像120およびROI強調学習画像181、184を用いて、ROI強調エンジンE1、E2の機械学習を行う(ステップS23)。
図6は、ROI、画像強調処理の種類および画像強調の度合いを指定するGUI190の一例を示した図である。図示するように、GUIの上段191がROI強調エンジンE1に対応する領域であり、下段192がROI強調エンジンE2に対応する領域である。また、GUI190には、機械学習を行うROI強調エンジンをさらに追加する場合に押下を受け付ける追加ボタン193が表示されている。なお、図6に示すGUI190の基本的構成は図4のGUI170と同様のため、詳細な説明は省略する。
図6に示す例では、GUI実行プログラム35は、ROI、画像強調処理の種類および画像強調の度合いの指定をユーザから受け付ける(ステップS21)。具体的には、GUI実行プログラム35は、ROI強調エンジンE1に対して、学習画像の部分180をROIとして指定し、画像強調処理の種類として「輪郭」を指定し、画像強調の度合いとして「強」を指定する入力情報を取得する。
また、GUI実行プログラム35は、ROI強調エンジンE2に対して、学習画像の部分183をROIとして指定し、画像強調処理の種類として「コントラスト」を指定し、画像強調の度合いとして「強」を指定する入力情報を取得する。
また、GUI実行プログラム35は、かかる入力情報に基づき、指定されたROIをROI強調エンジンE1、E2の各々に対応する領域172に各々表示する。
また、学習フェーズ実行プログラム36は、各々のROIに対して指定された画像強調の度合いであって、指定された種類の画像強調処理を行うことで、ROI強調エンジンE1、E2に対応するROI強調学習画像181、184を生成する(ステップS22)。また、GUI実行プログラム35は、学習フェーズ実行プログラム36により生成されたROI強調学習画像181、184をGUI190のROI強調エンジンE1、E2の各々に対応する領域174に各々表示する。
なお、学習フェーズ実行プログラム36は、このように生成されたROI強調学習画像181、184を用いて、ROI強調エンジンE1、E2の機械学習を行う(ステップS23)。具体的には、学習フェーズ実行プログラム36は、学習画像120が入力されると、生成されたROI強調学習画像181が生成されるようにROI強調エンジンE1の機械学習を行う。同様に、学習フェーズ実行プログラム36は、学習画像120が入力されると、生成されたROI強調学習画像184が生成されるようにROI強調エンジンE2の機械学習を行う。
なお、画像処理フェーズでは、処理画像がROI強調エンジンE1に入力されると、学習フェーズで指定されたROIについてのみ、指定された画像強調の度合い(この場合、「強」)であって、指定された種類の画像強調処理(この場合、「輪郭強調処理」)が行われたROI強調処理画像が出力されることになる。
また、処理画像がROI強調エンジンE2に入力されると、学習フェーズで指定されたROIについてのみ、指定された画像強調の度合い(この場合、「強」)であって、指定された種類の画像強調処理(この場合、「コントラスト強調処理」)が行われたROI強調処理画像が出力されることになる。
このように、本システム100によれば、複数種類のROI、画像強調処理の種類および画像強調度合いを適用し、複数種類のROI強調画像を取得することが可能となり、対象物の画像解析をより適切に行うことが可能となる。
<第二実施形態>
次に、第二実施形態について説明する。本実施形態に係るシステム100は、学習フェーズにおいて、学習良品画像と学習不良品画像とを用いて差分画像を生成し、差分画像に基づいてROIを指定する。また、本システム100は、指定したROIを強調したROI強調学習画像を生成し、学習不良品画像が入力されると、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
次に、第二実施形態について説明する。本実施形態に係るシステム100は、学習フェーズにおいて、学習良品画像と学習不良品画像とを用いて差分画像を生成し、差分画像に基づいてROIを指定する。また、本システム100は、指定したROIを強調したROI強調学習画像を生成し、学習不良品画像が入力されると、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
また、本実施形態に係るシステムは、画像処理フェーズにおいて、ROI強調エンジン31に処理画像を入力することでROIを強調した比較用画像を生成し、処理画像と比較用画像とを比較することで、対象物が良品か不良品かを判定(良否判別)する。
従来の良否判別は、画像による外観検査の多くが検査員の目視判断により行われていた。一方で、大量生産や品質向上への要求増大に伴い、検査コストならびに検査員の負荷が増大している。また、人間の感覚に基づく官能検査には、特に高い経験やスキルが求められる上、検査員によって評価値が異なったり、検査の度に結果が異なるといった属人性や再現性も課題となる。
このような検査のコスト、スキル、属人性等の課題に対し、検査の自動化が強く求められている。そこで、例えば第一実施形態で説明した方法によって欠陥部分をROIとして指定すれば、欠陥が強調された画像が得られるため、容易に検査が可能となる。
一方で、学習フェーズにおいてユーザがGUIを用いて欠陥を指定する場合、人的負荷が大きい。特に、ROI強調エンジン31として機械学習型のエンジンを用いる場合、一般的には大量の学習画像が必要となるため、それら全ての学習画像の欠陥に対してGUIを用いてROIを指定すると、時間的負担が大きくなる。
そこで、本実施形態に係るシステムは、学習良品画像である基準画像と学習不良品画像とを用いて算出した差分画像を用いて、ROIを自動で指定する方法(前述のB2に該当するROIの指定方法)を提供する。
なお、第一実施形態と同一の対象および処理については、同一の符号を付して詳細な説明は省略する。
<学習フェーズおよび画像処理フェーズの詳細>
図7は、本実施形態に係る学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
図7は、本実施形態に係る学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
学習フェーズが開始されると、学習フェーズ実行プログラム36は、学習用良品200および学習用不良品201の各々を撮像した学習良品画像203と学習不良品画像204とを各々、学習画像DB32から取得する(ステップS50)。
なお、学習フェーズ実行プログラム36は、NI40を介して、学習用良品200および学習用不良品201の画像を撮像するための指示を撮像装置10に出力し、撮像装置10により撮像された学習良品画像203および学習不良品画像204を学習画像DB32から取得しても良い
次に、学習フェーズ実行プログラム36は、学習良品画像203と学習不良品画像204とを用いて、ROI強調エンジン31の機械学習を行う(ステップS60)。具体的には、学習フェーズ実行プログラム36は、学習良品画像203を基準画像とし、学習不良品画像204における不良の可能性が高い部分であるROIを指定する。
ここで、ROIの指定に関し、基準画像を用いて差分を取り、差分値に基づいてROIを指定する方法(前述のB2に該当するROIの指定方法)について説明する。
図8は、基準画像との差分に基づいてROIを指定する方法を説明するための図である。本方法は、学習良品画像との差分値が大きい領域を不良の可能性が高いROIに指定するものである。
具体的には、学習フェーズ実行プログラム36は、学習良品画像203と学習不良品画像204との位置合わせを行い、学習良品画像203を基準として学習良品画像203と学習不良品画像204との差分画像214を生成する(ステップS61)。また、学習フェーズ実行プログラム36は、差分画像214の画素値すなわち差分値が予め設定したしきい値よりも大きい領域(図8の部分215)をROI216に指定する。
図7に戻って説明する。次に、学習フェーズ実行プログラム36は、指定したROI216に基づくROI強調学習画像を生成する(ステップS63)。具体的には、学習フェーズ実行プログラム36は、学習不良品画像204の中で、指定したROI216にコントラスト強調処理等の画像強調処理を行うことで、ROI216のみを強調したROI強調学習画像を生成する。
次に、学習フェーズ実行プログラム36は、ROI強調エンジン31の機械学習を行う(ステップS64)。具体的には、学習フェーズ実行プログラム36は、学習不良品画像204を入力した際、生成されたROI強調学習画像が出力されるように、ROI強調エンジン31の内部パラメータを最適化するための機械学習を行う。
次に、画像処理フェーズについて説明する。画像処理フェーズでは、対象物210を撮像した処理画像211から比較用画像(ROI強調処理画像)212を生成(推定)することで不良の可能性が高い領域(ROI)を強調した画像を生成する。また、画像処理フェーズでは、処理画像211と比較用画像212とを比較することで、対象物が良品か不良品かを判別する。
画像処理フェーズが開始されると、画像処理フェーズ実行プログラム37は、検査の対象物210を撮像した処理画像211を処理画像DB33から取得する(ステップS70)。
次に、画像処理フェーズ実行プログラム37は、ROI強調エンジン31を用いて、ROIのみが強調されたROI強調処理画像である比較用画像212を取得する(ステップS80)。具体的には、画像処理フェーズ実行プログラム37によりROI強調エンジン31に処理画像211が入力されると、ROI強調エンジン31は、処理画像中のROIを特定する(ステップS81)。
また、ROI強調エンジン31は、特定したROIのみを強調する画像処理を行うことで、ROI強調処理画像である比較用画像212を生成し(ステップS82)、これを出力する。
次に、画像処理フェーズ実行プログラム37は、処理画像211と比較用画像212とを用いて、両画像を比較することで、検査の対象物210が良品か不良品かを判定(良否判別)する(ステップS90)。具体的には、画像処理フェーズ実行プログラム37は、処理画像211と比較用画像212との差分画像を生成し、差分画像の画素値が予め設定されたしきい値よりも大きい箇所がある場合、対象物が不良であると判定する。
なお、画像処理フェーズ実行プログラム37は、検査の対象物210が不良であると判定した場合、例えばNI40を介して、所定の外部装置に処理画像(不良品画像)211を出力し、検査員に不良品画像の確認(ステップS100)を促す等の処理を行っても良い。
このように、本システム100によれば、基準画像との差分に基づき不良品画像から自動でROIを指定することができ、ROI強調エンジンの機械学習を効率的に実行することができる。また、本システム100によれば、処理画像とROIが強調された比較用画像との差分に基づき、検査の対象物について良否判別を行うことができる。その結果、検査のコスト、スキル、属人性等の課題に対し、検査の自動化を実現することができる。
<第三実施形態>
次に、第三実施形態について説明する。本実施形態に係るシステムは、学習フェーズにおいて、学習良品画像に擬似不良を合成することで擬似不良画像を生成し、擬似不良を合成した領域をROIに指定する。また、本システム100は、擬似不良画像のROIを強調したROI強調学習画像を生成し、擬似不良画像が入力されると、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
次に、第三実施形態について説明する。本実施形態に係るシステムは、学習フェーズにおいて、学習良品画像に擬似不良を合成することで擬似不良画像を生成し、擬似不良を合成した領域をROIに指定する。また、本システム100は、擬似不良画像のROIを強調したROI強調学習画像を生成し、擬似不良画像が入力されると、ROI強調学習画像が出力されるようにROI強調エンジン31の機械学習を行う。
また、本実施形態に係るシステムは、画像処理フェーズにおいて、ROI強調エンジン31に処理画像を入力することでROIを強調した比較用画像を生成し、処理画像と比較用画像とを比較検査することで、対象物が良品か不良品かを判定(良否判別)する。
第二実施形態に係るシステムは、学習不良品画像を用いてROI強調エンジン31の機械学習などを行ったが、対象物の不良品の画像を収集するには多大なコストを要するという課題がある。
そのため、良品の画像のみを用いてROI強調エンジン31の機械学習を行い、対象物が良品か不良品かを判別できることが望ましい。なお、良品の画像を用いて、不良品の画像が入力されると良品の画像を出力するニューラルネットワークの学習方法が知られている。しかしながら、この方法では、傷や色ムラといった不良部位の輝度値が良品と近い不良に関しては、良品の画像を正しく出力できても、不良を含む画像と良品画像との比較検査では、差分値が小さいため、不良を精度良く検出することが困難という課題がある。
そこで、本実施形態に係るシステムは、画像処理により傷や色ムラといった不良部位の輝度値が良品と近い擬似不良を合成した領域に基づいてROIを指定する方法(前述のB5に該当するROIの指定方法)を提供する。
なお、前述の実施形態と同一の対象および処理については、同一の符号を付して詳細な説明は省略する。
<学習フェーズおよび画像処理フェーズの詳細>
図9は、本実施形態に係る学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
図9は、本実施形態に係る学習フェーズおよび画像処理フェーズの処理シーケンスの一例を示した図である。
学習フェーズが開始されると、学習フェーズ実行プログラム36は、学習用良品200を撮像した学習良品画像203を学習画像DB32から取得する。
次に、学習フェーズ実行プログラム36は、ROI強調エンジン31の機械学習を行う(ステップS120)。具体的には、学習フェーズ実行プログラム36は、学習良品画像203に擬似不良を合成する(ステップS121)。より具体的には、学習フェーズ実行プログラム36は、傷や色ムラといった不良部位の輝度値が良品と近い擬似不良を学習良品画像に合成する。
次に、学習フェーズ実行プログラム36は、擬似不良を合成した領域をROIに指定する(ステップS122)。
ここで、ROIの指定に関し、画像処理により傷や色ムラといった不良部位の輝度値が良品と近い擬似不良を合成した領域に基づいてROIを指定する方法(前述のB5に該当するROIの指定方法)について説明する。
図10は、擬似不良を合成した領域に基づいてROIを指定する方法を説明するための図である。本方法は、擬似不良を合成した領域をROIに指定するものである。
具体的には、学習フェーズ実行プログラム36は、学習良品画像203上の所定位置に傷や色ムラといった不良部位の輝度値が良品と近い擬似不良224を合成し(ステップS121)、擬似不良画像225を生成する。また、学習フェーズ実行プログラム36は、擬似不良224を合成した領域をROI226に指定する(ステップS122)。
図9に戻って説明する。次に、学習フェーズ実行プログラム36は、指定したROI226に基づくROI強調学習画像を生成する(ステップS123)。具体的には、学習フェーズ実行プログラム36は、擬似不良画像225の中で、指定したROI226すなわち合成した擬似不良224の部分にコントラスト強調処理等の画像強調処理を行うことで、ROI226のみを強調したROI強調学習画像を生成する。
次に、学習フェーズ実行プログラム36は、ROI強調エンジン31の機械学習を行う(ステップS124)。具体的には、学習フェーズ実行プログラム36は、擬似不良画像225が入力されると、生成したROI強調学習画像が出力されるように、ROI強調エンジン31の内部パラメータを最適化するための機械学習を行う。
次に、画像処理フェーズについて説明する。画像処理フェーズでは、処理画像から比較用画像(ROI強調処理画像)を生成(推定)し、処理画像と比較用画像とを比較(検査)することで、対象物が良品か不良品かを判別する。なお、ステップS130、ステップS140~ステップS142およびステップS160は第二実施形態に係るステップS70、ステップS80~ステップS82およびステップS100と同様の処理であるため、詳細な説明は省略する。
ステップS150では、画像処理フェーズ実行プログラム37は、処理画像221と比較用画像222とを用いて、両画像を比較することで、検査の対象物220が良品か不良品かを判定(判別)する。
ここで、図11を用いて、処理画像221と比較用画像222とを用いた検査の対象物220の良否判定について説明する。
図11は、処理画像221と比較用画像222とを用いた検査の対象物220の良否判別に関する処理シーケンスを示した図である。図示するように、ステップS130で取得された処理画像221には、比較的大きな異物や欠損を示す部位227と、傷や色ムラといった輝度値が良品と近い不良を示す部位228と、が含まれている。
このような処理画像221を用いて、画像処理フェーズ実行プログラム37は、ROI強調処理画像である比較用画像222を生成する。具体的には、画像処理フェーズ実行プログラム37は、かかる処理画像221をROI強調エンジン31に入力することで、ROI強調エンジン31から出力されるROI強調処理画像を取得し、これを比較用画像222とする。
なお、ROI強調エンジン31は、輝度値が良品と近い不良の領域をROIに指定して機械学習を行っているため、かかるROI強調エンジン31に処理画像221が入力された場合には、傷や色ムラといった不良部位の輝度値が良品と近い不良の領域228のみが強調されたROI強調処理画像(比較用画像222)が出力される。一方で、異物や欠損などの比較的大きな不良の領域227については、学習良品画像203のような画像が出力されるため、比較用画像222にはかかる異物等を示す部位は示されない。
次に、画像処理フェーズ実行プログラム37は、処理画像221と比較用画像222とを用いて、両画像を比較することで、検査の対象物220が良品か不良品かを判定(判別)する。具体的には、画像処理フェーズ実行プログラム37は、処理画像221と比較用画像222との差分画像229を生成する(ステップS151)。また、画像処理フェーズ実行プログラム37は、予め設定したしきい値に基づいて、差分画像に二値化処理を行う(ステップS152)ことで、二値化画像230を生成する。
なお、図示するように、差分画像229は、処理画像221と比較用画像222との差分に基づき生成されるため、異物や欠損を示す部位227と、傷や色ムラといった輝度値が良品と近い不良部位を強調したROI228と、が含まれることになる。また、このような差分画像229に対して二値化処理が行われると、画素値がしきい値よりも高い領域である領域(図11の例では、異物等を示す部位227およびROI228に相当する箇所)が白色で示され、しきい値よりも低い他の領域が黒色で示されることになる。
画像処理フェーズ実行プログラム37は、かかる二値化画像230を参照し、予め設定されたしきい値よりも大きい箇所すなわち白色で示されている部分を検出した場合、対象物が不良であると判定する。
このように、本システム100によれば、傷や色ムラといった不良部位の輝度値が良品と近い擬似不良を合成した不良品画像を用いてROI強調エンジンの機械学習を行うことで、傷や色ムラを含む画像がROI強調エンジンに入力されると、傷や色ムラの領域が強調されたROI強調処理画像を出力するようにしている。これにより、本システム100は、輝度値が良品と近い不良について検査で検出することが可能となる。
また、ROI強調エンジンの機械学習で擬似不良を合成していない良品部位については、良品画像と同じになるようにROI強調エンジンの学習が行われるため、検査の際に、異物や欠損などの比較的大きな不良を含む画像がROI強調エンジンに入力されると、異物や欠損などを含む領域については、不良を含まない良品のような画像がROI強調処理画像として出力される。一方で、本システム100は、処理画像と比較用画像とを用いた差分画像を生成し、差分画像に二値化処理を行うことで、異物や欠損などの比較的大きな不良についても同様に検出することができる。
<第四実施形態>
次に、第四実施形態について説明する。本実施形態に係るシステム100は、学習フェーズにおいて、相互に異なる擬似不良を合成した領域をROIに指定し、画像強調処理の種類および画像強調の度合いが相互に異なるROI強調学習画像を出力するように、複数のROI強調エンジン31に機械学習を行う。具体的には、本システム100は、相互に異なる擬似不良を学習良品画像に合成した複数の擬似不良画像を生成し、擬似不良を合成した領域をROIに指定する。また、本システム100は、各々の擬似不良画像のROIを、相互に異なる画像強調処理の種類および画像強調の度合いで強調した複数のROI強調学習画像を生成する。また、本システム100は、複数のROI強調エンジン31を用いて、かかるROI強調エンジン31ごとに対応する擬似不良画像が入力されると、対応する各ROI強調学習画像が出力されるように、複数のROI強調エンジン31の機械学習を行う。
次に、第四実施形態について説明する。本実施形態に係るシステム100は、学習フェーズにおいて、相互に異なる擬似不良を合成した領域をROIに指定し、画像強調処理の種類および画像強調の度合いが相互に異なるROI強調学習画像を出力するように、複数のROI強調エンジン31に機械学習を行う。具体的には、本システム100は、相互に異なる擬似不良を学習良品画像に合成した複数の擬似不良画像を生成し、擬似不良を合成した領域をROIに指定する。また、本システム100は、各々の擬似不良画像のROIを、相互に異なる画像強調処理の種類および画像強調の度合いで強調した複数のROI強調学習画像を生成する。また、本システム100は、複数のROI強調エンジン31を用いて、かかるROI強調エンジン31ごとに対応する擬似不良画像が入力されると、対応する各ROI強調学習画像が出力されるように、複数のROI強調エンジン31の機械学習を行う。
また、本実施形態に係るシステム100は、画像処理フェーズにおいて、複数のROI強調エンジン31に処理画像を入力することで、各々のROI強調エンジン31がROIを強調した比較用画像を出力し、処理画像と各ROI強調エンジン31から出力された複数の比較用画像とを比較することで、対象物が良品か不良品かを判定(良否判別)する。
第三実施形態では、学習フェーズにおいて、単一のROI、画像強調処理の種類および画像強調の度合いを擬似不良画像に適用することでROI強調学習画像を生成し、擬似不良画像とROI強調学習画像とを用いてROI強調エンジン31の学習を行う方法について説明した。一方で、ROIの種類によっては、単一ではなく相互に異なる画像強調処理の種類や画像強調の度合いで強調したROI強調処理画像を用いることで、検査の精度を向上させることができる場合がある。
そのため、本実施形態に係るシステムは、ROI、画像強調処理の種類および画像強調の度合いが相互に異なるROI強調学習画像を出力するように、複数のROI強調エンジン31の機械学習を行い、検査の際に、複数のROI強調エンジン31が出力した複数種類のROI強調処理画像を用いることで、より高精度に対象物の良否判別を行う。
なお、前述の実施形態と同一の対象および処理については、同一の符号を付して詳細な説明は省略する。
<学習フェーズおよび画像処理フェーズの詳細>
図12は、学習フェーズにおいて2つのROI強調エンジンE3、E4に機械学習を行う処理シーケンスの一例を示した図である。学習フェーズ実行プログラム36は、学習画像DB32から学習良品画像203を取得し(ステップS110)、かかる学習良品画像に第一の擬似不良231を合成することで(ステップS121)、第一の擬似不良画像232を生成する。また、学習フェーズ実行プログラム36は、第一の擬似不良231を合成した領域をROI233に指定する(ステップS122)。
図12は、学習フェーズにおいて2つのROI強調エンジンE3、E4に機械学習を行う処理シーケンスの一例を示した図である。学習フェーズ実行プログラム36は、学習画像DB32から学習良品画像203を取得し(ステップS110)、かかる学習良品画像に第一の擬似不良231を合成することで(ステップS121)、第一の擬似不良画像232を生成する。また、学習フェーズ実行プログラム36は、第一の擬似不良231を合成した領域をROI233に指定する(ステップS122)。
また、学習フェーズ実行プログラム36は、指定したROI233に基づく第一のROI強調学習画像234を生成する(ステップS123)。具体的には、学習フェーズ実行プログラム36は、第一の画像強調の種類および画像強調の度合いによる画像処理を行うことでROI233を強調した第一のROI強調学習画像234を生成する。
次に、学習フェーズ実行プログラム36は、第一の擬似不良231を合成した第一の擬似不良画像232を入力として、第一のROI強調学習画像234が出力されるように、ROI強調エンジンE3の機械学習を行う(ステップS124)。
また、学習フェーズ実行プログラム36は、同様の方法により、ROI強調エンジンE2の機械学習を行う。具体的には、学習フェーズ実行プログラム36は、学習画像DB32から学習良品画像203を取得し(ステップS110)、かかる学習良品画像に、第一の擬似不良とは異なる第二の擬似不良235を合成することで(ステップS121)、第二の擬似不良画像236を生成する。また、学習フェーズ実行プログラム36は、第二の擬似不良235を合成した領域をROI237に指定する(ステップS122)。
また、学習フェーズ実行プログラム36は、指定したROI237に基づく第二のROI強調学習画像238を生成する(ステップS123)。具体的には、学習フェーズ実行プログラム36は、第一の画像強調の種類および画像強調の度合いとは異なる第二の画像強調の種類および画像強調の度合いによる画像処理を行うことでROI237を強調した第二のROI強調学習画像238を生成する。
次に、学習フェーズ実行プログラム36は、第二の擬似不良235を合成した第二の擬似不良画像236を入力として、第二のROI強調学習画像238が出力されるように、ROI強調エンジンE4の機械学習を行う(ステップS124)。
なお、このような第一の画像強調の種類および画像強調の度合い、および、第二の画像強調の種類および画像強調の度合いは、例えば図6に示すGUIを用いてユーザから指定を受け付けても良く、あるいは、予め設定されているものを用いても良い。
次に、画像処理フェーズについて説明する。画像処理フェーズでは、ROI強調エンジンE3、E4の各々について、処理画像221から比較用画像(ROI強調処理画像)222を生成(推定)し、処理画像221と比較用画像222とを比較することで、検査の対象物220が良品か不良品かを判別する。なお、かかる処理は、第三実施形態の画像処理フェーズと同様の処理となる。
ここで、図13を用いて、処理画像221と比較用画像222とを用いた検査の対象物220の良否判定について説明する。
図13は、処理画像221と比較用画像222とを用いた検査の対象物220の良否判別に関する処理シーケンスを示した図である。図示するように、ステップS130で取得された処理画像221には、第一の不良240と、第二の不良241と、が含まれている。画像処理フェーズ実行プログラム37は、処理画像221をROI強調エンジンE3に入力することで、ROIのみが強調されたROI強調処理画像を取得し(ステップS140)、これを比較用画像222mとする。
また、画像処理フェーズ実行プログラム37は、処理画像221を用いた対象物220の良否判定を行う。具体的には、画像処理フェーズ実行プログラム37は、処理画像221と比較用画像222mとの差分画像229mを生成し(ステップS151)、予め設定したしきい値に基づいて、差分画像に二値化処理を行うことで(ステップS152)、二値化画像230mを生成する。
なお、画像処理フェーズ実行プログラム37は、ROI強調エンジンE3を用いた処理と同様の処理を行うことにより、ROI強調エンジンE4を用いて、二値化画像230nを生成する。
そして、画像処理フェーズ実行プログラム37は、かかる二値化画像230m、230nを参照し、少なくとも一方の二値化画像に予め設定されたしきい値よりも大きい箇所すなわち白色で示されている部分を検出した場合、対象物220が不良であると判定する。なお、ステップS160の処理は前述と同様のため、詳細な説明は省略する。
このように、本システム100によれば、相互に異なる画像強調の種類および画像強調の度合いにより生成した複数のROI強調処理画像を用いて不良等に関する検査を行うことができる。そのため、本システム100によれば、ROIの種類に応じた適切なROI強調処理画像を生成することができ、検査の精度を向上させることができる。
なお、前述の実施形態は、同一の事業者がプロセッサシステム100を用いた学習フェーズおよび画像処理フェーズを実施する場合と、学習フェーズのみを実施する事業者と画像処理フェーズ(すなわち、機械学習後のROI強調エンジン31を用いて画像処理を行うフェーズ)のみを実施する事業者とが異なる場合と、の両方を含むものである。
また、本発明は上記した実施形態および変形例に限定されるものではなく、同一の技術的思想の範囲内において様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。例えば、各実施形態におけるROIの指定方法を異なる実施形態において用いても良い。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることが可能である。
また、上記説明では、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
100・・・プロセッサシステム、20・・・プロセッサ、30・・・メモリリソース、31・・・ROI強調エンジン、32・・・学習画像DB、33・・・処理画像DB、34・・・その他情報DB、35・・・GUI実行プログラム、36・・・学習フェーズ実行プログラム、37・・・画像処理フェーズ実行プログラム、40・・・NI(Network Interface Device)、50・・・UI(User Interface Device)、10・・・撮像装置
Claims (14)
- 1以上のプロセッサと、1以上のメモリリソースと、を有するシステムであって、
前記メモリリソースは、
ROI強調エンジンと、学習フェーズ実行プログラムと、を記憶し、
前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、
学習用の対象物を撮像した学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROI(Region Of Interest)のみを強調したROI強調学習画像を生成し、
前記学習画像を入力した際、前記ROI強調学習画像が生成されるように前記ROI強調エンジンの内部パラメータを最適化するための学習を行う
ことを特徴とするシステム。 - 請求項1に記載のシステムであって、
前記メモリリソースは、画像処理フェーズ実行プログラムをさらに記憶し、
前記プロセッサは、前記画像処理フェーズ実行プログラムを実行することで、
前記処理画像を前記ROI強調エンジンに入力し、当該ROI強調エンジンから出力される前記ROIのみが強調されたROI強調処理画像を取得する
ことを特徴とするシステム。 - 請求項1に記載のシステムであって、
前記メモリリソースは、
GUI実行プログラムをさらに記憶し、
前記プロセッサは、前記GUI実行プログラムを実行することで、
前記ROI強調エンジンの学習を行う学習フェーズにおいて、前記学習画像における前記ROIと、前記ROIに対して行う画像強調処理の種類および画像強調の度合いと、の指定を受け付ける画面情報を出力し、
前記プロセッサは、学習フェーズ実行プログラムを実行することで、
指定された前記ROIに対し、指定された画像強調の度合いであって、指定された種類の画像強調処理を行うことで、前記ROI強調学習画像を生成する
ことを特徴とするシステム。 - 請求項3に記載のシステムであって、
前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、
前記ROI、前記画像強調処理の種類および前記画像強調の度合いのうち、少なくとも一つが異なる前記ROI強調学習画像を出力するように、複数の前記ROI強調エンジンに対して前記学習を行う
ことを特徴とするシステム。 - 請求項1に記載のシステムであって、
前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、
前記学習画像であって、学習良品を撮像した学習良品画像および学習不良品を撮像した学習不良品画像の差分画像に基づき指定される前記ROIを強調した前記ROI強調学習画像を生成する
ことを特徴とするシステム。 - 請求項5に記載のシステムであって、
前記メモリリソースは、画像処理フェーズ実行プログラムをさらに記憶し、
前記プロセッサは、前記画像処理フェーズ実行プログラムを実行することで、
前記処理画像と、当該処理画像を前記ROI強調エンジンに入力することで得られる前記ROIのみが強調されたROI強調処理画像である比較用画像と、を比較することにより、前記対象物が良品か不良品かを判別する
ことを特徴とするシステム。 - 請求項1に記載のシステムであって、
前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、
前記学習画像であって、学習良品を撮像した学習良品画像に、擬似不良を合成した領域を前記ROIとする前記ROI強調学習画像を生成する
ことを特徴とするシステム。 - 請求項7に記載のシステムであって、
前記メモリリソースは、画像処理フェーズ実行プログラムをさらに記憶し、
前記プロセッサは、前記画像処理フェーズ実行プログラムを実行することで、
前記処理画像と、当該処理画像を前記ROI強調エンジンに入力することで得られる前記ROIのみが強調されたROI強調処理画像である比較用画像と、を比較することにより、前記対象物が良品か不良品かを判別する
ことを特徴とするシステム。 - 請求項8に記載のシステムであって、
前記プロセッサは、前記画像処理フェーズ実行プログラムを実行することで、
前記処理画像および前記比較用画像の差分画像に二値化処理を行って生成した二値化画像を用いて、前記対象物が良品か不良品かを判別する
ことを特徴とするシステム。 - 請求項7に記載のシステムであって、
前記プロセッサは、前記学習フェーズ実行プログラムを実行することで、
相互に異なる前記擬似不良を合成した領域を前記ROIに指定し、前記ROIに対して行う画像強調処理の種類および画像強調の度合いが相互に異なる前記ROI強調学習画像を出力するように、複数の前記ROI強調エンジンに対して前記学習を行う
ことを特徴とするシステム。 - 1以上のプロセッサと、1以上のメモリリソースと、を有するシステムが行う画像処理方法であって、
前記プロセッサは、
学習用の対象物を撮像した学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROI(Region Of Interest)のみを強調したROI強調学習画像を生成するステップと、
前記学習画像を入力した際、前記ROI強調学習画像が生成されるようにROI強調エンジンの内部パラメータを最適化するための学習ステップと、行う
ことを特徴とする画像処理方法。 - 請求項11に記載の画像処理方法であって、
前記プロセッサは、
前記処理画像を前記ROI強調エンジンに入力し、当該ROI強調エンジンから出力される前記ROIのみが強調されたROI強調処理画像を取得するステップをさらに行う
ことを特徴とする画像処理方法。 - 1以上のプロセッサと、1以上のメモリリソースと、を有するシステムの前記プロセッサが前記メモリリソースから読み込んで実行するプログラムであって、
前記プロセッサが実行する学習フェーズ実行プログラムは、
学習用の対象物を撮像した学習画像を用いて、画像処理の対象を撮像した処理画像の注目領域に対応するROI(Region Of Interest)のみを強調したROI強調学習画像を生成し、
前記学習画像を入力した際、前記ROI強調学習画像が生成されるようにROI強調エンジンの内部パラメータを最適化するための学習を行う
ことを特徴とするプログラム。 - 請求項13に記載のプログラムであって、
前記プロセッサが実行する画像処理フェーズ実行プログラムは、
前記処理画像を前記ROI強調エンジンに入力し、当該ROI強調エンジンから出力される前記ROIのみが強調されたROI強調処理画像を取得する
ことを特徴とするプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-196428 | 2021-12-02 | ||
JP2021196428A JP2023082567A (ja) | 2021-12-02 | 2021-12-02 | システムおよびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023100474A1 true WO2023100474A1 (ja) | 2023-06-08 |
Family
ID=86611829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037531 WO2023100474A1 (ja) | 2021-12-02 | 2022-10-07 | システム、画像処理方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023082567A (ja) |
WO (1) | WO2023100474A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005156334A (ja) * | 2003-11-25 | 2005-06-16 | Nec Tohoku Sangyo System Kk | 疑似不良画像自動作成装置及び画像検査装置 |
JP2019159889A (ja) * | 2018-03-14 | 2019-09-19 | オムロン株式会社 | 欠陥検査装置、欠陥検査方法、及びそのプログラム |
CN111666994A (zh) * | 2020-05-28 | 2020-09-15 | 平安科技(深圳)有限公司 | 样本图像数据增强方法、装置、电子设备及存储介质 |
CN112770838A (zh) * | 2019-10-01 | 2021-05-07 | 深透医疗公司 | 使用自关注深度学习进行图像增强的系统和方法 |
-
2021
- 2021-12-02 JP JP2021196428A patent/JP2023082567A/ja active Pending
-
2022
- 2022-10-07 WO PCT/JP2022/037531 patent/WO2023100474A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005156334A (ja) * | 2003-11-25 | 2005-06-16 | Nec Tohoku Sangyo System Kk | 疑似不良画像自動作成装置及び画像検査装置 |
JP2019159889A (ja) * | 2018-03-14 | 2019-09-19 | オムロン株式会社 | 欠陥検査装置、欠陥検査方法、及びそのプログラム |
CN112770838A (zh) * | 2019-10-01 | 2021-05-07 | 深透医疗公司 | 使用自关注深度学习进行图像增强的系统和方法 |
CN111666994A (zh) * | 2020-05-28 | 2020-09-15 | 平安科技(深圳)有限公司 | 样本图像数据增强方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2023082567A (ja) | 2023-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7004145B2 (ja) | 欠陥検査装置、欠陥検査方法、及びそのプログラム | |
JP4250898B2 (ja) | 回路パターンの検査方法及びその装置 | |
TW202105549A (zh) | 對樣本的缺陷檢測的方法及其系統 | |
JP2018005640A (ja) | 分類器生成装置、画像検査装置、及び、プログラム | |
JP6422198B2 (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム | |
JP2011214903A (ja) | 外観検査装置、外観検査用識別器の生成装置及び外観検査用識別器生成方法ならびに外観検査用識別器生成用コンピュータプログラム | |
KR102249836B1 (ko) | 투과영상 기반의 비파괴검사 기능을 제공하기 위한 방법 및 컴퓨터 판독 가능한 저장 매체 | |
JP2011158373A (ja) | 自動欠陥分類のための教師データ作成方法、自動欠陥分類方法および自動欠陥分類装置 | |
CN110596120A (zh) | 玻璃边界缺陷检测方法、装置、终端及存储介质 | |
US20200279359A1 (en) | Inspection apparatus, inspection method, and non-volatile storage medium | |
JPWO2016174926A1 (ja) | 画像処理装置及び画像処理方法及びプログラム | |
US20220215521A1 (en) | Transmission image-based non-destructive inspecting method, method of providing non-destructive inspection function, and device therefor | |
WO2023100474A1 (ja) | システム、画像処理方法およびプログラム | |
JP7258509B2 (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム | |
JP2020064465A (ja) | 画像評価方法、画像評価装置、およびプログラム | |
JP2011232302A (ja) | 画像検査方法及び画像検査装置 | |
KR20220111214A (ko) | 인공지능 기반 제품 결함 검사 방법, 장치 및 컴퓨터 프로그램 | |
JP7414629B2 (ja) | 学習用データ処理装置、学習装置、学習用データ処理方法、およびプログラム | |
JP7449739B2 (ja) | 検査システム、学習装置、学習プログラム、学習方法、検査装置、検査プログラム、検査方法 | |
JP6410459B2 (ja) | 画像検査方法、および画像検査装置 | |
Pałczyński et al. | An image processing approach for fatigue crack identification in cellulose acetate replicas | |
Topp et al. | How can NDT 4.0 improve the Probability of Detection (POD)? | |
KR102415928B1 (ko) | 투과영상 기반의 비파괴검사 방법 | |
WO2024095721A1 (ja) | 画像処理装置および画像処理方法 | |
KR102616867B1 (ko) | 비파괴검사 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900908 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18712293 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |