WO2023100418A1 - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
WO2023100418A1
WO2023100418A1 PCT/JP2022/029377 JP2022029377W WO2023100418A1 WO 2023100418 A1 WO2023100418 A1 WO 2023100418A1 JP 2022029377 W JP2022029377 W JP 2022029377W WO 2023100418 A1 WO2023100418 A1 WO 2023100418A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
measurement
image
marker
Prior art date
Application number
PCT/JP2022/029377
Other languages
French (fr)
Japanese (ja)
Inventor
貴雄 井川
雄之 野中
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023100418A1 publication Critical patent/WO2023100418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present invention relates to a measuring device that measures the size of an object to be measured.
  • Patent Document 1 discloses a measuring device for measuring brake linings of electromagnetic brakes.
  • this measuring device an image including a marker and brake lining previously attached to at least one of the brake lining and braking portion of the electromagnetic brake is captured, and the actual size (hereinafter referred to as "actual size") in the image is taken. measures the thickness of the brake lining with reference to known marker dimensions (number of pixels).
  • An object of the present invention is to prevent the size of an object to be measured from becoming unmeasurable.
  • a measuring device for solving the above-mentioned problems is a measuring device for measuring the size of an object to be measured, wherein the light emitting unit emits light, and the light emitting unit irradiates the object to be measured or an object other than the object to be measured with light.
  • an imaging unit that captures an image for measurement including a marker, which is a light image displayed on the surface of the object, and the measurement target; and an image of the measurement target based on the measurement image captured by the imaging unit and a measuring unit for measuring the size.
  • the marker is a light image displayed on the surface of the measurement target irradiated with light from the light emitting unit or on the surface of the object other than the measurement target. Since the marker is a light image formed by the light emitting unit irradiating the object to be measured or an object other than the object to be measured with light, the marker can be displayed in the measurement image regardless of the degree of dirt on the object to be measured or the object other than the object to be measured. can be identified. Therefore, it is possible to prevent the size of the object to be measured from becoming impossible.
  • FIG. 1 is a side view schematically showing a friction brake of a vehicle.
  • FIG. 2 is a plan view schematically showing part of the same friction brake.
  • FIG. 3 is a diagram showing a schematic configuration of the measuring device of the first embodiment.
  • FIG. 4 is a block diagram of an industrial endoscope in the measuring device.
  • FIG. 5 is a block diagram showing functions of the measuring device.
  • (a) is a schematic diagram showing the positional relationship between the imaging unit and the imaging target when the imaging angle is 90°
  • (b) is a schematic diagram showing the marker formed on the imaging target at that time. It is a diagram.
  • FIG. 6 is a side view schematically showing a friction brake of a vehicle.
  • FIG. 2 is a plan view schematically showing part of the same friction brake.
  • FIG. 3 is a diagram showing a schematic configuration of the measuring device of the first embodiment.
  • FIG. 4 is a block diagram of an industrial endoscope in the measuring device.
  • FIG. 5 is a block
  • FIG. 7 is a schematic diagram showing the positional relationship between the imaging unit and the imaging target when the imaging angle is not 90°, and (b) is a schematic diagram showing the marker formed on the imaging target at that time. It is a diagram.
  • FIG. 8 is a schematic diagram showing an example of an image captured by an imaging unit.
  • FIG. 9 is a schematic diagram showing an example of a measurement image captured by the imaging unit.
  • FIG. 10 is a flow chart showing the flow of processing in the measuring device of the first embodiment.
  • FIG. 11 is a schematic diagram showing how the probe head of the industrial endoscope is inserted into the inspection window.
  • FIG. 12 is a flow chart showing the flow of processing in the measuring device of the second embodiment.
  • FIG. 1 is a schematic diagram of a friction brake 10 provided on a vehicle.
  • FIG. 2 is a plan view schematically showing a portion of the friction brake 10 when the friction brake 10 is viewed from the direction indicated by the white arrow A11 shown in FIG.
  • the friction brake 10 shown in FIGS. 1 and 2 is a disc brake.
  • the friction brake 10 includes a caliper 11 supported by the vehicle body, two friction members 12, and a disk rotor 13 rotating integrally with the vehicle wheel. As shown in FIG. 2, the friction material 12 is supported by the back plate 14. As shown in FIG. A disc rotor 13 is interposed between two friction members 12 .
  • the caliper 11 is provided with an inspection window 11a.
  • the disk rotor 13, the friction material 12, and the back plate 14 can be visually recognized.
  • FIG. 3 is a configuration diagram showing an outline of the measuring device 20 of this embodiment.
  • the measuring device 20 is a device that measures the thickness D of the friction material 12 of the friction brake 10 . That is, the measuring device 20 measures the thickness D, which is the size of the friction material 12 to be measured.
  • the measuring device 20 includes an industrial endoscope 30 , a computing device 40 , a display device 51 and a notification device 53 .
  • FIG. 4 is a block diagram of the industrial endoscope 30. As shown in FIG. As shown in FIG. 3, the industrial endoscope 30 has a main body 31, a connection cable 33, a control unit 35 and a probe 37. As shown in FIG.
  • the probe 37 has a connecting portion 371 , a movable portion 372 and a probe head 373 .
  • a connecting portion 371 is provided at one end of the probe 37
  • a probe head 373 is provided at the other end of the probe 37 .
  • the probe 37 is connected to the control unit 35 via a connection 371 .
  • the movable portion 372 is movable to change the orientation of the probe head 373 as shown in FIG. In this embodiment, the movable part 372 can change the orientation of the probe head 373 by 90° or more.
  • the probe head 373 has a light emitting section 374 that emits light and an imaging section 375 that captures an image of the object to be measured.
  • the light emitting section 374 emits parallel light.
  • the light emitting section 374 includes a semiconductor laser that emits laser light.
  • the beam shape of the light emitted by the light emitting section 374 is a perfect circle.
  • the light emitting unit 374 displays a marker MK, which is a light image, on the surface of the irradiation target by irradiating the irradiation target with light (see FIG. 8).
  • the irradiation target of the light emitting unit 374 is the friction material 12 or other members existing around the friction material 12 (for example, the disk rotor 13 and the back plate 14). .
  • the imaging unit 375 forms an image by imaging the marker MK and the periphery of the display position of the marker MK.
  • the image capturing unit 375 captures a measurement image including the friction material 12 to be measured and the marker MK described above.
  • the main body 31 has a display screen 311 and an operation section 312. An image captured by the imaging unit 375 of the probe 37 is displayed on the display screen 311 .
  • the operation unit 312 is provided with a plurality of buttons operated by the operator using the industrial endoscope 30 .
  • the operation unit 312 includes, as buttons, a light emission button 312a and an imaging button 312b.
  • the light emission button 312a is a button operated by the operator when causing the light emission unit 374 to emit light or stopping the light emission of the light emission unit 374 .
  • the imaging button 312b is a button operated by the operator when causing the imaging unit 375 to capture an image.
  • the main body 31 may be a device dedicated to the industrial endoscope 30, or may be a general device.
  • a general device a mobile device such as a mobile phone can be considered.
  • the buttons of the operation unit 312 are not limited to physical buttons.
  • the light emission button 312a and the imaging button 312b may be buttons displayed on a display device having a touch panel.
  • the main body 31 can communicate with the computing device 40.
  • the communication between the main body 31 and the computing device 40 may be wired communication or wireless communication.
  • the main body 31 transmits the measurement image captured by the imaging unit 375 to the computing device 40 .
  • a connection cable 33 connects the main body 31 and the control unit 35 .
  • the control unit 35 has an operating wheel 351 and an actuator 352 .
  • Actuator 352 is built in control unit 35 .
  • the operation wheel 351 is operated by the operator when changing the orientation of the probe head 373 .
  • the actuator 352 operates according to the operation. As a result, the movable portion 372 is moved to change the orientation of the probe head 373 .
  • computing device 40 comprises communication device 41 and processing circuitry 42 .
  • the communication device 41 receives information transmitted from the industrial endoscope 30 and outputs the information to the processing circuit 42 .
  • the processing circuit 42 has an execution unit 421 and a storage unit 422 .
  • the execution unit 421 is a CPU.
  • the storage unit 422 stores a control program that the execution unit 421 executes at predetermined intervals.
  • the storage unit 422 stores a control program for measuring the thickness D of the friction material 12 based on the measurement image captured by the imaging unit 375 of the industrial endoscope 30 .
  • the display device 51 displays the thickness D of the friction material 12 calculated by the calculation device 40 .
  • the notification device 53 notifies the operator of the content instructed by the calculation device 40 .
  • the notification device 53 may be a speaker that notifies the worker by sound, a lamp that notifies the worker by light, or a screen that notifies the worker by display. It may be a vibration generator that notifies the operator by vibration.
  • FIG. 5 is a block diagram showing the functions of the measuring device 20.
  • the processing circuit 42 functions as the imaging angle estimating section 71, the imaging distance estimating section 75, and the measuring section 80 by the executing section 421 executing the control program.
  • An angle condition notification unit 72 and a distance condition notification unit 76 are configured by the processing circuit 42 and the notification device 53 .
  • the imaging angle estimation unit 71 estimates the imaging angle ⁇ of the friction material 12 by the imaging unit 375 by analyzing the image captured by the imaging unit 375 . Although details will be described later, the imaging angle estimator 71 estimates the imaging angle ⁇ based on the shape of the marker MK in the image.
  • the angle condition notification unit 72 outputs a measurement image, which is an image for measuring the thickness D of the friction material 12, when the imaging angle ⁇ estimated by the imaging angle estimation unit 71 is within a predetermined angle range.
  • the operator is notified that imaging is possible. If the imaging angle ⁇ deviates significantly from 90°, the distortion of the shape of the marker MK increases, which may reduce the accuracy of the calculation for estimating the thickness D of the friction material 12 based on the measurement image. Therefore, a predetermined angle range is set as a criterion for determining whether or not the accuracy of the estimation calculation of the thickness D of the friction material 12 is within the allowable range.
  • the predetermined angle range is the range of imaging angles ⁇ including 90°.
  • the imaging distance estimation unit 75 estimates the imaging distance L, which is the linear distance between the imaging unit 375 and the friction material 12, by analyzing the image captured by the imaging unit 375. Although details will be described later, the imaging distance estimator 75 estimates the imaging distance L based on the dimensions of objects other than the friction material 12 in the image.
  • the distance condition notification unit 76 notifies the operator that the image for measurement can be captured when the imaging distance L estimated by the imaging distance estimation unit 75 is within a predetermined distance range.
  • the accuracy of the calculation for estimating the thickness D of the friction material 12 based on the measurement image may vary depending on the imaging distance L. Therefore, a predetermined distance range is set as a criterion for determining whether the accuracy of the estimation calculation of the thickness D of the friction material 12 is within the allowable range.
  • the measurement unit 80 measures the thickness D of the friction material 12 based on the image for measurement captured by the imaging unit 375 .
  • the measurement unit 80 measures the thickness D of the friction material 12 based on the dimension of the marker MK in the measurement image, although the details will be described later.
  • FIG. 6 (a) is a schematic diagram showing the positional relationship between the imaging target 100 and the probe head 373 when the imaging angle ⁇ is 90°, and (b) is formed on the imaging target 100 at that time.
  • FIG. 4 is a schematic diagram showing a marker MK;
  • FIG. 7 (a) is a schematic diagram showing the positional relationship between the imaging target 100 and the probe head 373 when the imaging angle ⁇ is not 90°, and (b) is formed on the imaging target 100 at that time.
  • FIG. 4 is a schematic diagram showing a marker MK; 6(a) and 7(a) indicate the optical axis of the light emitting section 374. As shown in FIG.
  • the marker MK formed on the imaging target 100 has a perfect circular shape.
  • the horizontal direction in the drawing is defined as "first direction X1”
  • the direction orthogonal to first direction X1 is defined as second direction X2.
  • the dimension F1 of the marker MK in the first direction X1 is equal to the dimension F2 of the marker MK in the second direction X2.
  • the dimension F1 is equal to the dimension F2" means that they are substantially the same, and some error is allowed.
  • the marker MK formed on the imaging target 100 has an elliptical shape. That is, the dimension F1 of the marker MK in the first direction X1 is longer than the dimension F2 of the marker MK in the second direction X2.
  • the aspect ratio ⁇ is 1 when the imaging angle ⁇ is 90°.
  • the aspect ratio ⁇ does not become 1 when the imaging angle ⁇ is not 90°.
  • the more the imaging angle ⁇ deviates from 90° the greater the degree of deviation of the aspect ratio ⁇ from 1.
  • the imaging angle estimation unit 71 estimates the imaging angle ⁇ based on the shape in the image IMG even though the actual shape is known. For example, the imaging angle estimator 71 estimates the imaging angle ⁇ so that the closer the aspect ratio ⁇ of the marker MK is to 1, the closer the imaging angle ⁇ is to 90°. In other words, the imaging angle estimator 71 estimates the imaging angle ⁇ such that the imaging angle ⁇ deviates from 90° as the aspect ratio ⁇ deviates from 1.
  • FIG. 8 is a diagram showing an image IMG captured by the imaging unit 375 and including the friction material 12 and other members present around it.
  • a marker MK is displayed on the surface of the disk rotor 13 adjacent to the friction material 12.
  • the light emitted by the light emitting unit 374 is parallel light. Therefore, the dimension of the marker MK displayed on the surface of the disk rotor 13 does not change with the imaging distance L. In other words, the dimensions of the marker MK are substantially the same as the design values of the dimensions of the marker MK in the light emitting portion 374 .
  • the friction brake 10 although the friction material 12 wears, the disk rotor 13 and the back plate 14 hardly wear. Therefore, the thicknesses of the disk rotor 13 and the back plate 14 hardly change from when they are new. That is, the thicknesses of the disk rotor 13 and the back plate 14 are substantially the same as the design values.
  • the horizontal dimension (number of pixels) F3 of the marker MK in the image IMG shown in FIG. 8 the horizontal dimension (number of pixels) F41 of the disk rotor 13 in the image IMG, and the back plate 14 in the left-right direction in the drawing (the number of pixels) F42 changes depending on the imaging distance L.
  • the longer the imaging distance L the smaller the dimensions F3, F41, and F42.
  • the imaging distance estimation unit 75 estimates the imaging distance L based on the relationship between the size (the number of pixels) in the image IMG of the object whose actual shape is known and the known actual size of the object. For example, the imaging distance estimation unit 75, based on the relationship between the dimension F3 of the marker MK in the image IMG, the dimension F41 of the disc rotor 13 in the image IMG, or the dimension F42 of the back plate 14 in the image IMG, and the corresponding design value, The imaging distance L can be estimated.
  • the imaging distance estimating unit 75 calculates the imaging distance as the distance ratio ⁇ decreases.
  • the imaging distance L is estimated so that L becomes longer.
  • FIG. 9 is a diagram showing a measurement image IMG1 including the friction material 12, other members located around the friction material 12, and the markers MK.
  • the measurement unit 80 determines the first boundary B1 between the friction material 12 and the disc rotor 13 and the boundary between the friction material 12 and the back plate 14. A certain second boundary B2 is detected. Subsequently, measurement unit 80 measures an in-image distance F5, which is the distance between first boundary B1 and second boundary B2 in measurement image IMG1, and measures in-image marker distance F5, which is the dimension of marker MK in measurement image IMG1. Measure the dimension F6.
  • the intra-image distance F5 is the dimension of the friction material 12 in the measurement image IMG1 in the horizontal direction in the figure.
  • the thickness D of the friction material 12 can be measured based on the in-image distance F5 and the in-image marker dimension F6.
  • the measurement unit 80 can calculate the thickness D using the following relational expression (Formula 1). Thereby, the measuring unit 80 calculates the thickness D of the friction material 12 so that the thickness increases as the ratio of the in-image distance F5 to the in-image marker dimension F6 increases.
  • FIG. 10 is a flow chart showing the flow of processing in the measuring device 20.
  • FIG. 11 is a schematic diagram showing how the probe head 373 is inserted into the inspection window 11a of the caliper 11. As shown in FIG.
  • the operator inserts the probe head 373 of the industrial endoscope 30 into the inspection window 11 a of the caliper 11 .
  • the imaging unit 375 and the light emitting unit 374 are inserted into the inspection window 11a. This process corresponds to the "insertion step".
  • the operator inserts the probe head 373 toward the friction brake 10 through the gap formed in the wheel of the wheel.
  • the operator operates the operation wheel 351 of the control unit 35 of the industrial endoscope 30 to change the imaging range of the imaging unit 375 , and the image IMG displayed on the display screen 311 is used as the inspection window.
  • Check the position of 11a The operator then inserts the probe head 373 into the inspection window 11a while viewing the image IMG displayed on the display screen 311.
  • step S11 of FIG. 10 the execution unit 421 of the calculation device 40 determines that the worker has issued a light emission instruction to cause the light emission unit 374 to emit light (S11: YES). ), the process proceeds to step S13.
  • step S13 the execution unit 421 causes the light emitting unit 374 to start emitting light.
  • a marker MK is displayed on the surface of the friction material 12 or the disk rotor 13 as shown in FIG.
  • a marker MK may be displayed on the surface of the back plate 14 .
  • Step S13 corresponds to a "marker display step" of displaying a marker MK on the surface of the friction material 12, the disk rotor 13, or the back plate .
  • the execution unit 421 proceeds to the process of step S15.
  • step S11 determines in step S11 that there is no light emission instruction by the operator (S11: NO)
  • the current processing ends.
  • step S ⁇ b>15 the execution unit 421 estimates the imaging angle ⁇ by functioning as the imaging angle estimation unit 71 .
  • the image IMG captured by the imaging unit 375 is transmitted from the industrial endoscope 30 to the computing device 40 .
  • the executing unit 421 estimates the imaging angle ⁇ based on the received image IMG.
  • the execution unit 421 estimates the imaging distance L by functioning as the imaging distance estimation unit 75 . Specifically, the execution unit 421 estimates the imaging distance L based on the image IMG transmitted from the industrial endoscope 30 to the computing device 40 .
  • step S19 the execution unit 421 determines whether or not the imaging angle ⁇ estimated in step S15 is within a predetermined angle range. If the imaging angle ⁇ is outside the predetermined angle range (S19: NO), the execution unit 421 terminates this process. On the other hand, when the imaging angle ⁇ is within the predetermined angle range (S19: YES), the execution unit 421 proceeds to the process of step S21.
  • step S21 the execution unit 421 uses the notification device 53 to notify the operator that the imaging angle ⁇ is within a predetermined angle range. That is, the process of step S21 is executed by the execution unit 421 and the notification device 53 functioning as the angle condition notification unit 72.
  • FIG. 1 the process of step S21 is executed by the execution unit 421 and the notification device 53 functioning as the angle condition notification unit 72.
  • step S23 the execution unit 421 determines whether or not the imaging distance L estimated in step S17 is within a predetermined distance range. If the imaging distance L is outside the predetermined distance range (S23: NO), the execution unit 421 terminates the current process. On the other hand, if the imaging distance L is within the predetermined distance range (S23: YES), the execution unit 421 proceeds to the process of step S25.
  • step S25 the execution unit 421 uses the notification device 53 to notify the operator that the imaging distance L is within a predetermined distance range. That is, the processing of step S25 is executed by the execution unit 421 and the notification device 53 functioning as the distance condition notification unit 76.
  • FIG. 1 the processing of step S25 is executed by the execution unit 421 and the notification device 53 functioning as the distance condition notification unit 76.
  • the measurement image It is determined that the imaging condition for IMG1 is satisfied.
  • the execution unit 421 proceeds to the process of step S26.
  • step S26 the execution unit 421 determines whether or not the operator has issued an image capturing instruction to cause the image capturing unit 375 to capture the measurement image IMG1. Specifically, the execution unit 421 determines whether or not the operator has operated the imaging button 312b. If the execution unit 421 determines that there is no imaging instruction from the operator (S26: NO), it ends the current process, and if it determines that there is an imaging instruction from the operator (S26: YES), the process proceeds to step S27. do.
  • step S27 the execution unit 421 captures the measurement image IMG1 using the imaging unit 375.
  • Step S ⁇ b>27 corresponds to the “imaging step” of capturing the measurement image IMG ⁇ b>1 including the marker MK and the friction material 12 .
  • Step S29 the executing section 421 measures the thickness D of the friction material 12 by functioning as the measuring section 80.
  • Step S29 corresponds to the "measurement step” of measuring the thickness D of the friction material 12 based on the measurement image IMG1.
  • step S31 the execution unit 421 notifies the operator of the thickness D of the friction material 12 measured in step S29.
  • the execution unit 421 causes the display device 51 to display the thickness D of the friction material 12 .
  • the execution unit 421 ends the current process.
  • the thickness D of the friction material 12 is measured based on the size of the marker MK in the measurement image IMG1.
  • the marker MK is a light image displayed on the surface of the friction material 12, the disk rotor 13, or the back plate 14 when the light emitting part 374 irradiates the friction material 12 or the disk rotor 13 with light.
  • the marker MK is not attached to the friction material 12, the disk rotor 13, or the back plate 14 in advance. Therefore, even if the friction material 12, the disk rotor 13, and the back plate 14 are dirty due to the use of the friction brake 10, the marker MK can be identified in the measurement image IMG1 regardless of the degree of dirt.
  • the thickness D of the friction material 12 can be measured based on the size of the marker MK.
  • the measurement image IMG1 is captured on condition that the imaging angle ⁇ is within a predetermined angle range. Accordingly, the thickness D of the friction material 12 can be accurately measured using the measurement image IMG1 in which the difference between the imaging angle ⁇ and 90° is not large.
  • the measurement image IMG1 is captured on condition that the imaging distance L is within a predetermined distance range. Accordingly, the thickness D of the friction material 12 can be accurately measured using the measurement image IMG1 when the imaging distance L is within the predetermined distance range.
  • the thickness D, imaging angle ⁇ , and imaging distance L of the friction material 12 are estimated based on the marker MK in the image captured by the imaging unit 375 . Therefore, it is preferable that the process of identifying the marker MK in the image captured by the imaging unit 375 (hereinafter referred to as "marker identification process”) be simple.
  • both the light emitting unit 374 and the imaging unit 375 are provided in the probe head 373 so that the relationship between the light irradiation direction of the light emitting unit 374 and the imaging direction of the imaging unit 375 is maintained. Therefore, the marker MK is displayed in a predetermined area of the image captured by the imaging unit 375 . As a result, it is possible to set the target range of the marker identification processing in the image captured by the imaging unit 375, thereby reducing the processing amount of the marker identification processing.
  • the shape of the marker MK is a perfect circle. In this manner, by designing the shape of the marker MK in the light emitting unit 374 to be easily recognizable in the measurement image IMG1, it is possible to simplify the processing content of the marker identification processing.
  • the imaging unit 375 of the industrial endoscope 30 starts capturing a moving image when the imaging button 312b of the main body 31 is operated. Frames forming the moving image are then sequentially transmitted to the computing device 40 .
  • FIG. 12 is a flow chart showing the flow of processing in the measuring device 20. As shown in FIG.
  • the operator inserts the probe head 373 of the industrial endoscope 30 into the inspection window 11a of the caliper 11 (see FIG. 11). This process corresponds to the "insertion step”.
  • step S51 of FIG. 12 the execution unit 421 of the calculation device 40 determines that the operator has issued a light emission instruction (S51: YES), and performs the process of step S53. transition to In step S53, the execution unit 421 causes the light emitting unit 374 to start emitting light. In this embodiment, step S53 corresponds to the "marker display step”. After that, the execution unit 421 shifts the process to step S54.
  • step S51 determines in step S51 that there is no light emission instruction by the operator (S51: NO)
  • step S54 the execution unit 421 determines whether or not the operator has instructed the imaging unit 375 to capture the measurement image IMG1. Specifically, the execution unit 421 determines whether or not the operator has operated the imaging button 312b. If the execution unit 421 determines that there is no imaging instruction from the operator (S54: NO), it ends the current process, and if it determines that there is an imaging instruction from the operator (S54: YES), the process proceeds to step S55. do.
  • step S55 the execution unit 421 causes the imaging unit 375 to start capturing a moving image. Then, in step S57, the execution unit 421 estimates the imaging angle ⁇ by functioning as the imaging angle estimating unit 71, as in step S15 of the first embodiment. In step S59, the execution unit 421 estimates the imaging distance L by functioning as the imaging distance estimation unit 75, as in step S17 of the first embodiment.
  • step S61 the execution unit 421 determines whether or not the imaging angle ⁇ estimated in step S57 is within a predetermined angle range, as in step S19 of the first embodiment. If the imaging angle ⁇ is outside the predetermined angle range (S61: NO), the execution unit 421 ends the current process. On the other hand, when the imaging angle ⁇ is within the predetermined angle range (S61: YES), the execution unit 421 proceeds to the process of step S63.
  • step S63 the execution unit 421 determines whether or not the imaging distance L estimated in step S59 is within a predetermined distance range, as in step S23 of the first embodiment. If the imaging distance L is outside the predetermined distance range (S63: NO), the execution unit 421 ends the current process. On the other hand, when the imaging distance L is within the predetermined distance range (S63: YES), the execution unit 421 proceeds to the process of step S65.
  • step S65 the execution unit 421 acquires the frame of the moving image captured by the imaging unit 375 as the measurement image IMG1.
  • the imaging angle ⁇ is a value within a predetermined angle range
  • the imaging distance L is a value within a predetermined distance range is obtained as the measurement image IMG1.
  • step S67 the execution unit 421 causes the notification device 53 to notify the operator that the measurement image IMG1 has been captured.
  • the processing of step S67 is executed by the execution unit 421 and the notification device 53 functioning as the angle condition notification unit 72 and the distance condition notification unit 76, respectively.
  • step S69 the execution unit 421 measures the thickness D of the friction material 12 based on the measurement image IMG1 acquired in step S65 by functioning as the measurement unit 80, as in step S29 of the first embodiment. .
  • step S69 corresponds to the "measurement step”.
  • step S71 the execution unit 421 notifies the operator of the thickness D of the friction material 12 measured in step S69 in the same manner as in step S31 of the first embodiment. Then, the execution unit 421 ends the current process.
  • the imaging unit 375 when the imaging unit 375 starts capturing a moving image, frames of the moving image are sequentially transmitted to the computing device 40 . Therefore, the computing device 40 can individually analyze a plurality of frames forming a moving image. That is, in the calculation device 40, the imaging angle ⁇ must be a value within a predetermined angle range (hereinafter referred to as “imaging angle condition”), and the imaging distance L must be a value within a predetermined distance range (hereinafter “imaging distance condition”).
  • the frame is acquired as the measurement image IMG1, and the thickness D of the friction material 12 is measured based on the measurement image IMG1. That is, the measurement image IMG1 is acquired after both the imaging angle ⁇ is within a predetermined angle range and the imaging distance L is within a predetermined distance range. Therefore, it is possible to save the labor of the operator who operates the imaging button 312b.
  • the imaging distance L is estimated based on the size of the marker MK in the measurement image IMG1.
  • the imaging distance L may be estimated based on the magnitude at .
  • the imaging distance L may be estimated based on the size of the disk rotor 13 or the size of the back plate 14 .
  • the thickness D of the friction material 12 is measured based on the measurement image IMG1. Therefore, the operator may be notified that the thickness D of the friction material 12 has been measured. For example, the measured thickness D of the friction material 12 may be displayed on the display device 51 . In this case, when the thickness D is displayed on the display device 51, the operator can recognize that the measurement of the thickness has been completed.
  • the frame is captured even if the frame does not satisfy the imaging distance condition. You may make it acquire as image IMG1 for a measurement. Specifically, in the flow of processing shown in FIG. 12, the processing of step S63 may be omitted.
  • the frame is measured even if the frame does not satisfy the imaging angle condition.
  • the image IMG1 may be acquired as the target image IMG1. Specifically, in the flow of processing shown in FIG. 12, the processing of step S61 may be omitted.
  • the in-image marker dimension F6 which is the dimension of the marker MK in the measurement image IMG1
  • the in-image marker dimension F6 should be corrected according to the imaging angle ⁇ .
  • the product of the in-image marker dimension F6 and the aspect ratio ⁇ can be used as the corrected in-image marker dimension F6.
  • the light-emitting part 374 does not have to be a semiconductor laser as long as it can emit parallel light and display the marker MK on the surface of the friction material 12 or on the surface of another member located around the friction material 12 .
  • the imaging unit 375 and the light emitting unit 374 are unitized, but the light emitting unit 374 and the imaging unit 375 may not be unitized.
  • the light emitting unit 374 and the imaging unit 375 may be provided separately in the probe head 373, the light emitting unit 374 may be provided in a separate part from the probe head 373, or a separate part from the probe head 373 may be provided. may be provided with the imaging unit 375 .
  • the imaging distance L is estimated based on the dimensions in the image IMG of the marker MK whose actual dimensions are known, but the imaging distance L may be estimated using the principle of triangulation. Then, the imaging distance L may be estimated based on the time until the reflected light of the laser measurement object is detected, or based on the time until the reflected wave of the ultrasonic wave is detected from the measurement object. The imaging distance L may be estimated.
  • the operator is notified that the imaging angle condition and the imaging distance condition are satisfied using the notification device 53 provided separately from the industrial endoscope 30.
  • notification means other than the notification device 53 may be used to notify the operator.
  • the display screen 311 provided on the main body 31 of the industrial endoscope 30 may display that the imaging angle condition and the imaging distance condition are satisfied.
  • a device for vibrating the main body 31 may be provided in the main body 31 so that the operator can be notified by vibrating the main body 31 that the imaging angle condition and the imaging distance condition are satisfied.
  • the operator is notified that the measurement image IMG1 has been acquired by using the notification device 53 provided separately from the industrial endoscope 30.
  • another notification means may be used to notify the operator.
  • the acquisition of the measurement image IMG1 may be displayed on the display screen 311 provided on the main body 31 of the industrial endoscope 30.
  • a device for vibrating the main body 31 may be provided in the main body 31 so that the operator can be notified by vibrating the main body 31 that the measurement image IMG1 has been obtained.
  • the thickness D of the friction material 12 is displayed on the display device 51 provided separately from the industrial endoscope 30. You may make it alert
  • the thickness D of the friction material 12 may be displayed on the display screen 311 provided on the main body 31 of the industrial endoscope 30 .
  • a device for generating sound may be provided on the main body 31 or separately from the main body 31 so that the thickness D of the friction material 12 is notified to the operator by sound.
  • the measurement device 20 including the industrial endoscope 30, the calculation device 40, the display device 51, and the notification device 53 is illustrated, but the calculation device 40, the display device 51, and the notification device 53 may be integrated into the industrial endoscope 30 .
  • the thickness D of the friction material 12 may be displayed on the display screen 311 .
  • the content of notification to the worker may be displayed on the display screen 311, a speaker may be provided in the industrial endoscope 30, and the content of notification to the worker may be indicated by voice.
  • a lamp may be provided on the mirror 30 to indicate the information to be notified to the operator.
  • a circuit corresponding to the processing circuit 42 may be provided in the industrial endoscope 30 and the thickness D of the friction material 12 may be measured by the circuit.
  • the control program and the thickness D of the friction material 12 may be stored in a wirelessly connected storage device.
  • the measurement image IMG1 is obtained by inserting the imaging unit 375 into the inspection window 11a of the caliper 11 . That is, in the above embodiments, the thickness D of the portion of the friction material 12 exposed through the inspection window 11a is measured.
  • the measurement image IMG1 may be acquired in a state in which the imaging unit 375 is brought close to the friction material 12 from a location other than the inspection window 11a.
  • the measurement image IMG1 may be captured in a state in which the imaging unit 375 is brought closer to the lateral or lower end of the friction material 12 from the side or lower side of the caliper 11 . Thereby, the thickness D of the friction material 12 provided in the caliper without the inspection window can be measured.
  • a measurement image (first measurement image) including the first end of the friction material 12 is taken, and a measurement image (second measurement image) including a second end different from the first end is captured. You can take an image. Accordingly, the degree of uneven wear of the friction material 12 can be estimated by comparing the thickness measured based on the first image for measurement and the thickness measured based on the second image for measurement.
  • the processing circuit 42 includes one or more processors that operate according to a computer program, one or more dedicated hardware circuits such as dedicated hardware that executes at least part of various processes, or a combination thereof. It can be configured as a circuit.
  • Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit.
  • the measuring device may be embodied as a measuring device for measuring members other than the friction material 12 .
  • the object to be measured other than the friction material 12 is preferably a member whose size changes as it is used.
  • the measuring device wherein the light emitting unit emits laser light. Since laser light has high directivity, it is possible to accurately measure the size of the object to be measured.
  • a measuring device wherein the beam shape of the laser light emitted by the light emitting unit is circular.
  • the measuring device wherein the imaging section captures the measurement image when the imaging angle estimated by the imaging angle estimating section is a value within the angle range.
  • the imaging unit captures a moving image; The measuring unit converts the frames of the moving image captured by the imaging unit when the imaging angle estimated by the imaging angle estimating unit is a value within the angle range into the measurement image.
  • a measuring device comprising an angle condition reporting unit.
  • the measuring device wherein the imaging unit captures the measurement image when the imaging distance estimated by the imaging distance estimating unit is within the distance range.
  • the imaging unit captures a moving image; The measuring unit converts the frames of the moving image captured by the imaging unit when the imaging distance estimated by the imaging distance estimating unit is a value within the distance range into the measurement image.
  • a measuring device comprising a distance condition reporting unit.
  • the imaging unit is provided in an industrial endoscope, The measuring device, wherein the light emitting unit is provided at a distal end portion of a probe of the industrial endoscope.
  • a measuring method for measuring the size of an object to be measured using the measuring device a marker display step of displaying the marker, which is a light image, on the surface of the object to be measured or an object other than the object to be measured by the light emitting unit; an imaging step of imaging the measurement image including the marker and the measurement object displayed on the surface in the marker display step by the imaging unit; a measuring step of measuring the size of the object to be measured by the measuring unit based on the measurement image captured in the imaging step.
  • the object to be measured is a disc brake friction material
  • a measuring method comprising an insertion step of inserting the imaging unit and the light emitting unit into an inspection window formed in a caliper of the disc brake.

Abstract

A measuring device 20 comprises: a light emitting unit 374 that emits light; an image capturing unit 375 that captures a measurement image including an object being measured and a marker, which is an image of light displayed on a surface of the object being measured or of an object other than the object being measured, due to irradiation of the object with light by the light emitting unit 374; and a processing circuit 42 that measures the size of the object being measured on the basis of the measurement image captured by the image capturing unit 375.

Description

測定装置measuring device
 本発明は、測定対象の大きさを測定する測定装置に関する。 The present invention relates to a measuring device that measures the size of an object to be measured.
 特許文献1には、電磁ブレーキのブレーキライニングを測定対象とする測定装置が開示されている。この測定装置では、電磁ブレーキのブレーキライニング及び制動部のうちの少なくとも一方に事前に付されたマーカーとブレーキライニングとを含む画像を撮像し、当該画像において実際の寸法(以下「実寸法」という)が既知のマーカーの寸法(画素数)を基準としてブレーキライニングの厚さを測定するようにしている。 Patent Document 1 discloses a measuring device for measuring brake linings of electromagnetic brakes. In this measuring device, an image including a marker and brake lining previously attached to at least one of the brake lining and braking portion of the electromagnetic brake is captured, and the actual size (hereinafter referred to as "actual size") in the image is taken. measures the thickness of the brake lining with reference to known marker dimensions (number of pixels).
特開2019-56391号公報JP 2019-56391 A
 しかしながら、ブレーキライニング及び制動部が汚れると、マーカーの少なくとも一部分が消えてしまったり、マーカーに異物が付着してしまったりすることがある。この場合、マーカー及びブレーキライニングを含む画像でマーカーを認識できず、ブレーキライニングの厚さを測定できないおそれがある。本発明の目的は、測定対象の大きさが測定不能となることを抑制することである。 However, if the brake lining and braking portion become dirty, at least a portion of the marker may disappear or foreign matter may adhere to the marker. In this case, the markers may not be recognized in the image including the markers and the brake lining, and the thickness of the brake lining may not be measured. SUMMARY OF THE INVENTION An object of the present invention is to prevent the size of an object to be measured from becoming unmeasurable.
 上記課題を解決するための測定装置は、測定対象の大きさを測定する測定装置において、光を発する発光部と、前記測定対象又は前記測定対象以外の物体に前記発光部が光を照射することによって当該物体の表面に表示された光の像であるマーカーと前記測定対象とを含む測定用画像を撮像する撮像部と、前記撮像部により撮像された前記測定用画像に基づいて前記測定対象の大きさを測定する測定部と、を備えている。 A measuring device for solving the above-mentioned problems is a measuring device for measuring the size of an object to be measured, wherein the light emitting unit emits light, and the light emitting unit irradiates the object to be measured or an object other than the object to be measured with light. an imaging unit that captures an image for measurement including a marker, which is a light image displayed on the surface of the object, and the measurement target; and an image of the measurement target based on the measurement image captured by the imaging unit and a measuring unit for measuring the size.
 上記構成によれば、発光部により光が照射された測定対象又は測定対象以外の物体の表面に表示された光の像であるマーカーと測定対象とを含む測定用画像に基づいて、測定対象の大きさを測定できる。マーカーは、発光部が測定対象又は測定対象以外の物体に光を照射することによって形成された光の像であるため、測定対象や測定対象以外の物体の汚れ度合いに関わらず測定用画像においてマーカーを識別できる。したがって、測定対象の大きさの測定が不能となることを抑制できる。 According to the above configuration, based on the measurement image including the measurement target and the marker, which is a light image displayed on the surface of the measurement target irradiated with light from the light emitting unit or on the surface of the object other than the measurement target, size can be measured. Since the marker is a light image formed by the light emitting unit irradiating the object to be measured or an object other than the object to be measured with light, the marker can be displayed in the measurement image regardless of the degree of dirt on the object to be measured or the object other than the object to be measured. can be identified. Therefore, it is possible to prevent the size of the object to be measured from becoming impossible.
図1は、車両の摩擦ブレーキを模式的に示す側面図である。FIG. 1 is a side view schematically showing a friction brake of a vehicle. 図2は、同摩擦ブレーキの一部分を模式的に示す平面図である。FIG. 2 is a plan view schematically showing part of the same friction brake. 図3は、第1実施形態の測定装置の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of the measuring device of the first embodiment. 図4は、同測定装置における工業用内視鏡のブロック図である。FIG. 4 is a block diagram of an industrial endoscope in the measuring device. 図5は、同測定装置の機能を示すブロック図である。FIG. 5 is a block diagram showing functions of the measuring device. 図6において、(a)は撮像角度が90°となる場合における撮像部と撮像対象との位置関係を示す模式図であり、(b)はそのときに撮像対象に形成されるマーカーを示す模式図である。In FIG. 6, (a) is a schematic diagram showing the positional relationship between the imaging unit and the imaging target when the imaging angle is 90°, and (b) is a schematic diagram showing the marker formed on the imaging target at that time. It is a diagram. 図7において、(a)は撮像角度が90°ではない場合における撮像部と撮像対象との位置関係を示す模式図であり、(b)はそのときに撮像対象に形成されるマーカーを示す模式図である。In FIG. 7, (a) is a schematic diagram showing the positional relationship between the imaging unit and the imaging target when the imaging angle is not 90°, and (b) is a schematic diagram showing the marker formed on the imaging target at that time. It is a diagram. 図8は、撮像部が撮像した画像の一例を示す模式図である。FIG. 8 is a schematic diagram showing an example of an image captured by an imaging unit. 図9は、撮像部が撮像した測定用画像の一例を示す模式図である。FIG. 9 is a schematic diagram showing an example of a measurement image captured by the imaging unit. 図10は、第1実施形態の測定装置における処理の流れを示すフローチャートである。FIG. 10 is a flow chart showing the flow of processing in the measuring device of the first embodiment. 図11は、工業用内視鏡のプローブヘッドを点検窓に挿入する様子を示す模式図である。FIG. 11 is a schematic diagram showing how the probe head of the industrial endoscope is inserted into the inspection window. 図12は、第2実施形態の測定装置における処理の流れを示すフローチャートである。FIG. 12 is a flow chart showing the flow of processing in the measuring device of the second embodiment.
 (第1実施形態)
 以下、測定装置の一実施形態を図1~図11に従って説明する。
 <車両の摩擦ブレーキ>
 図1は車両に設けられる摩擦ブレーキ10の模式図である。図2は、図1に示した白抜きの矢印A11で示す方向から摩擦ブレーキ10を見た場合の摩擦ブレーキ10の一部を模式的に示す平面図である。
(First embodiment)
An embodiment of the measuring device will be described below with reference to FIGS. 1 to 11. FIG.
<Vehicle friction brake>
FIG. 1 is a schematic diagram of a friction brake 10 provided on a vehicle. FIG. 2 is a plan view schematically showing a portion of the friction brake 10 when the friction brake 10 is viewed from the direction indicated by the white arrow A11 shown in FIG.
 図1及び図2に示す摩擦ブレーキ10はディスクブレーキである。この摩擦ブレーキ10は、車両の車体に支持されているキャリパ11と、2つの摩擦材12と、車両の車輪と一体に回転するディスクロータ13とを備えている。図2に示すように摩擦材12は裏板14に支持されている。2つの摩擦材12の間にディスクロータ13が介在している。 The friction brake 10 shown in FIGS. 1 and 2 is a disc brake. The friction brake 10 includes a caliper 11 supported by the vehicle body, two friction members 12, and a disk rotor 13 rotating integrally with the vehicle wheel. As shown in FIG. 2, the friction material 12 is supported by the back plate 14. As shown in FIG. A disc rotor 13 is interposed between two friction members 12 .
 図2に示すようにキャリパ11には点検窓11aが設けられている。点検窓11aを介してキャリパ11内を覗き込んだ場合、ディスクロータ13と摩擦材12と裏板14とを視認できる。 As shown in FIG. 2, the caliper 11 is provided with an inspection window 11a. When looking into the caliper 11 through the inspection window 11a, the disk rotor 13, the friction material 12, and the back plate 14 can be visually recognized.
 <測定装置>
 図3は本実施形態の測定装置20の概略を示す構成図である。測定装置20は、摩擦ブレーキ10の摩擦材12の厚みDを測定する装置である。すなわち、測定装置20は、測定対象としての摩擦材12の大きさである厚みDを測定する。
<Measuring device>
FIG. 3 is a configuration diagram showing an outline of the measuring device 20 of this embodiment. The measuring device 20 is a device that measures the thickness D of the friction material 12 of the friction brake 10 . That is, the measuring device 20 measures the thickness D, which is the size of the friction material 12 to be measured.
 図3に示すように、測定装置20は、工業用内視鏡30と計算装置40と表示装置51と報知装置53とを備えている。図4は工業用内視鏡30のブロック図である。
 図3に示すように、工業用内視鏡30は、本体31と接続ケーブル33とコントロールユニット35とプローブ37とを有している。
As shown in FIG. 3 , the measuring device 20 includes an industrial endoscope 30 , a computing device 40 , a display device 51 and a notification device 53 . FIG. 4 is a block diagram of the industrial endoscope 30. As shown in FIG.
As shown in FIG. 3, the industrial endoscope 30 has a main body 31, a connection cable 33, a control unit 35 and a probe 37. As shown in FIG.
 プローブ37は、接続部371と可動部372とプローブヘッド373とを有している。プローブ37の一端部に接続部371が設けられている一方で、プローブ37の他端部にプローブヘッド373が設けられている。プローブ37は接続部371を介してコントロールユニット35に接続されている。可動部372は、図3に示すようにプローブヘッド373の向きを可変させるべく可動する。本実施形態では、可動部372は、プローブヘッド373の向きを90°以上変化させることができる。 The probe 37 has a connecting portion 371 , a movable portion 372 and a probe head 373 . A connecting portion 371 is provided at one end of the probe 37 , and a probe head 373 is provided at the other end of the probe 37 . The probe 37 is connected to the control unit 35 via a connection 371 . The movable portion 372 is movable to change the orientation of the probe head 373 as shown in FIG. In this embodiment, the movable part 372 can change the orientation of the probe head 373 by 90° or more.
 プローブヘッド373は、光を発する発光部374と、測定対象を撮像する撮像部375とを有している。発光部374は平行光を発する。本実施形態では、発光部374はレーザー光を発する半導体レーザーを含んでいる。発光部374が発する光のビーム形状は真円である。発光部374は、照射対象に光を照射することによって、照射対象の表面に光の像であるマーカーMKを表示させる(図8参照)。なお、摩擦材12の厚みDを計測する場合、発光部374の照射対象は、摩擦材12、又は摩擦材12の周辺に存在する他の部材(例えば、ディスクロータ13や裏板14)となる。 The probe head 373 has a light emitting section 374 that emits light and an imaging section 375 that captures an image of the object to be measured. The light emitting section 374 emits parallel light. In this embodiment, the light emitting section 374 includes a semiconductor laser that emits laser light. The beam shape of the light emitted by the light emitting section 374 is a perfect circle. The light emitting unit 374 displays a marker MK, which is a light image, on the surface of the irradiation target by irradiating the irradiation target with light (see FIG. 8). When measuring the thickness D of the friction material 12, the irradiation target of the light emitting unit 374 is the friction material 12 or other members existing around the friction material 12 (for example, the disk rotor 13 and the back plate 14). .
 撮像部375は、上記のマーカーMK及びマーカーMKの表示位置の周辺を撮像して画像を形成する。摩擦材12の厚みDを計測する場合、撮像部375は、測定対象となる摩擦材12と上記のマーカーMKとを含む測定用画像を撮像する。 The imaging unit 375 forms an image by imaging the marker MK and the periphery of the display position of the marker MK. When measuring the thickness D of the friction material 12, the image capturing unit 375 captures a measurement image including the friction material 12 to be measured and the marker MK described above.
 本体31は表示画面311と操作部312とを有している。表示画面311には、プローブ37の撮像部375が撮像した画像が表示される。操作部312には、工業用内視鏡30を使用する作業者が操作する複数のボタンが設けられている。操作部312は、ボタンとして、発光用ボタン312aと撮像用ボタン312bとを含んでいる。発光用ボタン312aは、発光部374に発光させたり、発光部374の発光を停止させたりする際に作業者が操作するボタンである。撮像用ボタン312bは、撮像部375に画像を撮像させる際に作業者が操作するボタンである。 The main body 31 has a display screen 311 and an operation section 312. An image captured by the imaging unit 375 of the probe 37 is displayed on the display screen 311 . The operation unit 312 is provided with a plurality of buttons operated by the operator using the industrial endoscope 30 . The operation unit 312 includes, as buttons, a light emission button 312a and an imaging button 312b. The light emission button 312a is a button operated by the operator when causing the light emission unit 374 to emit light or stopping the light emission of the light emission unit 374 . The imaging button 312b is a button operated by the operator when causing the imaging unit 375 to capture an image.
 なお、本体31は、工業用内視鏡30に専用の装置であってもよいし、一般的な装置であってもよい。一般的な装置としては携帯電話などの携帯機器が考えられる。操作部312のボタンは物理ボタンに限定されない。例えば発光用ボタン312a及び撮像用ボタン312bは、タッチパネルを有している表示機器に表示されるボタンであってもよい。 Note that the main body 31 may be a device dedicated to the industrial endoscope 30, or may be a general device. As a general device, a mobile device such as a mobile phone can be considered. The buttons of the operation unit 312 are not limited to physical buttons. For example, the light emission button 312a and the imaging button 312b may be buttons displayed on a display device having a touch panel.
 本体31は計算装置40と通信可能である。本体31と計算装置40との通信は、有線による通信であってもよいし、無線による通信であってもよい。例えば、本体31は撮像部375が撮像した測定用画像を計算装置40に送信する。 The main body 31 can communicate with the computing device 40. The communication between the main body 31 and the computing device 40 may be wired communication or wireless communication. For example, the main body 31 transmits the measurement image captured by the imaging unit 375 to the computing device 40 .
 接続ケーブル33は本体31とコントロールユニット35とを接続する。
 図4に示すように、コントロールユニット35は、操作ホイール351とアクチュエータ352とを有している。アクチュエータ352は、コントロールユニット35に内蔵されている。アクチュエータ352が作動すると、図3に示すようにプローブ37の可動部372が可動する。操作ホイール351は、プローブヘッド373の向きを変える際に作業者が操作するものである。作業者によって操作ホイール351が操作されると、その操作に応じてアクチュエータ352が作動する。これにより、可動部372が可動してプローブヘッド373の向きが変わる。
A connection cable 33 connects the main body 31 and the control unit 35 .
As shown in FIG. 4, the control unit 35 has an operating wheel 351 and an actuator 352 . Actuator 352 is built in control unit 35 . When the actuator 352 operates, the movable portion 372 of the probe 37 moves as shown in FIG. The operation wheel 351 is operated by the operator when changing the orientation of the probe head 373 . When the operator operates the operation wheel 351, the actuator 352 operates according to the operation. As a result, the movable portion 372 is moved to change the orientation of the probe head 373 .
 図3に示すように、計算装置40は通信装置41と処理回路42とを備えている。
 通信装置41は、工業用内視鏡30から送信された情報を受信して処理回路42に出力する。
As shown in FIG. 3, computing device 40 comprises communication device 41 and processing circuitry 42 .
The communication device 41 receives information transmitted from the industrial endoscope 30 and outputs the information to the processing circuit 42 .
 処理回路42は実行部421と記憶部422とを有している。例えば実行部421はCPUである。記憶部422には、実行部421が所定周期で実行する制御プログラムが記憶されている。本実施形態では、工業用内視鏡30の撮像部375が撮像した測定用画像に基づいて摩擦材12の厚みDを計測するための制御プログラムが記憶部422に記憶されている。 The processing circuit 42 has an execution unit 421 and a storage unit 422 . For example, the execution unit 421 is a CPU. The storage unit 422 stores a control program that the execution unit 421 executes at predetermined intervals. In this embodiment, the storage unit 422 stores a control program for measuring the thickness D of the friction material 12 based on the measurement image captured by the imaging unit 375 of the industrial endoscope 30 .
 表示装置51は、計算装置40によって計算された摩擦材12の厚みDを表示する。
 報知装置53は、計算装置40から指示された内容を作業者に報知する。報知装置53は、音声によって作業者に報知するスピーカーであってもよいし、光によって作業者に報知するランプであってもよいし、表示によって作業者に報知する画面であってもよいし、振動によって作業者に報知する振動発生装置であってもよい。
The display device 51 displays the thickness D of the friction material 12 calculated by the calculation device 40 .
The notification device 53 notifies the operator of the content instructed by the calculation device 40 . The notification device 53 may be a speaker that notifies the worker by sound, a lamp that notifies the worker by light, or a screen that notifies the worker by display. It may be a vibration generator that notifies the operator by vibration.
 図5は測定装置20の機能を示すブロック図である。処理回路42は、実行部421が上記の制御プログラムを実行することにより、撮像角度推定部71と撮像距離推定部75と測定部80として機能する。また、処理回路42及び報知装置53により、角度条件報知部72と距離条件報知部76とが構成される。 FIG. 5 is a block diagram showing the functions of the measuring device 20. FIG. The processing circuit 42 functions as the imaging angle estimating section 71, the imaging distance estimating section 75, and the measuring section 80 by the executing section 421 executing the control program. An angle condition notification unit 72 and a distance condition notification unit 76 are configured by the processing circuit 42 and the notification device 53 .
 撮像角度推定部71は、撮像部375が撮像した画像を解析することによって撮像部375による摩擦材12の撮像角度θを推定する。詳しくは後述するが、撮像角度推定部71は、画像におけるマーカーMKの形状に基づいて撮像角度θを推定する。 The imaging angle estimation unit 71 estimates the imaging angle θ of the friction material 12 by the imaging unit 375 by analyzing the image captured by the imaging unit 375 . Although details will be described later, the imaging angle estimator 71 estimates the imaging angle θ based on the shape of the marker MK in the image.
 角度条件報知部72は、撮像角度推定部71により推定された撮像角度θが所定の角度範囲内の値である場合に、摩擦材12の厚みDを計測するための画像である測定用画像の撮像が可能である旨を作業者に報知する。撮像角度θが90°から大きく乖離していると、マーカーMKの形状の歪みが大きくなるため、測定用画像に基づいた摩擦材12の厚みDの推定演算の精度が低くなるおそれがある。そこで、摩擦材12の厚みDの推定演算の精度が許容範囲に収まるか否かの判断基準として、所定の角度範囲が設定されている。本実施形態では、所定の角度範囲は90°を含む撮像角度θの範囲である。 The angle condition notification unit 72 outputs a measurement image, which is an image for measuring the thickness D of the friction material 12, when the imaging angle θ estimated by the imaging angle estimation unit 71 is within a predetermined angle range. The operator is notified that imaging is possible. If the imaging angle θ deviates significantly from 90°, the distortion of the shape of the marker MK increases, which may reduce the accuracy of the calculation for estimating the thickness D of the friction material 12 based on the measurement image. Therefore, a predetermined angle range is set as a criterion for determining whether or not the accuracy of the estimation calculation of the thickness D of the friction material 12 is within the allowable range. In this embodiment, the predetermined angle range is the range of imaging angles θ including 90°.
 撮像距離推定部75は、撮像部375が撮像した画像を解析することによって、撮像部375と摩擦材12との直線距離である撮像距離Lを推定する。詳しくは後述するが、撮像距離推定部75は、画像における摩擦材12以外の物体の寸法に基づいて撮像距離Lを推定する。 The imaging distance estimation unit 75 estimates the imaging distance L, which is the linear distance between the imaging unit 375 and the friction material 12, by analyzing the image captured by the imaging unit 375. Although details will be described later, the imaging distance estimator 75 estimates the imaging distance L based on the dimensions of objects other than the friction material 12 in the image.
 距離条件報知部76は、撮像距離推定部75により推定された撮像距離Lが所定の距離範囲内の値である場合に測定用画像の撮像が可能である旨を作業者に報知する。測定用画像に基づいた摩擦材12の厚みDの推定演算の精度は、撮像距離Lによって変わりうる。そこで、摩擦材12の厚みDの推定演算の精度が許容範囲に収まるか否かの判断基準として、所定の距離範囲が設定されている。 The distance condition notification unit 76 notifies the operator that the image for measurement can be captured when the imaging distance L estimated by the imaging distance estimation unit 75 is within a predetermined distance range. The accuracy of the calculation for estimating the thickness D of the friction material 12 based on the measurement image may vary depending on the imaging distance L. Therefore, a predetermined distance range is set as a criterion for determining whether the accuracy of the estimation calculation of the thickness D of the friction material 12 is within the allowable range.
 測定部80は、撮像部375により撮像された測定用画像に基づいて摩擦材12の厚みDを測定する。本実施形態では、詳しくは後述するが、測定部80は、測定用画像におけるマーカーMKの寸法を基準として摩擦材12の厚みDを測定する。 The measurement unit 80 measures the thickness D of the friction material 12 based on the image for measurement captured by the imaging unit 375 . In this embodiment, the measurement unit 80 measures the thickness D of the friction material 12 based on the dimension of the marker MK in the measurement image, although the details will be described later.
 <撮像角度推定部による撮像角度の推定>
 図6及び図7を参照し、撮像角度推定部71による撮像角度θの推定処理について説明する。図6において、(a)は撮像角度θが90°である場合における撮像対象100とプローブヘッド373との位置関係を示す模式図であり、(b)はそのときに撮像対象100に形成されるマーカーMKを示す模式図である。図7において、(a)は撮像角度θが90°ではない場合における撮像対象100とプローブヘッド373との位置関係を示す模式図であり、(b)はそのときに撮像対象100に形成されるマーカーMKを示す模式図である。なお、図6(a)及び図7(a)における二点鎖線は、発光部374の光軸を示している。
<Estimation of Imaging Angle by Imaging Angle Estimation Unit>
Estimation processing of the imaging angle θ by the imaging angle estimator 71 will be described with reference to FIGS. 6 and 7 . In FIG. 6, (a) is a schematic diagram showing the positional relationship between the imaging target 100 and the probe head 373 when the imaging angle θ is 90°, and (b) is formed on the imaging target 100 at that time. FIG. 4 is a schematic diagram showing a marker MK; In FIG. 7, (a) is a schematic diagram showing the positional relationship between the imaging target 100 and the probe head 373 when the imaging angle θ is not 90°, and (b) is formed on the imaging target 100 at that time. FIG. 4 is a schematic diagram showing a marker MK; 6(a) and 7(a) indicate the optical axis of the light emitting section 374. As shown in FIG.
 図6(a),(b)に示すように撮像角度θが90°である場合、撮像対象100に形成されるマーカーMKは真円形状をなす。図6(b)において、図中左右方向を「第1方向X1」とし、第1方向X1と直交する方向を第2方向X2とする。このとき、マーカーMKにおける第1方向X1の寸法F1は、マーカーMKにおける第2方向X2の寸法F2と等しい。ここでいう「寸法F1が寸法F2と等しい」とは、実質的に同じであることを示しており、多少の誤差は許容するものとする。 When the imaging angle θ is 90° as shown in FIGS. 6(a) and 6(b), the marker MK formed on the imaging target 100 has a perfect circular shape. In FIG. 6(b), the horizontal direction in the drawing is defined as "first direction X1", and the direction orthogonal to first direction X1 is defined as second direction X2. At this time, the dimension F1 of the marker MK in the first direction X1 is equal to the dimension F2 of the marker MK in the second direction X2. Here, "the dimension F1 is equal to the dimension F2" means that they are substantially the same, and some error is allowed.
 一方、図7(a),(b)に示すように撮像角度θが90°ではない場合、撮像対象100に形成されるマーカーMKは楕円形状をなす。すなわち、マーカーMKにおける第1方向X1の寸法F1は、マーカーMKにおける第2方向X2の寸法F2よりも長くなる。 On the other hand, as shown in FIGS. 7A and 7B, when the imaging angle θ is not 90°, the marker MK formed on the imaging target 100 has an elliptical shape. That is, the dimension F1 of the marker MK in the first direction X1 is longer than the dimension F2 of the marker MK in the second direction X2.
 ここで第1方向X1の寸法F1に対する第2方向X2の寸法F2の比率を縦横比率αとすると、撮像角度θが90°である場合、縦横比率αは1となる。撮像角度θが90°ではない場合、縦横比率αは1にならない。このように、撮像角度θが90°から乖離するほど、縦横比率αの1からの乖離度合いが大きくなる。 Assuming that the ratio of the dimension F2 in the second direction X2 to the dimension F1 in the first direction X1 is the aspect ratio α, the aspect ratio α is 1 when the imaging angle θ is 90°. The aspect ratio α does not become 1 when the imaging angle θ is not 90°. Thus, the more the imaging angle θ deviates from 90°, the greater the degree of deviation of the aspect ratio α from 1.
 そこで、撮像角度推定部71は、実際の形状が既知であるものの画像IMGにおける形状に基づいて撮像角度θを推定する。例えば、撮像角度推定部71は、マーカーMKの縦横比率αが1に近いほど撮像角度θが90°に近づくように撮像角度θを推定する。言い換えると、撮像角度推定部71は、縦横比率αの1からの乖離度合いが大きいほど撮像角度θが90°から乖離するように撮像角度θを推定する。 Therefore, the imaging angle estimation unit 71 estimates the imaging angle θ based on the shape in the image IMG even though the actual shape is known. For example, the imaging angle estimator 71 estimates the imaging angle θ so that the closer the aspect ratio α of the marker MK is to 1, the closer the imaging angle θ is to 90°. In other words, the imaging angle estimator 71 estimates the imaging angle θ such that the imaging angle θ deviates from 90° as the aspect ratio α deviates from 1.
 <撮像距離推定部による撮像距離の推定>
 図8を参照し、撮像距離推定部75による撮像距離Lの推定処理について説明する。図8は、撮像部375が撮像した、摩擦材12とその周辺に存在する他の部材とを含む画像IMGを示す図である。図8に示す画像IMGでは、摩擦材12に隣接するディスクロータ13の表面にマーカーMKが表示されている。
<Estimation of Imaging Distance by Imaging Distance Estimation Unit>
Estimation processing of the imaging distance L by the imaging distance estimating unit 75 will be described with reference to FIG. 8 . FIG. 8 is a diagram showing an image IMG captured by the imaging unit 375 and including the friction material 12 and other members present around it. In the image IMG shown in FIG. 8, a marker MK is displayed on the surface of the disk rotor 13 adjacent to the friction material 12. As shown in FIG.
 発光部374が発光する光は平行光である。そのため、ディスクロータ13の表面に表示されるマーカーMKの寸法は撮像距離Lによって変化しない。つまり、マーカーMKの寸法は発光部374におけるマーカーMKの寸法の設計値と実質的に同一である。また摩擦ブレーキ10においては、摩擦材12は摩耗するものの、ディスクロータ13及び裏板14はほとんど摩耗しない。そのため、ディスクロータ13及び裏板14の厚みは新品のときからほとんど変化しない。つまり、ディスクロータ13及び裏板14の厚みは設計値と実質的に同じである。 The light emitted by the light emitting unit 374 is parallel light. Therefore, the dimension of the marker MK displayed on the surface of the disk rotor 13 does not change with the imaging distance L. In other words, the dimensions of the marker MK are substantially the same as the design values of the dimensions of the marker MK in the light emitting portion 374 . In the friction brake 10, although the friction material 12 wears, the disk rotor 13 and the back plate 14 hardly wear. Therefore, the thicknesses of the disk rotor 13 and the back plate 14 hardly change from when they are new. That is, the thicknesses of the disk rotor 13 and the back plate 14 are substantially the same as the design values.
 ここで、図8に示す画像IMGにおけるマーカーMKの図中左右方向の寸法(画素数)F3、画像IMGにおけるディスクロータ13の図中左右方向の寸法(画素数)F41、及び画像IMGにおける裏板14の図中左右方向の寸法(画素数)F42は、撮像距離Lによって変わる。具体的には、撮像距離Lが長いほど寸法F3,F41,F42は小さくなる。 Here, the horizontal dimension (number of pixels) F3 of the marker MK in the image IMG shown in FIG. 8, the horizontal dimension (number of pixels) F41 of the disk rotor 13 in the image IMG, and the back plate 14 in the left-right direction in the drawing (the number of pixels) F42 changes depending on the imaging distance L. FIG. Specifically, the longer the imaging distance L, the smaller the dimensions F3, F41, and F42.
 そこで、撮像距離推定部75は、実際の形状が既知であるものの画像IMGにおける寸法(画素数)とその物体の既知の実寸法との関係に基づいて、撮像距離Lを推定する。例えば、撮像距離推定部75は、画像IMGにおけるマーカーMKの寸法F3、画像IMGにおけるディスクロータ13の寸法F41、又は画像IMGにおける裏板14の寸法F42と対応する設計値との関係に基づいて、撮像距離Lを推定することができる。本実施形態では、発光部374におけるマーカーMKの寸法の設計値に対する画像IMGにおけるマーカーMKの寸法F3の比率を距離比率βとしたとき、撮像距離推定部75は、距離比率βが小さいほど撮像距離Lが長くなるように撮像距離Lを推定する。 Therefore, the imaging distance estimation unit 75 estimates the imaging distance L based on the relationship between the size (the number of pixels) in the image IMG of the object whose actual shape is known and the known actual size of the object. For example, the imaging distance estimation unit 75, based on the relationship between the dimension F3 of the marker MK in the image IMG, the dimension F41 of the disc rotor 13 in the image IMG, or the dimension F42 of the back plate 14 in the image IMG, and the corresponding design value, The imaging distance L can be estimated. In the present embodiment, when the distance ratio β is the ratio of the dimension F3 of the marker MK in the image IMG to the design value of the dimension of the marker MK in the light emitting unit 374, the imaging distance estimating unit 75 calculates the imaging distance as the distance ratio β decreases. The imaging distance L is estimated so that L becomes longer.
 <測定部による摩擦材の厚みの測定>
 図9を参照し、測定部80による摩擦材12の厚みDの測定処理について説明する。図9は、摩擦材12と、摩擦材12の周辺に位置する他の部材と、マーカーMKとを含む測定用画像IMG1を示す図である。
<Measurement of thickness of friction material by measurement unit>
A process of measuring the thickness D of the friction material 12 by the measuring unit 80 will be described with reference to FIG. 9 . FIG. 9 is a diagram showing a measurement image IMG1 including the friction material 12, other members located around the friction material 12, and the markers MK.
 測定部80は、測定用画像IMG1に対して公知の画像解析を行うことによって、摩擦材12とディスクロータ13との境界である第1境界B1と、摩擦材12と裏板14との境界である第2境界B2とを検知する。続いて測定部80は、測定用画像IMG1における第1境界B1と第2境界B2との間の距離である画像内距離F5を計測し、測定用画像IMG1におけるマーカーMKの寸法である画像内マーカー寸法F6を計測する。画像内距離F5は、測定用画像IMG1における摩擦材12の図中左右方向における寸法である。 By performing a known image analysis on the measurement image IMG1, the measurement unit 80 determines the first boundary B1 between the friction material 12 and the disc rotor 13 and the boundary between the friction material 12 and the back plate 14. A certain second boundary B2 is detected. Subsequently, measurement unit 80 measures an in-image distance F5, which is the distance between first boundary B1 and second boundary B2 in measurement image IMG1, and measures in-image marker distance F5, which is the dimension of marker MK in measurement image IMG1. Measure the dimension F6. The intra-image distance F5 is the dimension of the friction material 12 in the measurement image IMG1 in the horizontal direction in the figure.
 測定部80は、マーカーMKの実寸法Gmkを把握しているため、画像内距離F5と画像内マーカー寸法F6とに基づいて、摩擦材12の厚みDを測定できる。例えば、測定部80は、以下の関係式(式1)を用いて厚みDを算出できる。これにより、測定部80は、画像内マーカー寸法F6に対する画像内距離F5の比率が大きいほど厚みが大きくなるように摩擦材12の厚みDを算出する。 Since the measurement unit 80 grasps the actual dimension Gmk of the marker MK, the thickness D of the friction material 12 can be measured based on the in-image distance F5 and the in-image marker dimension F6. For example, the measurement unit 80 can calculate the thickness D using the following relational expression (Formula 1). Thereby, the measuring unit 80 calculates the thickness D of the friction material 12 so that the thickness increases as the ratio of the in-image distance F5 to the in-image marker dimension F6 increases.
Figure JPOXMLDOC01-appb-M000001
 <測定方法>
 図10及び図11を参照し、測定装置20による摩擦材12の厚みDの測定方法について説明する。本実施形態の測定方法は、測定装置20を用いて摩擦材12の厚みDを測定するための方法である。図10は測定装置20における処理の流れを示すフローチャートである。図11は、キャリパ11の点検窓11aにプローブヘッド373を挿入する様子を示す模式図である。
Figure JPOXMLDOC01-appb-M000001
<Measurement method>
A method of measuring the thickness D of the friction material 12 by the measuring device 20 will be described with reference to FIGS. 10 and 11. FIG. The measuring method of this embodiment is a method for measuring the thickness D of the friction material 12 using the measuring device 20 . FIG. 10 is a flow chart showing the flow of processing in the measuring device 20. As shown in FIG. FIG. 11 is a schematic diagram showing how the probe head 373 is inserted into the inspection window 11a of the caliper 11. As shown in FIG.
 図11に示すように、作業者は、工業用内視鏡30のプローブヘッド373をキャリパ11の点検窓11aに挿入する。これにより、撮像部375及び発光部374が点検窓11aに挿入される。この処理が「挿入ステップ」に対応する。 As shown in FIG. 11 , the operator inserts the probe head 373 of the industrial endoscope 30 into the inspection window 11 a of the caliper 11 . Thereby, the imaging unit 375 and the light emitting unit 374 are inserted into the inspection window 11a. This process corresponds to the "insertion step".
 詳しくは、作業者は、車輪のホイールに形成されている隙間から、摩擦ブレーキ10に向けてプローブヘッド373を差し込む。この状態で作業者は、工業用内視鏡30のコントロールユニット35の操作ホイール351を操作することによって、撮像部375による撮像範囲を変更して、表示画面311に表示される画像IMGで点検窓11aの位置を確認する。そして作業者は、表示画面311に表示される画像IMGを見ながら、プローブヘッド373を点検窓11aに挿入する。 Specifically, the operator inserts the probe head 373 toward the friction brake 10 through the gap formed in the wheel of the wheel. In this state, the operator operates the operation wheel 351 of the control unit 35 of the industrial endoscope 30 to change the imaging range of the imaging unit 375 , and the image IMG displayed on the display screen 311 is used as the inspection window. Check the position of 11a. The operator then inserts the probe head 373 into the inspection window 11a while viewing the image IMG displayed on the display screen 311. FIG.
 作業者が本体31の発光用ボタン312aを押すと、図10のステップS11において、計算装置40の実行部421は、作業者により発光部374を発光させる発光指示がなされたと判定し(S11:YES)、ステップS13の処理に移行する。ステップS13において、実行部421は発光部374の発光を開始させる。これにより、図9に示したように摩擦材12又はディスクロータ13の表面にマーカーMKが表示される。この際、裏板14の表面にマーカーMKが表示されてもよい。ステップS13が、摩擦材12又はディスクロータ13又は裏板14の表面にマーカーMKを表示する「マーカー表示ステップ」に相当する。その後、実行部421はステップS15の処理に移行する。 When the worker presses the light emission button 312a of the main body 31, in step S11 of FIG. 10, the execution unit 421 of the calculation device 40 determines that the worker has issued a light emission instruction to cause the light emission unit 374 to emit light (S11: YES). ), the process proceeds to step S13. In step S13, the execution unit 421 causes the light emitting unit 374 to start emitting light. As a result, a marker MK is displayed on the surface of the friction material 12 or the disk rotor 13 as shown in FIG. At this time, a marker MK may be displayed on the surface of the back plate 14 . Step S13 corresponds to a "marker display step" of displaying a marker MK on the surface of the friction material 12, the disk rotor 13, or the back plate . After that, the execution unit 421 proceeds to the process of step S15.
 実行部421は、ステップS11において作業者による発光指示がないと判定すると(S11:NO)、今回の処理を終了する。
 ステップS15において、実行部421は、撮像角度推定部71として機能することによって撮像角度θを推定する。詳しくは、撮像部375によって撮像された画像IMGが、工業用内視鏡30から計算装置40に送信される。実行部421は、受信した画像IMGに基づいて撮像角度θを推定する。
When the execution unit 421 determines in step S11 that there is no light emission instruction by the operator (S11: NO), the current processing ends.
In step S<b>15 , the execution unit 421 estimates the imaging angle θ by functioning as the imaging angle estimation unit 71 . Specifically, the image IMG captured by the imaging unit 375 is transmitted from the industrial endoscope 30 to the computing device 40 . The executing unit 421 estimates the imaging angle θ based on the received image IMG.
 続くステップS17において、実行部421は、撮像距離推定部75として機能することによって撮像距離Lを推定する。詳しくは、実行部421は、工業用内視鏡30から計算装置40に送信された画像IMGに基づいて撮像距離Lを推定する。 In subsequent step S<b>17 , the execution unit 421 estimates the imaging distance L by functioning as the imaging distance estimation unit 75 . Specifically, the execution unit 421 estimates the imaging distance L based on the image IMG transmitted from the industrial endoscope 30 to the computing device 40 .
 ステップS19において、実行部421は、ステップS15で推定した撮像角度θが所定の角度範囲内の値であるか否かを判定する。撮像角度θが所定の角度範囲外の値である場合(S19:NO)、実行部421は今回の処理を終了する。一方、撮像角度θが所定の角度範囲内の値である場合(S19:YES)、実行部421はステップS21の処理に移行する。 In step S19, the execution unit 421 determines whether or not the imaging angle θ estimated in step S15 is within a predetermined angle range. If the imaging angle θ is outside the predetermined angle range (S19: NO), the execution unit 421 terminates this process. On the other hand, when the imaging angle θ is within the predetermined angle range (S19: YES), the execution unit 421 proceeds to the process of step S21.
 ステップS21において、実行部421は、撮像角度θが所定の角度範囲内の値である旨を、報知装置53によって作業者に報知する。すなわち、ステップS21の処理は、実行部421及び報知装置53が角度条件報知部72として機能することによって実行される。 In step S21, the execution unit 421 uses the notification device 53 to notify the operator that the imaging angle θ is within a predetermined angle range. That is, the process of step S21 is executed by the execution unit 421 and the notification device 53 functioning as the angle condition notification unit 72. FIG.
 ステップS23において、実行部421は、ステップS17で推定した撮像距離Lが所定の距離範囲内の値であるか否かを判定する。撮像距離Lが所定の距離範囲外の値である場合(S23:NO)、実行部421は今回の処理を終了する。一方、撮像距離Lが所定の距離範囲内の値である場合(S23:YES)、実行部421はステップS25の処理に移行する。 In step S23, the execution unit 421 determines whether or not the imaging distance L estimated in step S17 is within a predetermined distance range. If the imaging distance L is outside the predetermined distance range (S23: NO), the execution unit 421 terminates the current process. On the other hand, if the imaging distance L is within the predetermined distance range (S23: YES), the execution unit 421 proceeds to the process of step S25.
 ステップS25において、実行部421は、撮像距離Lが所定の距離範囲内の値である旨を、報知装置53によって作業者に報知する。すなわち、ステップS25の処理は、実行部421及び報知装置53が距離条件報知部76として機能することによって実行される。 In step S25, the execution unit 421 uses the notification device 53 to notify the operator that the imaging distance L is within a predetermined distance range. That is, the processing of step S25 is executed by the execution unit 421 and the notification device 53 functioning as the distance condition notification unit 76. FIG.
 本実施形態では、撮像角度θが所定の角度範囲内の値であること、及び、撮像距離Lが所定の距離範囲内の値であることの何れもが成立している場合に、測定用画像IMG1の撮像条件が成立したと判定される。こうして撮像条件が成立すると、実行部421はステップS26の処理に移行する。 In the present embodiment, when both the imaging angle θ is within a predetermined angle range and the imaging distance L is a value within a predetermined distance range, the measurement image It is determined that the imaging condition for IMG1 is satisfied. When the imaging condition is satisfied in this way, the execution unit 421 proceeds to the process of step S26.
 続くステップS26において、実行部421は、撮像部375に測定用画像IMG1を撮像させる撮像指示が作業者によりなされたか否かを判定する。具体的には実行部421は、作業者により撮像用ボタン312bが操作されたか否かを判定する。実行部421は、作業者による撮像指示がないと判定した場合(S26:NO)今回の処理を終了し、作業者による撮像指示があったと判定した場合(S26:YES)ステップS27の処理に移行する。 In subsequent step S26, the execution unit 421 determines whether or not the operator has issued an image capturing instruction to cause the image capturing unit 375 to capture the measurement image IMG1. Specifically, the execution unit 421 determines whether or not the operator has operated the imaging button 312b. If the execution unit 421 determines that there is no imaging instruction from the operator (S26: NO), it ends the current process, and if it determines that there is an imaging instruction from the operator (S26: YES), the process proceeds to step S27. do.
 ステップS27において、実行部421は、撮像部375により測定用画像IMG1を撮像する。ステップS27が、マーカーMKと摩擦材12とを含む測定用画像IMG1を撮像する「撮像ステップ」に相当する。 In step S27, the execution unit 421 captures the measurement image IMG1 using the imaging unit 375. Step S<b>27 corresponds to the “imaging step” of capturing the measurement image IMG<b>1 including the marker MK and the friction material 12 .
 続くステップS29において、実行部421は、測定部80として機能することによって、摩擦材12の厚みDを測定する。ステップS29が、測定用画像IMG1に基づいて摩擦材12の厚みDを測定する「測定ステップ」に相当する。 In the following step S29, the executing section 421 measures the thickness D of the friction material 12 by functioning as the measuring section 80. Step S29 corresponds to the "measurement step" of measuring the thickness D of the friction material 12 based on the measurement image IMG1.
 最後にステップS31において、実行部421は、ステップS29で測定した摩擦材12の厚みDを作業者に通知する。例えば、実行部421は、摩擦材12の厚みDを表示装置51に表示させる。そして、実行部421は今回の処理を終了する。 Finally, in step S31, the execution unit 421 notifies the operator of the thickness D of the friction material 12 measured in step S29. For example, the execution unit 421 causes the display device 51 to display the thickness D of the friction material 12 . Then, the execution unit 421 ends the current process.
 <本実施形態の効果>
 (1-1)本実施形態では、測定用画像IMG1でのマーカーMKの大きさに基づいて、摩擦材12の厚みDを測定するようにした。
<Effects of this embodiment>
(1-1) In this embodiment, the thickness D of the friction material 12 is measured based on the size of the marker MK in the measurement image IMG1.
 マーカーMKは、発光部374が摩擦材12又はディスクロータ13に光を照射することによって摩擦材12又はディスクロータ13又は裏板14の表面に表示された光の像である。すなわち、マーカーMKは、摩擦材12やディスクロータ13や裏板14に予め付されたものではない。そのため、摩擦ブレーキ10の使用によって摩擦材12やディスクロータ13や裏板14が汚れていたとしても、その汚れ度合いに関わらず、測定用画像IMG1においてマーカーMKを識別して、測定用画像IMG1におけるマーカーMKの大きさに基づいて摩擦材12の厚みDを測定することができる。 The marker MK is a light image displayed on the surface of the friction material 12, the disk rotor 13, or the back plate 14 when the light emitting part 374 irradiates the friction material 12 or the disk rotor 13 with light. In other words, the marker MK is not attached to the friction material 12, the disk rotor 13, or the back plate 14 in advance. Therefore, even if the friction material 12, the disk rotor 13, and the back plate 14 are dirty due to the use of the friction brake 10, the marker MK can be identified in the measurement image IMG1 regardless of the degree of dirt. The thickness D of the friction material 12 can be measured based on the size of the marker MK.
 (1-2)本実施形態では、撮像角度θが所定の角度範囲内の値であることを条件に、測定用画像IMG1を撮像するようにした。これにより、撮像角度θと90°との乖離が大きくない測定用画像IMG1を用いて、摩擦材12の厚みDを精度よく測定することができる。 (1-2) In this embodiment, the measurement image IMG1 is captured on condition that the imaging angle θ is within a predetermined angle range. Accordingly, the thickness D of the friction material 12 can be accurately measured using the measurement image IMG1 in which the difference between the imaging angle θ and 90° is not large.
 (1-3)本実施形態では、撮像距離Lが所定の距離範囲内の値であることを条件に、測定用画像IMG1を撮像するようにした。これにより、撮像距離Lが所定の距離範囲内の値である場合の測定用画像IMG1を用いて、摩擦材12の厚みDを精度良く測定することができる。 (1-3) In the present embodiment, the measurement image IMG1 is captured on condition that the imaging distance L is within a predetermined distance range. Accordingly, the thickness D of the friction material 12 can be accurately measured using the measurement image IMG1 when the imaging distance L is within the predetermined distance range.
 (1-4)本実施形態では、撮像部375により撮像された画像におけるマーカーMKに基づいて、摩擦材12の厚みD、撮像角度θ及び撮像距離Lを推定するようにした。そのため、撮像部375により撮像された画像においてマーカーMKを識別する処理(以下「マーカー識別処理」という)は簡素なものであることが好ましい。 (1-4) In this embodiment, the thickness D, imaging angle θ, and imaging distance L of the friction material 12 are estimated based on the marker MK in the image captured by the imaging unit 375 . Therefore, it is preferable that the process of identifying the marker MK in the image captured by the imaging unit 375 (hereinafter referred to as "marker identification process") be simple.
 この点、本実施形態では、発光部374及び撮像部375を共にプローブヘッド373に設け、発光部374による光の照射方向と撮像部375による撮像方向との関係が維持されるようにした。そのため、マーカーMKは撮像部375により撮像された画像の所定領域に表示される。これにより、撮像部375により撮像された画像においてマーカー識別処理の対象範囲を設定することができ、ひいてはマーカー識別処理の処理量を削減することができる。 In this regard, in the present embodiment, both the light emitting unit 374 and the imaging unit 375 are provided in the probe head 373 so that the relationship between the light irradiation direction of the light emitting unit 374 and the imaging direction of the imaging unit 375 is maintained. Therefore, the marker MK is displayed in a predetermined area of the image captured by the imaging unit 375 . As a result, it is possible to set the target range of the marker identification processing in the image captured by the imaging unit 375, thereby reducing the processing amount of the marker identification processing.
 また、本実施形態ではマーカーMKの形状を真円とした。このように、発光部374においてマーカーMKの形状を、測定用画像IMG1において認識し易いものに設計することにより、マーカー識別処理の処理内容を簡素化することができる。 Also, in this embodiment, the shape of the marker MK is a perfect circle. In this manner, by designing the shape of the marker MK in the light emitting unit 374 to be easily recognizable in the measurement image IMG1, it is possible to simplify the processing content of the marker identification processing.
 (第2実施形態)
 測定装置20及び測定方法の第2実施形態を図12に従って説明する。第2実施形態では、第1実施形態と相違している部分について主に説明するものとし、第1実施形態と実質的に同一の構成及び機能には同一符号を付して重複説明を省略するものとする。
(Second embodiment)
A second embodiment of the measuring device 20 and the measuring method will be described with reference to FIG. In the second embodiment, the parts that are different from the first embodiment will be mainly described, and the same reference numerals will be given to substantially the same configurations and functions as in the first embodiment, and redundant description will be omitted. shall be
 <工業用内視鏡>
 本実施形態では、工業用内視鏡30の撮像部375は、本体31の撮像用ボタン312bが操作されると動画の撮像を開始する。そして当該動画を構成するフレームが計算装置40に逐次送信される。
<Industrial endoscope>
In this embodiment, the imaging unit 375 of the industrial endoscope 30 starts capturing a moving image when the imaging button 312b of the main body 31 is operated. Frames forming the moving image are then sequentially transmitted to the computing device 40 .
 <測定方法>
 図12を参照し、本実施形態の測定方法について説明する。図12は測定装置20における処理の流れを示すフローチャートである。
<Measurement method>
The measurement method of this embodiment will be described with reference to FIG. FIG. 12 is a flow chart showing the flow of processing in the measuring device 20. As shown in FIG.
 第1実施形態と同様に、作業者は、工業用内視鏡30のプローブヘッド373をキャリパ11の点検窓11aに挿入する(図11参照)。この処理が「挿入ステップ」に対応する。 As in the first embodiment, the operator inserts the probe head 373 of the industrial endoscope 30 into the inspection window 11a of the caliper 11 (see FIG. 11). This process corresponds to the "insertion step".
 作業者が本体31の発光用ボタン312aを押すと、図12のステップS51において、計算装置40の実行部421は、作業者により発光指示がなされたと判定し(S51:YES)、ステップS53の処理に移行する。ステップS53において、実行部421は発光部374の発光を開始させる。本実施形態では、ステップS53が「マーカー表示ステップ」に相当する。その後、実行部421は処理をステップS54に移行する。 When the operator presses the light emission button 312a of the main body 31, in step S51 of FIG. 12, the execution unit 421 of the calculation device 40 determines that the operator has issued a light emission instruction (S51: YES), and performs the process of step S53. transition to In step S53, the execution unit 421 causes the light emitting unit 374 to start emitting light. In this embodiment, step S53 corresponds to the "marker display step". After that, the execution unit 421 shifts the process to step S54.
 実行部421は、ステップS51において作業者による発光指示がないと判定すると(S51:NO)、今回の処理を終了する。
 ステップS54において、実行部421は、撮像部375に測定用画像IMG1を撮像させる撮像指示が作業者によりなされたか否かを判定する。具体的には実行部421は、作業者により撮像用ボタン312bが操作されたか否かを判定する。実行部421は、作業者による撮像指示がないと判定した場合(S54:NO)今回の処理を終了し、作業者による撮像指示があったと判定した場合(S54:YES)ステップS55の処理に移行する。
When the execution unit 421 determines in step S51 that there is no light emission instruction by the operator (S51: NO), the current processing ends.
In step S54, the execution unit 421 determines whether or not the operator has instructed the imaging unit 375 to capture the measurement image IMG1. Specifically, the execution unit 421 determines whether or not the operator has operated the imaging button 312b. If the execution unit 421 determines that there is no imaging instruction from the operator (S54: NO), it ends the current process, and if it determines that there is an imaging instruction from the operator (S54: YES), the process proceeds to step S55. do.
 ステップS55において、実行部421は、撮像部375により動画の撮像を開始させる。
 そしてステップS57において、実行部421は、第1実施形態のステップS15と同様に、撮像角度推定部71として機能することによって撮像角度θを推定する。ステップS59において、実行部421は、第1実施形態のステップS17と同様に、撮像距離推定部75として機能することによって撮像距離Lを推定する。
In step S55, the execution unit 421 causes the imaging unit 375 to start capturing a moving image.
Then, in step S57, the execution unit 421 estimates the imaging angle θ by functioning as the imaging angle estimating unit 71, as in step S15 of the first embodiment. In step S59, the execution unit 421 estimates the imaging distance L by functioning as the imaging distance estimation unit 75, as in step S17 of the first embodiment.
 ステップS61において、実行部421は、第1実施形態のステップS19と同様に、ステップS57で推定した撮像角度θが所定の角度範囲内の値であるか否かを判定する。実行部421は、撮像角度θが所定の角度範囲外の値である場合(S61:NO)、今回の処理を終了する。一方、実行部421は、撮像角度θが所定の角度範囲内の値である場合(S61:YES)、ステップS63の処理に移行する。 In step S61, the execution unit 421 determines whether or not the imaging angle θ estimated in step S57 is within a predetermined angle range, as in step S19 of the first embodiment. If the imaging angle θ is outside the predetermined angle range (S61: NO), the execution unit 421 ends the current process. On the other hand, when the imaging angle θ is within the predetermined angle range (S61: YES), the execution unit 421 proceeds to the process of step S63.
 ステップS63において、実行部421は、第1実施形態のステップS23と同様に、ステップS59で推定した撮像距離Lが所定の距離範囲内の値であるか否かを判定する。実行部421は、撮像距離Lが所定の距離範囲外の値である場合(S63:NO)、今回の処理を終了する。一方、実行部421は、撮像距離Lが所定の距離範囲内の値である場合(S63:YES)、ステップS65の処理に移行する。 In step S63, the execution unit 421 determines whether or not the imaging distance L estimated in step S59 is within a predetermined distance range, as in step S23 of the first embodiment. If the imaging distance L is outside the predetermined distance range (S63: NO), the execution unit 421 ends the current process. On the other hand, when the imaging distance L is within the predetermined distance range (S63: YES), the execution unit 421 proceeds to the process of step S65.
 ステップS65において、実行部421は、撮像部375により撮像された動画のフレームを測定用画像IMG1として取得する。これにより、撮像角度θが所定の角度範囲内の値であり、且つ撮像距離Lが所定の距離範囲内の値である場合のフレームが、測定用画像IMG1として取得される。 In step S65, the execution unit 421 acquires the frame of the moving image captured by the imaging unit 375 as the measurement image IMG1. As a result, a frame in which the imaging angle θ is a value within a predetermined angle range and the imaging distance L is a value within a predetermined distance range is obtained as the measurement image IMG1.
 ステップS67において、実行部421は、測定用画像IMG1の撮像が完了した旨を、報知装置53によって作業者に報知させる。ステップS67の処理は、実行部421及び報知装置53が角度条件報知部72及び距離条件報知部76として機能することによって実行される。 In step S67, the execution unit 421 causes the notification device 53 to notify the operator that the measurement image IMG1 has been captured. The processing of step S67 is executed by the execution unit 421 and the notification device 53 functioning as the angle condition notification unit 72 and the distance condition notification unit 76, respectively.
 ステップS69において、実行部421は、第1実施形態のステップS29と同様に測定部80として機能することによって、ステップS65において取得された測定用画像IMG1に基づいて摩擦材12の厚みDを測定する。本実施形態では、ステップS69が「測定ステップ」に相当する。 In step S69, the execution unit 421 measures the thickness D of the friction material 12 based on the measurement image IMG1 acquired in step S65 by functioning as the measurement unit 80, as in step S29 of the first embodiment. . In this embodiment, step S69 corresponds to the "measurement step".
 最後にステップS71において、実行部421は、ステップS69において測定された摩擦材12の厚みDを、第1実施形態のステップS31と同様にして作業者に通知する。そして、実行部421は今回の処理を終了する。 Finally, in step S71, the execution unit 421 notifies the operator of the thickness D of the friction material 12 measured in step S69 in the same manner as in step S31 of the first embodiment. Then, the execution unit 421 ends the current process.
 <本実施形態における効果>
 本実施形態によれば、上記第1実施形態における効果(1-1)から(1-4)の効果に加え、以下に示す効果を得ることができる。
<Effects of this embodiment>
According to this embodiment, in addition to the effects (1-1) to (1-4) in the first embodiment, the following effects can be obtained.
 (2-1)本実施形態では、撮像部375が動画の撮像を開始すると、当該動画のフレームが計算装置40に逐次送信される。そのため、計算装置40では、動画を構成する複数のフレームを個別に解析できる。すなわち、計算装置40では、撮像角度θが所定の角度範囲内の値であること(以下「撮像角度条件」という)、及び、撮像距離Lが所定の距離範囲内の値であること(以下「撮像距離条件」という)の両条件を満たすフレームが動画に含まれているか否かを判別できる。そして、こうしたフレームが動画に含まれていると判別できた場合、当該フレームが測定用画像IMG1として取得され、当該測定用画像IMG1に基づいて摩擦材12の厚みDが計測される。すなわち、撮像角度θが所定の角度範囲内の値であること、及び、撮像距離Lが所定の距離範囲内の値であることの両条件を満たすようになってから、測定用画像IMG1を取得するために撮像用ボタン312bを操作する作業者の手間を省くことができる。 (2-1) In the present embodiment, when the imaging unit 375 starts capturing a moving image, frames of the moving image are sequentially transmitted to the computing device 40 . Therefore, the computing device 40 can individually analyze a plurality of frames forming a moving image. That is, in the calculation device 40, the imaging angle θ must be a value within a predetermined angle range (hereinafter referred to as “imaging angle condition”), and the imaging distance L must be a value within a predetermined distance range (hereinafter “ It is possible to determine whether or not the moving image includes a frame that satisfies both conditions (referred to as "imaging distance condition"). Then, when it is determined that such a frame is included in the moving image, the frame is acquired as the measurement image IMG1, and the thickness D of the friction material 12 is measured based on the measurement image IMG1. That is, the measurement image IMG1 is acquired after both the imaging angle θ is within a predetermined angle range and the imaging distance L is within a predetermined distance range. Therefore, it is possible to save the labor of the operator who operates the imaging button 312b.
 (変更例)
 上記複数の実施形態は、以下のように変更して実施することができる。上記複数の実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
The multiple embodiments described above can be implemented with the following modifications. The multiple embodiments described above and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記複数の実施形態では、測定用画像IMG1におけるマーカーMKの大きさに基づいて撮像距離Lを推定するようにしたが、大きさが経年変化しにくく実寸法が既知であるものの測定用画像IMG1における大きさに基づいて撮像距離Lを推定してもよい。例えば、ディスクロータ13大きさや裏板14の大きさに基づいて撮像距離Lを推定してもよい。 In the above embodiments, the imaging distance L is estimated based on the size of the marker MK in the measurement image IMG1. The imaging distance L may be estimated based on the magnitude at . For example, the imaging distance L may be estimated based on the size of the disk rotor 13 or the size of the back plate 14 .
 ・第1実施形態では、撮像角度条件及び撮像距離条件がそれぞれ成立した場合に、各条件が成立したことを作業者に報知するようにした。
 しかしながら、撮像角度条件及び撮像距離条件の両条件が成立した場合に、測定用画像IMG1の撮像条件が成立したことを作業者に報知するようにしてもよい。
- In 1st Embodiment, when each imaging angle condition and imaging distance condition are satisfied, the operator was notified that each condition was satisfied.
However, when both the imaging angle condition and the imaging distance condition are satisfied, the operator may be notified that the imaging condition for the measurement image IMG1 is satisfied.
 また、撮像角度条件及び撮像距離条件の何れか一方の条件を設けなくてもよい。
 また、撮像角度条件及び撮像距離条件の両条件を設けなくてもよい。
 ・第2実施形態では、撮像角度条件及び撮像距離条件の両条件が成立した場合に、測定用画像IMG1が撮像されたことを作業者に報知するようにした。
Moreover, it is not necessary to provide either one of the imaging angle condition and the imaging distance condition.
Moreover, it is not necessary to provide both the imaging angle condition and the imaging distance condition.
- In 2nd Embodiment, when both conditions of imaging angle conditions and imaging distance conditions are satisfied, the operator was notified that image IMG1 for a measurement was imaged.
 しかしながら、測定用画像IMG1が撮像された場合には、当該測定用画像IMG1に基づいて摩擦材12の厚みDが計測される。そのため、摩擦材12の厚みDが計測されたことを作業者に報知してもよい。例えば、計測した摩擦材12の厚みDを表示装置51に表示してもよい。この場合、作業者は、表示装置51に厚みDが表示されたことで厚みの測定が完了したと認識できる。 However, when the measurement image IMG1 is captured, the thickness D of the friction material 12 is measured based on the measurement image IMG1. Therefore, the operator may be notified that the thickness D of the friction material 12 has been measured. For example, the measured thickness D of the friction material 12 may be displayed on the display device 51 . In this case, when the thickness D is displayed on the display device 51, the operator can recognize that the measurement of the thickness has been completed.
 また、撮像角度条件及び撮像距離条件の何れか一方の条件を設けなくてもよい。
 例えば、撮像部375が撮像した動画を構成する複数のフレームの中に、撮像角度条件を満たすフレームが存在しているのであれば、当該フレームが撮像距離条件を満たしていなくても、当該フレームを測定用画像IMG1として取得するようにしてもよい。具体的には、図12に示した処理の流れにおいて、ステップS63の処理を省略してもよい。
Moreover, it is not necessary to provide either one of the imaging angle condition and the imaging distance condition.
For example, if there is a frame that satisfies the imaging angle condition among a plurality of frames forming a moving image captured by the imaging unit 375, the frame is captured even if the frame does not satisfy the imaging distance condition. You may make it acquire as image IMG1 for a measurement. Specifically, in the flow of processing shown in FIG. 12, the processing of step S63 may be omitted.
 また、撮像部375が撮像した動画を構成する複数のフレームの中に、撮像距離条件を満たすフレームが存在しているのであれば、当該フレームが撮像角度条件を満たしていなくても、フレームを測定用画像IMG1として取得するようにしてもよい。具体的には、図12に示した処理の流れにおいて、ステップS61の処理を省略してもよい。 In addition, if there is a frame that satisfies the imaging distance condition among the plurality of frames forming the moving image captured by the imaging unit 375, the frame is measured even if the frame does not satisfy the imaging angle condition. Alternatively, the image IMG1 may be acquired as the target image IMG1. Specifically, in the flow of processing shown in FIG. 12, the processing of step S61 may be omitted.
 また、撮像角度条件及び撮像距離条件の両条件を設けなくてもよい。
 撮像角度条件を満たしていない場合の測定用画像IMG1では、マーカーMKの形状が歪んでしまうおそれがある。そのため、測定用画像IMG1の撮像条件に、撮像角度条件が含まれていない場合、測定用画像IMG1におけるマーカーMKの寸法である画像内マーカー寸法F6を撮像角度θに応じて補正するとよい。例えば、画像内マーカー寸法F6と上記の縦横比率αとの積を、補正後の画像内マーカー寸法F6とすることができる。
Moreover, it is not necessary to provide both the imaging angle condition and the imaging distance condition.
In the measurement image IMG1 when the imaging angle condition is not satisfied, the shape of the marker MK may be distorted. Therefore, if the imaging conditions for the measurement image IMG1 do not include the imaging angle condition, the in-image marker dimension F6, which is the dimension of the marker MK in the measurement image IMG1, should be corrected according to the imaging angle θ. For example, the product of the in-image marker dimension F6 and the aspect ratio α can be used as the corrected in-image marker dimension F6.
 ・発光部374は、平行光を発光できるとともに、摩擦材12の表面又は摩擦材12の周辺に位置する他の部材の表面にマーカーMKを表示できるのであれば、半導体レーザーでなくてもよい。 · The light-emitting part 374 does not have to be a semiconductor laser as long as it can emit parallel light and display the marker MK on the surface of the friction material 12 or on the surface of another member located around the friction material 12 .
 ・上記複数の実施形態では、撮像部375と発光部374とがユニット化されたものを例示したが、発光部374と撮像部375とはユニット化されたものでなくてもよい。例えば、発光部374と撮像部375とを個別にプローブヘッド373に設けてもよいし、プローブヘッド373とは別のものに発光部374を設けてもよいし、プローブヘッド373とは別のものに撮像部375を設けてもよい。 - In the above embodiments, the imaging unit 375 and the light emitting unit 374 are unitized, but the light emitting unit 374 and the imaging unit 375 may not be unitized. For example, the light emitting unit 374 and the imaging unit 375 may be provided separately in the probe head 373, the light emitting unit 374 may be provided in a separate part from the probe head 373, or a separate part from the probe head 373 may be provided. may be provided with the imaging unit 375 .
 ・上記複数の実施形態では、実寸法が既知のマーカーMKの画像IMGにおける寸法に基づいて撮像距離Lを推定するようにしたが、三角測量の原理を用いて撮像距離Lを推定してもよいし、レーザーの測定対象での反射光が検出されるまでの時間に基づいて撮像距離Lを推定してもよいし、超音波の測定対象での反射波が検出されるまでの時間に基づいて撮像距離Lを推定してよい。 In the above embodiments, the imaging distance L is estimated based on the dimensions in the image IMG of the marker MK whose actual dimensions are known, but the imaging distance L may be estimated using the principle of triangulation. Then, the imaging distance L may be estimated based on the time until the reflected light of the laser measurement object is detected, or based on the time until the reflected wave of the ultrasonic wave is detected from the measurement object. The imaging distance L may be estimated.
 ・上記第1実施形態では、撮像角度条件を満たしていること及び撮像距離条件を満たしていることを、工業用内視鏡30とは別に設けられた報知装置53を用いて作業者に報知するようにしたが、報知装置53とは別の報知手段を用いて作業者に報知するようにしてもよい。 - In the first embodiment, the operator is notified that the imaging angle condition and the imaging distance condition are satisfied using the notification device 53 provided separately from the industrial endoscope 30. However, notification means other than the notification device 53 may be used to notify the operator.
 例えば、撮像角度条件を満たしていること及び撮像距離条件を満たしていることを、工業用内視鏡30の本体31に設けた表示画面311に表示させるようにしてもよい。
 また、本体31を振動させる装置を本体31内に設けて、撮像角度条件を満たしていること及び撮像距離条件を満たしていることを、本体31の振動によって作業者に知らせるようにしてもよい。
For example, the display screen 311 provided on the main body 31 of the industrial endoscope 30 may display that the imaging angle condition and the imaging distance condition are satisfied.
Further, a device for vibrating the main body 31 may be provided in the main body 31 so that the operator can be notified by vibrating the main body 31 that the imaging angle condition and the imaging distance condition are satisfied.
 ・上記第2実施形態では、測定用画像IMG1が取得されたことを、工業用内視鏡30とは別に設けた報知装置53を用いて作業者に報知するようにしたが、報知装置53とは別の報知手段を用いて作業者に報知するようにしてもよい。 - In the second embodiment, the operator is notified that the measurement image IMG1 has been acquired by using the notification device 53 provided separately from the industrial endoscope 30. Alternatively, another notification means may be used to notify the operator.
 例えば、測定用画像IMG1が取得されたことを、工業用内視鏡30の本体31に設けられている表示画面311に表示させるようにしてもよい。また、本体31を振動させる装置を本体31内に設けて、測定用画像IMG1が取得されたことを、本体31の振動によって、作業者に知らせるようにしてもよい。 For example, the acquisition of the measurement image IMG1 may be displayed on the display screen 311 provided on the main body 31 of the industrial endoscope 30. Alternatively, a device for vibrating the main body 31 may be provided in the main body 31 so that the operator can be notified by vibrating the main body 31 that the measurement image IMG1 has been obtained.
 ・上記複数の実施形態では、摩擦材12の厚みDを、工業用内視鏡30とは別に設けた表示装置51に表示させるようにしたが、表示装置51とは別の報知手段を用いて作業者に報知するようにしてもよい。例えば、摩擦材12の厚みDを、工業用内視鏡30の本体31に設けられている表示画面311に表示させてもよい。また、音声を発生させる装置を本体31又は本体31とは別に設けて、摩擦材12の厚みDを、音声により作業者に報知するようにしてもよい。 - In the above embodiments, the thickness D of the friction material 12 is displayed on the display device 51 provided separately from the industrial endoscope 30. You may make it alert|report to a worker. For example, the thickness D of the friction material 12 may be displayed on the display screen 311 provided on the main body 31 of the industrial endoscope 30 . Further, a device for generating sound may be provided on the main body 31 or separately from the main body 31 so that the thickness D of the friction material 12 is notified to the operator by sound.
 ・上記複数の実施形態では、工業用内視鏡30と計算装置40と表示装置51と報知装置53とを備えている測定装置20を例示したが、計算装置40、表示装置51及び報知装置53の少なくとも一部の機能を工業用内視鏡30に集約してもよい。例えば、摩擦材12の厚みDは表示画面311に表示するようにしてもよい。また、作業者への報知内容を表示画面311に表示するようにしてもよいし、工業用内視鏡30にスピーカーを設け作業者への報知内容を音声で示してよいし、工業用内視鏡30にランプを設け作業者への報知内容を光で示してよい。また、工業用内視鏡30に処理回路42に相当する回路を設け、当該回路で摩擦材12の厚みDを計測するようにしてもよい。この場合、制御プログラムや摩擦材12の厚みDを、無線接続された記憶装置に記憶するようにしてもよい。 - In the above-described embodiments, the measurement device 20 including the industrial endoscope 30, the calculation device 40, the display device 51, and the notification device 53 is illustrated, but the calculation device 40, the display device 51, and the notification device 53 may be integrated into the industrial endoscope 30 . For example, the thickness D of the friction material 12 may be displayed on the display screen 311 . In addition, the content of notification to the worker may be displayed on the display screen 311, a speaker may be provided in the industrial endoscope 30, and the content of notification to the worker may be indicated by voice. A lamp may be provided on the mirror 30 to indicate the information to be notified to the operator. Further, a circuit corresponding to the processing circuit 42 may be provided in the industrial endoscope 30 and the thickness D of the friction material 12 may be measured by the circuit. In this case, the control program and the thickness D of the friction material 12 may be stored in a wirelessly connected storage device.
 ・上記複数の実施形態では、キャリパ11の点検窓11aに撮像部375を挿入することによって測定用画像IMG1を取得するようにした。すなわち、上記複数の実施形態では、摩擦材12のうち、点検窓11aから露出する部分の厚みDを計測するようにした。しかし、撮像部375を点検窓11aとは別の箇所から摩擦材12に接近させた状態で、測定用画像IMG1を取得するようにしてもよい。例えば、撮像部375をキャリパ11の側方又は下方から摩擦材12の側方又は下方の端部に接近させた状態で、測定用画像IMG1を撮像してもよい。これにより、点検窓が形成されていないキャリパに設けられた摩擦材12の厚みDを測定できる。 - In the above embodiments, the measurement image IMG1 is obtained by inserting the imaging unit 375 into the inspection window 11a of the caliper 11 . That is, in the above embodiments, the thickness D of the portion of the friction material 12 exposed through the inspection window 11a is measured. However, the measurement image IMG1 may be acquired in a state in which the imaging unit 375 is brought close to the friction material 12 from a location other than the inspection window 11a. For example, the measurement image IMG1 may be captured in a state in which the imaging unit 375 is brought closer to the lateral or lower end of the friction material 12 from the side or lower side of the caliper 11 . Thereby, the thickness D of the friction material 12 provided in the caliper without the inspection window can be measured.
 また、摩擦材12の第1端部を含む測定用画像(第1測定用画像)を撮像し、第1端部とは異なる第2端部を含む測定用画像(第2測定用画像)を撮像してもよい。これより、第1測定用画像に基づいて測定した厚みと、第2測定用画像に基づいて測定した厚みとを比較することにより、摩擦材12の偏摩耗の度合いを推定することができる。 Also, a measurement image (first measurement image) including the first end of the friction material 12 is taken, and a measurement image (second measurement image) including a second end different from the first end is captured. You can take an image. Accordingly, the degree of uneven wear of the friction material 12 can be estimated by comparing the thickness measured based on the first image for measurement and the thickness measured based on the second image for measurement.
 ・処理回路42は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、各種処理のうち少なくとも一部の処理を実行する専用のハードウェアなどの1つ以上の専用のハードウェア回路又はこれらの組み合わせを含む回路として構成し得る。専用のハードウェアとしては、例えば、特定用途向け集積回路であるASICを挙げることができる。 - The processing circuit 42 includes one or more processors that operate according to a computer program, one or more dedicated hardware circuits such as dedicated hardware that executes at least part of various processes, or a combination thereof. It can be configured as a circuit. Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit.
 ・測定装置を、摩擦材12以外の部材を測定対象とする測定装置に具体化してもよい。摩擦材12以外の測定対象は、使用することによって大きさが変化する部材であるとよい。 · The measuring device may be embodied as a measuring device for measuring members other than the friction material 12 . The object to be measured other than the friction material 12 is preferably a member whose size changes as it is used.
 次に、上記複数の実施形態及び変更例から把握できる技術的思想について記載する。
 (イ)前記発光部はレーザー光を発する、測定装置。レーザー光は指向性が高いため、測定対象の大きさを精度よく測定することができる。
Next, technical ideas that can be grasped from the above-described multiple embodiments and modified examples will be described.
(b) The measuring device, wherein the light emitting unit emits laser light. Since laser light has high directivity, it is possible to accurately measure the size of the object to be measured.
 (ロ)前記発光部が発するレーザー光のビーム形状は円形である、測定装置。このようにビーム形状を、撮像部375により撮像された画像においてマーカーMKを認識し易い形状とすることにより、マーカー識別処理の処理内容を簡素化することができる。 (b) A measuring device, wherein the beam shape of the laser light emitted by the light emitting unit is circular. By making the beam shape such that the marker MK can be easily recognized in the image captured by the imaging unit 375 in this way, the processing content of the marker identification processing can be simplified.
 (ハ)前記撮像部は、前記撮像角度推定部により推定された前記撮像角度が前記角度範囲内の値である場合に前記測定用画像を撮像する、測定装置。
 (ニ)前記撮像部は動画を撮像し、
 前記測定部は、前記撮像部により撮像された前記動画のフレームのうち、前記撮像角度推定部により推定された前記撮像角度が前記角度範囲内の値である場合の前記フレームを、前記測定用画像として取得する、測定装置。
(c) The measuring device, wherein the imaging section captures the measurement image when the imaging angle estimated by the imaging angle estimating section is a value within the angle range.
(d) the imaging unit captures a moving image;
The measuring unit converts the frames of the moving image captured by the imaging unit when the imaging angle estimated by the imaging angle estimating unit is a value within the angle range into the measurement image. A measuring device, obtained as
 (ホ)前記撮像角度推定部により推定された前記撮像角度が前記角度範囲内の値である場合に、前記測定用画像が撮像可能であること又は前記測定用画像が撮像されたことを報知する角度条件報知部を備えている、測定装置。 (e) notifying that the measurement image can be captured or that the measurement image has been captured when the imaging angle estimated by the imaging angle estimating unit is a value within the angle range; A measuring device comprising an angle condition reporting unit.
 (ヘ)前記撮像部は、前記撮像距離推定部により推定された前記撮像距離が前記距離範囲内の値である場合に前記測定用画像を撮像する、測定装置。
 (ト)前記撮像部は動画を撮像し、
 前記測定部は、前記撮像部により撮像された前記動画のフレームのうち、前記撮像距離推定部により推定された前記撮像距離が前記距離範囲内の値である場合の前記フレームを、前記測定用画像として取得する、測定装置。
(f) The measuring device, wherein the imaging unit captures the measurement image when the imaging distance estimated by the imaging distance estimating unit is within the distance range.
(g) the imaging unit captures a moving image;
The measuring unit converts the frames of the moving image captured by the imaging unit when the imaging distance estimated by the imaging distance estimating unit is a value within the distance range into the measurement image. A measuring device, obtained as
 (チ)前記撮像距離推定部により推定された前記撮像距離が前記距離範囲内の値である場合に、前記測定用画像が撮像可能であること又は前記測定用画像が撮像されたことを報知する距離条件報知部を備えている、測定装置。 (h) Notifying that the measurement image can be captured or that the measurement image has been captured when the imaging distance estimated by the imaging distance estimating unit is within the distance range; A measuring device comprising a distance condition reporting unit.
 (リ)前記撮像部は工業用内視鏡に設けられており、
 前記発光部は、前記工業用内視鏡のプローブの先端部に設けられている、測定装置。
 (ヌ)上記測定装置を用いて測定対象の大きさを測定する測定方法であって、
 前記発光部により、前記測定対象又は前記測定対象以外の物体の表面に光の像である前記マーカーを表示する、マーカー表示ステップと、
 前記撮像部により、前記マーカー表示ステップにおいて前記表面に表示された前記マーカーと前記測定対象とを含む前記測定用画像を撮像する、撮像ステップと、
 前記測定部により、前記撮像ステップにおいて撮像された前記測定画像に基づいて、前記測定対象の大きさを測定する、測定ステップと、を含むことを特徴とする測定方法。
(i) the imaging unit is provided in an industrial endoscope,
The measuring device, wherein the light emitting unit is provided at a distal end portion of a probe of the industrial endoscope.
(J) A measuring method for measuring the size of an object to be measured using the measuring device,
a marker display step of displaying the marker, which is a light image, on the surface of the object to be measured or an object other than the object to be measured by the light emitting unit;
an imaging step of imaging the measurement image including the marker and the measurement object displayed on the surface in the marker display step by the imaging unit;
a measuring step of measuring the size of the object to be measured by the measuring unit based on the measurement image captured in the imaging step.
 (ル)前記測定対象はディスクブレーキの摩擦材であり、
 前記ディスクブレーキのキャリパに形成されている点検窓に、前記撮像部及び前記発光部を挿入する、挿入ステップを含む、測定方法。
(k) the object to be measured is a disc brake friction material,
A measuring method comprising an insertion step of inserting the imaging unit and the light emitting unit into an inspection window formed in a caliper of the disc brake.

Claims (4)

  1.  測定対象の大きさを測定する測定装置において、
     光を発する発光部と、
     前記測定対象又は前記測定対象以外の物体に前記発光部が光を照射することによって当該物体の表面に表示された光の像であるマーカーと前記測定対象とを含む測定用画像を撮像する撮像部と、
     前記撮像部により撮像された前記測定用画像に基づいて前記測定対象の大きさを測定する測定部と、
    を備えていることを特徴とする測定装置。
    In a measuring device for measuring the size of an object to be measured,
    a light emitting unit that emits light;
    An imaging unit that captures a measurement image that includes a marker, which is an image of light displayed on the surface of the object to be measured or an object other than the object to be measured, and the object to be measured when the light emitting unit irradiates the object with light. and,
    a measurement unit that measures the size of the measurement object based on the measurement image captured by the imaging unit;
    A measuring device comprising:
  2.  前記測定部は、前記測定用画像における前記マーカーの大きさを基準として前記測定対象の大きさを測定する、
    請求項1に記載の測定装置。
    The measurement unit measures the size of the measurement target based on the size of the marker in the measurement image.
    The measuring device according to claim 1.
  3.  前記マーカーの形状に基づいて、前記撮像部による前記測定対象の撮像角度を推定する撮像角度推定部を備え、
     前記測定部は、前記撮像角度推定部により推定された前記撮像角度が所定の角度範囲の値であるときの前記測定用画像に基づいて、前記測定対象の大きさを測定する、
    請求項1又は請求項2に記載の測定装置。
    an imaging angle estimating unit that estimates an imaging angle of the measurement object by the imaging unit based on the shape of the marker;
    The measuring unit measures the size of the measurement object based on the measurement image when the imaging angle estimated by the imaging angle estimating unit is a value within a predetermined angle range.
    The measuring device according to claim 1 or 2.
  4.  前記撮像部は、前記測定対象以外の物体を含む前記測定用画像を撮像し、
     前記測定用画像における前記測定対象以外の前記物体の大きさ又は前記マーカーの大きさに基づいて、前記撮像部と前記測定対象との撮像距離を推定する撮像距離推定部を備え、
     前記測定部は、前記撮像距離推定部により推定された前記撮像距離が所定の距離範囲の値であるときの前記測定用画像に基づいて、前記測定対象の大きさを測定する、
    請求項1~請求項3のうち何れか一項に記載の測定装置。
    The imaging unit captures the measurement image including an object other than the measurement target,
    an imaging distance estimating unit that estimates an imaging distance between the imaging unit and the measurement object based on the size of the object other than the measurement object or the size of the marker in the measurement image;
    The measuring unit measures the size of the measurement target based on the measurement image when the imaging distance estimated by the imaging distance estimating unit is a value within a predetermined distance range.
    The measuring device according to any one of claims 1 to 3.
PCT/JP2022/029377 2021-12-02 2022-07-29 Measuring device WO2023100418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-196177 2021-12-02
JP2021196177A JP2023082417A (en) 2021-12-02 2021-12-02 measuring device

Publications (1)

Publication Number Publication Date
WO2023100418A1 true WO2023100418A1 (en) 2023-06-08

Family

ID=86611867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029377 WO2023100418A1 (en) 2021-12-02 2022-07-29 Measuring device

Country Status (2)

Country Link
JP (2) JP2023082417A (en)
WO (1) WO2023100418A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018921A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Dimension measuring method and apparatus thereof
JP2002228419A (en) * 2001-02-05 2002-08-14 Fujikura Ltd Dimension measuring apparatus
JP2005181033A (en) * 2003-12-18 2005-07-07 Casio Comput Co Ltd Camera photographing device and program
JP2007232684A (en) * 2006-03-03 2007-09-13 Ntt Comware Corp Measuring instrument, measuring method, and measuring program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018921A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Dimension measuring method and apparatus thereof
JP2002228419A (en) * 2001-02-05 2002-08-14 Fujikura Ltd Dimension measuring apparatus
JP2005181033A (en) * 2003-12-18 2005-07-07 Casio Comput Co Ltd Camera photographing device and program
JP2007232684A (en) * 2006-03-03 2007-09-13 Ntt Comware Corp Measuring instrument, measuring method, and measuring program

Also Published As

Publication number Publication date
JP2023082417A (en) 2023-06-14
JP2023082707A (en) 2023-06-14

Similar Documents

Publication Publication Date Title
CN104613867B (en) Nondestructive testing method and system
JP6091507B2 (en) Determination of deflection of compression elements based on images
JP2012045610A (en) Apparatus and method for determining shape of end of bead
EP1990624A3 (en) Apparatus and method for evaluating an optical system
EP3185046A1 (en) Portable backscatter imaging inspection apparatus and imaging method
JP2009139268A (en) Tire wheel tread measurement apparatus
JP2010181216A (en) Apparatus for measuring shape of wheel
WO2018016102A1 (en) Shape measuring apparatus and shape measuring method
US9557165B2 (en) Method for measuring end portion shape of threaded pipe or tube
JP2010512524A (en) Method and apparatus for thickness measurement
MY196634A (en) Method and System for Optical Three-Dimensional Topography Measurement
US10481106B2 (en) Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
WO2023100418A1 (en) Measuring device
JP2019095228A (en) Wheel shape measurement method
KR101783168B1 (en) Break pad worn-out management system
JP6151489B2 (en) Vibration measuring apparatus and vibration measuring method
JP5170622B2 (en) Shape measuring method, program, and shape measuring apparatus
TWM573594U (en) Vamp inspection device
JP5714951B2 (en) Binocular pupil examination device
JP2015179041A (en) Wheel shape measuring device and wheel shape measuring method
JP2017198470A (en) Measurement device, measurement method, system, and goods manufacturing method
JP5867069B2 (en) Defect detection apparatus and evacuation method thereof
EP4270945A3 (en) Dual-pattern optical 3d dimensioning
JP2018159640A (en) System and method for monitoring tunnel face surface
TWI619560B (en) Steel plate measuring system and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900853

Country of ref document: EP

Kind code of ref document: A1